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ABSTRACT 

The aim of this project is to study the performance of shallow foundations resting on 

spatially varying soils using probabilistic approaches and perform a simple building 

structural design.  

In the first part of this project, a static loading was considered in the probabilistic 

analysis. In this part, only the soil spatial variability was considered and the soil 

parameters were modelled by random fields. In such cases, Monte Carlo Simulation 

(MCS) methodology is generally used in literature. In this project, the Sparse 

Polynomial Chaos Expansion (SPCE) methodology was employed. This methodology 

aims at replacing the finite element/finite difference deterministic model by a meta-

model. This leads (in the present case of highly dimensional stochastic problems) to a 

significant reduction in the number of calls of the deterministic model with respect to 

the crude MCS methodology. Moreover, an efficient combined use of the SPCE 

methodology and the Global Sensitivity Analysis (GSA) was proposed. The aim is to 

reduce once again the probabilistic computation time for problems with expensive 

deterministic models.  

In the second part, a simple building structural design was made, in order to practice on 

the use of softwares and make the reinforcement of the main structural elements of the 

building. 
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General introduction 
Traditionally, the analysis and design of geotechnical structures are based on 

deterministic approaches. In these approaches, constant conservative values of the soil 

and/or the loading parameters are considered with no attempt to characterize and model 

the uncertainties related to these parameters. In such approaches, a global safety factor 

is applied to take into account the soil and loading uncertainties. The choice of this 

factor is based on the judgment of the engineer based on his past experience.  

During the last recent years, much effort has been paid for the establishment of more 

reliable and efficient methods based on probabilistic analysis. It should be mentioned 

here that in any probabilistic analysis, there are two tasks that must be performed. First, 

it is necessary to identify and quantify the soil uncertainties. This task is usually carried 

out through experimental investigations and expert judgment. Although this first step 

is extremely important, it will not be considered throughout this work. The values of 

the soil and loading uncertainties used in the analysis are taken from the literature. After 

the input uncertainties have been appropriately quantified, the task remains to quantify 

the influence of these uncertainties on the output of the model. This task is referred to 

as uncertainty propagation. In other words, the uncertainty propagation aims to study 

the impact of the input uncertainty on the variation of a model output (response).  

The ultimate aim of this work is to study the performance of shallow foundations resting 

on spatially varying soils using probabilistic approaches. 
In the first part of this thesis (i.e. chapters II and III), static loading cases were 

considered in the probabilistic analysis. In this part, only the soil spatial variability was 

considered and the soil parameters were modelled by random fields. The system 

responses were the ultimate bearing capacity of the foundation. 
Before the presentation of the different probabilistic analyses performed in this project, 

a literature review is presented in chapter I. It presents (i) the different sources of 

uncertainties, (ii) the soil spatial variability, (iii) the different meta-modeling techniques 

for uncertainty propagation and finally, (iv) the PCE and the SPCE methodologies 

which are the methods used in this thesis.  
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Contrary to the existing literature where the very computationally-expensive Monte 

Carlo Simulation (MCS) methodology is generally used to determine the probability 

density function (PDF) of a high-dimensional stochastic system involving spatially 

varying soil/rock properties; in chapters II and III, the Sparse Polynomial Chaos 

Expansion (SPCE) and its extension 'the combined use of the SPCE and the Global 

Sensitivity Analysis (GSA)' are employed in the framework of the probabilistic 

analysis. Notice that the sparse polynomial chaos expansion is an extension of the 

Polynomial Chaos Expansion (PCE). A PCE or a SPCE methodology aims at replacing 

the finite element/finite difference deterministic model by a meta-model (i.e. a simple 

analytical equation). Thus, within the framework of the PCE or the SPCE methodology, 

the PDF of the system response can be easily obtained. This is because MCS is no 

longer applied on the original computationally-expensive deterministic model, but on 

the meta-model. The deterministic models used to calculate the system responses are 

based on numerical simulations using the commercial software FLAC3D.  

In chapters chapter II & III, the SPCE methodology was used to investigate the effect 

of the spatial variability in three dimensions (3D) through the study of the ultimate 

bearing capacity of square & rectangular foundations resting on a purely cohesive soil 

with a spatially varying cohesion in the three dimensions.  

In the second part of this project (chapter IV), a study of a simple residential building 

was done. The design was made using many softwares (e.g. Etabs, SAFE, etc…). The 

structural design was performed to the main structural elements of the building. 

Reinforcement details were presented in this chapter. 
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CHAPTER I. LITERATURE REVIEW 

I.1 Introduction 

Geotechnical analyzes are generally based on deterministic approaches that consider 

conservative values of design parameters. These approaches determine a safety factor, 

which takes into account the uncertainty of the ground and the load. Deterministic 

models typically use a single discrete descriptor for the parameter of interest. 

“Certainty” refers to situations in which the outcome of an event or the value of a 

parameter is known with unit probability. 

Uncertainty analysis is an emerging approach that uses estimation and simulation 

techniques to consider the variability of available data and to estimate the frequency 

with which values of interest are likely to be exceeded. While it has not yet been widely 

applied in geotechnical engineering practice, this approach offers insight into existing 

data for heterogeneous geotechnical systems. 

Uncertainty pervades many aspects of geotechnical engineering, particularly in the 

characterization of soil properties. In general, some of this uncertainty may be due to 

the difficulty in making accurate measurements and some may be due to uncertainty in 

the models, equations, and understanding of the systems involved. Additional 

uncertainty can result from the spatial variability of the system. 

Uncertainty in geotechnical soil properties can be formally grouped into aleatory and 

epistemic uncertainty (Lacasse et al., 1996). Aleatory uncertainty represents the natural 

randomness of a property and, as such, is a function of the spatial variability of the 

property. Recognizing spatial variability is important because it can help distinguish 

the distances over which it occurs compared to the scale of the data of interest 

(Whitman, 1996). Epistemic uncertainty results from a lack of information and 

shortcomings in measurement and/or calculation. Epistemic uncertainty includes the 

systematic error resulting from factors such as the method of property measurement, 

the quantity of available data, and modeling errors. 
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Human error would be considered a third source of uncertainty, however it is not 

considered in this overview because it is difficult to isolate and its effect on probability 

is usually included in compilations of statistics on aleatory uncertainty. 

I.2 Sources of uncertainties 

While many sources of uncertainties may exist, they are generally categorized as either 

aleatory or epistemic [Der Kiureghian and Ditlevsen (2009)]. 

Sources of epistemic uncertainty could include non-standard equipment (such as the 

sampler size, deformed samplers or rods, rod length, hammer drop system, hammer 

weight, etc., not conforming to the SPT standard), and insufficient data to form 

reasonable statistics, such as one boring over a large site. It is important to note that 

epistemic uncertainty can usually be reduced by acquisition of additional data or 

improvements in measurement procedures.  

I.3 Modeling of uncertain parameters 

All probabilistic approaches, simplified or advanced, consider the uncertainties of soil 

parameters. The simplified approach, considering the uncertain parameters as aleatory 

variables defined by a stochastic distribution. This approach does not reflect the natural 

variability of soil properties. The advanced approach models the uncertain parameters 

of the soil by a random field, defined not only by a probability density, but also by an 

auto-correlation function (or covariance function) that represents the spatial variability 

of the soil, due in geological hazard, by the correlation between the points of the ground. 

The spatial distribution of geotechnical properties in natural soil deposits is difficult to 

predict deterministically. Limited sampling, especially in subsurface drilling, further 

complicates prediction of soil properties. Prediction of the spatial occurrence of soil 

properties in either an optimal best estimate or within a probabilistic framework is 

necessary for effective numerical modeling of soils with heterogeneous properties. 

Applied geostatistical estimation and simulation techniques can be used to model 

spatial variability from limited sample sets (or from known distributions of data). While 

traditional statistics generally assumes independence between samples, geostatistics 

take advantage of the fact that samples located in proximity to one another are often 

more similar than those obtained at large separation distances. Geostatistics provide a 
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means of quantifying this spatial correlation in soil properties and then of using that 

information for both estimation and stochastic simulation. 

Geostatistical estimation refers to techniques that provide the best linear unbiased 

estimators of unknown properties. When the structural information of the data is 

known, then the estimator can be defined. This description requires more than the 

simple first-order moments of the random variable of interest. Geostatistical simulation 

is a spatial Monte Carlo process where a random “draw” from a local cumulative 

distribution function simulates a value of a property at a given location. The simulation 

process is run multiple times to produce a series of realizations all of which correspond 

to the observed data at the sample locations, the univariate distribution, and the spatial 

correlation of the observed data. In essence, each realization is a probable 

representation of the underlying reality given the available data. These multiple 

realizations can be used as input to a transfer function or processed to provide a map of 

the probability of a given situation being true (e.g., a plot of the probability that a given 

factor of safety will be exceeded). The results of the transfer function can often be 

evaluated in terms of economic loss and/or risk. 

Most soils are naturally formed in many different depositional environments; therefore 

their physical properties will vary from point to point. This variation can exist even in 

an apparently homogeneous soil unit. Variability of soil properties is a major 

contributor to the uncertainty in geotechnical engineering analyses. Laboratory test 

results on natural soils indicate that most soil properties can be considered as random 

variables conforming to the normal distribution function 

(Lumb, 1966; Tan et al., 1993). 

 
I.3.1 Modeling parameters by random variables: 

A random variable is a variable that can take on multiple values. The domain of a 

random variable is the outcome set and its range is the set of possible values. 

Mathematically, a random variable can be expressed as a real function, Z(x), which 

associates a real number, xi, with each element in the outcome set, xi ∈ Ω. The real 

number, xi, will correspond to every outcome of an experiment, the function 

 {Z(x) ≤ xi } is an event for any real number xi, and the probabilities P{Z(x) = +∞} and 

P{Z(x) = −∞} will be zero for the random variable. 
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There are several studies [Fenton et al. (2003)] recommend a log normal law for 

cohesion, the Young's modulus and shear modulus, since these parameters always keep 

positive values. While the beta distribution is recommended for the internal friction 

angle and this limiting its variation in a range of practical values. 

Soil parameters can be correlated. This correlation is expressed by a correlation 

coefficient is a statistical index that expresses the intensity and the direction of the 

dependence between two random variables. 

 

I.3.2 Modeling uncertainties of soil by a random field: 

The random field theory is commonly used in literature to describe the soil spatial 

variability. According to VanMarcke (1983), the random field theory should 

incorporate the observed behavior that values at adjacent locations are more related 

than those separated by some distance. For this purpose, a fundamental statistical 

property which is the autocorrelation function (ACF) is introduced in addition to the 

classical statistical parameters (i.e. the mean and standard deviation or coefficient of 

variation). The ACF is a plot of the correlation coefficient versus the distance. This 

ACF may be used to identify (i) the autocorrelation distance (a) or (ii) the scale of 

fluctuation (δ). If the soil property of interest is denoted by Z, the correlation coefficient 

ρ between the values of that property at two different locations is defined as follows: 

( )
( ) ( )

( ) ( ) 2 2

, 1i i h
i Z i h Z

Z Z

C Z X Z X
h E Z X Z X  

 

+

+

   = = − −        
(I.1) 

Where X is the vector which represents the location. It is given by ( )X x=  in the case 

of a one-dimensional random field, ( ),X x y=  in the case of a two-dimensional (2D) 

random field and ( ), ,X x y z=  in the case of a three-dimensional (3D) random field. 

On the other hand, Z(Xi) is the value of the property Z at location Xi; Z(Xi+Δh) is the 

value of the property Z at location, Xi+Δh; Δh is the separation distance between the data 

pairs; E[.] is the expected value; C is the covariance and μZ and σZ are respectively the 

mean and standard deviation of the property Z. It should be emphasized here that it is 

not possible to know the value of ρ between any two arbitrary points. Thus; in practice, 
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one needs to determine the ACF which allows one to calculate the value of the 

correlation coefficient between any two arbitrary points. 

This can be done by collecting some values of the property Z (also known as the data 

samples) at equally separation distance Δh. These values are gathered in the vector 

( ) ( ) 1 ,..., sZ X Z X =  where s is the number of these data samples and Xi+1=Xi + 

Δh. These data samples are then used to determine the sample ACF as follows: 

( )
( ) ( )

( )

1

2

1

s k

i Z i k Z
i

k N

i Z
i

Z X Z X
k h

Z X

 

 



−

+

=

=

− −      
=  =

−  




               k=0, 1, …, K 

 

(I.2) 

The sample ACF is the graph of ρk for k=0, 1, 2 ... K, where K is the maximum allowable 

number of lags (data intervals). Generally, K=s/4 (Box and Jenkins 1970), where s is 

the total number of data samples. 

The ACF is often used to determine the distance over which a property exhibits strong 

correlation. Two measures of this quantity which are the autocorrelation distance (a) or 

the scale of fluctuation (δ) may be evaluated. The autocorrelation distance (a) is defined 

as the distance required for the autocorrelation function to decay from 1 to e-1 (0.3679). 

On the other hand, the scale of fluctuation is defined as the area under the ACF [Fenton 

(1999)]. The determination of the autocorrelation distance (a) is done by fitting the 

sample ACF to one of the models given in Table I.1 where kΔh is the lag distance and 

(a) is the autocorrelation distance. 
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Model Autocorrelation function Scale of fluctuation (δ) 

Single exponential expk

k h
a


 −  

=  
 

 2a =  

Square exponential 
2

expk

k h
a


   
 = −  
   

 a =  

Cosine exponential ( ) ( )exp cosk a k h ak h = −    1
a

 =  

Second-order Markov ( ) ( )1 expk a k h a k h = +  −   4
a

 =  

Table I.1. Theoretical ACF used to determine the autocorrelation distance (a) [Vanmarcke 

(1983)]  

Finally, it should be mentioned that the modeling of the spatial variability is greatly 

facilitated by the data being stationary [Uzielli et al. (2005)]. Stationarity is insured if 

(i) the mean is constant with distance (i.e. no trend exists in the data); (ii) the variance 

is constant with distance; (iii) there are no seasonal variations; and (iv) there are no 

irregular fluctuations. In random field theory, it is a common practice to transform a 

non-stationary data set to a stationary one by removing a low-order polynomial trend 

(i.e. a first or a second order polynomial) using the ordinary least square method.  

Autocorrelation distance (a) 

A literature review on the values of the autocorrelation distances of different soil types 

and for different soil properties was given by El-Ramly (2003) and is presented in Table 

I.2. It should be emphasized here that the autocorrelation function and the 

autocorrelation distance (a) are generally site specific, and often challenging due to 

insufficient site data and high cost of site investigations. 
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Test type Soil property Soil type 
Autocorrelation distance a(m) 

vertical horizontal 
VST cu(VST) Organic soft clay 1.2 - 
VST cu(VST) Organic soft clay 3.1 - 
VST cu(VST) Sensitive clay 3.0 30.0 
VST cu(VST) Very soft clay 1.1 22.1 
VST cu(VST) Sensitive clay 2.0 - 
Qu cu(Qu) Chicago clay 0.4 - 
Qu cu(Qu) Soft clay 2.0 40.0 
UU cu(UU)N Offshore soil 3.6 - 
DSS cu(DSS)N Offshore soil 1.4 - 
CPT qc North see clay - 30.0 
CPT qc Clean sand 1.6 - 
CPT qc North sea soil - 13.9 
CPT qc North sea soil - 37.5 
CPT qc Silty clay 1.0 - 
CPT qc Sensitive clay 2.0 - 
CPT qc Laminated clay - 9.6 
CPT qc Dense sand - 37.5 
DMT Po Varied clay 1.0 - 

Table I.2. Values of the autocorrelation distances of some soil properties as given by several 
authors (El-Ramly 2003) 

aVST, vane shear test; Qu, unconfined compressive strength test; UU, unconfined 
undrained triaxial test; DSS, direct shear test; CPT, cone penetration test; DMT, 
dilatometer test;  
bcu(VST), undrained shear strength from VST; cu(Qu), undrained shear strength from 
Qu; cu(UU)N, normalized undrained shear strength from UU; cu(DSS)N, normalized 
undrained shear strength from DSS; qc, CPT trip resistance; Po, DMT lift-off pressure.  

I.3.3 The expansion optimal linear estimation (EOLE) method for random field 

discretization. 

The expansion optimal linear estimation method (EOLE) was proposed by Li and Der 

Kiureghian (1993). This method only deals with uncorrelated Gaussian random fields 

because it uses a spectral representation of the vector ( ) ( ) 1 ,..., sZ X Z X = . To 

overcome the inconvenience of modeling only uncorrelated Gaussian random fields, 

Vořechovsky (2008) has extended this method to cover the general case of cross-

correlated non-Gaussian random fields.  
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In this section one first presents EOLE method proposed by Li and Der Kiureghian 

(1993) to model uncorrelated Gaussian random fields.  

In EOLE method, the fact that the spatially varying soil property is assumed to be 

Gaussian allows one to spectrally decompose its autocorrelation matrix ;   that 

includes the correlation between each element of the vector ( ) ( ) 1 ,..., sZ X Z X =  

with all the elements of this same vector. Thus ( ) ( ) 1 ,..., sZ X Z X = can be written 

as follows: 

 
1

s

Z Z j j j
j

     
=

= +    
(I.3) 

Where j  (j=1… s) are independent standard normal random variables and ( ,j j  ) are 

the eigenvalues and eigenvectors of the autocorrelation matrix ;   verifying 

; j j j    =  . 

The representation of the approximated random field ( )Z X is as follows: 

( ) ( );
1

( ) . .
s Tj

Z Z j Z X
j j

Z X µ 


 

=

= +   (I.4) 

where μZ and σZ are respectively the mean and the standard deviation of the Gaussian 

random field Z, ( , );Z x y   is the correlation vector between each element in the vector χ 

and the value of the field at an arbitrary point X, j is a standard normal random 

variable, and s is the total number of point samples.  

It should be mentioned that the series expansion given in Equation (I.4) can be truncated 

after N<s terms. This can be done by sorting the eigenvalues λj in a descending order. 

This number N should assure that the variance of the error is smaller than a prescribed 

tolerance 10%  . Notice that the variance of the error for EOLE is given by Sudret 

and Der Kiureghian (2000) as follows: 
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Var Z X Z X  
=

  
 − = −   

  
  (I.3) 

Where ( )Z X and ( )Z X are respectively the exact and the approximate values of the 

random field at a given point X and ( )
T

j is the transpose of the eigenvector j . 

I.3.4 The simulation methods 

Several simulation methods are used for the uncertainty propagation. The simulation 

method used in this thesis is the universal Monte Carlo simulation (MCS) methodology. 

In spite of being rigorous and robust, the simulation methods are well-known to be very 

time-expensive especially when dealing with finite element or finite difference models 

which do not offer an analytical solution of the involved problem. The time cost is due 

to the fact that these methods require a great number of calls of the deterministic model 

to rigorously determine the PDF of the system response. Thus, the MCS methodology 

remains the origin of all the advanced simulation techniques. 

I.3.4.1 Monte Carlo Simulation (MCS) methodology 

The Monte Carlo simulation is a universal method to evaluate complex integrals. It 

consists in generating K samples which respect the joint probability density function 

fX(X) of the M random variables (X1… XM) gathered in a vector X. For each sample, the 

system response is calculated. Thus; for the K samples, one obtains K values of the 

system response gathered in a vector ( ) ( ) (1) ( ),..., KX X =    which may be used to 

determine the estimators of the first two statistical moments of the system response (i.e. 

the mean and the standard deviation). These two estimators of the first two statistical 

moments ( ,   ) are given as follows: 

 

( )( )
1

1 K
i

i
X

K


=

= 
               

 
(I.6) 
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(I.7) 

 



23 | P a g e  

 

It should be mentioned here that MCS methodology is applicable whatever the 

complexity of the system is. However, a very large number of realizations is required 

to obtain a rigorous PDF of the system response. Thus, MCS methodology is not 

practically applicable when the deterministic model is computationally-expensive and 

especially when computing small failure probabilities. 

 

I.4 The metamodeling techniques 

As said previously, the simulation methods have some inconvenient, the metamodeling 

techniques were proposed in the purpose to overcome the inconvenience of these 

simulation methods. The aim of these techniques is to replace the original 

computationally-expensive deterministic model by a meta-model (i.e. an analytical 

equation). 

In this thesis, we will discuss three techniques: the Polynomial Chaos Expansion (PCE), 

SPCE & the global sensitivity analysis (SPCE/GSA). 

I.4.1 The Polynomial chaos expansion PCE methodology - the classical 

truncation scheme 

The polynomial chaos expansion (PCE) aims at replacing a complex deterministic 

model (i.e. finite element/finite difference numerical model) by a meta-model. This 

allows one to calculate the system response (when performing MCS) using an 

approximate simple analytical equation [Spanos and Ghanem (1989), Isukapalli et al. 

(1998, 1999), Xiu and Karniadakis (2002), Berveiller et al. (2006), Huang et al. (2009), 

Blatman and Sudret (2010), Li et al (2011), Mollon et al. (2011), Houmadi et al. (2011), 

Mao et al. (2012), Al-Bittar and Soubra (2012)]. Thus, the metamodel may be used to 

perform the probabilistic analysis with a significant reduction in the computation time.  

The PCE makes use of multivariate polynomials which are orthogonal with respect to 

the joint probability density function of the input random vector. The different types of 

the joint probability density functions and their corresponding multivariate polynomials 

are given in Table I..  
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probability density functions Polynomials 

Gaussian Hermite 

Gamma Laguerre 

Beta Jacobi 

Uniform Legendre 

Table I.3. Usual probability density functions and their corresponding families of orthogonal 

polynomials [Xiu and Karniadakis (2002)]. 

In this work, the Gaussian joint probability density function and its corresponding 

multivariate Hermite polynomials are used. Notice that the coefficients of the PCE may 

be efficiently computed using a non-intrusive technique where the deterministic 

calculations are done using for example a finite element or a finite difference software 

treated as a black box. The most used non-intrusive method is the regression approach 

[Isukapalli et al. (1998, 1999), Sudret et al. (2006), Huang et al. (2009), Blatman and 

Sudret (2010), Li et al (2011), Mollon et al. (2011), Houmadi et al. (2011), Mao et al. 

(2012), Al-Bittar and Soubra (2012)]. It is used in this thesis. The PCE methodology 

can be described as follows: 

Consider a mechanical model with M input uncertain parameters gathered in a vector 

 1 MX= X , ..., X . The different elements of this vector can have different types of 

the probability density function. In order to represent our mechanical system response 

by a PCE, all the uncertain parameters should be represented by a unique chosen PDF. 

Table I. presents the usual probability density functions and their corresponding 

families of orthogonal polynomials. Based on the Gaussian PDF chosen in this work, 

the system response can be expanded onto an orthogonal polynomial basis as follows: 

1

0 0
( ) ( ) ( )

P

PCE a a   
 

  
 −

= =

 =      (I.8) 

where   is the vector resulting from the transformation of the random vector X into an 

independent standard normal space, P is the number of terms retained in the truncation 

scheme, a are the unknown PCE coefficients to be computed and   are multivariate 

(or multidimensional) Hermite polynomials which are orthogonal with respect to the 
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joint probability density function of the standard normal random vector ξ. These 

multivariate Hermite polynomials can be obtained from the product of one-dimensional 

Hermite polynomials of the different random variables as follows: 

1

( )
i

M

i
H  

=

 =  (I.4) 

Where (.)
i

H  is the αi-th one-dimensional Hermite polynomial and αi are a sequence 

of M non-negative integers  1,..., M  . The expressions of the one-dimensional 

Hermite polynomials are given in Appendix A. In practice, one should truncate the PCE 

representation by retaining only the multivariate polynomials of degree less than or 

equal to the PCE order p (i.e. the classical truncation scheme). Notice that the classical 

truncation scheme suggests that the first order norm 
1

.  of any multivariate polynomial 

  should be less than or equal to the order p of the PCE as follows [Blatman (2009)]: 

1
1

M

i
i

p 
=

=   (I.10) 

Using this method of truncation, the number P of unknown PCE coefficients is given 

by: 

( )!
! !

M pP
M p
+

=  (I.11) 

As may be seen from Equation (I.11), the number P of the PCE coefficients which is 

the number of terms retained in Equation (I.8) dramatically increases with the number 

M of random variables and the order p of the PCE. This number becomes very high in 

the case of random fields where the number of random variables is significant.  

Once the coefficients a  of the PCE given by Equation (I.8) have been computed, the 

statistical moments (mean, standard deviation, skewness, and kurtosis) can be 

calculated with no additional cost. This can be done by performing Monte Carlo 

simulations on the meta-model and not on the original computationally-expensive finite 

element/finite difference numerical model. This significantly reduces the cost of the 

probabilistic analysis since a large number of Monte Carlo simulations (say 1,000,000) 

can be performed in a negligible time when using the metamodel. The next subsection 
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is devoted to the method used for the computation of the coefficients a of the PCE 

using the regression approach. 

Computation of the PCE coefficients by the regression approach 

Consider a set of K realizations ( ) ( )(1) ( )
1 1{ ,..., ,..., ,..., }K

M M     = = of the standard 

normal random vector ξ. These realizations are called experimental design (ED) and 

can be obtained from Monte Carlo (MC) simulations or any other sampling scheme 

(e.g. Latin Hypercube (LH) sampling or Sobol set). We note ( ) ( ) (1) ( ),..., K  =   , 

the corresponding values of the response determined by deterministic calculations. The 

computation of the PCE coefficients using the regression approach is performed using 

the following equation: 

1( )T Ta   −=   (I.12) 

Where the data matrix η is defined by: 

( )( ), 1,..., , 0,..., 1i
i i K P   = = = −  (I.5) 

In order to ensure the numerical stability of the treated problem in Equation (I.12), the 

size K of the ED must be selected in such a way that the matrix 1( )T  −  is well-

conditioned. This implies that the rank of this matrix should be larger than or equal to 

the number of unknown coefficients. This test was systematically performed while 

solving the linear system of equations of the regression approach. 

Computation of the PCE coefficient of determination 

The quality of the output approximation via a PCE closely depends on the PCE order 

p. To ensure a good fit between the meta-model and the true deterministic model (i.e. 

to obtain the optimal PCE order), one successively increases the PCE order until a 

prescribed accuracy was obtained. The simplest indicator of the fit quality is the well-

known coefficient of determination R2 given by: 
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where 

(I.14) 

( )( )
K

i

i 1

1
K

  
=

=   (I.15) 

The value 2R 1=  indicates a perfect fit of the true model response Γ, whereas 2R 0=  

indicates a nonlinear relationship between the true model response Γ and the PCE model 

response PCE . The coefficient R2 may be a biased estimate since it does not take into 

account the robustness of the meta-model (i.e. its capability of correctly predicting the 

model response at any point which does not belong to the experimental design). As a 

consequence, one makes use of a more reliable and rigorous coefficient of 

determination denoted Q2 [Blatman (2009)]. In order to compute this coefficient of 

determination Q2, one needs to sequentially remove a point from the experiment design 

composed of K points. Let \i  be the meta-model that has been built from the 

experiment design after removing the ith observation and let 
i ( i ) ( i )

\i( ) ( )    = − be the predicted residual between the model evaluation at 

point ( i ) and its prediction based on \i . Thus, the corresponding coefficient of 

determination Q2 is obtained as follows: 

( )

( )( )

2K
i

2 i 1
K 2

i

i 1

1
KQ 1

1
K 1



  

=

=

= −
 −
 −





 (I.16) 

The two coefficients R2 and Q2 will be used in this thesis to check the accuracy of the 

fit. 
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I.4.2 Sparse Polynomial Chaos Expansion (SPCE) methodology 

The polynomial chaos expansion (PCE) methodology aims at replacing a complex 

deterministic model whose input parameters are modeled by random variables by a 

meta-model which allows one to calculate the system response using an approximate 

analytical equation [Blatman and Sudret (2010)]. The coefficients of the PCE are 

computed herein using a regression approach.  

For a deterministic numerical model with M input uncertain parameters, the uncertain 

parameters should be represented first by independent standard normal random 

variables   1,....,i i M


=
 gathered in a random vector ξ. The random response Γ of our 

mechanical model can then be expressed by a PCE of order p fixed by the user as 

follows: 

1

0 0
( ) ( ) ( )

P

PCE a a   
 

  
 −

= =

 =      (I.17) 

where P is the number of terms retained in the truncation scheme, a are the unknown 

PCE coefficients to be computed and   are multivariate (or multidimensional) 

Hermite polynomials which are orthogonal with respect to the joint probability 

distribution function of the standard normal random vector ξ. These multivariate 

polynomials are given by ( )
1

i

M

i
H  

=

 = , where (.)
i

H  is the αi-th one-dimensional 

Hermite polynomial and αi are a sequence of M non-negative integers  1,..., M  . In 

practice, one should truncate the PCE representation by retaining only the multivariate 

polynomials of degree less than or equal to the PCE order p. For this reason, a classical 

truncation scheme based on the determination of the first order norm is generally 

adopted in the literature. This first order norm is defined as follows: 
1

1

M

i
i

 
=

= . The 

classical truncation scheme suggests that the first order norm should be less than or 

equal to the order p of the PCE. Using this method of truncation, the number P of the 

unknown PCE coefficients is given by ( )!
! !

M pP
M p
+

= . Thus, the number P of the PCE 

coefficients increases dramatically with the number M of the random variables and the 

order p of the PCE. To overcome such a problem, it was shown that the number of 
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significant terms in a PCE is relatively small since the multidimensional polynomials 

  corresponding to high-order interaction are associated with very small values for 

the coefficients a. Thus, a truncation strategy based on this observation was developed 

in which the multidimensional polynomials   corresponding to high-order 

interaction were penalized. This was performed by considering the hyperbolic 

truncation scheme that considers the q-norm instead of the first order norm. The q-norm 

is given by 
1

1

qM
q
iq

i
 

=

 
=  
 
  where q is a coefficient (0<q<1). The hyperbolic 

truncation scheme suggests that the q-norm should be less than or equal to the order p 

of the PCE. The proposed methodology leads to a SPCE that contains a small number 

of unknown coefficients which can be calculated from a reduced number of calls of the 

deterministic model. This is of particular interest in the present case of random fields 

which involve a significant number of random variables. This strategy will be used in 

this paper to build up a SPCE of the system response using an iterative procedure 

[Blatman and Sudret (2010)]. Once the unknown coefficients of the SPCE are 

determined, the PDF of the dynamic responses can be estimated using Monte Carlo 

technique. 

I.4.3 SPCE/GSA 

When dealing with high-dimensional stochastic problems making use of 

computationally-expensive deterministic models (e.g. three-dimensional analysis of 

shallow rectangular or square footings resting on 3D spatially varying ponderable 

soils), the time cost remains important even with the use of the SPCE. Consequently, a 

method that can reduce once again the cost of the probabilistic analysis (i.e. the number 

of calls of the deterministic model) is needed.  

Dr. Al-Bittar & Dr. Soubra have proposed a combination of the SPCE methodology 

with the global sensitivity analysis GSA. The basic idea of this combination is that, for 

a given discretized random field, the obtained random variables do not have the same 

weight in the variability of the system response. The variables with a very small 

contribution in the variability of the system response can be discarded which 

significantly reduces the dimensionality of the treated problem. This allows one to 

perform a probabilistic analysis using a reduced Experiment Design (ED) and thus a 
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smaller number of calls of the computationally-expensive deterministic model. The 

main challenge remains in detecting the most influential random variables in order to 

reduce the dimensionality of the problem. For this purpose, a procedure that makes use 

of both the SPCE and the GSA (denoted hereafter by SPCE/GSA) is proposed in this 

regard.   

A GSA based on Sobol indices is then performed on the SPCE order to determine the 

weight of each random variable in the variability of the system response. As a result, 

the variables with very small values of their Sobol indices (i.e. those that have a small 

weight in the variability of the system response) can be discarded. Consequently, a 

response which only depends on a smaller number of random variables is obtained. In 

other words, one obtains a response with an 'effective dimension'. This dimension is 

smaller than the initial dimension where the total number of random variables was 

considered. 

The SPCE/GSA procedure can be described in more details by the following steps: 

• Discretize the random field(s): This step may be made using EOLE method and 

its extensions by Vořechovsky. After the discretization procedure, a random 

field is represented by N independent standard normal random variables. If the 

total number of random fields involved in the analysis is equal to NRF, the total 

number of random variables is thus given by NT= NRFxN which can be relatively 

large especially for small values of the autocorrelation distances. Notice that the 

equation NT=NRFxN is only applicable if all the random fields share the same 

autocorrelation function. 

• Perform a GSA based on Sobol indices to determine the weight of each random 

variable (of the different random fields) in the variability of the system response. 

The variables with very small values of their Sobol indices have no significant 

weight in the variability of the system response and can thus be discarded. 

Consequently, a response that only depends on a smaller number of random 

variables is obtained. In other words, one obtains a response with an 'effective 

dimension' Ne that is smaller than the initial dimension where the total number 

NT of random variables was considered.  
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• Use the same Experiment Design (ED) which was employed before but this 

time by only keeping the most influential random variables. By reducing the 

number of random variables from NT to Ne (where Ne<NT), one has the 

possibility to use a higher SPCE order (i.e. p>2). The use of a higher SPCE 

order is necessary to lead to an improved fit of the SPCE since the coefficient 

of determination Q2 increases when the SPCE order increases.  

As a conclusion, the use of the SPCE/GSA procedure is expected to provide a good fit 

of the deterministic model with a reduced number of model evaluations as compared to 

the classical SPCE approach. 

I.5 FLAC3D 

FLAC3D & MATLAB are the two softwares used in this thesis. 

FLAC3D (Fast Lagrangian Analysis of Continua) is a computer code which allows one 

to perform three dimensional (3D) numerical simulations. It should be mentioned that 

FLAC3D allows the application of stresses (stress control method) or velocities 

(displacement control method) on the geotechnical system. The application of stresses 

or velocities creates unbalanced forces in this system. The solution of a given problem 

in FLAC3D is obtained by damping these forces to reduce them to very small values 

compared to the initial ones. The stresses and strains are calculated at several time 

intervals (called cycles) until a steady state of static equilibrium or a steady state of 

plastic flow is achieved in the soil mass.  

It should be mentioned here that the programming language FISH in FLAC3D allows 

one to create functions that calculates the stresses, displacements, rotations, etc. at any 

point in the soil mass.   

FLAC3D is a numerical modeling code for advanced geotechnical analysis of soil, rock, 

and structural support in three dimensions. 

FLAC3D is used in analysis, testing, and design by geotechnical civil and mining 

engineers. It is designed to accommodate any kind of geotechnical engineering project 

where continuum analysis is necessary. 
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CHAPTER II. EFFECT OF THE SOIL SPATIAL 

VARIABILITY IN THREE DIMENSIONS ON THE ULTIMATE 

BEARING CAPACITY OF SQUARE FOUNDATIONS. 

II.1 Introduction 

Few authors have investigated the effect of the 3D soil spatial variability. One may cite 

among others Fenton and Griffiths (2005) for the foundation settlement problem, 

Griffiths et al. (2009) for the slope stability analysis and Popescu et al. (2005) for the 

seismic liquefaction problem. To the best of the authors’ knowledge, there are no 

investigations on the effect of the 3D soil spatial variability on the ultimate bearing 

capacity of foundations.  

The effect of the soil spatial variability in three dimensions is investigated in this 

chapter through the study of the ultimate bearing capacity of square foundation resting 

on a purely cohesive soil with a spatially varying cohesion in the three dimensions. For 

this purpose, the soil cohesion was modeled as a 3D random field. Both cases of 

isotropic and anisotropic random fields were considered.  

II.2 Probabilistic analysis of square footing resting on a 3d spatially 

varying soil mass. 

The aim of this section is to perform a probabilistic analysis of shallow foundations 

taking into account the soil spatial variability in three dimensions. More specifically, 

the analysis involves the computation of the ultimate bearing capacity (qult) of square 

footing resting on a purely cohesive soil that exhibits spatial variability in three 

dimensions.  

As for the random field discretization method of the 3D random field, a straightforward 

extension to the 3D case of the Expansion Optimal Linear Estimation (EOLE) 

methodology proposed by Li and Der Kiureghian (1993) and extended by Vořechovsky 

(2008) was used in this chapter. It should be emphasized here that this extension of 

EOLE method to the 3D case is straightforward because the autocorrelation matrix 

;   provides the correlation between each node of the stochastic mesh and all the 
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nodes of this mesh. Thus, ;   is always a square matrix of dimensions sxs regardless 

of the random field dimension.  

Concerning the probabilistic method of analysis, the SPCE/GSA expansion method 

presented in the previous chapter is used herein. It aims at replacing the FLAC3D 

deterministic model by a meta-model (i.e. a simple analytical equation). This allows 

one to easily calculate the system response (when performing the probabilistic analysis 

by MCS) using a simple analytical equation.  

The deterministic model was based on numerical simulations using the finite difference 

code FLAC3D. The undrained soil behavior was modeled using a conventional elastic-

perfectly plastic model based on Tresca failure criterion. On the other hand, an 

associative flow rule was considered in this study. This assumption is justified by the 

fact that for purely cohesive materials no volume changes are expected to appear during 

plastic deformation. Notice that the soil Young modulus E and Poisson ratio υ were 

assumed to be deterministic since the ultimate bearing capacity is not sensitive to these 

variables. Their corresponding values were respectively 60=E MPa  and 0.49 = . 

Concerning the footing, a weightless rigid foundation was used. It was assumed to 

follow an elastic linear model ( 25E GPa= , 0.4 = ). The connection between the 

footing and the soil mass was modeled by interface elements having the same mean 

values of the soil shear strength parameters in order to simulate a perfectly rough soil-

footing interface. These parameters have been considered as deterministic in this study. 

Concerning the elastic properties of the interface, they also have been considered as 

deterministic and their values were as follows: 1sK GPa= , 1nK GPa=  where Ks and 

Kn are respectively the shear and normal stiffnesses of the interface. 

Figure II.1 shows the adopted soil domain considered in the analysis of the square 

footing case. It is 5mx5m wide by 2m deep. A 'relatively fine' mesh was considered for 

the analysis.  

It should be noted that the size of a given element in the deterministic mesh depends on 

the autocorrelation distances of the soil properties. Der Kiureghian and Ke (1988) have 

suggested that the length of the largest element of the deterministic mesh in a given 

direction (horizontal or vertical) should not exceed 0.5 times the autocorrelation 
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distance in that direction. In order to respect this criterion for the different 

autocorrelation distances, a refinement of the deterministic mesh was performed in 

FLAC3D for the very small values of the autocorrelation distances (<1m). This mesh 

will be called hereafter 'very fine' mesh.  

For the boundary conditions of the square footing case, the horizontal movement on the 

vertical boundaries of the grid was restrained, while the base of the grid was not allowed 

to move in both the horizontal and the vertical directions. 

 
 

 
 
 
 
 

Figure II.1. Mesh used for the computation of the ultimate bearing capacity of a square footing  

II.3 NUMERICAL RESULTS 

In this section, one firstly presents the obtained deterministic numerical results. This is 

followed by a presentation of the probabilistic numerical results. 

II.3.1 Deterministic numerical results 

The aim of this section is to present the deterministic numerical results for the square 

footing considered in the analysis.  

The three-dimensional 'relatively fine' mesh has led to a deterministic value of ultimate 

bearing capacity coefficient Nc=6.54 for the square footing case. The difference with 

the recent finite element solution (Nc=5.91) by Gourvenec et al. (2006) and the recent 

upper-bound solution (Nc=6.41) by Gourvenec et al. (2006) was respectively about 9% 

and 2%. It should be emphasized here that a ‘very fine’ mesh has led to a value of 

Nc=6.15 which is only 5% smaller (i.e. better) than the value of 6.54 obtained using the 

'relatively fine' mesh. Notice however that this solution requires an increase in the 
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computation time by 2 hours and thus, this 'very fine' mesh was not retained in the 

present probabilistic analysis. A similar procedure that makes use of a 'relatively fine' 

(not 'very fine') mesh was advocated by Griffiths et al. (2002) when performing a 

probabilistic analysis. It should be emphasized herein that when dealing with 

probabilistic studies based on three-dimensional finite element/finite difference 

deterministic models, the time cost is very important especially when the soil spatial 

variability (and more specifically the variability of the soil property in three 

dimensions) is introduced. The reasons are: 

(i) The computation time of a single deterministic solution significantly 

increases with the increase in the density of the three-dimensional 

deterministic mesh.  

(ii) The fact of providing (for each simulation of a single probabilistic analysis) 

different values of the soil cohesion to the different elements of the mesh, 

will add a dramatic computation time especially for very fine meshes.  

(iii) The large number of simulations required for each probabilistic analysis.  

Thus, in order to enable the investigation of the effect of the soil spatial variability in 

the three dimensions for the present three-dimensional mechanical problem, a 

'relatively fine' (not 'very fine') mesh was considered in the square footing case. This is 

a compromise between the computation time and the accuracy of the probabilistic 

solution.  

II.3.2 Probabilistic numerical results 

In this section, the probabilistic numerical results of the square footing resting on a 

purely cohesive spatially varying soil are presented. The soil cohesion parameter was 

modeled as anisotropic non-Gaussian (log-normal) random field using a square 

exponential autocorrelation function. Its mean value and coefficient of variation 

(referred to as reference values) were taken as follows: 20 , 25%c ckPa COV = = .  

As for the autocorrelation distances ax, ay and az of the cohesion random field, both 

cases of isotropic random fields (i.e. ax=ay=az for the 3D random field case) and 

anisotropic random fields (i.e. ax=ay≠az for the 3D random field case) will be treated 

although the soil is rarely isotropic in reality.  
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When isotropic random fields are used, the autocorrelation distance will be denoted by 

(a) later on in this chapter (i.e. a=ax=ay=az for the 3D random field case). Also, when 

referring to anisotropic random fields, the horizontal autocorrelation distance will be 

denoted by ah (i.e. ah=ax=ay for the 3D random field case). Furthermore, the vertical 

autocorrelation distance fields will be denoted by av (i.e. av=az).  

For the isotropic case, a range of 0.5-10m was considered (cf. Table II.1). For the 

anisotropic case, the reference values adopted for the horizontal and the vertical 

autocorrelation distances were 10m and 1m while the wide ranges of 0.5-10m and 0.15-

10m were considered respectively for the horizontal and the vertical autocorrelation 

distances when performing the parametric study for the square footing (cf. Table II.1).  

For the considered soil domain and for the different values of the autocorrelation 

distances (a, ah or av) used in the analysis, the total number N of random variables (or 

eigenmodes) that should be used to discretize the cohesion random field within a value 

of the variance of the error 10%  is presented in Table II.1. It should be emphasized 

here, that for the very small values of the autocorrelation distance where a large number 

of random variables ( 500 ) was needed to discretize the random field, a maximum 

number of random variables N=300 was employed. This is because beyond this value, 

numerical difficulties may occur. The use of this number may lead to relatively large 

values of the variance of the error (>10%) but this will not affect the accuracy of the 

obtained system response. This is because of the very fast decay of the importance of 

random variables in the variability of the system response as was shown in the previous 

chapter. 
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Table II.1. Number of random variables needed to discretize the 3D cohesion random fields in 
the case of the square footing 

Figure II.2 (a) presents, for the square footing, a typical realization of the 3D cohesion 

random field in the isotropic case where a=0.5m. Only one half of the soil domain is 

presented in this figure in order to show the variation of the cohesion in the plane 

X=2.5m (i.e. the central plan under the footing). As may be seen from this figure, dark 

regions correspond to small values of the cohesion c while light regions refer to lager 

values.  

Figure II.2 (b) presents a 3D view of the failure mechanism (for the random field 

realization shown in Figure II.2 (a)) using the contours of the strain rate. This view 

clearly shows the influence of the 3D spatial variability on the obtained failure 

mechanism in both the central vertical plane (X=2.5m) and the top horizontal plane 

representing the ground surface. From this figure, one can see that the failure 

mechanism is more developed through the weaker zones and is limited when strong 

zones are encountered. Contrarily to the case of a homogeneous soil, a non-symmetrical 
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mechanism is obtained herein, although the footing is subjected to a symmetrical 

vertical load.  

  

 
                                    (a)                                                                          (b) 

Figure II.2. Perspective view of half of the soil domain showing (a) a random field realization (the 
contour lines provide the distribution of the soil cohesion on the envelope of this domain) and (b) 

the contours of the strain rate 

On the other hand, the probabilistic numerical results have shown that for the particular 

case of a purely cohesive soil, the probabilistic ultimate bearing capacity can be written 

as follows: ult c cq N=  where c  is the mean value of the random field c and cN  is the 

probabilistic ultimate bearing capacity coefficient. This is because a change in the mean 

value of the random field c (for the same value of the coefficient of variation 

25%cCOV = ) have led to the same PDF of Nc as may be seen from Figure II.3. Thus, 

in this chapter, the non-dimensional coefficient cN  will be used (instead of qult) to 

represent the ultimate bearing capacity in a probabilistic framework. This coefficient 

depends on the statistical parameters of the random field (i.e. autocorrelation distances 

and coefficient of variation). Furthermore, this coefficient (as in the deterministic 

analysis) is independent of the values of the soil cohesion c and the footing breadth B. 

It should be noted that all the probabilistic results presented in this chapter are provided 

for the practical value of the coefficient of variation 25%cCOV = .  

Finally, it should be mentioned here that for the reference case where ah=10m and 

av=1m, the computation time is about 45 min per simulation for the square footing case. 

This time includes the computation of the values of the cohesion random field at the 

different elements centroids of the mesh and their introduction in the deterministic mesh 
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together with the time required for the deterministic calculation. This computation time 

significantly increases for the very small values of the autocorrelation distances. This 

is because the large number of random variables in these cases will induce additional 

computation time to calculate the values of the cohesion random field for the different 

elements centroids of the deterministic mesh. Notice finally, that for the reference case, 

300 calls of the deterministic model were found to be sufficient to construct the meta-

model within the prescribed target accuracy 2
TARGETQ =0.999. 

 
Figure II.3. Influence of the mean value of the cohesion on the PDF of the bearing capacity 

coefficient Nc of a strip footing when using 3D random field for ah=10m, av=1m and COVc=25% 

II.3.2.1 Effect of the autocorrelation distance: The isotropic case 

Table II.2 presents the effect of the isotropic autocorrelation distance (a) on the 

statistical moments of the bearing capacity coefficient Nc for the square footing using a 

3D random field.  

Table II.2 shows that for a small value of the autocorrelation distance (a=0.5m), the 

variability of the bearing capacity coefficient (expressed by the non-dimensional 

parameter 
cNCOV ) is smaller when a 3D random field is considered. However, for the 

large values of the autocorrelation distance (a=10m), quasi-similar values of the 

response variability were obtained in the case of 3D random field. These observations 

are valid for the square footing.  

Table II.2 also shows that for the square footing, the variability of Nc decreases when 

the autocorrelation distance decreases. For the very large values of the autocorrelation 

distance, the 3D random field is superimposed because it tends to its limiting case of 
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random variable for which the autocorrelation distance is infinite. The decrease in the 

autocorrelation distance from infinity to a finite value (moderate or small where 5a m

) limits the correlation (in a given simulation) to a finite zone which leads to a smaller 

variability in the system response.  

  Square footing 
3D

 ra
nd

om
 fi

el
d a  (m)  

cN   
cN  

cNCOV (%) 

0.5 6.34 0.51 8.0 
1 6.39 1.02 15.9 
2 6.46 1.38 21.3 
5 6.51 1.53 23.5 
10 6.52 1.58 24.2 

Table II.2. Effect of the isotropic autocorrelation distance (a) on the statistical moments  
cN

and  
cN of the bearing capacity coefficient Nc of square footing using 3D random field 

II.3.2.2 Effect of the autocorrelation distance: The anisotropic case 

Table II.3 presents the effect of the vertical autocorrelation distance av on the statistical 

moments of the bearing capacity coefficient Nc for the square footing using 3D random 

field when ah=10m. Similarly, Table II.4 presents the effect of the horizontal 

autocorrelation distance ah on the statistical moments of the bearing capacity coefficient 

Nc for the square footing using 3D random field when av=1m.  

 

  Square footing 

3D
 ra

nd
om

 fi
el

d 

va  (m)  
cN   

cN  
cNCOV (%) 

0.15 6.24 0.96 15.3 
0.25 6.27 1.15 18.3 
0.5 6.38 1.38 21.7 
1 6.48 1.52 23.5 
2 6.51 1.57 24.1 
5 6.51 1.58 24.2 
10 6.52 1.58 24.2 

Table II.3. Effect of the vertical autocorrelation distance (av) on the statistical moments  
cN

and  
cN of the bearing capacity coefficient Nc of square footing using 3D random field 
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  Square footing 

3D
 ra

nd
om

 fi
el

d ha  (m)  
cN   

cN  cNCOV (%) 

0.5 6.34 0.48 7.6 
1 6.39 1.02 15.9 
2 6.44 1.32 20.4 
5 6.46 1.48 22.9 
10 6.48 1.52 23.5 

Table II.4. Effect of the horizontal autocorrelation distance (ah) on the statistical moments  
cN

and  
cN of the bearing capacity coefficient Nc of square footing using 3D random field 

Table II.3 and Table II.4 also show that for the square footing, the variability of Nc 

decreases when the autocorrelation distance decreases. This can be explained by the 

fact that for the very large values of the horizontal autocorrelation distance ah (ah=10m), 

the 3D random field tends to its limiting case of a one-dimensional random field with 

a vertically varying soil mass. Similarly, for the very large values of the vertical 

autocorrelation distance av (av=10m), the 3D random field tends respectively to its 

limiting cases of one- and two-dimensional random fields with a horizontally varying 

soil masses. In all these cases, the cohesion random field is perfectly correlated in a 

prescribed direction (horizontal or vertical); however, the other direction (vertical or 

horizontal) is allowed to exhibit variations in the value of the cohesion according to the 

value of the autocorrelation distance fixed for that direction. This induces a reduction 

in the variability of Nc with respect to the case where ah=av=10m. The decrease in the 

autocorrelation distance from the case of a horizontally varying soil mass (where 

va =  ) or a vertically varying soil mass (where ha =  ) to the case where the infinite 

value of the autocorrelation distance decreases to a finite value, re-create further 

variations in the value of the cohesion. This reduces once again the variability of Nc 

with respect to the case where ah=av=10m. 
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CHAPTER III. EFFECT OF THE SOIL SPATIAL 

VARIABILITY IN THREE DIMENSIONS ON THE ULTIMATE 

BEARING CAPACITY OF RECTANGULAR FOUNDATIONS. 

III.1 Introduction 

In this chapter, an extension of the square footing to a rectangular footing will be done 

in order to compare the results between the two types of foundations. 

The effect of the soil spatial variability in three dimensions is investigated in this 

chapter through the study of the ultimate bearing capacity of rectangular foundation 

resting on a purely cohesive soil with a spatially varying cohesion in the three 

dimensions. For this purpose, the soil cohesion was modeled as a 3D random field. Both 

cases of isotropic and anisotropic random fields were considered.  

 

III.2 Probabilistic analysis of square footing resting on a 3d spatially 

varying soil mass. 

The aim of this section is to perform a probabilistic analysis of shallow foundations 

taking into account the soil spatial variability in three dimensions. More specifically, 

the analysis involves the computation of the ultimate bearing capacity (qult) of 

rectangular footing resting on a purely cohesive soil that exhibits spatial variability in 

three dimensions.  

Concerning the probabilistic method of analysis, the SPCE/GSA expansion method 

chapter is used herein.  

The deterministic model was based on numerical simulations using the finite difference 

code FLAC3D. The undrained soil behavior was modeled using a conventional elastic-

perfectly plastic model based on Tresca failure criterion. On the other hand, an 

associative flow rule was considered in this study. This assumption is justified by the 

fact that for purely cohesive materials no volume changes are expected to appear during 

plastic deformation. Notice that the soil Young modulus E and Poisson ratio υ were 
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assumed to be deterministic since the ultimate bearing capacity is not sensitive to these 

variables. Their corresponding values were respectively 60=E MPa  and 𝜈 = 0.3. 

Concerning the footing, a weightless rigid foundation was used. It was assumed to 

follow an elastic linear model ( 25E GPa= , 0.4 = ). The connection between the 

footing and the soil mass was modeled by interface elements having the same mean 

values of the soil shear strength parameters in order to simulate a perfectly rough soil-

footing interface. These parameters have been considered as deterministic in this study. 

Concerning the elastic properties of the interface, they also have been considered as 

deterministic and their values were as follows: 1sK GPa= , 1nK GPa=  where Ks and 

Kn are respectively the shear and normal stiffnesses of the interface. 

Figure II.1 shows the adopted soil domain considered in the analysis of the square 

footing case. It is 6mx9m wide by 4m deep. A 'relatively fine' mesh was considered for 

the analysis.  

For the boundary conditions of the rectangular footing case, the horizontal movement 

on the vertical boundaries of the grid was restrained, while the base of the grid was not 

allowed to move in both the horizontal and the vertical directions. 

 
 

 

 

 

 

Figure III.1. Mesh used for the computation of 
the ultimate bearing capacity of a rectangular 

footing  
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III.3 NUMERICAL RESULTS 

In this section, one firstly presents the obtained deterministic numerical results. This is 

followed by a presentation of the probabilistic numerical results. 

III.3.1 Deterministic numerical results 

The aim of this section is to present the deterministic numerical results for the 

rectangular footing considered in the analysis.  

The three-dimensional 'relatively fine' mesh has led to a deterministic value of ultimate 

bearing capacity coefficient Nc=6.203 for the rectangular footing case.  

III.3.2 Probabilistic numerical results 

In this section, the probabilistic numerical results of the rectangular footing resting on 

a purely cohesive spatially varying soil are presented. The soil cohesion parameter was 

modeled as anisotropic non-Gaussian (log-normal) random field using a square 

exponential autocorrelation function. Its mean value and coefficient of variation 

(referred to as reference values) were taken as follows: 20 , 25%c ckPa COV = = .  

As for the autocorrelation distances ax, ay and az of the cohesion random field, both 

cases of isotropic random fields (i.e. ax=ay=az for the 3D random field case) and 

anisotropic random fields (i.e. ax=ay≠az for the 3D random field case) will be treated 

although the soil is rarely isotropic in reality.  

When isotropic random fields are used, the autocorrelation distance will be denoted by 

(a) later on in this chapter (i.e. a=ax=ay=az for the 3D random field case). Also, when 

referring to anisotropic random fields, the horizontal autocorrelation distance will be 

denoted by ah (i.e. ah=ax=ay for the 3D random field case). Furthermore, the vertical 

autocorrelation distance fields will be denoted by av (i.e. av=az).  

 

For the isotropic case, a range of 0.25-30m was considered (cf. Table II.). For the 

anisotropic case, the reference values adopted for the horizontal and the vertical 

autocorrelation distances were 12m and 1m while the wide ranges of 0.25-12m and 1-
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15m were considered respectively for the horizontal and the vertical autocorrelation 

distances when performing the parametric study for the rectangular footing (cf. Table 

III.1).  
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1 255 
2 81 
3 41 
6 16 
9 9 
12 5 
15 5 

Table III.1. Number of random variables needed to discretize the 3D cohesion random fields in 
the case of the rectangular footing. 

It should be mentioned here that not all cases of different autocorrelation distances were 

treated, that is due to the very long computation time needed for the very small values 

of the autocorrelation distance and the obligation to finish the project at the specified 

time. 
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Figure III.2 (a) presents, for the rectangular footing, a typical realization of the 3D 

cohesion random field in the anisotropic case where ah=9m and av=1m. As may be seen 

from this figure, dark regions correspond to small values of the cohesion c while light 

regions refer to lager values.  

Figure III.2 (b) presents a 3D view of the failure mechanism (for the random field 

realization shown in Figure III.2 (a)) using the contours of the strain rate. This view 

clearly shows the influence of the 3D spatial variability on the obtained failure 

mechanism from this figure, one can see that the failure mechanism is more developed 

through the weaker zones and is limited when strong zones are encountered.  

  

 
                                    (a)                                                                          (b) 

Figure III.2. Perspective view of the soil domain showing (a) a random field realization (the 
contour lines provide the distribution of the soil cohesion on the envelope of this domain) and (b) 

the contours of the strain rate 

 

On the other hand, the probabilistic numerical results have shown that for the particular 

case of a purely cohesive soil, the probabilistic ultimate bearing capacity can be written 

as follows: ult c cq N=  where c  is the mean value of the random field c and cN  is the 

probabilistic ultimate bearing capacity coefficient. This is because a change in the mean 

value of the random field c (for the same value of the coefficient of variation 

25%cCOV = ) have led to the same PDF of Nc as may be seen from Figure II.3. Thus, 

in this chapter, the non-dimensional coefficient cN  will be used (instead of qult) to 
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represent the ultimate bearing capacity in a probabilistic framework. This coefficient 

depends on the statistical parameters of the random field (i.e. autocorrelation distances 

and coefficient of variation). Furthermore, this coefficient (as in the deterministic 

analysis) is independent of the values of the soil cohesion c and the footing breadth B. 

It should be noted that all the probabilistic results presented in this chapter are provided 

for the practical value of the coefficient of variation 25%cCOV = .  

Finally, it should be mentioned here that for the reference case where ah=9m and av=1m, 

the computation time is about 65 min per simulation for the rectangular footing case. 

This time includes the computation of the values of the cohesion random field at the 

different elements centroids of the mesh and their introduction in the deterministic mesh 

together with the time required for the deterministic calculation. This computation time 

significantly increases for the very small values of the autocorrelation distances. This 

is because the large number of random variables in these cases will induce additional 

computation time to calculate the values of the cohesion random field for the different 

elements centroids of the deterministic mesh. Notice finally, that for the reference case, 

300 calls of the deterministic model were found to be sufficient to construct the meta-

model within the prescribed target accuracy 2
TARGETQ =0.9989. 

 

Figure III.3. PDF of the bearing capacity coefficient Nc of a rectangular footing when using 3D 
random field for ah=9m, av=1m and COVc=25% 
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III.3.2.1 Effect of the autocorrelation distance: The isotropic case 

Table III.2 presents the effect of the isotropic autocorrelation distance (a) on the 

statistical moments of the bearing capacity coefficient Nc for the square footing using a 

3D random field.  

Table III.2 also shows that for the rectangular footing, the variability of Nc decreases 

when the autocorrelation distance decreases. For the very large values of the 

autocorrelation distance, the 3D random field is superimposed because it tends to its 

limiting case of random variable for which the autocorrelation distance is infinite. The 

decrease in the autocorrelation distance from infinity to a finite value (moderate or 

small where 5a m ) limits the correlation (in a given simulation) to a finite zone which 

leads to a smaller variability in the system response.  

  Rectangular footing 

3D
 ra

nd
om

 fi
el

d 
 

a  (m)  
cN   

cN  
cNCOV (%) 

4 4.92 0.97 19.73 
12 5.02 1.1825 23.74 
15 5.76 1.2 26.04 

Table III.2. Effect of the isotropic autocorrelation distance (a) on the statistical moments  
cN

and  
cN of the bearing capacity coefficient Nc of rectangular footing using 3D random field 

 

III.3.2.2 Effect of the autocorrelation distance: The anisotropic case 

Table III.3 presents the effect of the vertical autocorrelation distance av on the statistical 

moments of the bearing capacity coefficient Nc for the rectangular footing using 3D 

random field when ah=12m. Similarly, Table III.4 presents the effect of the horizontal 

autocorrelation distance ah on the statistical moments of the bearing capacity coefficient 

Nc for the rectangular footing using 3D random field when av=1m.  
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  Rectangular footing 

3D
 ra

nd
om

 fi
el

d 

va  (m)  
cN   

cN  
cNCOV (%) 

2 4.94 1.08 21.86 
8 4.97 1.16 23.34 
12 5.02 1.18 23.5 

Table III.3. Effect of the vertical autocorrelation distance (av) on the statistical moments  
cN

and  
cN of the bearing capacity coefficient Nc of rectangular footing using 3D random field 

  Rectangular footing 

3D
 ra

nd
om

 fi
el

d 

ha  (m)  
cN   

cN  cNCOV (%) 

6 4.84 0.8 16.52 
9 4.86 0.92 18.93 
15 4.93 0.94 19.07 

Table III.4. Effect of the horizontal autocorrelation distance (ah) on the statistical moments 
 

cN and  
cN of the bearing capacity coefficient Nc of rectangular footing using 3D random 

field 

Table III.3 and Table III.4 also show that for the rectangular footing, the variability of 

Nc decreases when the autocorrelation distance decreases. This can be explained by the 

fact that for the very large values of the horizontal autocorrelation distance ah (ah=12m), 

the 3D random field tends to its limiting case of a one-dimensional random field with 

a vertically varying soil mass. Similarly, for the very large values of the vertical 

autocorrelation distance av (av=12m), the 3D random field tends respectively to its 

limiting cases of one- and two-dimensional random fields with a horizontally varying 

soil masses. In all these cases, the cohesion random field is perfectly correlated in a 

prescribed direction (horizontal or vertical); however, the other direction (vertical or 

horizontal) is allowed to exhibit variations in the value of the cohesion according to the 

value of the autocorrelation distance fixed for that direction. This induces a reduction 

in the variability of Nc with respect to the case where ah=av=12m. The decrease in the 

autocorrelation distance from the case of a horizontally varying soil mass (where 

va =  ) or a vertically varying soil mass (where ha =  ) to the case where the infinite 

value of the autocorrelation distance decreases to a finite value, re-create further 

variations in the value of the cohesion. This reduces once again the variability of Nc 

with respect to the case where ah=av=12m. 
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III.3.3 Discussion 

A comparison between the values of the coefficients of variation of Nc for both the 

isotropic and anisotropic cases and for the square and rectangular footings is provided 

in Table III.5. This comparison is presented in the form of a ratio between the values 

of the coefficients of variation of the 3D random field.  

Due to the lack of information obtained from calculation cases, a clear comparison 

could not be done herein, so we can satisfy by these comparison values that show that 

this ratio is not so much bigger than 1 in the cases presented below. This can lead to a 

conclusion that either in the case of square footing or rectangular footing, the values of 

the ultimate bearing capacity do not change in a big range between the two cases. We 

can also deduce that the autocorrelation distance has an important effect on the values 

of the ultimate bearing capacity.  

 

Autocorrelat
ion distance 

(m) 

Values of 
COVNc

square/COVNc
rectangular 

for different values of the 
isotropic autocorrelation 

distance 

Values of 
COVNc

square/COVNc
rectangular 

for different values of the 
vertical autocorrelation 

distance av  

Values of 
COVNc

square/COVNc
rectangular 

for different values of the 
horizontal autocorrelation 
distance ah when av=1m 

- 
1.08 
1.02 

- 
 

1.1 
1.03 
1.03 

- 
 

- 
1.38 
1.24 

- 
 

 
2 
4 
12 
15 
 
 
 

Table III.5. Ratios between the coefficients of variation values of Nc (obtained using 3D random 
field) for the square footing 

 

 

III.4  Conclusions 
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A probabilistic analysis that considers the effect of the spatial variability in three 

dimensions was investigated through the study of the ultimate bearing capacity of 

square and rectangular foundations resting on a purely cohesive soil with a spatially 

varying cohesion in the three dimensions. The main reason for which a purely cohesive 

soil was used is to investigate the effect of the spatial variability in the third direction 

with the use of a relatively non-expensive deterministic model . 

The soil cohesion parameter was modeled as anisotropic non-Gaussian (log-normal) 

random field with a square exponential autocorrelation function. A straightforward 

extension to the 3D case of the Expansion Optimal Linear Estimation (EOLE) 

methodology proposed by Li and Der Kiureghian (1993) and extended by Vořechovsky 

(2008) was used in this chapter. The deterministic model was based on 3D numerical 

simulations using FLAC3D software. An efficient uncertainty propagation 

methodology that makes use of a non-intrusive approach to build up a sparse 

polynomial chaos expansion for the system response was employed . 

The probabilistic numerical results have shown that for small values of the 

autocorrelation distances, the variability of the ultimate bearing capacity computed by 

considering a 3D random field is smaller than that of the bigger values of the 

autocorrelation distance for square and rectangular footings.  
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CHAPTER IV. BUILDING DESIGN 

IV.1  Introduction 

This chapter resumes the design of the main constructive elements in a building. The 

procedure followed in this chapter is first, analyzing the building on ETABS software, 

getting the loads table on each element to be designed later on using s-concrete software 

for columns and shear walls and SAFE for the design of the slab and the raft foundation. 

IV.2  Description of the project 

The project is composed of two blocks, we choose to design one of them like an 

independent building.  

Figure IV.1. Building front elevation 

The building to design is a simple residential building located in Abu-Samra, north 

Lebanon. This building is composed of 9 storeys and shops with their mezzanines in 

the ground floor.  
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IV.2.1 Plans description 

Every story consists of two apartments 114 m2 and is 3m height. The total area of each 

floor plan is 230 m2.  

The height of the shops is 3.2m and the mezzanine's is 2.5m. 

• The core wall of the tower has 1 elevator and 1 staircase serving all stories. 
• The basement consists of: 

o Stores for the shops. 
o 6 parking spaces belonging to the stores. 

• The ground floor consists of: 
o 32 parking spaces for all apartments of both buildings. 
o 2 Guard rooms. 
o Mechanical and electrical technical rooms. 
o 1 ramp. 

The following figure shows the ground floor plan: 

 

Figure IV.2. Ground floor plan 
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The mezzanine story plan is as follows: 

 

Figure IV.3. Mezzanine story plan 
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The repetitive story plan is shown in the next figure: 

 

Figure IV.4. Repetitive story plan 

 

The total area of a floor plan is 230 m2. Each apartment is composed of 3 bed rooms, a 

salon, a kitchen and two toilets. 

No architectural modifications were made for any of the floor plans. 
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IV.2.2 Lateral elevation 

No architectural modifications were made to the lateral elevation of this building. 

 

Figure IV.5. Vertical cut section of the building 

IV.3 Structural design and design criteria 

In this part, we will give a general view on loadings and combinations that should be 

used in the design of the building and present all softwares used to do a full design of 

the building. 

IV.3.1 Loadings 

A structure, or a part of it, is considered to be failed once it reaches one of the various 

limit states. The considered states are: 

• Ultimate limit state (ULS): this state refers to loads that could lead to structural 

failure, human damages, serious financial losses…. Here the probability of failure 

must be low, that’s why we increase the loading by factors. 

• Serviceability limit state (SLS): this state refers to the criteria of ensuring an elastic 

behavior of the structure under normal working conditions. 
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The designed loads to be considered in accordance to the ACI 318-05 standard code 

are estimated as: 

• Dead loads:  

- Self-weight of the structural elements based on preliminary dimensioning 
of the structural sections and the material specific unit weight.  

- Super imposed dead loads including finishing and allowance for partitions:  
5 KN/m2 for all stories (2 KN/m2 for partitions and 3 KN/m2 for finishes).  
 

• Live loads:  
 
- For current stories and ground level: 3.5 KN/m2. 
- For the roof: 0.25 KN/m2. 

• Seismic loads:  

The seismic loads are calculated from the story mass distribution over the structure 

using code-dependent coefficients and fundamental periods of vibration. For semi-

rigid floor systems where there are numerous mass points, ETABS has a special 

load dependent Ritz-vector algorithm for fast automatic calculation of the 

predominant time periods. 

The seismic loads are applied at the locations where the inertia forces are generated 

and do not have to be at story levels only. Additionally, for semi-rigid floor systems, 

the inertia loads are spatially distributed across the horizontal extent of the floor in 

proportion to the mass distribution, thereby accurately capturing the shear forces 

generated across the floor diaphragms. 

ETABS also has a very wide variety of Dynamic Analysis options, varying from 

basic response spectrum analysis to nonlinear time history analysis. Code-

dependent response spectrum curves are built into the system, and transitioning to 

a dynamic analysis is usually trivial after the basic model has been created. 
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In the case of this project the earthquake input data are the following: 

 

Earthquake input data  

Period calculation coefficient 

Ct 
Ct=0.02 

Soil profile type Sc (very dense soil profile and sot rock) 

Seismic zone factor Z=0.3 

Over strength factor R 
R=8.5 

 

Importance factor I I=1 

Seismic coefficient Cv Cv=0.45 

Seismic coefficient Ca Ca=0.33 

Table IV.1. Earthquake input data 

a) Static analysis: 

For the static approach analysis of the seismic forces we have to define two 
seismic cases of loadings: EQX and EQY with an accidental eccentricity equal 
to 5% of the building projected length to the earthquake directions. 

b) Dynamic analysis: 

For the dynamic approach analysis of the seismic forces we have to define two 
response spectrum cases: SPECX and SPECY with a damping ratio equal to 
0.05. 

IV.3.2  Design criteria 

IV.3.2.1  Softwares: 

• AutoCAD: Used for architectural drawings, design drawings, and explicative 
drawing in the project. 

• Microsoft office: Used for the preparation of the project’s report and presentation. 
• ETABS (Extended Three dimensional Analysis of Building System): Used for 

the modeling of the structure, design of vertical elements (Columns, Shear 
Walls…). 
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• SAFE 12 (Slab Analysis by Finite Element method): Used for the design of 
horizontal elements (slabs, beams, rafts…). 

• S-CONCRETE: Used for the design of beams, columns as well as shear walls. 
This software computes two types of strength utilizations: Shear and torsion 
utilization; axial load and moment (N vs. M) utilization. The utilization equals the 
applied force or moment divided by the capacity of the section. 

IV.3.2.2  Design codes 

• ACI 315-05: Used for the determination of loads combinations, the design and 
detailing of various concrete elements (slabs, columns and walls).  

• The Uniform Building Code “UBC 97”: Used for the determination of lateral 
forces intensity and distribution (Earthquake).  

• The ASCE 7-02: Used for the determination of lateral forces intensity and 
distribution (Wind). 

IV.3.2.3 Material of construction 

• Concrete compressive strength: 
- Shear walls, Columns: f’c = 30 MPa and EC= 28000 MPa. 
- Slabs: f’c = 25 MPa and EC = 25000 MPa. 

• Reinforcing steel: 
- Yield strength of tensile steel reinforcement: fy = 400 MPa. 
- Yield strength of shear reinforcement: fy = 240 MPa. 
- Modulus of elasticity of steel: ES = 200000 MPa. 
 

IV.4 Model on Etabs 

IV.4.1 Etabs data input  

ETABS (Extended Three dimensional Analysis of Building System) is the solution, 

whether you are designing a simple 2D frame or performing a dynamic analysis of a 

complex high-rise that utilizes non-linear dampers for inter-story drift control.  

ETABS has long been a favorite for the analysis and design of buildings, and whether 

the project is a one story shopping center or the tallest building in the world, this latest 

release offers the comprehensive tools needed to produce timely, efficient and elegant 

engineering solutions. 
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IV.4.1.1 DXF plan 

In the DXF floor plan, walls are designated by lines, columns are designated by a cross 

referring to their center and axis are drawn by center line. We move the position of the 

columns in order to put many them on a same axis only if the distance to be moved is 

less than 50cm otherwise, we draw a new axis for these columns. This DXF file will be 

imported later on ETABS in order to make a special analysis leading at the end to make 

the design vertical structural elements. 

 

Figure IV.6. DXF floor plan of repetitive story 

IV.4.1.2 Materials 

• Concrete compressive strength for columns, slabs & beams: f’c = 25 MPa. 
• Concrete compressive strength for walls: f’c = 30 MPa. 
• Steel reinforcements yield stress fy = 400 MPa. 

IV.4.1.3 Loadings 

CASE TYPE Auto 

Lateral Load 

SW multiplier  

DEAD DEAD  1 

SDL SUPER DEAD  0 

LIVE LIVE  0 

EQX QUAKE UBC 97 0 

EQY QUAKE UBC 97 0 
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WINDX WIND ASCE 7-10 0 

WINDY WIND ASCE 7-10 0 

Table IV.2. Static load cases 

 
• Dead load: self-weight (automatically taken by ETABS; it is function of the 

sections of the structural elements). 
• Super imposed dead load (SIDL): include finishing and allowance for 

partitions: 5 KN/m2 in all stories (2 KN/m2 for partitions and 3 KN/m2 for 
finishes).  

• Live load (LL):  
- For basement: 5 𝐾𝑁/𝑚2 
- For all other plans: 3 𝐾𝑁/𝑚2 

The corresponding masses of loads that participate in the mass source for the seismic 

design are: Dead load and Super imposed dead load (SIDL) with coefficient multiplier 

equal to 1 for each case. 

• EQX: earthquake static load in X direction calculated according to UBC 97 
with a minimum eccentricity of 5 % as specified by the seismic code. 

• EQY: earthquake static load in Y direction calculated according to UBC 97 
with a positive minimum eccentricity of 5 % as specified by the seismic code. 

• WINDX: wind static load in X direction calculated according to ASCE 7-02. 
We should note that we take the gust factor in X direction equal 0.85 (stiff 
building). 

• WINDY: wind static load in Y direction calculated according to ASCE 7-02. 
We should note that we take the gust factor in Y direction equal 0.85 (stiff 
building) 

For the seismic dynamic analysis two response spectrums are defined: SPECX and 

SPECY with a damping ratio of 5%, and an eccentricity ratio of 0.05. 

As we have an irregular shape the results should be scaled by the ratio 

𝑟 =
𝑉𝑠𝑡𝑎𝑡𝑖𝑐

𝑉𝑑𝑦𝑛𝑎𝑚𝑖𝑐
 

 𝑟𝑥= 168.7894

168.7894
=1.002 

 𝑟𝑦= 122.8235

118.7579
=1.034 
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IV.4.1.4 Load combinations  

We will have 2 files to study the building under loads: 

• Elastic analysis considering the service combinations and checking the 

displacement and period of the building that must be under the critical ones, 

• And plastic analysis considering the ultimate combinations and designing all 

elements under the envelope loads. 

Name DEAD SDL LIVE EQXP EQYP WINDX WINDY 

COMB1 1.2 1.2 1.6 - - - - 

COMB2 1.2 1.2 1 1 0.3 - - 

COMB3 1.2 1.2 1 0.3 1 - - 

COMB4 1.2 1.2 1 - - 1.6 - 

COMB5 1.2 1.2 1 - - -1.6 - 

COMB6 1.2 1.2 1 - - - 1.6 

COMB7 1.2 1.2 1 - - - -1.6 

COMB8 0.9 0.9 0.9 - - 1.6 - 

COMB9 0.9 0.9 0.9 - - -1.6 - 

COMB10 0.9 0.9 0.9 - - - 1.6 

COMB11 0.9 0.9 0.9 - - - -1.6 

COMB12 0.9 0.9 0.9 1 0.3 - - 

COMB13 0.9 0.9 0.9 0.3 1 - - 

Table IV.3. Load combinations 

IV.4.2 Story data 

Story Height (m) Elevation (m) Similar to 

Roof 3 36 None 

Story 11 3 33 Story 1 

Story 10 3 30 Story 1 

Story 9 3 27 Story 1 

Story 8 3 24 Story 1 
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Story 7 3 21 Story 1 

Story 6 3 18 Story 1 

Story 5 3 15 Story 1 

Story 4 3 12 Story 1 

Story 3 3 9 Story 1 

Story 2 3 6 Story 1 

Story 1 3 3 Story 1 

Table IV.4. Story data 

IV.4.3 Etabs output views  

IV.4.3.1 3D view 

 

Figure IV.7. 3D view on Etabs 
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IV.4.3.2 Plan view 

Figure IV.8. Plan view on Etabs 

IV.4.3.3 Deformed shape 

 Figure IV.9. Deformed shape due to dead 
loads  
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Figure IV.10. Deformed shape due to (a) EQX and (b) SpecX  

IV.4.4 Structure verification 

IV.4.4.1 Periods and modal participation mass ratio 

Case Mode Period Sum UX Sum UY 
Sum 
UZ 

Sum 
RX 

Sum 
RY 

Sum 
RZ 

    sec             
Modal 1 1.291 0.0148 0.616 0 0.307 0.0033 0.0631 
Modal 2 1.196 0.1947 0.6781 0 0.3424 0.0591 0.5811 
Modal 3 0.755 0.7249 0.6785 0 0.3427 0.2953 0.7496 
Modal 4 0.362 0.7566 0.6792 0 0.3464 0.4356 0.8354 
Modal 5 0.277 0.7569 0.8513 0 0.6423 0.4364 0.8358 
Modal 6 0.192 0.8946 0.8513 0 0.6423 0.7222 0.8649 
Modal 7 0.182 0.8954 0.8513 0 0.6423 0.7236 0.9157 
Modal 8 0.125 0.8969 0.8513 0 0.6424 0.7285 0.9164 
Modal 9 0.114 0.9029 0.8705 0 0.6833 0.7482 0.926 
Modal 10 0.111 0.9067 0.9162 0 0.774 0.7593 0.9306 
Modal 11 0.09 0.9449 0.9163 0 0.7741 0.8404 0.9509 
Modal 12 0.078 0.9507 0.9164 0 0.7745 0.8564 0.9593 
Modal 13 0.062 0.9508 0.948 0 0.8544 0.8565 0.9597 
Modal 14 0.059 0.952 0.9497 0 0.8582 0.8609 0.967 
Modal 15 0.057 0.97 0.9499 0 0.8587 0.9114 0.9742 
Modal 16 0.055 0.97 0.9499 0 0.8587 0.9114 0.9742 

(a) (b) 
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Modal 17 0.048 0.9713 0.9502 0 0.8594 0.9153 0.9779 
Modal 18 0.043 0.9714 0.9503 0 0.8597 0.9156 0.9781 

Table IV.5. Periods and modal participation mass ratio  

We notice that for the first 10 mode shapes the participating mass ratio in X and Y 

directions exceeds 90% so considering only the first 11 mode shapes is enough. 

The building fundamental period (corresponding to mode 1) is T = 1.291 s 

This building is composed of N = 11 stories, 0.1 x 11 = 1.1 and 0.3 x 11 = 3.3 s, so  

1.1 ≤ T≤ 3.3 and the period is acceptable because for an optimal seismic behavior of 

the structure we should have 0.1 x N < T < 0.3 x N. 

IV.4.4.2 Story displacement 

IV.4.4.2.1  Story displacement due to wind 

 

 

Figure IV.11. Maximum story displacement due to WindX 
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Figure IV.12. Maximum story displacement dur to WindY 

The most critical displacement and drifts are due to Wind and Earthquake loads because 
they generate lateral forces. These lateral forces drive forward the structure to sway and 
to slide in x, y and z direction. 

The lateral displacement of each diaphragm should not exceed:  

H/500=36/500=0.072 m (H is the height from the ground floor to the roof).  

Max=0.022227 mm < 0.072 m → checked. 

IV.4.4.2.2  Story displacement due to spectrum 

 

Figure IV.13. Maximum story displacement due to SpecX 
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Figure IV.14. Maximum story displacement due to Specy 

Max = 0.04082 mm < 0.072 m → checked. 

IV.4.4.3 Story drift 

The lateral drift between stories at all levels should be ≤ 0.02.  
Static Displacement = 0.7 x R x Drift = 0.7 x 5.5 x ∆sx. 

The plots below confirm that the structure is stable and all the values are not getting 
over the maximum. 

IV.4.4.3.1 Story drift due to wind 

 

 

 

- Drift = 0.000004 < 0.02 
- Static Displacement =  
          0.7 x R x Drift = 

 0.7*8.5*∆sx = 1.54e-05 ≤ 0.02. 

 

Figure IV.15. Maximum story drift due to WindX 
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- Drift = 0.000001 < 0.02 
- Static displacement=  
             0.7 x R x drift= 

  0.7*8.5*∆sx = 3.85e-06 ≤ 0.02. 

 

 

 

 

Figure IV.16. Maximum story drift due to WindY 

IV.4.4.3.2 Story drift due to spectrum 

 

-  Drift = 0.001354 < 0.02 
- Static Displacement =  
          0.7 x R x Drift = 

0.7*8.5*∆sx=5.2e-3 ≤ 0.02. 

 

 

Figure IV.17. Maximum story 
drift due to SpecX 
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- Drift = 0.001199 < 0.02 
- Static Displacement =  
          0.7 x R x Drift = 

0.7*8.5*∆sx=4.6e-3 ≤ 0.02. 

 

 

 

Figure IV.18. Maximum story 
drift due to SpecY 

Story drift is checked for both wind and earthquake. 

The drift is under the maximum allowable drift over which we should consider 

increasing the wall stiffness.  

So we can deduce that there is no need to increase the wall dimensions in order to 

increase the wall stiffness. 

IV.4.5 Conclusion 

After checking all structural limitations and verifying that the building can support all 

loads that could affront them, we can proceed by designing some structural elements.  

The two following chapter will present the details of designing columns and shear 

walls. 

IV.5 Column design 

IV.5.1 Introduction  

Columns are vertical elements of the structure that support primarily vertical loads in 

addition to that, columns are subjected to bending moments, shear forces and torsion. 

In reinforced concrete columns, compressive stress is taken by the concrete and vertical 

steel reinforcements. Tensile stress is taken by vertical steel reinforcements. Shear 

stress is taken by concrete and horizontal steel reinforcements in addition to that 
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horizontal ties prevent the vertical bars from premature steel buckling under 

compressive loads. Columns are also susceptible of buckling under compressive axial 

loads. It is important to classify columns in 2 categories short columns and long 

columns, short columns are columns which are not susceptible to buckling they 

normally fail by overstressing while for a long column the danger of buckling is taken 

into consideration and the capacity of the column is reduced. 

IV.5.2 Types of columns 

There are three major types of reinforced concrete columns: 

• Tied columns. 

• Spiral columns. 

• Composite columns. 

Tied columns are members having rectangular, square or circular cross section that is 

reinforced with longitudinal main steel to resist bending or excessive compression that 

might exist on the column, and its tie are placed horizontally at a spacing specified by 

the code. 

A spiral column has a circular or square cross section, and in both cases it has 

continuous spiral around the longitudinal bars. 

A composite column is consisted of reinforced concrete and I-Beam steel shape or a 

steel tube filled with concrete. In composite columns we should use a high strength 

concrete so that the modulus of elasticity of concrete is relatively closer to the one of 

the steel in order for the concrete to have the sufficient stiffness to carry a relatively 

good part of the vertical loads. 

IV.5.3 ACI code provisions for column design 

For columns, as for all members designed according to ACI Code, adequate safety 
margins are established by applying load factors to the service loads and strength 
reduction factors to the nominal strengths. Thus, for columns 𝑷𝒏 ≥ 𝑷𝒖 and 𝑴𝒏 ≥ 𝑴𝒖 
are the basic safety criteria. For most members subjected to axial compression or 
compression plus flexure (compression controlled members), the ACI Code provides 
basic reduction factors φ:  
 

• 0.65 for tied columns. 

• 0.7 for spirally reinforced columns. 
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IV.5.4  Hints for design according to the ACI building requirement code 

IV.5.4.1 Cover 

There are two cases to take into consideration: 

• If the concrete element is exposed to weather: cover c ≥ 50 mm 
• If the concrete element is not exposed to weather: cover c ≥ 40 mm 

IV.5.4.2 Main reinforcements 

• Vertical reinforcements 
The vertical steel ratio𝜌𝑡 is formulated as: 

 𝜌𝑡 =
𝐴𝑠𝑡

𝐴𝑔
                                                                                              (IV.1) 

Where  

Ast: is the total area of vertical bars 

Ag: is the gross section area of concrete section 

 Boundaries of steel ratio𝜌𝑡: 

- 𝜌𝑡min = 1 % 
- 𝜌𝑡max = 8 % 

 

Minimum number of bars: 

- The minimum number of vertical bars in a rectangular or square tied 

column is 4 

- The minimum number of vertical bars in a circular tied column is 6 

- The minimum number of vertical bars in spiral column is 6 

Spacing: 

The spacing S between vertical reinforcements should be Smin ≤ S ≤ Smax 
Smin ≥ min {1.4 db; 40 mm} 
Smax ≤ 150 mm 

Where db is the diameter of the vertical bar 

• Lateral reinforcements 
For tied columns: 

dt ≥ db/3 
Stmin ≤ St ≤ Stmax 
Stmax ≤ min {16 db; 48 dt; b (smallest dimension of the column)} 
Stmin ≥ 40 mm 
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For spiral columns: 

The ratio of spiral reinforcements 𝜌𝑠 is: 

𝜌𝑠 ≥ 0.45 (
𝐴𝑔

𝐴𝑐
− 1)

𝑓′𝑐

𝑓𝑦
                                                                              (IV.2)   

𝐴𝑠𝑝 =
𝜌𝑠×𝑑𝑐×𝑠𝑡

4
                                                                                                                        (IV.3) 

Where 

Ag: is gross section area concrete cross section 

Ac: is the area of the concrete confined in the spiral 

Asp: is the area of the spiral bar 

Dc: is the diameter of the spiral 

St: is the pitch of the spiral 

Stmin ≤ St ≤ Stmax 

Stmin ≥ 25 mm 

Stmax ≤ 80 mm 

 

IV.5.5 Design of columns 

The design of the columns is made based on the ACI 318-05. The softwares used are 

ETABS and S-CONCRETE. 

IV.5.5.1 Loads from Etabs  

The following figure shows the column C13 that will be designed and detailed. 

 

 

 

 

 

 

 

FigureIV.19. Chosen column for design 

C13 
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The loads are obtained from the plastic file (using the ultimate combinations) and then 

they are copied to the S-concrete. 

IV.5.5.2  Design of columns using S-CONCRETE 

S-CONCRETE is a software that provides a more detailed design of the structural 

elements (regular beams, columns and walls). After entering the shape of the section, 

its dimensions, concrete and steel characteristics, the building code to use, the 

slenderness effect data and the dimension of bars to use. Then the internal solicitations 

in the structural element (column in our case) are imported from Etabs to S-Concrete 

and then the software displays the demand over capacity ratio for axial stresses and for 

shear stresses. It is now up to the designer to choose the appropriate reinforcements. 

• Column C13 at all levels 

Figure IV.20. Steel reinforcement of column C13 provided by S-concrete at story 1 
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• Longitudinal section of column C13: 
 

 

 

Figure IV.21. Longitudinal cut section of column C13 
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IV.6   Shear wall design 

IV.6.1   Introduction 

In structural engineering, a shear wall is a wall composed of braced panels (shear 

panels) to counter the effects of lateral load acting on a structure. Wind and earthquake 

loads are the most common loads that shear walls are designed to counteract. 

A shear wall is a wall designed to resist the shear due to lateral loads. Many building 

codes mandate the use of shear walls to make homes safer and more stable, and learning 

about shear walls is an important part of an architectural education. Architects are 

obliged to think about shear walls and other safety features when they design a 

structure, so that they can accommodate the walls to make the structure safe while also 

esthetically pleasing. 

 

IV.6.2  Analysis criteria in Etabs 

On ETABS, we assign the walls as piers. Then, we export all the loads solicitations in 

the piers to S-Concrete to obtain the final design and drawing.  

ETABS software allows the determination of the internal forces in these elements with: 

• The conventional finite elements shell results: Normal and shear stresses, 

Normal and shear forces, Out-of-Plane moments.  

• The Pier results of wall: an assembly of walls (core), giving the resulting forces 

at the center of gravity of the wall sections, in the same manner of column 

results: Normal Forces, Shear Forces, Flexural and Torsion Moments. The wall 

pier element internal forces are similar to the frame element internal forces. 

They are: 

- P the axial force. 

- V2 the shear force in direction 2. 

- V3 the shear force in direction 3. 

- T the axial torque. 

- M2 the bending moment carried by the axis 2. 

- M3 the bending moment carried by the axis 3. 
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The following figure shows the shear wall studied in this project: 

 

Figure IV.22. Chosen shear wall for design 

IV.6.3  Design of the shear wall 

The design of shear walls is made on S-CONCRETE. 

The U-shear wall studied has a regular shape, so all what is needed is to copy the 

ultimate loads obtained in Etabs to the S-CONCRETE and do the design. Designing a 

wall on this software is similar to the way we designed columns. 
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The following figure shows the design of the wall at story 1: 

Figure IV.23. Reinforcement of shear wall provided by S-concrete at story 1 

 

IV.7 Slab design 

IV.7.1 Introduction 

Selecting the most effective floor system can be vital to achieving overall economy, 

especially for low- and mid-rise buildings and for buildings subjected to relatively low 

lateral forces where the cost of the lateral-force-resisting system is minimal. Concrete, 

reinforcement, and formwork are the three primary expenses in cast-in-place concrete 

floor construction to consider throughout the design process, but especially during the 

initial planning stages. 
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IV.7.2 Preliminary sizing of the slab. 

Before analyzing the floor system, one must assume preliminary member sizes. 

Typically, the slab thickness is determined first to ensure that the deflection 

requirements of ACI 318-05, Section 9.5 are satisfied. 

In this project, the thickness of the slab is considered to be 20 cm. This thickness will 

be checked later to ensure that the deflection requirements are satisfied.  

IV.7.3 Design on SAFE 

SAFE is the ultimate tool for designing concrete floor and foundation systems. From 

framing layout all the way through to detail drawing production, SAFE integrates every 

aspect of the engineering design process in one easy and intuitive environment.  

Laying out models is quick and efficient with the sophisticated drawing tools, or use 

one of the import options to bring in data from CAD, spreadsheet, or database programs. 

Slabs or foundations can be of any shape, and can include edges shaped with circular 

and spline curves. 

Mats and foundations can include nonlinear uplift from the soil springs, and a nonlinear 

cracked analysis is available for slabs. Generating pattern surface loads is easily done 

by SAFE with an automated option. Design strips can be generated by SAFE or drawn 

in a completely arbitrary manner by the user, with complete control provided for 

locating and sizing the calculated reinforcement. Finite element design without strips 

is also available and useful for slabs with complex geometries. 
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The following figure shows the slab model on SAFE 

 

Figure IV.24. Floor plan mesh on SAFE 

IV.7.4 Maximum allowable Deflection: 

The largest clear span in the story is Ln = 6 m.  

The maximum allowable deflection is  𝐿𝑛

240
=

6000

240
= 25 𝑚𝑚 

IV.7.5 Loads: 

IV.7.5.1 Dead Load: 

Dead load = Self weight of the slab + Super Imposed Dead Load (SIDL) 

• S.W. of slab: 0.2*25=5 KN/m2 
• SIDL = 3 KN/m2  

So D.L. =8 KN/m2= 0.8 ton/m2 

IV.7.5.2 Live Load: 

L.L. =3.5 KN/m2=0.35 ton/m2  

IV.7.5.3 Uniformly Distributed Load: 

Service Load = WS = DL + LL = 0.8+ 0.35 = 1.15 ton/m2. 

Ultimate Load = Wu = 1.2DL + 1.6LL = 1.2*0.8+1.6*0.35 = 1.52 ton/m2 (According 
to ACI 318-11). 
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IV.7.6 Results on SAFE 

IV.7.6.1 Deformed shape under service load 

 

Figure IV.25. Deformed shape under service loads 

The maximum deflection is 6.36 mm < 25 mm, then checked. 

 

Figure IV.26. 3D view of the deformed shape 
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IV.7.6.2 Reinforcement of the slab 

 

Figure IV.27. Mxx (KN.m/m) under ultimate combination 

 

 

Figure IV.28. Myy (KN.m/m) under ultimate combination 
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Figure IV.29. Top rebar Intensity-Direction 1 

 

 

Figure IV.30. Top rebar Intensity-Direction 2 
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Figure IV.31. Bottom rebar Intensity-Direction   

Figure IV.32. Bottom rebar Intensity-Direction 2  
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IV.7.6.3 Top reinforcement 

 

Figure IV.33. Top reinforcement 

IV.7.6.4  Bottom reinforcement 

Figure IV.34. Bottom reinforcement 
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IV.8  Raft foundation design 

A mat foundation is a large concrete slab used to interface one column, or more than 

one column in several lines, with the base soil. 

IV.8.1  Design of mat foundation 

There are several methods to design a mat (or plate) foundation: 

1) An approximate method. The mat is divided into strips loaded by a line of 

columns and resisted by soil pressure. This strip is then analyzed as a combined 

footing. This method can be used where the mat is very rigid and the column 

pattern is fairly uniform in both spacing and loads. This method is not 

recommended at present because of the substantial amount of approximations 

and the wide availability of computer programs that are relatively easy to use—

the finite grid method. A mat is generally too expensive and important not to 

use the most refined analytical methods available.  

2) Approximate flexible method. This method was suggested by ACI Committee 

336 (1988) and is briefly described here, and the essential design aids are 

provided. If this method is used it should be programmed as for the AIRPAVE 

computer program noted in subsection 10-6.2 following. 

3)  Discrete element methods. In these the mat is divided into elements by 

gridding. These methods include the following: 

a. Finite-difference method (FDM) 

b. Finite-element method (FEM) 

c. Finite-grid method (FGM) 

IV.8.2  Modeling process 

We are going to design our mat foundation using “SAFE” software. 

The subgrade modulus of the soil Ks is also defined and this soil is assigned to the mat. 

The loads are exported from ETABS and so the combinations. 

We must also assign new LL and new SIDL to the mat drawn on SAFE. 

Generally we take: SIDL =2.5kN/m2 

LL = 3 kN/m2 



87 | P a g e  

 

After calculation, the mat is divided into a number of discrete points (finite elements), 

so we can get all the necessary results such moment, steel, settlement, soil reaction… 

1- Define soil support with  a bearing capacity  
Soil type: Sc → Very dense soil and soft rock. 

Bearing capacity: q =12tons/ft2 ≈ 1150 kN/m2 = 1150 kPa. 

Allowable bearing capacity: qa= q/3 = 350 kPa. 

We consider the thickness of the raft to be about 1.2m, this thickness will be later 

verified and checked and f'c is chosen to be equal to 30 MPa. 

 

IV.8.3 Safe model 

IV.8.3.1 Deformed shape 

 

Figure IV.35. Deformed shape under service loads 

The maximum settlement is equal to 8.03 mm which is smaller than 50 mm, so checked. 
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IV.8.3.2  Soil pressure 

 

Figure IV.36. Soil pressure under the raft foundation due to service load 

The highest soil pressure under raft (service combination) is 240.94 KN/m2 which is 

lower than the allowable bearing capacity qa = 350 KN/m2 → the soil can support the 

load applied to it and no need for piles. 

IV.8.3.3 Punching shear ratios 

 

Figure IV.37. Punching shear ratios with 1.2m thickness 
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As we can see, there are 3 punching shear ratios greater than 1, so we need to increase 

the thickness of the raft. Let it be 1.35m. 

After increasing the thickness to 1.35m, we can see that all verifications are checked 

and almost all the punching shear ratios are smaller than 1, so we can deduce that the 

thickness 1.35 m is acceptable. 

 

Figure IV.38. Punching shear ratios with 1.35m thickness 

IV.8.4 Moments 

 

Figure IV.39. Mxx (KN.m/m) under ultimate combination  
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Figure IV.40. Myy (KN.m/m) under ultimate combination  

IV.8.5 Reinforcement of the raft 

 

 

Figure IV.41. Top rebar intensity-direction 1 & 2  
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Figure IV.42. Bottom rebar intensity-direction 1 & 2 

 

IV.8.6 Reinforcement details 

 

Figure IV.43. Reinforcement detail for raft foundation 
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General Conclusion 
This study focuses on the probabilistic analysis of shallow foundations resting on 
spatially varying soils. One aleatory source of uncertainty was considered. It is the soil 
(or rock) spatial variability which was modeled by random fields. 

In this project, a literature review on the soil and the meta-modeling techniques was 
first presented. It was followed by two main parts. 

The first part (which is composed of chapters II, III) presents a probabilistic analysis of 
shallow foundations resting on spatially varying soils or rocks and subjected to a static 
loading. Both cases of square and rectangular footings were studied. In this part, the 
probabilistic method used to calculate the different probabilistic outputs was the Sparse 
Polynomial Chaos Expansion (SPCE) methodology and its extension the SPCE/GSA 
procedure. 

In chapter II and III, the effect of the spatial variability in three dimensions (3D) was 
investigated through the study of the ultimate bearing capacity of square and 
rectangular foundations resting on a purely cohesive soil with a spatially varying 
cohesion in the three dimensions. This case involves relatively non-expensive 
deterministic models although a 3D mechanical model was used. This is because of the 
use of a purely cohesive soil. 

The main findings of the first part can be summarized as follows: 

• Chapters II and III have shown the superiority of the SPCE with respect to the 
classical MCS commonly used in geotechnical engineering problems involving 
spatially varying soils.  

• The decrease in the autocorrelation distances (ah or av), lead to a less spread out 
PDF of the system response. 

• When a small number of variables is used, the SPCE/GSA methodology is hard 
to be executed. 

• The probabilistic ultimate bearing capacity coefficient Nc increases with 
increasing variation of the autocorrelation distance. 

The second part (which corresponds to chapter IV) was about designing the main 
structural elements of a residential building. The design was made using many 
softwares. The study of this building has led to make the reinforcement of the basic 
elements: column, shear wall, slab and raft design. 
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Appendix A 

One-dimensional Hermite polynomials 

The one-dimensional Hermite polynomials are given by: 
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Illustrative Example 

In order to illustrate the PCE theory in a simple manner, a PCE of order p=3 using only 

M=2 random variables (ξ1 and ξ2) will be considered in this illustrative example. As 

may be easily seen from Table E.1, the PCE basis contains P=10 terms whose 

expressions ( )0,...,9  =  are computed using Equation (I.9). 
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β Order of the term Ψβ  
1

( )
=

 = i

M

i
i

H  
 

( )2

1

!
M

i
i

E  
=

 =
 

0 p=0 Ψ0 =H0(ξ1)xH0(ξ2)=1 α1! x α2!=0!x0!=1 
1 

p=1 
Ψ1 =H1(ξ1)xH0(ξ2)=ξ1 α1! x α2!=1!x0!=1 

2 Ψ2 =H0(ξ1) xH1(ξ2)= ξ2 α1! x α2!=0!x1!=1 
3 

p=2 

Ψ3 =H1(ξ1) xH1(ξ2)= ξ1 ξ2 α1! x α2!=1!x1!=1 

4 Ψ4 =H2(ξ1) xH0(ξ2)= 2
1 1 −  α1! x α2!=2!x0!=2 

5 Ψ5 =H0(ξ1) xH2(ξ2)= 2
2 1 −  α1! x α2!=0!x2!=2 

6 

p=3 

Ψ6 =H2(ξ1) xH1(ξ2)= ( )2
1 21 −  α1! x α2!=2!x1!=2 

7 Ψ7 =H1(ξ1) xH2(ξ2)= ( )2
1 2 1  −  α1! x α2!=1!x2!=2 

8 Ψ8 =H3(ξ1) xH0(ξ2)= 3
1 13 −  α1! x α2!=3!x0!=6 

9 Ψ9 =H0(ξ1) xH3(ξ2)= 3
2 23 −  α1! x α2!=0!x3!=6 

Table A.1. Basis Ψβ (β=0, …, 9) of the PCE and values of ( )2E   for a PCE with M=2 and p=3 

By using Table A.1, one can write the PCE as function of the input random variables 

(ξ1 and ξ2) as follows: 

( ) ( )
0 0 1 1 9 9

2 2 2 2 3 3
0 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 1 9 2 2

( ) ...

+a ( 1) ( 1) 1 1 ( 3 ) ( 3 )
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a a a a a a a a a



             

 =  +  + +  =

+ + + − + − + − + − + − + −
 (A.1) 

Where the unknown coefficients can be computed using Equation (I.12). Once the PCE 

coefficients are computed, the first order Sobol indices for the two random variables 

(ξ1 and ξ2) can be easily obtained using the following equation

( ) ( )
2 2
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i
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a E
S

D

 





 
  

=


.  

The only additional step is to compute ( )2E   corresponding to these two random 

variables. Table A.1 provides the values of ( )2E   computed using the equation 

( )2

1

!
M

i
i

E  
=

 =  for the different   terms. The expressions of the first order Sobol 

indices of the two random variables ξ1 and ξ2 can thus be written as follows: 

2 2 2 2 2 2
1 4 8 2 5 9

1 22 2 2 2 2 2 2 2 2 2 2 2
1 4 8 2 5 9 1 4 8 2 5 9
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(A.2) 

Where ( )1 1,4,8I =  and ( )2 2,5,9I = . 
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