
 

 

 

 

 

 

 



 

 
 

Università Politecnica delle Marche 
Scuola di Laurea Magistrale in Scienze dell’Ingegneria 

Curriculum in “Environmental Engineering” 
---------------------------------------------------------------------------------------- 

 

 

Development of a user friendly AERMOD 

interface and evaluation of model 

performance on a case study in complex 

environments with multiple sources 

 

 

 

 

 

 

        Dissertation of: 

      Dominik Subotić 

Advisor: 

 Prof. Eng. Giorgio Passerini 

 

Curriculum supervisor: 

 PhD Simone Virgili 

 

 

 

 

 

A.A. 2023./2024. 



 2 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Università Politecnica delle Marche 
Scuola di Laurea Magistrale in Scienze dell’Ingegneria 

Curriculum in “Environmental Engineering” 
---------------------------------------------------------------------------------------- 

 

 

Development of a user friendly AERMOD 

interface and evaluation of model 

performance on a case study in complex 

environments with multiple sources 

 

 

 

 

 

 

          Dissertation of: 

      Dominik Subotić 

Advisor: 

 Prof. Eng. Giorgio Passerini 

 

Curriculum supervisor: 

 PhD Simone Virgili 

 

 

 

 

A.A. 2023./2024. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Università Politecnica delle Marche 

Dipartimento Di Ingegneria Industriale E Scienze Matematiche – DIISM 

Via Brecce Bianche — 60131 - Ancona, Italy



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGEMENTS 

 

I would like to express gratitude to my advisor, prof. Giorgio 

Passerini, my supervisor, PhD Simone Virgili whose doctoral thesis inspired 

my master thesis, and UNIVPM for their guidance, material, knowledge, and 

opportunity to study and do my master thesis. The university staff has been 

nothing but outgoing, kind, dedicated and professional. 

 

Secondly, I would like to thank EPA for developing AERMOD on 

which my thesis is based. Mathworks for developing MATLAB, JRSoftware 

for developing Inno Setup, JetBrains for developing PyCharm, which was a 

crucial platform for developing my application, and Microsoft for developing 

MS Excel. 

 

I would finally, like to thank my family, especially my mother 

Vekenega, for their sacrifice and believing in my potential and vision, my 

friends Anđelo, Roko and Josip for always reaching out to me, being patient 

and inspiring me to live life to the fullest. Mia Štulić for bringing out the best 

in me and pushing me to pursue my dreams and goals. 

Thank you all, I wouldn’t be here without you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

ABSTRACT 

 

 

A SOX emission source (API Raffineria, Falconara Marittima, Italy) 

is analyzed using AERMOD air dispersion modelling system, for the purpose 

of demonstrating newly developed software (CAIRO for AERMOD), made 

to compile and visualize input, and run analyses. CAIRO for AERMOD 

(Compile AERMAP, AERMOD and AERPLOT Input and Run Output) is a 

python-based GUI aimed at streamlining the process of making complex 

input files, with unique syntax and running them, while obviating the need to 

manually write input and run the program through Windows Shell. The 

Windows application features automated features such as the input and 

conversion of coordinates to UTM through copy operations, while the input 

is visualized in Google Earth. Input is done through user interface and 

automatically compiled into correct syntax and project/file structure. It 

supports point or polygon sources up to 3 averaging periods, maxtable, 

maxifile, rankfile and plotfile, while the elevation and meteorological data 

must be third party. 

A review of air pollution, legislative, planetary boundary layer 

processes and AERMOD model formulation, introduced the analysis on SOX 

emissions of 15 point sources in a refinery located near domestic areas. The 

AERMOD output and real data of 3 monitoring stations, dedicated to 

monitoring the plant, were further processed using multiple methods to 

deduce the difference of modelled values compared to actual data. The model 

performed with an average difference of -1.84 μg SOX/m3 or 5.33%, 

compared to actual data. The model performance was acceptable by 

Normalized Mean Square Error (NMSE), Mean Fractional Bias (FB) and 

Mean Bias (MB) tests to comply with European legislation. Longer averaging 

periods (month and year) had smaller maximal deviations but on average it 

exhibited the same deviations as the shorter period (24h), which had up to ± 

78% discrepancies from real data. Compared to the regulatory limit it’s a 

relative deviation of ±3.20% of the regulatory limit on average. 
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1. INTRODUCTION 
 

The dynamic nature of environmental systems necessitates sophisticated 

models to predict and understand the interactions between various factors 

such as urbanization, industrialization, and climate change. The primary 

adverse effects of these activities include alterations in radiative balance and 

local heating patterns, which in turn impact micro-scale circulation and 

surface energy balance. This affects pollutant dispersion, distribution, 

chemical and physical activity. Changes in thermal behavior of regional 

weather due to urbanization and industrialization have well known effects on 

climate and air quality (Baik et al., 2000; Roth, 2000). Growing awareness of 

air quality deterioration, frequency of pollution events and health effects, 

have led to the integration of air pollution control strategies within urban 

planning frameworks, e.g. environmental monitoring and modeling. Making 

practical and effective modeling tools is at the basis of scientific research, 

engineering, industrial, legislative and other applications. 

 

Environmental models give access to complex environmental processes 

that are difficult to study directly due to their scale, complexity, or the length 

of time over which they occur. And an understanding of the interactions 

between different components of the environment, such as the atmosphere, 

hydrosphere, biosphere, and lithosphere. Acting as a “virtual laboratory”, 

they predict possible outcomes, critical for planning and decision-making, 

especially in the context of climate change, pollution control, resource 

management, risk assessment, environmental impact assessments and 

compliance. 

 

Air quality models usually incorporate parameterizations for the source, 

planetary boundary layer (PBL), turbulence and terrain interactions. The 

vertical mixing of air pollutants strongly depends on the depth and 

stratification of the PBL, which is governed by factors such as the PBL energy 

balance (heat flux), vertical motion, horizontal advection, entrainment at the 

boundary layer top, and time. Outputs offer quantitative predictions, scenario 

analysis, risk assessment and visualizations to help interpret and 

communicate complex data and results. More specifically, concentration 

maps, time series data, deposition rates, exposure and risk assessments with 



 2 

the goal of regulatory compliance. The outputs of environmental air 

dispersion models typically include data on pollutant concentrations and other 

environmental parameters over time and space.  

 

The best strategies for using environmental models are based on 

understanding of the scientific principles, validated data to capture the 

essential dynamics of the systems they represent. Choosing according to 

transparency and accessibility of models allows for peer review and 

stakeholder engagement. Integrating data from multiple sources and using an 

interdisciplinary approach can improve model comprehensiveness, accuracy 

and reliability. Regularly validating model outputs with observed data and 

guidelines ensures accuracy. They finally depend on the goal and specific 

case study. 

 

The use of environmental models has required, and to a certain degree 

still requires, significant expertise in both the environmental sciences and the 

specific modeling software, but new advances in software development have 

made these tools more accessible to a broader range of users, including 

policymakers, educators, and community stakeholders. Models, such as 

AERMOD, are widely used for urban air quality forecasts due to their ability 

to simulate pollutant dispersion effectively under varied conditions and 

complex terrains. Despite scientific advancements, predicting the transport, 

diffusion, and transformation of airborne pollutants remains complex due to 

data limitations and the inherent complexities of atmospheric processes 

(Klausmann et al., 2003).  

 

This study glances over air pollution, its main components and processes, 

environmental monitoring and modeling, focusing on the AERMOD 

dispersion model's formulation and the creation of a Graphical User Interface 

(GUI) in Python to streamline the use of AERMOD and its associate 

processors and input files. This GUI compiles AERMOD preprocessor, 

processor, and postprocessor input file and runs basic AERMOD stages, 

simplifying the process compared to manual command shell operations. 

Traditionally, running AERMOD involves manually preparing input files, 

executing commands in the shell, and managing output files, which can be 

inept and error prone or requiring expensive software options with an 

integrated interface. 
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The proposed GUI is a windows application that simplifies the process by 

integrating the preprocessor, processor, and postprocessor stages of 

AERMOD (AERMAP, AERMOD, AERPLOT), compiling input files 

(AERMAP, AERMOD, AERPLOT), allowing users to input data, run 

simulations, and view results within a single interface. Integrating a simple 

input interface, Google Maps and Google Earth, it enhances accessibility and 

usability, particularly for users who may not be familiar with command line 

operations. 

 

To validate the effectiveness of the GUI, a generic analysis was conducted 

on real pollutant sources. The analysis involved simulating the dispersion of 

pollutants using the AERMOD model and comparing the results with 

observed data. The results were analyzed using QGIS, MATLAB and MS 

Excel to provide a comprehensive understanding of the pollutant distribution 

and its potential impacts. This practical application demonstrates the GUI’s 

capability to facilitate detailed and accurate air quality modeling, making it a 

valuable tool for researchers and policymakers alike. 
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2. MATERIALS AND METHODS 
 

This chapter will delve into the main problems, processes, impact, 

legislation, and regulations regarding air pollution, particularly the 

monitoring and modeling of air quality for the purpose of compliance with 

authoritative bodies. Focusing on the 5 key pollutants given by the NEC 

Directive in 2016. and other common pollutants with adverse environmental 

and health effects. 

  

An overview of the air dispersion model AERMOD follows, expands on 

the model’s formulation together with the meteorological phenomena, 

processes, parameters, and specifics associated with it. Most importantly, it 

delves into the formulation of a computer program in Python programming 

language and its instructions, aiming to simplify the creation and processing 

of AERMOD input files. 

 

The program uses only 2 vital source types (point and polygon area 

sources) and allows for simple input and visual representation during 

operation, for instance choosing locations directly from Google Maps and 

visualizing multiple sources in real time in Google Earth. It is based upon 

using the AERMOD preprocessor AERMAP, using provided surface air and 

upper air AERMET output files, the processor AERMOD and post processor 

AERPLOT. Input file compilers are available for AERMAP, AERMOD and 

AERPLOT. 
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AIR POLLUTION 

 

The atmosphere is a complex dynamic natural gaseous system that is 

essential to support life on planet Earth. Its composition is crucial for 

sustaining life and maintaining environmental stability. Nitrogen is essential 

for plant growth and is a building block of proteins, while oxygen supports 

respiration. Trace gases, though present in minimal amounts, play significant 

roles; for instance, carbon dioxide and methane are critical for the greenhouse 

effect, which regulates the planet's temperature. The atmosphere also interacts 

with the hydrosphere and biosphere, driving weather patterns and climate 

systems, and ensuring a balanced environment that supports diverse 

ecosystems. 

 

Air pollution, as defined by the World Health Organization, is 

“contamination of the indoor or outdoor environment by any chemical, 

physical or biological agent that modifies the natural characteristics of the 

atmosphere which has a negative effect on health and the environment” 

(WHO, 2024.). Emissions constitute the output of polluting substances to the 

atmosphere from any source, while imissions are the “reception” of the 

emitted pollutants and constitute what is known as “air quality” (EEA, 2024.). 

 

Criteria pollutants are specific air contaminants regulated due to their 

health and environmental risks. These include ozone (O3), particulate matter 

(PM10 and PM2.5), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen 

oxides (NOx), and lead (Pb). Normally, Earth's atmosphere is composed of 

nitrogen (78%), oxygen (21%), and trace amounts of argon, carbon dioxide, 

and other gases. 
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Primary air pollutants are directly generated, while secondary air 

pollutants are indirectly generated through some other processes. Secondary 

air pollutants are created by various processes like burning of fossil fuels 

(electricity generation, transport, industry and households), industrial 

processes and solvent use (chemical and mining industries), agriculture, 

waste treatment, natural sources (volcanic eruptions, windblown dust, sea-

salt spray and emissions of volatile organic compounds from plants), for 

which a well-known example is photochemical smog. CO2 isn’t regarded as 

a pollutant by legislatives, although by its role as a greenhouse gas it is 

regularly monitored for (Sharma et al., 2013.). 

 

 
 

Figure 1. “Modern” composition of air including criteria and other 

pollutants, also noted must be the average water vapor content of around 4%. 

Units are percent, parts per million/billion/trillion. Values correspond to 

natural “rural background” concentrations, ambient concentrations in 

metropolitan areas are substantially greater. (Fowler, et al., 2020.) 
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Key primary air pollutants: 

- Particulate matter (PM) 

- Black carbon (BC) 

- Sulphur oxides (SO2) 

- Nitrogen oxides (NOX-NO, NO2) 

- Ammonia (NH3) 

- Carbon monoxide (CO) 

- Methane (CH4) 

- Non-methane volatile organic compounds (NMVOCs- 

including benzene, certain metals and polycyclic aromatic 

hydrocarbons including benzo[a]pyrene - BaP) 

Key secondary air pollutants: 

- Particulate matter (PM - key precursor gases for secondary PM 

are SO2, NOX, NH3 and VOCs) 

- Ozone (O3) 

- Nitrogen dioxide (NO2) 

- Oxidized volatile organic compounds (VOCs) (Sharma et al., 

2013.) 

 

 
 

Figure 2. Long term observations of SOX, VOC, NOX, PM10, from 1940. until 

2010. (PM10 monitoring only started in 1990. and led in 1970.). Interestingly 

the drop in all parameters co-aligns with the foundation of EPA 

(Environmental Protection Agency) in December of 1970 (EPA, 2010.). 
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Figure 3. Long term observations of CO and Pb, from 1940. until 2010. (EPA, 

2010.) 

 

 

2.1.1 ENVIRONMENTAL AND HEALTH EFFECTS 

 

Environmental impacts of air pollution include contamination of air 

and bodies of water and soil through wet and dry deposition and reactions 

with atmospheric components. Air pollution poses numerous threats to the 

environment and public health, creating a strong need for environmental 

assessment and legislative actions. 

 

Wet deposition, known as acid rain, occurs when pollutants absorbed 

by water droplets in the atmosphere precipitate to the ground. This process 

lowers the pH of soil and water bodies, harming aquatic life, vegetation, and 

infrastructure. Acid rain can leach essential nutrients from the soil, disrupt 

ecosystems, and damage buildings and monuments made from limestone and 

marble (Singh and Agrawal, 2007). 

 

Dry deposition is the settling of airborne pollutants onto surfaces, 

including soil, water, and vegetation. By means of both dry and wet 

deposition pollutants can enter the food chain through crops and water 
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sources, leading to bioaccumulation and biomagnification (Wesely and 

Hicks, 2000.; Deribe et al., 2013.). 

Reactions with atmospheric constituents and other pollutants can result in 

forming of acidic compounds, ground level ozone and fine particulate matter, 

of which the ladder two are key components of smog.  

 

Ozone depleting substances (ODS) mainly act by reaction of chlorine 

and bromine atoms with ozone (O3) (Reaction 1. - ozone destruction). One 

chlorine atom can destroy multiple thousand molecules of ozone by catalytic 

cycling (Reaction 2. - Ozone regeneration), where Cl acts as a catalyst and 

reacts with O3, creating chlorine monoxide (ClO + O2) after which it can again 

react with O- ions, becoming a free radical, free to react further without being 

consumed. As ODSs are exposed to UV light in the stratosphere, they readily 

release chlorine and bromine atoms which react further. These substances 

include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), 

carbon tetrachloride and methyl bromide, among others (Bouare, 2009.).  

 

Reaction 1.  

𝐶𝑙 + 𝑂3 →  𝐶𝑙𝑂 + 𝑂2 

 

Reaction 2. 

𝐶𝑙𝑂 + 𝑂. → 𝐶𝑙 + 𝑂2 

 

Ground level ozone (O3) is formed photochemical and chemical 

processes mainly by NOx, CO, and VOCs, who stem from exhaust and 

industrial emissions. It drives many chemical processes and is a pollutant 

itself. Ozone is a key constituent of the troposphere and an important 

constituent of certain regions of the stratosphere, known as the Ozone layer. 

It’s also the third most important greenhouse gas in terms of radiative forcing, 

therefore accelerating climate change. At extremely high concentrations from 

human activities (largely the combustion of fossil fuel), it is a pollutant, and 

a constituent of smog (Sharma et al., 2013.; Myhre et al., 2014.). 
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Sulphur oxides (SOX), mainly SO2 which is produced by volcanoes 

and in various industrial processes as coal and petroleum are often sulfur 

containing compounds. Further oxidation of SO2, usually in the presence of 

catalyst such as NO2, forms H2SO4, thus creating a component of acid rain. 

The highest concentrations of SO2 are recorded in the vicinity of large 

industrial facilities. SO2 emissions are also a major precursor to ambient 

PM2.5 concentrations. SO2 is also created by oxidation of H2S, which 

originates from combustion processes and anaerobic decay. (Sharma et al., 

2013.; Lee et al., 2018.). 

 

Nitrogen oxides (NOx - most prominently NO2) are emitted from high 

temperature combustion and are also produced naturally during 

thunderstorms by electric discharge. They can be seen as the reddish-brown 

haze dome above or plume downwind of cities. Most noted effects include 

formation of ground level ozone (through reaction with VOCs and UV light), 

acid deposition (HNO3), eutrophication, greenhouse gases (N2O). NO2, like 

SO2, is a precursor to PM2.5. (Sharma et al., 2013.; Boningari et al., 2016.; 

Lee et al., 2018.). 

 

Ammonia (NH3) is mainly emitted from agricultural processes, 

normally in the form of a gas with a distinct odor. It serves as a precursor to 

nutrients and fertilizers to terrestrial organisms and as a building block for the 

synthesis of many pharmaceuticals. It is emitted from various industrial 

processes, including wastewater treatment plants. Although in wide use, 

ammonia is both caustic and hazardous. (Sharma et al., 2013.; Zhang et al., 

2017.) 

 

Carbon monoxide (CO) is a colorless, odorless gas. It is a byproduct 

of incomplete combustion of fuels. Vehicular exhaust is a major source of 

carbon monoxide. It is especially dangerous for organisms and human health 

as it binds 200-300 times more strongly than oxygen to hemoglobin (Patel, et 

al. 2023.). 

 

Volatile organic compounds (VOC) are a pollutant category often 

divided into methane (CH4) and non-methane (NMVOCs) compounds. 

Methane is an extremely efficient greenhouse gas. Other hydrocarbon VOCs 

are also significant greenhouse gases via their role in creating ozone and in 



 11 

prolonging the life of methane in the atmosphere. Common NMVOCs include 

aromatic compounds benzene, toluene, 1,3-butadiene and xylene, which are 

suspected carcinogens and may lead to leukemia through prolonged exposure. 

A prominent NMVOC is benzo[a]pyrene, which is a polycyclic aromatic 

hydrocarbon, a known carcinogen with adverse health effects. (Sharma et al., 

2013.). 

 

Particulate matter (PM) are particles in the micron range of size, of 

solid or liquid suspended in a gas. In contrast, aerosol refers to particles and 

the gas together. They are usually classified by their aerodynamic diameter. 

Monitored for are usually PM10 (10 micron) and PM2.5 (2.5 micron), 

sometimes down to PM1 (1 micron), due to peaks in distribution patterns at 

around 2.5 and 10 μm aerodynamic diameter size. (Wang et al., 2015.) 

Naturally, they originate from volcanoes, dust storms, forest, grassland fires, 

etc. Anthropologically they primarily originate from burning fossil fuels. 

Increased PM levels are linked to health hazards such as heart disease, altered 

lung function and lung cancer. (Sharma et al., 2013.) A great risk regarding 

PM is that they are small enough to pass the blood brain barrier and seem to 

increase its permeability, further increasing risk. PM2.5 is regarded the most 

harmful pollutant, is closely associated with premature death, and can 

penetrate deep into lung tissue due to its small size (Oppenheim et al., 2013.; 

Calderon et al., 2008.). 

 

Smog is a pollution resulting from various processes and pollutants. 

We discern summer and winter smog. Summer smog usually comes from 

transportation and industrial emissions excited by ultraviolet light, which 

form secondary pollutants that also combine with the primary emissions to 

form photochemical smog. Also called “Los Angeles smog”, summer smog 

results in ground ozone production, NO2 and PAN (Peroxyacetyl nitrate). In 

winter often a temperature inversion traps pollutant near the ground. 

Sulfurous smog, called “London smog” is caused by high SO2 concentrations 

and results in sulfuric acid as a secondary pollutant. Other primary pollutants 

include nitric oxide, hydrocarbons, carbon monoxide (Sharma et al., 2013.; 

Tiao and Hemming, 1975.). 
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Peroxyacetyl nitrate (PAN - C2H3NO5) is a secondary pollutant 

similarly formed, as ozone, from NOx and VOCs. At higher temperatures, 

PAN decomposes into NO2 and the peroxyacetyl radical. PAN is observed in 

conjunction with elevated ozone concentrations.  

Persistent organic pollutants (POPs) are organic compounds that are 

resistant to environmental degradation through chemical, biological, and 

photolytic processes. They are transported over great distances and 

bioaccumulate and biomagnify in organisms. They include substances like 

PCBs, DDT and dioxins. Dioxins originate from industrial processes and 

combustion (municipal and medical waste incineration and backyard burning 

of trash). PCBs have been useful in industrial applications (electrical 

transformers and large capacitors, such as hydraulic and cooling fluids, and 

in paint and lubricant production). DDT, the notorious pesticide, is still used 

to control mosquitoes that carry malaria in some parts of the world. (Sharma 

et al., 2013.; EPA 2009.) 

 

Metal vapors originate from vehicles, ore and metal processing, are 

also one of the constituents of PM. Led (Pb) is a persistent pollutant, as it 

deposits in soils and remobilizes in the atmosphere from traffic. Emission 

rates are positively related with air and blood Pb. Other sources are waste 

incinerators, utilities, and lead-acid battery manufacturers. The highest air 

concentrations of lead are usually found near lead smelters. Led is 

accumulated in the bones. Transition metals Ni, V, Fe, Cu, among others, 

participate in redox reactions, inducing oxidative stress and worsen the 

impact on health on a greater scale than other PM constituents (Sharma et al., 

2013.; Chen et al., 2022.; Mielke et al., 2022.) 
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ENVIRONMENTAL ASSESSMENT 

 

Environmental assessment is a critical process for understanding and 

mitigating the impacts of human activities on the environment. A systematic 

and technical evaluation must be done on how various activities affect the 

environment and requires a detailed and multifaceted assessment to develop 

effective mitigation strategies. Environmental assessment is an 

interdisciplinary process that integrates various branches of engineering and 

science. A purpose and need must be defined following with a detailed 

analysis of cumulative impacts, unavoidable adverse impacts, mitigation 

measures and alternatives, under the legislative environmental policy act. 

 

Air pollution, particularly a concern in urban and industrial areas, is a 

major public health concern. Vulnerable groups, children, elderly, and people 

with pre-existing health conditions are more susceptible to exposure. The 

orographic and meteorological are mainly, other than radiative forcing, the 

components that govern atmospheric dispersion, wind, and precipitation 

intensity. The terrain complexity and other topographic features usually 

increase the dispersive effects, while precipitative events bring the pollutants 

down to the ground, allowing them to leach into the ground or be able to get 

redispersed again. When talking about air pollution it is also important to 

include the various chemical processes that are part of the pollutant’s complex 

lifecycle. 

 

 

2.2.1 LEGISLATIVE 

 

At a pan European level, air emissions are regulated by the “United 

Nations Economic Commission for Europe” (UNECE) and the “Convention 

on Long-range Transboundary Air Pollution” (Air Convention). Under the 

“Air Convention”, the “Gothenburg Protocol” sets emission thresholds for 

NOX, NMVOCs, Sulphur oxides (SOX) and NH3. Reports on emission data 

on numerous air pollutants are also obligatory. The EEA compiles the annual 

EU emission inventory report under the Air Convention, in cooperation with 

the EU Member States and the European Commission. The Gothenburg 
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Protocol to abate acidification, eutrophication and ground-level ozone was 

founded in Gothenburg, Sweden in 1999., and has set the emission thresholds 

for 2010. - 2020. It formed the basis for the NEC Directive for the next two 

decades (EEA, 2023.). 

 

In the EU air pollution is governed by the “EU Ambient Air Quality 

Directives” (AAQDs). They oblige members to follow legislation with the 

aim of having air pollution reduced to levels which limit harmful effects on 

human health and the environment, to improve and standardize the 

monitoring and assessment of air quality. This should put the EU on track to 

achieve zero air pollution by 2050. 

 

The first pillar comprises “Directive 2008/50/EC” (2008 AAQ 

Directive) on ambient air quality and cleaner air and “Directive 

2004/107/EC” (2004 AAQ Directive) on arsenic, cadmium, mercury, nickel, 

and polycyclic aromatic hydrocarbons in ambient air adopted in 2004). The 

first pillar establishes standards (limit values) for air quality monitoring and 

modeling. 

The second pillar is comprised by the “Directive (EU) 2016/2284” 

(NEC Directive) on the reduction of national emissions of five main 

atmospheric pollutants, PM2.5, Sulphur dioxide (SO₂), oxides of nitrogen 

(NOx), non-methane volatile organic compounds (NMVOCs) and ammonia 

(NH3). The NEC Directive requires national air pollution control programs to 

be established and to achieve reductions and improvements by 2020 and 

2030, depending on the criteria. 

 

The third pillar groups several EU legislative acts regulating air 

pollution depending on its two main sources. Industrial emissions are covered 

by “Directive 2010/75/EU” (IED) on industrial emissions, “Directive (EU) 

2015/2193” (MCP Directive) on the limitation of emissions of certain 

pollutants into the air from medium combustion plant, “Directive 

2009/125/EC” (Ecodesign Directive) establishing a framework for the setting 

of eco-design requirements for energy-related product. 

Transport emissions cover “Regulation (EC) No 715/2007” on approved 

emission rates for vehicles (Euro 5 and Euro 6 standards), “Regulation (EC) 

No 595/2009” among other points, on access to vehicle repair and 

maintenance information.  
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Among other criteria the EU members oblige to: 

- Divide their territories into zones and agglomerations for the purposes 

of air quality assessment and management and report on air quality 

zones designated under the Ambient Air Quality Directives 

- Define common methods to monitor, assess and inform on ambient 

air quality in the EU 

- Provide information to the public 

- Establish objectives for ambient air quality to avoid, prevent or reduce 

harmful effects on human health and the environment 

- Follow a deadline to achieve compliance with limit values under 

certain conditions and for certain pollutants 

- Assessing ambient air quality should be based on common methods 

and criteria for air quality monitoring and modelling. 

- Improves the legal framework, providing more clarity on access 

damage redress and effective penalties 

- Defines a minimum content of national air pollution control programs 

 

Two specific policies involved are “Environmental Impact Assessment” 

and “Strategic Environmental Assessment”. 

Environmental Impact Assessment (EIA) Directive amended in 2014, 

requires major building or development projects to first be assessed for their 

impact on the environment, before the project can start. The EIA assesses the 

direct and indirect significant impact of a project of environmental factors 

including population and human health, biodiversity, land, soil, water, air, 

climate, landscape, material assets and cultural heritage. The authority is 

provided with a report containing the description of the project (location, 

design, size), potential significant effects, reasonable alternatives, features of 

the project and measures to avoid, prevent, reduce, or offset likely significant 

impacts on the environment. 

The Strategic Environmental Assessment (SEA) Directive states a 

procedure when assessing a plan including scoping, environmental report, 

reasonable alternatives, public participation, monitoring. It is applied in a 

range of public programs for land use, transportation, energy, waste 

agriculture, etc. (EC, 2024.). 

 



 16 

In Italy an IPPC permit under State jurisdiction is required, under Annex 

XII, part two of Legislative Decree 152/2006, for combustion installations 

with a thermal input of >300 MWt, gas reprocessing plants, refineries, 

integrated steel plants, large chemical plants, plants located at sea, etc. 

(MASE, 2024.). 

 

 
 

Figure 4. Emission reduction of the main air pollutants by European union 

states from 2005 to 2021, in compliance with the previous “Directive 

2001/81/EC” (EEA, 2022.) 
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Figure 5. Percentage emission reductions time plots of main air pollutants 

from 2005. to 2021. (EEA, 2022.) 

 

The national emission reduction commitments set out in the 2016 

NEC Directive for years 2020-2029 and 2030 onwards are based on the 

estimated reduction potential of each member contained in the TSAP 16 

report. 

 

Member 
State 

SO2  NOx  NMVOC  NH4 PM2.5 
2020-
2029 

After 
2030 

2020-
2029 

After 
2030 

2020-
2029 

After 
2030 

2020-
2029 

After 
2030 

2020-
2029 

After 
2030 

Belgium 43% 66% 41% 59% 21% 35% 2 %  13 %  20 %  39 % 
Bulgaria 78% 88% 41% 58% 21% 42% 3 % 12 % 20 % 41 % 
Czech Rep. 45% 66% 35% 64% 18% 50% 7% 22% 17% 60% 
Denmark 35% 59% 56% 68% 35% 37% 24% 24% 33% 55% 
Germany 21% 58% 39% 65% 13% 28% 5% 29% 26% 43% 
Estonia 32% 68% 18% 30% 10% 28% 1% 1% 15% 41% 
Greece 74% 88% 31% 55% 54% 62% 7% 10% 35% 50% 
Spain 67% 88% 41% 62% 22% 39% 3% 16% 15% 50% 
France 55% 77% 50% 69% 43% 52% 4% 13% 27% 57% 
Croatia 55% 83% 31% 57% 34% 48% 1% 25% 18% 55% 

 

Table 1. Partial list of member states and their set reduction target values 

set by the NEC Directive, under the AAQDs (Directive (EU) 2016/2284, 

2016.) The values are compared to 2005 data. 
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Pollutant Italy reduction target EU reduction target 
SO2 -80% -71% 
NOX -70% -65% 
PM2.5 -42% -40% 
NMVOCs -50% -46% 
NH3 -17% -16% 

 

Table 2. Reduction target values set by the NEC directive, under the AAQDs 

(ENEA, 2021.) 

 

Projections for Italy or the year 2030. predict reduction in SO2 

emissions, particularly in the maritime sector (-89% compared to 2010 

values) and energy production (-59%). NOX emissions, primarily cut down in 

the road transport sector (-74%) and electricity generation (-46%). PM2.5 will 

reduce due to abatement of ultrafine particulate emissions in the civil sector 

(-46%). Ammonia is the leading pollutant with the lowest reductions (-9% 

compared to 2010 values), targeting urea based fertilizers in the agricultural 

sector and zootechnical emissions. 

 

 

2.2.2 MONITORING 

 

The main objective of environmental monitoring is to manage the 

impact various activities have on the environment, ensuring compliance with 

regulations and to mitigate risks on the environment and health. It is based on 

analyzing environmental monitoring data to arrive at relevant information, to 

be able to formulate a suitable response in a prompt manner. With the effects 

of emissions of polluting chemicals and industrial processes into the 

atmosphere, a need was created for environmental research, regulations, and 

air quality monitoring. 

  

Air quality monitoring requires the integration of multiple 

environmental data sources, containing topographic data and meteorological, 

chemical, and physical parameters. As the quality of ambient air relates to the 

presence and concentration of substances regarded as pollutants. Air 

monitoring is tied to the determination of the local environmental, health and 
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social risk. More so, on the influence of different emission sources, pollutants, 

and their processes on air quality. Environmental data gathered using 

specialized observation tools, such as sensor networks and Geographic 

Information System (GIS) models, from multiple different environmental 

networks and institutes is integrated into air dispersion models, which 

combine emissions, meteorological, and topographic data to detect and 

predict concentration of air pollutants 

 

From a practical point of view, the main objective of the work plan is 

to obtain representative samples and take removal actions. The cost of the 

characterization program (including the cost of the investment equipment 

installation, operation and maintenance and expected lifetime of the system), 

including the sampling period duration, number of discrete samples taken, the 

size of each sample, and the number of substances sampled must be defined. 

This allows for proper sanation and timely response upon removal site 

assessment. 

 

Sources are divided into mobile and stationary, while emissions can 

be steady or unsteady, and uniform or non-uniform. Sampling is done on a 

point area or volume. The data is assessed in two basic ways: modeling and 

measurement approach. Aside from meteorological factors (wind speed, 

direction precipitation, topography, temperature, air humidity, insolation) to 

take representative samples scheduling must be adapted to the variability, 

frequency, duration of the specific source. The best type of analysis to be 

performed must also be defined. 

 

Air sampling is defined as those sampling and analytical techniques 

that require either off- or on-site laboratory analysis and do not provide 

immediate results. Air sampling techniques are more accurate in detection, 

identification and quantification of specific chemical compounds relative to 

most air monitoring technologies. 

Air monitoring comprises the use of measuring instruments and other 

screening or monitoring equipment and techniques that provide instantaneous 

(real-time) data on the levels of airborne contaminants. Examples of air 

monitoring equipment are photoionization detectors (PID), flame ionization 

detectors (FID), oxygen/combustible gas detectors, and remote optical 

sensors. 
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For particulate matter filtration and impaction techniques can be used 

together with gravimetric analysis. High volume samplers are filtration units 

where all the particles above to the cut off diameter are measured. They have 

no preferred particle size because the measured variable is the total 

concentration of particles in suspension. They sample in the range of 0.8 2 

m3/min of air. Photosensors are laser and optical sensors, that can also be 

portable, that measure light scattered from the particles which pass through 

the laser beam. 

 

Absorption and adsorption methods are mainly used for gaseous 

pollutants, and specialized olfactometry or gas chromatography-mass 

spectrometry (GC-MS) for odor detection and analysis. Absorption is a 

sampling method comprised of the absorption of gases into a liquid medium 

for later analysis. This is effective for soluble gases like sulfur dioxide (SO₂) 

and ammonia (NH₃). Adsorption methods adsorb gaseous pollutants onto a 

solid medium, such as activated carbon, for analysis. This method is suitable 

for volatile organic compounds (VOCs) and other hydrocarbons). Using gas 

chromatography is expensive, requires technical assistance and calibration 

but offers speciation with low detection limit. Dynamic olfactometry is a 

standardized method used to measure and quantify odors in the environment. 

The odor concentration (OU [m-3]) is the number of times that the sample is 

diluted with odorless air to reach the “Odor detection threshold (ODT)” as 

decided by 50% of the panelist. 
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2.2.3 MODELLING 

 

To accurately predict and describe the fate of the pollutants from the 

collected data a systemic approach must be taken, and many processes must 

be considered.  

Emissions need to be accurately identified and quantified.  Generally, they 

are described by pollutant load/emission rate (L, [g s-1]), which is equal to the 

product of the pollutant concentration (C, [μ m-3; ppm, ppb]) and gas flow 

rate (F, [m3 s-1; L s-1]). 

 

The chemical reactions that pollutants undergo in the atmosphere, 

resulting in the formation of new compounds Advection, the horizontal 

transport of air and its pollutants, dispersion, the process by which pollutants 

spread from areas of higher concentration to areas of lower concentration due 

to vicinity of earths complex surface and adiabatic turbulence (due to vertical 

temperature profile), must be considered when modelling, which has adverse 

consequences. This requires understanding of the wind shear, vertical 

velocity gradient, vertical temperature gradient, temporal changes in the 

Planetary boundary layer and many other meteorological parameters. 

 

Cloud cover and insolation data is useful when calculating the mass 

balance of the boundary layer giving a more correct value to radiative fluxes. 

The stability of the lower earth’s atmosphere largely depends on the vertical 

temperature distribution (fig. 6), meaning vertical motion is inhibited. 

Adiabatic lapse rate is a measurement of the rate at which a parcel of air cools 

as it rises, e.g. the rate of temperature change with height [°C km-1]. Under 

radiation the earth’s surface heats the atmosphere and produces a strong 

temperature gradient, thereby inducing adiabatic mixing and turbulence, 

where cool dense air falls to be heated, and then rises again to cool. 

Temperature inversions happen when the earth’s surface cools, and relatively 

warm air sits on a cool layer above earth. This traps pollutants near the 

ground. 
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Figure 6. Variation of atmospheric stability due to vertical temperature 

distribution. 

A)Absolute instability (strong negative temperature gradient) 

• Dry-adiabatic lapse rate unsaturated parcels cool at a rate of 10°C km-1 

B)Neutral condition or conditional stability - when the lapse rate between the 

dry and moist adiabatic lapse rate. Conditional instability exists when the 

atmosphere's stability depends on the saturation of the rising air 

• Moist Adiabatic Lapse Rate – For a saturated parcel of air, i.e., when its 

T=Td, then it cools at the moist adiabatic lapse rate = 6°C km-1 

• Absolute stability occurs when the ELR is less than the moist adiabatic lapse 

rate. 

C) Sub adiabatic: Ambient lapse rate < adiabatic. It indicates stable 

atmosphere, vertical motion, and mixing are suppressed. Dispersion is 

suppressed, and contamination is trapped. 

D) Isothermal vertical temperature distribution, indicates stratification 

E) Inversion means a hot top layer has trapped pollutants near ground 
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According to vertical temperature distributions at different times 

various plume behaviors form (fig. 8). 

Looping Plumes occur when the emitted plume undergoes cyclical or 

oscillatory motion e.g. looping or meandering pattern. This happens with 

variations in direction or vertical wind speed profile, with high temperature 

gradients, associated with adiabatic convection e.g. during the day.  

Coning Plumes are a behavior where the plume narrows or converges 

as it rises, resembling a cone shape. This can occur when the emitted 

substance has a higher velocity at the source and then spreads out as it rises 

and disperses due to pressure differences, in stable atmospheric conditions. 

Coning plumes are commonly observed in chimney emissions or exhaust 

from jet engines. 

Fanning plumes occur when the wind blows across the path of the 

plume. The wind causes the plume to spread out horizontally, resembling a 

fan shape. These happen more often at night and early morning due to 

temperature inversion. Fanning plumes are influenced by wind direction and 

speed and are commonly observed in open areas or near bodies of water due 

to temperature inversion.  

Lofting plumes exhibit significant buoyant effects and rise rapidly in 

the atmosphere. It is characterized by a strong upward displacement due to 

the temperature difference between the emitted substance and the surrounding 

air. Parts of the plume rise above the inversion layer. Lofting plumes are 

typically associated with sources that release heated gases or particles, such 

as wildfires, volcanic eruptions, or industrial processes involving high-

temperature emissions. AERMOD also accommodates for “plume lofting”, 

the behavior of plumes as they rise and remain at the top of the CBL, before 

being mixed again. 

Fumigating plumes descend and spread close to the ground, resulting 

in the widespread dispersal of the emitted substance. This happens in then 

there is a lapse, meaning fall in temperature with height in the bottom layer 

and an inversion in the upper layer e.g. inversion conditions with a negative 

upward radiative flux. They happen early in the morning or late in the 

afternoon. This type of plume behavior is often observed in pesticide or 

insecticide spraying activities, where the goal is to distribute the substance 

across a large area for fumigation purposes, but is very dangerous with 

emission near populated areas. 
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Trapping plumes occur when the emitted substance is confined or 

trapped within a specific area due to local atmospheric conditions or 

topographic features. This can happen when there is a stable layer of air above 

the plume that prevents it from dispersing vertically or horizontally. Trapping 

plumes are commonly observed in valleys or areas with strong temperature 

inversions. 

Neutral plume refers to a type of plume that has minimal buoyancy 

effects and remains relatively stable as it disperses in the atmosphere. Neutral 

plumes commonly occur when the temperature of the emitted substances, 

such as gases or particles, is like the surrounding ambient temperature. As a 

result, the plume rises vertically without significant upward or downward 

displacement due to buoyancy forces. 

 

 
 

Figure 7. Different types of plume behavior for various atmospheric stability 

conditions. The dotted lines show dry adiabatic lapse rate, the solid lines 

represent the actual adiabatic lapse rates for different atmospheric stability 

conditions. Lapse is the normal temperature fall with height and inversion is 

the rise of temperature with height (Geiger, et al., 1995.) 
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Figure 8. Plume emitted by API refinery in Falconara Marittima, Italy, aloft 

due to PBL stratification, lightly rising due to residual ground heat flux 

(Cronache Ancona, 2024.) 

 

Air dispersion/pollution modeling software is crucial for predicting 

concentrations of pollutants in the atmosphere. Mathematical models are 

indispensable in processing large quantities of different data points and 

producing accurate risk assessments and predictions.  These tools help in 

assessing the potential impact of emissions from various sources, aiding in 

regulatory compliance, environmental impact assessments, and the 

development of mitigation strategies. 

 

Air quality models use complex mathematical techniques to simulate 

physical and chemical processes, often in an iterative manner, that affect air 

pollutants as they disperse and react in the atmosphere. Air pollution 

modeling is based on several assumptions and simplifications, like no 

feedback between chemical species and flow fields (wind velocity, turbulent 

diffusivity, temperature). Generally, dilution and dispersion reduce 

concentration at given points. They consider various factors, such as 

meteorological conditions, topography, and the characteristics of the 

pollutant source. These models can simulate the transport, transformation, 

and deposition of pollutants over different spatial and temporal scales.  
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Dispersion models are mathematical tools used to simulate the 

distribution of air pollutants in the atmosphere, considering the 

aforementioned atmospheric processes. They are essential for predicting air 

quality and assessing the impact of emissions from various sources, based on 

empirical data and theoretical understanding of the processes. Some air 

dispersion models include chemical transport models (CTMs), describing 

both chemical and meteorological processes in the atmosphere, like the 

“Weather Research and Forecasting” (WRF) based model “WRF-Chem”. 

 

Gaussian air pollution dispersion models are accurate and consistent, 

particularly in urban settings but lacking in the far field. Lagrangian models, 

that track pollutant parcels as they move through the atmosphere are effective 

in simulating the transport and dispersion of pollutants over long distances 

and complex terrains but can be computationally intensive, require detailed 

meteorological data and can suffer “numerical diffusion”. Eulerian models 

focus on fixed grid points and solve the advection-diffusion equation to 

simulate the dispersion and chemical transformation of pollutants over larger 

scales. Their output is limited to the discretization fineness of the grid 

resolution. (Atabi et al., 2016). 

 

Gaussian (normal) distribution to describe the dispersion of pollutants 

in the atmosphere by assuming pollutants disperse in a bell-shaped 

concentration distribution profile. They are widely used for regulatory 

purposes and to assess the impact of point sources, such as industrial stacks. 

They are suitable for short-range dispersion (a few kilometers from the 

source). 

Lagrangian models track the movement of individual pollutant 

particles or parcels of air due to atmospheric processes. The trajectory of each 

particle is calculated based on wind speed, direction, and turbulence. They 

shine in simulating pollutant dispersion over complex terrains and for long 

range transport. They can capture detailed pathways of pollutants and are 

often used in research and regulatory applications. 

Eulerian models divide the atmosphere into a grid and calculate the 

concentration of pollutants in each grid cell over time. They use fixed 

reference points to solve the advection-diffusion equations that govern 

pollutant transport. Eulerian models are suitable for regional and urban air 

quality modeling, capturing the interactions between multiple sources and 
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atmospheric processes. They are used for regulatory assessments and to 

inform air quality management strategies. 

 

Models combine features of Gaussian, Lagrangian, and Eulerian 

approaches to leverage the strengths of each method. For example, a hybrid 

model might use Gaussian methods for near-source dispersion and Eulerian 

methods for regional transport offering flexibility and accuracy for a wide 

range of applications, from local impact assessments to large-scale air quality 

forecasting. 

 

AERMOD was developed by EPA in the 2000s and will be further 

discussed in this paper. It is a short range dispersion air dispersion model 

based on planetary boundary layer turbulence and scaling concepts, 

integrating terrain effects and building downwash. 

CALPUFF is a non-steady-state puff dispersion model, suitable for 

long range transport and complex terrain developed in the late 90s. It models 

spatially and temporally variable meteorological conditions and is used for 

both regulatory and non-regulatory applications. 

ADMS (Atmospheric Dispersion Modeling System) was developed in 

1995. by “Cambridge Environmental Research Consultants” (CERC). It is a 

Gaussian plume model used for simulating pollutant dispersion from various 

sources, including industrial and road traffic. It accounts for complex terrain, 

buildings, and even deposition processes. 

HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory 

was developed in 1983. by “National Oceanic and Atmospheric 

Administration” (NOAA). Used for computing air parcel trajectories and 

dispersion or deposition of pollutants, suitable for both short and long range 

studies. 

ISCST3 (Industrial Source Complex Short Term Model) was 

developed by EPA in the 80s. This Gaussian plume model predicts pollutant 

concentrations from industrial sources and is widely used for regulatory 

compliance. It served as a predecessor to AERMOD. 

WRF-Chem (Weather Research and Forecasting model coupled with 

Chemistry) was developed in 2005. by the “National Center for Atmospheric 

Research” (NCAR). WRF-Chem is a regional-scale model that simulates both 

weather and air quality, accounting for interactions between pollutants and 

meteorological conditions. 
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Using models easily ensures that industrial and vehicular emissions 

meet air quality standards, the timely prediction of the potential impact of 

new developments on air quality can be made, areas at risk of high pollution 

levels are identified to implement adequate responses, and to predict the 

dispersion of hazardous pollutants during accidental releases. Air dispersion 

models face challenges with data quality and complexity (which continuously 

evolves to more accurately model atmospheric processes). In the past the 

problem was also due to computational resources, but that is becoming less 

of a problem today. 

Future advancements in air dispersion modeling include the utilization of 

machine learning and artificial intelligence to improve model accuracy and 

efficiency. Integration of real time data to leverage real-time environmental 

data for dynamic and adaptive modeling. Developing more accessible 

software to facilitate broader use by non-specialists, which is partly what this 

thesis focuses on. 
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EPA 

 

The “United States Environmental Protection Agency” (EPA) was 

established in December 1970, in response to growing public concern about 

environmental pollution. The agency was formed through an executive order 

by President Richard Nixon, consolidating various federal research, 

monitoring, standard-setting, and enforcement activities into a single agency. 

The main objective is to protect human health and the environment by 

enforcing regulations based on laws passed by Congress. The agency's 

primary goal is to ensure that all Americans are protected from significant 

risks to human health and the environment where they live, learn, and work. 

EPA's headquarters are in Washington, D.C. Within EPA operating are, the 

“Office of Air and Radiation”, the “Office of Water”, the “Office of Chemical 

Safety and Pollution Prevention”, and the “Office of Enforcement and 

Compliance Assurance”. Each office focuses on specific aspects of 

environmental protection and regulation. 

 

The “Clean Air Act” (CAA), one of the most significant environmental 

laws, was enacted in 1970 and has undergone several amendments. The CAA 

aims to regulate air emissions from stationery and mobile sources, ensuring 

that air quality meets health-based standards. The EPA sets and enforces these 

standards, known as the National Ambient Air Quality Standards (NAAQS), 

for key pollutants.  

“Clean Water Act” (CWA) established in 1972, regulates discharges of 

pollutants into the waters of the United States and sets quality standards for 

surface waters, implements this law through pollution control programs, 

wastewater standards for industries, water quality standards for contaminants, 

etc. 

Other important laws include the “Safe Drinking Water Act”, and the 

“Toxic Substances Control Act”, “Resource Conservation and Recovery 

Act”, “Endangered Species Act”, “Pollution Prevention Act”. 
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EPA is responsible for monitoring air quality across the nation, sets 

standards for key pollutants, and enforces compliance through a variety of 

mechanisms. This includes issuing permits for emissions, conducting 

inspections, and taking enforcement actions against violators. The EPA also 

works with state and local agencies to develop State Implementation Plans 

(SIPs) that outline how states will achieve and maintain compliance with 

NAAQS. The agency's permitting programs, such as the New Source Review 

(NSR) and Title V operating permits, ensure that new and modified sources 

of pollution comply with air quality standards. 

 

The National Ambient Air Quality Standards (NAAQS) are central to 

the EPA's efforts to control air pollution. These standards are set for six key 

pollutants: particulate matter (PM10 and PM2.5), ground-level ozone (O3), 

carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and 

lead (Pb). NAAQS are based on scientific evidence regarding the health and 

environmental effects of these pollutants. The EPA regularly reviews and 

updates the standards to reflect the latest scientific knowledge, ensuring that 

they provide adequate protection for public health and the environment. 

 

The Atmospheric Environmental Research and Modeling Initiative 

(AERMIC) was established to enhance the EPA's capabilities in air quality 

modeling, charged with developing a replacement for the previous ISCST 

model based on state of the art science and data, like NLCD land cover data, 

use of NED elevation data to determine height of obstacles and detailed urban 

morphology data for several cities. AERMIC brought together experts from 

the EPA, the American Meteorological Society, and other stakeholders to 

develop advanced tools for predicting the dispersion of pollutants in the 

atmosphere. The primary objective was to create a robust, scientifically sound 

model that could be used for regulatory purposes and air quality assessments. 

 

The development of the AERMOD (American Meteorological 

Society/Environmental Protection Agency Regulatory Model) was a 

collaborative effort initiated by AERMIC. AERMOD was designed to replace 

older models that were less accurate and less capable of handling complex 

environmental scenarios. The development process involved extensive 

research, testing, and validation to ensure that the model could provide 

reliable predictions of pollutant dispersion under a wide range of atmospheric 
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conditions. The performance of AERMOD has been extensively validated 

through numerous studies and evaluations. These assessments have compared 

AERMOD's predictions with observed pollutant concentrations in various 

settings, confirming its reliability and accuracy. The model's robust 

performance has led to its widespread acceptance and use by regulatory 

agencies, industry, and researchers around the world. 

 

EPA’s future directions: 

• Reduce emissions that cause climate change and pollution 

• Accelerate resilience and adaptation to climate change impacts  

• Advance international and subnational climate efforts 

• Enforce environmental laws and ensure compliance 

• Ensure clean and healthy air for all communities and reduce 

localized pollution and health impacts 

• Ensure safe drinking water and reliable water infrastructure  

• Protect and restore waterbodies and watersheds  

• Safeguard and revitalize communities  

• Reduce waste and prevent environmental contamination  

• Prepare for and respond to environmental emergencies  

• Ensure safety of chemicals for people and the environment  

• Chemical and pesticide safety  

Future directions for AERMOD include incorporating new scientific 

findings, improving computational efficiency, and enhancing its ability to 

model complex scenarios such as urban environments and climate change 

impacts. Additionally, integrating AERMOD with other modeling tools and 

data sources can provide more comprehensive and accurate air quality 

assessments. 

 

The EPA's work in air pollution management is critical to protecting 

public health and environment. AERMOD's development and 

implementation represented significant advancements in the field of 

atmospheric dispersion modeling, enabling more accurate and reliable 

predictions of pollutant behavior. As environmental challenges continue to 

grow, the ongoing refinement and application of models like AERMOD will 

be essential for developing effective regulatory strategies and ensuring clean 

air for all. 
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2.4. PYTHON 

 

Programming has become an essential skill in the field of engineering, 

transforming how engineers design, analyze, and manage projects. 

Programming plays a critical role in various aspects of engineering, including 

design and simulation, data analysis, automation, and creating control 

systems. 

 

Creating graphical user interfaces (GUIs) is a crucial aspect of 

software development, providing users with an intuitive way to interact with 

applications. Several programming languages are particularly well-suited for 

GUI development, each with its own set of advantages and drawbacks.  

 

Java is a versatile, platform-independent language widely used in web, 

enterprise and mobile applications. Programs created in Java can run on any 

platform with a Java Virtual Machine (JVM). Java's Swing and JavaFX are 

two primary frameworks for creating GUIs also including Qt and wxWidgets. 

Swing and JavaFX provide a comprehensive set of components for building 

complex user interfaces. Its drawbacks include slower and less responsive 

apps compared to those created with some other languages. 

 

C/C++ are object-oriented languages developed by Microsoft and 

offer fine-grained control over system resources and performance. It is often 

used in conjunction with the .NET framework, particularly Windows 

Presentation Foundation (WPF) and Windows Forms, to create Windows-

based GUIs. It has applications in creating embedded systems, real time 

systems, simulation and modeling, high performance computing. Its 

drawbacks include a steep learning curve due to complex syntax and manual 

memory management and longer development time compared to higher-level 

languages. Also, its platform dependency is a drawback as the full capabilities 

of C languages are only utilized on Windows. 

 

Python interpreted, high-level language known for its simplicity and 

readability. It was released in 1991, as Python 0.9.0, later with Python 1.0 in 

1994. Python 3.0 was released in 2008. Popular frameworks for GUI 

development in Python include Tkinter, PyQt5, and Kivy. Python’s 
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straightforward syntax makes it accessible for beginners, featuring an 

extensive standard library, and cross-platform compatibility. GUIs can be run 

on multiple operating systems with minimal changes. Python’s wide range of 

libraries allows for rapid development and integration with other 

technologies. 

 

Python is easy to learn and flexible but may suffer from performance 

issues. Python’s interpreted nature can result in slower performance for GUI 

applications compared to compiled languages. The term "interpreted nature" 

refers to the way a programming language executes code. In an interpreted 

language, like Python, the source code is not directly translated into machine 

code (binary code) by a compiler before execution. Instead, the code is 

interpreted and executed line-by-line by an interpreter at runtime. 

 

An interpreted language works in like Python in this example in the 

following steps: 

Parsing - the interpreter reads the source code and parses it into a data 

structure that represents the program's logic 

Execution - the interpreter then processes the parsed code, executing it one 

statement at a time. Each line of code is translated into machine instructions 

and executed on the fly. 

Dynamic Typing - during execution, Python determines the data types and 

performs type checking dynamically, without the need for explicit type 

declarations. 

Result - The output or result of each statement is immediately available, 

allowing for rapid development and testing. 

Many other programming languages used in science and engineering are 

based on python, like MATLAB and R. The GUI development leverages 

Python’s robust libraries for GUI design and data handling, ensuring a user-

friendly and efficient tool.  Since I have experience in working in these 

environments Python was chosen to create the graphical user interface. 
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2.4. AERMOD 

 

AMS/EPA Regulatory Model (AERMOD) is a steady-state plume 

model that incorporates air dispersion based on planetary boundary layer 

(PBL) turbulence structure and scaling concepts (fig. 10.), including 

treatment of both surface and elevated sources, and both simple and complex 

terrain. The “American Meteorological Society” (AMS) and “U.S. 

Environmental Protection Agency” (EPA) formed the “AMS and EPA 

Regulatory Model Improvement Committee” (AERMIC) in 1991. and 

created AERMOD (US EPA, 2019.).  

 

AERMOD is made for short range (up to 50km) dispersion modelling 

and assumes the concentration distribution to be Gaussian (fig. 17.) in both 

vertical and horizontal direction in the stratified boundary layer (SBL). In the 

convective boundary layer (CBL), also daytime planetary boundary layer, the 

horizontal distribution is assumed as Gaussian, but the vertical as bi-Gaussian 

(Equation 11; fig. 20; fig. 21) (EPA, 2023.).  

 

AERMOD requires hourly surface and upper air meteorological 

observations for simulating pollutant dispersion, but such data is often 

unavailable. To overcome this, meteorological parameters are derived from 

high-resolution simulations using the Weather Research and Forecasting 

(WRF) model. An offline preprocessor has been developed to couple WRF 

with AERMOD, initializing the latter with hourly values derived from WRF 

outputs. 

 

AERMOD consists of numerous preprocessors, processor and 

postprocessors which serve different functions. Some of them will be listed 

further. 

  

AERMAP is a terrain preprocessor designed to work with the 

AERMOD dispersion model. It processes digital terrain data to generate the 

terrain inputs necessary for AERMOD, ensuring accurate representation of 

the ground elevation and terrain features around the area of interest. This 

preprocessing is crucial as terrain can significantly influence air pollutant 

dispersion patterns by affecting wind flow and atmospheric stability. 
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AERMAP calculates elevations and hill heights for receptors and sources, 

providing essential data to enhance the accuracy of AERMOD's predictions. 

 

AERMET is the meteorological preprocessor for AERMOD, 

responsible for preparing the meteorological data input. It processes raw 

weather data, including surface and upper air observations, to generate the 

necessary parameters for AERMOD, such as wind speed, wind direction, 

temperature, and atmospheric stability. 

 

AERMOD is an advanced air dispersion model used for predicting the 

dispersion of air pollutants from various sources. It incorporates state-of-the-

art modeling techniques and handles both simple and complex terrain 

scenarios. AERMOD utilizes data from AERMAP and AERMET to simulate 

how pollutants disperse in the atmosphere, accounting for factors like terrain, 

weather conditions, and source characteristics. It is widely used in regulatory 

applications to assess air quality and ensure compliance with environmental 

standards. 

 

AERPLOT is a post-processing tool used in conjunction with 

AERMOD. It helps visualize the dispersion modeling results by creating 

graphical representations of pollutant concentrations and distributions. 

AERPLOT can generate contour plots, concentration maps, and other visual 

aids that make it easier to interpret and communicate the results of AERMOD 

simulations. This visualization capability is essential for presenting findings 

in a clear and understandable manner, aiding in decision-making and 

regulatory compliance. 

 

BPIPPRIME (Building Profile Input Program with PRIME 

enhancements), which is used to account for the effects of building downwash 

on pollutant dispersion. BPIPPRIME processes information about the 

physical dimensions and layout of buildings near emission sources, helping 

AERMOD accurately model how these structures influence air flow and 

pollutant spread. 

 

AERMINUTE is another useful preprocessor that refines 

meteorological data by processing minute-by-minute wind data to improve 

the accuracy of the input for AERMET, especially in capturing short-term 
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variations in wind speed and direction. This level of detail is particularly 

important for modeling near-field dispersion in complex environments. 

 

AERSURFACE is a preprocessor that estimates surface 

characteristics such as albedo, Bowen ratio, and surface roughness length, 

which are essential for characterizing the land use and surface features within 

the modeling domain. These parameters influence the atmospheric boundary 

layer and are critical for accurately modeling dispersion under various 

meteorological conditions. 

 

AERMINUTE and AERSURFACE work together with AERMET to 

ensure that the meteorological inputs are as representative as possible, 

improving the overall reliability of AERMOD's predictions. 

 

AERMAP, as previously mentioned, processes terrain data. Another 

related tool is AERGRID, which assists in defining receptor grids over 

complex terrain, ensuring that the receptors are placed accurately to capture 

the variations in terrain elevation effectively. 

 

LEADPOST is a post-processor specifically designed for handling 

lead emissions and their dispersion, ensuring compliance with lead-specific 

air quality standards. It helps in interpreting the results of AERMOD 

simulations that involve lead, providing detailed analysis and reporting. 

 

AERPOST is a general-purpose post-processor that can handle 

various types of AERMOD output, creating summaries, statistical analyses, 

and visual representations like tables and graphs. It simplifies the process of 

analyzing and communicating the results of dispersion modeling. 

 

Some further parameters and behaviors are, as mentioned, influenced 

by the presence of stratification/convection in the PBL. The point of transition 

between the CBL and SBL (day to night) is defined as the point in time when 

the solar elevation angle φ = φcrit. If solar radiation measurements are 

available AERMET determines “φcrit” from an estimate of cloud cover (EPA, 

2023.).  
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Transport processes and interaction with the lower boundary of the 

troposphere (Earth’s surface) modify the lowest 100 to 3000m of the 

atmosphere, creating the planetary boundary layer (PBL). Relatively high 

frequency of turbulent behavior is what differentiates the boundary layer from 

the rest of the earth’s surface. A common approach in studying winds is 

dividing them into the “mean part” (advective contribution) and “perturbation 

part” (turbulent contribution), the latter being described as irregular swirls of 

motion called “eddies” (Stull, 2012.).  

 

 
 

Figure 9. Scheme of troposphere division into free atmosphere and boundary 

layer (Stull, 2012.) 

 

The boundary layer over land consists of three major parts (fig.9): 

Convective mixed layer (very turbulent), residual layer (less turbulent, 

containing former mixed layer air) and a nocturnal stable boundary layer 

(with sporadic turbulence). Another part is the surface layer where the wind 

is influenced by friction (Wyngaard, 1985.; NWS, 2024.) 

The CBL is tied to solar radiation and starts about a half hour after 

sunrise (fig. 9). It grows in depth until the late afternoon by entraining or 

mixing less turbulent air from above down into it (fig. 9). The temperature 

profiles are adiabatic resulting in convective movement. 

The residual layer forms about a half hour before sunset where 

turbulence decays. In the absence of advection particles will remain aloft in 

the residual layer during the night. It is neutrally stratified, resulting in 

turbulence of equal intensity in all directions. This creates dispersion rates 

equal in horizontal and vertical direction, creating a cone shaped plume. 
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The SBL is created by the contact of the residual layer with the 

ground. The stable air tends to suppress turbulence and vertical motion (fig. 

11), while the developing nocturnal jet increases wind shears and generates 

turbulence, resulting in sporadic short burst turbulence.  

A nocturnal jet is a fast-moving air current in the lower troposphere at 

nighttime. With air temperatures near the ground decreasing after sunset, an 

inversion layer is formed, where air temperature increases with height. Air 

then tends to flow horizontally and becomes less inhibited by turbulence and 

convection which tend to dominate during daytime when the ground surface 

heats up as a result of insolation. (Stull, 2012.; Davis, 2000.) 

 

 
 

Figure 10. Time evolution of PBL (Stull, 1988.) 
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Figure 11. Lofting of a smoke plume occurring when the top of the plume 

grows upward into a neutral layer while the bottom is stopped by a stable 

layer 

 

 
 

Figure 12. A growing mixed layer mixes elevated smoke plumes down to the 

ground e.g. fumigation 

 

The energy balance in the PBL describes the transfer and 

transformation of energy in the lower part of the atmosphere. The change of 

parameters inside the balance influence vertical mixing and therefore 

pollutant dispersion. Its key components are: 
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Net radiation - which is often diverged into shortwave and longwave 

radiation, short wave radiation corresponds to the portion of solar radiation 

that reaches the earth’s surface ~ 30% of total, and longwave corresponds to 

infrared radiation emitted by the earth’s surface and atmosphere. 

Sensible heat flux - the transfer of heat from the earth’s surface to the 

atmosphere by means of convection and conduction. 

Latent heat flux –the transfer of heat associated with phase change, 

e.g. evaporation and condensation. 

Soil heat flux – energy gained or lost during belowground warming 

or cooling regarding the ground (Purdy, et al., 2016.) 

 

 

They are influenced by a variety of surface and atmospheric 

conditions, and temporal changes (day/night). These include albedo, surface 

roughness, humidity, cloud cover, wind speeds, insolation and insolation 

length. During the CBL these parameters will be positive, while during the 

SBL these parameters will be negative, except for latent heat flux which will 

usually exhibit lower positive values, caused in part by the anomalies of 

water) (Mauder, et al., 2020.). 

 

The Bowen ratio (Bo) is a parameter defined as the ratio between 

sensible and latent heat flux. Bo<1 indicates a wet surface, while Bo>1 

indicates a dry surface. Larger values produce greater updrafts and more 

intense buoyancy fluxes and therefore convection fluxes (Kang, 2016.). 

Values of the ratio are negatively related to surface air temperature, while the 

effect is exacerbated in less vegetated areas (Cho, et al., 2012.). It depends 

upon the underlying surface (e.g., dominant land-use and soil-type, latitude, 

elevation, continental location, drainage basin, etc.) and the time of year 

(Friedrich, et al., 2000.). 

In AERMOD the structure and growth of the PBL is defined by an energy 

balance, determined by the heat fluxes and momentum drive. For the CBL it 

is defined as following: 
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Equation 1. 

𝐻 +  𝜆𝐸 + 𝐺 = 𝑅𝑛 → 𝐻 =
0.9𝑅𝑛

(1 +
1

𝐵𝑜
)

 

 

Where: 

H – Sensible heat flux [W m-2] 

λE – Latent heat flux (λE=H/Bo; Bo-Bowen ratio) [W m-2] 

G – Soil heat flux (assumed G=0.1*Rn) [W m-2] 

Rn – Net radiation [W m-2], (EPA, 2023.) 

 

The shear velocity (u*) (also friction or shear stress velocity) is one of 

the main scaling parameters in the description processes in the PBL, 

specifically in describing the vertical profiles. It depends on the turbulent state 

of the atmosphere and has many definitions, but generally it describes the 

turbulence intensity in the boundary layer and the transfer of momentum to 

the earth’s surface. It is mainly influenced by surface roughness and affects 

the dispersive characteristics of airflow. It is generally defined as 

 (τ-surface shear stress; ρ-air density), with τ being defined as a product of the 

horizontal (main) and vertical wind speed components (Weber, 1999.). 

 

The von Karman constant is a widely used scalar value approximated 

to 0.4 that describes the relation between the exerted forces and the drag on 

the boundary surface, in this case between the advective turbulent motion of 

the air and earth’s surface (Sheppard, 1947.). 

 

Monin-Obukhov length (L) describes the effects of buoyancy on 

turbulence in the atmospheric surface layer. It symbolizes the height at which 

turbulence is predominantly generated by buoyancy, rather than wind shear. 

L < 0 - unstable conditions, 

L > 0 - stable conditions, 

L → ∞ - neutral conditions (EPA, 2019.; Bonan, 2019.) 

 

The shear velocity (u*) and Monin-Obukhov length (L) are defined for 

CBL from the energy balance equation. The final estimated value of u* is 

reached through iterative calculations of the following equation: 
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Equation 2. 

𝑢∗ =
𝑘𝑢𝑟𝑒𝑓

ln(𝑧𝑟𝑒𝑓 𝑧0⁄ ) − 𝛹𝑚 {𝑧𝑟𝑒𝑓 𝐿⁄ } +  𝛹𝑚{𝑧0 𝐿⁄ }
 

 

Where: 

u* - Shear velocity [m s-1] 

k - von Karman constant (=0.4) 

uref – Wind speed at reference height e.g. advection [m s-1] 

zref – Height at which u=uref [m] 

z0 – Roughness length [m] 

L – Monin-Obukhov length [m] 

Ψm – Stability terms based on zref, z0 and L, (EPA, 2023.) 

 

 After the final estimate of u*, L is calculated by: 

  

Equation 3. 

𝐿 =
𝜌 𝑐𝑝 𝑇𝑟𝑒𝑓 𝑢∗

3

𝑘 𝑔 𝐻
 

 

Where: 

L – Monin-Obukhov length [L] 

ρ – Air density [kg m-3] 

cp – Specific heat of air at constant pressure [J g-1 K-1] 

Tref – Ambient temperature of surface layer [K] 

 - Shear velocity [m s-1] 

k - von Karman constant (=0.4) 

g – Gravitational acceleration; g9.807 [m s-2] 

H – Sensible heat flux [W m-2], (EPA, 2023.) 

 

For the SBL, the energy balance is highly site specific, so an empirical 

approach is used to determine the shear velocity (u*) and Monon-Obukhov 

length (L), rather than defining a nocturnal energy balance and deriving the 

terms from them. The value is based on the drag coefficient in neutral 

conditions as based on the work of Qian and Venkatram (2011.) 
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The vertical structure is defined upon at least one measurement, but 

preferably a surface and upper air measurement of:  

1. Wind direction, 2. Wind speed, 3. Temperature, 4. Vertical potential 

temperature gradient, 5. Vertical turbulence (σw), 6. Lateral turbulence (σv) 

Vertical wind speed profiles are determined for different heights separately, 

to minimize calculation times. This allows the wind speed below height 7z0 

to drop linearly. 

 

Equation 4. 

𝑢 =  𝑢{7𝑧0}[
𝑧

7𝑧0
], 𝑓𝑜𝑟 𝑧 < 7𝑧0 

 

Equation 5. 

𝑢 =
𝑢∗

𝑘
[𝑙𝑛(

𝑧

𝑧0
) − 𝛹𝑚{

𝑧

𝐿
} + 𝛹𝑚{

𝑧0

𝐿
}], 𝑓𝑜𝑟 7𝑧0 ≤ 𝑧 ≤ 𝑧𝑖 

 

Equation 6. 

𝑢 =  𝑢{𝑧𝑖}, 𝑓𝑜𝑟 𝑧 > 𝑧𝑖  

 

Where: 

u – Calculated wind speed [m s-1] 

 - Shear velocity [m s-1] 

k - von Karman constant (=0.4) 

Ψm – Stability terms based on z, z0 and L 

 

For CBL:  

zi – Mixing height (top of CBL) is assumed equal to 1000m 

zo – Starting height equal to 0.1m (zo = 0.0001zi) 

L – Monin-Obukhov length = -10m (L = - 0.01zi) 

 

For SBL:  

zi – Mixing height is assumed equal to 100m 

zo – Starting height equal to 0.1m (zo = 0.001zi) 

L – Monin-Obukhov length = 10m (L = 0.1zi), (EPA, 2023.) 
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Figure 13. Vertical wind speed profile for CBL and SBL, in the region below 

7z0 (EPA, 2023.) 

 

 

 
 

Figure 14. Vertical wind speed profile, for CBL and SBL, in the region above 

7z0 (EPA, 2023.) 
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Mixing height in the CBL is dependent on both mechanical (fig.8) and 

convective (fig.9) mixing and is determined as the greater of the two 

calculated heights. In the SBL it depends only on the mechanical mixing 

processes. 

 

 
 

Figure 15. Mechanical portion of the vertical turbulence in the CBL, 

corresponding to total vertical turbulence of SBL (EPA, 2023.) 

 

 
 

Figure 16. Convective portion of the vertical turbulence in the CBL (EPA, 

2023.) 
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Figure 17. A contaminant plume emitted from a continuous point source, with 

wind direction aligned with the x–axis. Profiles of concentration are given at 

two downwind locations, and the Gaussian shape of the plume cross-sections 

are shown relative to the plume centerline (Stockie, 2011.) 

 

The concept of dividing streamlines (Snyder et al., 1985.) is 

incorporated for flow in complex terrain, allowing the plume to be modelled 

either impacting or following the terrain and greatly simplifying terrain 

definition, and omitting the need for defining different complexities of the 

terrain (EPA, 2023.). 

 

The plume is divided into “horizontal’ and “terrain following/dividing 

streamline parts” based on the dividing streamline height (Equation 7.; fig. 

18). AERMOD calculates the concentration at the receptor position as sum of 

two concentrations: the concentration from horizontal plume (prominent in 

stable conditions) and that from terrain following plume (dominant in 

unstable conditions) (Venkatram, et al., 2001.). 
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Equation 7. 

𝐶 = 𝑓𝑡 × 𝐶ℎ + (1 − 𝑓𝑡) × 𝐶𝑡 

 

Where: 

C – total concentration [μg m-3 or ppm] 

Ch – Concentration due to the horizontal flow component [μg m-3 or ppm] 

Ct – Concentration due to the terrain following/dividing streamline plumes 

[μg m-3 or ppm] 

ft – Terrain weighing factor, (EPA, 2023.) 

 

AERMAP, one of AERMOD’s preprocessors uses gridded terrain 

data to calculate a representative terrain-influence height (hc) for each 

receptor with which AERMOD computes receptor specific Hc values. 

 

 
 

Figure 18. Terrain treatment in AERMOD, visualizing the concept of dividing 

streamlines and the construction of the weighting factor used in calculating 

total concentration (EPA, 2019.) 
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In the CBL, plume sections are emitted into a traveling train of 

convective elements, updrafts and downdrafts, moving with the mean wind. 

The PDF (probability density function) of the vertical velocity is positively 

skewed and results in a non-Gaussian vertical concentration distribution. An 

ensemble average of the plume volume is therefore calculated. Since a larger 

percentage of the instantaneous plume is affected by downdrafts, the 

ensemble average has a general downward trend (fig. 19) (EPA, 2019.). 

 

 
 

Figure 19. Instantaneous and corresponding ensemble-averaged plume in the 

CBL (EPA, 2019.) 

 

For buoyant releases, there is no “final” plume rise assumed (fig. 18). 

The direct transport of plume material to the ground is treated by the “direct” 

source located at the stack (Equation 8.). That is, the direct source treats that 

portion of the plume’s mass to first reach the ground and calculates all 

subsequent reflections of the mass. The direct plume material within the 

mixed layer that initially does not interact with the mixed layer lid. 
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For plume segments or particles initially rising in updrafts, an 

“indirect” or modified-image source is included (Equation 10.) (above the 

mixed layer) to address the initial quasi-reflection of plume material at z = zi, 

e.g. at the top of the boundary layer. For the indirect source, a plume rise (Δhi) 

is added to delay the downward dispersion of material from the CBL top 

which mimics the plume’s lofting behavior.  

 

Additionally, a “penetrated” source or plume (above the CBL top) is 

included to account for material that initially penetrates the elevated inversion 

but is subsequently re-entrained by and disperses in the growing CBL 

(Equation 9.). The penetrated plume material that is released in the mixed 

layer but due to its buoyancy, penetrates the elevated stable layer. 

 

Direct sources 

Equation 8. 

𝐶𝑑(𝑥, 𝑦, 𝑧) =
𝑄𝑓𝑝

√2𝜋𝑢
𝐹𝑦 ∑ ∑

𝜆𝑓

𝜎𝑧𝑗

∞

𝑚=0
[𝑒𝑥𝑝(−

(𝑧 − 𝛹𝑑𝑗 − 2𝑚𝑧𝑖)
2

2𝜎𝑧𝑗
2 )

2

𝑓=1

+ 𝑒𝑥𝑝(−
(𝑧 + 𝛹𝑑𝑗 + 2𝑚𝑧𝑖)

2

2𝜎𝑧𝑗
2 ) 

 

Penetrated sources 

Equation 9. 

𝐶𝑑(𝑥, 𝑦, 𝑧) =
𝑄𝑓𝑝

√2𝜋𝑢
𝐹𝑦 ∑ ∑

𝜆𝑓

𝜎𝑧𝑗

∞

𝑚=0
[𝑒𝑥𝑝(−

(𝑧 − 𝛹𝑑𝑗 − 2𝑚𝑧𝑖)
2

2𝜎𝑧𝑗
2 )

2

𝑓=1

+ 𝑒𝑥𝑝(−
(𝑧 + 𝛹𝑑𝑗 + 2𝑚𝑧𝑖)

2

2𝜎𝑧𝑗
2 ) 

 

Indirect sources  

Equation 10. 

𝐶𝑑(𝑥, 𝑦, 𝑧) =
𝑄𝑓𝑝

√2𝜋𝑢
𝐹𝑦 ∑ ∑

𝜆𝑓

𝜎𝑧𝑗

∞

𝑚=0
[𝑒𝑥𝑝(−

(𝑧 − 𝛹𝑑𝑗 − 2𝑚𝑧𝑖)
2

2𝜎𝑧𝑗
2 )

2

𝑓=1

+ 𝑒𝑥𝑝(−
(𝑧 + 𝛹𝑑𝑗 + 2𝑚𝑧𝑖)

2

2𝜎𝑧𝑗
2 ) 
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Where: 

C𝑑(x,y,z) - Concentration due to a direct source at distance (x,y,z) [μg m-3 or 

ppm] 

Q - stack emission strength [g s-1] 

u - wind velocity [m s-1] 

λf - distribution coefficient 

ψdj - difference in height between the source base and plume centerline, e.g. 

effective source height [m] 

fp - fraction of emitted contaminant that stays in the CBL (0<𝑓𝑝<1) 

Fy – lateral distribution function with included meander 

zi - height above the reflected surface in a stable layer [m] 

σzp - total vertical dispersion of penetrated force [m] 

σzj - vertical dispersion parameter [m] 

hep plume height that penetrated beyond the CBL [m] 

m – mass [g], (EPA, 2019.) 

 

 
 

Figure 20. AERMOD’s three plume treatments/interpretations of the CBL 

(EPA, 2019.) 
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For material dispersing within a convective layer, a plume embedded 

within a field of updrafts and downdrafts that are sufficiently large to displace 

the plume section within it. In the CBL a good approximation to pw is the 

superposition of two Gaussian distributions. The instantaneous plume is 

assumed to have a Gaussian concentration distribution about its randomly 

varying centerline. The mean or average concentration is found by summing 

the concentrations due to all the random centerline displacements. This 

averaging process results in a skewed distribution which AERMOD 

represents as a bi-Gaussian PDF e.g. one for updrafts and one for downdrafts.  

 

Equation 11. 

𝑝𝑤 =
𝜆1

√2𝜋𝜎𝑤1

𝑒𝑥𝑝(−
(𝑤 − �̅�1)2

2𝜎𝑤1
2 ) +

𝜆2

√2𝜋𝜎𝑤2

𝑒𝑥𝑝(−
(𝑤 − �̅�2)2

2𝜎𝑤2
2 ) 

 

Where: 

pw - probability density function of the instantaneous vertical velocities 

λ1 and λ2 - weighting coefficients for the two distributions with λ1 + λ2 = 1 

and λ2 being larger (downdraft) 

w - random vertical velocity in the CBL [m s-1] 

�̅�𝑗 - mean vertical velocity for the updraft (j = 1) and downdraft (j = 2) 

distributions [m*s-1] 

σw - vertical turbulence [m s-1], (EPA, 2019.) 
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Figure 21. AERMOD’s PDF approach for plume dispersion in CBL e.g. 

superimposition of two Gaussian distributions, the updraft and downdraft 

distribution (EPA, 2019.) 

 

 
 

Figure 22. PDF of the vertical velocity. The bi-Gaussian curve has a 

skewness of  S=1. About 60% of the pw integral is on the negative side, the 

rest is positive, consistent with results of numerical simulations and field 

observations. (EPA, 2019.) 
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2.6. GRAPHICAL USER INTERFACE 

 

The graphical interface is a python v3 based interface that enables 

users to create AERMAP, AERMOD and AERPLOT input files and to run 

different stages of AERMOD (AERMAP, AERMOD and AERPLOT) within 

the same program, without the use of “Command Prompt” or similar 

interpreters. It is suggested that the user creates a folder that will host all the 

data needed to run the stages. The executable files are located in their own 

folder and can access the input files from any location. There is no need to 

insert the executables or any other needed data into the folder, as it will be 

done automatically. Surface and upper air meteorological data were provided 

so there is no actual need to compile and run AERMET. The possible source 

types are point sources (POINT) and polygons (AREAPOLY). 

 

 
 

Figure 23. General flowchart of data processing 
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Figure 24. Detailed flowchart of data processing for the “CAIRO for 

AERMOD” app 

 

AERMOD uses various input pathways to structure the necessary data 

for air dispersion modeling. These pathways include CO (Control), SO 

(Source), RE (Receptor), ME (Meteorology), and OU (Output). Each 

pathway has a specific function and format, contributing to the overall setup 

and execution of the model. When input files are compiled the pathway 

keyword is input, followed by specific data for each line. 
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The CO (Control) pathway defines the general settings and options 

for the AERMOD simulation. This includes specifying the time frame, 

pollutant of interest, averaging times, and other control parameters. It ensures 

the model is configured correctly for the specific scenario being studied. 

 

The SO (Source) pathway describes the characteristics of the 

emission sources within the modeling domain. This includes defining the type 

of source (point, area, or volume), its location, emission rates, and physical 

parameters. 

 

The RE (Receptor) pathway identifies where pollutant concentrations 

will be calculated. Receptors can be specified as discrete points, a grid, or 

along a line, and can include flagpole heights. 

 

The ME (Meteorology)Meteorology pathway involves specifying the 

meteorological data needed for dispersion calculations. This data includes 

processed surface and upper air data files, which provide information on wind 

speed, wind direction, temperature, and atmospheric stability. 

 

The OU (Output) pathway defines the types of output files and formats 

that AERMOD will generate. This includes specifying what concentration 

data to output, file formats, and any statistical processing required. 

 

AERMOD and its pre and post processors, are usually run via the 

“Command Shell“. It includes manual assembly of input files, manually 

copying all needed data inside of a folder, then opening the “Command 

Shell“, navigating to the correct folder and running the application that way. 

It involves knowing correct AERMOD syntax, and manually relocating many 

files. The application commits that process by allowing the user to input raw 

data (with the aid of visualizations in Google Earth and Google maps), it 

being automatically compiled with correct syntax, needed data automatically 

copied to the correct path, and running the stages by defining a project folder, 

omitting the need of using the “Command Shell“ or manually relocating files. 
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The main window contains 6 buttons and an output textbox from 

which the whole process can be done. The first column contains buttons for 

opening the input file compilers. The buttons in the second column 

(AERMAP, AERMOD and AERPLOT) simply ask the user to navigate to the 

folder in which the needed input data is located, after which the corresponding 

executable is automatically run. AERPLOT expects that the folder contains 3 

subfolders (aerplot1, aerplot2, aerplot3), which are automatically generated 

along with the needed input data upon running the AERPLOT compiler 

previously. Tooltips appear upon hovering over buttons and labels to guide 

the user through the process, or to explain the functionalities. Checkmarks 

will appear next to the buttons as the corresponding stage is done. 

 

 
 

Figure 25. The main window of the interface currently running AERMAP 
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2.6.1 AERMAP INPUT FILE COMPILER 

 

Originally to compile an AERMAP input file, the user has to define 

all grid data, with correct syntax, in a text editor and save the file as 

“aermap.inp”. To run AERMAP the user needs to relocate the “aermap.inp” 

and elevation data files in a folder containing “aermap.exe”, open the 

“Command Shell”, navigate to the folder and run AERMAP. 

The application allows the user to input raw data inside of a GUI, it 

being automatically compiled with correct syntax and in correct file name and 

format, with the associated files mentioned in the input file, automatically 

copied into the project folder, omitting the need to know correct syntax or 

manual relocation of files. When running AERMAP, only the project folder 

needs to be selected, omitting the need for using the “Command Shell”, by 

making the “.exe” files fetch data from specific paths, not necessarily the one 

where the executable itself is located. This is possible for AERMET stages 

too, though compiling AERMET input files is not possible through the 

application, because most often ready surface and upper air data is used. 

 

Upon opening the AERMAP compiler, a new window will be opened. 

The window contains input boxes for the generic data needed to create an 

AERMAP input file and tooltips guide the user about the functionality upon 

hovering over the labels.  

When using DEM files, the FILLGAPS function is automatically inserted, 

but which is also not applicable for NED type files. 

The “Orographic Files” button allows the user to choose multiple 

elevation rasters, which will be automatically copied into the project folder 

(the same folder the aermap.inp file will be saved in) and inputs the names of 

the rasters in the input file.  

The “Open map” button opens “Google Maps”. By right clicking on 

the wanted location and left clicking on the coordinates, they are copied, 

automatically converted to UTM easting, northing and zone, and input into 

the interface as the anchor point. The user can also manually input the 

coordinates. The anchor point is defined as the bottom left corner of the grid. 
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Figure 26. AERMAP compiler overlaying “Google Maps” 

  

When the data is input, the user can compile the input file. Only the 

destination folder must be chosen (project folder) and the input file will be 

automatically named aermap.inp, along with copying the needed elevation 

data into the folder and creating “RECEPT.rou” file (containing grid 

elevation data) and other output files. 

 

 
 

Figure 27. Example of aermap.inp file contents created with the AERMAP 

input file compiler 
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Figure 28. Grid receptor network (with already processed sources) created 

with the input file from figure 19. and figure 25., visualized in Google Earth 

 

 

2.6.2 AERMOD INPUT FILE COMPILER 

 

The process of running AERMOD is similar to that of AERMAP. 

Originally to compile an AERMOD input file, the user must define control, 

source, meteorological, receptor grid, and output data, with correct syntax, in 

a text editor and save the file as “aermod.inp”. The user cannot visualize 

sources until running a postprocessor like AERPLOT, this is only available 

in paid versions like “AERMOD View”. To run AERMOD the user relocates 

the “aermod.inp” and elevation data files in a folder containing “aermod.exe”, 

open the “Command Shell”, navigate to the folder and run AERMOD. 

The application allows the user to input raw data inside of a GUI, it 

being automatically compiled with correct syntax, with the associated files 

mentioned in the input file, automatically copied into the project folder, 

omitting the need to know correct syntax or manual relocation of files.  

Inputting sources is possible through Google Maps while sources are 

visualized in Google Earth, minimizing user error and acting as a real time 
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visual aid. When running AERMOD, only the project folder needs to be 

selected, omitting the need for using the “Command Shell”, by making the 

“.exe” files fetch data from specific paths, not necessarily the one where the 

executable itself is located. 

 

Upon opening the AERMOD compiler, a new window will be opened. 

The window contains input boxes for the generic data needed to create an 

AERMOD input file, while tooltips guide the user about the functionality 

upon hovering over the labels. Navigation is done by mouse wheel (Ctrl+ 

mouse wheel results in horizontal movement) and switching between 

textboxes by “Tabulator” button. 

 

 
 

Figure 29. AERMOD input file compiler GUI 
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Upon addition of point sources, the frame will expand and allow for 

entry of physical and geometric parameters, and UTM coordinates. The 

coordinates can also be input using the “Choose on map” button. This action 

opens “Google Maps” and “Google Earth”. As coordinates are copied from 

“Google Maps” they are automatically converted to UTM coordinates and 

input into the interface, also the point source will appear in “Google Earth”, 

where the elevation can be conveniently read (Figure 23.). Manual input is 

also possible. This action is repeatable for multiple point sources.  

Clicking on the “Add Polygon Area Source With Google Maps” button, 

similarly opens “Google Maps” and “Google Earth”. As coordinates are 

copied from “Google Maps” they are automatically converted to UTM and 

added as vertices. Polygons also appear in “Google Earth” (Figure 30.). 

 

 
 

Figure 30. AERMOD input file compiler with input information 
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Figure 31. Added point sources and polygon sources automatically visualized 

in real time using “Google Earth”. 
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When manually inputting polygon coordinates, vertices are added 

using the “Add Vertex” button (Fig. 32). 

 

 
 

Figure 32. Manually adding polygon sources and vertices 

 

The group name is important as it defines the name of the output files 

along with time periods (For example here: PLOT24H_TEST.PLT). The 

receptor file, surface and upper air meteorological data are chosen in an 

explorer window and are automatically copied into the same folder as the 

compiled “aermod.inp” file (if files with the same name exist, they won’t be 

copied, but will still be listed in the text of the input file).  
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Figure 33. Example of an “aermod.inp” file contents created with the 

AERMOD input file compiler 
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2.6.3 AERPLOT INPUT FILE COMPILER 

 

Again, the process of running AERPLOT is like that of AERMAP and 

AERMOD. Originally to compile an AERPLOT input file, the user must 

define a variety of parameters (UTM zone, hemisphere, datum conversions, 

visualization options, etc.) and generic AERPLOT input, with correct syntax, 

in a text editor and save the file as “aerplot.inp”. To run AERPLOT the user 

relocates the “aerplot.inp” and AERMOD outputs (including plot file) in a 

folder containing “aerplot.exe”, open the “Command Shell”, navigate to the 

folder and run AERPLOT. 

 

The application allows the user to input raw data inside of a GUI, it 

being automatically compiled with correct syntax, with the associated files 

assigned trough the input action automatically copied into the project folder, 

omitting the need to know correct syntax or manual relocation of files. With 

multiple averaging periods, this is done iteratively, with all periods being 

analyzed at once. Inputting UTM zone is possible through Google Maps. 

When running AERPLOT, only the project folder needs to be selected, 

omitting the need for using the “Command Shell”, in this case by relocating 

the “.exe” file to the correct path and running it automatically. 

 

The AERPLOT input file compiler opens in a new window and also 

features tooltips which guide the user through the process. The automatic 

opening of .kmz files in “Google Earth” is disabled. 

 

 Version should be input as 2 by default, this option exist for potential 

future upgrades. UTM zone can be input manually or again by clicking on the 

“Open map for UTM zone” button, which opens “Google Maps” and upon 

copying of coordinates automatically inputs the UTM zone. 

 

The time periods and group name must be identical to the ones set in 

the “aermod.inp” file, as the needed files are named according to them, and 

will be automatically fetched and copied into the AERPLOT subfolders. 
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Minimum and maximum bin can be set at will or conformed to the 

data using the input: data. Binning methods (also for gradient) can be chosen 

to be linear or logarithmic, while they can also be disabled. Grid rows and 

columns should be set at 400, for computational ease, though they can be set 

at larger values for larger files. The number of smoothing iterations distorts 

locations as it is increased, so a value of 1 is recommended. 

 

Upon compiling the user is asked to choose the input folder (again the 

project folder), which will automatically create 3 subfolders (aerplot1, 

aerplot2 and aerplot3) corresponding to the 3 time periods. The “aermod.inp”, 

“aermod.out”, “aerplot.inp”, aerplot.exe and corresponding “.plt” file will be 

automatically copied in each of the subfolders. Afterwards when running 

AERPLOT from the main window the program will expect all the files to be 

in place before running, otherwise an error will ensue. 

 

 
 

Figure 34. AERPLOT input file compiler 
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Figure 35. Compiled “aerplot.inp” file 

 

 
 

Figure 36. Contents of the project folder containing the “aerplot” (1,2,3) 

subfolders after running the “AERPLOT input file compiler” (and previous 

AERMOD stages) 
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Figure 37. Contents of one of the AERPLOT subfolders, after running 

AERPLOT, there are three iterations, each for one of the averaging periods 

 

 
 

Figure 38. Concentration distribution for the 24h period visualized in Google 

Earth using 5 point sources over Newark, USA 
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Figure 39. Concentration distribution for the 24h period visualized QGIS 

using contour and gradient lines with 5 point sources over Newark, USA 

 

 
 

Figure 40. Concentration distribution for the 24h period visualized QGIS 

using the grid receptor network, contour and gradient lines with 5 point 

sources over Newark, USA 
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2.7.  PROGRAMMING LOGICS 

 

This section will run through the programing logics of the 3 input file 

compilers for AERMAP, AERMOD and AERPLOT, and the main frame 

where the preprocessors AERMAP, AERMET Stage 1 and AERMET stage 

2, the processor AERMOD and postprocessor AERPLOT, can be run. Their 

functions and options will be discussed, and the python code associated with 

the function included, along with necessary packages. It will go over by line 

of input file the implications and implementation of the needs presented when 

creating this software. 

 

import tkinter as tk 

from tkinter import ttk, filedialog, messagebox 

import os 

import subprocess 

import shutil 

import webbrowser 

import win32clipboard 

import time 

import threading 

import utm 

import simplekml 

from shutil import copyfile 

 

These import specific libraries and logics into python to be able to 

perform certain functions, while easing computing by narrowing the 

interpretation range and not loading unnecessary libraries.  

 

“Tkinter” is a well-known library used for creating visually simple 

and non-computationally demanding graphical user interfaces. 
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2.7.1 AERMAP INPUT FILE 

 

This section will go over, by line, the different formulations that went 

into this code. For visual appearance, AERMOD input file code will be 

written in a different font and blue color and Python code in different font and 

black color for the main body of the code, while both will be bordered. 

 

 
 

Figure 41. Example AERMAP input file 

 

 

 

 

 

 

 

 

1)CO STARTING 

2)CO TITLEONE  TEST 

3)CO DATATYPE  NED 

4)CO DATAFILE  UTM33_Italy.tif 

5)   ANCHORXY  380542.5263 4830024.6688 380542.5263 4830024.6688 33 0 

6)   FLAGPOLE  1.5 

7)CO RUNORNOT  RUN 

8)CO FINISHED 

9)RE STARTING 

10)   GRIDCART CART01 STA 

11)                    XYINC 380542.5263 50 100 4830024.6688 50 100 

12)   GRIDCART CART01 END 

13)RE FINISHED 

14)OU STARTING 

15)   RECEPTOR  RECEPT.ROU 

16)OU FINISHED 
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When the compiler is accessed from the main window (where the 

stages are ran), it opens in a new window using the “tk.TOPlevel” function, 

a option of the “ttKinter” library. 

 

The ”class Tooltip“ defines a widget that pops up above and to the 

right of the described item, and disappears when you move your cursor. It 

contains also generic inputs for style. This feature is available for all the 

compilers and gives helpful messages like: "Specifies Y coordinate of bottom 

left grid corner" or "Choose folder where “aermap.inp”, “receptor.rou”, 

orographic files and other associate files will be created". 

 

class Tooltip: 

    def __init__(self, widget, text): 

        self.widget = widget 

        self.text = text 

        self.tooltip = None 

        self.widget.bind("<Enter>", self.enter) 

        self.widget.bind("<Leave>", self.leave) 

 

    def enter(self, event=None): 

        x, y, _, _ = self.widget.bbox("insert") 

        x += self.widget.winfo_rootx() + 25 

        y += self.widget.winfo_rooty() + 25 

        if event: 

            x = event.x_root + 10 

            y = event.y_root + 10 

        self.tooltip = tk.Toplevel(self.widget) 

        self.tooltip.wm_overrideredirect(True) 

        self.tooltip.wm_geometry(f"+{x}+{y}") 

        label = tk.Label(self.tooltip, text=self.text, 

background="#ffffe0", relief="solid", borderwidth=1) 

        label.pack() 
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Here line 1) is written by default while in line 2) the last phrase is 

determined upon a textbox entry by the user. A root defines a new window in 

the GUI and contains different widgets like buttons, textboxes, multiple 

choice boxes. A title label and entry field are defined. A function “def 

generate_output“ is defined that defines the content of the input file text by 

stating non variable text lines and fetching variable text lines from multiple 

types of sources like textboxes, multiple choice boxes, explorer windows, 

filenames and paths, Google maps coordinates that are automatically turned 

into UTM easting, northing, and zone, using the “utm.from_latlon” 

function from the Python UTM tool pack. 

 

root = tk.Tk() 

root.title("AERMAP Input File Generator") 

 

# Create and pack the title entry 

title_label = ttk.Label(root, text="Title:", font=('Arial', 

8)) 

title_label.grid(row=0, column=0, sticky="e") 

title_entry = ttk.Entry(root, font=('Arial', 8)) 

title_entry.grid(row=0, column=1, sticky="we") 

 

def generate_output(): 

    output_text_content += "CO STARTING\n" 

 

    if title_entry.get(): 

        output_text_content += "CO TITLEONE  " + 

title_entry.get() + "\n" 

... 

return output_text_content 

 

 

 

 

 

 

 

1)CO STARTING 

2)CO TITLEONE  TEST 
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The “def compile_output“ function outputs the file upon 

completion of data input and copies needed files for running AERMAP into 

the project folder by opening an explorer window and automatically copying 

the orographic files using the “copyfile” function and outputting the input 

file in the project folder. After successful compilation the window self-

destructs, allowing to run AERMAP in the main window and proceed to the 

creation of the AERMOD input file. 

 

def compile_output(): 

    output_text_content = generate_output() 

    folder_path = filedialog.askdirectory() 

    if folder_path: 

        file_path = os.path.join(folder_path, "aermap.inp") 

        with open(file_path, "w") as file: 

            file.write(output_text_content) 

        for entry, full_path in datafile_entries: 

            _, file_name = os.path.split(full_path) 

            destination = os.path.join(folder_path,file_name) 

            if not os.path.exists(destination): 

                copyfile(full_path, destination) 

        root.destroy() 

 

 

 
 

Line 3) is responsible for choosing the correct topographic data 

format. When NED is chosen from the multiple choice box (“combobox”), 

“CO DATATYPE  NED” is written, this is used also for “GEOTIFF” files. If 

DEM is chosen the line outputs “CO DATATYPE  DEM FILLGAPS”, with 

the last keyword being added only for DEM, which is related to interpolating 

receptor heights at missing datapoints in the elevation data. 

 

if datafile_entries: 

    output_text_content += "CO DATATYPE  " + 

datatype_combobox.get() 

    if datatype_combobox.get() == "DEM": 

        output_text_content += "     FILLGAPS\n" 

    else: 

        output_text_content += "\n" 

3)CO DATATYPE  NED 
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Line 4) lists the chosen topographic files under the third keyword 

entry, while the entries can be multiple. The “def browse_files” function 

opens an explorer window, where topographic files are chosen, copied to the 

project folder, and their filenames added to the input file. A 

“datafile_entries” list and “datafile_frame” were created to list the 

filenames and paths and list them in the GUI respectively. It then opens a 

frame within the GUI window where the topographic files are listed. 

 

for entry, full_path in datafile_entries: 

    filename = os.path.basename(full_path) 

    output_text_content += "CO DATAFILE  " + filename + "\n" 

 

def browse_files(): 

    filename = filedialog.askopenfilename() 

    if filename: 

        file_name = os.path.basename(filename) 

        new_entry = ttk.Entry(datafile_frame) 

        new_entry.grid(row=len(datafile_entries), column=1, 

sticky="we") 

        new_entry.insert(0, file_name) 

        datafile_entries.append((new_entry, filename)) 

 

datafile_entries = [] 

datafile_frame = ttk.Frame(root) 

datafile_frame.grid(row=2, column=1, sticky="we") 

datafile_button = ttk.Button(datafile_frame, text="Orographic 

Files", 

                                 command=lambda: 

datafile_entries.append(ttk.Entry(datafile_frame)).grid( 

                         row=len(datafile_entries), column=0, 

sticky="we")) 

for entry in datafile_entries: 

    entry.grid(row=datafile_entries.index(entry), column=1, 

sticky="we") 

 

 

 

 

4)CO DATAFILE  UTM33_Italy.tif 
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Line 5) Defines the user specified anchor point (most southwest point) 

with ANCHORXY and this is the default.  

 

if (anchor_lat_entry.get() and 

        anchor_long_entry.get() and 

        utm_zone_entry.get() and 

        utm_datum_entry.get()): 

    output_text_content += ("   ANCHORXY  " + 

                            anchor_long_entry.get() + " " + 

                            anchor_lat_entry.get() + " " + 

                            anchor_long_entry.get() + " " + 

                            anchor_lat_entry.get() + " " + 

                            utm_zone_entry.get() + " " + 

                            utm_datum_entry.get() + "\n") 

 

The Coordinates are input doubled because this function defines the 

relationship between the user coordinate system and the UTM coordinate 

system, which is in this case irrelevant as the coordinates are automatically 

converted to UTM coordinates. The fore last keyword is the UTM zone input 

and last the UTM datum conversion.  The entry of UTM coordinates and zone 

is done either manually through textboxes or using Google Maps. 

 

The ”def get_clipboard_text” function fetches text from the 

clipboard to the application to be further processed. 

 

import utm 

 

def get_clipboard_text(): 

    try: 

        win32clipboard.OpenClipboard() 

        clipboard_data = 

win32clipboard.GetClipboardData(win32clipboard.CF_TEXT) 

        win32clipboard.CloseClipboard() 

        return clipboard_data.decode('utf-8') 

    except (UnicodeDecodeError, TypeError): 

        return "" 

 

5)   ANCHORXY  380542.5263 4830024.6688 380542.5263 4830024.6688 33 0 
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The ”def open_google_maps_for_anchor” creates a function that 

is later called by button click to open Google Maps and nests the ”def 

monitor_clipboard”. The nested function is forwarded data from ”def 

get_clipboard_text”, evaluates if it is in correct format (decimal latitude 

and longitude, separated by a comma), converts it to UTM easting, northing 

and zone, rounds to 4 decimal spots (AERMOD maximum) and inserts the 

values into textboxes and input file. 

 

def open_google_maps_for_anchor(anchor_lat_entry, 

anchor_long_entry): 

    url = "https://www.google.com/maps" 

    webbrowser.open(url) 

 

    def monitor_clipboard(): 

        last_clipboard_text = get_clipboard_text() 

        while True: 

            clipboard_text = get_clipboard_text() 

            if clipboard_text != last_clipboard_text: 

                last_clipboard_text = clipboard_text 

                try: 

                    lat, lon = map(float, 

clipboard_text.split(',')) 

                    utm_coords = utm.from_latlon(lat, lon) 

                    utm_easting, utm_northing, 

utm_zone_number, utm_zone_letter = utm_coords 

                    if anchor_lat_entry.get() == '' and 

anchor_long_entry.get() == '': 

       anchor_lat_entry.delete(0, 'end') 

       anchor_long_entry.delete(0, 'end') 

       utm_zone_entry.delete(0, 'end') 

       utm_northing_rounded = round(utm_northing, 4) 

       utm_easting_rounded = round(utm_easting, 4) 

             anchor_lat_entry.insert(0, utm_northing_rounded) 

             anchor_long_entry.insert(0, utm_easting_rounded) 

             utm_zone_entry.insert(0, utm_zone_number) 

                except ValueError: 

             print("Invalid coordinates format in clipboard") 

            time.sleep(1) 

 

    clipboard_thread = 

threading.Thread(target=monitor_clipboard) 

    clipboard_thread.daemon = True 

    clipboard_thread.start() 
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Line 6) gives the receptor height from the ground up to the user’s 

preference input through a textbox. 

 

 

 
 

Lines 7), 8) and 9) are fixed and part of AERMOD’s obligatory inputs. 

 

 

 
 

Lines 10), 11), and 12.) define the receptor grid gridding system type, which 

is in this case fixed to a cartesian rectangular system, by default named 

CART01. The numerical inputs are the coordinate of the left bottom corner, 

user input for number of receptors and spacing, for x and y.  

 

output_text_content += "   GRIDCART CART01 STA\n" 

output_text_content += ("                    XYINC " + 

     anchor_long_entry.get() + " " + 

     x_n_entry.get() + " " + x_delta_entry.get() + " " + 

     anchor_lat_entry.get() + " " + y_n_entry.get() + " " + 

     y_delta_entry.get() + "\n") 

output_text_content += "   GRIDCART CART01 END\n" 

 

 

 
 

The remaining lines are all fixed. Line 15) is the receptor grid network file 

name. 

6)   FLAGPOLE  1.5 

7)CO RUNORNOT  RUN 

8)CO FINISHED 

9)RE STARTING 

10)   GRIDCART CART01 STA 

11)                    XYINC 380542.5263 50 100 4830024.6688 50 100 

12)   GRIDCART CART01 END 

13)RE FINISHED 

14)OU STARTING 

15)   RECEPTOR  RECEPT.ROU 

16)OU FINISHED 
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2.7.2 AERMOD INPUT FILE 

 

The AERMOD input file compiler uses the receptor network created 

by AERMAP (receptor.rou), skips over the AERMET phase, as it has the 

option to directly input surface air and upper air meteorological data files (sfc. 

and pfl.). It is equipped with tooltips, like all the compilers. A canvas is 

created inside the root of the compiler window to house the scrollbar function, 

as the input data can get rather large for the screen. It is additionally tied to 

mouse wheel movement events and the inversion of controls instead of up to 

bottom, to left to right is achieved by the holding of the “Control” key. This 

opens in a new window using a “ttk.TOPlevel” function. The main libraries 

used are listed below. 

 

import os 

import subprocess 

import shutil 

from tkinter import ttk, filedialog 

from tkinter import messagebox 

import webbrowser 

import win32clipboard 

import time 

import threading 

import utm 

import simplekml 

 

The main window and scrollbar are defined here, to be able to scroll 

through data while compiling output files for many sources. The default 

vertical scrollbar is set to become a horizontal scrollbar when the “Control 

button" is pressed. 
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root = tk.Tk() 

root.title("AERMOD Input File Generator") 

 

root.geometry("1000x1000") 

 

frame = ttk.Frame(root) 

frame.grid(row=0, column=0, sticky="nsew") 

 

canvas = tk.Canvas(frame) 

scrollbar_y = ttk.Scrollbar(frame, orient="vertical", 

command=canvas.yview) 

scrollbar_x = ttk.Scrollbar(frame, orient="horizontal", 

command=canvas.xview) 

canvas.configure(yscrollcommand=scrollbar_y.set, 

xscrollcommand=scrollbar_x.set) 

 

content_frame = ttk.Frame(canvas) 

 

content_frame.bind("<Configure>", lambda e: 

canvas.configure(scrollregion=canvas.bbox("all"))) 

 

root.columnconfigure(0, weight=1) 

root.rowconfigure(0, weight=1) 

frame.columnconfigure(0, weight=1) 

frame.rowconfigure(0, weight=1) 

 

canvas.create_window((0, 0), window=content_frame, 

anchor="nw") 

canvas.grid(row=0, column=0, sticky="nsew") 

scrollbar_y.grid(row=0, column=1, sticky="ns") 

scrollbar_x.grid(row=1, column=0, sticky="ew") 

 

def _on_mousewheel(event): 

    if event.state & 0x4:  # Check if Ctrl key is pressed 

        canvas.xview_scroll(int(-1 * (event.delta / 120)), 

"units") 

    else: 

        canvas.yview_scroll(int(-1 * (event.delta / 120)), 

"units") 

 

canvas.bind_all("<MouseWheel>", _on_mousewheel) 
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Figure 42. Example AERMOD input file with point sources and polygon 

sources added both by manually inputting UTM coordinates and by using 

Google Maps to interactively add vertices and visualize them in Google Earth 

in real time 

 

1)CO STARTING 

2)CO TITLEONE TEST 

3)CO MODELOPT DFAULT CONC 

4)CO AVERTIME 1 8 24 

5)CO POLLUTID PM10 PM2.5 

6)CO FLAGPOLE 1.5 

7)CO RUNORNOT RUN 

8)CO FINISHED 

9)SO STARTING 

10)SO ELEVUNIT METERS 

11)SO LOCATION STACK1 POINT 379665.006 4831615.688 5 

12)SO LOCATION STACK2 POINT 377816.7838 4829885.5964 3 

13)SO SRCPARAM STACK1 30 15 320 15 0.75 

14)SO SRCPARAM STACK2 20 10 315 18 0.85 

15)SO LOCATION POLYGON1 AREAPOLY 379772.0705 4830945.2329 

16)SO LOCATION POLYGON2 AREAPOLY 378811.9662 4831448.6879 

17)SO LOCATION MPOLYGON1 AREAPOLY 379772.0705 4830945.5329 

18)SO SRCPARAM POLYGON1 55 58 5 42 

19)SO SRCPARAM POLYGON2 70 15 6 0 

20)SO SRCPARAM MPOLYGON1 15 30 4 15 

21)SO AREAVERT POLYGON1 379772.0705 4830945.2329 380313.2487 4830611.4631 

22)380310.2487 4830326.3713 380041.5904 4830295.3372 379667.824 

23)4830601.7742  

24)SO AREAVERT POLYGON2 378811.9662 4831448.6879 379407.5549 4831368.2872 

25)379689.582 4830855.3209 379322.9126 4830226.2667 378657.6517 4830325.36 

26)378316.8778 4830647.9185  

27)SO AREAVERT MPOLYGON2 379772.0705 4830945.5329 380313.037 4830611.6631 

28)380041.0904 4830295.423 379667.621 4830601.973  

29)SO SRCGROUP MIXED STACK1 STACK2 POLYGON1 POLYGON2 MPOLYGON1 

30)SO FINISHED 

31)RE STARTING 

32)RE INCLUDED RECEPTOR.ROU 

33)RE FINISHED 

34)ME STARTING 

35)ME SURFFILE aermet.sfc 

36)ME PROFFILE aemet.pfl 

37)ME SURFDATA 134897 2001 

38)ME UAIRDATA 0015784 2001 
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These are generic AERMOD input lines, with the key word TEST in 

line 2) being the user specified name, input trough a textbox. The “def 

generate_output” function defines the input text. 

 

def generate_output(): 

    # CO section 

    output_text_content += "CO STARTING\n" 

    if title_entry.get(): 

        output_text_content += "CO TITLEONE " + 

title_entry.get() + "\n" 

    output_text_content += "CO MODELOPT DFAULT CONC\n" 

 

 

 
 

Line 4) Defines the averaging time periods. The user can input 3 

periods via textboxes, with the usual AERMOD keywords like 1 (hours), 

DAY, ANNUAL, which he is guided through using a tooltip. 

 

if time1_entry.get() and time2_entry.get() and 

time3_entry.get(): 

    output_text_content += ( 

            "CO AVERTIME " + time1_entry.get() + " " + 

            time2_entry.get() + " " + time3_entry.get() + 

"\n" 

    ) 

time1_label = ttk.Label(content_frame, text="Time period 1 

(h):", font=('Arial', 8)) 

time1_label.grid(row=1, column=0, sticky="e") 

 

Tooltip(time1_label, "Defines the first averaging period, 

example: 1, 1DAY, ANNUAL") 

 

time1_entry = ttk.Entry(content_frame, width=9, 

font=('Arial', 8)) 

time1_entry.grid(row=1, column=1, sticky="w") 

1)CO STARTING 

2)CO TITLEONE TEST 

3)CO MODELOPT DFAULT CONC 

4)CO AVERTIME 1 8 24 
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Line 5) defines the pollutants used in the simulation. The user can 

input all AERMOD pollutant options. These are input via textbox, multiple 

pollutants are separated by commas in the same textbox. 

 

if pollutant_entry.get(): 

    output_text_content += "CO POLLUTID " + 

pollutant_entry.get() + "\n" 

if flagpole_entry.get(): 

Tooltip(pollutant_label, "SO2 CO NOX NO2 TSP PM10 PM2.5 LEAD 

OTHER") 

 

 

 
 

Line 6) defines the receptor heigth, which is suggested to mirror the 

one set in AERMAP. 

 

if flagpole_entry.get(): 

    output_text_content += "CO FLAGPOLE " + 

flagpole_entry.get() + "\n" 

flagpole_label = ttk.Label(content_frame, 

text="Flagpole/Receptor Height (m):", font=('Arial', 8)) 

 

 

 
 

Lines 7) through 10) are generic AERMOD inputs.  

 

output_text_content += "CO RUNORNOT RUN\n" 

output_text_content += "CO FINISHED\n\n" 

 

output_text_content += "SO STARTING\n" 

output_text_content += "SO ELEVUNIT METERS\n" 

5)CO POLLUTID PM10 PM2.5 

6)CO FLAGPOLE 1.5 

7)CO RUNORNOT RUN 

8)CO FINISHED 

9)SO STARTING 

10)SO ELEVUNIT METERS 
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POINT SOURCE 

 

 
 

Lines 11) and 12) define the location of the point source using the 

keyword POINT. STACK(i) is a generic name given to all point sources 

iteratively. There is no limit to the number of point sources you can add. The 

numbers in order are UTM easting, UTM northing and Zs (optional source 

elevation in meters above sea level). 

 

A list to store point sources and associated entries is created, which 

are then listed inside a frame inside the “tkTOPlevel” window. The “def 

get_clipboard_text” function accesses the clipboard alphanumeric 

content, as for the “AERMAP input file compiler”, which fetched by the “def 

open_google_maps_for_pointsource” “def monitor_clipboard” 

function. It expects the copied text to be latitude and longitude coordinates 

from Google maps (which are opened upon request via button in the web 

browser) in format 43.62077644022055, 13.511095661992483. It parses out 

latitude and longitude divided by a comma, uses the “utm.from_latlon” 

function to convert it to UTM northing and easting uses the “.insert” function 

to automatically insert it into the GUI textbox and AERMOD input file. 

 

pointsource_entries = [] 

 

def get_clipboard_text(): 

    try: 

        win32clipboard.OpenClipboard() 

        clipboard_data = 

win32clipboard.GetClipboardData(win32clipboard.CF_TEXT) 

        win32clipboard.CloseClipboard() 

        return clipboard_data.decode('utf-8') 

    except (UnicodeDecodeError, TypeError): 

        return "" 

 

 

 

 

11)SO LOCATION STACK1 POINT 379665.006 4831615.688 5 

12)SO LOCATION STACK2 POINT 377816.7838 4829885.5964 3 
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## Update UTM coordinates using Google Maps and clipboard 

def open_google_maps_for_pointsource(lat_entry, lon_entry): 

    url = "https://www.google.com/maps" 

    webbrowser.open(url) 

 

    def monitor_clipboard(): 

        last_clipboard_text = get_clipboard_text() 

        while True: 

            clipboard_text = get_clipboard_text() 

            if clipboard_text != last_clipboard_text: 

                last_clipboard_text = clipboard_text 

                try: 

                    lat, lon = map(float, 

clipboard_text.split(',')) 

                    utm_coords = utm.from_latlon(lat, lon) 

                    utm_easting, utm_northing, 

utm_zone_number, utm_zone_letter = utm_coords 

                    if lat_entry.get() == '' and 

lon_entry.get() == '': 

                        lat, lon = map(float, 

clipboard_text.split(',')) 

                        update_kmz(lat, lon, 'point') 

                        os.startfile("updated_file.kmz") 

                        lat_entry.delete(0, 'end') 

                        lon_entry.delete(0, 'end') 

                        utm_northing_rounded = 

round(utm_northing, 4) 

                        utm_easting_rounded = 

round(utm_easting, 4) 

                        lat_entry.insert(0, 

utm_northing_rounded) 

                        lon_entry.insert(0, 

utm_easting_rounded) 

                except ValueError: 

                    print("Invalid coordinates format in 

clipboard") 

            time.sleep(1) 

 

    clipboard_thread = 

threading.Thread(target=monitor_clipboard) 

    clipboard_thread.daemon = True 

    clipboard_thread.start() 
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Additionally, the “def update_kmz” function is activated upon 

copying of coordinates from Google Maps and uses the non-converted/copied 

latitude and longitude to automatically open Google Earth and visualizes all 

the point sources within one “.kml” file (also additional polygon sources 

added via Google Maps). The function is notified by the keywords point or 

polygon, upon addition of a new source, by which it creates geometry, adds 

points, new vertices to polygons and creates new polygons, when another 

source is added. Data about the stack base altitude (Zs) can be easily 

visualized in Google Earth where the sources are annotated. 

 

##Update kmz file in Google Earth 

kml = simplekml.Kml() 

 

def update_kmz(lat, lon, geometry_type): 

    if geometry_type == 'point': 

        kml.newpoint(name="Point Source", coords=[(lon, 

lat)]) 

    elif geometry_type == 'polygon': 

        polygon_vertices.append((lon, lat)) 

        if len(polygon_vertices) >= 4: 

            polygon = kml.newpolygon(name="Polygon Area", 

outerboundaryis=polygon_vertices) 

            polygon.style.linestyle.color = 'ff0000ff' 

    kml.save("updated_file.kmz") 

 

current_geometry_type = None 

 

def delete_polygon_vertices(): 

    polygon_vertices.clear() 

 

 

 
 

Lines 13) and 14) represent variables other than UTM northing and 

UTM easting and stack base altitude, regarding points sources, including, 

emission rate, stack height, temperature, exit velocity and stack 

diameter. The SO LOCATION lines (regarding source coordinates and base 

heights) are iteratively printed first, then after the SO SRCPARAM lines 

(regarding source parameters) are iteratively printed i times, equal to the 

13)SO SRCPARAM STACK1 30 15 320 15 0.75 

14)SO SRCPARAM STACK2 20 10 315 18 0.85 
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number of point sources. The entries of the point source locations and its 

parameters are saved in a list. “if” functions allow the file to compile in case 

of missing data. 

 

if pointsource_entries: 

    for i, entry in enumerate(pointsource_entries, start=1): 

        lat, lon, ptype, rate, height, temp, vel, diameter = 

entry 

        if (lat.get() and lon.get()): 

            point_location_content += f"SO LOCATION STACK{i} 

POINT {lon.get()} {lat.get()}" 

            if ptype.get(): 

                point_location_content += f" {ptype.get()}" 

            point_location_content += "\n" 

 

            if rate.get() and height.get() and temp.get() and 

vel.get() and diameter.get(): 

                point_srcparam_content += ( 

                    f"SO SRCPARAM STACK{i} {rate.get()} 

{height.get()} {temp.get()} {vel.get()}" 

                    f" {diameter.get()}\n" 

def add_pointsource(): 

    lat_label = ttk.Label(pointsource_frame, text=f"Northing 

{len(pointsource_entries) + 1}:", font=('Arial', 8)) 

    lat_label.grid(row=1, column=len(pointsource_entries) * 

4, sticky="e") 

 

    Tooltip(lat_label, "UTM coordinates, up to 4 decimal 

spots") 

 

Tooltip(choose_on_map_button, "Opens Google Maps; Copied 

coordinates are automatically converted to UTM " 

                              "and input into the textboxes, 

Google Earth is opened to display point sources") 

 

# Add the new entries to the list 

pointsource_entries.append((lat_entry, lon_entry, 

ptype_entry, 

                            rate_entry, height_entry, 

temp_entry, vel_entry, diameter_entry)) 
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POLYGON SOURCES 

 

 
 

Line 15) and 16) represent polygons added via Google Maps (with the 

default name POLYGON(j)), while line 17) represents polygons with 

manually added vertices and input coordinates (with the default name 

MPOLYGON(k)).  AREAPOLY is an AERMOD keyword that is 

automatically defaulted to when a polygon area source is added. There is no 

limit to the number of polygon sources. It is paired with UTM coordinates of 

the center of the polygon or, as in this case a starting vertex, which is fetched 

automatically from the first vertex entry within a polygon using the “def 

monitor_clipboard” function. A list of polygon area sources is created, 

which are displayed, along with coordinates and parameters in its own frame 

inside the AERMOD input file compiler window. 

 

 

 
 

Lines 18) and 19) for the polygons added via Google maps and line 

20) for manually added polygons lists the “SO SRCPARAM” keyword, then 

the generic source name, and parameters in order: emission rate, altitude of 

the emission, number of polygon vertices and initial source height. The 

parameters are input via textboxes, while altitudes are easily visualized as the 

polygon is updated in Google Earth. Upon addition of a polygon area source, 

a frame is opened where the “Open map” button is located and utilizes the 

“def open_google_maps_for_polygon” command to open Google Maps. 

In the browser window where Google Maps is opened, the user can right click 

a location, where he can click and thereby copy the coordinates to the 

clipboard. Upon copying of coordinates vertices are automatically added to 

the polygon. 

 

15)SO LOCATION POLYGON1 AREAPOLY 379772.0705 4830945.2329 

16)SO LOCATION POLYGON2 AREAPOLY 378811.9662 4831448.6879 

17)SO LOCATION MPOLYGON1 AREAPOLY 379772.0705 4830945.5329 

18)SO SRCPARAM POLYGON1 55 58 5 42 

19)SO SRCPARAM POLYGON2 70 15 6 0 

20)SO SRCPARAM MPOLYGON1 15 30 4 15 
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polygon_area_source_entries = [] 

 

def add_polygon_area_source(): 

    polygon_entry = {"vertices": [], "rate_entry": "", 

"rheight_entry": "", "nvert_entry": "", "iheight_entry": ""} 

    polygon_area_source_entries.append(polygon_entry) 

choose_on_map_button = ttk.Button(polygon_area_source_frame, 

text="Open map",command=lambda: 

open_google_maps_for_polygon(polygon_entry), 

                                  style='Custom.TButton') 

    Tooltip(choose_on_map_button, "Opens Google Maps; Copied 

coordinates are automatically converted to UTM,create a new 

vertex and insert the values. Google Earth is opened to 

display the polygons") 

... 

def add_polygon_area_vertex(polygon_entry, lat, lon): 

    global new_vertex_row 

    polygon_entry['vertices'].append((lat_entry, lon_entry)) 

... 

 

 

 
 

Lines 21) through 28) contain the names of polygons and the UTM 

coordinates of the respective vertices. A repeated code structure, the “def 

get_clipboard_text” function accesses the clipboard content, which is then 

fetched by the “def open_google_maps_for_pointsource” and “def 

monitor_clipboard” function. It expects the copied text to be latitude and 

longitude coordinates from Google maps, otherwise it will not react. The 

parsed out latitude and longitude divided by a comma, are used by the 

“utm.from_latlon” function to convert it to UTM northing and easting and 

rounds to 4 decimal spots. It uses the “.insert” function to automatically 

insert it into the GUI textbox and AERMOD input file. As coordinates are 

copied, they are continuously inserted as vertices, until a new source is added, 

or the file is compiled. 

21)SO AREAVERT POLYGON1 379772.0705 4830945.2329 380313.2487 4830611.4631 

22)380310.2487 4830326.3713 380041.5904 4830295.3372 379667.824 

23)4830601.7742  

24)SO AREAVERT POLYGON2 378811.9662 4831448.6879 379407.5549 4831368.2872 

25)379689.582 4830855.3209 379322.9126 4830226.2667 378657.6517 4830325.36 

26)378316.8778 4830647.9185  

27)SO AREAVERT MPOLYGON2 379772.0705 4830945.5329 380313.037 4830611.6631 

28)380041.0904 4830295.423 379667.621 4830601.973 
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def open_google_maps_for_polygon(polygon_entry): 

    global current_geometry_type 

    current_geometry_type = 'polygon' 

    url = "https://www.google.com/maps" 

    webbrowser.open(url) 

 

    initial_source_count = len(polygon_area_source_entries) 

    def monitor_clipboard(polygon_entry, 

initial_source_count): 

        last_clipboard_text = get_clipboard_text() 

        while True: 

            clipboard_text = get_clipboard_text() 

            if clipboard_text != last_clipboard_text: 

                last_clipboard_text = clipboard_text 

                if len(polygon_area_source_entries) > 

initial_source_count: 

                    return 

                try: 

                    lat, lon = map(float, 

clipboard_text.split(',')) 

                    update_kmz(lat, lon, 'polygon') 

                    os.startfile("updated_file.kmz") 

                    utm_coords = utm.from_latlon(lat, lon) 

                    utm_easting, utm_northing, 

utm_zone_number, utm_zone_letter = utm_coords 

                    lat = round(utm_northing, 4) 

                    lon = round(utm_easting, 4) 

                    add_polygon_area_vertex(polygon_entry, 

lat, lon) 

                except ValueError: 

                    print("Invalid coordinates format in 

clipboard") 

            time.sleep(1) 

 

    clipboard_thread = 

threading.Thread(target=monitor_clipboard, 

args=(polygon_entry, initial_source_count)) 

    clipboard_thread.daemon = True 

    clipboard_thread.start() 

 

kml = simplekml.Kml() 

polygon_vertices = [] 
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The original copied coordinates from Google Maps are fetched by the 

„def update_kmz“ function, which displays the input polygons in Google 

Earth, in addition to possible point sources can also be visualizes within the 

same “.kmz” geometry file. 

 

def update_kmz(lat, lon, geometry_type): 

    if geometry_type == 'point': 

        kml.newpoint(name="Point Source", coords=[(lon,lat)]) 

    elif geometry_type == 'polygon': 

        polygon_vertices.append((lon, lat)) 

        if len(polygon_vertices) >= 4: 

            polygon = kml.newpolygon(name="Polygon Area", 

outerboundaryis=polygon_vertices) 

            polygon.style.linestyle.color = 'ff0000ff' 

    kml.save("updated_file.kmz") 

current_geometry_type = None 

 

def delete_polygon_vertices(): 

    polygon_vertices.clear() 

 

All polygon source datasets are fetched into correct syntax and order. 

Appropriate lines are created for source data, vertices and parameters. 

 

if polygon_area_source_entries: 

    for j, polygon_entry in 

enumerate(polygon_area_source_entries, start=1): 

    vertices = polygon_entry["vertices"] 

    if vertices: first_vertex = vertices[0] 

        first_lat_entry, first_lon_entry = first_vertex 

        polygon_location_content += ("SO LOCATION POLYGON{j} 

f"AREAPOLY {first_lon_entry.get()}{first_lat_entry.get()}\n") 

    vertices_location_content += "SO AREAVERT POLYGON{j} " 

        for vertex_entry in vertices: 

              lat_entry, lon_entry = vertex_entry 

              vertices_location_content += {lon_entry.get()} 

f"{lat_entry.get()} " vertices_location_content += "\n"  

        polygon_srcparam_content += ("SO SRCPARAM POLYGON{j}                   

{polygon_entry['rate_entry'].get()} 

"{polygon_entry['releaseheight_entry'].get()} 

{polygon_entry['nvert_entry'].get()} " 

f"{polygon_entry['iheight_entry'].get()}\n" 

                ) 
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After the addition of point sources and polygon sources using Google 

Maps, a geometry akin to the following will be open in a “.kml” file within 

Google Earth. 

 

 
 

Figure 43. Polygon and point sources during creation of an AERMOD input 

file. The “.kml” file, is automatically and continuously updated in Google 

Earth as the sources and vertices are being input 
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MANUAL POLYGON SOURCES 

 

Manually added polygon sources and point sources aren’t displayed 

in Google Earth, as this is not the main function of the software. They are 

fetched in the same way as other sources but here from user inputs into 

textboxes, and manually adding vertices via buttons. “if” functions allow the 

file to compile in case of missing data. 

 

manual_polygon_area_source_entries = [] 

if manual_polygon_area_source_entries: 

    for k, manual_polygon_entry in 

enumerate(manual_polygon_area_source_entries, start=1): 

    manual_vertices = manual_polygon_entry["manual_vertices"] 

    if manual_vertices: 

       manual_first_vertex = manual_vertices[0] 

       manual_first_lat_entry, manual_first_lon_entry = 

manual_first_vertex 

       manual_polygon_location_content += (f"SO LOCATION 

MPOLYGON{k} AREAPOLY " "{manual_first_lon_entry.get()}" 

f"{manual_first_lat_entry.get()}\n") 

       manual_vertices_location_content += f"SO AREAVERT 

MPOLYGON{j} " 

       for manual_vertex_entry in manual_vertices: 

           manual_lat_entry, manual_lon_entry = 

manual_vertex_entry 

           manual_vertices_location_content += 

f"{manual_lon_entry.get()} {manual_lat_entry.get()} " 

           manual_vertices_location_content += "\n" 

        if manual_polygon_entry['m_rate_entry'].get() and 

manual_polygon_entry['m_rheight_entry'].get() and 

manual_polygon_entry['m_nvert_entry'].get() and \ 

manual_polygon_entry['m_iheight_entry'].get(): 

      manual_polygon_srcparam_content += ( 

               f"SO SRCPARAM MPOLYGON{k} 

{manual_polygon_entry['m_rate_entry'].get()} " 

      f"{manual_polygon_entry['m_rheight_entry'].get()}" 

      f" {manual_polygon_entry['m_nvert_entry'].get()} " 

      f"{manual_polygon_entry['m_iheight_entry'].get()}\n" 

                ) 

 

 

All the source outputs are then gathered and rearranged for readability. 
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# Concatenate all content 

output_text_content += ( 

        point_location_content + 

        point_srcparam_content + 

        polygon_location_content + 

        manual_polygon_location_content + 

        polygon_srcparam_content + 

        manual_polygon_srcparam_content + 

        vertices_location_content + 

        manual_vertices_location_content 

) 

 

 

 
 

Line 29) defines the user defined group name, in this case „MIXED“ 

and lists all source names to include them in the results. 

 

if group_name_entry.get(): 

    point_sources = ['STACK' + str(i) for i in range(1, 

len(pointsource_entries) + 1)] 

    polygon_sources = ['POLYGON' + str(j) for j in range(1, 

len(polygon_area_source_entries) + 1)] 

    manual_polygon_sources = ['MPOLYGON' + str(k) for k in 

                              range(1, 

len(manual_polygon_area_source_entries) + 1)] 

    all_sources = point_sources + polygon_sources + 

manual_polygon_sources 

    output_text_content += ("SO SRCGROUP 

{group_name_entry.get()} {' '.join(all_sources)}\n" 

    ) 

 

 

 

 

29)SO SRCGROUP MIXED STACK1 STACK2 POLYGON1 POLYGON2 MPOLYGON1 

30)SO FINISHED 

31)RE STARTING 

32)RE INCLUDED RECEPTOR.ROU 

33)RE FINISHED 

34)ME STARTING 
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Lines 30), 31), 33) and 34) are generic AERMOD syntax, while line 

32) provides the filename of the receptor file created by AERMAP, in this 

case “RECEPTOR.ROU”. The user is prompted to open an explorer window 

to choose the receptor file that should be included. The filename and path are 

fetched, to create a copy of the file in the destination folder of the AERMOD 

input file. If this file is already present in the folder (as it should be, because 

all files should be located in the project folder, but this is a safety measure, so 

the file is present when running the AERMOD processor) it won’t be copied. 

 

output_text_content += "SO FINISHED\n\n" 

 

output_text_content += f"RE STARTING\nRE INCLUDED 

{chosen_file_entry_map_output.get()}\nRE FINISHED\n\n"  

output_text_content += "ME STARTING\n" 

def open_file_dialog_map_output(): 

    file_path_map_output = filedialog.askopenfilename() 

    if file_path_map_output: 

        file_name = os.path.basename(file_path_map_output) 

        chosen_file_entry_map_output.delete(0, tk.END) 

        chosen_file_entry_map_output.insert(0, file_name) 

 

 

 
 

Lines 35) and 36) are necessary to include the surface air and upper 

air meteorological data files, usually obtained from AERMET Stage 1 and 2. 

The user is prompted, which opens an explorer window to select the “.sfc” 

and “.pfl” files separately. The two definitions copy the files and input the 

filenames in the same fashion as the receptor file. 

 

 

 

 

 

 

 

35)ME SURFILE aermet.sfc 

36)ME PROFILE aermet.pfl 
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output_text_content += "ME SURFFILE " + 

chosen_file_entry_sfc_output.get() + "\n" 

output_text_content += "ME PROFFILE " + 

chosen_file_entry_prof_output.get() + "\n" 

 

def open_file_dialog_sfc_output(): 

    file_path_sfc_output = filedialog.askopenfilename() 

    if file_path_sfc_output: 

        file_name = os.path.basename(file_path_sfc_output) 

        chosen_file_entry_sfc_output.delete(0, tk.END) 

        chosen_file_entry_sfc_output.insert(0, file_name) 

 

def open_file_dialog_prof_output(): 

    file_path_prof_output = filedialog.askopenfilename() 

    if file_path_prof_output: 

        file_name = os.path.basename(file_path_prof_output) 

        chosen_file_entry_prof_output.delete(0, tk.END) 

        chosen_file_entry_prof_output.insert(0, file_name) 

 

 

 
 

Lines 37) and 38) regard the station number and starting year of its 

dataset, which can be found in the “.sfc” file. These are user input via 

textboxes.  

 

if station_num_entry.get() and start_year_entry.get(): 

    output_text_content += f"ME SURFDATA 

{station_num_entry.get()} {start_year_entry.get()}\n" 

if upper_air_station_num_entry.get() and 

start_year_upper_air_entry.get(): 

    output_text_content += (f"ME UAIRDATA 

{upper_air_station_num_entry.get()} " 

                            

f"{start_year_upper_air_entry.get()}\n") 

 

 

 

 

 

37)ME SURFDATA 134897 2001 

38)ME UAIRDATA 0015784 2001 
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Line 39) uses the user input profile base elevation to compile this line, 

while the units are defaulted to meters. 

 

if base_elevation_entry.get(): 

    output_text_content += f"ME PROFBASE 

{base_elevation_entry.get()} METERS\n" 

 

 

 
 

Line 40) uses the user input from textboxes to output the starting day, 

month and year, and ending day, month and year, of the analysis. 

 

if start_date_entry.get() and end_date_entry.get(): 

    output_text_content += f"ME STARTEND 

{start_date_entry.get()} {end_date_entry.get()}\n" 

 

 

 
 

Lines 41) and 42) are generic AERMOD syntax. 

 

output_text_content += "ME FINISHED\n\n" 

output_text_content += "OU STARTING\n" 

 

 

 
 

Line 43) uses the user input from a textbox (1ST, 2ND, 3RD,4TH, etc.) to 

output a table containing the number of highest concentrations set by the user, 

by receptor.  

 

if rec_table_entry.get(): 

    output_text_content += f"OU RECTABLE ALLAVE 

{rec_table_entry.get()}\n" 

39)ME PROFBASE 1 METERS 

40)ME STARTEND 30 3 2001 2.4 2001 

41)ME FINISHED 

42)OU STARTING 

43)OU RECTABLE ALLAVE 1ST 2ND 3RD 
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Line 44) uses the numerical user input from a textbox to output a table 

containing the use set number of overall maximum values to summarize for 

each averaging period selected. 

 

if max_table_entry.get(): 

    output_text_content += f"OU MAXTABLE ALLAVE 

{max_table_entry.get()}\n" 

 

 

 
 

Lines 46), 47) and 48) use the RANKFILE keyword that outputs 

values by rank for use in Q-Q (quantile) plots, for each averaging period (1, 

8 and 24 hours in this case). The averaging period is fetched from the previous 

inputs from the three averaging time periods. The number of ranked elements 

is user input (in this case 50 for all periods). The name of the output is 

determined by the phrase “RANK”, the fetched associated averaging time 

period and the fetched group name. As the “RANKFILE” and later the 

“MAXIFILE” outputs aren’t available in AERMOD for annual and total 

period, averaging periods, is the keywords ANNUAL or PERIOD are input, 

the line is omitted. 

 

if time1_entry.get() = "ANNUAL" or time1_entry.get() == 

"PERIOD": 

    pass 

else if time1_entry.get() and rank1_hinum_entry.get()and 

rank1_hinum_entry.get(): 

    output_text_content += ( 

        f"OU RANKFILE {time1_entry.get()} " 

        f"{rank1_hinum_entry.get()} 

RANK{time1_entry.get()}.RNK\n" 

 

44)OU MAXTABLE ALLAVE 100 

46)OU RANKFILE 1 50 RANK1.RNK 

47)OU RANKFILE 8 50 RANK8.RNK 

48)OU RANKFILE 24 50 RANK24.RNK 
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Lines 49), 50) and 51) use the MAXIFILE keyword that outputs 

values of occurrences of violations of the user specified threshold value, for 

each averaging period (1, 8 and 24 hours in this case). The averaging period 

is fetched from the previous inputs from the three averaging time periods. The 

group name must be listed afterwards, which is also automatically fetched. 

The thresholds for each averaging period are user input via textboxes. The 

name of the output is determined by the phrase “MAX”, the fetched 

associated averaging time period and the fetched group name, with the 

addition of the time unit (H) and the last part is the group name again, with 

the extension “.out”. The “MAXIFILE” output isn’t available in AERMOD 

for annual and total period, averaging periods, is the keywords ANNUAL or 

PERIOD are input, the line is omitted. 

 

if time1_entry.get() = "ANNUAL" or time1_entry.get() == 

"PERIOD": 

    pass 

 

else if time1_entry.get() and group_name_entry.get() and 

max1_value_entry.get(): 

    output_text_content += (f"OU MAXIFILE {time1_entry.get()} 

{group_name_entry.get()} " 

                            f"{max1_value_entry.get()} 

MAX{time1_entry.get()}H_{group_name_entry.get()}.OUT\n" 

                            ) 

 

 

 

 

 

 

 

 

49)OU MAXIFILE 1 MIXED 350 MAX1H_MIXED.OUT 

50)OU MAXIFILE 8 MIXED 85 MAX8H_MIXED.OUT 

51)OU MAXIFILE 24 MIXED 15 MAX24H_MIXED.OUT 
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Lines 52), 53) and 54) use the PLOTFILE keyword that outputs values 

of concentration per points in receptor grid, for each averaging period. The 

averaging period is fetched from the previous inputs from the three averaging 

time periods. The group name must be listed afterwards, which is also 

automatically fetched. The keyword FIRST is generic AERMOD syntax, 

signifying that the first no of hours will be averaged. The name of the output 

is determined by the phrase “PLOT”, the fetched associated averaging time 

period and the fetched group name, with the addition of the time unit (H) and 

the last part is the group name again, with the extension “.plt”. For annual and 

period analyses, the “FIRST” keywords, signifying which highest value will 

be output (1st, 2nd,…) is not available in AERMOD for annual and total 

period, averaging periods, is the keywords ANNUAL or PERIOD are input, 

the line is omitted. 

 

if time1_entry.get() and group_name_entry.get(): 

    output_text_content += ( 

        f"OU PLOTFILE {time1_entry.get()} 

{group_name_entry.get()} " 

        f"{'' if time1_entry.get() == 'ANNUAL' or 

time1_entry.get() == 'PERIOD' else 'FIRST 

'}PLOT{time1_entry.get()}H_{group_name_entry.get()}.PLT\n" 

    ) 

output_text_content += "OU FINISHED\n" 

 

return output_text_content 

 

 

 

 

 

 

 

 

 

52)OU PLOTFILE 1 MIXED FIRST PLOT1H_MIXED.PLT 

53)OU PLOTFILE 8 MIXED FIRST PLOT8H_MIXED.PLT 

54)OU PLOTFILE 24 MIXED FIRST PLOT24H_MIXED.PLT 
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Line 55) is the last line and generic AERMOD syntax. The “def 

compile_output” function is responsible for prompting the user to choose 

the output folder where the file “aermod.inp” will be automatically generated, 

along with associated files. It is also responsible for automatic copying of the 

receptor, surface data and upper air data files into the project folder so 

AERMOD can be ran seamlessly. After successfully compiling, the 

AERMOD input file compiler will automatically close, allowing you to run 

AERMOD from the main window. 

 

    output_text_content = generate_output() 

    folder_path = filedialog.askdirectory() 

    if folder_path: 

        file_path = os.path.join(folder_path, "aermod.inp") 

        with open(file_path, "w") as file: 

            file.write(output_text_content) 

 

        # Copy selected files to the destination folder 

        for chosen_file_entry in 

[chosen_file_entry_map_output, chosen_file_entry_sfc_output, 

                                  

chosen_file_entry_prof_output]: 

            filename = chosen_file_entry.get() 

            if filename: 

                source_path = os.path.join(folder_path, 

filename) 

                destination = os.path.join(folder_path, 

filename) 

                if source_path != destination: 

                    shutil.copy(source_path, destination) 

 

        root.destroy() 

 

 

 

 

 

 

 

55)OU FINISHED 
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2.7.3 AERPLOT INPUT FILE 

 

AERPLOT input files, in the compiler, are defined for three different 

averaging periods, corresponding to the ones from AERMOD. Therefore 3 

folders are automatically created upon compiling, which contain files: 

“aerplot.inp”, “aermod.inp”, “aermod.out”, corresponding averaging period 

“.plt” file (plot file)  (1st, 2nd or 3rd) and aerplot.exe. Three versions of these 

folders will be created (aerplot1, aerplot2, aerplot3), containing the 

forementioned files, corresponding to the three averaging periods, will be 

created. This is done so AERPLOT can be run for all three folders/averaging 

periods, seamlessly with two mouse clicks. The three averaging periods are 

obligatory in the application. 
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Fig 44. Example of 1st of three created AERPLOT input files created using 

the AERPLOT input file compiler 

 

1)version=2 

2)origin=UTM 

3)easting=0 

4)northing=0 

5)utmZone=18 

6)inNorthernHemisphere=true 

7)originLatitude =0 

8)originLongitude =0 

9)altitudeChoice = relativeToGround 

10)altitude=0 

11)PlotFileName =PLOT1H_MIXED.PLT 

12)SourceDisplayInputFileName=aermod.inp 

13)OutputFileNameBase =PLOT1H_MIXED.PLT 

14)NameDisplayedInGoogleEarth=PLOT1H_MIXED.PLT 

15)sDisableProgressMeter              = false 

16)sDisableEarthBrowser               = true 

17)IconScale     = 0.40 

18)sIconSetChoice=redBlue 

19)minbin=data 

20)maxbin=data 

21)binningChoice =Linear 

22)customBinningElevenLevels=na 

23)contourLegendTitleHTML 

=C&nbsp;O&nbsp;N&nbsp;C&nbsp;E&nbsp;N&nbsp;T&nbsp;R&nbsp;A&nbsp;T&nbsp;I&nb

sp;O&nbsp;N&nbsp;S 

24)numberOfGridCols                   =400 

25)numberOfGridRows                   =400 

26)numberOfTimesToSmoothContourSurface =1 

27)makeContours                        =true 

28)contourExtension =  9999999 

29)makeGradients                       =true 

30)gradientExtension=  9999999 

31)gradientMaxBin=data 

32)gradientMinBin=data 

33)gradientBinningChoice=Linear 

34)customGradBinElevenLevels=na 

35)gradientLegendTitleHTML=Gradient&nbsp;Magnitudes 
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Line 1) is a user input (which he is prompted to default to 2) regarding 

the AERMOD version. Lines 2),3) and 4) are defaulted respectively, to UTM 

coordinate system, 0 correction for easting and northing. 

 

output_text_content1 += "version=" + version_entry.get() + 

"\n" 

output_text_content1 += "origin=UTM\n" 

output_text_content1 += "easting=0\n" 

output_text_content1 += "northing=0\n" 

 

 

 
 

Line 5), the UTM zone can be input manually, or by button Google 

Maps can be automatically opened, where copied coordinates, covert to UTM 

using the “def open_google_maps_for_UTM” function and extract the UTM 

zone. 

 

output_text_content1 += "utmZone=" + utm_entry.get() + "\n" 

 

choose_on_map_button = ttk.Button(root, text="Open map for 

UTM zone",command=lambda: 

open_google_maps_for_UTM(originlat_entry, originlon_entry)) 

choose_on_map_button.grid(row=2, column=1, sticky="we") 

Tooltip(choose_on_map_button, "Automatically inputs UTM zone 

by copying location from Google maps") 

 

 

 

 

 

 

 

1)version=2 

2)origin=UTM 

3)easting=0 

4)northing=0 

5)utmZone=18 
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def get_clipboard_text(): 

    try: 

        win32clipboard.OpenClipboard() 

        clipboard_data = 

win32clipboard.GetClipboardData(win32clipboard.CF_TEXT) 

        win32clipboard.CloseClipboard() 

        return clipboard_data.decode('utf-8') 

    except (UnicodeDecodeError, TypeError): 

        return "" 

 

def open_google_maps_for_UTM(originlat_entry, 

originlon_entry): 

    url = "https://www.google.com/maps" 

    webbrowser.open(url) 

 

    def monitor_clipboard(): 

        last_clipboard_text = get_clipboard_text() 

        while True: 

            clipboard_text = get_clipboard_text() 

            if clipboard_text != last_clipboard_text: 

                last_clipboard_text = clipboard_text 

                try: 

                    lat, lon = map(float, 

clipboard_text.split(',')) 

                    utm_coords = utm.from_latlon(lat, lon) 

                    utm_easting, utm_northing, 

utm_zone_number, utm_zone_letter = utm_coords 

                    if originlat_entry.get() == '' and 

originlon_entry.get() == '': 

                        utm_entry.delete(0, 'end') 

                        utm_entry.insert(0, utm_zone_number) 

                except ValueError: 

                    print("Invalid coordinates format in 

clipboard") 

            time.sleep(1) 

 

    clipboard_thread = 

threading.Thread(target=monitor_clipboard) 

    clipboard_thread.daemon = True 

    clipboard_thread.start() 
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Line 6), the satisfies the obligatory statement of the hemisphere. It’s 

chosen via “Combobox” function, with the option of 

“inNorthernHemisphere” and “in SouthernHemisphere”. 

 

output_text_content1 += hemisphere_combobox.get() + "=true\n" 

 

hemisphere_combobox = ttk.Combobox(root, 

values=["inNorthernHemisphere", "inSouthernHemisphere"]) 

 

 

 
 

Line 7) and 8) relate longitude and latitude to UTM and are not 

needed, so they are defaulted to 0. Line 9) sets the plotting height relative to 

the ground by default, and correction of altitude is set to 0 in line 10). 

 

output_text_content1 += "originLatitude =0\n" 

output_text_content1 += "originLongitude =0\n" 

output_text_content1 += "altitudeChoice = relativeToGround\n" 

output_text_content1 += "altitude=0\n" 

 

 

 
 

Line 11) through 14) are related to the input and output filenames. They are 

defined by the averaging period (this example is for the 1st averaging period, 

this procedure is replicated for the other two time periods) and group name, 

which are input by the user (and should be identical to those in AERMOD). 

6)inNorthernHemisphere=true 

7)originLatitude =0 

8)originLongitude =0 

9)altitudeChoice = relativeToGround 

10)altitude=0 

11)PlotFileName =PLOT1H_MIXED.PLT 

12)SourceDisplayInputFileName=aermod.inp 

13)OutputFileNameBase =PLOT1H_MIXED.PLT 

14)NameDisplayedInGoogleEarth=PLOT1H_MIXED.PLT 
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Again, if the averaging period keyword is “ANNUAL” or “PERIOD”, the 

“FIRST” keyword is omitted. 

 

output_text_content1 += ( 

    f"PlotFileName 

=PLOT{time1_entry.get()}H_{group_name_entry.get()}.PLT\n") 

output_text_content1 += 

"SourceDisplayInputFileName=aermod.inp\n" 

output_text_content1 += ( 

    f"OutputFileNameBase 

=PLOT{time1_entry.get()}H_{group_name_entry.get()}.PLT\n") 

output_text_content1 += 

(f"NameDisplayedInGoogleEarth=PLOT{time1_entry.get()}H_{group

_name_entry.get()}.PLT\n") 

 

 

 
 

Line 15) through 18) are default values. Progress meters are enabled, 

automatic opening of Google Earth is disabled, icon size is set to 0.4 and color 

scale from red to blue. 

 

output_text_content1 += "sDisableProgressMeter              = 

false\n" 

output_text_content1 += "sDisableEarthBrowser               = 

true\n" 

output_text_content1 += "IconScale     = 0.40\n" 

output_text_content1 += "sIconSetChoice=redBlue\n" 

 

 

 

 

 

 

15)sDisableProgressMeter              = false 

16)sDisableEarthBrowser               = true 

17)IconScale     = 0.40 

18)sIconSetChoice=redBlue 
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Line 19) and 20) define the minimum and maximum bin via textbox input, in 

this case, its set to default to data range using the keyword “data”. Line 21) 

adjusts the bins to the data range. Features a ”combobox” with the options 

“Linear” and “Log“. Are default values. Line 22) and 23) are generic syntax 

regarding the binning levels and legend, set as default.  

 

output_text_content1 += "minbin=" + min_bin_entry.get() + 

"\n" 

output_text_content1 += "maxbin=" + max_bin_entry.get() + 

"\n" 

output_text_content1 += "binningChoice =" + 

binningchoice_combobox.get() + "\n" 

output_text_content1 += "customBinningElevenLevels=na\n" 

output_text_content1 += ( 

    "contourLegendTitleHTML 

=C&nbsp;O&nbsp;N&nbsp;C&nbsp;E&nbsp;N&nbsp;T&nbsp;R&nbsp;A&nb

sp;" 

    "T&nbsp;I&nbsp;O&nbsp;N&nbsp;S\n") 

 

 
 

For lines 24) and 25) define the user input  defines the number of grid 

rows and columns. 

 

output_text_content1 += "numberOfGridCols                   

=" + gridcols_entry.get() + "\n" 

output_text_content1 += "numberOfGridRows                   

=" + gridrows_entry.get() + "\n" 

 

 

19)minbin=data 

20)maxbin=data 

21)binningChoice =Linear 

22)customBinningElevenLevels=na 

23)contourLegendTitleHTML 

=C&nbsp;O&nbsp;N&nbsp;C&nbsp;E&nbsp;N&nbsp;T&nbsp;R&nbsp;A&nbsp;T&nbsp;I&nb

sp;O&nbsp;N&nbsp;S 

24)numberOfGridCols                   =400 

25)numberOfGridRows                   =400 
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Line 27) defines via user input the number of times contour surfaces 

are smoothed. Line 28) defines via „combobox“ if contours should be created 

or not. Line 29) defaults the contour extension value. 

 

output_text_content1 += "numberOfTimesToSmoothContourSurface 

=" + smooth_entry.get() + "\n" 

output_text_content1 += "makeContours                        

=" + contour_combobox.get() + "\n" 

output_text_content1 += "contourExtension =  9999999\n" 

 

 

 
 

Line 30) defines via „combobox“ if gradient lines should be created or 

not. Line 31) defaults on the gradient extension value. Line 32) and 33) define 

the minimum and maximum bins for gradients via textbox input, in this case, 

its set to default to data range using the keyword “data”. Line 34) adjusts the 

bins the data range, featuring a ”combobox” with the options “Linear” and 

“Log”. Line 35), 36) and 37) are generic syntax regarding the binning levels, 

legend and grid, set as default. 

 

 

 

 

 

27)numberOfTimesToSmoothContourSurface =1 

28)makeContours                        =true 

29)contourExtension =  9999999 

30)makeGradients                       =true 

31)gradientExtension=  9999999 

32)gradientMaxBin=data 

33)gradientMinBin=data 

34)gradientBinningChoice=Linear 

35)customGradBinElevenLevels=na 

36)gradientLegendTitleHTML=Gradient&nbsp;Magnitudes 

37=provideEvenlySpacedInterpolatedGrid = false 
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output_text_content1 += "makeGradients                       

=" + gradient_combobox.get() + "\n" 

output_text_content1 += "gradientExtension=  9999999\n" 

output_text_content1 += "gradientMaxBin=" + 

max_bin_entry.get() + "\n" 

output_text_content1 += "gradientMinBin=" + 

min_bin_entry.get() + "\n" 

output_text_content1 += "gradientBinningChoice=" + 

gradientbinningchoice_combobox.get() + "\n" 

output_text_content1 += "customGradBinElevenLevels=na\n" 

output_text_content1 += 

"gradientLegendTitleHTML=Gradient&nbsp;Magnitudes\n" 

output_text_content1 += "provideEvenlySpacedInterpolatedGrid 

= false\n" 

 

The text is then compiled 3 times, for each averaging period, set in 3 

automatically created folders (aerplot1, aerplot2 and aerplot3), together with 

the copied files “aermod.inp2, ”aermod.out”, plot file and “aerplot.exe”. All 

in the folder of choice, e.g. project folder. After successful compilation the 

window self-destructs. 
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def compile_output(): 

    folder_path = filedialog.askdirectory() 

 

    for i in range(1, 4): 

        subfolder_path = os.path.join(folder_path, 

f"aerplot{i}") 

        os.makedirs(subfolder_path, exist_ok=True) 

 

        shutil.copy(os.path.join(folder_path, "aermod.inp"), 

subfolder_path) 

        shutil.copy(os.path.join(folder_path, "aermod.out"), 

subfolder_path) 

        shutil.copy("C:/AERMOD/EXE_all/aerplot.exe", 

subfolder_path) 

    output_text_content1 = generate_output1() 

    output_text_content2 = generate_output2() 

    output_text_content3 = generate_output3() 

 

    for i, output_text_content in 

enumerate([output_text_content1, output_text_content2, 

output_text_content3], start=1): 

        with open(os.path.join(folder_path, f"aerplot{i}", 

"aerplot.inp"), "w") as file: 

            file.write(output_text_content) 

 

 

 The plot file names are defined from the same entries as in the 

AERMOD output (averaging period and group name), requiring the user to 

use the same input continuously to work. The required accessory inputs are 

automatically copied, because they were named and fetched in the same 

iterative way. 

 

    plot_files = 

[f"PLOT{time_entry.get()}H_{group_name_entry.get()}.PLT" for 

time_entry in [time1_entry, time2_entry, time3_entry]] 

    for i, plot_file in enumerate(plot_files, start=1): 

        src_plot_path = os.path.join(folder_path, plot_file) 

        dest_plot_path = os.path.join(folder_path, 

f"aerplot{i}", plot_file) 

        shutil.copy(src_plot_path, dest_plot_path) 

 

    root.destroy() 
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2.7.4 “CAIRO for AERMOD” 

 

“CAIRO for AERMOD” (Compile AERMOD input and run output) 

is the main window that houses the buttons that upon choosing the project 

folder run the AERMOD stages (AERMAP, AERMET Stage1, AERMET 

Stage2, AERMOD and AERPLOT), a textbox for simulation output and 

buttons to launch input file compilers for AERMAP, AERMOD and 

AERPLOT. When running AERPLOT the software expects to find the 3 

subfolders (aerplot1, aerplot2, aerplot3) to run successfully. During 

installation the software houses all AERMOD executive files within a 

predetermined folder so it can run simulations for any folder seamlessly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 113 

Stages for running all AERMOD “.exe” files are defined, which run 

data from the selected project folder, every stage getting its label.  

 

class AERMODGUI(tk.Toplevel): 

    def __init__(self, master=None): 

        super().__init__(master) 

        self.main_window = master 

        self.protocol("WM_DELETE_WINDOW", 

self.on_close_aermodgui) 

        self.title("CAIRO for AERMOD") 

        self.geometry("600x450")  # window size 

        self.stage_labels = ["AERMAP", "AERMET Stage 1", 

"AERMET Stage 2", "AERMOD", "AERPLOT"] 

        self.stages = [self.run_aermap, 

self.run_aermet_stage1, self.run_aermet_stage2, 

self.run_aermod, self.run_aerplot] 

         

        for z, stage_label in enumerate(self.stage_labels): 

            button = ttk.Button(self.button_frame, 

text=stage_label, command=lambda z=z: self.run_stage(z)) 

 

A text output box is added for preprocessor, processor and post 

processor output, to visualize the progress, or possible error messages, as well 

as buttons to launch the compilers. 

 

self.output_text = tk.Text(self, height=10, width=60, 

wrap=tk.WORD) 

        self.output_text.pack(pady=10) 

        app1_button = ttk.Button(self, text="Compile AERMAP 

Input File", command=app1) 

        app2_button = ttk.Button(self, text="Compile AERMOD 

Input File", command=app2) 

        app3_button = ttk.Button(self, text="Compile AERPLOT 

Input File", command=app3) 

        padx=10) 

 

The path to the executables is defined and connected to the chosen 

project folder using the “os.path.join“ function. The input file names have 

no flexibility and are predetermined (aermap.inp, aermet1.inp, aermet2.inp, 

aermod.inp, aerplot.inp). The AERMAP, AERMET Stage 1 and 2, AERMOD 

and AERPLOT stages are ran simply by choosing the project folder where its 
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corresponding inputs are located, by automatically requesting from the 

“Command shell”, the corresponding folder, AERMOD stage, input file name 

etc. 

 

def run_stage(self, stage_index): 

        input_folder = self.choose_input_folder() 

        if input_folder: 

            if self.stage_labels[stage_index] == "AERMAP": 

                executable = os.path.join("C:\\", "CAIRO", 

"EXE_all", "aermap.exe") 

            elif 

self.stage_labels[stage_index].startswith("AERMET"): 

                executable = os.path.join("C:\\", "AERMOD", 

"EXE_all", "aermet.exe") 

            else: executable = os.path.join("C:\\", "AERMOD", 

"EXE_all", "aermod.exe") 

 

            if self.stage_labels[stage_index] == "AERMET 

Stage 1": inp_file = "aermet1.inp" 

            elif self.stage_labels[stage_index] == "AERMET 

Stage 2": inp_file = "aermet2.inp" 

            else: inp_file = 

self.stage_labels[stage_index].lower() + ".inp" 

 

            process = subprocess.Popen([executable, 

inp_file], cwd=input_folder, shell=True, 

stdout=subprocess.PIPE, stderr=subprocess.STDOUT, 

universal_newlines=True) 

 

            self.output_text.insert(tk.END, f"Output for 

{self.stage_labels[stage_index]}:\n") 

            for line in process.stdout: 

                self.output_text.insert(tk.END, line) 

                self.output_text.see(tk.END) 

                self.update_idletasks() 

 

            process.wait() 

 

             

    def choose_input_folder(self): 

        folder_path = filedialog.askdirectory() 

 

        return folder_path     
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The AERPLOT post processor asks for the choice of project folder, 

where it expects to find the already described aerplot1, aerplot2 and aerplot3 

subfolders, after which it runs AERPLOT for all three averaging periods. The 

aerplot.exe file is the only executive file that is copied into the project folder, 

as it would have taken a higher level of programming to facilitate to be run 

like the other executables from a remote predetermined folder. 

 

 def run_aerplot(self, input_folder, stage_index): 

        input_folder = filedialog.askdirectory(title="Select 

the folder containing the necessary files") 

 

        for i in range(1, 4): 

            aerplot_folder = os.path.join(input_folder, 

f"aerplot{i}") 

            if os.path.exists(aerplot_folder): 

                os.chdir(aerplot_folder) 

                subprocess.run(["aerplot"], shell=True) 

                print(f"AERPLOT {i} completed successfully.") 

            else: 

                print(f"Error: Subfolder aerplot{i} not found 

in {input_folder}.") 

 

    def on_close_aermodgui(self): 

        self.destroy() 

        if self.main_window: 

            self.main_window.destroy() 

... 

 

    main_window.mainloop() 

 

if __name__ == "__main__": 

    main() 
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2.7.5 COMPILING EXECUTIVE FILE 

 

For the full functionality of the GUI many dependencies and. 

accessory files are fetched by python. These including metadata were 

compiled into an “.exe” file that autonomously contains all the functionalities 

of the GUI. Dependencies were explicitly included using the “hiddenImports” 

keyword and an icon was included. This was done by running the following 

Windows Shell command. 

 

$hiddenImports = Get-Content requirements.txt | ForEach-Object { "-

-hidden-import=" + $_.Trim() } 

pyinstaller --onefile --noconsole --name CAIROforAERMOD --icon 

"cairoiconv2.ico" --log-level=DEBUG ` 

    --paths 

"C:\Users\domin\PycharmProjects\AERMAPCOMPILER\.venv\Lib\site-

packages" ` 

    "CAIROforAERMOD.py" 

 

 

2.7.6 COMPILING INSTALLER 

 

Inno Setup is a free script-driven installation system (installer creator) 

for Windows programs by Jordan Russell and Martijn Laan, first released in 

1997. All data is compiled into a single “EXE” file to install programs. It 

supports multiple platforms, compression, creation of registry and “INI” file 

entries, integrated scripting engine based on Pascal Script, multilingual 

installs, passworded and encrypted installs, etc. 

For “CAIRO” to run, AERMAP, AERMOD, AERPLOT and a 

configuration file (config.json) are required to be in the installation folder. 

The configuration file is automatically created during installation, and is used 

by “CAIRO” to fetch the location of the AERMOD executive files. The code 

contains metadata, locations of files to be compiled into the installer 

(aermap.exe, aermod.exe, aerplot.exe, CAIROforAERMOD.exe), preferred 

installation folder, interface that prompts an installation location and other 

choices and creation of the configuration file depending on installation 

location. This is done by the following code. 
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[Setup] 

AppName=CAIRO for AERMOD 

AppVersion=1.0 

AppPublisher=MSc Dominik Subotic @UNIVPM 

AppPublisherURL=suboticdominik@gmail.com 

DefaultDirName={userdocs}\CAIRO for AERMOD 

DefaultGroupName=CAIRO for AERMOD 

OutputDir=Output 

OutputBaseFilename=CAIROforAERMOD_Setup 

UninstallDisplayName=Uninstall_CAIROforAERMOD 

UninstallDisplayIcon={app}\cairoiconv2.ico 

Compression=lzma 

SolidCompression=yes 

PrivilegesRequired=admin 

[Languages] 

Name: "english"; MessagesFile: "compiler:Default.isl" 

[Files] 

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\CAIROforAERM

OD.exe"; DestDir: "{app}"; Flags: ignoreversion 

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\aermap.exe"; 

DestDir: "{app}"; Flags: ignoreversion 

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\aermod.exe"; 

DestDir: "{app}"; Flags: ignoreversion 

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\aerplot.exe"

; DestDir: "{app}"; Flags: ignoreversion 

 

[Icons] 

Name: "{group}\CAIRO for AERMOD"; Filename: "{app}\CAIROforAERMOD.exe" 

Name: "{commondesktop}\CAIRO for AERMOD"; Filename: "{app}\CAIROforAERMOD.exe"; Tasks: 

desktopicon 

 

[Tasks] 

Name: "desktopicon"; Description: "Create a &desktop icon"; GroupDescription: "Additional 

icons:" 

 

[Run] 

Filename: "{app}\CAIROforAERMOD.exe"; Description: "Launch CAIRO for AERMOD"; Flags: nowait 

postinstall skipifsilent 

 

[Code] 

function ReplaceBackslashesWithForwardSlashes(str: string): string; 

var 

  i: Integer; 

begin 

  Result := str; 

  for i := 1 to Length(Result) do 

  begin 

    if Result[i] = '\' then 

      Result[i] := '/'; 

  end; 

end; 

 

procedure CurStepChanged(CurStep: TSetupStep); 

var 

  configFilePath: string; 

  jsonContent: AnsiString; 

  forwardSlashAppPath: string; 

  success: Boolean; 

begin 

  if CurStep = ssPostInstall then 

  begin 

    configFilePath := ExpandConstant('{app}\config.json'); 



 118 

 

    forwardSlashAppPath := ReplaceBackslashesWithForwardSlashes(ExpandConstant('{app}')); 

 

    jsonContent := '{' + #13#10 + 

                   '  "aermap_path": "' + forwardSlashAppPath + '/aermap.exe",' + #13#10 + 

                   '  "aermod_path": "' + forwardSlashAppPath + '/aermod.exe",' + #13#10 + 

                   '  "aerplot_path": "' + forwardSlashAppPath + '/aerplot.exe"' + #13#10 + 

                   '}'; 

 

    success := SaveStringToFile(configFilePath, jsonContent, False); 

     

    if not success then 

    begin 

      MsgBox('Failed to create config.json. Please ensure you have the proper permissions to 

write to this directory.', mbError, MB_OK); 

    end 

    else 

    begin 

      MsgBox('Installation is successful, at: ' + configFilePath, mbInformation, MB_OK); 

    end; 

  end; 

end; 
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2.8 CASE STUDY ON MULTIPLE INDUSTRIAL 

SOURCES 

 

An analysis was done on a real case to test AERMOD model and 

“CAIRO for AERMOD” application performance in complex environments 

and multiple sources. SOX emissions of 15 point sources were analyzed using 

georeferenced emission data (figure 55.) from “API” refinery in Falconara 

Marittima, Italy for the first 24 h. monthly average and whole period of the 

year 2020. The “API” refinery is owned by “IP Gruppo API S.P.A.” and 

produces various products rich in hydrocarbons (special bitumen, engine 

lubricants, LPG, methane, vehicle, marine and jet fuel among others) (IP 

Gruppo API, 2024.). The importance of its emission and increased risk come 

from the spatial proximity (~3 km) to Falconara Marittima. A town with 

around 25 000 inhabitants and higher population densities during the summer 

due to tourism. The domain (receptor grid network) was defined as a 20*20 

km grid (100 m interstep) centered around the “API” refinery and sources. 

 

Sulphur oxides (SOX) are naturally produced by volcanoes, for 

illustration, the 1991 eruption of Mount Pinatubo in the Philippines released 

approximately 20 million tons of SO₂ into the atmosphere. And 

anthropogenically, in various industries like smelting of metal ores, oil 

refining, and the production of sulfuric acid or coal (Pinatubo Volcano 

Observatory Team, 1991.). Oxidation of SO2, usually in the presence of 

catalyst such as NO2, forms H2SO4, thus creating a component of acid rain. 

The highest concentrations of SO2 are recorded in the vicinity of large 

industrial facilities. SO₂ is a precursor to fine particulate matter (PM2.5), 

which poses significant health risks, including respiratory and cardiovascular 

diseases. PM2.5 can penetrate deep into the lungs and enter the bloodstream 

(Sharma, et al., 2013.). 

 

Short-term exposure to SO₂ can cause respiratory issues, particularly 

in vulnerable populations such as children, the elderly, and those with pre-

existing respiratory conditions. Symptoms include throat and eye irritation, 

coughing, and shortness of breath. 
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Long-term exposure can lead to more severe health problems, 

including chronic bronchitis and aggravation of existing heart disease 

(Sharma, et al., 2013.). 

The thresholds are defined by the Italian legislation for SO2. The 

thresholds used were 125 μg/m3 for the 24 h averaging period and 20 μg/m3 

for the monthly and total averaging period. 

 

 
 

Figure 45. Hourly (350 μg/m3), daily (125 μg/m3), yearly and winter (1. 

October to 31. March, as a means of vegetation protection) (20 μg/m3) SO2 

limits given by the Italian legislation (ARPAM, 2010.) 

 

To run AERMOD source data must be input in correct units and 

format. Refinery emissions are rather high in temperature so they will 

experience buoyancy and plume rise. Formation of secondary pollutants from 

SOX is expected (VOCs, H2SO4), but they aren’t modelled in AREMOD. 
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Table 3. The data for the point sources in the “API” refinery in Faloconara 

Marittima, Italy. Includes the source name (ID), base elevation, height, 

diameter, exit velocity and temperature, emission rate and UTM coordinates 

given in WSG84 UTM 33N projection system (ESPG:32633) 

 
Source 
Type ID 

AERMOD 
Input ID 

UTM 
Easting 

UTM 
Northing Latitude Longitude 

UTM 
zone 

Units     [m] [m] [o] [o]   
POINT E1_TOPPING STACK1 369358.00 4832927.00 43.637865 13.380351 33 N 
POINT E13_VACUUM3 STACK2 369216.40 4833119.00 43.639568 13.378549 ESPG 
POINT E2_VISBREAKI STACK3 369178.00 4833005.00 43.638535 13.378101   
POINT E3_THERMAL_C STACK4 369251.00 4832994.00 43.638449 13.379009 32633 
POINT E5_UNIFINING STACK5 369084.00 4833155.00 43.639869 13.376900  
POINT E9_VACUUM_1 STACK6 369379.00 4832891.00 43.637544 13.380620  
POINT E7__HDS_1 STACK7 369210.00 4833229.00 43.640557 13.378444  
POINT E6_ STACK8 369115.00 4833059.00 43.639010 13.377307  
POINT E17_POST_COM STACK9 369386.00 4833156.00 43.639931 13.380642  
POINT E10__HOT_OIL STACK10 369386.00 4832900.00 43.637627 13.380704  
POINT E14_HDS3 STACK11 369142.00 4833165.00 43.639969 13.377616  
POINT E18___BSG STACK12 369228.00 4833402.00 43.642117 13.378625  
POINT E26B___ASG STACK13 369267.00 4833287.00 43.641089 13.379136  
POINT E26A___CCPP STACK14 369278.00 4833257.00 43.640821 13.379279  
FLARE FLARE1 STACK15 369280.07 4833492.74 43.642943 13.379248  

 

Table 4. The locations of sources in displayed in UTM zone, northing and 

easting, and converted into latitude and longitude. The projection is WSG84 

UTM 33N (ESPG:32633) 

 

 

 

 

 

 

Source 
Type 

ID AERMOD 
Input ID 

Base 
Elevation 

Height Diameter Exit Velocity Exit 
Temp. 

Emission 
Rate 

UTM 
Easting 

UTM 
Northing 

Units   [m] [m] [m] [m/s] [K] [g/s] [m] [m] 
POINT E1_TOPPING STACK1 5.74 60 2.4 3.71808456 473 12.6 369358.00 4832927.00 
POINT E13_VACUUM3 STACK2 6 59.5 2.44 1.69679505 480 4.76 369216.40 4833119.00 
POINT E2_VISBREAKI STACK3 3.31 52.6 2.74 0.49645226 470 0.042 369178.00 4833005.00 
POINT E3_THERMAL_C STACK4 3.41 58 1.79 5.34864777 714 0.41 369251.00 4832994.00 
POINT E5_UNIFINING STACK5 3.61 60 1.61 1.78624693 501 0.067 369084.00 4833155.00 
POINT E9_VACUUM_1 STACK6 7.51 50 1.33 1.16829638 657 0.97 369379.00 4832891.00 
POINT E7__HDS_1 STACK7 3.6 46.2 1.45 1.99259706 561 0.31 369210.00 4833229.00 
POINT E6_ STACK8 2.39 56.5 1.6 5.97069694 463 0.0001 369115.00 4833059.00 
POINT E17_POST_COM STACK9 1.69 40 1.21 2.75659771 1003 7.2 369386.00 4833156.00 
POINT E10__HOT_OIL STACK10 7.14 12.8 1.27 0.23332142 553 0.001 369386.00 4832900.00 
POINT E14_HDS3 STACK11 4.25 54 2 4.09190584 587 0.04 369142.00 4833165.00 
POINT E18___BSG STACK12 0.43 20 0.92 1.87834112 398 0.00001 369228.00 4833402.00 
POINT E26B___ASG STACK13 4.29 49.8 2.35 2.97411809 412 0.05 369267.00 4833287.00 
POINT E26A___CCPP STACK14 4.88 43.8 7.15 9.40720705 404 3.85 369278.00 4833257.00 
FLARE FLARE1 STACK15 0 60 1.01 0.19 1072 9.67 369280.07 4833492.74 
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2.8.1 AERMAP IMPLEMENTATION 
 

To compile the AERMAP input file and run it elevation data needs to 

be parametrized and converted through AERMAP into an AERMOD 

compatible format, resulting in a receptor grid file. A DEM (Digital Elevation 

Model) is a digital representation of a terrain. Its grid cells, associated to 

latitude and longitude, correspond to an altitude value in meters. Depending 

on the gride cell size, a DEM can be more detailed (high resolution) or less 

detailed (low resolution).  

 

Elevation data was downloaded from the “Copernicus Browser” 

(https://dataspace.copernicus.eu/), using the “COP DEM GLO 30” dataset 

(elevation model with 30m/px resolution). An area greater than, and 

surrounding the grid receptor was selected. The format is “GeoTiff” (16 bit, 

georeferenced “.tif” file format), the appropriate projection (UTM 33N) and 

only raw data with added data mask were selected and downloaded (fig. 46). 

 

 
 

Figure 46. Downloading DEM data from Copernicus browser and 

Copernicus GLO 30 data, with 30 m/px spatial resolution (15 m/px effective 

resolution, due to resolution settings) in 16 bit “TIFF” format and WGS84 

UTM 33N projection. The appropriate product is selected in the browser, an 

area selected and downloaded. 

 

 

 

https://dataspace.copernicus.eu/
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The elevation data, along with a shape file of the domain shape file 

(fig. 47) were loaded and parametrized in QGIS, to visualize the domain in 

which the receptor grid network will span. 

 

 
 

Figure 47. Domain (Red – 20*20km, corresponding to receptor grid area) 

visualized over “GeoTiff” elevation data file with single band pseudo color 

scheme applied and Google Satellite imagery of Marche, Italy in QGIS. 

Coordinates are UTM (m). 

 

The next step is to create the AERMAP input file. The anchor point is 

defined as the southwest corner of the receptor grid network (fig. 47; 48). The 

20*20 km grid is defined as 200 nodes in x and y, with a step of 100 m (fig. 

49). 
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Figure 48. Predetermined anchor point (SW corner) coordinates being 

copied from Google Maps, while in the GUI they are automatically input and 

converted to UTM northing, easting and zone 

 

 

 
 

Figure 49. GUI with opened fully filled out “AERMAP input file compiler” 

window. UTM coordinates and zone were automatically filled out and 

converted from Google Maps data. 
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Figure 50. Resulting AERMAP input file for API rafinery 

 

After compiling the AERMAP input file, the elevation data (under the 

line “CO DATATYPE falconara.tif”) has already been automatically copied 

into the project folder and the user can simply select it to run AERMAP (fig. 

65). 

 

 

 
 

Figure 51. AERMAP running via “CAIRO for AERMOD” after selecting the 

input project folder for API refinery, Falconara Marittima, Italy 
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Figure 52. Snippet of “receptor.rou”, the resulting receptor grid file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 127 

2.8.2 AERMOD IMPLEMENTATION 

 

To compile the AERMOD input file the surface and upper air 

meteorological data of the area was provided. The source locations were 

predetermined and copied from a list, while the source locations were 

displayed in real time in Google Earth (fig. 35). They were exported to QGIS 

to have greater flexibility in visualization (fig. 28, 29, 30).  

 

 
 

Figure 53. Domain and sources visualized over Google Terrain in QGIS 
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Figure 54. Point sources visualized in QGIS, overlaying Google Hybrid, 

highlighting the proximity to urban areas (Falconara Marittima, Italy) 

 

 
 

Figure 55. Google Hybrid view in QGIS of point sources, with labels, at API 

refinery in Falconara Marittima, Italy 
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Figure 56. 3D view of sources created in Google Earth including labels and 

real heights 

 

Meteorological data provided was MMIF (Mesoscale Model Interface 

Program) AERMOD ready data in “.sfc” and “.pfl” format (fig. 59), for the 

year 2020. It was updated in the “AERMOD input file compiler, as described 

previously and automatically copied into the project folder along with the 

receptor grid file. Average yearly temperature (fig. 57) and wind rose (fig. 

58) were provided underneath, for Falconara Marittima, as they coincide with 

dispersion mechanisms. High temperatures indicate increased convective 

boundary layer processes, while the dispersion pattern coincides with the 

wind rose, especially the longer the averaging period. 
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Figure 57. Mean daily minimum, maximum and range temperatures, 

including precipitation based on data from 1993.-2023. for Falconara 

Marittima, Italy (Meteoblue, 2024.) 
 

 

 
 

Figure 58. Wind rose with highlighted wind speed fractionation of the 

predominant wind direction for Falconara Marittima, Italy (Meteoblue, 

2024.) 
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Figure 59. Opened “.sfc” file containing MMIF surface meteorological data 

and the station numbers 

 

 
 

Figure 60. AERMOD input file compiled for the means of analyzing “API” 

refinery point source emissions. 
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2.8.3 AERPLOT IMPLEMENTATION 

 

Firstly, AERPLOT was run for three averaging periods, with bins 

defaulted to linear interpretation and data range. As a result, each of the 

averaging periods was plotted using its own range. This was done to define 

overall the maximum and minimum values from the control runs of the 

gradient (responsible for grid receptors visualization) and contour lines bins, 

dependent on the concentration (μg/m3) at receptor height. The maximum and 

minimal values respectively for the gradient and contour lines, for all the 

averaging periods, were chosen as the maximum and minimum bin values for 

the final analysis (table 5.), to maintain continuity of representation between 

averaging periods. As the differences between minimal values of the 

averaging period is a few orders of magnitude in size, logarithmic 

interpretation of the bins was selected for the final run.  

 

GRADIENT CONCENTRATION RANGES μg/m3 
Averaging 
Period 24 h Month 

Total 
Period 

Total Gradient 
Range 

Maximum 79.9076 18.1900 8.5970 79.9076 
Minimum 1.4920 0.2610 0.1474 1 

 

Table 5. Minimum and maximum values of each period gathered from the 

control AEROPLOT run, minimal bin was rounded to 1 due to non-

relevance regarding legislation for lower values and achieving a finer 

discretization between concentration bins 

 

AERPLOT was run again, this time using the overall maximum 

concentration as the maximum bin and 1 as the minimum bin (table 5), as 

concentrations lower than 1 aren’t relevant in terms of meeting regulations, 

with thresholds at 20 and 125 μg/m3 for SOX. It also makes for a smaller 

concentration range, giving a finer concentration discretization while 

mapping. Logarithmic scaling of the bins was done to be able to visualize 

short term (generally higher concentrations) with long term (generally lower 

concentrations) averaging periods. Provisory results were visualized in 

Google Earth (fig. 63-68.).  
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Figure 61. “AERPLOT input compiler” interface filled out with the correct 

maximum and minimum bins, logarithmic binning, UTM zone and other 

generic data 

 

 
 

Figure 62. Files in the project folder resulting in using “CAIRO for 

AERMOD” 
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Figure 63. 24 h averaging period visualized in Google Earth 

 

 
 

Figure 64. Monthly averaging period visualized in Google Earth 
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Figure 65. Annual averaging period visualized in Google Earth 

 

In QGIS the symbology of the bins was given by rotating 30o on a 

HSV color scheme, for each consecutive bin accordingly (Table 6.). 

 

Legend 
SOX 

Gradient Bins 
(Logarithmic) 

Contour 
(Logarithmic) 

Bin Minimum 
[μg/m3] 

Bin Maximum 
[μg/m3] Color 

Value  
[μg/m3] Color 

0.1474 0.2491   0.1474   
0.2491 0.4209   0.2491   
0.4209 0.7112   0.4209   
0.7112 1.2020   0.7112   
1.2020 2.0310   1.2020   
2.0310 3.4320   2.0310   
3.4320 5.7990   3.4320   
5.7990 9.8000   5.7990   
9.8000 16.5600   9.8000   
16.5600 27.9800   16.5600   
27.9800 47.2900   27.9800   
47.2900 79.9076   47.2900   

 

Table 6. Table containing bin boundary values and contour line values 

(corresponding to lower bin boundary), with according color palette 

 



 136 

2.8.4 MATLAB POSTPROCESSING 

 

MATLAB was used to plot the areal extent of concentration levels, 

corresponding to different averaging periods. The minimum and maximum 

bins were entered to calculate the mean value of each bin, which were 

compared to the number of receptor grid points associated with each bin. 

As the area (20*20km), resolution (200*200 node grid with 100 m interstep) 

and number of receptors associated with each bin are known, the areal extent 

of each concentration value bin is easily calculated. The MATLAB code is 

bordered and in its original font for easier discernment. 

 

A figure was created containing box plots of the averaging periods. It 

presents the range of concentration values modeled in the domain on a 

logarithmic scale, to better scale between averaging periods. The mean values 

of bins were assigned as the value of the bin, and the number of datapoints 

corresponding to each bin was input. The areal percentage and areal coverage 

of each bin in the domain was calculated. 

 

bin_min = [0.14740, 0.24910, 0.42090, 0.71120, 1.20200, 2.03100, 3.43200, 
5.79900, 9.80000, 16.56000, 27.98000, 47.29000]; 
bin_max = [0.24910, 0.42090, 0.71120, 1.20200, 2.03100, 3.43200, 5.79900, 
9.80000, 16.56000, 27.98000, 47.29000, 79.90760]; 
 
bin_mid = (bin_min + bin_max)/2; 
 
N_DAY = [0, 0, 0, 0, 350, 6506, 11254, 12662, 6889, 1847, 450, 42]; 
N_MONTH = [0, 6108, 10272, 9755, 8516, 3700, 1154, 395, 96, 4, 0, 0]; 
N_PERIOD = [7527, 10078, 11697, 7440, 2304, 660, 225, 69, 0, 0, 0, 0]; 
 
PERCENT_DAY = N_DAY/400;PERCENT_MONTH = N_MONTH/400; 
PERCENT_PERIOD = N_PERIOD/400; 
AREA_DAY = PERCENT_DAY*40/100; AREA_MONTH = PERCENT_MONTH*40/100; 
AREA_PERIOD = PERCENT_PERIOD*40/100; 
 
DAY = []; 
for i = 1:length(N_DAY) 
    DAY = [DAY repmat(bin_mid(i), 1, N_DAY(i))]; 
end 
MONTH = []; 
for j = 1:length(N_MONTH) 
    MONTH = [MONTH repmat(bin_mid(j), 1, N_MONTH(j))]; 
end 
PERIOD = []; 
for k = 1:length(N_PERIOD) 
    PERIOD = [PERIOD repmat(bin_mid(k), 1, N_PERIOD(k))]; 
end 
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The boxplot for each period was assigned a dataset, position, color, 

labels, title, font size, etc., and plotted. 

 

%Contencating all data to plot in one figure 
all_data = [DAY, MONTH, PERIOD]; 
group = [repmat({'24h'}, 1, length(DAY)), repmat({'Month'}, 1, 
length(MONTH)), repmat({'Total Period'}, 1, length(PERIOD))]; 
 
figure; 
hold on; 
 
positions = [1, 2, 3]; 
h = boxplot(all_data, group, 'Positions', positions, 'Whisker', 15000); 
 
colors = {'r', 'g', 'b'}; 
h_boxes = findobj(gca, 'Tag', 'Box'); 
for j = 1:length(h_boxes) 
    patch(get(h_boxes(j), 'XData'), get(h_boxes(j), 'YData'), 
colors{mod(j-1, 3) + 1}, 'FaceAlpha', 0.5); 
end 
 
mean_values = [mean(DAY), mean(MONTH), mean(PERIOD)]; 
 
for i = 1:numel(mean_values) 
    plot(positions(i), mean_values(i), 'k.', 'MarkerSize', 15); 
end 
 
yyaxis left; %Right axis 
set(gca, 'YScale', 'log'); 
ylabel('SOx [\mug/m^3] (log)', 'FontSize', 20); 
yyaxis right; %Right axis 
set(gca, 'YScale', 'log'); 
 
yticks(bin_mid); 
yticklabels(arrayfun(@num2str, bin_mid, 'UniformOutput', false)); 
ylim([0.1, 100]); 
 
ylabel('SOx [\mug/m^3] (log)', 'FontSize', 20); 
xlabel('Averaging Period', 'FontSize', 20); 
ylabel('SOx [\mug/m^3] (log)', 'FontSize', 20); 
title(sprintf('SOx Concentrations Boxplot, Falconara Marittima, Italy, 
20x20km Grid, Receptor Height = 1.5m'), 'FontSize', 20); 
 
hold off; 
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Basic statistical data was calculated about the data and its areal 

coverage, using basic MATLAB functions. Maximum and minimum value, 

median, average, 25th and 75th percentile, maximum and minimum mean bin 

values and pollutant mass at receptor height in a layer over the domain, with 

1m thickness. They were presented in a table using the “uitable” function. 

 
maximum = [79.9076, 18.1900, 8.5970]; 
minimum = [1.4920, 0.2610, 0.1474]; 
median_values = [median(DAY), median(MONTH), median(PERIOD)]; 
mean_values = [mean(DAY), mean(MONTH), mean(PERIOD)]; 
q75_values = [prctile(DAY, 75), prctile(MONTH, 75), prctile(PERIOD, 75)]; 
q25_values = [prctile(DAY, 25), prctile(MONTH, 25), prctile(PERIOD, 25)]; 
lower_whisker_values = [min(DAY), min(MONTH), min(PERIOD)]; 
upper_whisker_values = [max(DAY), max(MONTH), max(PERIOD)]; 
 
data = { 
    'Maximum', maximum(1), maximum(2), maximum(3); 
    'Minimum', minimum(1), minimum(2), minimum(3); 
    'Median', median_values(1), median_values(2), median_values(3); 
    'Mean', mean_values(1), mean_values(2), mean_values(3); 
    '75th Percentile', q75_values(1), q75_values(2), q75_values(3); 
    '25th Percentile', q25_values(1), q25_values(2), q25_values(3); 
    'Maximum Bin', upper_whisker_values(1), upper_whisker_values(2), 
upper_whisker_values(3); 
    'Minimum Bin', lower_whisker_values(1), lower_whisker_values(2), 
lower_whisker_values(3) 
    'Pollutant Mass at Receptor Height [kg]', mean_values(1)*40, 
mean_values(2)*40, mean_values(3)*40; 
     
}; 
 
columnNames = {sprintf('Averaging Periods SOx[ug/m^3]'), '24h', 'Month', 
'Total Period'}; 
 
t= uitable('Data', data, 'ColumnName', columnNames, 'Position', [290, 130, 
400, 201], ... 
    'RowName', [], 'ColumnWidth', {120}); 
 
 
 
title('Averaging Periods - SOx [\mug/m^3]'); 
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Finally, the areal distribution of concentrations were plotted with the 

concentration range in logarithmic scale on the x axis, and area in km2 on the 

y axis (linear). 

 

figure; 
hold on; 
 
subplot(1,3,1) 
plot(bin_mid, PERCENT_DAY,'-','LineWidth',2,'MarkerSize',8,'Color','b'); 
yyaxis right; 
plot(bin_mid, AREA_DAY,'-','LineWidth',2,'MarkerSize',8,'Color','b'); 
xlabel('SOx Concentration Bins [\mug/m^3]', 'FontSize', 20); 
ylabel('Area [km^2]', 'FontSize', 20); 
ylim([0,14]);yyaxis left; 
ylabel('Percentage of 20x20km Domain [%]', 'FontSize', 20); 
title('A) 24h', 'FontSize', 20); 
grid on; 
set(gca, 'XScale', 'log'); % Set x-axis to logarithmic scale 
set(gca, 'YGrid', 'on', 'XGrid', 'off'); 
xlim([min(bin_mid), max(bin_mid)]);ylim([0,35]); 
%%%%%%%% 
subplot(1,3,2) 
plot(bin_mid, PERCENT_MONTH,'-','LineWidth',2,'MarkerSize',8,'Color','g'); 
yyaxis right; 
plot(bin_mid, AREA_MONTH,'-','LineWidth',2,'MarkerSize',8,'Color','g'); 
xlabel('SOx Concentration Bins [\mug/m^3]','FontSize',20); 
ylabel('Area [km^2]', 'FontSize', 20); 
ylim([0,14]); yyaxis left; 
ylabel('Percentage of 20x20km Domain [%]', 'FontSize', 20); 
title('B) Month', 'FontSize', 20); 
grid on; 
set(gca, 'XScale', 'log'); % Set x-axis to logarithmic scale 
set(gca, 'YGrid', 'on', 'XGrid', 'off'); % Only show y-axis grid 
xlim([min(bin_mid), max(bin_mid)]);ylim([0,35]); 
%%%%%%%% 
subplot(1,3,3) 
plot(bin_mid,PERCENT_PERIOD,'-','LineWidth',2,'MarkerSize',8,'Color','r'); 
yyaxis right; 
plot(bin_mid, AREA_PERIOD,'-','LineWidth',2,'MarkerSize',8,'Color','r'); 
xlabel('SOx Concentration Bins [\mug/m^3]', 'FontSize', 20); 
ylabel('Area [km^2]', 'FontSize', 20); 
ylim([0,14]); yyaxis left; 
ylabel('Percentage of 20x20km Domain [%]', 'FontSize', 20); 
title('C) Total Period (1 Year)', 'FontSize', 20); 
grid on; 
set(gca, 'XScale', 'log'); % Set x-axis to logarithmic scale 
set(gca, 'YGrid', 'on', 'XGrid', 'off'); % Only show y-axis grid 
xlim([min(bin_mid), max(bin_mid)]); ylim([0,35]); 
 
hold off; 
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2.8.5 MODEL VALIDATION 

 

To examine the validity and compliance with European Union 

regulations of the modeled data, a hypothesis is constructed and the data is 

analyzed through a series of methods to measure its difference to observed 

values, its relation to the set limit values, and assure compliance. 

 

Null Hypothesis (H0): The difference between modeled data and real-

world measurements in relation to regulatory limit is significant. 

Hypothesis (H1): There is no significant difference between modeled 

and real-world data in relation to regulatory limit. 

 

From the “ARPA” (Rete Regionale della Qualità dell'Aria) site for the 

region Marche, Italy, receptors were visualized to compare to modeled data. 

Three industrial monitoring stations were chosen, next to the “API” refinery. 

They contain temporal data for PM10, PM2.5, O3, SO2, NO2, C6H6 (benzene), 

though only SO2 was utilized to represent SOX emissions. 

 

 
 

Figure 69. “ARPA” map of receptor sites, with locations of the 3 used 

monitoring stations in Falconara Marittima, Italy, and location of “API” 

refinery (e.g. sources) 
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The location data was put in tabular form, UTM coordinates were 

calculated and a “.csv” shape file was created to input the receptor data into 

QGIS, to get model values from the receptor locations. In QGIS a delimited 

text layer was added containing the coordinates and headers. The elevation of 

the receptors was cross referenced from multiple sources, including GPS and 

Google Earth, as they were not available at “ARPA”. 

 

Industrial 
Receptors 

Longitude Latitude Easting (m) Northing (m) Zone 
Altitude 
(m) 

Falconara 
Acquedotto 

43.637500 13.372120 368693.296 4832899.480 N 3 

Falconara 
Scuola 

43.633761 13.388042 369969.535 4832459.151 N 6 

Falconara 
Alta 

43.623906 13.392558 370312.636 4831357.563 N 100 

 

Table 7. Locations of monitoring points in latitude and longitude and UTM. 

“Altitude” refers to elevation at base, receptor height is set to 1.5m 
 

 
 

Figure 70. Creating receptor points in QGIS from manually created “.csv” 

file 
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Figure 71. Monitoring station locations (green) and sources (white) 

visualized in QGIS over analyzed gradient lines (purple) 

 

As data is given in hourly concentration values, MS Excel was used 

to determine the maximum and minimum, mean, median, 25th and 75th 

percentile values from the data corresponding to the three monitoring stations, 

to compare to AERMOD’s simulated values. AERMOD outputs maximum 

recorded values, so maximal data from averaging periods is considered 

significant data. The values were compared to real data and limit values. 

 

The monitoring station values were compared to two sets of modeled 

data, both by using the receptor grid as described so far, and by using discrete 

receptors at monitoring station locations. The process is the same, differing 

only in the AERMAP input file (fig. 72), where the “SO DISCCART” 

keyword was used instead of “GRIDCART”. Differences may arise due to 

limitations in the spatial discretization of the receptor grid, due to 

representations of gradients and binning values and due to the algorithm, itself 

and how it handles grid or discrete receptors. Following regulations, the 

highest 98th percentile of the output values is excluded, by finding the 9th 

highest value for the daily averaging period and 2nd for the monthly, 

associated with the top 2% values. 
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Figure 72. AERMAP input file using the “DISCCART” keyword to model real 

discrete industrial monitoring stations in Falconara Marittima, Italy. The 

keyword is coupled with the x and y UTM coordinates, base elevation and hill 

elevation. 

 

To confirm the acceptability of the modeled values the data was tested 

through the Normalized Mean Square Error (NMSE), Mean Fractional Bias 

(FB) and Mean Bias (MB), which are the most used methods in the EU, this 

was done using MS excel. 

 

Normalized Mean Square Error (NMSE): 

 

 Equation 12. 

𝑁𝑀𝑆𝐸 =  
∑(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑜𝑏𝑠)2

∑(𝐶𝑚𝑜𝑑𝑒𝑙 ∗ 𝐶𝑜𝑏𝑠)
 

Where: 

NMSE - Normalized Mean Square Error, a value between 0.5 and 2.0 is 

acceptable, while a value of 0 is ideal, but values below 0.5 are not presumed, 

1 is considered a very good value, 

Cmodel – is the modeled concentration value [μg SOX/m3], 

Cobs – is the observed concentration value [μg SOX/m3], (US EPA, 2017.) 
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Mean Fractional Bian (FB): 

 

 Equation 13. 

𝐹𝐵 =
2

𝑛
∑

(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑜𝑏𝑠)

0.5 ∗ (𝐶𝑚𝑜𝑑𝑒𝑙 + 𝐶𝑜𝑏𝑠)

𝑛

𝑖=1

 

Where: 

FB - Mean Fractional Bias, a value between -0.2 and 0.2 is acceptable, while 

a value of 0 is ideal, 

Cmodel – is the modeled concentration value [μg SOX/m3] 

Cobs – is the observed concentration value [μg SOX/m3] 

n – is the number of sample (9- 3 averaging periods for 3 receptors),  

(Chang and Hanna, 2004.) 

 

Mean Bias (MB): 

 

 Equation 14. 

𝑀𝐵 =
1

𝑛
∑(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑜𝑏𝑠)

𝑛

𝑖=1

 

 

Where: 

MB - Mean Bias, a value between -2. and 2.0 is acceptable, while a value of 

1 is ideal 

Cmodel – is the modeled concentration value [μg SOX/m3],  

Cobs – is the observed concentration value [μg SOX/m3], 

n – is the number of sample (9- 3 averaging periods for 3 receptors),  

(EC, 2011.) 
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3.  RESULTS 
 

The results section will go through the results of the real case analysis of 

15 point sources in Falconara Marittima, Italy using the AERMOD dispersion 

model and the “CAIRO for AERMOD” application, designed to automatize 

the process of compiling AERMAP, AERMOD and AERPLOT input files, 

and running AERMAP, AERMOD and AERPLOT for point sources and 

polygon sources. 

 

The emission rates of the “API” refinery sources were analyzed using the 

AERMOD dispersion model using 24 hour, monthly and total period (for the 

year 2020.), averaging periods. The 1st highest entry at every receptor was 

plotted. 

 

Model validation was done by comparing modeled concentrations of a 

grid receptor and of discrete receptors (replicating the real monitoring 

stations) to data from industrial monitoring stations. The highest 98th 

percentile of the modeled values per receptor were discarded to follow 

regulations and discard overestimations and outliers. The data was interpreted 

using QGIS, MS excel and MATLAB. The discrepancies were compared to 

regulatory limits to scale the model performance in terms of its ability to 

influence compliance. The model performance was also examined through 

Normalized Mean Square Error (NMSE), Fractional Bias (FB) and Mean Bias 

(MB), to determine regulatory validity of the results in the EU. 
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3.1 AERMOD ANALYSIS WITH RECEPTOR GRID 

 

The “RANKFILE” keyword outputs concentration values by ranking 

them and removing duplicate date/hour occurrences. This was done for two 

averaging periods: 24 hours and monthly. This option isnt available for the 

total period (1 year in this case). The “MAXFILE” keyword was also entered 

but as there were no threshold violating values no entries were output. For the 

24 hour averaging period the maximum value was 79.9076 μg/m3 (threshold 

= 125 μg/m3). For the monthly averaging period, the maximum value was 

18.17858 μg/m3 (threshold = 20 μg/m3). 

 

 
 

Figure 73. “RANKFILE” output of AERMOD for the 24h averaging period, 

listing overall maximum values while omitting duplicate date/hours values  

 

 
 

Figure 74. “RANKFILE” output of AERMOD for the monthly averaging 

period, listing overall maximum values while omitting duplicate date/hours 

values 
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3.2 AERPLOT POSTPROCESSING WITH RECEPTOR 

GRID 

 

AERPLOT was run for all three averaging periods: 24 hours (fig. 75), 

monthly (fig. 76), total period (fig. 77). The data was parametrized and 

displayed in QGIS. 

 

 
 

Figure 75. Modeled 15 point source SOX emissions from ”API” refinery in 

Falconara Marittima, Italy, for the 24 h averaging period, displayed in QGIS. 

The domain is a 20*20km receptor grid (200*200 node grid with 100 m 

interstep), receptor height is 1.5 m. The legend features concentration bins 

and their corresponding color scheme. 
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Figure 76. Modeled 15 point source SOX emissions from ”API” refinery in 

Falconara Marittima, Italy, for the monthly averaging period, displayed in 

QGIS. The domain is a 20*20km receptor grid (200*200 node grid with 100 

m interstep), receptor height is 1.5 m. The legend features concentration bins 

and their corresponding color scheme. 
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Figure 77. Modeled 15 point source SOX emissions from ”API” refinery in 

Falconara Marittima, Italy, for the total (the year 2020.) averaging period, 

displayed in QGIS. The domain is a 20*20km receptor grid (200*200 node 

grid with 100 m interstep), receptor height is 1.5 m. The legend features 

concentration bins and their corresponding color scheme. 

 



 150 

 
 

Figure 78. Modeled 15 point source SOX emissions from ”API” refinery in 

Falconara Marittima, Italy, for the 24 hour averaging period, displayed in 

QGIS. The map is zoomed in over the refinery and the city of Falconara 

Marittima, highlighting the proximity of the industrial plant and the 

concentration over the urban area. Receptor height is 1.5 m. The legend 

features concentration bins and their corresponding color scheme. 
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Figure 79. Modeled 15 point source SOX emissions from ”API” refinery in 

Falconara Marittima, Italy, for the monthly hour averaging period, displayed 

in QGIS. The map is zoomed in over the refinery and the city of Falconara 

Marittima, highlighting the proximity of the industrial plant and the 

concentration over the urban area. Receptor height is 1.5 m. The legend 

features concentration bins and their corresponding color scheme. 
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Figure 80. Modeled 15 point source SOX emissions from ”API” refinery in 

Falconara Marittima, Italy, for the total (the year 2020.) averaging period, 

displayed in QGIS. The map is zoomed in over the refinery and the city of 

Falconara Marittima, highlighting the proximity of the industrial plant and 

the concentration over the urban area. Receptor height is 1.5 m. The legend 

features concentration bins and their corresponding color scheme. 
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3.3 DATA POST PROCESSING 

 

In MATLAB, the concentration bins and their corresponding number 

of nodes in the receptor grid were input to calculate the areal range of each 

concentration, for each averaging period. The total area of the domain is 40 

km2. The highest areal range for the 24 averaging period belongs to the areal 

coverage is of the5.7990 - 9.8000 μg/m3 bin with 31% of the domain and 

12.662 km2 of the surface, and 3.4320 - 5.7990 μg/m3 bin with 28% of the 

domain and 11.254 km2 of surface. 

 

SOX 24h - Averaging Period 
Total Area 
[km2] 40 

Bin 
Minimum 
[μg/m3] 

Bin 
Maximum 
[μg/m3] Color 

No of 
Data 
Points 

Areal 
Coverage 
[%/100] 

Area 
[km2] 

0.1474 0.2491   0 0 0 
0.2491 0.4209   0 0 0 
0.4209 0.7112   0 0 0 
0.7112 1.2020   0 0 0 
1.2020 2.0310   350 0.00875 0.35 
2.0310 3.4320   6506 0.16265 6.506 
3.4320 5.7990   11254 0.28135 11.254 
5.7990 9.8000   12662 0.31655 12.662 
9.8000 16.5600   6889 0.172225 6.889 
16.5600 27.9800   1847 0.046175 1.847 
27.9800 47.2900   450 0.01125 0.45 
47.2900 79.9076   42 0.00105 0.042 

 

Table 8. 3D view of sources created in Google Earth including labels and 

real heights 
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The highest areal range for the monthly averaging period belongs to 

the areal coverage is of 0.4209 - 0.7112 μg/m3 bin with 26% of the domain 

and 10.272 km2 of surface, 0.7112 - 1.2020 μg/m3 bin with 24% of the domain 

and 7.755 km2 of the surface, and 1.2020 - 2.0310 μg/m3 bin with 31% of the 

domain and 8.516 km2 of the surface. 

 

SOX Month - Averaging Period 
Total Area 
[km2] 40 

Bin 
Minimum 
[μg/m3] 

Bin 
Maximum 
[μg/m3] Color 

No of 
Data 
Points 

Areal 
Coverage 
[%/100] 

Area 
[km2] 

0.1474 0.2491   0 0 0 
0.2491 0.4209   6108 0.1527 6.108 
0.4209 0.7112   10272 0.2568 10.272 
0.7112 1.2020   9755 0.243875 9.755 
1.2020 2.0310   8516 0.2129 8.516 
2.0310 3.4320   3700 0.0925 3.7 
3.4320 5.7990   1154 0.02885 1.154 
5.7990 9.8000   395 0.009875 0.395 
9.8000 16.5600   96 0.0024 0.096 
16.5600 27.9800   4 0.0001 0.004 
27.9800 47.2900   0 0 0 
47.2900 79.9076   0 0 0 

 

Table 9. Concentration bins along with the number of corresponding nodes 

in the analysis, its areal coverage in percentage and km2, and color scheme 

for the monthly averaging period 
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The highest areal range for the total (1 year) averaging period belongs 

to the areal coverage is of 0.4209 - 0.7112 μg/m3 bin with 29% of the domain 

and 11.697 km2 of surface, and 0.2491 - 0.4209 μg/m3 bin with 25% of the 

domain and 10.078 km2 of the surface. 

 

SOX Total Period (1 Year) - Averaging Period 
Total Area 
[km2] 40 

Bin 
Minimum 
[μg/m3] 

Bin 
Maximum 
[μg/m3] Color 

No of 
Data 
Points 

Areal 
Coverage 
[%/100] 

Area 
[km2] 

0.1474 0.2491   7527 0.188175 7.527 
0.2491 0.4209   10078 0.25195 10.078 
0.4209 0.7112   11697 0.292425 11.697 
0.7112 1.2020   7440 0.186 7.44 
1.2020 2.0310   2304 0.0576 2.304 
2.0310 3.4320   660 0.0165 0.66 
3.4320 5.7990   225 0.005625 0.225 
5.7990 9.8000   69 0.001725 0.069 
9.8000 16.5600   0 0 0 
16.5600 27.9800   0 0 0 
27.9800 47.2900   0 0 0 
47.2900 79.9076   0 0 0 

 

Table 10. Concentration bins along with the number of corresponding nodes 

in the analysis, its areal coverage in percentage and km2, and color scheme 

for the total period (1 year) averaging period 

 

Basic statistics were done in MATLAB including maximum and 

minimum, mean, median, 25th and 75th percentile values, mean values of the 

maximum and minimum bin, and the mass of the pollutant in a 1 m thickness 

layer, over the domain, at receptor height (Table 11). The distribution of 

concentrations was visualized for each period using a boxplot, with a 

logarithmic scale (fig. 81) and the areal distribution of the concentrations was 

plotted in figure 82. 
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Averaging Period 
SOx [μg/m3] 24 h Month 

Total Period 
(1 Year) 

Maximum 79.9076 18.19 8.597 
Minimum 1.492 0.261 0.1474 
Median 7.7995 0.9566 0.5661 
Mean 8.0143 1.2707 0.6428 
98th Percentile 53.134 15.283 8.111 
75th Percentile 7.7995 1.6165 0.9566 
25th Percentile 4.6155 0.5661 0.335 
Maximum Bin 63.5988 22.27 7.7995 
Minimum Bin 1.6165 0.335 0.1982 
Total Pollutant Mass 
at Receptor Height 
[kg] 

320.5736 50.8264 25.7104 

 

Table 11. Maximum and minimum, mean, median, 25th and 75th percentile 

values, mean values of the maximum and minimum bin, and the mass of the 

pollutant in a 1 m thickness layer, over the domain, at receptor height. Data 

was calculated using MATLAB, and using data from the AERMOD 

simulation of air pollution in Falconara Marittima, Italy 

 

 
 

Figure 81. SOX concentrations for 24 hour (blue), monthly (green) and total 

(red - 1 year) averaging periods, visualized using boxplots and a logarithmic 

scale to visualize the concentration distribution 
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Figure 82. SOX concentration areal distribution for 24 hour (blue), monthly 

(green) and total (red - 1 year) averaging periods. The concentration 

distribution is plotted on x with a logarithmic scale and the percentage of the 

domain is plotted on the y axis. 
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3.4 MODEL VALIDATION 

 

Data from “ARPA” for the year 2020. was analyzed in MS Excel to 

achieve values of interest and values that can be compared to AERMOD 

model outputs. 

 

Receptor 1) Falconara Acquedotto 
Hourly data - SO2 [μg/m3] - Year 2020.  
Averaging Period 24h Month Period 
Mean 4.54 4.52 4.53 
Median 4.46 4.56 4.00 
Maximum 10.67 6.24 47.00 
Minimum 0.91 2.57 0.00 
75th Percentile 5.25 4.89 5.00 
25th Percentile 3.79 4.08 4.00 

 

Table 12. Maximum, minimum, mean, median, 25th and 75th percentile 

values for the Falconara Acquedotto monitoring station for the year 2020. 

 

Receptor 2) Falconara Scoula 
Hourly data - SO2 [μg/m3] - Year 2020. 
Averaging Period 24h Month Period 
Mean 5.02 4.92 4.84 
Median 4.37 4.84 4.00 
Maximum 45.63 6.56 92.00 
Minimum 1.09 3.38 0.00 
75th Percentile 5.46 5.73 5.00 
25th Percentile 3.33 4.11 3.00 

 

Table 13. Maximum and minimum, mean, median, 25th and 75th percentile 

values for the Falconara Scuola monitoring station for the year 2020. 
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Location 3) Falconara Alta 
Hourly data - SO2 [μg/m3] - Year 2020. 
Averaging Period 24h Month Period 
Mean 4.22 4.21 4.24 
Median 4.33 4.32 4.00 
Maximum 12.61 5.40 48.00 
Minimum 1.29 2.75 1.00 
75th Percentile 5.08 4.91 5.00 
25th Percentile 3.04 3.53 3.00 

 

Table 14. Maximum and minimum, mean, median, 25th and 75th percentile 

values for the Falconara Alta monitoring station for the year 2020. 

 

The mean values of each station and for each averaging period were 

compared to the results of the AERMOD simulation with the highest 98th 

percentile excluded, the difference was calculated into the percentage of the 

real measured value and averaged as a total model difference (table 16). 

 

Difference in distance from Receptor 
Grid Nodes (m) 

Falconara Acquedotto 52.78 
Falconara Scuola  45.44 
Falconara Alta  25.58 

 

Table 15. Difference in location of modeled to real receptors 
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Average Monitoring Station Averaging Period Differences - SOX [μg/m3] 

Analyzed Hourly Receptor Values AERMOD DIFFERENCE - SOX [μg/m3] 

  Averaging periods 24h Month Period 

Receptor Name 24h Month Period Rest % Rest % Rest % 

Falconara Acquedotto 4.54 4.52 4.53 14.11 310.88 3.61 79.86 0.08 1.74 

Falconara Scuola 5.02 4.92 4.84 7.77 154.85 -0.42 -8.54 -2.15 -44.39 

Falconara Alta 4.22 4.21 4.24 18.23 432.07 2.27 53.83 -0.39 -9.14 

AERMOD F. Acquedotto 18.65392 8.12971 4.609 Total Model Difference 4.79 107.9 % 

AERMOD F. Scuola 12.79336 4.49985 2.6915 24 h Mean Month Mean Period Mean 

AERMOD F. Alta 22.45321 6.47621 3.8525 13.37 299.26 1.82 41.72 -0.82 -17.26 

 

Table 16. Tabular data of AERMOD modelled difference, comparing the 

AERMOD analysis with grid receptors (highest 98th percentile excluded) 

compared to mean data per averaging period from 3 monitoring stations, 

including percentages 
 

The same was done using the maximal averaging periods calculated 

from the data from the monitoring stations (table 16.). The maximal averaging 

period for the whole period is not applicable here so mean values are reused 

for the total averaging period. As AERMOD was set to use the largest value 

at each receptor, comparing to the maximal averaging period is the more 

appropriate method. 

 

Maximum Monitoring Station Averaging Period Differences - SOX [μg/m3] 

Analyzed Hourly Receptor Values AERMOD DIFFERENCE - SOX [μg/m3] 

  Averaging periods 24h Month Period 

Receptor Name 24h Month Period Rest % Rest % Rest % 

Falconara Acquedotto 10.67 6.24 4.53 7.98 74.83 1.89 30.28 0.08 1.74 

Falconara Scuola 45.63 6.56 4.84 -32.84 -71.96 -2.06 -31.40 -2.15 -44.39 

Falconara Alta 12.61 5.4 4.24 9.84 78.06 1.08 19.93 -0.39 -9.14 

AERMOD F. Acquedotto 18.65392 8.12971 4.609 Total Model Difference -1.84 5.33% 

AERMOD F. Scuola 12.79336 4.49985 2.6915 24 h Mean Month Mean Period Mean 

AERMOD F. Alta 22.45321 6.47621 3.8525 -5.00 26.97 0.30 6.27 -0.82 -17.26 

 

Table 17. Main tabular data comparing the AERMOD analysis with 

receptor grid (highest 98th percentile excluded) compared to maximum data 

per averaging period, from 3 monitoring stations, including percentages 
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The same AERMOD analysis was done except for using discrete 

receptors located by replicating the three monitoring station’s locations. The 

maximum table (table 18.) averaging periods were compared to AERMOD 

output, and a total difference is calculated. The highest 98th percentile was 

excluded from output values to follow regulations. 

 

Discrete receptor analysis - Maximum Monitoring Station Averaging Period Differences - SOX [μg/m3] 

Analyzed Hourly Receptor Values AERMOD DIFFERENCE - SOX [μg/m3] 

 Averaging periods 24h Month Period 

Receptor Name 24h Month Period Rest % Rest % Rest % 

Falconara Acquedotto 10.67 6.24 4.54 7.92 74.19 2.53 40.60 0.64 14.16 

Falconara Scuola 45.63 6.56 4.84 0.00 0.00 -1.88 -28.67 -2.02 -41.82 

Falconara Alta 12.61 5.4 4.24 10.22 81.02 1.28 23.79 -0.16 -3.66 

AERMOD F. Acquedotto 18.58585 8.77374 5.1828 Total Model Difference 2.06 8.68% 

AERMOD F. Scuola 8.46756 4.67913 2.81576 24 h Mean Month Mean Period Mean 

AERMOD F. Alta 22.82677 6.68443 4.08494 6.04 51.74 0.65 11.91 -0.51 -10.44 

 

Table 18. Tabular data comparing the AERMOD analysis with discrete 

receptors (highest 98th percentile excluded) compared to real data from 3 

monitoring stations, including percentages 
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Difference data of both gridding systems were compiled and 

compared to limit values, to give a sense of scale, e.g. the percentage part of 

the difference of modeled to real data, out of the regulatory limit for SOX for 

each averaging period. 

 

Model-Limit Scaling - SOX [μg/m3] – Receptor Grid  
Limit Limit 

Fraction 
Difference 

Avg. Period μg/m3 % μg/m3 % 

24h 125 4.00 -5.00 26.97 
Month 20 1.51 0.30 6.27 

Period (Year) 20 4.10 -0.82 -17.26 

Total Model 
Difference 

3.20 -1.84 5.33 % 

 

Table 19. Overview of differences between receptor grid modeled and real 

data. “Limit Fraction” is the modelled differences percentage of the SOX 

limit 

 

 

Model-Limit Scaling- SOX [μg/m3] – Discrete Receptors  
Limit Limit 

Fraction 
Difference 

Avg. Period μg/m3 % μg/m3 % 

24h 125 4.84 -5.00 26.97 
Month 20 3.23 0.30 6.27 

Period (Year) 20 2.56 -0.82 -17.26 

Total Model 
Difference 

3.54 2.059  8.68 

 

Table 20. Overview of differences between discrete receptor modeled and 

real data. “Limit Fraction” is the modelled differences percentage of the 

SOX limit 
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Difference between real and modelled data in relation to regulatory limits 
SOX [μg/m3] – Grid receptor 

Averaging Period 24h Month Year Mean 

Falconara 
Acquedotto 

Limit fraction % 6.387 9.449 0.395 5.410 

Model 
difference 

μg/m3 7.984 1.890 0.079 3.318 

% 74.826 30.284 1.744 35.618 

Falconara Scuola 

Limit fraction % 26.269 10.301 0.395 12.322 

Model 
difference 

μg/m3 -32.837 -2.060 0.079 -11.606 

% -71.963 -31.405 1.744 -33.875 

Falconara Alta 

Limit fraction % 7.875 5.381 10.743 7.999 

Model 
difference 

μg/m3 9.843 1.076 -2.149 2.924 

% 78.059 19.930 44.390 17.866 

Mean AERMOD 
difference 

Limit fraction % 4.003 1.510 4.095 3.202 

Model 
difference 

μg/m3 -5.003 0.302 -0.819 -1.840 

% 26.974 6.270 -17.262 5.327 

 

Table 21. Detailed differences between discrete receptor modeled and real 

data in relation to regulatory limits. “Effective %” is the modelled 

differences percentage of the SOX limit 

 

Model Validation 
Method Result Range Acceptable 
NMSE 1.015 0.5-2.0 Yes 
FB −0.0656 -0.2 - 0.2 Yes 
MB 5.33% -20% - 20% Yes 

 

Table 22. Results of testing by Normalized Mean Square Error (NMSE), 

Fractional Bias (FB) and Mean Bias (MB) tests to measure the model’s 

results compared to observed data for compliance to European Union 

regulation 
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4. DISSCUSSION 
 

4.1 LOCAL FACTORS 

 

Falconara Marittima is located in “Valle Dell'Esino”, or “Esino” River 

Valley, and is proclaimed by “ARPA” an “AERCA (Area a Elevato Rischio 

di Crisi Ambientale)”, or a high risk of environmental crisis zone, due to the 

high industrial and maritime pollution in the area. This designation implies 

the requirement for more rigorous pollution control, regulatory oversight, and 

stricter regulatory measures due to the complex interplay of emission sources 

and the region's susceptibility to high pollution loads. The “Esino” valley 

encompasses the cities Agugliano, Ancona, Camerata, Chiaravalle, Falconara 

Marittima, Jesi, Monsano, Montemarciano and Monte San Vito. This area has 

been recognized for its susceptibility to pollution due to the presence of 

multiple sources of emissions, geographical features that influence pollutant 

dispersion, roadways, and a dense population that further complicates air 

quality management. The valley structure combined with prevailing 

meteorological conditions makes it likely for pollutants to be trapped, 

especially during periods of stagnant winds or under the influence of sea 

breeze. The valley’s topography restricts the dispersion of pollutants, 

resulting in periods of stagnant air, particularly during conditions 

characterized by low wind speeds and inversion layers. Furthermore, the 

breezes (N-NW) originating from the Adriatic Sea interact with these 

geographical features, and often drive pollutant transport inland towards 

residential zones, rather than allowing them to disperse effectively into the 

upper atmosphere and over the sea, (Regione Marche, 2024.). These site-

specific conditions are well-reflected in the dispersion pattern outputs 

generated by AERMOD, as the concentration abruptly decreases over sea. 

The AERMOD modeling results indicate higher concentrations in receptor 

locations downwind of the refinery, particularly during the occurrence of 

north-western winds driving the plume towards Ancona. Pollution also gets 

trapped within the valley, leading to peak concentrations.  
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The results of the dispersion modeling, conducted using AERMOD 

for Falconara Marittima, highlight significant patterns of pollutant 

concentration that align with the regional characteristics and existing sources 

of pollution. This analysis focused specifically on the emissions originating 

from the API oil refinery, which plays a crucial role in the air quality in the 

surrounding area. The Ancona harbor is another significant pollution source 

in the vicinity that adds to the concentration of contaminants, particularly due 

to emissions from ships at rest with running engines, as its their only source 

of electricity.  

 

The Ancona harbor also plays a significant role in pollution levels 

within the study area. The harbor's impact is not included in the AERMOD 

model, which only considers emissions from the refinery. Being Italy’s major 

harbor on the Adriatic coast, presents a unique challenge to the local 

environment. In addition to the refinery, emissions from the harbor contribute 

significantly to overall pollution levels, especially for short-term peak 

periods. The study, conducted by Fileni et al. in 2019. concluded that the port 

of Ancona contributed significantly to the levels of carbon monoxide (CO), 

volatile organic compounds (VOCs), nitrogen oxides (NOX), sulfur oxides 

(SOX), and particulate matter (PM). The main sources of emissions include 

"Roll-on/roll-off" (Ro-ro) and "Roll-on/roll-off Passengers" (Ro-pax) ships 

as well as fishing vessels. SOX emissions are directly linked to the sulfur 

content of the fuel and therefore also to fuel consumption. Different fuel types 

are used by ships during maneuvering, cruising and “hoteling”, e.g. the power 

required to maintain ship operations while at berth. During maneuvering ships 

use Marine Diesel Oil (MDO) or Marine Gas Oil (MGO), which has a low 

Sulphur content of around 1.5%, which have lower viscosity and are better 

suited for quick changes in engine speed and power, which are often required 

during maneuvering. During cruising Heavy Fuel Oil (HFO) is used, with 

higher viscosity and high Sulphur content. During hoteling ships are required 

by European Directive 2005/33/EC, to use Marine Gas Oil (MGO) to reduce 

emissions in ports, the Sulphur content in the fuel is required to be less than 

0.5%. Emission is highest during maneuvering and hoteling. In Naples, 98% 

of NOX and SOX emissions from cruise ships were due to hoteling, with only 

2% attributed to maneuvering. In Ancona 76% of PM10 emissions were 

during hoteling. (Fileni, et al., 2019.) 
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The API refinery is a primary contributor to local SO₂, NOₓ, and 

particulate emissions. Falconara Marittima was defined by Decree of the 

Ministry of the Environment and Land Protection, as an” Area at High Risk 

of Environmental Crisis” (AERCA). With the Decree of the Ministry of the 

Environment and Protection of Land and Sea no. 308 of 28 November 2006, 

financial resources amounting to € 3,272,727.00 were assigned to the 

Falconara Marittima site. (ARPAM, 2023.) 

 

The following areas are part of the “Falconara Marittima” National 

Interest Site: 

api Raffineria di Ancona S.p.A.; 

former Montedison plant; 

internal areas of Aerdorica S.p.A.; 

former Liquigas – Castellaraccia area; 

former chemical-bitumen industry; 

area of via Monti and Tognetti; 

RFI area in front of the former Montedison site 

sports field of the parish of S. Maria della Neve and S. Rocco; 

former Gattini mechanical workshop; 

former Vibrocementi; 

former R.S.U. landfill  

The perimeter also includes the marine area facing the terrestrial area 

that extends from the Api Refinery to the former Montedison for a total 

surface area of approximately 1200 ha. (ARPAM, 2023.) 

 

The Falconara Marittima National Interest Site is located in the 

alluvial plain near the mouth of the “Esino” River. The marine area facing 

this site is characterized by shallow seabed with high oceanographic 

dynamism, with marked seasonal and interannual variations influenced by the 

strong temperature range that occurs between the winter and summer seasons 

due to the shallow depth of the seabed and the contributions of fresh river 

water due to the presence of the “Esino” River that flows in the vicinity of the 

Api complex. (ARPAM, 2023.) 
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The three monitoring stations exhibit different trends. The 

“Acquedotto” and “Scuola” receptors, located in the vicinity of the refinery, 

are positioned within the direct line of pollutant fallout. 

 

The “Acquedotto” monitoring station is directly downwind of the 

refinery emissions during NE winds and experiences plume trapping during 

NW winds and inversion. The data showed elevated concentrations of 

pollutants during these wind events, consistent with predicted results from the 

model, indicating that the plume from the API refinery heavily affects this 

area. 

 

The “Scuola” monitoringstation, positioned near the elementary 

school in “località Villanova di Falconara,” is affected during the 

predominating N-NW winds, which drive refinery emissions into the urban 

center. The modeled concentrations confirm that pollutants are transported 

towards the school and residential areas, underscoring the need for stringent 

air quality control to safeguard sensitive populations. 

 

“Alta” station monitors emissions during northerly winds and is 

affected similarly. AERMOD predicts a concentration pattern that matches 

the expected path, confirming the accuracy of the emission data and, 

meteorological and terrain inputs. These stations illustrate how localized 

micro-conditions can dictate pollutant exposure which further emphasizes the 

vulnerability of residential areas. (ARPAM, 2023.) 

 

These factors contribute to pollution and importance of environmental 

monitoring in Falconara Marittima, where we observe a similar pattern of 

pollutant distribution due to the combination of port activities, refinery 

operations and local meteorological conditions. And are fundamental in 

understanding and interpreting the AERMOD results. The presence of other 

pollutant sources increases pollution both quantitatively and qualitatively. 

Related to modeling results it justifies any concentration overestimations 

made by the model and diminishes underestimations, due to real-world 

contributions to pollution levels by other sources, as it likely under-represents 

actual exposure levels in Falconara Marittima. Future modeling efforts should 

therefore incorporate emissions from the Ancona harbor, as it provides a 

crucial background pollutant concentration, to provide a more comprehensive 
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understanding of local air quality. Local policy should consider additional 

emission control technologies for the refinery during periods of 

meteorological stability that lead to pollutant trapping, e.g. Continuous 

Emission Monitoring Systems (CEMS) with Predictive Control, allowing for 

continuous monitoring of SOx emissions. When periods of meteorological 

stability are predicted, CEMS can trigger operational adjustments or the 

activation of additional control measures. Differences observed between 

short-term and long-term averaging periods underscore the necessity for 

tailored approaches to regulatory compliance, focusing on minimizing both 

peak exposure and annual average concentrations.  Additionally, reducing 

emissions from Ancona port, given the proximity of industrial and residential 

areas in Falconara, could be crucial in minimizing the population's exposure 

to harmful pollutants. 
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4.2 “CAIRO” PERFORMANCE 

 

The primary goals of modeling atmospheric dispersion and creation 

of the “CAIRO for AERMOD” application are to assess and understand the 

distribution and concentration of pollutants emitted from major industrial 

sources, particularly the API refinery in this case study. To estimate pollutant 

exposure levels for residents and compare these levels against established 

regulatory standards for health and safety. To determine the dispersion 

characteristics of pollutants, provide a scientific basis for policymakers to 

implement mitigation measures. To understand how geographical influences 

affect air quality. 

 

AERMOD was chosen over other software due to its straightforward 

setup and the accuracy it provides for pollution modeling. The choice of 

AERMOD is primarily due to its well-established credibility and 

straightforward application for short-scale assessments (up to 50 km). 

Falconara Marittima, being impacted primarily by the refinery and located 

within a close geographically defined area, fits well within the scope of 

AERMOD's capabilities. Complex terrain and surface interactions, which 

include coastal areas, industrial zones, and residential areas, are handled 

efficiently  through its terrain processing algorithms, making it suitable for 

Falconara's mixed landscape. AERMOD includes detailed formulations to 

manage boundary layer physics, important for the Falconara area, which has 

varied surface types (water bodies, urban areas, vegetated regions). Surface 

meteorological data and upper air data can be easily integrated into 

AERMOD, while models like CALPUFF or WRF require more complex 

meteorological preprocessing and a longer computational setup and are suited 

for large scale analyses. 
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In the initial stages of developing the “CAIRO, Python, together with 

the PyCharm interface, was leveraged primarily for its versatility and the 

availability of numerous supporting libraries that facilitate rapid application 

development. Python's readability and adaptability were key to developing 

the initial and consecutive versions. Its capacity for combining powerful data 

analysis libraries allowed us to create a comprehensive air quality modeling 

and analysis tool with interactive components. Such as “Pandas” and 

“NumPy”, with user interface toolkits, “PyWin32” to handle fetching 

coordinates, “utm” for converting them and “simplekml”, among others, for 

real time visualization.  

 

For the graphical user interface, Tkinter was used, as it a lightweight 

GUI toolkit for Python. Tkinter provided a quick way to create dialog 

windows, form entries, and other components that were needed for user 

interaction without having to dive into the complexities of a more 

sophisticated library. The simplicity of Tkinter made it easy to iterate on the 

user interface, which was crucial during the prototyping phase. It allowed to 

make modifications to suit the requirements of users. 

 

The ”CAIRO” application allowed for all stages to be run from one 

window, compiled necessary input files and guided and aided throughout the 

modeling process by simple menus, pop-up information boxes and available 

video tutorial. There was no need to set up different pathways (Control, 

Source, Receptor…), to know correct syntax, to manipulate with folders and 

files, or to work through different terminals and command shells. The input 

of UTM coordinates and zone is possible through different inputs, from 

copying latitude longitude coordinates to be automatically visualized and 

converted, to manually inputting them. The application offers a simple 

workflow, containing crucial AERMOD functionalities, enabling for a simple 

and user-friendly interface and workflow, while still being able to achieve 

statistically and legislatively significant results. 

After obtaining elevation data from Copernicus Services, the process 

of compiling input and running AERMAP was straightforward. By choosing 

the origin of the receptor grid via Google Maps, the zone and other accessory 

data is automatically compiled, the elevation data is loaded trough the 

interface. 



 171 

The integration of Google Maps and Google Earth with AERMOD 

was instrumental in streamlining the input process. For instance, defining 

emission sources via Google Maps ensured precise geolocation and helped 

minimize errors related to manual data entry. Moreover, visualization in 

Google Earth provided immediate feedback on the receptor grid's spatial 

setup and the positioning of pollutant sources, ensuring the model reflected 

real-world scenarios more accurately and created a shapefile containing point 

or polygon source locations. Loading of terrain and meteorological data is 

conveniently done through the interface. AERPLOT fetched all necessary 

files during compilation and offered all basic functions. 

 

The program had its disadvantages in requiring internet connection for 

full functionality, had occasional instability issues and uses a limited amount 

of AERMOD’s functionalities. These are the other disadvantages that are 

planned to be resolved in future versions of “CAIRO”: 

- simpler interface 

- availability for other platforms 

AERMAP : 

- no visual preview of elevation data or receptor domain in Google 

Earth or QGIS 

- only receptor grid is available, polar and discrete receptors should be 

included to analyze specific locations, polar grids have a higher 

resolution near source, which would suit the analysis in Falconara 

Marittima 

AERMOD: 

- limited source types (point, aerapoly), line and volume should be 

included 

- only three averaging periods are available 

- some limitation in output, still the most important output is available 

- input of meteorological station numbers could be automated 

AERPLOT: 

- custom bins are not available, but custom binning ranges are available 

with the choice of logarithmic or linear 

- creation of multiple iterations could be possible for every plot file 

(currently for every averaging period a corresponding plot is created, 

a possibility is to create both logarithmic and linear plots, or with 

different ranges and bins at once for all averaging periods) 
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The program excelled at its intended purpose and made the creation of a 

complex multisource analysis user friendly. Its real time visualization 

capabilities offered the greatest advantage, both by simplifying the input 

process, creating accessory files for post processing, offering real time 

confirmation of source location and automatically converting coordinates and 

creating vertices of polygons. Creation of multiple graphical concentration 

maps at once made it easier to obtain results and post process them. The 

"CAIRO for AERMOD" application represents a significant advancement in 

user-friendly PBL dispersion modeling. By integrating essential tools, real-

time visualization, and straightforward data input methods, it addresses the 

complexities of air quality modeling with efficiency and accessibility. 

Though there are some limitations to the platform that will be addressed in 

future updates, "CAIRO" excels in meeting the practical demands of pollutant 

dispersion analysis, particularly in complex terrains like Falconara Marittima. 

This tool not only enhances the capacity for accurate and expedient 

environmental assessments but also equips policymakers and environmental 

scientists with a reliable foundation for evaluating air quality impacts and 

exploring mitigation measures. With ongoing development, "CAIRO" holds 

the potential to evolve into a robust, multi-platform tool capable of adapting 

to broader contexts and more diverse modeling needs. 

 

The program has been uploaded to https://sourceforge.net/projects/cairo-

for-aermod/ and is free to download. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://sourceforge.net/projects/cairo-for-aermod/
https://sourceforge.net/projects/cairo-for-aermod/
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4.3 CASE STUDY  

 

Elevation data was downloaded in a sufficient resolution of 30 m/px, 

which is either way smaller than the receptor grids 100 m resolution and the 

recommended size of 100*100m to 500*500m by EEA, for local applications, 

analyzing one city or one industrial plant. For urban/metropolitan scales a 

1*1km to 5*5km grid is recommended, while for regional a 1*1o or 

approximately 11*11km grid size is recommended (EMEP, EEA, 2009.).  

Receptor nodes were defined using a Cartesian grid network, ensuring 

comprehensive spatial coverage, particularly along critical downwind 

directions identified based on local meteorological patterns. A polar receptor 

grid could have been used to inspect concentrations more accurately near the 

plant. Meteorological data was supplied by the university via Co-Supervisor. 

 Different binning ranges and methods were applied to plot the output 

to represent the data suitably for each averaging period. QGIS, MATLAB and 

MS Excel played a crucial role in data representation, postprocessing and 

model validation. 

 

As explained before, the refinery sources do not represent all pollution 

emission sources influencing the area, so modeled values were expected to 

underestimate. The final result showed a slight overestimation of 5.33%, 

either due to the model internally overestimating, inaccuracy in source, 

elevation or meteorological data, improperly setup model, or insufficient 

receptor replicants (real monitoring stations to compare to).  

The analyzed data showed no values exceeding the regulatory limit 

values. Highest concentrations are found in shorter averaging periods because 

peaks are better represented in a shorter time frame/sample number. Also, the 

highest discrepancies in concentration were found in shorter averaging 

periods. Concentration distribution patterns strongly co-align with 

predominant wind directions, while entrapment due to topography is obvious 

in the valleys and due to NW wind driving pollution inland. The pollutant 

plume holds steady concentrations reaching as far as Ancona. Residential 

including school areas are most exposed to refinery pollution due to 

proximity. 
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Concentration distribution, observing both modelled and observed data 

is highly spatially variable due to complex topology and meteorological 

influences. Building downwash modelling, using BPIPPRM (Building Profile 

Input Program for PRIME) which is a preprocessor of AERMOD, could be 

beneficial to model in this residential and topographically complex area. 

The shore south and north of Falconara exhibits lower concentration, 

but that picture might change if Ancona port and transit emissions were 

included. In the case of 24-hour averaging, the AERMOD output provides an 

insight into maximal pollutant impact at each receptor, which is critical for 

assessing health risks in vulnerable populations, such as those residing near 

“Scuola” and “Aquedotto”. Long term averaging gives insight into long term 

exposure, which often isn’t reflected in short-term averaging periods. 

 

Statistical indicators like mean, median, percentiles, and pollutant mass 

are used to characterize pollution levels in depth. 

Percentiles such as the 98th 75th and 25th provide insights into the 

variability of the pollution concentrations, helping interpret the impact at 

different spatial ranges and temporal resolutions (24-hour, month, annual). 

The 98th percentile values calculated in the “RANKFILE”, for specific 

receptor locations, provide a crucial assessment tool for regulatory 

compliance, that aims to represent worst-case scenarios while excluding 

extreme outliers that may not reflect typical conditions. 

 

As AERMOD reports set highest values on the analyzed receptor nodes, 

so had the observed data been interpreted accordingly, to find the maximum 

values from averaging periods. Due to the discretization of the receptor grid, 

modeled locations were 25-52m away from their actual location. Later 

analysis tried to minimize the error by using discrete receptors with exact 

locations, but the receptor grid still showed to more accurate by 10%. This 

may be caused by high spatial variability in the area, inaccurate input data or 

inadequate number of replicants. A box analysis on receptor sites could have 

produced more exact values, though it might be contraindicated due to high 

spatial variability.  

The observed data showed concentrations up to 45.63 μg SOX/m3 at the 

“Falconara Scuola” receptor, arguably the most sensitive area, occupied by 

children³, which is well below the regulatory limit of 125 μg/m³, representing 

approximately 36.5% of the limit, but still produces a compounding effect. 



 175 

The median and mean values lie around 4-5 μg SOX/m3, creating a steady 

background concentration and a compounded exposure to the population. 

 

The “Falconara Aquedotto” receptor experiences lower concentration 

peaks  at 10.67 μg SOX/m3, but has a relatively high background concentration 

of 4.54 μg SOX/m3, due to proximity to the plant, trapping of gas at lower 

elevations and NE winds. Modeled concentrations in the short term had a high 

discrepancy of up to 75%, decreasing to 30.3% and 1.74% for month and year 

averaging periods, respectively.  

 

The ”Falconara Scuola” receptor experiences the highest concentration 

peaks  at 45.63 μg SOX/m3, but has the highest background concentration of 

4.84 μg SOX/m3, due to proximity to the plant and predominant NW winds. 

Modeled concentrations showed the largest differences, compared to 

observed data. The highest underestimation at -72% for the 24h period, 

decreasing to -31.4% for month and again rising to -44.39% for the year 

averaging period. The peak of 45.63 μg SOX/m3, was vastly underestimated 

by the model with 12.79 μg SOX/m3. This shows that the specific subarea 

experiences a complex interplay of topography, meteorology and very 

proximal emission. Ground heat flux could have been underestimated by 

AERMOD in this case, due to presence of infrastructure, increasing the 

upwards heat flux. Modelling the receptor properly, would require detailed 

model formulation, including building downwash effect and a finer receptor 

grid network to conclude which features influence the complex dispersion 

patterns. 

 

The ”Falconara Alta” receptor experiences concentration peaks at 12.61 

μg SOX/m3, but has the lowest background concentration of 4.24 μg SOX/m3. 

Lower concentrations were as expected due to higher distance to the plant, 

higher elevation, which promote more efficient plume dispersion. The 

receptor also isn’t in the direct way of the predominant wind directions, 

reducing the measured concentration. Measured values comparable to the 

ones in higher proximity to the plant (Aquedotto, Scuola), indicate the 

magnitude of pollution in Falconara Marittima, the trapping of pollutants 

inland by NE winds, and possible additional sources, influencing the 

measured value more than the other two receptors. One possibility is the 

greater proximity of Ancona port to Falconara Alta. Modeled concentrations 
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in the short term had the highest discrepancy of 78%, decreasing to 19.93% 

and -9.14% for month and year averaging periods, respectively. The model 

calculate its highest 98th percentile value at this receptor of 22.45 μg SOX/m3, 

while the actual data shows only 12.61 μg SOX/m3. This could be due to the 

program underestimating ground heat flux, or the thickness of the PBL, 

resulting in a lower modeled dispersion and higher modeled concentration 

values. 

 

Overall, the model performed very well with a discrepancy from the 

observed data of -1.84 μg SOX/m3 and 5.33%, on average. The 24-hour 

averaging period produced the greatest discrepancies compared to the 

observed data, averaging at about ±75% of difference. This is largely due to 

model setup and could be mitigated using more complex terrain processing 

and more detailed meteorological data. The monthly averaging period shows 

smaller discrepancies up to ±30%, while the yearly period has smallest 

discrepancies, excluding the “Scoula” receptor and its underestimation.  

Discrete receptor analysis, aimed to decrease discrepancies caused by 

receptor location discrepancies, shows similar output, with a slightly higher 

discrepancy in overall predictions at -2.07 μg SOX/m3 and 9.68%. Move over, 

its showed the same high underestimation at “Scuola” receptor and 

overestimation at Alta receptor, indicating the receptor grid was fine enough, 

the up to 50 m discrepancy in receptor location isn’t significant and the model 

setup needs further work. 

 

Modelling results, specifically the model discrepancies, were compared 

to regulatory values (125 μg SOX/m3 for 24 h avg. period, and 20 μg SOX/m3 

for month and year avg. periods) to scale its performance in terms of its ability 

to influence regulatory compliance, estimation of health hazard and provide 

a base for further research and legislative efforts. Discrepancies presented 

only up to 4.10% of the data, averaging at 3.20%. They were largest for the 

24 h and yearly averaging period. Monthly averages might provide a balance 

between capturing significant temporal variations and minimizing the “noise” 

from short-term fluctuations, resulting in more reliable air quality 

assessments. Daily variations in weather can cause significant short-term 

fluctuations in pollutant levels, while yearly averages may obscure these 

fluctuations altogether. 
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Additionally, the model performance was also examined through 

Normalized Mean Square Error (NMSE), Fractional Bias (FB) and Mean Bias 

(MB), to determine regulatory validity of the results in the EU. The model 

acquired sufficient results and would be valid for regulatory purposes. 

 

The results conclude that the null hypothesis (The difference between 

modeled data and real-world measurements in relation to regulatory limit is 

significant), has been disproven and the hypothesis (There is no significant 

difference between modeled and real-world data in relation to regulatory 

limit.) has been confirmed.  

 

Falconara Marittima, designated as a high environmental risk area 

(AERCA), faces considerable challenges due to industrial emissions and its 

proximity to the Ancona harbor, both significant sources of air pollutants. 

Sulfur oxides (SOX) concentrations, while within regulatory limits, pose 

potential health risks due to the cumulative exposure effects. Long-term 

exposure to elevated SOX levels, even below threshold limits, is associated 

with respiratory issues, especially among sensitive groups like children and 

the elderly. Short-term peaks, which often coincide with refinery emissions 

and atmospheric inversions, increase the risk of acute respiratory symptoms, 

aggravation of asthma, and other pulmonary conditions (WHO, 2006.). 

The Ancona harbor also contributes to the pollutant burden, with 

emissions from ship traffic compounding local air quality issues. Studies 

suggest that harbor-related emissions, including SO₂ and PM, have a marked 

impact on coastal and near-port communities, exacerbating the health risks 

associated with long-term exposure. Given these factors, the results of this 

study underscore the importance of stringent air quality management and 

regulatory compliance efforts in Falconara Marittima. Effective policies must 

address the cumulative impacts of industrial and port-related activities to 

mitigate adverse health outcomes and safeguard public well-being in this 

high-risk area. 

 

In conclusion, the use of AERMOD, combined with the graphical 

interface CAIRO, has allowed for a robust analysis of pollutant dispersion 

and air quality conditions in Falconara Marittima, focusing on sulfur oxides 

(SOX) concentrations. Using AERMOD to simulate air pollution at using a 

receptor grid and at three key receptor points: Falconara Acquedotto, 
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Falconara Scuola, and Falconara Alta, revealed both spatial and temporal 

variations in pollutant concentrations. 

The results align with previous studies, reinforcing the importance of 

integrated air quality management that includes contributions from multiple 

emission sources, such as industrial and harbor activities. Further work may 

involve refining receptor placements to capture additional micro-scale 

variations and extending the analysis to other pollutants of concern, such as 

PM10 and NOx. The effectiveness of the AERMOD model, enhanced by the 

CAIRO interface, provided detailed insights into pollutant dispersion within 

Falconara Marittima. By focusing on sulfur oxide emissions from the 

Falconara refinery, the study highlights spatial and temporal pollutant 

variations that inform both regulatory compliance and environmental health 

impacts. Although some discrepancies between modeled and observed values 

were noted, particularly over shorter averaging periods, the overall model 

accuracy supports AERMOD's and CAIRO’s applicability in regulatory and 

health-risk assessments, contributing to a comprehensive approach to air 

quality management. The findings emphasize the need for integrated 

mitigation measures addressing both industrial emissions and transport-

related sources to protect public health and ensure regulatory compliance. 
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5.  CONCLUSION 
 

This thesis has presented a comprehensive examination of SOX 

emissions from a refinery in Falconara Marittima, Italy, using the AERMOD 

dispersion model and a newly developed application, "CAIRO for 

AERMOD". The development of the "CAIRO for AERMOD" software, a 

Python-based graphical user interface, was a key achievement, designed to 

streamline and automate the generation and runtime of complex input files 

required for AERMOD, AERMAP, and AERPLOT. The CAIRO tool 

simplified previously labor-intensive tasks, allowing users to compile input 

files with the correct syntax and structure while visualizing input data in 

Google Earth. Key functionalities of the software, such as automatic 

coordinate input, UTM conversion, handling file pathways, data formats, and 

guided support for different types of analysis, demonstrate its utility in 

environmental modeling, both for novice and experienced users. 

The “CAIRO for AERMOD” application proved effective in handling 

input and output across all phases of the modeling process. By automating 

coordinate conversions, visualizing sources and receptors, and simplifying 

file compilation, the software provided a more efficient workflow for 

environmental assessments. The interface’s integration with tools like Google 

Earth and QGIS enhanced user interaction with georeferenced data, allowing 

real-time visualization of point sources, receptor grids, and modeled 

concentrations. This feature is especially useful in environmental impact 

assessments, where the spatial relationship between emission sources and 

residential areas is critical. 

 

The case study of the API refinery in Falconara Marittima, Italy, served 

to validate both the GUI’s functionality and the AERMOD model’s 

performance in simulating SOx dispersion from complex industrial sources. 

The study used a 20x20 km receptor grid with 100 m resolution, covering the 

refinery and its surrounding areas, including the nearby town of Falconara 

Marittima and 15 point sources stemming from the plant. Three averaging 

periods (24-hour, monthly, and yearly) were analyzed, providing a multi-

scale perspective on the spatial distribution and concentration of SOX 

emissions. Modeled concentrations were compared to actual monitoring data 

from three industrial receptor sites around the refinery, which allowed for 

detailed model validation and insight into AERMOD's performance in 
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complex, real-world scenarios. Across all three averaging periods, AERMOD 

produced SOX concentration estimates that were within acceptable limits 

according to Italian legislative thresholds (confirmed by monitoring station 

data): 125 μg/m³ for 24-hour averaging, and 20 μg/m³ for monthly and yearly 

averages. AERMOD results, when compared to actual monitoring data, 

showed an average discrepancy of 18.5% or -1.088 μg SOX/m³, with the 

model performing better over longer averaging periods (1 year) and less 

accurately over shorter periods (24 hours). The results indicate that while 

AERMOD provides a valuable estimation tool for SOX emissions and 

highlighting potential risk zones, its precision is variable depending on the 

timeframe, reflecting the challenges of capturing transient atmospheric 

processes in environmental modeling. 

 

These overestimations would be even greater if other major pollution 

sources were included, such as the road traffic and nearby Ancona harbor, 

whose ship emissions contribute significantly to SOX levels in the area but 

were not included in this model. Model validation highlighted AERMOD's 

tendency to produce higher discrepancies over shorter time periods (up to 

78% discrepancy). The model's accuracy improved with longer averaging 

periods, with yearly averages closely aligning with observed data and 

discrepancies reduced to below 20%. In the Falconara Marittima area, 

additional sources such as harbor emissions may contribute to cumulative 

pollution levels, suggesting that AERMOD's accuracy could improve by 

including a broader set of emission sources. The analysis also found that the 

receptor grid method provided similar results to discrete receptors, although 

minor variations were observed due to the spatial resolution of the grid and 

discretization of receptor placement. A limitation of AERMOD is its inability 

to model chemical transformations of pollutants, such as the oxidation of SO₂ 

into sulfate aerosols, which contribute to particulate matter (PM₂.₅) formation, 

fog and acid rain. Incorporating the Weather Research and Forecasting model 

coupled with Chemistry (WRF-Chem) could address this limitation. 

 

AERMOD, supported by the CAIRO application, is a viable tool for 

assessing industrial air pollution in complex environments. The CAIRO for 

AERMOD software successfully addressed challenges in input file creation, 

source visualization, and receptor placement, establishing a workflow that 

can be applied in similar environmental modeling contexts. By addressing the 
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technical barriers associated with AERMOD, the "CAIRO for AERMOD" 

application facilitates improved compliance, scenario analysis, and decision-

making. While AERMOD’s performance was satisfactory over extended 

averaging periods, the model's limitations in capturing short-term pollution 

variability suggest the need for further refinement. Enhancements to CAIRO 

for AERMOD could include integration with meteorological and elevation 

data providers. By advancing both the practical application and estimation of 

accuracy of AERMOD modeling, this study contributes to more reliable, 

user-friendly and free source air quality assessment tools, supporting efforts 

to mitigate industrial pollution and protect public health in affected 

communities. This software offers a practical solution for environmental 

professionals by enabling efficient input handling and visualization, thereby 

contributing to more effective monitoring and assessment of air pollution in 

complex environments. 
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