

Università Politecnica delle Marche
Scuola di Laurea Magistrale in Scienze dell’Ingegneria

Curriculum in “Environmental Engineering”
--

Development of a user friendly AERMOD

interface and evaluation of model

performance on a case study in complex

environments with multiple sources

 Dissertation of:

 Dominik Subotić

Advisor:

 Prof. Eng. Giorgio Passerini

Curriculum supervisor:

 PhD Simone Virgili

A.A. 2023./2024.

 2

Università Politecnica delle Marche
Scuola di Laurea Magistrale in Scienze dell’Ingegneria

Curriculum in “Environmental Engineering”
--

Development of a user friendly AERMOD

interface and evaluation of model

performance on a case study in complex

environments with multiple sources

 Dissertation of:

 Dominik Subotić

Advisor:

 Prof. Eng. Giorgio Passerini

Curriculum supervisor:

 PhD Simone Virgili

A.A. 2023./2024.

Università Politecnica delle Marche

Dipartimento Di Ingegneria Industriale E Scienze Matematiche – DIISM

Via Brecce Bianche — 60131 - Ancona, Italy

 iii

ACKNOWLEDGEMENTS

I would like to express gratitude to my advisor, prof. Giorgio

Passerini, my supervisor, PhD Simone Virgili whose doctoral thesis inspired

my master thesis, and UNIVPM for their guidance, material, knowledge, and

opportunity to study and do my master thesis. The university staff has been

nothing but outgoing, kind, dedicated and professional.

Secondly, I would like to thank EPA for developing AERMOD on

which my thesis is based. Mathworks for developing MATLAB, JRSoftware

for developing Inno Setup, JetBrains for developing PyCharm, which was a

crucial platform for developing my application, and Microsoft for developing

MS Excel.

I would finally, like to thank my family, especially my mother

Vekenega, for their sacrifice and believing in my potential and vision, my

friends Anđelo, Roko and Josip for always reaching out to me, being patient

and inspiring me to live life to the fullest. Mia Štulić for bringing out the best

in me and pushing me to pursue my dreams and goals.

Thank you all, I wouldn’t be here without you.

 iv

 v

 vi

ABSTRACT

A SOX emission source (API Raffineria, Falconara Marittima, Italy)

is analyzed using AERMOD air dispersion modelling system, for the purpose

of demonstrating newly developed software (CAIRO for AERMOD), made

to compile and visualize input, and run analyses. CAIRO for AERMOD

(Compile AERMAP, AERMOD and AERPLOT Input and Run Output) is a

python-based GUI aimed at streamlining the process of making complex

input files, with unique syntax and running them, while obviating the need to

manually write input and run the program through Windows Shell. The

Windows application features automated features such as the input and

conversion of coordinates to UTM through copy operations, while the input

is visualized in Google Earth. Input is done through user interface and

automatically compiled into correct syntax and project/file structure. It

supports point or polygon sources up to 3 averaging periods, maxtable,

maxifile, rankfile and plotfile, while the elevation and meteorological data

must be third party.

A review of air pollution, legislative, planetary boundary layer

processes and AERMOD model formulation, introduced the analysis on SOX

emissions of 15 point sources in a refinery located near domestic areas. The

AERMOD output and real data of 3 monitoring stations, dedicated to

monitoring the plant, were further processed using multiple methods to

deduce the difference of modelled values compared to actual data. The model

performed with an average difference of -1.84 μg SOX/m3 or 5.33%,

compared to actual data. The model performance was acceptable by

Normalized Mean Square Error (NMSE), Mean Fractional Bias (FB) and

Mean Bias (MB) tests to comply with European legislation. Longer averaging

periods (month and year) had smaller maximal deviations but on average it

exhibited the same deviations as the shorter period (24h), which had up to ±

78% discrepancies from real data. Compared to the regulatory limit it’s a

relative deviation of ±3.20% of the regulatory limit on average.

 vii

 viii

 i

CONTENT

1. INTRODUCTION .. 1
2. MATERIALS AND METHODS ... 4

2.1. AIR POLLUTION ... 5

2.1.1 ENVIRONMENTAL AND HEALTH EFFECTS 8

2.2. ENVIRONMENTAL ASSESSMENT .. 13

2.2.1 LEGISLATIVE ... 13

2.2.2 MONITORING ... 18

2.2.3 MODELLING ... 21

2.3 EPA .. 29

2.4. PYTHON .. 32

2.4. AERMOD ... 34

2.6. GRAPHICAL USER INTERFACE ... 53

2.6.1 AERMAP INPUT FILE COMPILER 57

2.6.2 AERMOD INPUT FILE COMPILER 59

2.6.3 AERPLOT INPUT FILE COMPILER 65

2.7. PROGRAMMING LOGICS .. 70

2.7.1 AERMAP INPUT FILE .. 71

2.7.2 AERMOD INPUT FILE.. 79

2.7.3 AERPLOT INPUT FILE ... 102

2.7.4 “CAIRO for AERMOD” ... 112

2.7.5 COMPILING EXECUTIVE FILE ... 116

2.7.6 COMPILING INSTALLER .. 116

2.8 CASE STUDY ON MULTIPLE INDUSTRIAL SOURCES 119

2.8.1 AERMAP IMPLEMENTATION ... 122

2.8.2 AERMOD IMPLEMENTATION ... 127

2.8.3 AERPLOT IMPLEMENTATION .. 132

 ii

2.8.4 MATLAB POSTPROCESSING ... 136

2.8.5 MODEL VALIDATION ... 140

3. RESULTS ... 145
3.1 AERMOD ANALYSIS WITH RECEPTOR GRID 146

3.2 AERPLOT POSTPROCESSING WITH RECEPTOR GRID 147

3.3 DATA POST PROCESSING ... 153

3.4 MODEL VALIDATION .. 158

4. DISSCUSSION .. 164
4.1 LOCAL FACTORS .. 164

4.2 “CAIRO” PERFORMANCE ... 169

4.3 CASE STUDY ... 173

5. CONCLUSION .. 179
6. REFERENCES ... 182

 iii

 iii

LIST OF FIGURES

Figure 1. “Modern” composition of air including criteria and other

pollutants, also noted must be the average water vapor content of around

4%. Units are percent, parts per million/billion/trillion. Values correspond to

natural “rural background” concentrations, ambient concentrations in

metropolitan areas are substantially greater. (Fowler, et al., 2020.) 6

Figure 2. Long term observations of SOX, VOC, NOX, PM10, from 1940.

until 2010. (PM10 monitoring only started in 1990. and led in 1970.).

Interestingly the drop in all parameters co-aligns with the foundation of

EPA (Environmental Protection Agency) in December of 1970 (EPA,

2010.). ... 7

Figure 3. Long term observations of CO and Pb, from 1940. until 2010.

(EPA, 2010.) ... 8

Figure 4. Emission reduction of the main air pollutants by European union

states from 2005 to 2021, in compliance with the previous “Directive

2001/81/EC” (EEA, 2022.) .. 16

Figure 5. Percentage emission reductions time plots of main air pollutants

from 2005. to 2021. (EEA, 2022.) .. 17
Figure 6. Variation of atmospheric stability due to vertical temperature

distribution
A)Absolute instability (strong negative temperature gradient)
• Dry-adiabatic lapse rate unsaturated parcels cool at a rate of 10°C km-1
B)Neutral condition or conditional stability - when the lapse rate between

the dry and moist adiabatic lapse rate. Conditional instability exists when

the atmosphere's stability depends on the saturation of the rising air
• Moist Adiabatic Lapse Rate – For a saturated parcel of air, i.e., when its

T=Td, then it cools at the moist adiabatic lapse rate = 6°C km-1
• Absolute stability occurs when the ELR is less than the moist adiabatic

lapse rate

 iv

C) Sub adiabatic: Ambient lapse rate < adiabatic. It indicates stable

atmosphere, vertical motion, and mixing are suppressed. Dispersion is

suppressed, and contamination is trapped.
D) Isothermal vertical temperature distribution, indicates stratification
E) Inversion means a hot top layer has trapped pollutants near ground 22

Figure 7. Different types of plume behavior for various atmospheric stability

conditions. The dotted lines show dry adiabatic lapse rate, the solid lines

represent the actual adiabatic lapse rates for different atmospheric stability

conditions. Lapse is the normal temperature fall with height and inversion is

the rise of temperature with height (Geiger, et al., 1995.) 24

Figure 8. Plume emitted by API refinery in Falconara Marittima, Italy, aloft

due to PBL stratification, lightly rising due to residual ground heat flux

(Cronache Ancona, 2024.) .. 25

Figure 9. Scheme of troposphere division into free atmosphere and

boundary layer (Stull, 2012.) .. 37

Figure 10. Time evolution of PBL (Stull, 1988.) ... 38

Figure 11. Lofting of a smoke plume occurring when the top of the plume

grows upward into a neutral layer while the bottom is stopped by a stable

layer .. 39

Figure 12. A growing mixed layer mixes elevated smoke plumes down to

the ground e.g. fumigation ... 39

Figure 13. Vertical wind speed profile for CBL and SBL, in the region

below 7z0 (EPA, 2023.) .. 44

Figure 14. Vertical wind speed profile, for CBL and SBL, in the region

above 7z0 (EPA, 2023.) .. 44

Figure 15. Mechanical portion of the vertical turbulence in the CBL,

corresponding to total vertical turbulence of SBL (EPA, 2023.) 45

 v

Figure 16. Convective portion of the vertical turbulence in the CBL (EPA,

2023.) .. 45

Figure 17. A contaminant plume emitted from a continuous point source,

with wind direction aligned with the x–axis. Profiles of concentration are

given at two downwind locations, and the Gaussian shape of the plume

cross-sections are shown relative to the plume centerline (Stockie, 2011.) . 46

Figure 18. Terrain treatment in AERMOD, visualizing the concept of

dividing streamlines and the construction of the weighting factor used in

calculating total concentration (EPA, 2019.) ... 47

Figure 19. Instantaneous and corresponding ensemble-averaged plume in

the CBL (EPA, 2019.) .. 48

Figure 20. AERMOD’s three plume treatments/interpretations of the CBL

(EPA, 2019.) ... 50

Figure 21. AERMOD’s PDF approach for plume dispersion in CBL e.g.

superimposition of two Gaussian distributions, the updraft and downdraft

distribution (EPA, 2019.) ... 52
Figure 22. PDF of the vertical velocity. The bi-Gaussian curve has a

skewness of S=1. About 60% of the pw integral is on the negative side, the

rest is positive, consistent with results of numerical simulations and field

observations. (EPA, 2019.) ... 52

Figure 23. General flowchart of data processing ... 53

Figure 24. Detailed flowchart of data processing for the “CAIRO for

AERMOD” app .. 54

Figure 25. The main window of the interface currently running AERMAP 56

Figure 26. AERMAP compiler overlaying “Google Maps” 58

Figure 27. Example of aermap.inp file contents created with the AERMAP

input file compiler .. 58

 vi

Figure 28. Grid receptor network (with already processed sources) created

with the input file from figure 19. and figure 25., visualized in Google Earth

 .. 59

Figure 29. AERMOD input file compiler GUI .. 60

Figure 30. AERMOD input file compiler with input information 61

Figure 31. Added point sources and polygon sources automatically

visualized in real time using “Google Earth”. .. 62

Figure 32. Manually adding polygon sources and vertices 63

Figure 33. Example of an “aermod.inp” file contents created with the

AERMOD input file compiler .. 64

Figure 34. AERPLOT input file compiler .. 66

Figure 35. Compiled “aerplot.inp” file ... 67

Figure 36. Contents of the project folder containing the “aerplot” (1,2,3)

subfolders after running the “AERPLOT input file compiler” (and previous

AERMOD stages) ... 67

Figure 37. Contents of one of the AERPLOT subfolders, after running

AERPLOT, there are three iterations, each for one of the averaging periods

 .. 68

Figure 38. Concentration distribution for the 24h period visualized in

Google Earth using 5 point sources over Newark, USA 68

Figure 39. Concentration distribution for the 24h period visualized QGIS

using contour and gradient lines with 5 point sources over Newark, USA .. 69

Figure 40. Concentration distribution for the 24h period visualized QGIS

using the grid receptor network, contour and gradient lines with 5 point

sources over Newark, USA .. 69

 vii

Figure 41. Example AERMAP input file ... 71

Figure 42. Example AERMOD input file with point sources and polygon

sources added both by manually inputting UTM coordinates and by using

Google Maps to interactively add vertices and visualize them in Google

Earth in real time .. 81

Figure 43. Polygon and point sources during creation of an AERMOD input

file. The “.kml” file, is automatically and continuously updated in Google

Earth as the sources and vertices are being input ... 92

Fig 44. Example of 1st of three created AERPLOT input files created using

the AERPLOT input file compiler ... 103

Figure 45. Hourly (350 μg/m3), daily (125 μg/m3), yearly and winter (1.

October to 31. March, as a means of vegetation protection) (20 μg/m3) SO2

limits given by the Italian legislation (ARPAM, 2010.) 120

Figure 46. Downloading DEM data from Copernicus browser and

Copernicus GLO 30 data, with 30 m/px spatial resolution (15 m/px effective

resolution, due to resolution settings) in 16 bit “TIFF” format and WGS84

UTM 33N projection. The appropriate product is selected in the browser, an

area selected and downloaded. ... 122

Figure 47. Domain (Red – 20*20km, corresponding to receptor grid area)

visualized over “GeoTiff” elevation data file with single band pseudo color

scheme applied and Google Satellite imagery of Marche, Italy in QGIS.

Coordinates are UTM (m). ... 123

Figure 48. Predetermined anchor point (SW corner) coordinates being

copied from Google Maps, while in the GUI they are automatically input

and converted to UTM northing, easting and zone 124

Figure 49. GUI with opened fully filled out “AERMAP input file compiler”

window. UTM coordinates and zone were automatically filled out and

converted from Google Maps data. .. 124

Figure 50. Resulting AERMAP input file for API rafinery 125

 viii

Figure 51. AERMAP running via “CAIRO for AERMOD” after selecting

the input project folder for API refinery, Falconara Marittima, Italy 125

Figure 52. Snippet of “receptor.rou”, the resulting receptor grid file 126

Figure 53. Domain and sources visualized over Google Terrain in QGIS . 127

Figure 54. Point sources visualized in QGIS, overlaying Google Hybrid,

highlighting the proximity to urban areas (Falconara Marittima, Italy) 128

Figure 55. Google Hybrid view in QGIS of point sources, with labels, at

API refinery in Falconara Marittima, Italy ... 128

Figure 56. 3D view of sources created in Google Earth including labels and

real heights ... 129

Figure 57. Mean daily minimum, maximum and range temperatures,

including precipitation based on data from 1993.-2023. for Falconara

Marittima, Italy (Meteoblue, 2024.) ... 130

Figure 58. Wind rose with highlighted wind speed fractionation of the

predominant wind direction for Falconara Marittima, Italy (Meteoblue,

2024.) .. 130

Figure 59. Opened “.sfc” file containing MMIF surface meteorological data

and the station numbers .. 131

Figure 60. AERMOD input file compiled for the means of analyzing “API”

refinery point source emissions. ... 131

Figure 61. “AERPLOT input compiler” interface filled out with the correct

maximum and minimum bins, logarithmic binning, UTM zone and other

generic data ... 133

Figure 62. Files in the project folder resulting in using “CAIRO for

AERMOD” ... 133

Figure 63. 24 h averaging period visualized in Google Earth 134

 ix

Figure 64. Monthly averaging period visualized in Google Earth 134

Figure 65. Annual averaging period visualized in Google Earth 135

Figure 69. “ARPA” map of receptor sites, with locations of the 3 used

monitoring stations in Falconara Marittima, Italy, and location of “API”

refinery (e.g. sources) ... 140

Figure 70. Creating receptor points in QGIS from manually created “.csv”

file ... 141

Figure 71. Monitoring station locations (green) and sources (white)

visualized in QGIS over analyzed gradient lines (purple) 142

Figure 72. AERMAP input file using the “DISCCART” keyword to model

real discrete industrial monitoring stations in Falconara Marittima, Italy.

The keyword is coupled with the x and y UTM coordinates, base elevation

and hill elevation. ... 143

Figure 73. “RANKFILE” output of AERMOD for the 24h averaging period,

listing overall maximum values while omitting duplicate date/hours values

 .. 146

Figure 74. “RANKFILE” output of AERMOD for the monthly averaging

period, listing overall maximum values while omitting duplicate date/hours

values .. 146

Figure 75. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the 24 h averaging period, displayed in

QGIS. The domain is a 20*20km receptor grid (200*200 node grid with 100

m interstep), receptor height is 1.5 m. The legend features concentration

bins and their corresponding color scheme. ... 147

Figure 76. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the monthly averaging period, displayed in

QGIS. The domain is a 20*20km receptor grid (200*200 node grid with 100

m interstep), receptor height is 1.5 m. The legend features concentration

bins and their corresponding color scheme. ... 148

 x

Figure 77. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the total (the year 2020.) averaging period,

displayed in QGIS. The domain is a 20*20km receptor grid (200*200 node

grid with 100 m interstep), receptor height is 1.5 m. The legend features

concentration bins and their corresponding color scheme. 149

Figure 78. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the 24 hour averaging period, displayed in

QGIS. The map is zoomed in over the refinery and the city of Falconara

Marittima, highlighting the proximity of the industrial plant and the

concentration over the urban area. Receptor height is 1.5 m. The legend

features concentration bins and their corresponding color scheme. 150

Figure 79. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the monthly hour averaging period, displayed

in QGIS. The map is zoomed in over the refinery and the city of Falconara

Marittima, highlighting the proximity of the industrial plant and the

concentration over the urban area. Receptor height is 1.5 m. The legend

features concentration bins and their corresponding color scheme. 151

Figure 80. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the total (the year 2020.) averaging period,

displayed in QGIS. The map is zoomed in over the refinery and the city of

Falconara Marittima, highlighting the proximity of the industrial plant and

the concentration over the urban area. Receptor height is 1.5 m. The legend

features concentration bins and their corresponding color scheme. 152

Figure 81. SOX concentrations for 24 hour (blue), monthly (green) and total

(red - 1 year) averaging periods, visualized using boxplots and a logarithmic

scale to visualize the concentration distribution ... 156

Figure 82. SOX concentration areal distribution for 24 hour (blue), monthly

(green) and total (red - 1 year) averaging periods. The concentration

distribution is plotted on x with a logarithmic scale and the percentage of the

domain is plotted on the y axis. .. 157

 v

 vi

LIST OF TABLES

Table 1. Partial list of member states and their set reduction target values set

by the NEC Directive, under the AAQDs (Directive (EU) 2016/2284, 2016.)

The values are compared to 2005 data. .. 17

Table 2. Reduction target values set by the NEC directive, under the

AAQDs (ENEA, 2021.) .. 18

Table 3. The data for the point sources in the “API” refinery in Faloconara

Marittima, Italy. Includes the source name (ID), base elevation, height,

diameter, exit velocity and temperature, emission rate and UTM coordinates

given in WSG84 UTM 33N projection system (ESPG:32633) 121

Table 4. The locations of sources in displayed in UTM zone, northing and

easting, and converted into latitude and longitude. The projection is WSG84

UTM 33N (ESPG:32633) ... 121

Table 5. Minimum and maximum values of each period gathered from the

control AEROPLOT run, minimal bin was rounded to 1 due to non-

relevance regarding legislation for lower values and achieving a finer

discretization between concentration bins .. 132

Table 6. Table containing bin boundary values and contour line values

(corresponding to lower bin boundary), with according color palette 135

Table 7. Locations of monitoring points in latitude and longitude and UTM.

“Altitude” refers to elevation at base, receptor height is set to 1.5m 141

Table 8. 3D view of sources created in Google Earth including labels and

real heights ... 153

Table 9. Concentration bins along with the number of corresponding nodes

in the analysis, its areal coverage in percentage and km2, and color scheme

for the monthly averaging period ... 154

 vii

Table 10. Concentration bins along with the number of corresponding nodes

in the analysis, its areal coverage in percentage and km2, and color scheme

for the total period (1 year) averaging period ... 155

Table 11. Maximum and minimum, mean, median, 25th and 75th percentile

values, mean values of the maximum and minimum bin, and the mass of the

pollutant in a 1 m thickness layer, over the domain, at receptor height. Data

was calculated using MATLAB, and using data from the AERMOD

simulation of air pollution in Falconara Marittima, Italy 156

Table 12. Maximum, minimum, mean, median, 25th and 75th percentile

values for the Falconara Acquedotto monitoring station for the year 2020.

 .. 158

Table 13. Maximum and minimum, mean, median, 25th and 75th percentile

values for the Falconara Scuola monitoring station for the year 2020. 158

Table 14. Maximum and minimum, mean, median, 25th and 75th percentile

values for the Falconara Alta monitoring station for the year 2020. 159

Table 15. Difference in location of modeled to real receptors 159

Table 16. Tabular data of AERMOD modelled difference, comparing the

AERMOD analysis with grid receptors (highest 98th percentile excluded)

compared to mean data per averaging period from 3 monitoring stations,

including percentages ... 160

Table 17. Main tabular data comparing the AERMOD analysis with receptor

grid (highest 98th percentile excluded) compared to maximum data per

averaging period, from 3 monitoring stations, including percentages 160

Table 18. Tabular data comparing the AERMOD analysis with discrete

receptors (highest 98th percentile excluded) compared to real data from 3

monitoring stations, including percentages .. 161

Table 19. Overview of differences between receptor grid modeled and real

data. “Limit Fraction” is the modelled differences percentage of the SOX

limit .. 162

 viii

Table 20. Overview of differences between discrete receptor modeled and

real data. “Limit Fraction” is the modelled differences percentage of the

SOX limit .. 162

Table 21. Detailed differences between discrete receptor modeled and real

data in relation to regulatory limits. “Effective %” is the modelled

differences percentage of the SOX limit ... 163

Table 22. Results of testing by Normalized Mean Square Error (NMSE),

Fractional Bias (FB) and Mean Bias (MB) tests to measure the model’s

results compared to observed data for compliance to European Union

regulation .. 163

 ix

 x

 1

1. INTRODUCTION

The dynamic nature of environmental systems necessitates sophisticated

models to predict and understand the interactions between various factors

such as urbanization, industrialization, and climate change. The primary

adverse effects of these activities include alterations in radiative balance and

local heating patterns, which in turn impact micro-scale circulation and

surface energy balance. This affects pollutant dispersion, distribution,

chemical and physical activity. Changes in thermal behavior of regional

weather due to urbanization and industrialization have well known effects on

climate and air quality (Baik et al., 2000; Roth, 2000). Growing awareness of

air quality deterioration, frequency of pollution events and health effects,

have led to the integration of air pollution control strategies within urban

planning frameworks, e.g. environmental monitoring and modeling. Making

practical and effective modeling tools is at the basis of scientific research,

engineering, industrial, legislative and other applications.

Environmental models give access to complex environmental processes

that are difficult to study directly due to their scale, complexity, or the length

of time over which they occur. And an understanding of the interactions

between different components of the environment, such as the atmosphere,

hydrosphere, biosphere, and lithosphere. Acting as a “virtual laboratory”,

they predict possible outcomes, critical for planning and decision-making,

especially in the context of climate change, pollution control, resource

management, risk assessment, environmental impact assessments and

compliance.

Air quality models usually incorporate parameterizations for the source,

planetary boundary layer (PBL), turbulence and terrain interactions. The

vertical mixing of air pollutants strongly depends on the depth and

stratification of the PBL, which is governed by factors such as the PBL energy

balance (heat flux), vertical motion, horizontal advection, entrainment at the

boundary layer top, and time. Outputs offer quantitative predictions, scenario

analysis, risk assessment and visualizations to help interpret and

communicate complex data and results. More specifically, concentration

maps, time series data, deposition rates, exposure and risk assessments with

 2

the goal of regulatory compliance. The outputs of environmental air

dispersion models typically include data on pollutant concentrations and other

environmental parameters over time and space.

The best strategies for using environmental models are based on

understanding of the scientific principles, validated data to capture the

essential dynamics of the systems they represent. Choosing according to

transparency and accessibility of models allows for peer review and

stakeholder engagement. Integrating data from multiple sources and using an

interdisciplinary approach can improve model comprehensiveness, accuracy

and reliability. Regularly validating model outputs with observed data and

guidelines ensures accuracy. They finally depend on the goal and specific

case study.

The use of environmental models has required, and to a certain degree

still requires, significant expertise in both the environmental sciences and the

specific modeling software, but new advances in software development have

made these tools more accessible to a broader range of users, including

policymakers, educators, and community stakeholders. Models, such as

AERMOD, are widely used for urban air quality forecasts due to their ability

to simulate pollutant dispersion effectively under varied conditions and

complex terrains. Despite scientific advancements, predicting the transport,

diffusion, and transformation of airborne pollutants remains complex due to

data limitations and the inherent complexities of atmospheric processes

(Klausmann et al., 2003).

This study glances over air pollution, its main components and processes,

environmental monitoring and modeling, focusing on the AERMOD

dispersion model's formulation and the creation of a Graphical User Interface

(GUI) in Python to streamline the use of AERMOD and its associate

processors and input files. This GUI compiles AERMOD preprocessor,

processor, and postprocessor input file and runs basic AERMOD stages,

simplifying the process compared to manual command shell operations.

Traditionally, running AERMOD involves manually preparing input files,

executing commands in the shell, and managing output files, which can be

inept and error prone or requiring expensive software options with an

integrated interface.

 3

The proposed GUI is a windows application that simplifies the process by

integrating the preprocessor, processor, and postprocessor stages of

AERMOD (AERMAP, AERMOD, AERPLOT), compiling input files

(AERMAP, AERMOD, AERPLOT), allowing users to input data, run

simulations, and view results within a single interface. Integrating a simple

input interface, Google Maps and Google Earth, it enhances accessibility and

usability, particularly for users who may not be familiar with command line

operations.

To validate the effectiveness of the GUI, a generic analysis was conducted

on real pollutant sources. The analysis involved simulating the dispersion of

pollutants using the AERMOD model and comparing the results with

observed data. The results were analyzed using QGIS, MATLAB and MS

Excel to provide a comprehensive understanding of the pollutant distribution

and its potential impacts. This practical application demonstrates the GUI’s

capability to facilitate detailed and accurate air quality modeling, making it a

valuable tool for researchers and policymakers alike.

 4

2. MATERIALS AND METHODS

This chapter will delve into the main problems, processes, impact,

legislation, and regulations regarding air pollution, particularly the

monitoring and modeling of air quality for the purpose of compliance with

authoritative bodies. Focusing on the 5 key pollutants given by the NEC

Directive in 2016. and other common pollutants with adverse environmental

and health effects.

An overview of the air dispersion model AERMOD follows, expands on

the model’s formulation together with the meteorological phenomena,

processes, parameters, and specifics associated with it. Most importantly, it

delves into the formulation of a computer program in Python programming

language and its instructions, aiming to simplify the creation and processing

of AERMOD input files.

The program uses only 2 vital source types (point and polygon area

sources) and allows for simple input and visual representation during

operation, for instance choosing locations directly from Google Maps and

visualizing multiple sources in real time in Google Earth. It is based upon

using the AERMOD preprocessor AERMAP, using provided surface air and

upper air AERMET output files, the processor AERMOD and post processor

AERPLOT. Input file compilers are available for AERMAP, AERMOD and

AERPLOT.

 5

AIR POLLUTION

The atmosphere is a complex dynamic natural gaseous system that is

essential to support life on planet Earth. Its composition is crucial for

sustaining life and maintaining environmental stability. Nitrogen is essential

for plant growth and is a building block of proteins, while oxygen supports

respiration. Trace gases, though present in minimal amounts, play significant

roles; for instance, carbon dioxide and methane are critical for the greenhouse

effect, which regulates the planet's temperature. The atmosphere also interacts

with the hydrosphere and biosphere, driving weather patterns and climate

systems, and ensuring a balanced environment that supports diverse

ecosystems.

Air pollution, as defined by the World Health Organization, is

“contamination of the indoor or outdoor environment by any chemical,

physical or biological agent that modifies the natural characteristics of the

atmosphere which has a negative effect on health and the environment”

(WHO, 2024.). Emissions constitute the output of polluting substances to the

atmosphere from any source, while imissions are the “reception” of the

emitted pollutants and constitute what is known as “air quality” (EEA, 2024.).

Criteria pollutants are specific air contaminants regulated due to their

health and environmental risks. These include ozone (O3), particulate matter

(PM10 and PM2.5), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen

oxides (NOx), and lead (Pb). Normally, Earth's atmosphere is composed of

nitrogen (78%), oxygen (21%), and trace amounts of argon, carbon dioxide,

and other gases.

 6

Primary air pollutants are directly generated, while secondary air

pollutants are indirectly generated through some other processes. Secondary

air pollutants are created by various processes like burning of fossil fuels

(electricity generation, transport, industry and households), industrial

processes and solvent use (chemical and mining industries), agriculture,

waste treatment, natural sources (volcanic eruptions, windblown dust, sea-

salt spray and emissions of volatile organic compounds from plants), for

which a well-known example is photochemical smog. CO2 isn’t regarded as

a pollutant by legislatives, although by its role as a greenhouse gas it is

regularly monitored for (Sharma et al., 2013.).

Figure 1. “Modern” composition of air including criteria and other

pollutants, also noted must be the average water vapor content of around 4%.

Units are percent, parts per million/billion/trillion. Values correspond to

natural “rural background” concentrations, ambient concentrations in

metropolitan areas are substantially greater. (Fowler, et al., 2020.)

 7

Key primary air pollutants:

- Particulate matter (PM)

- Black carbon (BC)

- Sulphur oxides (SO2)

- Nitrogen oxides (NOX-NO, NO2)

- Ammonia (NH3)

- Carbon monoxide (CO)

- Methane (CH4)

- Non-methane volatile organic compounds (NMVOCs-

including benzene, certain metals and polycyclic aromatic

hydrocarbons including benzo[a]pyrene - BaP)

Key secondary air pollutants:

- Particulate matter (PM - key precursor gases for secondary PM

are SO2, NOX, NH3 and VOCs)

- Ozone (O3)

- Nitrogen dioxide (NO2)

- Oxidized volatile organic compounds (VOCs) (Sharma et al.,

2013.)

Figure 2. Long term observations of SOX, VOC, NOX, PM10, from 1940. until

2010. (PM10 monitoring only started in 1990. and led in 1970.). Interestingly

the drop in all parameters co-aligns with the foundation of EPA

(Environmental Protection Agency) in December of 1970 (EPA, 2010.).

 8

Figure 3. Long term observations of CO and Pb, from 1940. until 2010. (EPA,

2010.)

2.1.1 ENVIRONMENTAL AND HEALTH EFFECTS

Environmental impacts of air pollution include contamination of air

and bodies of water and soil through wet and dry deposition and reactions

with atmospheric components. Air pollution poses numerous threats to the

environment and public health, creating a strong need for environmental

assessment and legislative actions.

Wet deposition, known as acid rain, occurs when pollutants absorbed

by water droplets in the atmosphere precipitate to the ground. This process

lowers the pH of soil and water bodies, harming aquatic life, vegetation, and

infrastructure. Acid rain can leach essential nutrients from the soil, disrupt

ecosystems, and damage buildings and monuments made from limestone and

marble (Singh and Agrawal, 2007).

Dry deposition is the settling of airborne pollutants onto surfaces,

including soil, water, and vegetation. By means of both dry and wet

deposition pollutants can enter the food chain through crops and water

 9

sources, leading to bioaccumulation and biomagnification (Wesely and

Hicks, 2000.; Deribe et al., 2013.).

Reactions with atmospheric constituents and other pollutants can result in

forming of acidic compounds, ground level ozone and fine particulate matter,

of which the ladder two are key components of smog.

Ozone depleting substances (ODS) mainly act by reaction of chlorine

and bromine atoms with ozone (O3) (Reaction 1. - ozone destruction). One

chlorine atom can destroy multiple thousand molecules of ozone by catalytic

cycling (Reaction 2. - Ozone regeneration), where Cl acts as a catalyst and

reacts with O3, creating chlorine monoxide (ClO + O2) after which it can again

react with O- ions, becoming a free radical, free to react further without being

consumed. As ODSs are exposed to UV light in the stratosphere, they readily

release chlorine and bromine atoms which react further. These substances

include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC),

carbon tetrachloride and methyl bromide, among others (Bouare, 2009.).

Reaction 1.

𝐶𝑙 + 𝑂3 → 𝐶𝑙𝑂 + 𝑂2

Reaction 2.

𝐶𝑙𝑂 + 𝑂. → 𝐶𝑙 + 𝑂2

Ground level ozone (O3) is formed photochemical and chemical

processes mainly by NOx, CO, and VOCs, who stem from exhaust and

industrial emissions. It drives many chemical processes and is a pollutant

itself. Ozone is a key constituent of the troposphere and an important

constituent of certain regions of the stratosphere, known as the Ozone layer.

It’s also the third most important greenhouse gas in terms of radiative forcing,

therefore accelerating climate change. At extremely high concentrations from

human activities (largely the combustion of fossil fuel), it is a pollutant, and

a constituent of smog (Sharma et al., 2013.; Myhre et al., 2014.).

 10

Sulphur oxides (SOX), mainly SO2 which is produced by volcanoes

and in various industrial processes as coal and petroleum are often sulfur

containing compounds. Further oxidation of SO2, usually in the presence of

catalyst such as NO2, forms H2SO4, thus creating a component of acid rain.

The highest concentrations of SO2 are recorded in the vicinity of large

industrial facilities. SO2 emissions are also a major precursor to ambient

PM2.5 concentrations. SO2 is also created by oxidation of H2S, which

originates from combustion processes and anaerobic decay. (Sharma et al.,

2013.; Lee et al., 2018.).

Nitrogen oxides (NOx - most prominently NO2) are emitted from high

temperature combustion and are also produced naturally during

thunderstorms by electric discharge. They can be seen as the reddish-brown

haze dome above or plume downwind of cities. Most noted effects include

formation of ground level ozone (through reaction with VOCs and UV light),

acid deposition (HNO3), eutrophication, greenhouse gases (N2O). NO2, like

SO2, is a precursor to PM2.5. (Sharma et al., 2013.; Boningari et al., 2016.;

Lee et al., 2018.).

Ammonia (NH3) is mainly emitted from agricultural processes,

normally in the form of a gas with a distinct odor. It serves as a precursor to

nutrients and fertilizers to terrestrial organisms and as a building block for the

synthesis of many pharmaceuticals. It is emitted from various industrial

processes, including wastewater treatment plants. Although in wide use,

ammonia is both caustic and hazardous. (Sharma et al., 2013.; Zhang et al.,

2017.)

Carbon monoxide (CO) is a colorless, odorless gas. It is a byproduct

of incomplete combustion of fuels. Vehicular exhaust is a major source of

carbon monoxide. It is especially dangerous for organisms and human health

as it binds 200-300 times more strongly than oxygen to hemoglobin (Patel, et

al. 2023.).

Volatile organic compounds (VOC) are a pollutant category often

divided into methane (CH4) and non-methane (NMVOCs) compounds.

Methane is an extremely efficient greenhouse gas. Other hydrocarbon VOCs

are also significant greenhouse gases via their role in creating ozone and in

 11

prolonging the life of methane in the atmosphere. Common NMVOCs include

aromatic compounds benzene, toluene, 1,3-butadiene and xylene, which are

suspected carcinogens and may lead to leukemia through prolonged exposure.

A prominent NMVOC is benzo[a]pyrene, which is a polycyclic aromatic

hydrocarbon, a known carcinogen with adverse health effects. (Sharma et al.,

2013.).

Particulate matter (PM) are particles in the micron range of size, of

solid or liquid suspended in a gas. In contrast, aerosol refers to particles and

the gas together. They are usually classified by their aerodynamic diameter.

Monitored for are usually PM10 (10 micron) and PM2.5 (2.5 micron),

sometimes down to PM1 (1 micron), due to peaks in distribution patterns at

around 2.5 and 10 μm aerodynamic diameter size. (Wang et al., 2015.)

Naturally, they originate from volcanoes, dust storms, forest, grassland fires,

etc. Anthropologically they primarily originate from burning fossil fuels.

Increased PM levels are linked to health hazards such as heart disease, altered

lung function and lung cancer. (Sharma et al., 2013.) A great risk regarding

PM is that they are small enough to pass the blood brain barrier and seem to

increase its permeability, further increasing risk. PM2.5 is regarded the most

harmful pollutant, is closely associated with premature death, and can

penetrate deep into lung tissue due to its small size (Oppenheim et al., 2013.;

Calderon et al., 2008.).

Smog is a pollution resulting from various processes and pollutants.

We discern summer and winter smog. Summer smog usually comes from

transportation and industrial emissions excited by ultraviolet light, which

form secondary pollutants that also combine with the primary emissions to

form photochemical smog. Also called “Los Angeles smog”, summer smog

results in ground ozone production, NO2 and PAN (Peroxyacetyl nitrate). In

winter often a temperature inversion traps pollutant near the ground.

Sulfurous smog, called “London smog” is caused by high SO2 concentrations

and results in sulfuric acid as a secondary pollutant. Other primary pollutants

include nitric oxide, hydrocarbons, carbon monoxide (Sharma et al., 2013.;

Tiao and Hemming, 1975.).

 12

Peroxyacetyl nitrate (PAN - C2H3NO5) is a secondary pollutant

similarly formed, as ozone, from NOx and VOCs. At higher temperatures,

PAN decomposes into NO2 and the peroxyacetyl radical. PAN is observed in

conjunction with elevated ozone concentrations.

Persistent organic pollutants (POPs) are organic compounds that are

resistant to environmental degradation through chemical, biological, and

photolytic processes. They are transported over great distances and

bioaccumulate and biomagnify in organisms. They include substances like

PCBs, DDT and dioxins. Dioxins originate from industrial processes and

combustion (municipal and medical waste incineration and backyard burning

of trash). PCBs have been useful in industrial applications (electrical

transformers and large capacitors, such as hydraulic and cooling fluids, and

in paint and lubricant production). DDT, the notorious pesticide, is still used

to control mosquitoes that carry malaria in some parts of the world. (Sharma

et al., 2013.; EPA 2009.)

Metal vapors originate from vehicles, ore and metal processing, are

also one of the constituents of PM. Led (Pb) is a persistent pollutant, as it

deposits in soils and remobilizes in the atmosphere from traffic. Emission

rates are positively related with air and blood Pb. Other sources are waste

incinerators, utilities, and lead-acid battery manufacturers. The highest air

concentrations of lead are usually found near lead smelters. Led is

accumulated in the bones. Transition metals Ni, V, Fe, Cu, among others,

participate in redox reactions, inducing oxidative stress and worsen the

impact on health on a greater scale than other PM constituents (Sharma et al.,

2013.; Chen et al., 2022.; Mielke et al., 2022.)

 13

ENVIRONMENTAL ASSESSMENT

Environmental assessment is a critical process for understanding and

mitigating the impacts of human activities on the environment. A systematic

and technical evaluation must be done on how various activities affect the

environment and requires a detailed and multifaceted assessment to develop

effective mitigation strategies. Environmental assessment is an

interdisciplinary process that integrates various branches of engineering and

science. A purpose and need must be defined following with a detailed

analysis of cumulative impacts, unavoidable adverse impacts, mitigation

measures and alternatives, under the legislative environmental policy act.

Air pollution, particularly a concern in urban and industrial areas, is a

major public health concern. Vulnerable groups, children, elderly, and people

with pre-existing health conditions are more susceptible to exposure. The

orographic and meteorological are mainly, other than radiative forcing, the

components that govern atmospheric dispersion, wind, and precipitation

intensity. The terrain complexity and other topographic features usually

increase the dispersive effects, while precipitative events bring the pollutants

down to the ground, allowing them to leach into the ground or be able to get

redispersed again. When talking about air pollution it is also important to

include the various chemical processes that are part of the pollutant’s complex

lifecycle.

2.2.1 LEGISLATIVE

At a pan European level, air emissions are regulated by the “United

Nations Economic Commission for Europe” (UNECE) and the “Convention

on Long-range Transboundary Air Pollution” (Air Convention). Under the

“Air Convention”, the “Gothenburg Protocol” sets emission thresholds for

NOX, NMVOCs, Sulphur oxides (SOX) and NH3. Reports on emission data

on numerous air pollutants are also obligatory. The EEA compiles the annual

EU emission inventory report under the Air Convention, in cooperation with

the EU Member States and the European Commission. The Gothenburg

 14

Protocol to abate acidification, eutrophication and ground-level ozone was

founded in Gothenburg, Sweden in 1999., and has set the emission thresholds

for 2010. - 2020. It formed the basis for the NEC Directive for the next two

decades (EEA, 2023.).

In the EU air pollution is governed by the “EU Ambient Air Quality

Directives” (AAQDs). They oblige members to follow legislation with the

aim of having air pollution reduced to levels which limit harmful effects on

human health and the environment, to improve and standardize the

monitoring and assessment of air quality. This should put the EU on track to

achieve zero air pollution by 2050.

The first pillar comprises “Directive 2008/50/EC” (2008 AAQ

Directive) on ambient air quality and cleaner air and “Directive

2004/107/EC” (2004 AAQ Directive) on arsenic, cadmium, mercury, nickel,

and polycyclic aromatic hydrocarbons in ambient air adopted in 2004). The

first pillar establishes standards (limit values) for air quality monitoring and

modeling.

The second pillar is comprised by the “Directive (EU) 2016/2284”

(NEC Directive) on the reduction of national emissions of five main

atmospheric pollutants, PM2.5, Sulphur dioxide (SO₂), oxides of nitrogen

(NOx), non-methane volatile organic compounds (NMVOCs) and ammonia

(NH3). The NEC Directive requires national air pollution control programs to

be established and to achieve reductions and improvements by 2020 and

2030, depending on the criteria.

The third pillar groups several EU legislative acts regulating air

pollution depending on its two main sources. Industrial emissions are covered

by “Directive 2010/75/EU” (IED) on industrial emissions, “Directive (EU)

2015/2193” (MCP Directive) on the limitation of emissions of certain

pollutants into the air from medium combustion plant, “Directive

2009/125/EC” (Ecodesign Directive) establishing a framework for the setting

of eco-design requirements for energy-related product.

Transport emissions cover “Regulation (EC) No 715/2007” on approved

emission rates for vehicles (Euro 5 and Euro 6 standards), “Regulation (EC)

No 595/2009” among other points, on access to vehicle repair and

maintenance information.

 15

Among other criteria the EU members oblige to:

- Divide their territories into zones and agglomerations for the purposes

of air quality assessment and management and report on air quality

zones designated under the Ambient Air Quality Directives

- Define common methods to monitor, assess and inform on ambient

air quality in the EU

- Provide information to the public

- Establish objectives for ambient air quality to avoid, prevent or reduce

harmful effects on human health and the environment

- Follow a deadline to achieve compliance with limit values under

certain conditions and for certain pollutants

- Assessing ambient air quality should be based on common methods

and criteria for air quality monitoring and modelling.

- Improves the legal framework, providing more clarity on access

damage redress and effective penalties

- Defines a minimum content of national air pollution control programs

Two specific policies involved are “Environmental Impact Assessment”

and “Strategic Environmental Assessment”.

Environmental Impact Assessment (EIA) Directive amended in 2014,

requires major building or development projects to first be assessed for their

impact on the environment, before the project can start. The EIA assesses the

direct and indirect significant impact of a project of environmental factors

including population and human health, biodiversity, land, soil, water, air,

climate, landscape, material assets and cultural heritage. The authority is

provided with a report containing the description of the project (location,

design, size), potential significant effects, reasonable alternatives, features of

the project and measures to avoid, prevent, reduce, or offset likely significant

impacts on the environment.

The Strategic Environmental Assessment (SEA) Directive states a

procedure when assessing a plan including scoping, environmental report,

reasonable alternatives, public participation, monitoring. It is applied in a

range of public programs for land use, transportation, energy, waste

agriculture, etc. (EC, 2024.).

 16

In Italy an IPPC permit under State jurisdiction is required, under Annex

XII, part two of Legislative Decree 152/2006, for combustion installations

with a thermal input of >300 MWt, gas reprocessing plants, refineries,

integrated steel plants, large chemical plants, plants located at sea, etc.

(MASE, 2024.).

Figure 4. Emission reduction of the main air pollutants by European union

states from 2005 to 2021, in compliance with the previous “Directive

2001/81/EC” (EEA, 2022.)

 17

Figure 5. Percentage emission reductions time plots of main air pollutants

from 2005. to 2021. (EEA, 2022.)

The national emission reduction commitments set out in the 2016

NEC Directive for years 2020-2029 and 2030 onwards are based on the

estimated reduction potential of each member contained in the TSAP 16

report.

Member
State

SO2 NOx NMVOC NH4 PM2.5
2020-
2029

After
2030

2020-
2029

After
2030

2020-
2029

After
2030

2020-
2029

After
2030

2020-
2029

After
2030

Belgium 43% 66% 41% 59% 21% 35% 2 % 13 % 20 % 39 %
Bulgaria 78% 88% 41% 58% 21% 42% 3 % 12 % 20 % 41 %
Czech Rep. 45% 66% 35% 64% 18% 50% 7% 22% 17% 60%
Denmark 35% 59% 56% 68% 35% 37% 24% 24% 33% 55%
Germany 21% 58% 39% 65% 13% 28% 5% 29% 26% 43%
Estonia 32% 68% 18% 30% 10% 28% 1% 1% 15% 41%
Greece 74% 88% 31% 55% 54% 62% 7% 10% 35% 50%
Spain 67% 88% 41% 62% 22% 39% 3% 16% 15% 50%
France 55% 77% 50% 69% 43% 52% 4% 13% 27% 57%
Croatia 55% 83% 31% 57% 34% 48% 1% 25% 18% 55%

Table 1. Partial list of member states and their set reduction target values

set by the NEC Directive, under the AAQDs (Directive (EU) 2016/2284,

2016.) The values are compared to 2005 data.

 18

Pollutant Italy reduction target EU reduction target
SO2 -80% -71%
NOX -70% -65%
PM2.5 -42% -40%
NMVOCs -50% -46%
NH3 -17% -16%

Table 2. Reduction target values set by the NEC directive, under the AAQDs

(ENEA, 2021.)

Projections for Italy or the year 2030. predict reduction in SO2

emissions, particularly in the maritime sector (-89% compared to 2010

values) and energy production (-59%). NOX emissions, primarily cut down in

the road transport sector (-74%) and electricity generation (-46%). PM2.5 will

reduce due to abatement of ultrafine particulate emissions in the civil sector

(-46%). Ammonia is the leading pollutant with the lowest reductions (-9%

compared to 2010 values), targeting urea based fertilizers in the agricultural

sector and zootechnical emissions.

2.2.2 MONITORING

The main objective of environmental monitoring is to manage the

impact various activities have on the environment, ensuring compliance with

regulations and to mitigate risks on the environment and health. It is based on

analyzing environmental monitoring data to arrive at relevant information, to

be able to formulate a suitable response in a prompt manner. With the effects

of emissions of polluting chemicals and industrial processes into the

atmosphere, a need was created for environmental research, regulations, and

air quality monitoring.

Air quality monitoring requires the integration of multiple

environmental data sources, containing topographic data and meteorological,

chemical, and physical parameters. As the quality of ambient air relates to the

presence and concentration of substances regarded as pollutants. Air

monitoring is tied to the determination of the local environmental, health and

 19

social risk. More so, on the influence of different emission sources, pollutants,

and their processes on air quality. Environmental data gathered using

specialized observation tools, such as sensor networks and Geographic

Information System (GIS) models, from multiple different environmental

networks and institutes is integrated into air dispersion models, which

combine emissions, meteorological, and topographic data to detect and

predict concentration of air pollutants

From a practical point of view, the main objective of the work plan is

to obtain representative samples and take removal actions. The cost of the

characterization program (including the cost of the investment equipment

installation, operation and maintenance and expected lifetime of the system),

including the sampling period duration, number of discrete samples taken, the

size of each sample, and the number of substances sampled must be defined.

This allows for proper sanation and timely response upon removal site

assessment.

Sources are divided into mobile and stationary, while emissions can

be steady or unsteady, and uniform or non-uniform. Sampling is done on a

point area or volume. The data is assessed in two basic ways: modeling and

measurement approach. Aside from meteorological factors (wind speed,

direction precipitation, topography, temperature, air humidity, insolation) to

take representative samples scheduling must be adapted to the variability,

frequency, duration of the specific source. The best type of analysis to be

performed must also be defined.

Air sampling is defined as those sampling and analytical techniques

that require either off- or on-site laboratory analysis and do not provide

immediate results. Air sampling techniques are more accurate in detection,

identification and quantification of specific chemical compounds relative to

most air monitoring technologies.

Air monitoring comprises the use of measuring instruments and other

screening or monitoring equipment and techniques that provide instantaneous

(real-time) data on the levels of airborne contaminants. Examples of air

monitoring equipment are photoionization detectors (PID), flame ionization

detectors (FID), oxygen/combustible gas detectors, and remote optical

sensors.

 20

For particulate matter filtration and impaction techniques can be used

together with gravimetric analysis. High volume samplers are filtration units

where all the particles above to the cut off diameter are measured. They have

no preferred particle size because the measured variable is the total

concentration of particles in suspension. They sample in the range of 0.8 2

m3/min of air. Photosensors are laser and optical sensors, that can also be

portable, that measure light scattered from the particles which pass through

the laser beam.

Absorption and adsorption methods are mainly used for gaseous

pollutants, and specialized olfactometry or gas chromatography-mass

spectrometry (GC-MS) for odor detection and analysis. Absorption is a

sampling method comprised of the absorption of gases into a liquid medium

for later analysis. This is effective for soluble gases like sulfur dioxide (SO₂)

and ammonia (NH₃). Adsorption methods adsorb gaseous pollutants onto a

solid medium, such as activated carbon, for analysis. This method is suitable

for volatile organic compounds (VOCs) and other hydrocarbons). Using gas

chromatography is expensive, requires technical assistance and calibration

but offers speciation with low detection limit. Dynamic olfactometry is a

standardized method used to measure and quantify odors in the environment.

The odor concentration (OU [m-3]) is the number of times that the sample is

diluted with odorless air to reach the “Odor detection threshold (ODT)” as

decided by 50% of the panelist.

 21

2.2.3 MODELLING

To accurately predict and describe the fate of the pollutants from the

collected data a systemic approach must be taken, and many processes must

be considered.

Emissions need to be accurately identified and quantified. Generally, they

are described by pollutant load/emission rate (L, [g s-1]), which is equal to the

product of the pollutant concentration (C, [μ m-3; ppm, ppb]) and gas flow

rate (F, [m3 s-1; L s-1]).

The chemical reactions that pollutants undergo in the atmosphere,

resulting in the formation of new compounds Advection, the horizontal

transport of air and its pollutants, dispersion, the process by which pollutants

spread from areas of higher concentration to areas of lower concentration due

to vicinity of earths complex surface and adiabatic turbulence (due to vertical

temperature profile), must be considered when modelling, which has adverse

consequences. This requires understanding of the wind shear, vertical

velocity gradient, vertical temperature gradient, temporal changes in the

Planetary boundary layer and many other meteorological parameters.

Cloud cover and insolation data is useful when calculating the mass

balance of the boundary layer giving a more correct value to radiative fluxes.

The stability of the lower earth’s atmosphere largely depends on the vertical

temperature distribution (fig. 6), meaning vertical motion is inhibited.

Adiabatic lapse rate is a measurement of the rate at which a parcel of air cools

as it rises, e.g. the rate of temperature change with height [°C km-1]. Under

radiation the earth’s surface heats the atmosphere and produces a strong

temperature gradient, thereby inducing adiabatic mixing and turbulence,

where cool dense air falls to be heated, and then rises again to cool.

Temperature inversions happen when the earth’s surface cools, and relatively

warm air sits on a cool layer above earth. This traps pollutants near the

ground.

 22

Figure 6. Variation of atmospheric stability due to vertical temperature

distribution.

A)Absolute instability (strong negative temperature gradient)

• Dry-adiabatic lapse rate unsaturated parcels cool at a rate of 10°C km-1

B)Neutral condition or conditional stability - when the lapse rate between the

dry and moist adiabatic lapse rate. Conditional instability exists when the

atmosphere's stability depends on the saturation of the rising air

• Moist Adiabatic Lapse Rate – For a saturated parcel of air, i.e., when its

T=Td, then it cools at the moist adiabatic lapse rate = 6°C km-1

• Absolute stability occurs when the ELR is less than the moist adiabatic lapse

rate.

C) Sub adiabatic: Ambient lapse rate < adiabatic. It indicates stable

atmosphere, vertical motion, and mixing are suppressed. Dispersion is

suppressed, and contamination is trapped.

D) Isothermal vertical temperature distribution, indicates stratification

E) Inversion means a hot top layer has trapped pollutants near ground

 23

According to vertical temperature distributions at different times

various plume behaviors form (fig. 8).

Looping Plumes occur when the emitted plume undergoes cyclical or

oscillatory motion e.g. looping or meandering pattern. This happens with

variations in direction or vertical wind speed profile, with high temperature

gradients, associated with adiabatic convection e.g. during the day.

Coning Plumes are a behavior where the plume narrows or converges

as it rises, resembling a cone shape. This can occur when the emitted

substance has a higher velocity at the source and then spreads out as it rises

and disperses due to pressure differences, in stable atmospheric conditions.

Coning plumes are commonly observed in chimney emissions or exhaust

from jet engines.

Fanning plumes occur when the wind blows across the path of the

plume. The wind causes the plume to spread out horizontally, resembling a

fan shape. These happen more often at night and early morning due to

temperature inversion. Fanning plumes are influenced by wind direction and

speed and are commonly observed in open areas or near bodies of water due

to temperature inversion.

Lofting plumes exhibit significant buoyant effects and rise rapidly in

the atmosphere. It is characterized by a strong upward displacement due to

the temperature difference between the emitted substance and the surrounding

air. Parts of the plume rise above the inversion layer. Lofting plumes are

typically associated with sources that release heated gases or particles, such

as wildfires, volcanic eruptions, or industrial processes involving high-

temperature emissions. AERMOD also accommodates for “plume lofting”,

the behavior of plumes as they rise and remain at the top of the CBL, before

being mixed again.

Fumigating plumes descend and spread close to the ground, resulting

in the widespread dispersal of the emitted substance. This happens in then

there is a lapse, meaning fall in temperature with height in the bottom layer

and an inversion in the upper layer e.g. inversion conditions with a negative

upward radiative flux. They happen early in the morning or late in the

afternoon. This type of plume behavior is often observed in pesticide or

insecticide spraying activities, where the goal is to distribute the substance

across a large area for fumigation purposes, but is very dangerous with

emission near populated areas.

 24

Trapping plumes occur when the emitted substance is confined or

trapped within a specific area due to local atmospheric conditions or

topographic features. This can happen when there is a stable layer of air above

the plume that prevents it from dispersing vertically or horizontally. Trapping

plumes are commonly observed in valleys or areas with strong temperature

inversions.

Neutral plume refers to a type of plume that has minimal buoyancy

effects and remains relatively stable as it disperses in the atmosphere. Neutral

plumes commonly occur when the temperature of the emitted substances,

such as gases or particles, is like the surrounding ambient temperature. As a

result, the plume rises vertically without significant upward or downward

displacement due to buoyancy forces.

Figure 7. Different types of plume behavior for various atmospheric stability

conditions. The dotted lines show dry adiabatic lapse rate, the solid lines

represent the actual adiabatic lapse rates for different atmospheric stability

conditions. Lapse is the normal temperature fall with height and inversion is

the rise of temperature with height (Geiger, et al., 1995.)

 25

Figure 8. Plume emitted by API refinery in Falconara Marittima, Italy, aloft

due to PBL stratification, lightly rising due to residual ground heat flux

(Cronache Ancona, 2024.)

Air dispersion/pollution modeling software is crucial for predicting

concentrations of pollutants in the atmosphere. Mathematical models are

indispensable in processing large quantities of different data points and

producing accurate risk assessments and predictions. These tools help in

assessing the potential impact of emissions from various sources, aiding in

regulatory compliance, environmental impact assessments, and the

development of mitigation strategies.

Air quality models use complex mathematical techniques to simulate

physical and chemical processes, often in an iterative manner, that affect air

pollutants as they disperse and react in the atmosphere. Air pollution

modeling is based on several assumptions and simplifications, like no

feedback between chemical species and flow fields (wind velocity, turbulent

diffusivity, temperature). Generally, dilution and dispersion reduce

concentration at given points. They consider various factors, such as

meteorological conditions, topography, and the characteristics of the

pollutant source. These models can simulate the transport, transformation,

and deposition of pollutants over different spatial and temporal scales.

 26

Dispersion models are mathematical tools used to simulate the

distribution of air pollutants in the atmosphere, considering the

aforementioned atmospheric processes. They are essential for predicting air

quality and assessing the impact of emissions from various sources, based on

empirical data and theoretical understanding of the processes. Some air

dispersion models include chemical transport models (CTMs), describing

both chemical and meteorological processes in the atmosphere, like the

“Weather Research and Forecasting” (WRF) based model “WRF-Chem”.

Gaussian air pollution dispersion models are accurate and consistent,

particularly in urban settings but lacking in the far field. Lagrangian models,

that track pollutant parcels as they move through the atmosphere are effective

in simulating the transport and dispersion of pollutants over long distances

and complex terrains but can be computationally intensive, require detailed

meteorological data and can suffer “numerical diffusion”. Eulerian models

focus on fixed grid points and solve the advection-diffusion equation to

simulate the dispersion and chemical transformation of pollutants over larger

scales. Their output is limited to the discretization fineness of the grid

resolution. (Atabi et al., 2016).

Gaussian (normal) distribution to describe the dispersion of pollutants

in the atmosphere by assuming pollutants disperse in a bell-shaped

concentration distribution profile. They are widely used for regulatory

purposes and to assess the impact of point sources, such as industrial stacks.

They are suitable for short-range dispersion (a few kilometers from the

source).

Lagrangian models track the movement of individual pollutant

particles or parcels of air due to atmospheric processes. The trajectory of each

particle is calculated based on wind speed, direction, and turbulence. They

shine in simulating pollutant dispersion over complex terrains and for long

range transport. They can capture detailed pathways of pollutants and are

often used in research and regulatory applications.

Eulerian models divide the atmosphere into a grid and calculate the

concentration of pollutants in each grid cell over time. They use fixed

reference points to solve the advection-diffusion equations that govern

pollutant transport. Eulerian models are suitable for regional and urban air

quality modeling, capturing the interactions between multiple sources and

 27

atmospheric processes. They are used for regulatory assessments and to

inform air quality management strategies.

Models combine features of Gaussian, Lagrangian, and Eulerian

approaches to leverage the strengths of each method. For example, a hybrid

model might use Gaussian methods for near-source dispersion and Eulerian

methods for regional transport offering flexibility and accuracy for a wide

range of applications, from local impact assessments to large-scale air quality

forecasting.

AERMOD was developed by EPA in the 2000s and will be further

discussed in this paper. It is a short range dispersion air dispersion model

based on planetary boundary layer turbulence and scaling concepts,

integrating terrain effects and building downwash.

CALPUFF is a non-steady-state puff dispersion model, suitable for

long range transport and complex terrain developed in the late 90s. It models

spatially and temporally variable meteorological conditions and is used for

both regulatory and non-regulatory applications.

ADMS (Atmospheric Dispersion Modeling System) was developed in

1995. by “Cambridge Environmental Research Consultants” (CERC). It is a

Gaussian plume model used for simulating pollutant dispersion from various

sources, including industrial and road traffic. It accounts for complex terrain,

buildings, and even deposition processes.

HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory

was developed in 1983. by “National Oceanic and Atmospheric

Administration” (NOAA). Used for computing air parcel trajectories and

dispersion or deposition of pollutants, suitable for both short and long range

studies.

ISCST3 (Industrial Source Complex Short Term Model) was

developed by EPA in the 80s. This Gaussian plume model predicts pollutant

concentrations from industrial sources and is widely used for regulatory

compliance. It served as a predecessor to AERMOD.

WRF-Chem (Weather Research and Forecasting model coupled with

Chemistry) was developed in 2005. by the “National Center for Atmospheric

Research” (NCAR). WRF-Chem is a regional-scale model that simulates both

weather and air quality, accounting for interactions between pollutants and

meteorological conditions.

 28

Using models easily ensures that industrial and vehicular emissions

meet air quality standards, the timely prediction of the potential impact of

new developments on air quality can be made, areas at risk of high pollution

levels are identified to implement adequate responses, and to predict the

dispersion of hazardous pollutants during accidental releases. Air dispersion

models face challenges with data quality and complexity (which continuously

evolves to more accurately model atmospheric processes). In the past the

problem was also due to computational resources, but that is becoming less

of a problem today.

Future advancements in air dispersion modeling include the utilization of

machine learning and artificial intelligence to improve model accuracy and

efficiency. Integration of real time data to leverage real-time environmental

data for dynamic and adaptive modeling. Developing more accessible

software to facilitate broader use by non-specialists, which is partly what this

thesis focuses on.

 29

EPA

The “United States Environmental Protection Agency” (EPA) was

established in December 1970, in response to growing public concern about

environmental pollution. The agency was formed through an executive order

by President Richard Nixon, consolidating various federal research,

monitoring, standard-setting, and enforcement activities into a single agency.

The main objective is to protect human health and the environment by

enforcing regulations based on laws passed by Congress. The agency's

primary goal is to ensure that all Americans are protected from significant

risks to human health and the environment where they live, learn, and work.

EPA's headquarters are in Washington, D.C. Within EPA operating are, the

“Office of Air and Radiation”, the “Office of Water”, the “Office of Chemical

Safety and Pollution Prevention”, and the “Office of Enforcement and

Compliance Assurance”. Each office focuses on specific aspects of

environmental protection and regulation.

The “Clean Air Act” (CAA), one of the most significant environmental

laws, was enacted in 1970 and has undergone several amendments. The CAA

aims to regulate air emissions from stationery and mobile sources, ensuring

that air quality meets health-based standards. The EPA sets and enforces these

standards, known as the National Ambient Air Quality Standards (NAAQS),

for key pollutants.

“Clean Water Act” (CWA) established in 1972, regulates discharges of

pollutants into the waters of the United States and sets quality standards for

surface waters, implements this law through pollution control programs,

wastewater standards for industries, water quality standards for contaminants,

etc.

Other important laws include the “Safe Drinking Water Act”, and the

“Toxic Substances Control Act”, “Resource Conservation and Recovery

Act”, “Endangered Species Act”, “Pollution Prevention Act”.

 30

EPA is responsible for monitoring air quality across the nation, sets

standards for key pollutants, and enforces compliance through a variety of

mechanisms. This includes issuing permits for emissions, conducting

inspections, and taking enforcement actions against violators. The EPA also

works with state and local agencies to develop State Implementation Plans

(SIPs) that outline how states will achieve and maintain compliance with

NAAQS. The agency's permitting programs, such as the New Source Review

(NSR) and Title V operating permits, ensure that new and modified sources

of pollution comply with air quality standards.

The National Ambient Air Quality Standards (NAAQS) are central to

the EPA's efforts to control air pollution. These standards are set for six key

pollutants: particulate matter (PM10 and PM2.5), ground-level ozone (O3),

carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and

lead (Pb). NAAQS are based on scientific evidence regarding the health and

environmental effects of these pollutants. The EPA regularly reviews and

updates the standards to reflect the latest scientific knowledge, ensuring that

they provide adequate protection for public health and the environment.

The Atmospheric Environmental Research and Modeling Initiative

(AERMIC) was established to enhance the EPA's capabilities in air quality

modeling, charged with developing a replacement for the previous ISCST

model based on state of the art science and data, like NLCD land cover data,

use of NED elevation data to determine height of obstacles and detailed urban

morphology data for several cities. AERMIC brought together experts from

the EPA, the American Meteorological Society, and other stakeholders to

develop advanced tools for predicting the dispersion of pollutants in the

atmosphere. The primary objective was to create a robust, scientifically sound

model that could be used for regulatory purposes and air quality assessments.

The development of the AERMOD (American Meteorological

Society/Environmental Protection Agency Regulatory Model) was a

collaborative effort initiated by AERMIC. AERMOD was designed to replace

older models that were less accurate and less capable of handling complex

environmental scenarios. The development process involved extensive

research, testing, and validation to ensure that the model could provide

reliable predictions of pollutant dispersion under a wide range of atmospheric

 31

conditions. The performance of AERMOD has been extensively validated

through numerous studies and evaluations. These assessments have compared

AERMOD's predictions with observed pollutant concentrations in various

settings, confirming its reliability and accuracy. The model's robust

performance has led to its widespread acceptance and use by regulatory

agencies, industry, and researchers around the world.

EPA’s future directions:

• Reduce emissions that cause climate change and pollution

• Accelerate resilience and adaptation to climate change impacts

• Advance international and subnational climate efforts

• Enforce environmental laws and ensure compliance

• Ensure clean and healthy air for all communities and reduce

localized pollution and health impacts

• Ensure safe drinking water and reliable water infrastructure

• Protect and restore waterbodies and watersheds

• Safeguard and revitalize communities

• Reduce waste and prevent environmental contamination

• Prepare for and respond to environmental emergencies

• Ensure safety of chemicals for people and the environment

• Chemical and pesticide safety

Future directions for AERMOD include incorporating new scientific

findings, improving computational efficiency, and enhancing its ability to

model complex scenarios such as urban environments and climate change

impacts. Additionally, integrating AERMOD with other modeling tools and

data sources can provide more comprehensive and accurate air quality

assessments.

The EPA's work in air pollution management is critical to protecting

public health and environment. AERMOD's development and

implementation represented significant advancements in the field of

atmospheric dispersion modeling, enabling more accurate and reliable

predictions of pollutant behavior. As environmental challenges continue to

grow, the ongoing refinement and application of models like AERMOD will

be essential for developing effective regulatory strategies and ensuring clean

air for all.

 32

2.4. PYTHON

Programming has become an essential skill in the field of engineering,

transforming how engineers design, analyze, and manage projects.

Programming plays a critical role in various aspects of engineering, including

design and simulation, data analysis, automation, and creating control

systems.

Creating graphical user interfaces (GUIs) is a crucial aspect of

software development, providing users with an intuitive way to interact with

applications. Several programming languages are particularly well-suited for

GUI development, each with its own set of advantages and drawbacks.

Java is a versatile, platform-independent language widely used in web,

enterprise and mobile applications. Programs created in Java can run on any

platform with a Java Virtual Machine (JVM). Java's Swing and JavaFX are

two primary frameworks for creating GUIs also including Qt and wxWidgets.

Swing and JavaFX provide a comprehensive set of components for building

complex user interfaces. Its drawbacks include slower and less responsive

apps compared to those created with some other languages.

C/C++ are object-oriented languages developed by Microsoft and

offer fine-grained control over system resources and performance. It is often

used in conjunction with the .NET framework, particularly Windows

Presentation Foundation (WPF) and Windows Forms, to create Windows-

based GUIs. It has applications in creating embedded systems, real time

systems, simulation and modeling, high performance computing. Its

drawbacks include a steep learning curve due to complex syntax and manual

memory management and longer development time compared to higher-level

languages. Also, its platform dependency is a drawback as the full capabilities

of C languages are only utilized on Windows.

Python interpreted, high-level language known for its simplicity and

readability. It was released in 1991, as Python 0.9.0, later with Python 1.0 in

1994. Python 3.0 was released in 2008. Popular frameworks for GUI

development in Python include Tkinter, PyQt5, and Kivy. Python’s

 33

straightforward syntax makes it accessible for beginners, featuring an

extensive standard library, and cross-platform compatibility. GUIs can be run

on multiple operating systems with minimal changes. Python’s wide range of

libraries allows for rapid development and integration with other

technologies.

Python is easy to learn and flexible but may suffer from performance

issues. Python’s interpreted nature can result in slower performance for GUI

applications compared to compiled languages. The term "interpreted nature"

refers to the way a programming language executes code. In an interpreted

language, like Python, the source code is not directly translated into machine

code (binary code) by a compiler before execution. Instead, the code is

interpreted and executed line-by-line by an interpreter at runtime.

An interpreted language works in like Python in this example in the

following steps:

Parsing - the interpreter reads the source code and parses it into a data

structure that represents the program's logic

Execution - the interpreter then processes the parsed code, executing it one

statement at a time. Each line of code is translated into machine instructions

and executed on the fly.

Dynamic Typing - during execution, Python determines the data types and

performs type checking dynamically, without the need for explicit type

declarations.

Result - The output or result of each statement is immediately available,

allowing for rapid development and testing.

Many other programming languages used in science and engineering are

based on python, like MATLAB and R. The GUI development leverages

Python’s robust libraries for GUI design and data handling, ensuring a user-

friendly and efficient tool. Since I have experience in working in these

environments Python was chosen to create the graphical user interface.

 34

2.4. AERMOD

AMS/EPA Regulatory Model (AERMOD) is a steady-state plume

model that incorporates air dispersion based on planetary boundary layer

(PBL) turbulence structure and scaling concepts (fig. 10.), including

treatment of both surface and elevated sources, and both simple and complex

terrain. The “American Meteorological Society” (AMS) and “U.S.

Environmental Protection Agency” (EPA) formed the “AMS and EPA

Regulatory Model Improvement Committee” (AERMIC) in 1991. and

created AERMOD (US EPA, 2019.).

AERMOD is made for short range (up to 50km) dispersion modelling

and assumes the concentration distribution to be Gaussian (fig. 17.) in both

vertical and horizontal direction in the stratified boundary layer (SBL). In the

convective boundary layer (CBL), also daytime planetary boundary layer, the

horizontal distribution is assumed as Gaussian, but the vertical as bi-Gaussian

(Equation 11; fig. 20; fig. 21) (EPA, 2023.).

AERMOD requires hourly surface and upper air meteorological

observations for simulating pollutant dispersion, but such data is often

unavailable. To overcome this, meteorological parameters are derived from

high-resolution simulations using the Weather Research and Forecasting

(WRF) model. An offline preprocessor has been developed to couple WRF

with AERMOD, initializing the latter with hourly values derived from WRF

outputs.

AERMOD consists of numerous preprocessors, processor and

postprocessors which serve different functions. Some of them will be listed

further.

AERMAP is a terrain preprocessor designed to work with the

AERMOD dispersion model. It processes digital terrain data to generate the

terrain inputs necessary for AERMOD, ensuring accurate representation of

the ground elevation and terrain features around the area of interest. This

preprocessing is crucial as terrain can significantly influence air pollutant

dispersion patterns by affecting wind flow and atmospheric stability.

 35

AERMAP calculates elevations and hill heights for receptors and sources,

providing essential data to enhance the accuracy of AERMOD's predictions.

AERMET is the meteorological preprocessor for AERMOD,

responsible for preparing the meteorological data input. It processes raw

weather data, including surface and upper air observations, to generate the

necessary parameters for AERMOD, such as wind speed, wind direction,

temperature, and atmospheric stability.

AERMOD is an advanced air dispersion model used for predicting the

dispersion of air pollutants from various sources. It incorporates state-of-the-

art modeling techniques and handles both simple and complex terrain

scenarios. AERMOD utilizes data from AERMAP and AERMET to simulate

how pollutants disperse in the atmosphere, accounting for factors like terrain,

weather conditions, and source characteristics. It is widely used in regulatory

applications to assess air quality and ensure compliance with environmental

standards.

AERPLOT is a post-processing tool used in conjunction with

AERMOD. It helps visualize the dispersion modeling results by creating

graphical representations of pollutant concentrations and distributions.

AERPLOT can generate contour plots, concentration maps, and other visual

aids that make it easier to interpret and communicate the results of AERMOD

simulations. This visualization capability is essential for presenting findings

in a clear and understandable manner, aiding in decision-making and

regulatory compliance.

BPIPPRIME (Building Profile Input Program with PRIME

enhancements), which is used to account for the effects of building downwash

on pollutant dispersion. BPIPPRIME processes information about the

physical dimensions and layout of buildings near emission sources, helping

AERMOD accurately model how these structures influence air flow and

pollutant spread.

AERMINUTE is another useful preprocessor that refines

meteorological data by processing minute-by-minute wind data to improve

the accuracy of the input for AERMET, especially in capturing short-term

 36

variations in wind speed and direction. This level of detail is particularly

important for modeling near-field dispersion in complex environments.

AERSURFACE is a preprocessor that estimates surface

characteristics such as albedo, Bowen ratio, and surface roughness length,

which are essential for characterizing the land use and surface features within

the modeling domain. These parameters influence the atmospheric boundary

layer and are critical for accurately modeling dispersion under various

meteorological conditions.

AERMINUTE and AERSURFACE work together with AERMET to

ensure that the meteorological inputs are as representative as possible,

improving the overall reliability of AERMOD's predictions.

AERMAP, as previously mentioned, processes terrain data. Another

related tool is AERGRID, which assists in defining receptor grids over

complex terrain, ensuring that the receptors are placed accurately to capture

the variations in terrain elevation effectively.

LEADPOST is a post-processor specifically designed for handling

lead emissions and their dispersion, ensuring compliance with lead-specific

air quality standards. It helps in interpreting the results of AERMOD

simulations that involve lead, providing detailed analysis and reporting.

AERPOST is a general-purpose post-processor that can handle

various types of AERMOD output, creating summaries, statistical analyses,

and visual representations like tables and graphs. It simplifies the process of

analyzing and communicating the results of dispersion modeling.

Some further parameters and behaviors are, as mentioned, influenced

by the presence of stratification/convection in the PBL. The point of transition

between the CBL and SBL (day to night) is defined as the point in time when

the solar elevation angle φ = φcrit. If solar radiation measurements are

available AERMET determines “φcrit” from an estimate of cloud cover (EPA,

2023.).

 37

Transport processes and interaction with the lower boundary of the

troposphere (Earth’s surface) modify the lowest 100 to 3000m of the

atmosphere, creating the planetary boundary layer (PBL). Relatively high

frequency of turbulent behavior is what differentiates the boundary layer from

the rest of the earth’s surface. A common approach in studying winds is

dividing them into the “mean part” (advective contribution) and “perturbation

part” (turbulent contribution), the latter being described as irregular swirls of

motion called “eddies” (Stull, 2012.).

Figure 9. Scheme of troposphere division into free atmosphere and boundary

layer (Stull, 2012.)

The boundary layer over land consists of three major parts (fig.9):

Convective mixed layer (very turbulent), residual layer (less turbulent,

containing former mixed layer air) and a nocturnal stable boundary layer

(with sporadic turbulence). Another part is the surface layer where the wind

is influenced by friction (Wyngaard, 1985.; NWS, 2024.)

The CBL is tied to solar radiation and starts about a half hour after

sunrise (fig. 9). It grows in depth until the late afternoon by entraining or

mixing less turbulent air from above down into it (fig. 9). The temperature

profiles are adiabatic resulting in convective movement.

The residual layer forms about a half hour before sunset where

turbulence decays. In the absence of advection particles will remain aloft in

the residual layer during the night. It is neutrally stratified, resulting in

turbulence of equal intensity in all directions. This creates dispersion rates

equal in horizontal and vertical direction, creating a cone shaped plume.

 38

The SBL is created by the contact of the residual layer with the

ground. The stable air tends to suppress turbulence and vertical motion (fig.

11), while the developing nocturnal jet increases wind shears and generates

turbulence, resulting in sporadic short burst turbulence.

A nocturnal jet is a fast-moving air current in the lower troposphere at

nighttime. With air temperatures near the ground decreasing after sunset, an

inversion layer is formed, where air temperature increases with height. Air

then tends to flow horizontally and becomes less inhibited by turbulence and

convection which tend to dominate during daytime when the ground surface

heats up as a result of insolation. (Stull, 2012.; Davis, 2000.)

Figure 10. Time evolution of PBL (Stull, 1988.)

 39

Figure 11. Lofting of a smoke plume occurring when the top of the plume

grows upward into a neutral layer while the bottom is stopped by a stable

layer

Figure 12. A growing mixed layer mixes elevated smoke plumes down to the

ground e.g. fumigation

The energy balance in the PBL describes the transfer and

transformation of energy in the lower part of the atmosphere. The change of

parameters inside the balance influence vertical mixing and therefore

pollutant dispersion. Its key components are:

 40

Net radiation - which is often diverged into shortwave and longwave

radiation, short wave radiation corresponds to the portion of solar radiation

that reaches the earth’s surface ~ 30% of total, and longwave corresponds to

infrared radiation emitted by the earth’s surface and atmosphere.

Sensible heat flux - the transfer of heat from the earth’s surface to the

atmosphere by means of convection and conduction.

Latent heat flux –the transfer of heat associated with phase change,

e.g. evaporation and condensation.

Soil heat flux – energy gained or lost during belowground warming

or cooling regarding the ground (Purdy, et al., 2016.)

They are influenced by a variety of surface and atmospheric

conditions, and temporal changes (day/night). These include albedo, surface

roughness, humidity, cloud cover, wind speeds, insolation and insolation

length. During the CBL these parameters will be positive, while during the

SBL these parameters will be negative, except for latent heat flux which will

usually exhibit lower positive values, caused in part by the anomalies of

water) (Mauder, et al., 2020.).

The Bowen ratio (Bo) is a parameter defined as the ratio between

sensible and latent heat flux. Bo<1 indicates a wet surface, while Bo>1

indicates a dry surface. Larger values produce greater updrafts and more

intense buoyancy fluxes and therefore convection fluxes (Kang, 2016.).

Values of the ratio are negatively related to surface air temperature, while the

effect is exacerbated in less vegetated areas (Cho, et al., 2012.). It depends

upon the underlying surface (e.g., dominant land-use and soil-type, latitude,

elevation, continental location, drainage basin, etc.) and the time of year

(Friedrich, et al., 2000.).

In AERMOD the structure and growth of the PBL is defined by an energy

balance, determined by the heat fluxes and momentum drive. For the CBL it

is defined as following:

 41

Equation 1.

𝐻 + 𝜆𝐸 + 𝐺 = 𝑅𝑛 → 𝐻 =
0.9𝑅𝑛

(1 +
1

𝐵𝑜
)

Where:

H – Sensible heat flux [W m-2]

λE – Latent heat flux (λE=H/Bo; Bo-Bowen ratio) [W m-2]

G – Soil heat flux (assumed G=0.1*Rn) [W m-2]

Rn – Net radiation [W m-2], (EPA, 2023.)

The shear velocity (u*) (also friction or shear stress velocity) is one of

the main scaling parameters in the description processes in the PBL,

specifically in describing the vertical profiles. It depends on the turbulent state

of the atmosphere and has many definitions, but generally it describes the

turbulence intensity in the boundary layer and the transfer of momentum to

the earth’s surface. It is mainly influenced by surface roughness and affects

the dispersive characteristics of airflow. It is generally defined as

 (τ-surface shear stress; ρ-air density), with τ being defined as a product of the

horizontal (main) and vertical wind speed components (Weber, 1999.).

The von Karman constant is a widely used scalar value approximated

to 0.4 that describes the relation between the exerted forces and the drag on

the boundary surface, in this case between the advective turbulent motion of

the air and earth’s surface (Sheppard, 1947.).

Monin-Obukhov length (L) describes the effects of buoyancy on

turbulence in the atmospheric surface layer. It symbolizes the height at which

turbulence is predominantly generated by buoyancy, rather than wind shear.

L < 0 - unstable conditions,

L > 0 - stable conditions,

L → ∞ - neutral conditions (EPA, 2019.; Bonan, 2019.)

The shear velocity (u*) and Monin-Obukhov length (L) are defined for

CBL from the energy balance equation. The final estimated value of u* is

reached through iterative calculations of the following equation:

 42

Equation 2.

𝑢∗ =
𝑘𝑢𝑟𝑒𝑓

ln(𝑧𝑟𝑒𝑓 𝑧0⁄) − 𝛹𝑚 {𝑧𝑟𝑒𝑓 𝐿⁄ } + 𝛹𝑚{𝑧0 𝐿⁄ }

Where:

u* - Shear velocity [m s-1]

k - von Karman constant (=0.4)

uref – Wind speed at reference height e.g. advection [m s-1]

zref – Height at which u=uref [m]

z0 – Roughness length [m]

L – Monin-Obukhov length [m]

Ψm – Stability terms based on zref, z0 and L, (EPA, 2023.)

 After the final estimate of u*, L is calculated by:

Equation 3.

𝐿 =
𝜌 𝑐𝑝 𝑇𝑟𝑒𝑓 𝑢∗

3

𝑘 𝑔 𝐻

Where:

L – Monin-Obukhov length [L]

ρ – Air density [kg m-3]

cp – Specific heat of air at constant pressure [J g-1 K-1]

Tref – Ambient temperature of surface layer [K]

 - Shear velocity [m s-1]

k - von Karman constant (=0.4)

g – Gravitational acceleration; g9.807 [m s-2]

H – Sensible heat flux [W m-2], (EPA, 2023.)

For the SBL, the energy balance is highly site specific, so an empirical

approach is used to determine the shear velocity (u*) and Monon-Obukhov

length (L), rather than defining a nocturnal energy balance and deriving the

terms from them. The value is based on the drag coefficient in neutral

conditions as based on the work of Qian and Venkatram (2011.)

 43

The vertical structure is defined upon at least one measurement, but

preferably a surface and upper air measurement of:

1. Wind direction, 2. Wind speed, 3. Temperature, 4. Vertical potential

temperature gradient, 5. Vertical turbulence (σw), 6. Lateral turbulence (σv)

Vertical wind speed profiles are determined for different heights separately,

to minimize calculation times. This allows the wind speed below height 7z0

to drop linearly.

Equation 4.

𝑢 = 𝑢{7𝑧0}[
𝑧

7𝑧0
], 𝑓𝑜𝑟 𝑧 < 7𝑧0

Equation 5.

𝑢 =
𝑢∗

𝑘
[𝑙𝑛(

𝑧

𝑧0
) − 𝛹𝑚{

𝑧

𝐿
} + 𝛹𝑚{

𝑧0

𝐿
}], 𝑓𝑜𝑟 7𝑧0 ≤ 𝑧 ≤ 𝑧𝑖

Equation 6.

𝑢 = 𝑢{𝑧𝑖}, 𝑓𝑜𝑟 𝑧 > 𝑧𝑖

Where:

u – Calculated wind speed [m s-1]

 - Shear velocity [m s-1]

k - von Karman constant (=0.4)

Ψm – Stability terms based on z, z0 and L

For CBL:

zi – Mixing height (top of CBL) is assumed equal to 1000m

zo – Starting height equal to 0.1m (zo = 0.0001zi)

L – Monin-Obukhov length = -10m (L = - 0.01zi)

For SBL:

zi – Mixing height is assumed equal to 100m

zo – Starting height equal to 0.1m (zo = 0.001zi)

L – Monin-Obukhov length = 10m (L = 0.1zi), (EPA, 2023.)

 44

Figure 13. Vertical wind speed profile for CBL and SBL, in the region below

7z0 (EPA, 2023.)

Figure 14. Vertical wind speed profile, for CBL and SBL, in the region above

7z0 (EPA, 2023.)

 45

Mixing height in the CBL is dependent on both mechanical (fig.8) and

convective (fig.9) mixing and is determined as the greater of the two

calculated heights. In the SBL it depends only on the mechanical mixing

processes.

Figure 15. Mechanical portion of the vertical turbulence in the CBL,

corresponding to total vertical turbulence of SBL (EPA, 2023.)

Figure 16. Convective portion of the vertical turbulence in the CBL (EPA,

2023.)

 46

Figure 17. A contaminant plume emitted from a continuous point source, with

wind direction aligned with the x–axis. Profiles of concentration are given at

two downwind locations, and the Gaussian shape of the plume cross-sections

are shown relative to the plume centerline (Stockie, 2011.)

The concept of dividing streamlines (Snyder et al., 1985.) is

incorporated for flow in complex terrain, allowing the plume to be modelled

either impacting or following the terrain and greatly simplifying terrain

definition, and omitting the need for defining different complexities of the

terrain (EPA, 2023.).

The plume is divided into “horizontal’ and “terrain following/dividing

streamline parts” based on the dividing streamline height (Equation 7.; fig.

18). AERMOD calculates the concentration at the receptor position as sum of

two concentrations: the concentration from horizontal plume (prominent in

stable conditions) and that from terrain following plume (dominant in

unstable conditions) (Venkatram, et al., 2001.).

 47

Equation 7.

𝐶 = 𝑓𝑡 × 𝐶ℎ + (1 − 𝑓𝑡) × 𝐶𝑡

Where:

C – total concentration [μg m-3 or ppm]

Ch – Concentration due to the horizontal flow component [μg m-3 or ppm]

Ct – Concentration due to the terrain following/dividing streamline plumes

[μg m-3 or ppm]

ft – Terrain weighing factor, (EPA, 2023.)

AERMAP, one of AERMOD’s preprocessors uses gridded terrain

data to calculate a representative terrain-influence height (hc) for each

receptor with which AERMOD computes receptor specific Hc values.

Figure 18. Terrain treatment in AERMOD, visualizing the concept of dividing

streamlines and the construction of the weighting factor used in calculating

total concentration (EPA, 2019.)

 48

In the CBL, plume sections are emitted into a traveling train of

convective elements, updrafts and downdrafts, moving with the mean wind.

The PDF (probability density function) of the vertical velocity is positively

skewed and results in a non-Gaussian vertical concentration distribution. An

ensemble average of the plume volume is therefore calculated. Since a larger

percentage of the instantaneous plume is affected by downdrafts, the

ensemble average has a general downward trend (fig. 19) (EPA, 2019.).

Figure 19. Instantaneous and corresponding ensemble-averaged plume in the

CBL (EPA, 2019.)

For buoyant releases, there is no “final” plume rise assumed (fig. 18).

The direct transport of plume material to the ground is treated by the “direct”

source located at the stack (Equation 8.). That is, the direct source treats that

portion of the plume’s mass to first reach the ground and calculates all

subsequent reflections of the mass. The direct plume material within the

mixed layer that initially does not interact with the mixed layer lid.

 49

For plume segments or particles initially rising in updrafts, an

“indirect” or modified-image source is included (Equation 10.) (above the

mixed layer) to address the initial quasi-reflection of plume material at z = zi,

e.g. at the top of the boundary layer. For the indirect source, a plume rise (Δhi)

is added to delay the downward dispersion of material from the CBL top

which mimics the plume’s lofting behavior.

Additionally, a “penetrated” source or plume (above the CBL top) is

included to account for material that initially penetrates the elevated inversion

but is subsequently re-entrained by and disperses in the growing CBL

(Equation 9.). The penetrated plume material that is released in the mixed

layer but due to its buoyancy, penetrates the elevated stable layer.

Direct sources

Equation 8.

𝐶𝑑(𝑥, 𝑦, 𝑧) =
𝑄𝑓𝑝

√2𝜋𝑢
𝐹𝑦 ∑ ∑

𝜆𝑓

𝜎𝑧𝑗

∞

𝑚=0
[𝑒𝑥𝑝(−

(𝑧 − 𝛹𝑑𝑗 − 2𝑚𝑧𝑖)
2

2𝜎𝑧𝑗
2)

2

𝑓=1

+ 𝑒𝑥𝑝(−
(𝑧 + 𝛹𝑑𝑗 + 2𝑚𝑧𝑖)

2

2𝜎𝑧𝑗
2)

Penetrated sources

Equation 9.

𝐶𝑑(𝑥, 𝑦, 𝑧) =
𝑄𝑓𝑝

√2𝜋𝑢
𝐹𝑦 ∑ ∑

𝜆𝑓

𝜎𝑧𝑗

∞

𝑚=0
[𝑒𝑥𝑝(−

(𝑧 − 𝛹𝑑𝑗 − 2𝑚𝑧𝑖)
2

2𝜎𝑧𝑗
2)

2

𝑓=1

+ 𝑒𝑥𝑝(−
(𝑧 + 𝛹𝑑𝑗 + 2𝑚𝑧𝑖)

2

2𝜎𝑧𝑗
2)

Indirect sources

Equation 10.

𝐶𝑑(𝑥, 𝑦, 𝑧) =
𝑄𝑓𝑝

√2𝜋𝑢
𝐹𝑦 ∑ ∑

𝜆𝑓

𝜎𝑧𝑗

∞

𝑚=0
[𝑒𝑥𝑝(−

(𝑧 − 𝛹𝑑𝑗 − 2𝑚𝑧𝑖)
2

2𝜎𝑧𝑗
2)

2

𝑓=1

+ 𝑒𝑥𝑝(−
(𝑧 + 𝛹𝑑𝑗 + 2𝑚𝑧𝑖)

2

2𝜎𝑧𝑗
2)

 50

Where:

C𝑑(x,y,z) - Concentration due to a direct source at distance (x,y,z) [μg m-3 or

ppm]

Q - stack emission strength [g s-1]

u - wind velocity [m s-1]

λf - distribution coefficient

ψdj - difference in height between the source base and plume centerline, e.g.

effective source height [m]

fp - fraction of emitted contaminant that stays in the CBL (0<𝑓𝑝<1)

Fy – lateral distribution function with included meander

zi - height above the reflected surface in a stable layer [m]

σzp - total vertical dispersion of penetrated force [m]

σzj - vertical dispersion parameter [m]

hep plume height that penetrated beyond the CBL [m]

m – mass [g], (EPA, 2019.)

Figure 20. AERMOD’s three plume treatments/interpretations of the CBL

(EPA, 2019.)

 51

For material dispersing within a convective layer, a plume embedded

within a field of updrafts and downdrafts that are sufficiently large to displace

the plume section within it. In the CBL a good approximation to pw is the

superposition of two Gaussian distributions. The instantaneous plume is

assumed to have a Gaussian concentration distribution about its randomly

varying centerline. The mean or average concentration is found by summing

the concentrations due to all the random centerline displacements. This

averaging process results in a skewed distribution which AERMOD

represents as a bi-Gaussian PDF e.g. one for updrafts and one for downdrafts.

Equation 11.

𝑝𝑤 =
𝜆1

√2𝜋𝜎𝑤1

𝑒𝑥𝑝(−
(𝑤 − �̅�1)2

2𝜎𝑤1
2) +

𝜆2

√2𝜋𝜎𝑤2

𝑒𝑥𝑝(−
(𝑤 − �̅�2)2

2𝜎𝑤2
2)

Where:

pw - probability density function of the instantaneous vertical velocities

λ1 and λ2 - weighting coefficients for the two distributions with λ1 + λ2 = 1

and λ2 being larger (downdraft)

w - random vertical velocity in the CBL [m s-1]

�̅�𝑗 - mean vertical velocity for the updraft (j = 1) and downdraft (j = 2)

distributions [m*s-1]

σw - vertical turbulence [m s-1], (EPA, 2019.)

 52

Figure 21. AERMOD’s PDF approach for plume dispersion in CBL e.g.

superimposition of two Gaussian distributions, the updraft and downdraft

distribution (EPA, 2019.)

Figure 22. PDF of the vertical velocity. The bi-Gaussian curve has a

skewness of S=1. About 60% of the pw integral is on the negative side, the

rest is positive, consistent with results of numerical simulations and field

observations. (EPA, 2019.)

 53

2.6. GRAPHICAL USER INTERFACE

The graphical interface is a python v3 based interface that enables

users to create AERMAP, AERMOD and AERPLOT input files and to run

different stages of AERMOD (AERMAP, AERMOD and AERPLOT) within

the same program, without the use of “Command Prompt” or similar

interpreters. It is suggested that the user creates a folder that will host all the

data needed to run the stages. The executable files are located in their own

folder and can access the input files from any location. There is no need to

insert the executables or any other needed data into the folder, as it will be

done automatically. Surface and upper air meteorological data were provided

so there is no actual need to compile and run AERMET. The possible source

types are point sources (POINT) and polygons (AREAPOLY).

Figure 23. General flowchart of data processing

 54

Figure 24. Detailed flowchart of data processing for the “CAIRO for

AERMOD” app

AERMOD uses various input pathways to structure the necessary data

for air dispersion modeling. These pathways include CO (Control), SO

(Source), RE (Receptor), ME (Meteorology), and OU (Output). Each

pathway has a specific function and format, contributing to the overall setup

and execution of the model. When input files are compiled the pathway

keyword is input, followed by specific data for each line.

 55

The CO (Control) pathway defines the general settings and options

for the AERMOD simulation. This includes specifying the time frame,

pollutant of interest, averaging times, and other control parameters. It ensures

the model is configured correctly for the specific scenario being studied.

The SO (Source) pathway describes the characteristics of the

emission sources within the modeling domain. This includes defining the type

of source (point, area, or volume), its location, emission rates, and physical

parameters.

The RE (Receptor) pathway identifies where pollutant concentrations

will be calculated. Receptors can be specified as discrete points, a grid, or

along a line, and can include flagpole heights.

The ME (Meteorology)Meteorology pathway involves specifying the

meteorological data needed for dispersion calculations. This data includes

processed surface and upper air data files, which provide information on wind

speed, wind direction, temperature, and atmospheric stability.

The OU (Output) pathway defines the types of output files and formats

that AERMOD will generate. This includes specifying what concentration

data to output, file formats, and any statistical processing required.

AERMOD and its pre and post processors, are usually run via the

“Command Shell“. It includes manual assembly of input files, manually

copying all needed data inside of a folder, then opening the “Command

Shell“, navigating to the correct folder and running the application that way.

It involves knowing correct AERMOD syntax, and manually relocating many

files. The application commits that process by allowing the user to input raw

data (with the aid of visualizations in Google Earth and Google maps), it

being automatically compiled with correct syntax, needed data automatically

copied to the correct path, and running the stages by defining a project folder,

omitting the need of using the “Command Shell“ or manually relocating files.

 56

The main window contains 6 buttons and an output textbox from

which the whole process can be done. The first column contains buttons for

opening the input file compilers. The buttons in the second column

(AERMAP, AERMOD and AERPLOT) simply ask the user to navigate to the

folder in which the needed input data is located, after which the corresponding

executable is automatically run. AERPLOT expects that the folder contains 3

subfolders (aerplot1, aerplot2, aerplot3), which are automatically generated

along with the needed input data upon running the AERPLOT compiler

previously. Tooltips appear upon hovering over buttons and labels to guide

the user through the process, or to explain the functionalities. Checkmarks

will appear next to the buttons as the corresponding stage is done.

Figure 25. The main window of the interface currently running AERMAP

 57

2.6.1 AERMAP INPUT FILE COMPILER

Originally to compile an AERMAP input file, the user has to define

all grid data, with correct syntax, in a text editor and save the file as

“aermap.inp”. To run AERMAP the user needs to relocate the “aermap.inp”

and elevation data files in a folder containing “aermap.exe”, open the

“Command Shell”, navigate to the folder and run AERMAP.

The application allows the user to input raw data inside of a GUI, it

being automatically compiled with correct syntax and in correct file name and

format, with the associated files mentioned in the input file, automatically

copied into the project folder, omitting the need to know correct syntax or

manual relocation of files. When running AERMAP, only the project folder

needs to be selected, omitting the need for using the “Command Shell”, by

making the “.exe” files fetch data from specific paths, not necessarily the one

where the executable itself is located. This is possible for AERMET stages

too, though compiling AERMET input files is not possible through the

application, because most often ready surface and upper air data is used.

Upon opening the AERMAP compiler, a new window will be opened.

The window contains input boxes for the generic data needed to create an

AERMAP input file and tooltips guide the user about the functionality upon

hovering over the labels.

When using DEM files, the FILLGAPS function is automatically inserted,

but which is also not applicable for NED type files.

The “Orographic Files” button allows the user to choose multiple

elevation rasters, which will be automatically copied into the project folder

(the same folder the aermap.inp file will be saved in) and inputs the names of

the rasters in the input file.

The “Open map” button opens “Google Maps”. By right clicking on

the wanted location and left clicking on the coordinates, they are copied,

automatically converted to UTM easting, northing and zone, and input into

the interface as the anchor point. The user can also manually input the

coordinates. The anchor point is defined as the bottom left corner of the grid.

 58

Figure 26. AERMAP compiler overlaying “Google Maps”

When the data is input, the user can compile the input file. Only the

destination folder must be chosen (project folder) and the input file will be

automatically named aermap.inp, along with copying the needed elevation

data into the folder and creating “RECEPT.rou” file (containing grid

elevation data) and other output files.

Figure 27. Example of aermap.inp file contents created with the AERMAP

input file compiler

 59

Figure 28. Grid receptor network (with already processed sources) created

with the input file from figure 19. and figure 25., visualized in Google Earth

2.6.2 AERMOD INPUT FILE COMPILER

The process of running AERMOD is similar to that of AERMAP.

Originally to compile an AERMOD input file, the user must define control,

source, meteorological, receptor grid, and output data, with correct syntax, in

a text editor and save the file as “aermod.inp”. The user cannot visualize

sources until running a postprocessor like AERPLOT, this is only available

in paid versions like “AERMOD View”. To run AERMOD the user relocates

the “aermod.inp” and elevation data files in a folder containing “aermod.exe”,

open the “Command Shell”, navigate to the folder and run AERMOD.

The application allows the user to input raw data inside of a GUI, it

being automatically compiled with correct syntax, with the associated files

mentioned in the input file, automatically copied into the project folder,

omitting the need to know correct syntax or manual relocation of files.

Inputting sources is possible through Google Maps while sources are

visualized in Google Earth, minimizing user error and acting as a real time

 60

visual aid. When running AERMOD, only the project folder needs to be

selected, omitting the need for using the “Command Shell”, by making the

“.exe” files fetch data from specific paths, not necessarily the one where the

executable itself is located.

Upon opening the AERMOD compiler, a new window will be opened.

The window contains input boxes for the generic data needed to create an

AERMOD input file, while tooltips guide the user about the functionality

upon hovering over the labels. Navigation is done by mouse wheel (Ctrl+

mouse wheel results in horizontal movement) and switching between

textboxes by “Tabulator” button.

Figure 29. AERMOD input file compiler GUI

 61

Upon addition of point sources, the frame will expand and allow for

entry of physical and geometric parameters, and UTM coordinates. The

coordinates can also be input using the “Choose on map” button. This action

opens “Google Maps” and “Google Earth”. As coordinates are copied from

“Google Maps” they are automatically converted to UTM coordinates and

input into the interface, also the point source will appear in “Google Earth”,

where the elevation can be conveniently read (Figure 23.). Manual input is

also possible. This action is repeatable for multiple point sources.

Clicking on the “Add Polygon Area Source With Google Maps” button,

similarly opens “Google Maps” and “Google Earth”. As coordinates are

copied from “Google Maps” they are automatically converted to UTM and

added as vertices. Polygons also appear in “Google Earth” (Figure 30.).

Figure 30. AERMOD input file compiler with input information

 62

Figure 31. Added point sources and polygon sources automatically visualized

in real time using “Google Earth”.

 63

When manually inputting polygon coordinates, vertices are added

using the “Add Vertex” button (Fig. 32).

Figure 32. Manually adding polygon sources and vertices

The group name is important as it defines the name of the output files

along with time periods (For example here: PLOT24H_TEST.PLT). The

receptor file, surface and upper air meteorological data are chosen in an

explorer window and are automatically copied into the same folder as the

compiled “aermod.inp” file (if files with the same name exist, they won’t be

copied, but will still be listed in the text of the input file).

 64

Figure 33. Example of an “aermod.inp” file contents created with the

AERMOD input file compiler

 65

2.6.3 AERPLOT INPUT FILE COMPILER

Again, the process of running AERPLOT is like that of AERMAP and

AERMOD. Originally to compile an AERPLOT input file, the user must

define a variety of parameters (UTM zone, hemisphere, datum conversions,

visualization options, etc.) and generic AERPLOT input, with correct syntax,

in a text editor and save the file as “aerplot.inp”. To run AERPLOT the user

relocates the “aerplot.inp” and AERMOD outputs (including plot file) in a

folder containing “aerplot.exe”, open the “Command Shell”, navigate to the

folder and run AERPLOT.

The application allows the user to input raw data inside of a GUI, it

being automatically compiled with correct syntax, with the associated files

assigned trough the input action automatically copied into the project folder,

omitting the need to know correct syntax or manual relocation of files. With

multiple averaging periods, this is done iteratively, with all periods being

analyzed at once. Inputting UTM zone is possible through Google Maps.

When running AERPLOT, only the project folder needs to be selected,

omitting the need for using the “Command Shell”, in this case by relocating

the “.exe” file to the correct path and running it automatically.

The AERPLOT input file compiler opens in a new window and also

features tooltips which guide the user through the process. The automatic

opening of .kmz files in “Google Earth” is disabled.

 Version should be input as 2 by default, this option exist for potential

future upgrades. UTM zone can be input manually or again by clicking on the

“Open map for UTM zone” button, which opens “Google Maps” and upon

copying of coordinates automatically inputs the UTM zone.

The time periods and group name must be identical to the ones set in

the “aermod.inp” file, as the needed files are named according to them, and

will be automatically fetched and copied into the AERPLOT subfolders.

 66

Minimum and maximum bin can be set at will or conformed to the

data using the input: data. Binning methods (also for gradient) can be chosen

to be linear or logarithmic, while they can also be disabled. Grid rows and

columns should be set at 400, for computational ease, though they can be set

at larger values for larger files. The number of smoothing iterations distorts

locations as it is increased, so a value of 1 is recommended.

Upon compiling the user is asked to choose the input folder (again the

project folder), which will automatically create 3 subfolders (aerplot1,

aerplot2 and aerplot3) corresponding to the 3 time periods. The “aermod.inp”,

“aermod.out”, “aerplot.inp”, aerplot.exe and corresponding “.plt” file will be

automatically copied in each of the subfolders. Afterwards when running

AERPLOT from the main window the program will expect all the files to be

in place before running, otherwise an error will ensue.

Figure 34. AERPLOT input file compiler

 67

Figure 35. Compiled “aerplot.inp” file

Figure 36. Contents of the project folder containing the “aerplot” (1,2,3)

subfolders after running the “AERPLOT input file compiler” (and previous

AERMOD stages)

 68

Figure 37. Contents of one of the AERPLOT subfolders, after running

AERPLOT, there are three iterations, each for one of the averaging periods

Figure 38. Concentration distribution for the 24h period visualized in Google

Earth using 5 point sources over Newark, USA

 69

Figure 39. Concentration distribution for the 24h period visualized QGIS

using contour and gradient lines with 5 point sources over Newark, USA

Figure 40. Concentration distribution for the 24h period visualized QGIS

using the grid receptor network, contour and gradient lines with 5 point

sources over Newark, USA

 70

2.7. PROGRAMMING LOGICS

This section will run through the programing logics of the 3 input file

compilers for AERMAP, AERMOD and AERPLOT, and the main frame

where the preprocessors AERMAP, AERMET Stage 1 and AERMET stage

2, the processor AERMOD and postprocessor AERPLOT, can be run. Their

functions and options will be discussed, and the python code associated with

the function included, along with necessary packages. It will go over by line

of input file the implications and implementation of the needs presented when

creating this software.

import tkinter as tk

from tkinter import ttk, filedialog, messagebox

import os

import subprocess

import shutil

import webbrowser

import win32clipboard

import time

import threading

import utm

import simplekml

from shutil import copyfile

These import specific libraries and logics into python to be able to

perform certain functions, while easing computing by narrowing the

interpretation range and not loading unnecessary libraries.

“Tkinter” is a well-known library used for creating visually simple

and non-computationally demanding graphical user interfaces.

 71

2.7.1 AERMAP INPUT FILE

This section will go over, by line, the different formulations that went

into this code. For visual appearance, AERMOD input file code will be

written in a different font and blue color and Python code in different font and

black color for the main body of the code, while both will be bordered.

Figure 41. Example AERMAP input file

1)CO STARTING

2)CO TITLEONE TEST

3)CO DATATYPE NED

4)CO DATAFILE UTM33_Italy.tif

5) ANCHORXY 380542.5263 4830024.6688 380542.5263 4830024.6688 33 0

6) FLAGPOLE 1.5

7)CO RUNORNOT RUN

8)CO FINISHED

9)RE STARTING

10) GRIDCART CART01 STA

11) XYINC 380542.5263 50 100 4830024.6688 50 100

12) GRIDCART CART01 END

13)RE FINISHED

14)OU STARTING

15) RECEPTOR RECEPT.ROU

16)OU FINISHED

 72

When the compiler is accessed from the main window (where the

stages are ran), it opens in a new window using the “tk.TOPlevel” function,

a option of the “ttKinter” library.

The ”class Tooltip“ defines a widget that pops up above and to the

right of the described item, and disappears when you move your cursor. It

contains also generic inputs for style. This feature is available for all the

compilers and gives helpful messages like: "Specifies Y coordinate of bottom

left grid corner" or "Choose folder where “aermap.inp”, “receptor.rou”,

orographic files and other associate files will be created".

class Tooltip:

 def __init__(self, widget, text):

 self.widget = widget

 self.text = text

 self.tooltip = None

 self.widget.bind("<Enter>", self.enter)

 self.widget.bind("<Leave>", self.leave)

 def enter(self, event=None):

 x, y, _, _ = self.widget.bbox("insert")

 x += self.widget.winfo_rootx() + 25

 y += self.widget.winfo_rooty() + 25

 if event:

 x = event.x_root + 10

 y = event.y_root + 10

 self.tooltip = tk.Toplevel(self.widget)

 self.tooltip.wm_overrideredirect(True)

 self.tooltip.wm_geometry(f"+{x}+{y}")

 label = tk.Label(self.tooltip, text=self.text,

background="#ffffe0", relief="solid", borderwidth=1)

 label.pack()

 73

Here line 1) is written by default while in line 2) the last phrase is

determined upon a textbox entry by the user. A root defines a new window in

the GUI and contains different widgets like buttons, textboxes, multiple

choice boxes. A title label and entry field are defined. A function “def

generate_output“ is defined that defines the content of the input file text by

stating non variable text lines and fetching variable text lines from multiple

types of sources like textboxes, multiple choice boxes, explorer windows,

filenames and paths, Google maps coordinates that are automatically turned

into UTM easting, northing, and zone, using the “utm.from_latlon”

function from the Python UTM tool pack.

root = tk.Tk()

root.title("AERMAP Input File Generator")

Create and pack the title entry

title_label = ttk.Label(root, text="Title:", font=('Arial',

8))

title_label.grid(row=0, column=0, sticky="e")

title_entry = ttk.Entry(root, font=('Arial', 8))

title_entry.grid(row=0, column=1, sticky="we")

def generate_output():

 output_text_content += "CO STARTING\n"

 if title_entry.get():

 output_text_content += "CO TITLEONE " +

title_entry.get() + "\n"

...

return output_text_content

1)CO STARTING

2)CO TITLEONE TEST

 74

The “def compile_output“ function outputs the file upon

completion of data input and copies needed files for running AERMAP into

the project folder by opening an explorer window and automatically copying

the orographic files using the “copyfile” function and outputting the input

file in the project folder. After successful compilation the window self-

destructs, allowing to run AERMAP in the main window and proceed to the

creation of the AERMOD input file.

def compile_output():

 output_text_content = generate_output()

 folder_path = filedialog.askdirectory()

 if folder_path:

 file_path = os.path.join(folder_path, "aermap.inp")

 with open(file_path, "w") as file:

 file.write(output_text_content)

 for entry, full_path in datafile_entries:

 _, file_name = os.path.split(full_path)

 destination = os.path.join(folder_path,file_name)

 if not os.path.exists(destination):

 copyfile(full_path, destination)

 root.destroy()

Line 3) is responsible for choosing the correct topographic data

format. When NED is chosen from the multiple choice box (“combobox”),

“CO DATATYPE NED” is written, this is used also for “GEOTIFF” files. If

DEM is chosen the line outputs “CO DATATYPE DEM FILLGAPS”, with

the last keyword being added only for DEM, which is related to interpolating

receptor heights at missing datapoints in the elevation data.

if datafile_entries:

 output_text_content += "CO DATATYPE " +

datatype_combobox.get()

 if datatype_combobox.get() == "DEM":

 output_text_content += " FILLGAPS\n"

 else:

 output_text_content += "\n"

3)CO DATATYPE NED

 75

Line 4) lists the chosen topographic files under the third keyword

entry, while the entries can be multiple. The “def browse_files” function

opens an explorer window, where topographic files are chosen, copied to the

project folder, and their filenames added to the input file. A

“datafile_entries” list and “datafile_frame” were created to list the

filenames and paths and list them in the GUI respectively. It then opens a

frame within the GUI window where the topographic files are listed.

for entry, full_path in datafile_entries:

 filename = os.path.basename(full_path)

 output_text_content += "CO DATAFILE " + filename + "\n"

def browse_files():

 filename = filedialog.askopenfilename()

 if filename:

 file_name = os.path.basename(filename)

 new_entry = ttk.Entry(datafile_frame)

 new_entry.grid(row=len(datafile_entries), column=1,

sticky="we")

 new_entry.insert(0, file_name)

 datafile_entries.append((new_entry, filename))

datafile_entries = []

datafile_frame = ttk.Frame(root)

datafile_frame.grid(row=2, column=1, sticky="we")

datafile_button = ttk.Button(datafile_frame, text="Orographic

Files",

 command=lambda:

datafile_entries.append(ttk.Entry(datafile_frame)).grid(

 row=len(datafile_entries), column=0,

sticky="we"))

for entry in datafile_entries:

 entry.grid(row=datafile_entries.index(entry), column=1,

sticky="we")

4)CO DATAFILE UTM33_Italy.tif

 76

Line 5) Defines the user specified anchor point (most southwest point)

with ANCHORXY and this is the default.

if (anchor_lat_entry.get() and

 anchor_long_entry.get() and

 utm_zone_entry.get() and

 utm_datum_entry.get()):

 output_text_content += (" ANCHORXY " +

 anchor_long_entry.get() + " " +

 anchor_lat_entry.get() + " " +

 anchor_long_entry.get() + " " +

 anchor_lat_entry.get() + " " +

 utm_zone_entry.get() + " " +

 utm_datum_entry.get() + "\n")

The Coordinates are input doubled because this function defines the

relationship between the user coordinate system and the UTM coordinate

system, which is in this case irrelevant as the coordinates are automatically

converted to UTM coordinates. The fore last keyword is the UTM zone input

and last the UTM datum conversion. The entry of UTM coordinates and zone

is done either manually through textboxes or using Google Maps.

The ”def get_clipboard_text” function fetches text from the

clipboard to the application to be further processed.

import utm

def get_clipboard_text():

 try:

 win32clipboard.OpenClipboard()

 clipboard_data =

win32clipboard.GetClipboardData(win32clipboard.CF_TEXT)

 win32clipboard.CloseClipboard()

 return clipboard_data.decode('utf-8')

 except (UnicodeDecodeError, TypeError):

 return ""

5) ANCHORXY 380542.5263 4830024.6688 380542.5263 4830024.6688 33 0

 77

The ”def open_google_maps_for_anchor” creates a function that

is later called by button click to open Google Maps and nests the ”def

monitor_clipboard”. The nested function is forwarded data from ”def

get_clipboard_text”, evaluates if it is in correct format (decimal latitude

and longitude, separated by a comma), converts it to UTM easting, northing

and zone, rounds to 4 decimal spots (AERMOD maximum) and inserts the

values into textboxes and input file.

def open_google_maps_for_anchor(anchor_lat_entry,

anchor_long_entry):

 url = "https://www.google.com/maps"

 webbrowser.open(url)

 def monitor_clipboard():

 last_clipboard_text = get_clipboard_text()

 while True:

 clipboard_text = get_clipboard_text()

 if clipboard_text != last_clipboard_text:

 last_clipboard_text = clipboard_text

 try:

 lat, lon = map(float,

clipboard_text.split(','))

 utm_coords = utm.from_latlon(lat, lon)

 utm_easting, utm_northing,

utm_zone_number, utm_zone_letter = utm_coords

 if anchor_lat_entry.get() == '' and

anchor_long_entry.get() == '':

 anchor_lat_entry.delete(0, 'end')

 anchor_long_entry.delete(0, 'end')

 utm_zone_entry.delete(0, 'end')

 utm_northing_rounded = round(utm_northing, 4)

 utm_easting_rounded = round(utm_easting, 4)

 anchor_lat_entry.insert(0, utm_northing_rounded)

 anchor_long_entry.insert(0, utm_easting_rounded)

 utm_zone_entry.insert(0, utm_zone_number)

 except ValueError:

 print("Invalid coordinates format in clipboard")

 time.sleep(1)

 clipboard_thread =

threading.Thread(target=monitor_clipboard)

 clipboard_thread.daemon = True

 clipboard_thread.start()

 78

Line 6) gives the receptor height from the ground up to the user’s

preference input through a textbox.

Lines 7), 8) and 9) are fixed and part of AERMOD’s obligatory inputs.

Lines 10), 11), and 12.) define the receptor grid gridding system type, which

is in this case fixed to a cartesian rectangular system, by default named

CART01. The numerical inputs are the coordinate of the left bottom corner,

user input for number of receptors and spacing, for x and y.

output_text_content += " GRIDCART CART01 STA\n"

output_text_content += (" XYINC " +

 anchor_long_entry.get() + " " +

 x_n_entry.get() + " " + x_delta_entry.get() + " " +

 anchor_lat_entry.get() + " " + y_n_entry.get() + " " +

 y_delta_entry.get() + "\n")

output_text_content += " GRIDCART CART01 END\n"

The remaining lines are all fixed. Line 15) is the receptor grid network file

name.

6) FLAGPOLE 1.5

7)CO RUNORNOT RUN

8)CO FINISHED

9)RE STARTING

10) GRIDCART CART01 STA

11) XYINC 380542.5263 50 100 4830024.6688 50 100

12) GRIDCART CART01 END

13)RE FINISHED

14)OU STARTING

15) RECEPTOR RECEPT.ROU

16)OU FINISHED

 79

2.7.2 AERMOD INPUT FILE

The AERMOD input file compiler uses the receptor network created

by AERMAP (receptor.rou), skips over the AERMET phase, as it has the

option to directly input surface air and upper air meteorological data files (sfc.

and pfl.). It is equipped with tooltips, like all the compilers. A canvas is

created inside the root of the compiler window to house the scrollbar function,

as the input data can get rather large for the screen. It is additionally tied to

mouse wheel movement events and the inversion of controls instead of up to

bottom, to left to right is achieved by the holding of the “Control” key. This

opens in a new window using a “ttk.TOPlevel” function. The main libraries

used are listed below.

import os

import subprocess

import shutil

from tkinter import ttk, filedialog

from tkinter import messagebox

import webbrowser

import win32clipboard

import time

import threading

import utm

import simplekml

The main window and scrollbar are defined here, to be able to scroll

through data while compiling output files for many sources. The default

vertical scrollbar is set to become a horizontal scrollbar when the “Control

button" is pressed.

 80

root = tk.Tk()

root.title("AERMOD Input File Generator")

root.geometry("1000x1000")

frame = ttk.Frame(root)

frame.grid(row=0, column=0, sticky="nsew")

canvas = tk.Canvas(frame)

scrollbar_y = ttk.Scrollbar(frame, orient="vertical",

command=canvas.yview)

scrollbar_x = ttk.Scrollbar(frame, orient="horizontal",

command=canvas.xview)

canvas.configure(yscrollcommand=scrollbar_y.set,

xscrollcommand=scrollbar_x.set)

content_frame = ttk.Frame(canvas)

content_frame.bind("<Configure>", lambda e:

canvas.configure(scrollregion=canvas.bbox("all")))

root.columnconfigure(0, weight=1)

root.rowconfigure(0, weight=1)

frame.columnconfigure(0, weight=1)

frame.rowconfigure(0, weight=1)

canvas.create_window((0, 0), window=content_frame,

anchor="nw")

canvas.grid(row=0, column=0, sticky="nsew")

scrollbar_y.grid(row=0, column=1, sticky="ns")

scrollbar_x.grid(row=1, column=0, sticky="ew")

def _on_mousewheel(event):

 if event.state & 0x4: # Check if Ctrl key is pressed

 canvas.xview_scroll(int(-1 * (event.delta / 120)),

"units")

 else:

 canvas.yview_scroll(int(-1 * (event.delta / 120)),

"units")

canvas.bind_all("<MouseWheel>", _on_mousewheel)

 81

Figure 42. Example AERMOD input file with point sources and polygon

sources added both by manually inputting UTM coordinates and by using

Google Maps to interactively add vertices and visualize them in Google Earth

in real time

1)CO STARTING

2)CO TITLEONE TEST

3)CO MODELOPT DFAULT CONC

4)CO AVERTIME 1 8 24

5)CO POLLUTID PM10 PM2.5

6)CO FLAGPOLE 1.5

7)CO RUNORNOT RUN

8)CO FINISHED

9)SO STARTING

10)SO ELEVUNIT METERS

11)SO LOCATION STACK1 POINT 379665.006 4831615.688 5

12)SO LOCATION STACK2 POINT 377816.7838 4829885.5964 3

13)SO SRCPARAM STACK1 30 15 320 15 0.75

14)SO SRCPARAM STACK2 20 10 315 18 0.85

15)SO LOCATION POLYGON1 AREAPOLY 379772.0705 4830945.2329

16)SO LOCATION POLYGON2 AREAPOLY 378811.9662 4831448.6879

17)SO LOCATION MPOLYGON1 AREAPOLY 379772.0705 4830945.5329

18)SO SRCPARAM POLYGON1 55 58 5 42

19)SO SRCPARAM POLYGON2 70 15 6 0

20)SO SRCPARAM MPOLYGON1 15 30 4 15

21)SO AREAVERT POLYGON1 379772.0705 4830945.2329 380313.2487 4830611.4631

22)380310.2487 4830326.3713 380041.5904 4830295.3372 379667.824

23)4830601.7742

24)SO AREAVERT POLYGON2 378811.9662 4831448.6879 379407.5549 4831368.2872

25)379689.582 4830855.3209 379322.9126 4830226.2667 378657.6517 4830325.36

26)378316.8778 4830647.9185

27)SO AREAVERT MPOLYGON2 379772.0705 4830945.5329 380313.037 4830611.6631

28)380041.0904 4830295.423 379667.621 4830601.973

29)SO SRCGROUP MIXED STACK1 STACK2 POLYGON1 POLYGON2 MPOLYGON1

30)SO FINISHED

31)RE STARTING

32)RE INCLUDED RECEPTOR.ROU

33)RE FINISHED

34)ME STARTING

35)ME SURFFILE aermet.sfc

36)ME PROFFILE aemet.pfl

37)ME SURFDATA 134897 2001

38)ME UAIRDATA 0015784 2001

 82

These are generic AERMOD input lines, with the key word TEST in

line 2) being the user specified name, input trough a textbox. The “def

generate_output” function defines the input text.

def generate_output():

 # CO section

 output_text_content += "CO STARTING\n"

 if title_entry.get():

 output_text_content += "CO TITLEONE " +

title_entry.get() + "\n"

 output_text_content += "CO MODELOPT DFAULT CONC\n"

Line 4) Defines the averaging time periods. The user can input 3

periods via textboxes, with the usual AERMOD keywords like 1 (hours),

DAY, ANNUAL, which he is guided through using a tooltip.

if time1_entry.get() and time2_entry.get() and

time3_entry.get():

 output_text_content += (

 "CO AVERTIME " + time1_entry.get() + " " +

 time2_entry.get() + " " + time3_entry.get() +

"\n"

)

time1_label = ttk.Label(content_frame, text="Time period 1

(h):", font=('Arial', 8))

time1_label.grid(row=1, column=0, sticky="e")

Tooltip(time1_label, "Defines the first averaging period,

example: 1, 1DAY, ANNUAL")

time1_entry = ttk.Entry(content_frame, width=9,

font=('Arial', 8))

time1_entry.grid(row=1, column=1, sticky="w")

1)CO STARTING

2)CO TITLEONE TEST

3)CO MODELOPT DFAULT CONC

4)CO AVERTIME 1 8 24

 83

Line 5) defines the pollutants used in the simulation. The user can

input all AERMOD pollutant options. These are input via textbox, multiple

pollutants are separated by commas in the same textbox.

if pollutant_entry.get():

 output_text_content += "CO POLLUTID " +

pollutant_entry.get() + "\n"

if flagpole_entry.get():

Tooltip(pollutant_label, "SO2 CO NOX NO2 TSP PM10 PM2.5 LEAD

OTHER")

Line 6) defines the receptor heigth, which is suggested to mirror the

one set in AERMAP.

if flagpole_entry.get():

 output_text_content += "CO FLAGPOLE " +

flagpole_entry.get() + "\n"

flagpole_label = ttk.Label(content_frame,

text="Flagpole/Receptor Height (m):", font=('Arial', 8))

Lines 7) through 10) are generic AERMOD inputs.

output_text_content += "CO RUNORNOT RUN\n"

output_text_content += "CO FINISHED\n\n"

output_text_content += "SO STARTING\n"

output_text_content += "SO ELEVUNIT METERS\n"

5)CO POLLUTID PM10 PM2.5

6)CO FLAGPOLE 1.5

7)CO RUNORNOT RUN

8)CO FINISHED

9)SO STARTING

10)SO ELEVUNIT METERS

 84

POINT SOURCE

Lines 11) and 12) define the location of the point source using the

keyword POINT. STACK(i) is a generic name given to all point sources

iteratively. There is no limit to the number of point sources you can add. The

numbers in order are UTM easting, UTM northing and Zs (optional source

elevation in meters above sea level).

A list to store point sources and associated entries is created, which

are then listed inside a frame inside the “tkTOPlevel” window. The “def

get_clipboard_text” function accesses the clipboard alphanumeric

content, as for the “AERMAP input file compiler”, which fetched by the “def

open_google_maps_for_pointsource” “def monitor_clipboard”

function. It expects the copied text to be latitude and longitude coordinates

from Google maps (which are opened upon request via button in the web

browser) in format 43.62077644022055, 13.511095661992483. It parses out

latitude and longitude divided by a comma, uses the “utm.from_latlon”

function to convert it to UTM northing and easting uses the “.insert” function

to automatically insert it into the GUI textbox and AERMOD input file.

pointsource_entries = []

def get_clipboard_text():

 try:

 win32clipboard.OpenClipboard()

 clipboard_data =

win32clipboard.GetClipboardData(win32clipboard.CF_TEXT)

 win32clipboard.CloseClipboard()

 return clipboard_data.decode('utf-8')

 except (UnicodeDecodeError, TypeError):

 return ""

11)SO LOCATION STACK1 POINT 379665.006 4831615.688 5

12)SO LOCATION STACK2 POINT 377816.7838 4829885.5964 3

 85

Update UTM coordinates using Google Maps and clipboard

def open_google_maps_for_pointsource(lat_entry, lon_entry):

 url = "https://www.google.com/maps"

 webbrowser.open(url)

 def monitor_clipboard():

 last_clipboard_text = get_clipboard_text()

 while True:

 clipboard_text = get_clipboard_text()

 if clipboard_text != last_clipboard_text:

 last_clipboard_text = clipboard_text

 try:

 lat, lon = map(float,

clipboard_text.split(','))

 utm_coords = utm.from_latlon(lat, lon)

 utm_easting, utm_northing,

utm_zone_number, utm_zone_letter = utm_coords

 if lat_entry.get() == '' and

lon_entry.get() == '':

 lat, lon = map(float,

clipboard_text.split(','))

 update_kmz(lat, lon, 'point')

 os.startfile("updated_file.kmz")

 lat_entry.delete(0, 'end')

 lon_entry.delete(0, 'end')

 utm_northing_rounded =

round(utm_northing, 4)

 utm_easting_rounded =

round(utm_easting, 4)

 lat_entry.insert(0,

utm_northing_rounded)

 lon_entry.insert(0,

utm_easting_rounded)

 except ValueError:

 print("Invalid coordinates format in

clipboard")

 time.sleep(1)

 clipboard_thread =

threading.Thread(target=monitor_clipboard)

 clipboard_thread.daemon = True

 clipboard_thread.start()

 86

Additionally, the “def update_kmz” function is activated upon

copying of coordinates from Google Maps and uses the non-converted/copied

latitude and longitude to automatically open Google Earth and visualizes all

the point sources within one “.kml” file (also additional polygon sources

added via Google Maps). The function is notified by the keywords point or

polygon, upon addition of a new source, by which it creates geometry, adds

points, new vertices to polygons and creates new polygons, when another

source is added. Data about the stack base altitude (Zs) can be easily

visualized in Google Earth where the sources are annotated.

##Update kmz file in Google Earth

kml = simplekml.Kml()

def update_kmz(lat, lon, geometry_type):

 if geometry_type == 'point':

 kml.newpoint(name="Point Source", coords=[(lon,

lat)])

 elif geometry_type == 'polygon':

 polygon_vertices.append((lon, lat))

 if len(polygon_vertices) >= 4:

 polygon = kml.newpolygon(name="Polygon Area",

outerboundaryis=polygon_vertices)

 polygon.style.linestyle.color = 'ff0000ff'

 kml.save("updated_file.kmz")

current_geometry_type = None

def delete_polygon_vertices():

 polygon_vertices.clear()

Lines 13) and 14) represent variables other than UTM northing and

UTM easting and stack base altitude, regarding points sources, including,

emission rate, stack height, temperature, exit velocity and stack

diameter. The SO LOCATION lines (regarding source coordinates and base

heights) are iteratively printed first, then after the SO SRCPARAM lines

(regarding source parameters) are iteratively printed i times, equal to the

13)SO SRCPARAM STACK1 30 15 320 15 0.75

14)SO SRCPARAM STACK2 20 10 315 18 0.85

 87

number of point sources. The entries of the point source locations and its

parameters are saved in a list. “if” functions allow the file to compile in case

of missing data.

if pointsource_entries:

 for i, entry in enumerate(pointsource_entries, start=1):

 lat, lon, ptype, rate, height, temp, vel, diameter =

entry

 if (lat.get() and lon.get()):

 point_location_content += f"SO LOCATION STACK{i}

POINT {lon.get()} {lat.get()}"

 if ptype.get():

 point_location_content += f" {ptype.get()}"

 point_location_content += "\n"

 if rate.get() and height.get() and temp.get() and

vel.get() and diameter.get():

 point_srcparam_content += (

 f"SO SRCPARAM STACK{i} {rate.get()}

{height.get()} {temp.get()} {vel.get()}"

 f" {diameter.get()}\n"

def add_pointsource():

 lat_label = ttk.Label(pointsource_frame, text=f"Northing

{len(pointsource_entries) + 1}:", font=('Arial', 8))

 lat_label.grid(row=1, column=len(pointsource_entries) *

4, sticky="e")

 Tooltip(lat_label, "UTM coordinates, up to 4 decimal

spots")

Tooltip(choose_on_map_button, "Opens Google Maps; Copied

coordinates are automatically converted to UTM "

 "and input into the textboxes,

Google Earth is opened to display point sources")

Add the new entries to the list

pointsource_entries.append((lat_entry, lon_entry,

ptype_entry,

 rate_entry, height_entry,

temp_entry, vel_entry, diameter_entry))

 88

POLYGON SOURCES

Line 15) and 16) represent polygons added via Google Maps (with the

default name POLYGON(j)), while line 17) represents polygons with

manually added vertices and input coordinates (with the default name

MPOLYGON(k)). AREAPOLY is an AERMOD keyword that is

automatically defaulted to when a polygon area source is added. There is no

limit to the number of polygon sources. It is paired with UTM coordinates of

the center of the polygon or, as in this case a starting vertex, which is fetched

automatically from the first vertex entry within a polygon using the “def

monitor_clipboard” function. A list of polygon area sources is created,

which are displayed, along with coordinates and parameters in its own frame

inside the AERMOD input file compiler window.

Lines 18) and 19) for the polygons added via Google maps and line

20) for manually added polygons lists the “SO SRCPARAM” keyword, then

the generic source name, and parameters in order: emission rate, altitude of

the emission, number of polygon vertices and initial source height. The

parameters are input via textboxes, while altitudes are easily visualized as the

polygon is updated in Google Earth. Upon addition of a polygon area source,

a frame is opened where the “Open map” button is located and utilizes the

“def open_google_maps_for_polygon” command to open Google Maps.

In the browser window where Google Maps is opened, the user can right click

a location, where he can click and thereby copy the coordinates to the

clipboard. Upon copying of coordinates vertices are automatically added to

the polygon.

15)SO LOCATION POLYGON1 AREAPOLY 379772.0705 4830945.2329

16)SO LOCATION POLYGON2 AREAPOLY 378811.9662 4831448.6879

17)SO LOCATION MPOLYGON1 AREAPOLY 379772.0705 4830945.5329

18)SO SRCPARAM POLYGON1 55 58 5 42

19)SO SRCPARAM POLYGON2 70 15 6 0

20)SO SRCPARAM MPOLYGON1 15 30 4 15

 89

polygon_area_source_entries = []

def add_polygon_area_source():

 polygon_entry = {"vertices": [], "rate_entry": "",

"rheight_entry": "", "nvert_entry": "", "iheight_entry": ""}

 polygon_area_source_entries.append(polygon_entry)

choose_on_map_button = ttk.Button(polygon_area_source_frame,

text="Open map",command=lambda:

open_google_maps_for_polygon(polygon_entry),

 style='Custom.TButton')

 Tooltip(choose_on_map_button, "Opens Google Maps; Copied

coordinates are automatically converted to UTM,create a new

vertex and insert the values. Google Earth is opened to

display the polygons")

...

def add_polygon_area_vertex(polygon_entry, lat, lon):

 global new_vertex_row

 polygon_entry['vertices'].append((lat_entry, lon_entry))

...

Lines 21) through 28) contain the names of polygons and the UTM

coordinates of the respective vertices. A repeated code structure, the “def

get_clipboard_text” function accesses the clipboard content, which is then

fetched by the “def open_google_maps_for_pointsource” and “def

monitor_clipboard” function. It expects the copied text to be latitude and

longitude coordinates from Google maps, otherwise it will not react. The

parsed out latitude and longitude divided by a comma, are used by the

“utm.from_latlon” function to convert it to UTM northing and easting and

rounds to 4 decimal spots. It uses the “.insert” function to automatically

insert it into the GUI textbox and AERMOD input file. As coordinates are

copied, they are continuously inserted as vertices, until a new source is added,

or the file is compiled.

21)SO AREAVERT POLYGON1 379772.0705 4830945.2329 380313.2487 4830611.4631

22)380310.2487 4830326.3713 380041.5904 4830295.3372 379667.824

23)4830601.7742

24)SO AREAVERT POLYGON2 378811.9662 4831448.6879 379407.5549 4831368.2872

25)379689.582 4830855.3209 379322.9126 4830226.2667 378657.6517 4830325.36

26)378316.8778 4830647.9185

27)SO AREAVERT MPOLYGON2 379772.0705 4830945.5329 380313.037 4830611.6631

28)380041.0904 4830295.423 379667.621 4830601.973

 90

def open_google_maps_for_polygon(polygon_entry):

 global current_geometry_type

 current_geometry_type = 'polygon'

 url = "https://www.google.com/maps"

 webbrowser.open(url)

 initial_source_count = len(polygon_area_source_entries)

 def monitor_clipboard(polygon_entry,

initial_source_count):

 last_clipboard_text = get_clipboard_text()

 while True:

 clipboard_text = get_clipboard_text()

 if clipboard_text != last_clipboard_text:

 last_clipboard_text = clipboard_text

 if len(polygon_area_source_entries) >

initial_source_count:

 return

 try:

 lat, lon = map(float,

clipboard_text.split(','))

 update_kmz(lat, lon, 'polygon')

 os.startfile("updated_file.kmz")

 utm_coords = utm.from_latlon(lat, lon)

 utm_easting, utm_northing,

utm_zone_number, utm_zone_letter = utm_coords

 lat = round(utm_northing, 4)

 lon = round(utm_easting, 4)

 add_polygon_area_vertex(polygon_entry,

lat, lon)

 except ValueError:

 print("Invalid coordinates format in

clipboard")

 time.sleep(1)

 clipboard_thread =

threading.Thread(target=monitor_clipboard,

args=(polygon_entry, initial_source_count))

 clipboard_thread.daemon = True

 clipboard_thread.start()

kml = simplekml.Kml()

polygon_vertices = []

 91

The original copied coordinates from Google Maps are fetched by the

„def update_kmz“ function, which displays the input polygons in Google

Earth, in addition to possible point sources can also be visualizes within the

same “.kmz” geometry file.

def update_kmz(lat, lon, geometry_type):

 if geometry_type == 'point':

 kml.newpoint(name="Point Source", coords=[(lon,lat)])

 elif geometry_type == 'polygon':

 polygon_vertices.append((lon, lat))

 if len(polygon_vertices) >= 4:

 polygon = kml.newpolygon(name="Polygon Area",

outerboundaryis=polygon_vertices)

 polygon.style.linestyle.color = 'ff0000ff'

 kml.save("updated_file.kmz")

current_geometry_type = None

def delete_polygon_vertices():

 polygon_vertices.clear()

All polygon source datasets are fetched into correct syntax and order.

Appropriate lines are created for source data, vertices and parameters.

if polygon_area_source_entries:

 for j, polygon_entry in

enumerate(polygon_area_source_entries, start=1):

 vertices = polygon_entry["vertices"]

 if vertices: first_vertex = vertices[0]

 first_lat_entry, first_lon_entry = first_vertex

 polygon_location_content += ("SO LOCATION POLYGON{j}

f"AREAPOLY {first_lon_entry.get()}{first_lat_entry.get()}\n")

 vertices_location_content += "SO AREAVERT POLYGON{j} "

 for vertex_entry in vertices:

 lat_entry, lon_entry = vertex_entry

 vertices_location_content += {lon_entry.get()}

f"{lat_entry.get()} " vertices_location_content += "\n"

 polygon_srcparam_content += ("SO SRCPARAM POLYGON{j}

{polygon_entry['rate_entry'].get()}

"{polygon_entry['releaseheight_entry'].get()}

{polygon_entry['nvert_entry'].get()} "

f"{polygon_entry['iheight_entry'].get()}\n"

)

 92

After the addition of point sources and polygon sources using Google

Maps, a geometry akin to the following will be open in a “.kml” file within

Google Earth.

Figure 43. Polygon and point sources during creation of an AERMOD input

file. The “.kml” file, is automatically and continuously updated in Google

Earth as the sources and vertices are being input

 93

MANUAL POLYGON SOURCES

Manually added polygon sources and point sources aren’t displayed

in Google Earth, as this is not the main function of the software. They are

fetched in the same way as other sources but here from user inputs into

textboxes, and manually adding vertices via buttons. “if” functions allow the

file to compile in case of missing data.

manual_polygon_area_source_entries = []

if manual_polygon_area_source_entries:

 for k, manual_polygon_entry in

enumerate(manual_polygon_area_source_entries, start=1):

 manual_vertices = manual_polygon_entry["manual_vertices"]

 if manual_vertices:

 manual_first_vertex = manual_vertices[0]

 manual_first_lat_entry, manual_first_lon_entry =

manual_first_vertex

 manual_polygon_location_content += (f"SO LOCATION

MPOLYGON{k} AREAPOLY " "{manual_first_lon_entry.get()}"

f"{manual_first_lat_entry.get()}\n")

 manual_vertices_location_content += f"SO AREAVERT

MPOLYGON{j} "

 for manual_vertex_entry in manual_vertices:

 manual_lat_entry, manual_lon_entry =

manual_vertex_entry

 manual_vertices_location_content +=

f"{manual_lon_entry.get()} {manual_lat_entry.get()} "

 manual_vertices_location_content += "\n"

 if manual_polygon_entry['m_rate_entry'].get() and

manual_polygon_entry['m_rheight_entry'].get() and

manual_polygon_entry['m_nvert_entry'].get() and \

manual_polygon_entry['m_iheight_entry'].get():

 manual_polygon_srcparam_content += (

 f"SO SRCPARAM MPOLYGON{k}

{manual_polygon_entry['m_rate_entry'].get()} "

 f"{manual_polygon_entry['m_rheight_entry'].get()}"

 f" {manual_polygon_entry['m_nvert_entry'].get()} "

 f"{manual_polygon_entry['m_iheight_entry'].get()}\n"

)

All the source outputs are then gathered and rearranged for readability.

 94

Concatenate all content

output_text_content += (

 point_location_content +

 point_srcparam_content +

 polygon_location_content +

 manual_polygon_location_content +

 polygon_srcparam_content +

 manual_polygon_srcparam_content +

 vertices_location_content +

 manual_vertices_location_content

)

Line 29) defines the user defined group name, in this case „MIXED“

and lists all source names to include them in the results.

if group_name_entry.get():

 point_sources = ['STACK' + str(i) for i in range(1,

len(pointsource_entries) + 1)]

 polygon_sources = ['POLYGON' + str(j) for j in range(1,

len(polygon_area_source_entries) + 1)]

 manual_polygon_sources = ['MPOLYGON' + str(k) for k in

 range(1,

len(manual_polygon_area_source_entries) + 1)]

 all_sources = point_sources + polygon_sources +

manual_polygon_sources

 output_text_content += ("SO SRCGROUP

{group_name_entry.get()} {' '.join(all_sources)}\n"

)

29)SO SRCGROUP MIXED STACK1 STACK2 POLYGON1 POLYGON2 MPOLYGON1

30)SO FINISHED

31)RE STARTING

32)RE INCLUDED RECEPTOR.ROU

33)RE FINISHED

34)ME STARTING

 95

Lines 30), 31), 33) and 34) are generic AERMOD syntax, while line

32) provides the filename of the receptor file created by AERMAP, in this

case “RECEPTOR.ROU”. The user is prompted to open an explorer window

to choose the receptor file that should be included. The filename and path are

fetched, to create a copy of the file in the destination folder of the AERMOD

input file. If this file is already present in the folder (as it should be, because

all files should be located in the project folder, but this is a safety measure, so

the file is present when running the AERMOD processor) it won’t be copied.

output_text_content += "SO FINISHED\n\n"

output_text_content += f"RE STARTING\nRE INCLUDED

{chosen_file_entry_map_output.get()}\nRE FINISHED\n\n"

output_text_content += "ME STARTING\n"

def open_file_dialog_map_output():

 file_path_map_output = filedialog.askopenfilename()

 if file_path_map_output:

 file_name = os.path.basename(file_path_map_output)

 chosen_file_entry_map_output.delete(0, tk.END)

 chosen_file_entry_map_output.insert(0, file_name)

Lines 35) and 36) are necessary to include the surface air and upper

air meteorological data files, usually obtained from AERMET Stage 1 and 2.

The user is prompted, which opens an explorer window to select the “.sfc”

and “.pfl” files separately. The two definitions copy the files and input the

filenames in the same fashion as the receptor file.

35)ME SURFILE aermet.sfc

36)ME PROFILE aermet.pfl

 96

output_text_content += "ME SURFFILE " +

chosen_file_entry_sfc_output.get() + "\n"

output_text_content += "ME PROFFILE " +

chosen_file_entry_prof_output.get() + "\n"

def open_file_dialog_sfc_output():

 file_path_sfc_output = filedialog.askopenfilename()

 if file_path_sfc_output:

 file_name = os.path.basename(file_path_sfc_output)

 chosen_file_entry_sfc_output.delete(0, tk.END)

 chosen_file_entry_sfc_output.insert(0, file_name)

def open_file_dialog_prof_output():

 file_path_prof_output = filedialog.askopenfilename()

 if file_path_prof_output:

 file_name = os.path.basename(file_path_prof_output)

 chosen_file_entry_prof_output.delete(0, tk.END)

 chosen_file_entry_prof_output.insert(0, file_name)

Lines 37) and 38) regard the station number and starting year of its

dataset, which can be found in the “.sfc” file. These are user input via

textboxes.

if station_num_entry.get() and start_year_entry.get():

 output_text_content += f"ME SURFDATA

{station_num_entry.get()} {start_year_entry.get()}\n"

if upper_air_station_num_entry.get() and

start_year_upper_air_entry.get():

 output_text_content += (f"ME UAIRDATA

{upper_air_station_num_entry.get()} "

f"{start_year_upper_air_entry.get()}\n")

37)ME SURFDATA 134897 2001

38)ME UAIRDATA 0015784 2001

 97

Line 39) uses the user input profile base elevation to compile this line,

while the units are defaulted to meters.

if base_elevation_entry.get():

 output_text_content += f"ME PROFBASE

{base_elevation_entry.get()} METERS\n"

Line 40) uses the user input from textboxes to output the starting day,

month and year, and ending day, month and year, of the analysis.

if start_date_entry.get() and end_date_entry.get():

 output_text_content += f"ME STARTEND

{start_date_entry.get()} {end_date_entry.get()}\n"

Lines 41) and 42) are generic AERMOD syntax.

output_text_content += "ME FINISHED\n\n"

output_text_content += "OU STARTING\n"

Line 43) uses the user input from a textbox (1ST, 2ND, 3RD,4TH, etc.) to

output a table containing the number of highest concentrations set by the user,

by receptor.

if rec_table_entry.get():

 output_text_content += f"OU RECTABLE ALLAVE

{rec_table_entry.get()}\n"

39)ME PROFBASE 1 METERS

40)ME STARTEND 30 3 2001 2.4 2001

41)ME FINISHED

42)OU STARTING

43)OU RECTABLE ALLAVE 1ST 2ND 3RD

 98

Line 44) uses the numerical user input from a textbox to output a table

containing the use set number of overall maximum values to summarize for

each averaging period selected.

if max_table_entry.get():

 output_text_content += f"OU MAXTABLE ALLAVE

{max_table_entry.get()}\n"

Lines 46), 47) and 48) use the RANKFILE keyword that outputs

values by rank for use in Q-Q (quantile) plots, for each averaging period (1,

8 and 24 hours in this case). The averaging period is fetched from the previous

inputs from the three averaging time periods. The number of ranked elements

is user input (in this case 50 for all periods). The name of the output is

determined by the phrase “RANK”, the fetched associated averaging time

period and the fetched group name. As the “RANKFILE” and later the

“MAXIFILE” outputs aren’t available in AERMOD for annual and total

period, averaging periods, is the keywords ANNUAL or PERIOD are input,

the line is omitted.

if time1_entry.get() = "ANNUAL" or time1_entry.get() ==

"PERIOD":

 pass

else if time1_entry.get() and rank1_hinum_entry.get()and

rank1_hinum_entry.get():

 output_text_content += (

 f"OU RANKFILE {time1_entry.get()} "

 f"{rank1_hinum_entry.get()}

RANK{time1_entry.get()}.RNK\n"

44)OU MAXTABLE ALLAVE 100

46)OU RANKFILE 1 50 RANK1.RNK

47)OU RANKFILE 8 50 RANK8.RNK

48)OU RANKFILE 24 50 RANK24.RNK

 99

Lines 49), 50) and 51) use the MAXIFILE keyword that outputs

values of occurrences of violations of the user specified threshold value, for

each averaging period (1, 8 and 24 hours in this case). The averaging period

is fetched from the previous inputs from the three averaging time periods. The

group name must be listed afterwards, which is also automatically fetched.

The thresholds for each averaging period are user input via textboxes. The

name of the output is determined by the phrase “MAX”, the fetched

associated averaging time period and the fetched group name, with the

addition of the time unit (H) and the last part is the group name again, with

the extension “.out”. The “MAXIFILE” output isn’t available in AERMOD

for annual and total period, averaging periods, is the keywords ANNUAL or

PERIOD are input, the line is omitted.

if time1_entry.get() = "ANNUAL" or time1_entry.get() ==

"PERIOD":

 pass

else if time1_entry.get() and group_name_entry.get() and

max1_value_entry.get():

 output_text_content += (f"OU MAXIFILE {time1_entry.get()}

{group_name_entry.get()} "

 f"{max1_value_entry.get()}

MAX{time1_entry.get()}H_{group_name_entry.get()}.OUT\n"

)

49)OU MAXIFILE 1 MIXED 350 MAX1H_MIXED.OUT

50)OU MAXIFILE 8 MIXED 85 MAX8H_MIXED.OUT

51)OU MAXIFILE 24 MIXED 15 MAX24H_MIXED.OUT

 100

Lines 52), 53) and 54) use the PLOTFILE keyword that outputs values

of concentration per points in receptor grid, for each averaging period. The

averaging period is fetched from the previous inputs from the three averaging

time periods. The group name must be listed afterwards, which is also

automatically fetched. The keyword FIRST is generic AERMOD syntax,

signifying that the first no of hours will be averaged. The name of the output

is determined by the phrase “PLOT”, the fetched associated averaging time

period and the fetched group name, with the addition of the time unit (H) and

the last part is the group name again, with the extension “.plt”. For annual and

period analyses, the “FIRST” keywords, signifying which highest value will

be output (1st, 2nd,…) is not available in AERMOD for annual and total

period, averaging periods, is the keywords ANNUAL or PERIOD are input,

the line is omitted.

if time1_entry.get() and group_name_entry.get():

 output_text_content += (

 f"OU PLOTFILE {time1_entry.get()}

{group_name_entry.get()} "

 f"{'' if time1_entry.get() == 'ANNUAL' or

time1_entry.get() == 'PERIOD' else 'FIRST

'}PLOT{time1_entry.get()}H_{group_name_entry.get()}.PLT\n"

)

output_text_content += "OU FINISHED\n"

return output_text_content

52)OU PLOTFILE 1 MIXED FIRST PLOT1H_MIXED.PLT

53)OU PLOTFILE 8 MIXED FIRST PLOT8H_MIXED.PLT

54)OU PLOTFILE 24 MIXED FIRST PLOT24H_MIXED.PLT

 101

Line 55) is the last line and generic AERMOD syntax. The “def

compile_output” function is responsible for prompting the user to choose

the output folder where the file “aermod.inp” will be automatically generated,

along with associated files. It is also responsible for automatic copying of the

receptor, surface data and upper air data files into the project folder so

AERMOD can be ran seamlessly. After successfully compiling, the

AERMOD input file compiler will automatically close, allowing you to run

AERMOD from the main window.

 output_text_content = generate_output()

 folder_path = filedialog.askdirectory()

 if folder_path:

 file_path = os.path.join(folder_path, "aermod.inp")

 with open(file_path, "w") as file:

 file.write(output_text_content)

 # Copy selected files to the destination folder

 for chosen_file_entry in

[chosen_file_entry_map_output, chosen_file_entry_sfc_output,

chosen_file_entry_prof_output]:

 filename = chosen_file_entry.get()

 if filename:

 source_path = os.path.join(folder_path,

filename)

 destination = os.path.join(folder_path,

filename)

 if source_path != destination:

 shutil.copy(source_path, destination)

 root.destroy()

55)OU FINISHED

 102

2.7.3 AERPLOT INPUT FILE

AERPLOT input files, in the compiler, are defined for three different

averaging periods, corresponding to the ones from AERMOD. Therefore 3

folders are automatically created upon compiling, which contain files:

“aerplot.inp”, “aermod.inp”, “aermod.out”, corresponding averaging period

“.plt” file (plot file) (1st, 2nd or 3rd) and aerplot.exe. Three versions of these

folders will be created (aerplot1, aerplot2, aerplot3), containing the

forementioned files, corresponding to the three averaging periods, will be

created. This is done so AERPLOT can be run for all three folders/averaging

periods, seamlessly with two mouse clicks. The three averaging periods are

obligatory in the application.

 103

Fig 44. Example of 1st of three created AERPLOT input files created using

the AERPLOT input file compiler

1)version=2

2)origin=UTM

3)easting=0

4)northing=0

5)utmZone=18

6)inNorthernHemisphere=true

7)originLatitude =0

8)originLongitude =0

9)altitudeChoice = relativeToGround

10)altitude=0

11)PlotFileName =PLOT1H_MIXED.PLT

12)SourceDisplayInputFileName=aermod.inp

13)OutputFileNameBase =PLOT1H_MIXED.PLT

14)NameDisplayedInGoogleEarth=PLOT1H_MIXED.PLT

15)sDisableProgressMeter = false

16)sDisableEarthBrowser = true

17)IconScale = 0.40

18)sIconSetChoice=redBlue

19)minbin=data

20)maxbin=data

21)binningChoice =Linear

22)customBinningElevenLevels=na

23)contourLegendTitleHTML

=C O N C E N T R A T I&nb

sp;O N S

24)numberOfGridCols =400

25)numberOfGridRows =400

26)numberOfTimesToSmoothContourSurface =1

27)makeContours =true

28)contourExtension = 9999999

29)makeGradients =true

30)gradientExtension= 9999999

31)gradientMaxBin=data

32)gradientMinBin=data

33)gradientBinningChoice=Linear

34)customGradBinElevenLevels=na

35)gradientLegendTitleHTML=Gradient Magnitudes

 104

Line 1) is a user input (which he is prompted to default to 2) regarding

the AERMOD version. Lines 2),3) and 4) are defaulted respectively, to UTM

coordinate system, 0 correction for easting and northing.

output_text_content1 += "version=" + version_entry.get() +

"\n"

output_text_content1 += "origin=UTM\n"

output_text_content1 += "easting=0\n"

output_text_content1 += "northing=0\n"

Line 5), the UTM zone can be input manually, or by button Google

Maps can be automatically opened, where copied coordinates, covert to UTM

using the “def open_google_maps_for_UTM” function and extract the UTM

zone.

output_text_content1 += "utmZone=" + utm_entry.get() + "\n"

choose_on_map_button = ttk.Button(root, text="Open map for

UTM zone",command=lambda:

open_google_maps_for_UTM(originlat_entry, originlon_entry))

choose_on_map_button.grid(row=2, column=1, sticky="we")

Tooltip(choose_on_map_button, "Automatically inputs UTM zone

by copying location from Google maps")

1)version=2

2)origin=UTM

3)easting=0

4)northing=0

5)utmZone=18

 105

def get_clipboard_text():

 try:

 win32clipboard.OpenClipboard()

 clipboard_data =

win32clipboard.GetClipboardData(win32clipboard.CF_TEXT)

 win32clipboard.CloseClipboard()

 return clipboard_data.decode('utf-8')

 except (UnicodeDecodeError, TypeError):

 return ""

def open_google_maps_for_UTM(originlat_entry,

originlon_entry):

 url = "https://www.google.com/maps"

 webbrowser.open(url)

 def monitor_clipboard():

 last_clipboard_text = get_clipboard_text()

 while True:

 clipboard_text = get_clipboard_text()

 if clipboard_text != last_clipboard_text:

 last_clipboard_text = clipboard_text

 try:

 lat, lon = map(float,

clipboard_text.split(','))

 utm_coords = utm.from_latlon(lat, lon)

 utm_easting, utm_northing,

utm_zone_number, utm_zone_letter = utm_coords

 if originlat_entry.get() == '' and

originlon_entry.get() == '':

 utm_entry.delete(0, 'end')

 utm_entry.insert(0, utm_zone_number)

 except ValueError:

 print("Invalid coordinates format in

clipboard")

 time.sleep(1)

 clipboard_thread =

threading.Thread(target=monitor_clipboard)

 clipboard_thread.daemon = True

 clipboard_thread.start()

 106

Line 6), the satisfies the obligatory statement of the hemisphere. It’s

chosen via “Combobox” function, with the option of

“inNorthernHemisphere” and “in SouthernHemisphere”.

output_text_content1 += hemisphere_combobox.get() + "=true\n"

hemisphere_combobox = ttk.Combobox(root,

values=["inNorthernHemisphere", "inSouthernHemisphere"])

Line 7) and 8) relate longitude and latitude to UTM and are not

needed, so they are defaulted to 0. Line 9) sets the plotting height relative to

the ground by default, and correction of altitude is set to 0 in line 10).

output_text_content1 += "originLatitude =0\n"

output_text_content1 += "originLongitude =0\n"

output_text_content1 += "altitudeChoice = relativeToGround\n"

output_text_content1 += "altitude=0\n"

Line 11) through 14) are related to the input and output filenames. They are

defined by the averaging period (this example is for the 1st averaging period,

this procedure is replicated for the other two time periods) and group name,

which are input by the user (and should be identical to those in AERMOD).

6)inNorthernHemisphere=true

7)originLatitude =0

8)originLongitude =0

9)altitudeChoice = relativeToGround

10)altitude=0

11)PlotFileName =PLOT1H_MIXED.PLT

12)SourceDisplayInputFileName=aermod.inp

13)OutputFileNameBase =PLOT1H_MIXED.PLT

14)NameDisplayedInGoogleEarth=PLOT1H_MIXED.PLT

 107

Again, if the averaging period keyword is “ANNUAL” or “PERIOD”, the

“FIRST” keyword is omitted.

output_text_content1 += (

 f"PlotFileName

=PLOT{time1_entry.get()}H_{group_name_entry.get()}.PLT\n")

output_text_content1 +=

"SourceDisplayInputFileName=aermod.inp\n"

output_text_content1 += (

 f"OutputFileNameBase

=PLOT{time1_entry.get()}H_{group_name_entry.get()}.PLT\n")

output_text_content1 +=

(f"NameDisplayedInGoogleEarth=PLOT{time1_entry.get()}H_{group

_name_entry.get()}.PLT\n")

Line 15) through 18) are default values. Progress meters are enabled,

automatic opening of Google Earth is disabled, icon size is set to 0.4 and color

scale from red to blue.

output_text_content1 += "sDisableProgressMeter =

false\n"

output_text_content1 += "sDisableEarthBrowser =

true\n"

output_text_content1 += "IconScale = 0.40\n"

output_text_content1 += "sIconSetChoice=redBlue\n"

15)sDisableProgressMeter = false

16)sDisableEarthBrowser = true

17)IconScale = 0.40

18)sIconSetChoice=redBlue

 108

Line 19) and 20) define the minimum and maximum bin via textbox input, in

this case, its set to default to data range using the keyword “data”. Line 21)

adjusts the bins to the data range. Features a ”combobox” with the options

“Linear” and “Log“. Are default values. Line 22) and 23) are generic syntax

regarding the binning levels and legend, set as default.

output_text_content1 += "minbin=" + min_bin_entry.get() +

"\n"

output_text_content1 += "maxbin=" + max_bin_entry.get() +

"\n"

output_text_content1 += "binningChoice =" +

binningchoice_combobox.get() + "\n"

output_text_content1 += "customBinningElevenLevels=na\n"

output_text_content1 += (

 "contourLegendTitleHTML

=C O N C E N T R A&nb

sp;"

 "T I O N S\n")

For lines 24) and 25) define the user input defines the number of grid

rows and columns.

output_text_content1 += "numberOfGridCols

=" + gridcols_entry.get() + "\n"

output_text_content1 += "numberOfGridRows

=" + gridrows_entry.get() + "\n"

19)minbin=data

20)maxbin=data

21)binningChoice =Linear

22)customBinningElevenLevels=na

23)contourLegendTitleHTML

=C O N C E N T R A T I&nb

sp;O N S

24)numberOfGridCols =400

25)numberOfGridRows =400

 109

Line 27) defines via user input the number of times contour surfaces

are smoothed. Line 28) defines via „combobox“ if contours should be created

or not. Line 29) defaults the contour extension value.

output_text_content1 += "numberOfTimesToSmoothContourSurface

=" + smooth_entry.get() + "\n"

output_text_content1 += "makeContours

=" + contour_combobox.get() + "\n"

output_text_content1 += "contourExtension = 9999999\n"

Line 30) defines via „combobox“ if gradient lines should be created or

not. Line 31) defaults on the gradient extension value. Line 32) and 33) define

the minimum and maximum bins for gradients via textbox input, in this case,

its set to default to data range using the keyword “data”. Line 34) adjusts the

bins the data range, featuring a ”combobox” with the options “Linear” and

“Log”. Line 35), 36) and 37) are generic syntax regarding the binning levels,

legend and grid, set as default.

27)numberOfTimesToSmoothContourSurface =1

28)makeContours =true

29)contourExtension = 9999999

30)makeGradients =true

31)gradientExtension= 9999999

32)gradientMaxBin=data

33)gradientMinBin=data

34)gradientBinningChoice=Linear

35)customGradBinElevenLevels=na

36)gradientLegendTitleHTML=Gradient Magnitudes

37=provideEvenlySpacedInterpolatedGrid = false

 110

output_text_content1 += "makeGradients

=" + gradient_combobox.get() + "\n"

output_text_content1 += "gradientExtension= 9999999\n"

output_text_content1 += "gradientMaxBin=" +

max_bin_entry.get() + "\n"

output_text_content1 += "gradientMinBin=" +

min_bin_entry.get() + "\n"

output_text_content1 += "gradientBinningChoice=" +

gradientbinningchoice_combobox.get() + "\n"

output_text_content1 += "customGradBinElevenLevels=na\n"

output_text_content1 +=

"gradientLegendTitleHTML=Gradient Magnitudes\n"

output_text_content1 += "provideEvenlySpacedInterpolatedGrid

= false\n"

The text is then compiled 3 times, for each averaging period, set in 3

automatically created folders (aerplot1, aerplot2 and aerplot3), together with

the copied files “aermod.inp2, ”aermod.out”, plot file and “aerplot.exe”. All

in the folder of choice, e.g. project folder. After successful compilation the

window self-destructs.

 111

def compile_output():

 folder_path = filedialog.askdirectory()

 for i in range(1, 4):

 subfolder_path = os.path.join(folder_path,

f"aerplot{i}")

 os.makedirs(subfolder_path, exist_ok=True)

 shutil.copy(os.path.join(folder_path, "aermod.inp"),

subfolder_path)

 shutil.copy(os.path.join(folder_path, "aermod.out"),

subfolder_path)

 shutil.copy("C:/AERMOD/EXE_all/aerplot.exe",

subfolder_path)

 output_text_content1 = generate_output1()

 output_text_content2 = generate_output2()

 output_text_content3 = generate_output3()

 for i, output_text_content in

enumerate([output_text_content1, output_text_content2,

output_text_content3], start=1):

 with open(os.path.join(folder_path, f"aerplot{i}",

"aerplot.inp"), "w") as file:

 file.write(output_text_content)

 The plot file names are defined from the same entries as in the

AERMOD output (averaging period and group name), requiring the user to

use the same input continuously to work. The required accessory inputs are

automatically copied, because they were named and fetched in the same

iterative way.

 plot_files =

[f"PLOT{time_entry.get()}H_{group_name_entry.get()}.PLT" for

time_entry in [time1_entry, time2_entry, time3_entry]]

 for i, plot_file in enumerate(plot_files, start=1):

 src_plot_path = os.path.join(folder_path, plot_file)

 dest_plot_path = os.path.join(folder_path,

f"aerplot{i}", plot_file)

 shutil.copy(src_plot_path, dest_plot_path)

 root.destroy()

 112

2.7.4 “CAIRO for AERMOD”

“CAIRO for AERMOD” (Compile AERMOD input and run output)

is the main window that houses the buttons that upon choosing the project

folder run the AERMOD stages (AERMAP, AERMET Stage1, AERMET

Stage2, AERMOD and AERPLOT), a textbox for simulation output and

buttons to launch input file compilers for AERMAP, AERMOD and

AERPLOT. When running AERPLOT the software expects to find the 3

subfolders (aerplot1, aerplot2, aerplot3) to run successfully. During

installation the software houses all AERMOD executive files within a

predetermined folder so it can run simulations for any folder seamlessly.

 113

Stages for running all AERMOD “.exe” files are defined, which run

data from the selected project folder, every stage getting its label.

class AERMODGUI(tk.Toplevel):

 def __init__(self, master=None):

 super().__init__(master)

 self.main_window = master

 self.protocol("WM_DELETE_WINDOW",

self.on_close_aermodgui)

 self.title("CAIRO for AERMOD")

 self.geometry("600x450") # window size

 self.stage_labels = ["AERMAP", "AERMET Stage 1",

"AERMET Stage 2", "AERMOD", "AERPLOT"]

 self.stages = [self.run_aermap,

self.run_aermet_stage1, self.run_aermet_stage2,

self.run_aermod, self.run_aerplot]

 for z, stage_label in enumerate(self.stage_labels):

 button = ttk.Button(self.button_frame,

text=stage_label, command=lambda z=z: self.run_stage(z))

A text output box is added for preprocessor, processor and post

processor output, to visualize the progress, or possible error messages, as well

as buttons to launch the compilers.

self.output_text = tk.Text(self, height=10, width=60,

wrap=tk.WORD)

 self.output_text.pack(pady=10)

 app1_button = ttk.Button(self, text="Compile AERMAP

Input File", command=app1)

 app2_button = ttk.Button(self, text="Compile AERMOD

Input File", command=app2)

 app3_button = ttk.Button(self, text="Compile AERPLOT

Input File", command=app3)

 padx=10)

The path to the executables is defined and connected to the chosen

project folder using the “os.path.join“ function. The input file names have

no flexibility and are predetermined (aermap.inp, aermet1.inp, aermet2.inp,

aermod.inp, aerplot.inp). The AERMAP, AERMET Stage 1 and 2, AERMOD

and AERPLOT stages are ran simply by choosing the project folder where its

 114

corresponding inputs are located, by automatically requesting from the

“Command shell”, the corresponding folder, AERMOD stage, input file name

etc.

def run_stage(self, stage_index):

 input_folder = self.choose_input_folder()

 if input_folder:

 if self.stage_labels[stage_index] == "AERMAP":

 executable = os.path.join("C:\\", "CAIRO",

"EXE_all", "aermap.exe")

 elif

self.stage_labels[stage_index].startswith("AERMET"):

 executable = os.path.join("C:\\", "AERMOD",

"EXE_all", "aermet.exe")

 else: executable = os.path.join("C:\\", "AERMOD",

"EXE_all", "aermod.exe")

 if self.stage_labels[stage_index] == "AERMET

Stage 1": inp_file = "aermet1.inp"

 elif self.stage_labels[stage_index] == "AERMET

Stage 2": inp_file = "aermet2.inp"

 else: inp_file =

self.stage_labels[stage_index].lower() + ".inp"

 process = subprocess.Popen([executable,

inp_file], cwd=input_folder, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.STDOUT,

universal_newlines=True)

 self.output_text.insert(tk.END, f"Output for

{self.stage_labels[stage_index]}:\n")

 for line in process.stdout:

 self.output_text.insert(tk.END, line)

 self.output_text.see(tk.END)

 self.update_idletasks()

 process.wait()

 def choose_input_folder(self):

 folder_path = filedialog.askdirectory()

 return folder_path

 115

The AERPLOT post processor asks for the choice of project folder,

where it expects to find the already described aerplot1, aerplot2 and aerplot3

subfolders, after which it runs AERPLOT for all three averaging periods. The

aerplot.exe file is the only executive file that is copied into the project folder,

as it would have taken a higher level of programming to facilitate to be run

like the other executables from a remote predetermined folder.

 def run_aerplot(self, input_folder, stage_index):

 input_folder = filedialog.askdirectory(title="Select

the folder containing the necessary files")

 for i in range(1, 4):

 aerplot_folder = os.path.join(input_folder,

f"aerplot{i}")

 if os.path.exists(aerplot_folder):

 os.chdir(aerplot_folder)

 subprocess.run(["aerplot"], shell=True)

 print(f"AERPLOT {i} completed successfully.")

 else:

 print(f"Error: Subfolder aerplot{i} not found

in {input_folder}.")

 def on_close_aermodgui(self):

 self.destroy()

 if self.main_window:

 self.main_window.destroy()

...

 main_window.mainloop()

if __name__ == "__main__":

 main()

 116

2.7.5 COMPILING EXECUTIVE FILE

For the full functionality of the GUI many dependencies and.

accessory files are fetched by python. These including metadata were

compiled into an “.exe” file that autonomously contains all the functionalities

of the GUI. Dependencies were explicitly included using the “hiddenImports”

keyword and an icon was included. This was done by running the following

Windows Shell command.

$hiddenImports = Get-Content requirements.txt | ForEach-Object { "-

-hidden-import=" + $_.Trim() }

pyinstaller --onefile --noconsole --name CAIROforAERMOD --icon

"cairoiconv2.ico" --log-level=DEBUG `

 --paths

"C:\Users\domin\PycharmProjects\AERMAPCOMPILER\.venv\Lib\site-

packages" `

 "CAIROforAERMOD.py"

2.7.6 COMPILING INSTALLER

Inno Setup is a free script-driven installation system (installer creator)

for Windows programs by Jordan Russell and Martijn Laan, first released in

1997. All data is compiled into a single “EXE” file to install programs. It

supports multiple platforms, compression, creation of registry and “INI” file

entries, integrated scripting engine based on Pascal Script, multilingual

installs, passworded and encrypted installs, etc.

For “CAIRO” to run, AERMAP, AERMOD, AERPLOT and a

configuration file (config.json) are required to be in the installation folder.

The configuration file is automatically created during installation, and is used

by “CAIRO” to fetch the location of the AERMOD executive files. The code

contains metadata, locations of files to be compiled into the installer

(aermap.exe, aermod.exe, aerplot.exe, CAIROforAERMOD.exe), preferred

installation folder, interface that prompts an installation location and other

choices and creation of the configuration file depending on installation

location. This is done by the following code.

 117

[Setup]

AppName=CAIRO for AERMOD

AppVersion=1.0

AppPublisher=MSc Dominik Subotic @UNIVPM

AppPublisherURL=suboticdominik@gmail.com

DefaultDirName={userdocs}\CAIRO for AERMOD

DefaultGroupName=CAIRO for AERMOD

OutputDir=Output

OutputBaseFilename=CAIROforAERMOD_Setup

UninstallDisplayName=Uninstall_CAIROforAERMOD

UninstallDisplayIcon={app}\cairoiconv2.ico

Compression=lzma

SolidCompression=yes

PrivilegesRequired=admin

[Languages]

Name: "english"; MessagesFile: "compiler:Default.isl"

[Files]

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\CAIROforAERM

OD.exe"; DestDir: "{app}"; Flags: ignoreversion

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\aermap.exe";

DestDir: "{app}"; Flags: ignoreversion

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\aermod.exe";

DestDir: "{app}"; Flags: ignoreversion

Source:"C:\Users\domin\Documents\Masters\Thesis_AERMOD\CAIROforAERMOD_Distribution\aerplot.exe"

; DestDir: "{app}"; Flags: ignoreversion

[Icons]

Name: "{group}\CAIRO for AERMOD"; Filename: "{app}\CAIROforAERMOD.exe"

Name: "{commondesktop}\CAIRO for AERMOD"; Filename: "{app}\CAIROforAERMOD.exe"; Tasks:

desktopicon

[Tasks]

Name: "desktopicon"; Description: "Create a &desktop icon"; GroupDescription: "Additional

icons:"

[Run]

Filename: "{app}\CAIROforAERMOD.exe"; Description: "Launch CAIRO for AERMOD"; Flags: nowait

postinstall skipifsilent

[Code]

function ReplaceBackslashesWithForwardSlashes(str: string): string;

var

 i: Integer;

begin

 Result := str;

 for i := 1 to Length(Result) do

 begin

 if Result[i] = '\' then

 Result[i] := '/';

 end;

end;

procedure CurStepChanged(CurStep: TSetupStep);

var

 configFilePath: string;

 jsonContent: AnsiString;

 forwardSlashAppPath: string;

 success: Boolean;

begin

 if CurStep = ssPostInstall then

 begin

 configFilePath := ExpandConstant('{app}\config.json');

 118

 forwardSlashAppPath := ReplaceBackslashesWithForwardSlashes(ExpandConstant('{app}'));

 jsonContent := '{' + #13#10 +

 ' "aermap_path": "' + forwardSlashAppPath + '/aermap.exe",' + #13#10 +

 ' "aermod_path": "' + forwardSlashAppPath + '/aermod.exe",' + #13#10 +

 ' "aerplot_path": "' + forwardSlashAppPath + '/aerplot.exe"' + #13#10 +

 '}';

 success := SaveStringToFile(configFilePath, jsonContent, False);

 if not success then

 begin

 MsgBox('Failed to create config.json. Please ensure you have the proper permissions to

write to this directory.', mbError, MB_OK);

 end

 else

 begin

 MsgBox('Installation is successful, at: ' + configFilePath, mbInformation, MB_OK);

 end;

 end;

end;

 119

2.8 CASE STUDY ON MULTIPLE INDUSTRIAL

SOURCES

An analysis was done on a real case to test AERMOD model and

“CAIRO for AERMOD” application performance in complex environments

and multiple sources. SOX emissions of 15 point sources were analyzed using

georeferenced emission data (figure 55.) from “API” refinery in Falconara

Marittima, Italy for the first 24 h. monthly average and whole period of the

year 2020. The “API” refinery is owned by “IP Gruppo API S.P.A.” and

produces various products rich in hydrocarbons (special bitumen, engine

lubricants, LPG, methane, vehicle, marine and jet fuel among others) (IP

Gruppo API, 2024.). The importance of its emission and increased risk come

from the spatial proximity (~3 km) to Falconara Marittima. A town with

around 25 000 inhabitants and higher population densities during the summer

due to tourism. The domain (receptor grid network) was defined as a 20*20

km grid (100 m interstep) centered around the “API” refinery and sources.

Sulphur oxides (SOX) are naturally produced by volcanoes, for

illustration, the 1991 eruption of Mount Pinatubo in the Philippines released

approximately 20 million tons of SO₂ into the atmosphere. And

anthropogenically, in various industries like smelting of metal ores, oil

refining, and the production of sulfuric acid or coal (Pinatubo Volcano

Observatory Team, 1991.). Oxidation of SO2, usually in the presence of

catalyst such as NO2, forms H2SO4, thus creating a component of acid rain.

The highest concentrations of SO2 are recorded in the vicinity of large

industrial facilities. SO₂ is a precursor to fine particulate matter (PM2.5),

which poses significant health risks, including respiratory and cardiovascular

diseases. PM2.5 can penetrate deep into the lungs and enter the bloodstream

(Sharma, et al., 2013.).

Short-term exposure to SO₂ can cause respiratory issues, particularly

in vulnerable populations such as children, the elderly, and those with pre-

existing respiratory conditions. Symptoms include throat and eye irritation,

coughing, and shortness of breath.

 120

Long-term exposure can lead to more severe health problems,

including chronic bronchitis and aggravation of existing heart disease

(Sharma, et al., 2013.).

The thresholds are defined by the Italian legislation for SO2. The

thresholds used were 125 μg/m3 for the 24 h averaging period and 20 μg/m3

for the monthly and total averaging period.

Figure 45. Hourly (350 μg/m3), daily (125 μg/m3), yearly and winter (1.

October to 31. March, as a means of vegetation protection) (20 μg/m3) SO2

limits given by the Italian legislation (ARPAM, 2010.)

To run AERMOD source data must be input in correct units and

format. Refinery emissions are rather high in temperature so they will

experience buoyancy and plume rise. Formation of secondary pollutants from

SOX is expected (VOCs, H2SO4), but they aren’t modelled in AREMOD.

 121

Table 3. The data for the point sources in the “API” refinery in Faloconara

Marittima, Italy. Includes the source name (ID), base elevation, height,

diameter, exit velocity and temperature, emission rate and UTM coordinates

given in WSG84 UTM 33N projection system (ESPG:32633)

Source
Type ID

AERMOD
Input ID

UTM
Easting

UTM
Northing Latitude Longitude

UTM
zone

Units [m] [m] [o] [o]
POINT E1_TOPPING STACK1 369358.00 4832927.00 43.637865 13.380351 33 N
POINT E13_VACUUM3 STACK2 369216.40 4833119.00 43.639568 13.378549 ESPG
POINT E2_VISBREAKI STACK3 369178.00 4833005.00 43.638535 13.378101
POINT E3_THERMAL_C STACK4 369251.00 4832994.00 43.638449 13.379009 32633
POINT E5_UNIFINING STACK5 369084.00 4833155.00 43.639869 13.376900
POINT E9_VACUUM_1 STACK6 369379.00 4832891.00 43.637544 13.380620
POINT E7__HDS_1 STACK7 369210.00 4833229.00 43.640557 13.378444
POINT E6_ STACK8 369115.00 4833059.00 43.639010 13.377307
POINT E17_POST_COM STACK9 369386.00 4833156.00 43.639931 13.380642
POINT E10__HOT_OIL STACK10 369386.00 4832900.00 43.637627 13.380704
POINT E14_HDS3 STACK11 369142.00 4833165.00 43.639969 13.377616
POINT E18___BSG STACK12 369228.00 4833402.00 43.642117 13.378625
POINT E26B___ASG STACK13 369267.00 4833287.00 43.641089 13.379136
POINT E26A___CCPP STACK14 369278.00 4833257.00 43.640821 13.379279
FLARE FLARE1 STACK15 369280.07 4833492.74 43.642943 13.379248

Table 4. The locations of sources in displayed in UTM zone, northing and

easting, and converted into latitude and longitude. The projection is WSG84

UTM 33N (ESPG:32633)

Source
Type

ID AERMOD
Input ID

Base
Elevation

Height Diameter Exit Velocity Exit
Temp.

Emission
Rate

UTM
Easting

UTM
Northing

Units [m] [m] [m] [m/s] [K] [g/s] [m] [m]
POINT E1_TOPPING STACK1 5.74 60 2.4 3.71808456 473 12.6 369358.00 4832927.00
POINT E13_VACUUM3 STACK2 6 59.5 2.44 1.69679505 480 4.76 369216.40 4833119.00
POINT E2_VISBREAKI STACK3 3.31 52.6 2.74 0.49645226 470 0.042 369178.00 4833005.00
POINT E3_THERMAL_C STACK4 3.41 58 1.79 5.34864777 714 0.41 369251.00 4832994.00
POINT E5_UNIFINING STACK5 3.61 60 1.61 1.78624693 501 0.067 369084.00 4833155.00
POINT E9_VACUUM_1 STACK6 7.51 50 1.33 1.16829638 657 0.97 369379.00 4832891.00
POINT E7__HDS_1 STACK7 3.6 46.2 1.45 1.99259706 561 0.31 369210.00 4833229.00
POINT E6_ STACK8 2.39 56.5 1.6 5.97069694 463 0.0001 369115.00 4833059.00
POINT E17_POST_COM STACK9 1.69 40 1.21 2.75659771 1003 7.2 369386.00 4833156.00
POINT E10__HOT_OIL STACK10 7.14 12.8 1.27 0.23332142 553 0.001 369386.00 4832900.00
POINT E14_HDS3 STACK11 4.25 54 2 4.09190584 587 0.04 369142.00 4833165.00
POINT E18___BSG STACK12 0.43 20 0.92 1.87834112 398 0.00001 369228.00 4833402.00
POINT E26B___ASG STACK13 4.29 49.8 2.35 2.97411809 412 0.05 369267.00 4833287.00
POINT E26A___CCPP STACK14 4.88 43.8 7.15 9.40720705 404 3.85 369278.00 4833257.00
FLARE FLARE1 STACK15 0 60 1.01 0.19 1072 9.67 369280.07 4833492.74

 122

2.8.1 AERMAP IMPLEMENTATION

To compile the AERMAP input file and run it elevation data needs to

be parametrized and converted through AERMAP into an AERMOD

compatible format, resulting in a receptor grid file. A DEM (Digital Elevation

Model) is a digital representation of a terrain. Its grid cells, associated to

latitude and longitude, correspond to an altitude value in meters. Depending

on the gride cell size, a DEM can be more detailed (high resolution) or less

detailed (low resolution).

Elevation data was downloaded from the “Copernicus Browser”

(https://dataspace.copernicus.eu/), using the “COP DEM GLO 30” dataset

(elevation model with 30m/px resolution). An area greater than, and

surrounding the grid receptor was selected. The format is “GeoTiff” (16 bit,

georeferenced “.tif” file format), the appropriate projection (UTM 33N) and

only raw data with added data mask were selected and downloaded (fig. 46).

Figure 46. Downloading DEM data from Copernicus browser and

Copernicus GLO 30 data, with 30 m/px spatial resolution (15 m/px effective

resolution, due to resolution settings) in 16 bit “TIFF” format and WGS84

UTM 33N projection. The appropriate product is selected in the browser, an

area selected and downloaded.

https://dataspace.copernicus.eu/

 123

The elevation data, along with a shape file of the domain shape file

(fig. 47) were loaded and parametrized in QGIS, to visualize the domain in

which the receptor grid network will span.

Figure 47. Domain (Red – 20*20km, corresponding to receptor grid area)

visualized over “GeoTiff” elevation data file with single band pseudo color

scheme applied and Google Satellite imagery of Marche, Italy in QGIS.

Coordinates are UTM (m).

The next step is to create the AERMAP input file. The anchor point is

defined as the southwest corner of the receptor grid network (fig. 47; 48). The

20*20 km grid is defined as 200 nodes in x and y, with a step of 100 m (fig.

49).

 124

Figure 48. Predetermined anchor point (SW corner) coordinates being

copied from Google Maps, while in the GUI they are automatically input and

converted to UTM northing, easting and zone

Figure 49. GUI with opened fully filled out “AERMAP input file compiler”

window. UTM coordinates and zone were automatically filled out and

converted from Google Maps data.

 125

Figure 50. Resulting AERMAP input file for API rafinery

After compiling the AERMAP input file, the elevation data (under the

line “CO DATATYPE falconara.tif”) has already been automatically copied

into the project folder and the user can simply select it to run AERMAP (fig.

65).

Figure 51. AERMAP running via “CAIRO for AERMOD” after selecting the

input project folder for API refinery, Falconara Marittima, Italy

 126

Figure 52. Snippet of “receptor.rou”, the resulting receptor grid file

 127

2.8.2 AERMOD IMPLEMENTATION

To compile the AERMOD input file the surface and upper air

meteorological data of the area was provided. The source locations were

predetermined and copied from a list, while the source locations were

displayed in real time in Google Earth (fig. 35). They were exported to QGIS

to have greater flexibility in visualization (fig. 28, 29, 30).

Figure 53. Domain and sources visualized over Google Terrain in QGIS

 128

Figure 54. Point sources visualized in QGIS, overlaying Google Hybrid,

highlighting the proximity to urban areas (Falconara Marittima, Italy)

Figure 55. Google Hybrid view in QGIS of point sources, with labels, at API

refinery in Falconara Marittima, Italy

 129

Figure 56. 3D view of sources created in Google Earth including labels and

real heights

Meteorological data provided was MMIF (Mesoscale Model Interface

Program) AERMOD ready data in “.sfc” and “.pfl” format (fig. 59), for the

year 2020. It was updated in the “AERMOD input file compiler, as described

previously and automatically copied into the project folder along with the

receptor grid file. Average yearly temperature (fig. 57) and wind rose (fig.

58) were provided underneath, for Falconara Marittima, as they coincide with

dispersion mechanisms. High temperatures indicate increased convective

boundary layer processes, while the dispersion pattern coincides with the

wind rose, especially the longer the averaging period.

 130

Figure 57. Mean daily minimum, maximum and range temperatures,

including precipitation based on data from 1993.-2023. for Falconara

Marittima, Italy (Meteoblue, 2024.)

Figure 58. Wind rose with highlighted wind speed fractionation of the

predominant wind direction for Falconara Marittima, Italy (Meteoblue,

2024.)

 131

Figure 59. Opened “.sfc” file containing MMIF surface meteorological data

and the station numbers

Figure 60. AERMOD input file compiled for the means of analyzing “API”

refinery point source emissions.

 132

2.8.3 AERPLOT IMPLEMENTATION

Firstly, AERPLOT was run for three averaging periods, with bins

defaulted to linear interpretation and data range. As a result, each of the

averaging periods was plotted using its own range. This was done to define

overall the maximum and minimum values from the control runs of the

gradient (responsible for grid receptors visualization) and contour lines bins,

dependent on the concentration (μg/m3) at receptor height. The maximum and

minimal values respectively for the gradient and contour lines, for all the

averaging periods, were chosen as the maximum and minimum bin values for

the final analysis (table 5.), to maintain continuity of representation between

averaging periods. As the differences between minimal values of the

averaging period is a few orders of magnitude in size, logarithmic

interpretation of the bins was selected for the final run.

GRADIENT CONCENTRATION RANGES μg/m3
Averaging
Period 24 h Month

Total
Period

Total Gradient
Range

Maximum 79.9076 18.1900 8.5970 79.9076
Minimum 1.4920 0.2610 0.1474 1

Table 5. Minimum and maximum values of each period gathered from the

control AEROPLOT run, minimal bin was rounded to 1 due to non-

relevance regarding legislation for lower values and achieving a finer

discretization between concentration bins

AERPLOT was run again, this time using the overall maximum

concentration as the maximum bin and 1 as the minimum bin (table 5), as

concentrations lower than 1 aren’t relevant in terms of meeting regulations,

with thresholds at 20 and 125 μg/m3 for SOX. It also makes for a smaller

concentration range, giving a finer concentration discretization while

mapping. Logarithmic scaling of the bins was done to be able to visualize

short term (generally higher concentrations) with long term (generally lower

concentrations) averaging periods. Provisory results were visualized in

Google Earth (fig. 63-68.).

 133

Figure 61. “AERPLOT input compiler” interface filled out with the correct

maximum and minimum bins, logarithmic binning, UTM zone and other

generic data

Figure 62. Files in the project folder resulting in using “CAIRO for

AERMOD”

 134

Figure 63. 24 h averaging period visualized in Google Earth

Figure 64. Monthly averaging period visualized in Google Earth

 135

Figure 65. Annual averaging period visualized in Google Earth

In QGIS the symbology of the bins was given by rotating 30o on a

HSV color scheme, for each consecutive bin accordingly (Table 6.).

Legend
SOX

Gradient Bins
(Logarithmic)

Contour
(Logarithmic)

Bin Minimum
[μg/m3]

Bin Maximum
[μg/m3] Color

Value
[μg/m3] Color

0.1474 0.2491 0.1474
0.2491 0.4209 0.2491
0.4209 0.7112 0.4209
0.7112 1.2020 0.7112
1.2020 2.0310 1.2020
2.0310 3.4320 2.0310
3.4320 5.7990 3.4320
5.7990 9.8000 5.7990
9.8000 16.5600 9.8000
16.5600 27.9800 16.5600
27.9800 47.2900 27.9800
47.2900 79.9076 47.2900

Table 6. Table containing bin boundary values and contour line values

(corresponding to lower bin boundary), with according color palette

 136

2.8.4 MATLAB POSTPROCESSING

MATLAB was used to plot the areal extent of concentration levels,

corresponding to different averaging periods. The minimum and maximum

bins were entered to calculate the mean value of each bin, which were

compared to the number of receptor grid points associated with each bin.

As the area (20*20km), resolution (200*200 node grid with 100 m interstep)

and number of receptors associated with each bin are known, the areal extent

of each concentration value bin is easily calculated. The MATLAB code is

bordered and in its original font for easier discernment.

A figure was created containing box plots of the averaging periods. It

presents the range of concentration values modeled in the domain on a

logarithmic scale, to better scale between averaging periods. The mean values

of bins were assigned as the value of the bin, and the number of datapoints

corresponding to each bin was input. The areal percentage and areal coverage

of each bin in the domain was calculated.

bin_min = [0.14740, 0.24910, 0.42090, 0.71120, 1.20200, 2.03100, 3.43200,
5.79900, 9.80000, 16.56000, 27.98000, 47.29000];
bin_max = [0.24910, 0.42090, 0.71120, 1.20200, 2.03100, 3.43200, 5.79900,
9.80000, 16.56000, 27.98000, 47.29000, 79.90760];

bin_mid = (bin_min + bin_max)/2;

N_DAY = [0, 0, 0, 0, 350, 6506, 11254, 12662, 6889, 1847, 450, 42];
N_MONTH = [0, 6108, 10272, 9755, 8516, 3700, 1154, 395, 96, 4, 0, 0];
N_PERIOD = [7527, 10078, 11697, 7440, 2304, 660, 225, 69, 0, 0, 0, 0];

PERCENT_DAY = N_DAY/400;PERCENT_MONTH = N_MONTH/400;
PERCENT_PERIOD = N_PERIOD/400;
AREA_DAY = PERCENT_DAY*40/100; AREA_MONTH = PERCENT_MONTH*40/100;
AREA_PERIOD = PERCENT_PERIOD*40/100;

DAY = [];
for i = 1:length(N_DAY)
 DAY = [DAY repmat(bin_mid(i), 1, N_DAY(i))];
end
MONTH = [];
for j = 1:length(N_MONTH)
 MONTH = [MONTH repmat(bin_mid(j), 1, N_MONTH(j))];
end
PERIOD = [];
for k = 1:length(N_PERIOD)
 PERIOD = [PERIOD repmat(bin_mid(k), 1, N_PERIOD(k))];
end

 137

The boxplot for each period was assigned a dataset, position, color,

labels, title, font size, etc., and plotted.

%Contencating all data to plot in one figure
all_data = [DAY, MONTH, PERIOD];
group = [repmat({'24h'}, 1, length(DAY)), repmat({'Month'}, 1,
length(MONTH)), repmat({'Total Period'}, 1, length(PERIOD))];

figure;
hold on;

positions = [1, 2, 3];
h = boxplot(all_data, group, 'Positions', positions, 'Whisker', 15000);

colors = {'r', 'g', 'b'};
h_boxes = findobj(gca, 'Tag', 'Box');
for j = 1:length(h_boxes)
 patch(get(h_boxes(j), 'XData'), get(h_boxes(j), 'YData'),
colors{mod(j-1, 3) + 1}, 'FaceAlpha', 0.5);
end

mean_values = [mean(DAY), mean(MONTH), mean(PERIOD)];

for i = 1:numel(mean_values)
 plot(positions(i), mean_values(i), 'k.', 'MarkerSize', 15);
end

yyaxis left; %Right axis
set(gca, 'YScale', 'log');
ylabel('SOx [\mug/m^3] (log)', 'FontSize', 20);
yyaxis right; %Right axis
set(gca, 'YScale', 'log');

yticks(bin_mid);
yticklabels(arrayfun(@num2str, bin_mid, 'UniformOutput', false));
ylim([0.1, 100]);

ylabel('SOx [\mug/m^3] (log)', 'FontSize', 20);
xlabel('Averaging Period', 'FontSize', 20);
ylabel('SOx [\mug/m^3] (log)', 'FontSize', 20);
title(sprintf('SOx Concentrations Boxplot, Falconara Marittima, Italy,
20x20km Grid, Receptor Height = 1.5m'), 'FontSize', 20);

hold off;

 138

Basic statistical data was calculated about the data and its areal

coverage, using basic MATLAB functions. Maximum and minimum value,

median, average, 25th and 75th percentile, maximum and minimum mean bin

values and pollutant mass at receptor height in a layer over the domain, with

1m thickness. They were presented in a table using the “uitable” function.

maximum = [79.9076, 18.1900, 8.5970];
minimum = [1.4920, 0.2610, 0.1474];
median_values = [median(DAY), median(MONTH), median(PERIOD)];
mean_values = [mean(DAY), mean(MONTH), mean(PERIOD)];
q75_values = [prctile(DAY, 75), prctile(MONTH, 75), prctile(PERIOD, 75)];
q25_values = [prctile(DAY, 25), prctile(MONTH, 25), prctile(PERIOD, 25)];
lower_whisker_values = [min(DAY), min(MONTH), min(PERIOD)];
upper_whisker_values = [max(DAY), max(MONTH), max(PERIOD)];

data = {
 'Maximum', maximum(1), maximum(2), maximum(3);
 'Minimum', minimum(1), minimum(2), minimum(3);
 'Median', median_values(1), median_values(2), median_values(3);
 'Mean', mean_values(1), mean_values(2), mean_values(3);
 '75th Percentile', q75_values(1), q75_values(2), q75_values(3);
 '25th Percentile', q25_values(1), q25_values(2), q25_values(3);
 'Maximum Bin', upper_whisker_values(1), upper_whisker_values(2),
upper_whisker_values(3);
 'Minimum Bin', lower_whisker_values(1), lower_whisker_values(2),
lower_whisker_values(3)
 'Pollutant Mass at Receptor Height [kg]', mean_values(1)*40,
mean_values(2)*40, mean_values(3)*40;

};

columnNames = {sprintf('Averaging Periods SOx[ug/m^3]'), '24h', 'Month',
'Total Period'};

t= uitable('Data', data, 'ColumnName', columnNames, 'Position', [290, 130,
400, 201], ...
 'RowName', [], 'ColumnWidth', {120});

title('Averaging Periods - SOx [\mug/m^3]');

 139

Finally, the areal distribution of concentrations were plotted with the

concentration range in logarithmic scale on the x axis, and area in km2 on the

y axis (linear).

figure;
hold on;

subplot(1,3,1)
plot(bin_mid, PERCENT_DAY,'-','LineWidth',2,'MarkerSize',8,'Color','b');
yyaxis right;
plot(bin_mid, AREA_DAY,'-','LineWidth',2,'MarkerSize',8,'Color','b');
xlabel('SOx Concentration Bins [\mug/m^3]', 'FontSize', 20);
ylabel('Area [km^2]', 'FontSize', 20);
ylim([0,14]);yyaxis left;
ylabel('Percentage of 20x20km Domain [%]', 'FontSize', 20);
title('A) 24h', 'FontSize', 20);
grid on;
set(gca, 'XScale', 'log'); % Set x-axis to logarithmic scale
set(gca, 'YGrid', 'on', 'XGrid', 'off');
xlim([min(bin_mid), max(bin_mid)]);ylim([0,35]);
%%%%%%%%
subplot(1,3,2)
plot(bin_mid, PERCENT_MONTH,'-','LineWidth',2,'MarkerSize',8,'Color','g');
yyaxis right;
plot(bin_mid, AREA_MONTH,'-','LineWidth',2,'MarkerSize',8,'Color','g');
xlabel('SOx Concentration Bins [\mug/m^3]','FontSize',20);
ylabel('Area [km^2]', 'FontSize', 20);
ylim([0,14]); yyaxis left;
ylabel('Percentage of 20x20km Domain [%]', 'FontSize', 20);
title('B) Month', 'FontSize', 20);
grid on;
set(gca, 'XScale', 'log'); % Set x-axis to logarithmic scale
set(gca, 'YGrid', 'on', 'XGrid', 'off'); % Only show y-axis grid
xlim([min(bin_mid), max(bin_mid)]);ylim([0,35]);
%%%%%%%%
subplot(1,3,3)
plot(bin_mid,PERCENT_PERIOD,'-','LineWidth',2,'MarkerSize',8,'Color','r');
yyaxis right;
plot(bin_mid, AREA_PERIOD,'-','LineWidth',2,'MarkerSize',8,'Color','r');
xlabel('SOx Concentration Bins [\mug/m^3]', 'FontSize', 20);
ylabel('Area [km^2]', 'FontSize', 20);
ylim([0,14]); yyaxis left;
ylabel('Percentage of 20x20km Domain [%]', 'FontSize', 20);
title('C) Total Period (1 Year)', 'FontSize', 20);
grid on;
set(gca, 'XScale', 'log'); % Set x-axis to logarithmic scale
set(gca, 'YGrid', 'on', 'XGrid', 'off'); % Only show y-axis grid
xlim([min(bin_mid), max(bin_mid)]); ylim([0,35]);

hold off;

 140

2.8.5 MODEL VALIDATION

To examine the validity and compliance with European Union

regulations of the modeled data, a hypothesis is constructed and the data is

analyzed through a series of methods to measure its difference to observed

values, its relation to the set limit values, and assure compliance.

Null Hypothesis (H0): The difference between modeled data and real-

world measurements in relation to regulatory limit is significant.

Hypothesis (H1): There is no significant difference between modeled

and real-world data in relation to regulatory limit.

From the “ARPA” (Rete Regionale della Qualità dell'Aria) site for the

region Marche, Italy, receptors were visualized to compare to modeled data.

Three industrial monitoring stations were chosen, next to the “API” refinery.

They contain temporal data for PM10, PM2.5, O3, SO2, NO2, C6H6 (benzene),

though only SO2 was utilized to represent SOX emissions.

Figure 69. “ARPA” map of receptor sites, with locations of the 3 used

monitoring stations in Falconara Marittima, Italy, and location of “API”

refinery (e.g. sources)

 141

The location data was put in tabular form, UTM coordinates were

calculated and a “.csv” shape file was created to input the receptor data into

QGIS, to get model values from the receptor locations. In QGIS a delimited

text layer was added containing the coordinates and headers. The elevation of

the receptors was cross referenced from multiple sources, including GPS and

Google Earth, as they were not available at “ARPA”.

Industrial
Receptors

Longitude Latitude Easting (m) Northing (m) Zone
Altitude
(m)

Falconara
Acquedotto

43.637500 13.372120 368693.296 4832899.480 N 3

Falconara
Scuola

43.633761 13.388042 369969.535 4832459.151 N 6

Falconara
Alta

43.623906 13.392558 370312.636 4831357.563 N 100

Table 7. Locations of monitoring points in latitude and longitude and UTM.

“Altitude” refers to elevation at base, receptor height is set to 1.5m

Figure 70. Creating receptor points in QGIS from manually created “.csv”

file

 142

Figure 71. Monitoring station locations (green) and sources (white)

visualized in QGIS over analyzed gradient lines (purple)

As data is given in hourly concentration values, MS Excel was used

to determine the maximum and minimum, mean, median, 25th and 75th

percentile values from the data corresponding to the three monitoring stations,

to compare to AERMOD’s simulated values. AERMOD outputs maximum

recorded values, so maximal data from averaging periods is considered

significant data. The values were compared to real data and limit values.

The monitoring station values were compared to two sets of modeled

data, both by using the receptor grid as described so far, and by using discrete

receptors at monitoring station locations. The process is the same, differing

only in the AERMAP input file (fig. 72), where the “SO DISCCART”

keyword was used instead of “GRIDCART”. Differences may arise due to

limitations in the spatial discretization of the receptor grid, due to

representations of gradients and binning values and due to the algorithm, itself

and how it handles grid or discrete receptors. Following regulations, the

highest 98th percentile of the output values is excluded, by finding the 9th

highest value for the daily averaging period and 2nd for the monthly,

associated with the top 2% values.

 143

Figure 72. AERMAP input file using the “DISCCART” keyword to model real

discrete industrial monitoring stations in Falconara Marittima, Italy. The

keyword is coupled with the x and y UTM coordinates, base elevation and hill

elevation.

To confirm the acceptability of the modeled values the data was tested

through the Normalized Mean Square Error (NMSE), Mean Fractional Bias

(FB) and Mean Bias (MB), which are the most used methods in the EU, this

was done using MS excel.

Normalized Mean Square Error (NMSE):

 Equation 12.

𝑁𝑀𝑆𝐸 =
∑(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑜𝑏𝑠)2

∑(𝐶𝑚𝑜𝑑𝑒𝑙 ∗ 𝐶𝑜𝑏𝑠)

Where:

NMSE - Normalized Mean Square Error, a value between 0.5 and 2.0 is

acceptable, while a value of 0 is ideal, but values below 0.5 are not presumed,

1 is considered a very good value,

Cmodel – is the modeled concentration value [μg SOX/m3],

Cobs – is the observed concentration value [μg SOX/m3], (US EPA, 2017.)

 144

Mean Fractional Bian (FB):

 Equation 13.

𝐹𝐵 =
2

𝑛
∑

(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑜𝑏𝑠)

0.5 ∗ (𝐶𝑚𝑜𝑑𝑒𝑙 + 𝐶𝑜𝑏𝑠)

𝑛

𝑖=1

Where:

FB - Mean Fractional Bias, a value between -0.2 and 0.2 is acceptable, while

a value of 0 is ideal,

Cmodel – is the modeled concentration value [μg SOX/m3]

Cobs – is the observed concentration value [μg SOX/m3]

n – is the number of sample (9- 3 averaging periods for 3 receptors),

(Chang and Hanna, 2004.)

Mean Bias (MB):

 Equation 14.

𝑀𝐵 =
1

𝑛
∑(𝐶𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑜𝑏𝑠)

𝑛

𝑖=1

Where:

MB - Mean Bias, a value between -2. and 2.0 is acceptable, while a value of

1 is ideal

Cmodel – is the modeled concentration value [μg SOX/m3],

Cobs – is the observed concentration value [μg SOX/m3],

n – is the number of sample (9- 3 averaging periods for 3 receptors),

(EC, 2011.)

 145

3. RESULTS

The results section will go through the results of the real case analysis of

15 point sources in Falconara Marittima, Italy using the AERMOD dispersion

model and the “CAIRO for AERMOD” application, designed to automatize

the process of compiling AERMAP, AERMOD and AERPLOT input files,

and running AERMAP, AERMOD and AERPLOT for point sources and

polygon sources.

The emission rates of the “API” refinery sources were analyzed using the

AERMOD dispersion model using 24 hour, monthly and total period (for the

year 2020.), averaging periods. The 1st highest entry at every receptor was

plotted.

Model validation was done by comparing modeled concentrations of a

grid receptor and of discrete receptors (replicating the real monitoring

stations) to data from industrial monitoring stations. The highest 98th

percentile of the modeled values per receptor were discarded to follow

regulations and discard overestimations and outliers. The data was interpreted

using QGIS, MS excel and MATLAB. The discrepancies were compared to

regulatory limits to scale the model performance in terms of its ability to

influence compliance. The model performance was also examined through

Normalized Mean Square Error (NMSE), Fractional Bias (FB) and Mean Bias

(MB), to determine regulatory validity of the results in the EU.

 146

3.1 AERMOD ANALYSIS WITH RECEPTOR GRID

The “RANKFILE” keyword outputs concentration values by ranking

them and removing duplicate date/hour occurrences. This was done for two

averaging periods: 24 hours and monthly. This option isnt available for the

total period (1 year in this case). The “MAXFILE” keyword was also entered

but as there were no threshold violating values no entries were output. For the

24 hour averaging period the maximum value was 79.9076 μg/m3 (threshold

= 125 μg/m3). For the monthly averaging period, the maximum value was

18.17858 μg/m3 (threshold = 20 μg/m3).

Figure 73. “RANKFILE” output of AERMOD for the 24h averaging period,

listing overall maximum values while omitting duplicate date/hours values

Figure 74. “RANKFILE” output of AERMOD for the monthly averaging

period, listing overall maximum values while omitting duplicate date/hours

values

 147

3.2 AERPLOT POSTPROCESSING WITH RECEPTOR

GRID

AERPLOT was run for all three averaging periods: 24 hours (fig. 75),

monthly (fig. 76), total period (fig. 77). The data was parametrized and

displayed in QGIS.

Figure 75. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the 24 h averaging period, displayed in QGIS.

The domain is a 20*20km receptor grid (200*200 node grid with 100 m

interstep), receptor height is 1.5 m. The legend features concentration bins

and their corresponding color scheme.

 148

Figure 76. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the monthly averaging period, displayed in

QGIS. The domain is a 20*20km receptor grid (200*200 node grid with 100

m interstep), receptor height is 1.5 m. The legend features concentration bins

and their corresponding color scheme.

 149

Figure 77. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the total (the year 2020.) averaging period,

displayed in QGIS. The domain is a 20*20km receptor grid (200*200 node

grid with 100 m interstep), receptor height is 1.5 m. The legend features

concentration bins and their corresponding color scheme.

 150

Figure 78. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the 24 hour averaging period, displayed in

QGIS. The map is zoomed in over the refinery and the city of Falconara

Marittima, highlighting the proximity of the industrial plant and the

concentration over the urban area. Receptor height is 1.5 m. The legend

features concentration bins and their corresponding color scheme.

 151

Figure 79. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the monthly hour averaging period, displayed

in QGIS. The map is zoomed in over the refinery and the city of Falconara

Marittima, highlighting the proximity of the industrial plant and the

concentration over the urban area. Receptor height is 1.5 m. The legend

features concentration bins and their corresponding color scheme.

 152

Figure 80. Modeled 15 point source SOX emissions from ”API” refinery in

Falconara Marittima, Italy, for the total (the year 2020.) averaging period,

displayed in QGIS. The map is zoomed in over the refinery and the city of

Falconara Marittima, highlighting the proximity of the industrial plant and

the concentration over the urban area. Receptor height is 1.5 m. The legend

features concentration bins and their corresponding color scheme.

 153

3.3 DATA POST PROCESSING

In MATLAB, the concentration bins and their corresponding number

of nodes in the receptor grid were input to calculate the areal range of each

concentration, for each averaging period. The total area of the domain is 40

km2. The highest areal range for the 24 averaging period belongs to the areal

coverage is of the5.7990 - 9.8000 μg/m3 bin with 31% of the domain and

12.662 km2 of the surface, and 3.4320 - 5.7990 μg/m3 bin with 28% of the

domain and 11.254 km2 of surface.

SOX 24h - Averaging Period
Total Area
[km2] 40

Bin
Minimum
[μg/m3]

Bin
Maximum
[μg/m3] Color

No of
Data
Points

Areal
Coverage
[%/100]

Area
[km2]

0.1474 0.2491 0 0 0
0.2491 0.4209 0 0 0
0.4209 0.7112 0 0 0
0.7112 1.2020 0 0 0
1.2020 2.0310 350 0.00875 0.35
2.0310 3.4320 6506 0.16265 6.506
3.4320 5.7990 11254 0.28135 11.254
5.7990 9.8000 12662 0.31655 12.662
9.8000 16.5600 6889 0.172225 6.889
16.5600 27.9800 1847 0.046175 1.847
27.9800 47.2900 450 0.01125 0.45
47.2900 79.9076 42 0.00105 0.042

Table 8. 3D view of sources created in Google Earth including labels and

real heights

 154

The highest areal range for the monthly averaging period belongs to

the areal coverage is of 0.4209 - 0.7112 μg/m3 bin with 26% of the domain

and 10.272 km2 of surface, 0.7112 - 1.2020 μg/m3 bin with 24% of the domain

and 7.755 km2 of the surface, and 1.2020 - 2.0310 μg/m3 bin with 31% of the

domain and 8.516 km2 of the surface.

SOX Month - Averaging Period
Total Area
[km2] 40

Bin
Minimum
[μg/m3]

Bin
Maximum
[μg/m3] Color

No of
Data
Points

Areal
Coverage
[%/100]

Area
[km2]

0.1474 0.2491 0 0 0
0.2491 0.4209 6108 0.1527 6.108
0.4209 0.7112 10272 0.2568 10.272
0.7112 1.2020 9755 0.243875 9.755
1.2020 2.0310 8516 0.2129 8.516
2.0310 3.4320 3700 0.0925 3.7
3.4320 5.7990 1154 0.02885 1.154
5.7990 9.8000 395 0.009875 0.395
9.8000 16.5600 96 0.0024 0.096
16.5600 27.9800 4 0.0001 0.004
27.9800 47.2900 0 0 0
47.2900 79.9076 0 0 0

Table 9. Concentration bins along with the number of corresponding nodes

in the analysis, its areal coverage in percentage and km2, and color scheme

for the monthly averaging period

 155

The highest areal range for the total (1 year) averaging period belongs

to the areal coverage is of 0.4209 - 0.7112 μg/m3 bin with 29% of the domain

and 11.697 km2 of surface, and 0.2491 - 0.4209 μg/m3 bin with 25% of the

domain and 10.078 km2 of the surface.

SOX Total Period (1 Year) - Averaging Period
Total Area
[km2] 40

Bin
Minimum
[μg/m3]

Bin
Maximum
[μg/m3] Color

No of
Data
Points

Areal
Coverage
[%/100]

Area
[km2]

0.1474 0.2491 7527 0.188175 7.527
0.2491 0.4209 10078 0.25195 10.078
0.4209 0.7112 11697 0.292425 11.697
0.7112 1.2020 7440 0.186 7.44
1.2020 2.0310 2304 0.0576 2.304
2.0310 3.4320 660 0.0165 0.66
3.4320 5.7990 225 0.005625 0.225
5.7990 9.8000 69 0.001725 0.069
9.8000 16.5600 0 0 0
16.5600 27.9800 0 0 0
27.9800 47.2900 0 0 0
47.2900 79.9076 0 0 0

Table 10. Concentration bins along with the number of corresponding nodes

in the analysis, its areal coverage in percentage and km2, and color scheme

for the total period (1 year) averaging period

Basic statistics were done in MATLAB including maximum and

minimum, mean, median, 25th and 75th percentile values, mean values of the

maximum and minimum bin, and the mass of the pollutant in a 1 m thickness

layer, over the domain, at receptor height (Table 11). The distribution of

concentrations was visualized for each period using a boxplot, with a

logarithmic scale (fig. 81) and the areal distribution of the concentrations was

plotted in figure 82.

 156

Averaging Period
SOx [μg/m3] 24 h Month

Total Period
(1 Year)

Maximum 79.9076 18.19 8.597
Minimum 1.492 0.261 0.1474
Median 7.7995 0.9566 0.5661
Mean 8.0143 1.2707 0.6428
98th Percentile 53.134 15.283 8.111
75th Percentile 7.7995 1.6165 0.9566
25th Percentile 4.6155 0.5661 0.335
Maximum Bin 63.5988 22.27 7.7995
Minimum Bin 1.6165 0.335 0.1982
Total Pollutant Mass
at Receptor Height
[kg]

320.5736 50.8264 25.7104

Table 11. Maximum and minimum, mean, median, 25th and 75th percentile

values, mean values of the maximum and minimum bin, and the mass of the

pollutant in a 1 m thickness layer, over the domain, at receptor height. Data

was calculated using MATLAB, and using data from the AERMOD

simulation of air pollution in Falconara Marittima, Italy

Figure 81. SOX concentrations for 24 hour (blue), monthly (green) and total

(red - 1 year) averaging periods, visualized using boxplots and a logarithmic

scale to visualize the concentration distribution

 157

Figure 82. SOX concentration areal distribution for 24 hour (blue), monthly

(green) and total (red - 1 year) averaging periods. The concentration

distribution is plotted on x with a logarithmic scale and the percentage of the

domain is plotted on the y axis.

 158

3.4 MODEL VALIDATION

Data from “ARPA” for the year 2020. was analyzed in MS Excel to

achieve values of interest and values that can be compared to AERMOD

model outputs.

Receptor 1) Falconara Acquedotto
Hourly data - SO2 [μg/m3] - Year 2020.
Averaging Period 24h Month Period
Mean 4.54 4.52 4.53
Median 4.46 4.56 4.00
Maximum 10.67 6.24 47.00
Minimum 0.91 2.57 0.00
75th Percentile 5.25 4.89 5.00
25th Percentile 3.79 4.08 4.00

Table 12. Maximum, minimum, mean, median, 25th and 75th percentile

values for the Falconara Acquedotto monitoring station for the year 2020.

Receptor 2) Falconara Scoula
Hourly data - SO2 [μg/m3] - Year 2020.
Averaging Period 24h Month Period
Mean 5.02 4.92 4.84
Median 4.37 4.84 4.00
Maximum 45.63 6.56 92.00
Minimum 1.09 3.38 0.00
75th Percentile 5.46 5.73 5.00
25th Percentile 3.33 4.11 3.00

Table 13. Maximum and minimum, mean, median, 25th and 75th percentile

values for the Falconara Scuola monitoring station for the year 2020.

 159

Location 3) Falconara Alta
Hourly data - SO2 [μg/m3] - Year 2020.
Averaging Period 24h Month Period
Mean 4.22 4.21 4.24
Median 4.33 4.32 4.00
Maximum 12.61 5.40 48.00
Minimum 1.29 2.75 1.00
75th Percentile 5.08 4.91 5.00
25th Percentile 3.04 3.53 3.00

Table 14. Maximum and minimum, mean, median, 25th and 75th percentile

values for the Falconara Alta monitoring station for the year 2020.

The mean values of each station and for each averaging period were

compared to the results of the AERMOD simulation with the highest 98th

percentile excluded, the difference was calculated into the percentage of the

real measured value and averaged as a total model difference (table 16).

Difference in distance from Receptor
Grid Nodes (m)

Falconara Acquedotto 52.78
Falconara Scuola 45.44
Falconara Alta 25.58

Table 15. Difference in location of modeled to real receptors

 160

Average Monitoring Station Averaging Period Differences - SOX [μg/m3]

Analyzed Hourly Receptor Values AERMOD DIFFERENCE - SOX [μg/m3]

 Averaging periods 24h Month Period

Receptor Name 24h Month Period Rest % Rest % Rest %

Falconara Acquedotto 4.54 4.52 4.53 14.11 310.88 3.61 79.86 0.08 1.74

Falconara Scuola 5.02 4.92 4.84 7.77 154.85 -0.42 -8.54 -2.15 -44.39

Falconara Alta 4.22 4.21 4.24 18.23 432.07 2.27 53.83 -0.39 -9.14

AERMOD F. Acquedotto 18.65392 8.12971 4.609 Total Model Difference 4.79 107.9 %

AERMOD F. Scuola 12.79336 4.49985 2.6915 24 h Mean Month Mean Period Mean

AERMOD F. Alta 22.45321 6.47621 3.8525 13.37 299.26 1.82 41.72 -0.82 -17.26

Table 16. Tabular data of AERMOD modelled difference, comparing the

AERMOD analysis with grid receptors (highest 98th percentile excluded)

compared to mean data per averaging period from 3 monitoring stations,

including percentages

The same was done using the maximal averaging periods calculated

from the data from the monitoring stations (table 16.). The maximal averaging

period for the whole period is not applicable here so mean values are reused

for the total averaging period. As AERMOD was set to use the largest value

at each receptor, comparing to the maximal averaging period is the more

appropriate method.

Maximum Monitoring Station Averaging Period Differences - SOX [μg/m3]

Analyzed Hourly Receptor Values AERMOD DIFFERENCE - SOX [μg/m3]

 Averaging periods 24h Month Period

Receptor Name 24h Month Period Rest % Rest % Rest %

Falconara Acquedotto 10.67 6.24 4.53 7.98 74.83 1.89 30.28 0.08 1.74

Falconara Scuola 45.63 6.56 4.84 -32.84 -71.96 -2.06 -31.40 -2.15 -44.39

Falconara Alta 12.61 5.4 4.24 9.84 78.06 1.08 19.93 -0.39 -9.14

AERMOD F. Acquedotto 18.65392 8.12971 4.609 Total Model Difference -1.84 5.33%

AERMOD F. Scuola 12.79336 4.49985 2.6915 24 h Mean Month Mean Period Mean

AERMOD F. Alta 22.45321 6.47621 3.8525 -5.00 26.97 0.30 6.27 -0.82 -17.26

Table 17. Main tabular data comparing the AERMOD analysis with

receptor grid (highest 98th percentile excluded) compared to maximum data

per averaging period, from 3 monitoring stations, including percentages

 161

The same AERMOD analysis was done except for using discrete

receptors located by replicating the three monitoring station’s locations. The

maximum table (table 18.) averaging periods were compared to AERMOD

output, and a total difference is calculated. The highest 98th percentile was

excluded from output values to follow regulations.

Discrete receptor analysis - Maximum Monitoring Station Averaging Period Differences - SOX [μg/m3]

Analyzed Hourly Receptor Values AERMOD DIFFERENCE - SOX [μg/m3]

 Averaging periods 24h Month Period

Receptor Name 24h Month Period Rest % Rest % Rest %

Falconara Acquedotto 10.67 6.24 4.54 7.92 74.19 2.53 40.60 0.64 14.16

Falconara Scuola 45.63 6.56 4.84 0.00 0.00 -1.88 -28.67 -2.02 -41.82

Falconara Alta 12.61 5.4 4.24 10.22 81.02 1.28 23.79 -0.16 -3.66

AERMOD F. Acquedotto 18.58585 8.77374 5.1828 Total Model Difference 2.06 8.68%

AERMOD F. Scuola 8.46756 4.67913 2.81576 24 h Mean Month Mean Period Mean

AERMOD F. Alta 22.82677 6.68443 4.08494 6.04 51.74 0.65 11.91 -0.51 -10.44

Table 18. Tabular data comparing the AERMOD analysis with discrete

receptors (highest 98th percentile excluded) compared to real data from 3

monitoring stations, including percentages

 162

Difference data of both gridding systems were compiled and

compared to limit values, to give a sense of scale, e.g. the percentage part of

the difference of modeled to real data, out of the regulatory limit for SOX for

each averaging period.

Model-Limit Scaling - SOX [μg/m3] – Receptor Grid
Limit Limit

Fraction
Difference

Avg. Period μg/m3 % μg/m3 %

24h 125 4.00 -5.00 26.97
Month 20 1.51 0.30 6.27

Period (Year) 20 4.10 -0.82 -17.26

Total Model
Difference

3.20 -1.84 5.33 %

Table 19. Overview of differences between receptor grid modeled and real

data. “Limit Fraction” is the modelled differences percentage of the SOX

limit

Model-Limit Scaling- SOX [μg/m3] – Discrete Receptors
Limit Limit

Fraction
Difference

Avg. Period μg/m3 % μg/m3 %

24h 125 4.84 -5.00 26.97
Month 20 3.23 0.30 6.27

Period (Year) 20 2.56 -0.82 -17.26

Total Model
Difference

3.54 2.059 8.68

Table 20. Overview of differences between discrete receptor modeled and

real data. “Limit Fraction” is the modelled differences percentage of the

SOX limit

 163

Difference between real and modelled data in relation to regulatory limits
SOX [μg/m3] – Grid receptor

Averaging Period 24h Month Year Mean

Falconara
Acquedotto

Limit fraction % 6.387 9.449 0.395 5.410

Model
difference

μg/m3 7.984 1.890 0.079 3.318

% 74.826 30.284 1.744 35.618

Falconara Scuola

Limit fraction % 26.269 10.301 0.395 12.322

Model
difference

μg/m3 -32.837 -2.060 0.079 -11.606

% -71.963 -31.405 1.744 -33.875

Falconara Alta

Limit fraction % 7.875 5.381 10.743 7.999

Model
difference

μg/m3 9.843 1.076 -2.149 2.924

% 78.059 19.930 44.390 17.866

Mean AERMOD
difference

Limit fraction % 4.003 1.510 4.095 3.202

Model
difference

μg/m3 -5.003 0.302 -0.819 -1.840

% 26.974 6.270 -17.262 5.327

Table 21. Detailed differences between discrete receptor modeled and real

data in relation to regulatory limits. “Effective %” is the modelled

differences percentage of the SOX limit

Model Validation
Method Result Range Acceptable
NMSE 1.015 0.5-2.0 Yes
FB −0.0656 -0.2 - 0.2 Yes
MB 5.33% -20% - 20% Yes

Table 22. Results of testing by Normalized Mean Square Error (NMSE),

Fractional Bias (FB) and Mean Bias (MB) tests to measure the model’s

results compared to observed data for compliance to European Union

regulation

 164

4. DISSCUSSION

4.1 LOCAL FACTORS

Falconara Marittima is located in “Valle Dell'Esino”, or “Esino” River

Valley, and is proclaimed by “ARPA” an “AERCA (Area a Elevato Rischio

di Crisi Ambientale)”, or a high risk of environmental crisis zone, due to the

high industrial and maritime pollution in the area. This designation implies

the requirement for more rigorous pollution control, regulatory oversight, and

stricter regulatory measures due to the complex interplay of emission sources

and the region's susceptibility to high pollution loads. The “Esino” valley

encompasses the cities Agugliano, Ancona, Camerata, Chiaravalle, Falconara

Marittima, Jesi, Monsano, Montemarciano and Monte San Vito. This area has

been recognized for its susceptibility to pollution due to the presence of

multiple sources of emissions, geographical features that influence pollutant

dispersion, roadways, and a dense population that further complicates air

quality management. The valley structure combined with prevailing

meteorological conditions makes it likely for pollutants to be trapped,

especially during periods of stagnant winds or under the influence of sea

breeze. The valley’s topography restricts the dispersion of pollutants,

resulting in periods of stagnant air, particularly during conditions

characterized by low wind speeds and inversion layers. Furthermore, the

breezes (N-NW) originating from the Adriatic Sea interact with these

geographical features, and often drive pollutant transport inland towards

residential zones, rather than allowing them to disperse effectively into the

upper atmosphere and over the sea, (Regione Marche, 2024.). These site-

specific conditions are well-reflected in the dispersion pattern outputs

generated by AERMOD, as the concentration abruptly decreases over sea.

The AERMOD modeling results indicate higher concentrations in receptor

locations downwind of the refinery, particularly during the occurrence of

north-western winds driving the plume towards Ancona. Pollution also gets

trapped within the valley, leading to peak concentrations.

 165

The results of the dispersion modeling, conducted using AERMOD

for Falconara Marittima, highlight significant patterns of pollutant

concentration that align with the regional characteristics and existing sources

of pollution. This analysis focused specifically on the emissions originating

from the API oil refinery, which plays a crucial role in the air quality in the

surrounding area. The Ancona harbor is another significant pollution source

in the vicinity that adds to the concentration of contaminants, particularly due

to emissions from ships at rest with running engines, as its their only source

of electricity.

The Ancona harbor also plays a significant role in pollution levels

within the study area. The harbor's impact is not included in the AERMOD

model, which only considers emissions from the refinery. Being Italy’s major

harbor on the Adriatic coast, presents a unique challenge to the local

environment. In addition to the refinery, emissions from the harbor contribute

significantly to overall pollution levels, especially for short-term peak

periods. The study, conducted by Fileni et al. in 2019. concluded that the port

of Ancona contributed significantly to the levels of carbon monoxide (CO),

volatile organic compounds (VOCs), nitrogen oxides (NOX), sulfur oxides

(SOX), and particulate matter (PM). The main sources of emissions include

"Roll-on/roll-off" (Ro-ro) and "Roll-on/roll-off Passengers" (Ro-pax) ships

as well as fishing vessels. SOX emissions are directly linked to the sulfur

content of the fuel and therefore also to fuel consumption. Different fuel types

are used by ships during maneuvering, cruising and “hoteling”, e.g. the power

required to maintain ship operations while at berth. During maneuvering ships

use Marine Diesel Oil (MDO) or Marine Gas Oil (MGO), which has a low

Sulphur content of around 1.5%, which have lower viscosity and are better

suited for quick changes in engine speed and power, which are often required

during maneuvering. During cruising Heavy Fuel Oil (HFO) is used, with

higher viscosity and high Sulphur content. During hoteling ships are required

by European Directive 2005/33/EC, to use Marine Gas Oil (MGO) to reduce

emissions in ports, the Sulphur content in the fuel is required to be less than

0.5%. Emission is highest during maneuvering and hoteling. In Naples, 98%

of NOX and SOX emissions from cruise ships were due to hoteling, with only

2% attributed to maneuvering. In Ancona 76% of PM10 emissions were

during hoteling. (Fileni, et al., 2019.)

 166

The API refinery is a primary contributor to local SO₂, NOₓ, and

particulate emissions. Falconara Marittima was defined by Decree of the

Ministry of the Environment and Land Protection, as an” Area at High Risk

of Environmental Crisis” (AERCA). With the Decree of the Ministry of the

Environment and Protection of Land and Sea no. 308 of 28 November 2006,

financial resources amounting to € 3,272,727.00 were assigned to the

Falconara Marittima site. (ARPAM, 2023.)

The following areas are part of the “Falconara Marittima” National

Interest Site:

api Raffineria di Ancona S.p.A.;

former Montedison plant;

internal areas of Aerdorica S.p.A.;

former Liquigas – Castellaraccia area;

former chemical-bitumen industry;

area of via Monti and Tognetti;

RFI area in front of the former Montedison site

sports field of the parish of S. Maria della Neve and S. Rocco;

former Gattini mechanical workshop;

former Vibrocementi;

former R.S.U. landfill

The perimeter also includes the marine area facing the terrestrial area

that extends from the Api Refinery to the former Montedison for a total

surface area of approximately 1200 ha. (ARPAM, 2023.)

The Falconara Marittima National Interest Site is located in the

alluvial plain near the mouth of the “Esino” River. The marine area facing

this site is characterized by shallow seabed with high oceanographic

dynamism, with marked seasonal and interannual variations influenced by the

strong temperature range that occurs between the winter and summer seasons

due to the shallow depth of the seabed and the contributions of fresh river

water due to the presence of the “Esino” River that flows in the vicinity of the

Api complex. (ARPAM, 2023.)

 167

The three monitoring stations exhibit different trends. The

“Acquedotto” and “Scuola” receptors, located in the vicinity of the refinery,

are positioned within the direct line of pollutant fallout.

The “Acquedotto” monitoring station is directly downwind of the

refinery emissions during NE winds and experiences plume trapping during

NW winds and inversion. The data showed elevated concentrations of

pollutants during these wind events, consistent with predicted results from the

model, indicating that the plume from the API refinery heavily affects this

area.

The “Scuola” monitoringstation, positioned near the elementary

school in “località Villanova di Falconara,” is affected during the

predominating N-NW winds, which drive refinery emissions into the urban

center. The modeled concentrations confirm that pollutants are transported

towards the school and residential areas, underscoring the need for stringent

air quality control to safeguard sensitive populations.

“Alta” station monitors emissions during northerly winds and is

affected similarly. AERMOD predicts a concentration pattern that matches

the expected path, confirming the accuracy of the emission data and,

meteorological and terrain inputs. These stations illustrate how localized

micro-conditions can dictate pollutant exposure which further emphasizes the

vulnerability of residential areas. (ARPAM, 2023.)

These factors contribute to pollution and importance of environmental

monitoring in Falconara Marittima, where we observe a similar pattern of

pollutant distribution due to the combination of port activities, refinery

operations and local meteorological conditions. And are fundamental in

understanding and interpreting the AERMOD results. The presence of other

pollutant sources increases pollution both quantitatively and qualitatively.

Related to modeling results it justifies any concentration overestimations

made by the model and diminishes underestimations, due to real-world

contributions to pollution levels by other sources, as it likely under-represents

actual exposure levels in Falconara Marittima. Future modeling efforts should

therefore incorporate emissions from the Ancona harbor, as it provides a

crucial background pollutant concentration, to provide a more comprehensive

 168

understanding of local air quality. Local policy should consider additional

emission control technologies for the refinery during periods of

meteorological stability that lead to pollutant trapping, e.g. Continuous

Emission Monitoring Systems (CEMS) with Predictive Control, allowing for

continuous monitoring of SOx emissions. When periods of meteorological

stability are predicted, CEMS can trigger operational adjustments or the

activation of additional control measures. Differences observed between

short-term and long-term averaging periods underscore the necessity for

tailored approaches to regulatory compliance, focusing on minimizing both

peak exposure and annual average concentrations. Additionally, reducing

emissions from Ancona port, given the proximity of industrial and residential

areas in Falconara, could be crucial in minimizing the population's exposure

to harmful pollutants.

 169

4.2 “CAIRO” PERFORMANCE

The primary goals of modeling atmospheric dispersion and creation

of the “CAIRO for AERMOD” application are to assess and understand the

distribution and concentration of pollutants emitted from major industrial

sources, particularly the API refinery in this case study. To estimate pollutant

exposure levels for residents and compare these levels against established

regulatory standards for health and safety. To determine the dispersion

characteristics of pollutants, provide a scientific basis for policymakers to

implement mitigation measures. To understand how geographical influences

affect air quality.

AERMOD was chosen over other software due to its straightforward

setup and the accuracy it provides for pollution modeling. The choice of

AERMOD is primarily due to its well-established credibility and

straightforward application for short-scale assessments (up to 50 km).

Falconara Marittima, being impacted primarily by the refinery and located

within a close geographically defined area, fits well within the scope of

AERMOD's capabilities. Complex terrain and surface interactions, which

include coastal areas, industrial zones, and residential areas, are handled

efficiently through its terrain processing algorithms, making it suitable for

Falconara's mixed landscape. AERMOD includes detailed formulations to

manage boundary layer physics, important for the Falconara area, which has

varied surface types (water bodies, urban areas, vegetated regions). Surface

meteorological data and upper air data can be easily integrated into

AERMOD, while models like CALPUFF or WRF require more complex

meteorological preprocessing and a longer computational setup and are suited

for large scale analyses.

 170

In the initial stages of developing the “CAIRO, Python, together with

the PyCharm interface, was leveraged primarily for its versatility and the

availability of numerous supporting libraries that facilitate rapid application

development. Python's readability and adaptability were key to developing

the initial and consecutive versions. Its capacity for combining powerful data

analysis libraries allowed us to create a comprehensive air quality modeling

and analysis tool with interactive components. Such as “Pandas” and

“NumPy”, with user interface toolkits, “PyWin32” to handle fetching

coordinates, “utm” for converting them and “simplekml”, among others, for

real time visualization.

For the graphical user interface, Tkinter was used, as it a lightweight

GUI toolkit for Python. Tkinter provided a quick way to create dialog

windows, form entries, and other components that were needed for user

interaction without having to dive into the complexities of a more

sophisticated library. The simplicity of Tkinter made it easy to iterate on the

user interface, which was crucial during the prototyping phase. It allowed to

make modifications to suit the requirements of users.

The ”CAIRO” application allowed for all stages to be run from one

window, compiled necessary input files and guided and aided throughout the

modeling process by simple menus, pop-up information boxes and available

video tutorial. There was no need to set up different pathways (Control,

Source, Receptor…), to know correct syntax, to manipulate with folders and

files, or to work through different terminals and command shells. The input

of UTM coordinates and zone is possible through different inputs, from

copying latitude longitude coordinates to be automatically visualized and

converted, to manually inputting them. The application offers a simple

workflow, containing crucial AERMOD functionalities, enabling for a simple

and user-friendly interface and workflow, while still being able to achieve

statistically and legislatively significant results.

After obtaining elevation data from Copernicus Services, the process

of compiling input and running AERMAP was straightforward. By choosing

the origin of the receptor grid via Google Maps, the zone and other accessory

data is automatically compiled, the elevation data is loaded trough the

interface.

 171

The integration of Google Maps and Google Earth with AERMOD

was instrumental in streamlining the input process. For instance, defining

emission sources via Google Maps ensured precise geolocation and helped

minimize errors related to manual data entry. Moreover, visualization in

Google Earth provided immediate feedback on the receptor grid's spatial

setup and the positioning of pollutant sources, ensuring the model reflected

real-world scenarios more accurately and created a shapefile containing point

or polygon source locations. Loading of terrain and meteorological data is

conveniently done through the interface. AERPLOT fetched all necessary

files during compilation and offered all basic functions.

The program had its disadvantages in requiring internet connection for

full functionality, had occasional instability issues and uses a limited amount

of AERMOD’s functionalities. These are the other disadvantages that are

planned to be resolved in future versions of “CAIRO”:

- simpler interface

- availability for other platforms

AERMAP :

- no visual preview of elevation data or receptor domain in Google

Earth or QGIS

- only receptor grid is available, polar and discrete receptors should be

included to analyze specific locations, polar grids have a higher

resolution near source, which would suit the analysis in Falconara

Marittima

AERMOD:

- limited source types (point, aerapoly), line and volume should be

included

- only three averaging periods are available

- some limitation in output, still the most important output is available

- input of meteorological station numbers could be automated

AERPLOT:

- custom bins are not available, but custom binning ranges are available

with the choice of logarithmic or linear

- creation of multiple iterations could be possible for every plot file

(currently for every averaging period a corresponding plot is created,

a possibility is to create both logarithmic and linear plots, or with

different ranges and bins at once for all averaging periods)

 172

The program excelled at its intended purpose and made the creation of a

complex multisource analysis user friendly. Its real time visualization

capabilities offered the greatest advantage, both by simplifying the input

process, creating accessory files for post processing, offering real time

confirmation of source location and automatically converting coordinates and

creating vertices of polygons. Creation of multiple graphical concentration

maps at once made it easier to obtain results and post process them. The

"CAIRO for AERMOD" application represents a significant advancement in

user-friendly PBL dispersion modeling. By integrating essential tools, real-

time visualization, and straightforward data input methods, it addresses the

complexities of air quality modeling with efficiency and accessibility.

Though there are some limitations to the platform that will be addressed in

future updates, "CAIRO" excels in meeting the practical demands of pollutant

dispersion analysis, particularly in complex terrains like Falconara Marittima.

This tool not only enhances the capacity for accurate and expedient

environmental assessments but also equips policymakers and environmental

scientists with a reliable foundation for evaluating air quality impacts and

exploring mitigation measures. With ongoing development, "CAIRO" holds

the potential to evolve into a robust, multi-platform tool capable of adapting

to broader contexts and more diverse modeling needs.

The program has been uploaded to https://sourceforge.net/projects/cairo-

for-aermod/ and is free to download.

https://sourceforge.net/projects/cairo-for-aermod/
https://sourceforge.net/projects/cairo-for-aermod/

 173

4.3 CASE STUDY

Elevation data was downloaded in a sufficient resolution of 30 m/px,

which is either way smaller than the receptor grids 100 m resolution and the

recommended size of 100*100m to 500*500m by EEA, for local applications,

analyzing one city or one industrial plant. For urban/metropolitan scales a

1*1km to 5*5km grid is recommended, while for regional a 1*1o or

approximately 11*11km grid size is recommended (EMEP, EEA, 2009.).

Receptor nodes were defined using a Cartesian grid network, ensuring

comprehensive spatial coverage, particularly along critical downwind

directions identified based on local meteorological patterns. A polar receptor

grid could have been used to inspect concentrations more accurately near the

plant. Meteorological data was supplied by the university via Co-Supervisor.

 Different binning ranges and methods were applied to plot the output

to represent the data suitably for each averaging period. QGIS, MATLAB and

MS Excel played a crucial role in data representation, postprocessing and

model validation.

As explained before, the refinery sources do not represent all pollution

emission sources influencing the area, so modeled values were expected to

underestimate. The final result showed a slight overestimation of 5.33%,

either due to the model internally overestimating, inaccuracy in source,

elevation or meteorological data, improperly setup model, or insufficient

receptor replicants (real monitoring stations to compare to).

The analyzed data showed no values exceeding the regulatory limit

values. Highest concentrations are found in shorter averaging periods because

peaks are better represented in a shorter time frame/sample number. Also, the

highest discrepancies in concentration were found in shorter averaging

periods. Concentration distribution patterns strongly co-align with

predominant wind directions, while entrapment due to topography is obvious

in the valleys and due to NW wind driving pollution inland. The pollutant

plume holds steady concentrations reaching as far as Ancona. Residential

including school areas are most exposed to refinery pollution due to

proximity.

 174

Concentration distribution, observing both modelled and observed data

is highly spatially variable due to complex topology and meteorological

influences. Building downwash modelling, using BPIPPRM (Building Profile

Input Program for PRIME) which is a preprocessor of AERMOD, could be

beneficial to model in this residential and topographically complex area.

The shore south and north of Falconara exhibits lower concentration,

but that picture might change if Ancona port and transit emissions were

included. In the case of 24-hour averaging, the AERMOD output provides an

insight into maximal pollutant impact at each receptor, which is critical for

assessing health risks in vulnerable populations, such as those residing near

“Scuola” and “Aquedotto”. Long term averaging gives insight into long term

exposure, which often isn’t reflected in short-term averaging periods.

Statistical indicators like mean, median, percentiles, and pollutant mass

are used to characterize pollution levels in depth.

Percentiles such as the 98th 75th and 25th provide insights into the

variability of the pollution concentrations, helping interpret the impact at

different spatial ranges and temporal resolutions (24-hour, month, annual).

The 98th percentile values calculated in the “RANKFILE”, for specific

receptor locations, provide a crucial assessment tool for regulatory

compliance, that aims to represent worst-case scenarios while excluding

extreme outliers that may not reflect typical conditions.

As AERMOD reports set highest values on the analyzed receptor nodes,

so had the observed data been interpreted accordingly, to find the maximum

values from averaging periods. Due to the discretization of the receptor grid,

modeled locations were 25-52m away from their actual location. Later

analysis tried to minimize the error by using discrete receptors with exact

locations, but the receptor grid still showed to more accurate by 10%. This

may be caused by high spatial variability in the area, inaccurate input data or

inadequate number of replicants. A box analysis on receptor sites could have

produced more exact values, though it might be contraindicated due to high

spatial variability.

The observed data showed concentrations up to 45.63 μg SOX/m3 at the

“Falconara Scuola” receptor, arguably the most sensitive area, occupied by

children³, which is well below the regulatory limit of 125 μg/m³, representing

approximately 36.5% of the limit, but still produces a compounding effect.

 175

The median and mean values lie around 4-5 μg SOX/m3, creating a steady

background concentration and a compounded exposure to the population.

The “Falconara Aquedotto” receptor experiences lower concentration

peaks at 10.67 μg SOX/m3, but has a relatively high background concentration

of 4.54 μg SOX/m3, due to proximity to the plant, trapping of gas at lower

elevations and NE winds. Modeled concentrations in the short term had a high

discrepancy of up to 75%, decreasing to 30.3% and 1.74% for month and year

averaging periods, respectively.

The ”Falconara Scuola” receptor experiences the highest concentration

peaks at 45.63 μg SOX/m3, but has the highest background concentration of

4.84 μg SOX/m3, due to proximity to the plant and predominant NW winds.

Modeled concentrations showed the largest differences, compared to

observed data. The highest underestimation at -72% for the 24h period,

decreasing to -31.4% for month and again rising to -44.39% for the year

averaging period. The peak of 45.63 μg SOX/m3, was vastly underestimated

by the model with 12.79 μg SOX/m3. This shows that the specific subarea

experiences a complex interplay of topography, meteorology and very

proximal emission. Ground heat flux could have been underestimated by

AERMOD in this case, due to presence of infrastructure, increasing the

upwards heat flux. Modelling the receptor properly, would require detailed

model formulation, including building downwash effect and a finer receptor

grid network to conclude which features influence the complex dispersion

patterns.

The ”Falconara Alta” receptor experiences concentration peaks at 12.61

μg SOX/m3, but has the lowest background concentration of 4.24 μg SOX/m3.

Lower concentrations were as expected due to higher distance to the plant,

higher elevation, which promote more efficient plume dispersion. The

receptor also isn’t in the direct way of the predominant wind directions,

reducing the measured concentration. Measured values comparable to the

ones in higher proximity to the plant (Aquedotto, Scuola), indicate the

magnitude of pollution in Falconara Marittima, the trapping of pollutants

inland by NE winds, and possible additional sources, influencing the

measured value more than the other two receptors. One possibility is the

greater proximity of Ancona port to Falconara Alta. Modeled concentrations

 176

in the short term had the highest discrepancy of 78%, decreasing to 19.93%

and -9.14% for month and year averaging periods, respectively. The model

calculate its highest 98th percentile value at this receptor of 22.45 μg SOX/m3,

while the actual data shows only 12.61 μg SOX/m3. This could be due to the

program underestimating ground heat flux, or the thickness of the PBL,

resulting in a lower modeled dispersion and higher modeled concentration

values.

Overall, the model performed very well with a discrepancy from the

observed data of -1.84 μg SOX/m3 and 5.33%, on average. The 24-hour

averaging period produced the greatest discrepancies compared to the

observed data, averaging at about ±75% of difference. This is largely due to

model setup and could be mitigated using more complex terrain processing

and more detailed meteorological data. The monthly averaging period shows

smaller discrepancies up to ±30%, while the yearly period has smallest

discrepancies, excluding the “Scoula” receptor and its underestimation.

Discrete receptor analysis, aimed to decrease discrepancies caused by

receptor location discrepancies, shows similar output, with a slightly higher

discrepancy in overall predictions at -2.07 μg SOX/m3 and 9.68%. Move over,

its showed the same high underestimation at “Scuola” receptor and

overestimation at Alta receptor, indicating the receptor grid was fine enough,

the up to 50 m discrepancy in receptor location isn’t significant and the model

setup needs further work.

Modelling results, specifically the model discrepancies, were compared

to regulatory values (125 μg SOX/m3 for 24 h avg. period, and 20 μg SOX/m3

for month and year avg. periods) to scale its performance in terms of its ability

to influence regulatory compliance, estimation of health hazard and provide

a base for further research and legislative efforts. Discrepancies presented

only up to 4.10% of the data, averaging at 3.20%. They were largest for the

24 h and yearly averaging period. Monthly averages might provide a balance

between capturing significant temporal variations and minimizing the “noise”

from short-term fluctuations, resulting in more reliable air quality

assessments. Daily variations in weather can cause significant short-term

fluctuations in pollutant levels, while yearly averages may obscure these

fluctuations altogether.

 177

Additionally, the model performance was also examined through

Normalized Mean Square Error (NMSE), Fractional Bias (FB) and Mean Bias

(MB), to determine regulatory validity of the results in the EU. The model

acquired sufficient results and would be valid for regulatory purposes.

The results conclude that the null hypothesis (The difference between

modeled data and real-world measurements in relation to regulatory limit is

significant), has been disproven and the hypothesis (There is no significant

difference between modeled and real-world data in relation to regulatory

limit.) has been confirmed.

Falconara Marittima, designated as a high environmental risk area

(AERCA), faces considerable challenges due to industrial emissions and its

proximity to the Ancona harbor, both significant sources of air pollutants.

Sulfur oxides (SOX) concentrations, while within regulatory limits, pose

potential health risks due to the cumulative exposure effects. Long-term

exposure to elevated SOX levels, even below threshold limits, is associated

with respiratory issues, especially among sensitive groups like children and

the elderly. Short-term peaks, which often coincide with refinery emissions

and atmospheric inversions, increase the risk of acute respiratory symptoms,

aggravation of asthma, and other pulmonary conditions (WHO, 2006.).

The Ancona harbor also contributes to the pollutant burden, with

emissions from ship traffic compounding local air quality issues. Studies

suggest that harbor-related emissions, including SO₂ and PM, have a marked

impact on coastal and near-port communities, exacerbating the health risks

associated with long-term exposure. Given these factors, the results of this

study underscore the importance of stringent air quality management and

regulatory compliance efforts in Falconara Marittima. Effective policies must

address the cumulative impacts of industrial and port-related activities to

mitigate adverse health outcomes and safeguard public well-being in this

high-risk area.

In conclusion, the use of AERMOD, combined with the graphical

interface CAIRO, has allowed for a robust analysis of pollutant dispersion

and air quality conditions in Falconara Marittima, focusing on sulfur oxides

(SOX) concentrations. Using AERMOD to simulate air pollution at using a

receptor grid and at three key receptor points: Falconara Acquedotto,

 178

Falconara Scuola, and Falconara Alta, revealed both spatial and temporal

variations in pollutant concentrations.

The results align with previous studies, reinforcing the importance of

integrated air quality management that includes contributions from multiple

emission sources, such as industrial and harbor activities. Further work may

involve refining receptor placements to capture additional micro-scale

variations and extending the analysis to other pollutants of concern, such as

PM10 and NOx. The effectiveness of the AERMOD model, enhanced by the

CAIRO interface, provided detailed insights into pollutant dispersion within

Falconara Marittima. By focusing on sulfur oxide emissions from the

Falconara refinery, the study highlights spatial and temporal pollutant

variations that inform both regulatory compliance and environmental health

impacts. Although some discrepancies between modeled and observed values

were noted, particularly over shorter averaging periods, the overall model

accuracy supports AERMOD's and CAIRO’s applicability in regulatory and

health-risk assessments, contributing to a comprehensive approach to air

quality management. The findings emphasize the need for integrated

mitigation measures addressing both industrial emissions and transport-

related sources to protect public health and ensure regulatory compliance.

 179

5. CONCLUSION

This thesis has presented a comprehensive examination of SOX

emissions from a refinery in Falconara Marittima, Italy, using the AERMOD

dispersion model and a newly developed application, "CAIRO for

AERMOD". The development of the "CAIRO for AERMOD" software, a

Python-based graphical user interface, was a key achievement, designed to

streamline and automate the generation and runtime of complex input files

required for AERMOD, AERMAP, and AERPLOT. The CAIRO tool

simplified previously labor-intensive tasks, allowing users to compile input

files with the correct syntax and structure while visualizing input data in

Google Earth. Key functionalities of the software, such as automatic

coordinate input, UTM conversion, handling file pathways, data formats, and

guided support for different types of analysis, demonstrate its utility in

environmental modeling, both for novice and experienced users.

The “CAIRO for AERMOD” application proved effective in handling

input and output across all phases of the modeling process. By automating

coordinate conversions, visualizing sources and receptors, and simplifying

file compilation, the software provided a more efficient workflow for

environmental assessments. The interface’s integration with tools like Google

Earth and QGIS enhanced user interaction with georeferenced data, allowing

real-time visualization of point sources, receptor grids, and modeled

concentrations. This feature is especially useful in environmental impact

assessments, where the spatial relationship between emission sources and

residential areas is critical.

The case study of the API refinery in Falconara Marittima, Italy, served

to validate both the GUI’s functionality and the AERMOD model’s

performance in simulating SOx dispersion from complex industrial sources.

The study used a 20x20 km receptor grid with 100 m resolution, covering the

refinery and its surrounding areas, including the nearby town of Falconara

Marittima and 15 point sources stemming from the plant. Three averaging

periods (24-hour, monthly, and yearly) were analyzed, providing a multi-

scale perspective on the spatial distribution and concentration of SOX

emissions. Modeled concentrations were compared to actual monitoring data

from three industrial receptor sites around the refinery, which allowed for

detailed model validation and insight into AERMOD's performance in

 180

complex, real-world scenarios. Across all three averaging periods, AERMOD

produced SOX concentration estimates that were within acceptable limits

according to Italian legislative thresholds (confirmed by monitoring station

data): 125 μg/m³ for 24-hour averaging, and 20 μg/m³ for monthly and yearly

averages. AERMOD results, when compared to actual monitoring data,

showed an average discrepancy of 18.5% or -1.088 μg SOX/m³, with the

model performing better over longer averaging periods (1 year) and less

accurately over shorter periods (24 hours). The results indicate that while

AERMOD provides a valuable estimation tool for SOX emissions and

highlighting potential risk zones, its precision is variable depending on the

timeframe, reflecting the challenges of capturing transient atmospheric

processes in environmental modeling.

These overestimations would be even greater if other major pollution

sources were included, such as the road traffic and nearby Ancona harbor,

whose ship emissions contribute significantly to SOX levels in the area but

were not included in this model. Model validation highlighted AERMOD's

tendency to produce higher discrepancies over shorter time periods (up to

78% discrepancy). The model's accuracy improved with longer averaging

periods, with yearly averages closely aligning with observed data and

discrepancies reduced to below 20%. In the Falconara Marittima area,

additional sources such as harbor emissions may contribute to cumulative

pollution levels, suggesting that AERMOD's accuracy could improve by

including a broader set of emission sources. The analysis also found that the

receptor grid method provided similar results to discrete receptors, although

minor variations were observed due to the spatial resolution of the grid and

discretization of receptor placement. A limitation of AERMOD is its inability

to model chemical transformations of pollutants, such as the oxidation of SO₂

into sulfate aerosols, which contribute to particulate matter (PM₂.₅) formation,

fog and acid rain. Incorporating the Weather Research and Forecasting model

coupled with Chemistry (WRF-Chem) could address this limitation.

AERMOD, supported by the CAIRO application, is a viable tool for

assessing industrial air pollution in complex environments. The CAIRO for

AERMOD software successfully addressed challenges in input file creation,

source visualization, and receptor placement, establishing a workflow that

can be applied in similar environmental modeling contexts. By addressing the

 181

technical barriers associated with AERMOD, the "CAIRO for AERMOD"

application facilitates improved compliance, scenario analysis, and decision-

making. While AERMOD’s performance was satisfactory over extended

averaging periods, the model's limitations in capturing short-term pollution

variability suggest the need for further refinement. Enhancements to CAIRO

for AERMOD could include integration with meteorological and elevation

data providers. By advancing both the practical application and estimation of

accuracy of AERMOD modeling, this study contributes to more reliable,

user-friendly and free source air quality assessment tools, supporting efforts

to mitigate industrial pollution and protect public health in affected

communities. This software offers a practical solution for environmental

professionals by enabling efficient input handling and visualization, thereby

contributing to more effective monitoring and assessment of air pollution in

complex environments.

 182

6. REFERENCES

World Health Organization. (n.d.). (20.5.2024.) Air Pollution. World Health

Organization. https://www.who.int/health-topics/air-pollution#

Fowler, David, et al. "A chronology of global air quality." Philosophical

Transactions of the Royal Society A 378.2183 (2020): 20190314.

European Environment Agency. (2024, May 27). Air Pollution. European

Environment Agency’s home page. https://www.eea.europa.eu/en/topics/in-

depth/air-pollution

EPA National Emission Inventory EPA-454/R-00-003. (2010).

Singh, Anita, and Madhoolika Agrawal. "Acid rain and its ecological

consequences." Journal of Environmental Biology 29.1 (2007): 15.

Sharma, Shyam Bihari, et al. "The effects of air pollution on the environment

and human health." Indian Journal of Research in Pharmacy and

Biotechnology 1.3 (2013): 391-396.

Lee, Chih-Sheng, Ken-Hui Chang, and Hyunook Kim. "Long-term (2005–

2015) trend analysis of PM 2.5 precursor gas NO 2 and SO 2 concentrations

in Taiwan." Environmental Science and Pollution Research 25 (2018):

22136-22152.

Oppenheim, Hannah A., et al. "Exposure to vehicle emissions results in

altered blood brain barrier permeability and expression of matrix

metalloproteinases and tight junction proteins in mice." Particle and Fibre

Toxicology 10 (2013): 1-14.

Calderón-Garcidueñas, Lilian, et al. "Long-term air pollution exposure is

associated with neuroinflammation, an altered innate immune response,

disruption of the blood-brain barrier, ultrafine particulate deposition, and

accumulation of amyloid β-42 and α-synuclein in children and young adults."

Toxicologic pathology 36.2 (2008): 289-310.

https://www.who.int/health-topics/air-pollution
https://www.eea.europa.eu/en/topics/in-depth/air-pollution
https://www.eea.europa.eu/en/topics/in-depth/air-pollution

 183

Tiao, G. C., G. E. P. Box, and W. J. Hamming. "Analysis of Los Angeles

photochemical smog data: a statistical overview." Journal of the Air Pollution

Control Association 25.3 (1975): 260-268.

Wesely, M. L., and B. B. Hicks. "A review of the current status of knowledge

on dry deposition." Atmospheric environment 34.12-14 (2000): 2261-2282.

Deribe, Ermias, et al. "Biomagnification of DDT and its metabolites in four

fish species of a tropical lake." Ecotoxicology and environmental safety 95

(2013): 10-18.

Bouare, Oumar. "Impact of Global Warming on Rural-Urban Migration and

Net Emigration in Forefront Sub-Saharan Countries." Available at SSRN

1338756 (2009).

Boningari, Thirupathi, and Panagiotis G. Smirniotis. "Impact of nitrogen

oxides on the environment and human health: Mn-based materials for the

NOx abatement." Current Opinion in Chemical Engineering 13 (2016): 133-

141.

Zhang, Chunlin, et al. "Emission factor for atmospheric ammonia from a

typical municipal wastewater treatment plant in South China." Environmental

pollution 220 (2017): 963-970.

Patel, Sagar, et al. “Physiology, Oxygen Transport And Carbon Dioxide

Dissociation Curve.” StatPearls, StatPearls Publishing, 27 March 2023.

Wang, Y. Q., et al. "Spatial and temporal variations of the concentrations of

PM 10, PM 2.5 and PM 1 in China." Atmospheric Chemistry and Physics

15.23 (2015): 13585-13598.

EPA. Persistent Organic Pollutants: A Global Issue, A Global Response.

2009., https://www.epa.gov/international-cooperation/persistent-organic-

pollutants-global-issue-global-response , 1. June 2024.

Chen, Lung-Chi, Polina Maciejczyk, and George D. Thurston. "Metals and

air pollution." Handbook on the Toxicology of Metals. Academic Press, 2022.

137-182.

https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response
https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response

 184

Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Egendorf, S.P. Lead in Air, Soil,

and Blood: Pb Poisoning in a Changing World. Int. J. Environ. Res. Public

Health 2022, 19, 9500. https://doi.org/10.3390/ijerph1915950018. May 2024.

ENEA - Piersanti, A.; D’Elia, I.; Gualtieri, M.; Briganti, G.; Cappelletti, A.;

Zanini, G.; Ciancarella, L. The Italian National Air Pollution Control

Programme: Air Quality, Health Impact and Cost Assessment. Atmosphere

2021, 12, 196. https://doi.org/10.3390/atmos12020196 16. May 2024.

MASE. (n.d.). Environmental assessments and authorizations: Sea - eia -

IPPC permit. MASE - Environmental Assessments and Authorizations - SEA

- EIA - IPPC Permit. https://va.mite.gov.it/en-GB/comunicazione/cittadino

EEA, 2022, 'European Union emission inventory report under the Convention

on Long-range Transboundary Air Pollution (LRTAP) — European

Environment Agency', (https://www.eea.europa.eu/publications/european-

union-emissions-inventory-report). 16. May 2024.

EU, 2016, Directive (EU) 2016/2284 of the European Parliament and of the

Council of 14 December 2016 on the reduction of national emissions of

certain atmospheric pollutants, amending Directive 2003/35/EC and

repealing Directive 2001/81/EC, OJ L 344, 17.12.2016, p. 1–31.

US EPA,OAR. “Air Quality Dispersion Modeling - AERMOD Model

Formulation | US EPA.” US EPA, 22. July 2019.,

https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_

mfd.pdf 16. May 2024.

Stull, Roland B. An introduction to boundary layer meteorology. Vol. 13.

Springer Science & Business Media, 2012.

Stull, Roland B. "Boundary layer clouds." An Introduction to Boundary Layer

Meteorology. Dordrecht: Springer Netherlands, 1988. 545-585.

Davis, P. A. "Development and mechanisms of the nocturnal jet."

Meteorological Applications 7.3 (2000): 239-246.

https://doi.org/10.3390/ijerph1915950018.%20May%202024
https://doi.org/10.3390/atmos12020196
https://va.mite.gov.it/en-GB/comunicazione/cittadino
https://www.eea.europa.eu/publications/european-union-emissions-inventory-report
https://www.eea.europa.eu/publications/european-union-emissions-inventory-report
https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_mfd.pdf
https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_mfd.pdf

 185

Purdy, A. J., et al. "Ground heat flux: An analytical review of 6 models

evaluated at 88 sites and globally." Journal of Geophysical Research:

Biogeosciences 121.12 (2016): 3045-3059.

Mauder, Matthias, Thomas Foken, and Joan Cuxart. "Surface-energy-balance

closure over land: a review." Boundary-layer meteorology 177 (2020): 395-

426.

Kang, Song‐Lak. "Regional Bowen ratio controls on afternoon moist

convection: A large eddy simulation study." Journal of Geophysical

Research: Atmospheres 121.23 (2016): 14-056.

Cho, Jaeil, et al. "On the relationship between the Bowen ratio and the near-

surface air temperature." Theoretical and Applied Climatology 108 (2012):

135-145.

Friedrich, K., N. Mölders, and G. Tetzlaff. "On the influence of surface

heterogeneity on the Bowen-ratio: A theoretical case study." Theoretical and

Applied Climatology 65 (2000): 181-196.

Weber, Rudolf O. "Remarks on the definition and estimation of friction

velocity." Boundary-Layer Meteorology 93 (1999): 197-209.

Sheppard, Percival Albert. "The aerodynamic drag of the earth’s surface and

the value of von Karman’s constant in the lower atmosphere." Proceedings of

the Royal Society of London. Series A. Mathematical and Physical Sciences

188.1013 (1947): 208-222.

Bonan, Gordon. Climate change and terrestrial ecosystem modeling.

Cambridge University Press, 2019.

Haby, J. (n.d.). THE PLANETARY BOUNDARY LAYER. Planetary

boundary layer.

https://www.weather.gov/source/zhu/ZHU_Training_Page/clouds/planetary

_boundary_layer/PBL.html 19. May 2024.

https://www.weather.gov/source/zhu/ZHU_Training_Page/clouds/planetary_boundary_layer/PBL.html%2019.%20May%202024
https://www.weather.gov/source/zhu/ZHU_Training_Page/clouds/planetary_boundary_layer/PBL.html%2019.%20May%202024

 186

“Simulated Historical Climate & Weather Data for Falconara Marittima.”

Meteoblue,

www.meteoblue.com/en/weather/historyclimate/climatemodelled/falconara-

marittima_italy_3177250. Accessed 21 June 2024.

Wyngaard, John C. "Structure of the planetary boundary layer and

implications for its modeling." Journal of Applied Meteorology and

Climatology 24.11 (1985): 1131-1142.

EPA. User’s Guide for the AMS/EPA Regulatory Model (AERMOD). Oct.

2023.,

https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_

userguide.pdf, 16. May 2024.

Stockie, John M. "The mathematics of atmospheric dispersion modeling."

Siam Review 53.2 (2011): 349-372.

Thompson, Roger S., and William H. Snyder. "Air pollution and terrain

aerodynamics: a review of fluid modeling studies at the EPA fluid modeling

facility." Journal of wind engineering and industrial aerodynamics 21.1

(1985): 1-19.

Venkatram, Akula, et al. "A complex terrain dispersion model for regulatory

applications." Atmospheric Environment 35.24 (2001): 4211-4221.

Pinatubo Volcano Observatory Team. "Lessons from a major eruption: Mt.

Pinatubo, Philippines." Eos, Transactions American Geophysical Union

72.49 (1991): 545-555.

Fileni, Lorenzo, et al. "Air pollution in Ancona harbour, Italy." WIT

Transactions on The Built Environment 187 (2019): 199-208.

U.S. Environmental Protection Agency. Guideline on Air Quality Models (40

CFR Part 51 Appendix W). 17 Jan. 2017, www.epa.gov/scram/clean-air-act-

permit-modeling-guidance.

https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_userguide.pdf
https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_userguide.pdf
http://www.epa.gov/scram/clean-air-act-permit-modeling-guidance
http://www.epa.gov/scram/clean-air-act-permit-modeling-guidance

 187

Chang, J.C., and S.R. Hanna. "Air Quality Model Performance Evaluation."

Meteorology and Atmospheric Physics, vol. 87, no. 1, 2004, pp. 167-196.

European Commission. "Guidance Document on the Use of Models for the

European Air Quality Directive." Joint Research Centre, 2011,

publications.jrc.ec.europa.eu/repository/handle/JRC64613.

“Regione Utile.” Regione Marche, www.regione.marche.it/Regione-

Utile/Ambiente/Aree-ad-elevato-rischio-di-crisi-ambientale-AERCA.

Accessed 11 Nov. 2024.

Flori, Massimo Marcelli. “Siti Di Interesse Nazionale.” Siti Di Interesse

Nazionale, 10 Feb. 2023, www.arpa.marche.it/index.php/siti-di-interesse-

nazionale.

Etiope, G. "EMEP/EEA air pollutant emission inventory guidebook 2009."

(2009).

World Health Organization. Air Quality Guidelines: Global Update 2005.

Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. World

Health Organization, 2006.

http://www.regione.marche.it/Regione-Utile/Ambiente/Aree-ad-elevato-rischio-di-crisi-ambientale-AERCA
http://www.regione.marche.it/Regione-Utile/Ambiente/Aree-ad-elevato-rischio-di-crisi-ambientale-AERCA
http://www.arpa.marche.it/index.php/siti-di-interesse-nazionale
http://www.arpa.marche.it/index.php/siti-di-interesse-nazionale

