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If the sun don’t shine on me today
and if the subways flood and bridges break

will you lay yourself down and dig your grave
or will you rail against your dying day
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Chapter 1

Introduction

Autoimmune diseases happen when the body’s natural defense system fails to differentiate
its own cells from the foreign cells and mistakenly attacks the healthy ones. Type 1 diabetes
(T1D) is the most widespread autoimmune disease [1]. T1D is also called juvenile due to
the fact that it attacks mainly children and adolescents. T1D, insulin-dependent diabetes
mellitus, is a disorder in which the body cannot produce enough insulin or cannot absorb
the proper amount of it, causing the increase in glucose level in the blood. Diabetes is a
serious, long-term condition with a major impact on the lives and well-being of individuals,
families, and societies and sort of half a billion people are living with diabetes worldwide
and the number is projected to increase by 25% in 2030 and 51% in 2045 [2].

Several therapeutic options for those who suffer from T1D exist and they include multiple
daily injections of rapid acting insulin with meals as well as continuous subcutaneous insulin
infusion via an insulin pump [3]. Nevertheless, a complete metabolic normalization is not
possible yet, which can provoke heterogeneous complications. Therefore, researchers are
mainly focused on the improvement of the aforementioned solutions to develop an artificial
pancreas (AP) that can imitate the real one in all its functions.

1.1 Patophysiology of diabetes
The energy source that allows cells to complete all their functions is glucose. It could

be utilized immediately or be stored in the liver as glycogen; thus, this means that glucose
should be removed from the blood and driven to specialized cells at the liver to be stored.
This mechanism is made possible thanks to insulin, a peptide hormone produced by β-
cells of the pancreas, specifically at the Langerhans’ islets. But from where do we obtain
glucose? From the diet. After a meal, carbohydrates get hydrolyzed in the intestine into
simple monosaccharides causing an increase in postprandial glycaemia that reaches its peak
after 90-120 minutes; most of the glucose in released by the liver after 4 hours while only a
small percentage (30%) is immediately used. A key role is also played by the kidneys that
are capable of removing through micturition the exceeding quantity of glucose (above the
threshold of 180 mg/dl).

Insulin is produced as a response to the increase of glucose level in the blood and can
work in two modes:

1. Basal insulin: also known as long-acting insulin, it keeps glycaemia low and constant
through the day and between meals.
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2. Postprandial or bolus : it is activated due to the glycaemic peak after food intake.

Insulin deficiency or the lack of sensibility to its action are two mechanisms that lead to
the diabetes. In particular, we can distinguish into:

1. Type 1 diabetes: Also known as insulin-dependent or juvenile diabetes. It is char-
acterized by the destruction of pancreatic beta cells, which eventually leads to abso-
lute insulin deficiency (type IV hypersensitivity). Most cases are due to autoimmune-
mediated β-cell destruction (type 1a), while a minority of cases are due to idiopathic
destruction or β-cell exhaustion (type 1b) [3]. Although type 1 diabetes is usually
diagnosed in childhood, 84% of people with type 1 diabetes are adults. An estimated
5-15 % of adults diagnosed with type 2 diabetes actually have type 1 diabetes or latent
autoimmune diabetes in adults (LADA) [4]. A lifetime of insulin injections is required
to partially resolve it.

2. Type 2 diabetes: It is characterized by insulin resistance and an inadequate response
to compensatory insulin secretion [5]. Historically, T1D has been and remains the most
common form of diabetes in children and adolescents, although type 2 diabetes (T2D)
is increasingly diagnosed during adolescence, mainly affecting those in their 30s and
40s [3] who suffer from obesity or a sedentary life.

Another form is the gestational diabetes mellitus (GDM): it is the most frequent
metabolic disturbance during pregnancy. The risks of multiple serious perinatal complica-
tions are increased in women with GDM, including gestational hypertension, pre-eclampsia,
polyhydramnios. After the birth, the gestational diabetes disappears but women that have
been affected by it should undergo screening in the postnatal period to exclude overt diabetes
or impaired glucose tolerance [6].

In this thesis, we will deal with Type 1 Diabetes.

1.2 Etiology of diabetes
In medicine, it’s fundamental to know the cause or set of causes of a disease or condition.

The etiology factors that lead to T1D can be found mainly in autoantibodies, genetic and
environmental factors [1]. In depth:

• Autoantibodies : They are screened in infants with a mother or a father affected by T1D
in order to improve the target of environmental and genetic factors [7]. The 90% of the
β-cells are destroyed after the first year of age and before the symptomatic stage [1].
Furthermore, patients with the HLA-DR4-DQ8 haplotype have the higher frequency
of insulin autoantibodies [7].

• Genetics : T1D can be defined as a polygenically inherited disease [1]. The gene variants
at human leukocyte antigen (HLA) are responsible for more or less 60% of T1D cases
and about 50 others small variants contribute to increasing to 80% the percentage of
correlation between genetics and T1D expression [4].

• Environmental : Environmental factors include diet as well as regional toxicity differ-
ences [1]. Diet includes breast feeding and diversity among diets like the intake of
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cereal or meals rich in vitamin D [4]. The chemical toxins include nitrites, nitrates,
N-nitroso compounds, and polychlorinated biphenyls, which damage β-cells through
immunological pathways [1] but they need to be further analyzed.

• Epigenetics :it is a term used to define what is beyond genetics, and it acts as a mediator
for environmental risk factors. As such, these changes are stable and alter heredity due
to changes in the chromatin without DNA sequence changes. DNA methylation is the
most commonly detected risk factor associated with the secretion of insulin in the
body [1].

Some other factors can be added to the previous list like gender and geographical origin.
It is interesting to evaluate that unlikely the most widespread autoimmune diseases that
disproportionately affect females, on average girls and boys are equally affected with T1D
in young populations [8]. Moreover, urbanization has tremendously affected trends in the
incidence of diabetes (279.2 million in urban centres compared with 145.7 million in rural
settings) [9]. Similar trends have been observed also in those countries which are adopting a
‘western lifestyle’ [10]. Another interesting factor is etnicity: it has been demonstrated that
a clustering of genetic defects or polymorphisms may determine the predisposition of some
individuals to develop insulin resistance and therefore predispose to diabetes. The clustering
of polymorphisms predisposing some ethnic groups to insulin resistance may have developed
as a genetic advantage in populations such as the Hispanics or Asians [10]. According
to the thriftygenehypothesis [11], predisposition to insulin resistance may have protected
individuals during period of food deprivation by reducing muscle utilization of glucose and
favouring glucose utilization in organs such as the brain [10].

1.3 The Diagnosis

Early diagnosis of the disease enables doctors to intervene immediately, reducing the
likelihood of future complications. The more diabetes goes untreated, the worse the health
of the patient will be. Polyuria, polydipsia, and weight loss are common in children with
type 1 diabetes and about one-third have diabetic ketoacidosis. The incidence of type 1
diabetes in adults may be more variable, and they may not have the typical symptoms
seen in children [12]. Patients who are subsequently diagnosed with T1DM may experience
increased thirst and urination, fatigue, lack of energy, unexplained bacterial and fungal
infections, delayed wound healing, blurred vision, and numbness or tingling in the hands
and feet. Therefore, as soon as the above symptoms appear, a diagnosis and follow-up are
required [13]. Diagnostic criteria are based on the following measurements [14]:

1. Fasting blood glucose (at least 8 hours) > 200 mg/dl,

2. Random glycaemia (regardless of the moment of day) >126 mg/dl,

3. Glycaemia during load curve (OGTT) at doses of 75 g glucose, greater than 200 mg/dl.
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1.4 Psycho-physical complications

1.4.1 The physiological complications
The discovery of insulin in 1922 allowed diabetes to be considered as a treatable dis-

ease but is still associated with considerable medical, psychological, and financial pres-
sure [15]. Diabetes-related physical complications are classified as long- and short-term
ones and achieving normoglycaemia is an important therapeutic goal for patients with type
1 diabetes, especially to avoid complications [16].

Hypoglycaemia is the major obstacle to glycaemia control for many patients and an
inadequate caloric intake, excessive insulin dosage, and mediocre preparation for physical
activity can be annovereted among the causes of this condition [17]. An episode of severe
hypoglycaemia predisposes the individual to further episodes, as a result of downgraded
regulatory responses to repeated hypoglycaemic events [18]. Hypoglycaemic events are asso-
ciated with adverse effects on cognitive function [19] and are associated with 4–10% of type
1 diabetes-related deaths [15].

Hyperglycaemia is a dangerous condition, too. Diabetic ketoacidosis is an acute metabolic
complication of diabetes provoked by high blood glucose concentration, hyperketonemia,
and metabolic acidosis. It’s frequent among T1D patients rather than T2D and occurs in a
condition of severe insulin deficiency. Hyperglycemia, due to lack of insulin, causes osmotic
diuresis leading to marked loss of water and electrolytes in the urine and symptoms of it are
nausea, vomiting and abdominal pain and can progress to brain edema, coma and death.

Individuals with type 1 diabetes have a ten-times higher risk for cardiovascular events
(eg, myocardial infarction, stroke, angina, and the need for coronary-artery revascularisation)
than age-matched nondiabetic populations [20]. These complications consist of microvascular
and macrovascular disease, which account for the major morbidity and mortality associated
with T1D [17]. In depth:

1. Diabetic nephropathy: it’s the most common cause of renal failure in the developed
world [17]. Diabetic nephropathy consists of glomerular sclerosis and fibrosis caused
by the metabolic and haemodynamic alterations of diabetes mellitus. It manifests as
slowly progressive albuminuria, with worsening of hypertension and renal failure.

2. Diabetic neuropathy: refers to a complex group of conditions falling into two major
categories: focal and generalized [21]. The focal neuropathies include the mononeu-
ropathies such as carpal tunnel syndrome, palsy of the peroneal nerve or of the third
cranial nerves. Diabetic sensorimotor polyneuropathy is by far the most common gen-
eralized neuropathy among the neurologic complications of diabetes [21]. Peripheral
neuropathy, in conjunction with peripheral vascular disease, can lead to skin ulceration
of the lower limbs, poor healing and gangrene, amputation or the development of the
diabetic foot [17].

3. Diabetic retinopathy: it’s a long-term complication of diabetes that affects the eyes.
It is caused by damage to the blood vessels of the tissue in the light-sensitive part of
the eye, the retina. It can develop in anyone with type 1 diabetes and type 2 diabetes.

4. Cardiovascular diseases: Macrovascular complications of type 1 diabetes include
atherosclerosis and thrombosis in the heart, peripheral arteries, and brain. The risk of
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Figure 1.1: Phatophysiology, etiology and complications of diabetes

cardiovascular complications does not appear to be as attenuated by intensive blood
sugar control [15]. The relative risk of cardiovascular disease in type 1 diabetes can be
as much as 10-fold greater than that in non-diabetic individuals [17].

1.4.2 The psychological complications
The onset of a chronic disease like diabetes can be complex to face, especially at a ten-

der age, and the patients will have to develop control strategies for T1D and their general
psycho-physical well-being. A wide variety of factors, like peer group influences, importance
of body image, less parental oversight, greater risk-taking, and fear of hypoglycaemia, rep-
resent a central challenge in the management of diabetes in children and adolescents [22],
emphasized by the physiological, social and emotional changes which occur between child-
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hood and adulthood [23]. Therefore, researchers have focused attention on the psycho-social
concomitants of type 1 diabetes particularly in children and teenagers, but also in adults.

Depression, anxiety, and general psychological distress, diabetes-related emotional dis-
tress, a stress condition specifically resulting from concerns and worries about diabetes and
its management, are common in people with diabetes [24].

The management of diabetes is an aspect that seriously affect the daily life of young
patients. In fact, they generally feel that others do not understand them and cannot imagine
what it is like to have diabetes. They said they felt lonely about their illness and wished more
people knew and understood about it. They are all eager to meet and talk to someone who
can understand them [25]. Additionally, they feared that poorly regulated diabetes would
impact their future health or that they would die at an early age [25]. Young women mainly
suffer of the psychological aspects of this pathology: nearly a quarter of teenage and young
adult women with type 1 diabetes have either a full-blown (about 10%) or sub-threshold
(about 14%) eating disorder, and that such disorders are associated with insulin omission
to control weight through induced glycosuria, poor glycaemic control, and early onset of
diabetes-related complications [26].

Continued efforts to integrate diabetes management into social life demonstrate the im-
portance of social support for adolescents [25]. Support from strong peer relationships is
especially important. Research supports that peer relationships are important for social
development and self-esteem, especially during adolescence.

Mindfulness interventions to alter psycho-social stressors have also been tested in people
with diabetes. They have been found to have psychological benefits in multiple studies,
reducing symptoms of depression, anxiety, and diabetes distress in people with diabetes [27].

In Figure 1.1 can be seen a recapitulatory scheme of the patophysiology, etiology and
complications of T1D.

1.5 The Therapy
People with diabetes require systematic and ongoing treatment planned by a professional

medical team. The primary goal of treatment is to maintain blood sugar within the normative
range, and the secondary goal is to implement an appropriate lifestyle, including proper
eating habits and physical activity. Thus, the foundations of diabetes care are therapeutic
education, nutrition, exercise, and medication. Smoking cessation is also important because
it is a risk factor for chronic complications of diabetes, but it also makes controlling blood
sugar difficult.

The discovery of insulin in 1922 was clearly the most important therapeutic event in
the history of type 1 diabetes. However, exogenous insulin replacement therapy does not
always provide the metabolic modulation necessary to avoid one or more disease-related
complications. As a result, diabetes management in modern countries often involves the
use of insulin analogs and mechanical techniques such as insulin pumps and continuous
glucosemeters to improve treatment of T1D [16].

For what concern insulin injection, its dosage depends from subject to subject based on
their daily life and habits. There are different types of insulin, based on their functions:

• Basal and postprandial: while the first one, administered formerly every 24 hours,
has a long action period and is used to maintain the glycaemia between one meal and
another as constant as possible, the second one, which is also known as short-acting
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insulin, because it’s employed in response to food input, through an injection that
comes ahead, during or after a trial to mimic the hormonal postprandial response [4].

• Premixed: it unites, in prefixed rates, basal and postprandial insulin and is used by
subjects that refuse to do further than two injections in one day, but it isn’t flexible,
therefore it isn’t recommended [28].

• Concentrated: it’s a special type of basal insulin that’s concentrated 2 to 5 times
more than the common one and is used on cases that have high insulin resistance or
that are particularly overweight, demanding more than 200 units per day [28].

Therapeutic training involves imparting knowledge beyond insulin doses alone and helps
manage all aspects of the disease as effectively as possible. It is taught to patients and
their families by doctors and nurses, as well as other professionals such as nutritionists and
psychologists. The education of young people with diabetes and the development of their
awareness and expertise is critical for their adherence to treatment. Therefore, improving
this education is necessary to increase its consistency, because despite the widespread avail-
ability of effective therapies, adolescents affected by T1D remain less adherent to treatment
compared with other pediatric age groups and do not adhere is associated with glycemic
control and increased risk of morbidity and premature death. Non-pharmacological treat-
ments are necessary for efficient monitoring of every aspect of the illness and, mainly, for the
prevention of possible complications that could worsen the general health of the patient.

Over the years, the patient’s diet was restricted, demonizing certain foods, especially
those high in carbohydrates. Today, fortunately, consumable foods are no longer imposed and
diabetics can eat freely, of course paying attention to the amount and type of carbohydrates,
proteins and fats, to choose the correct insulin dose, and to try to follow a sensible and
healthy diet. Various studies have shown, for example, that our Mediterranean diet is a
solid choice for achieving a healthy lifestyle [29, 30].

Physical activity is clearly necessary for people with diabetes because it increases the
body’s insulin response, increases the use of glucose by muscles, and helps improve overall
health by increasing HDL (the so-called good cholesterol) and lowering arterial pressure
[31]. Exercise must be regulated along with insulin doses and meals to avoid metabolic
disturbances, hypoglycemia and hyperglycemia, and must never be forced [32].

1.6 Glyceamic control: past, present and future of glu-
cose monitoring

Blood glucose must be regularly monitored through tests and HbA1c analysis performed
on the same patient to prevent complications from developing or worsening.

Traditionally, the primary method of blood glucose monitoring in diabetic patients has
been self-monitoring of blood glucose (SMBG), but there is no clear consensus on the fre-
quency of sample collection, which varies from 4 to 10 times per day in insulin-dependent
diabetic patients [33]. This variation reflects differences in activity levels, lifestyle, insulin
injection schedules, and agreements between physicians and patients [34]. However, few
patients adhere to a strict SMBG regimen to delay the onset and progression of diabetic
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complications, including retinopathy, nephropathy, and neuropathy that can lead to ampu-
tation [33]. However, intensive insulin therapy has its limitations, including an increased
incidence of hypoglycemia and the need for frequent SMBG testing [35].

Current T1D treatments focus on balancing exogenous insulin and food intake while
incorporating daily activities such as exercise and sleep. Significant advances have been
made in insulin formulation and diabetes technology, including insulin delivery methods
and blood glucose monitoring [36]. Diabetes technology is a term used to describe "the
hardware, devices, and software that diabetics use to control their blood sugar levels, prevent
diabetic complications, reduce the burden on diabetics, and improve their quality of life" [37].
More specifically, diabetes technology includes insulin delivery and blood glucose monitoring
devices, such as insulin syringes, pens, and glucose meters, as well as newer devices and
software, such as insulin pumps, continuous glucose monitoring (CGM), mobile apps, smart
pens, and remote medical. While we often think of technology in terms of novel devices used
to treat diabetes, its introduction has also evolved models of healthcare delivery [37].

Among the most advanced technologies, today the interstitial constant glucose moni-
toring systems (CGMs) stand out. They represent the modern alternative to the standard
glucometer. They are composed by:

1. a glycaemic sensor usually implanted in the most adipose subcutaneous area of the
abdomen or the arms,

2. a monitor that allows to read and show the values of glucose in the interstitial fluid in
real-time (CGM real-time) or postponed (CGM offline),

3. a transmitter that allows the communication between the first two parts (through a
wire or Bluetooth technology), sending data on the plasma glucose concentration1.

These devices must get calibrated using glucose measurements in the capillaries: the
sensor performs measurements every 5/10 seconds and computes an average value every 5
minutes that it then sends to the monitor. In the past, the accuracy of this type of sensor
was the major problem as it had to be calibrated various times by the patient through
standard glycaemic controls. Adherence to and frequency of CGM use over time has been
a particularly important aspect of the associated reduction in HbA1c. More frequent CGM
use in all age-groups has been associated with greater HbA1c reduction from baseline to 6
months [35].

CGMs can join the “open-loop” or “closed-loop” systems:

• Open-loop: coupled with multiple daily insulin injections or a subcutaneous insulin
pump with the patient’s input.

• Closed-loop: systems that incorporate a long-term functional implantable sensor device
directed at normalizing blood glucose levels and an insulin pump.

The concept of closed-loop glucose control has been present since the 1960s [38] but the
approach was not feasible until much more recently. The availability of smaller and reli-
able insulin pumps, the emergence of accurate and reliable continuous glucose monitoring
systems, and the access to secure and safe wireless communication technologies made the

1https://www.dexcom.com/g6-cgm-system
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development of wearable closed-loop systems possible. These systems delivered small auto-
mated correction boluses when glucose was predicted to exceed a pre-defined level, but did
not modulate insulin delivery continuously. Systems were shown to improve time in target
range overnight without increasing time in hypoglycaemia in both children and adults [39].

Different kinds exist, each with a different self-management level:

• Insulin infusion suspension due to hypoglycaemia: Instead of sending an alert to
the patient and/or their family, the insulin infusion is automatically paused whenever
the blood sugar level falls below a certain threshold.

• Predictive insulin infusion suspension due to hypoglycaemia: It predicts before
a drop in blood sugar occurs by examining trends in blood sugar levels.

• Hypo- and hyperglycaemias’ minimizer: It acts as a dual control, operating
within a range of values below which hypoglycemia occurs and above which hyper-
glycemia occurs. The system blocks the infusion until the first of these two thresholds
is exceeded, and instead activates it until the second is reached.

• Hybrid: It works well at night but not so well during the day. Basal control is provided
by the pump, but the postprandial injection is in the patient’s hand.

• Double hormone: the insulin pump is able not only to inject insulin but glucagon
too. The latter is the main hormone for the response to hypoglycaemia as it stimulates
hepatic glycogenolysis (which is to say the release of glucose by the liver) [32]

CGM has developed and evolved as a new tool for diabetes management. CGM sensors
have revolutionized real-time glucose concentration monitoring, enabling applications that
were not feasible before their introduction, such as AP systems [40]. Diabetes requires in-
tensive management to normalize blood sugar to avoid short- and long-term complications,
health care costs, and premature death [34]. What will the treatment for T1D be within 10
or 20 years? This will be determined by weighing the benefits, sustainability, negative im-
pacts, safety, convenience, personal preferences and financial costs of these evolving options.
As treatments in each category continue to improve, the "standard" of other competing
treatments will rise, and the best treatments may change [36].

In Figure 1.2 the history of diabetic devices and future improvement of this technol-
ogy are represented. Specifically, (A) represents current insulin delivery tools and glucose
measurement tools (B) that have been adapted into glucose management options that are
available or are emerging in practice (C), including partially automated basal insulin de-
livery. Fully automated insulin delivery that will not rely on the user to manually prompt
mealtime insulin doses and will adapt to conditions such as physical activity will require mul-
tiple components (D). In (D), blue arrows indicate technological advances, and red arrows
indicate pharmacological advances.
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Figure 1.2: Diabetic devices and their future improvements for T1D management [41]
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Chapter 2

State of the art

The SMBG devices are used for the traditional home glucose monitoring: it consists
of small drop of blood collected by the patient 3-4 times per day, put on a fingerstick to
instantaneously measure the blood glucose concentration [42].

Nowadays, CGM sensors have been introduced which can measure almost-continuously
(e.g. every 5 min) glucose concentration in the subcutaneous tissue [43]. Diverse researches
have shown that a continuos monitoring make progresses in diabetes management and ther-
apy, significantly reducing both hyperglycemia and hypoglycemia episodes [44].

The integration of CGMs with continuous subcutaneous insulin infusion devices (insulin
pumps) has led to the development of algorithmically controlled pumps that suspend insulin
delivery if hypoglycemia levels are predicted within the next 30 minutes, as well as hybrid
closed-loop systems that can be set up to both deliver insulin to prevent hypoglycemia; it
can also automatically provide additional insulin to correct hyperglycemia. Treating T1D
with these devices is fast becoming the standard of care [45].

Contemporary, together with hardware improvements, the challenges of the AP are gradu-
ally being addressed with the development of advanced algorithmic strategies [46] to improve
the devices’ performance as well as possible personalize the algorithms. The advantages of
machine learning illustrates a promising path towards the resolution of the aforementioned
problems and challenges, as has been recently recognised and reported by [46] .

This thesis tries to figure out solutions to improve the management of diabetes using a
CGM sensor by DexCom and an insulin pump by Tandem™ Diabetes Care. Although, an
important aspect that will be stressed out is the optimization of features’ choices and which
machine learning approaches fit better for the purpose of this thesis and, therefore, can help
the clinician to personalize and initialize the previously mentioned insulin pump.

2.1 The blood glucose monitoring: DexCom G6®

Blood glucose concentrations in diabetics can undulate significantly throughout a day,
and lead to serious consequences, as previously stated, including kidney failure, strokes, heart
attacks, high blood pressure, blindness and coma.

The emergence of glucose sensors has provided patients the ability to self-monitor BG
levels so as to manage insulin levels, and thus control the mortality of diabetes mellitus [47].

According to Chen et al. [47], there are three generations of glucose biosensors [47]:
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• the first-generation is based on the use of the natural oxygen and the production-
detection process of hydrogen peroxide.

• the second-generation sensors employ a non-physiological electron acceptor to shuttle
electrons and thus solve the oxygen deficiency.

• The design of the third-generation glucose sensors aims to get rid of the leachable
artificial mediators and even the glucose enzyme.

The current gold standard glucose biosensors are invasive, and CGM systems still suffer
from many limitations, such as inflammation and bio-fouling [48]. On the other hand, non-
invasive procedures are becoming more popular because they have more high sensitivity and
better patient compliance [49].

The ideal sensor should be able to provide reliable real-time, continuous monitoring of
glucose fluctuations throughout the day with high selectivity and speed for extended periods
of time under tough conditions.

In this context, the G6 sensor by DexCom had been proposed. In 2006, the Dexcom
SEVEN, the first real-time continuous glucose monitoring system, was approved by the
FDA [47]. Since then, a lot of steps forward have been made. G6 sensor is the latest version
available and it consists of 1:

• An automatic applicator (one-touch applicator) that can easily insert a small sensor
under the skin.

• The sensor and transmitter, a slim sensor that continuously measures glucose levels
just below the skin and sends data wirelessly to a display device via a transmitter.

• Display device: it’s compatible with a smart device or touch screen receiver that dis-
plays real-time blood glucose data, such as mobile apps or insulin pumps.

The G6 sensor is the one compatible with and accepted by the Tandem™ t:slim X2™

insulin pump. It is calibrated directly inside the factory, so it does not require any blood
withdrawal from the fingertip.

Successful management of diabetes requires a near-continuous awareness of the factors
that influence blood glucose levels and the complex interplay between dietary habits, physical
activity, and medication. For children in particular, strategies must also involve parents and
caregivers to monitor and treat diabetes. The extent to which patients and their families
seize the opportunity to address diabetes may be an important predictor of long-term health
and psycho-social outcomes [50].

Thus, CGM devices are considered to be the ideal candidate for the next generation
products to replace the currently used portable glucosemeters [49].

2.2 The insulin pump: Tandem™ t:slim X2™

Latest options in the treatment of type 1 diabetes have enabled the commercialization
of an artificial pancreas that can be better described as a feedback loop for insulin delivery.

1https://www.dexcom.com/it-IT
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Figure 2.1: a) Schematic representation of insertion device, sensor and transmitter. b)
DexCom G6® device.

The goal of these systems is to minimize or prevent short- and long-term complications of
diabetes and to reduce the daily burden of diabetes management [51].

The development of CGMs in the early 2000s led to major advances in insulin pump
technology, and its integration with insulin pumps pushed to the growth of insulin control
algorithms that allow dynamic insulin delivery in response to current glucose trends [52].

The t:slim X2™ insulin pump by Tandem™ is an example of it and it’s the one whose
data is used in this work. It is an example of a hybrid closed-loop system. Closed-loop
artificial pancreas technology uses a control algorithm to automatically adjust insulin delivery
according to data acquired by subcutaneous sensors [53].

Fully automated closed-loop systems should not need an announcement about meals or
physical activity. It has been shown in several studies [54–56] that a fully automated system
improves blood sugar control and reduces hypoglycemia. However, given the delays currently
associated with subcutaneous insulin delivery, ideal glycemic control after an unannounced
meal is not feasible [51]. Therefore, a hybrid system that requires user-requested boluses
at mealtime and when needed is a functional and commercially widespread approach for
children, adolescents, adults at home and pregnant women [57,58]. Although the prospects
for complete closed glycemic control have improved significantly [59], combination therapy
is currently the best option for the management of T1D.

Tandem™’s t:slim X2™ insulin pump2 is composed of (2.2) :

• the insulin pump.

• a 3 mL (which is the equivalent of 300 units of insulin) cartridge.

• a compatible infusion set.

It is equipped with a color touchscreen in shatterproof glass allowing patients to easily view
all the necessary functions on the display. The pump delivers up to 300 units of insulin in a

2https://www.tandemdiabetes.com/docs/default-source/product-documents/t-slim-x2-
insulin-pump/aw-1005628_c_user-guide-tslim-x2-control-iq-7-4-mgdl-artwork.pdf?sfvrsn=
18a507d7_140
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Source: https://www.tandemdiabetes.com/products/infusion-sets

Figure 2.2: Tandem™’s t:slim X2™ insulin pump and one of its compatible infusion sets

cartridge in basal or bolus insulin mode (requires change every 48 to 72 hours depending on
patient usage).

The t:slim X2™ pump can be upgraded to provide automatic and personalized insulin
dosing, allowing the system to adjust insulin delivery 30 minutes in advance based on CGM
sensor readings and blood glucose predictions. However, because it is a hybrid closed-loop
system, this feature cannot replace the patient’s own active diabetes management.

One of the innovations of the Tandem™’s t:slim X2™ insulin pump is the ability to re-
motely update the insulin pump’s software, using the Tandem Device Updater, to incorporate
advanced technologies onto the pump as they become available.

When combined with its Control-IQ™ technology and the compatible CGM system, the
whole set can be referred to as ‘system’ and the pump acts as a sensor receiver, getting data
every 5 minutes.

The patient can create up to six Personal Profile but only one can be active at a time and
for each of them 16 different time segments can be set. When a Personal Profile is generated,
the patient can set any or all of the following Timed Settings:

• Basal Rate (BR): is the background supply of a chemical or process. As it applies to
diabetes, the basal rate is the rate at which an insulin pump infuses small, “background”
doses of short-acting insulin. It can be set inside specific ranges reported in the user
guide.

• Carb Ratio, also known as insulin-to-carbohydrate ratio (ICR): it’s the grams of car-
bohydrate covered by 1 unit of insulin.

• Carbohydrates setting: it can be set as ON or OFF.

• Target BG: ideal BG level, measured in mg/dL.

• Correction Factor, also known as insulin sensitivity factor (ISF): it’s the amount of
blood glucose that is lowered by 1 unit of insulin;
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These settings are then used by the pump to calculate the right delivery of basal insulin and
correction boluses. If Control-IQ™ technology is active, some of the previous settings cannot
be personalised.

2.2.1 Control-IQ™ technology
Following FDA approval in December 2019 3, the Control IQ algorithm is available in the

U.S. in 2020 for those 14 and older. This hybrid closed-loop system uses a model predictive
control algorithm originally implemented on the DiAS platform, an ultra-portable artificial
pancreas research platform developed by the University of Virginia, for closed-loop control
of blood glucose in home studies of T1DM patients [60].

The Control-IQ technology is the most advanced software available in the t:slim X2 pump.
It uses a model predictive control (MPC) algorithm that is capable to predict future glucose
levels based on CGM data and, subsequentially, automatically adjusts insulin doses, keeping
the blood glucose levels inside the normal ranges [52]. Deeply on its functioning, the system
use a plug-and-play architecture of different subsystems to enable for different situations in
which glycemic control is fundamental [61]. The algorithm is realized using a series of safety
modules to diminish hypoglycemia risk and other reduction modules to avoid hyperglycemia
adjusting the basal rate as well as automated boluses [52]. Another distinguishable feature of
this algorithm is that it gradually intensify control overnight, lowering the algorithm target
to obtain blood glucose levels around 100–120 mg/dL by the morning [62]. To do its work,
the system requires BR, ISF and ICR settings to appropriately modulate insulin delivery
and it does not have any adaptive learning.

These Personal Profile settings must be configured in order to use Control-IQ™:

• Correction factor.

• Carb ratio.

• Target BG.

• Carbohydrates settings should be in mode ON.

Additionally, the weight and total daily insulin must be set by clinicians. The latter is decided
by the doctor’s own experience and on some general guidelines on continuous subcutaneous
insulin demand related to patients age [63].

So, the ratio behind the algorithm’s functioning is the following:

• If the predicted CGM value is in the range previously mentioned, the pump will con-
tinue to deliver insulin according to rate set in the Personal Profile.

• The algorithm will constantly diminish the insulin rate to avoid hypoglicaemia, if the
predicted value is at or below the target range in 30 minutes in the future. Control-IQ™

is also capable to reduce or completely suspend the basal delivery when it predicts a
lowering of blood glucose levels.

3https://www.nsmedicaldevices.com/news/tandem-slim-x2-insulin-pump/
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• If hyperglycaemia is forecast, it progressively augments the insulin delivery rate. After
the maximum rate of insulin delivery has been reached, Control-IQ™ stops increasing
the insulin delivery rate. Individual Correction Factor setting, the total daily insulin
estimated by Control-IQ™ algorithm and the active insulin in the organism after a
bolus delivery are the parameters used to compute the maximum insulin rate.

•• If the algorithm predicts a value above 180 mg/dL 30 minutes in the future and the
pump is increasing the insulin delivery or is delivering the maximum quantity, the
60% of the total correction bolus will be automatically injected to decrease to 100
mg/dL the target glucose value. The automatic bolus is computed based on the
estimated CGM values and the correction factor annotated in the personal profile
setting. This process occurs once every 60 minutes and the duration between
boluses and the delivered percentage is conceived to avoid undesirable decrease
of glucose level. The maximum amount of insulin that an automatic correction
bolus will deliver is 6 units.

The user is responsible for delivering bolus doses for meals by entering the total grams
of carbohydrates to be consumed into the bolus calculator. Sleep mode should be scheduled
through days, specifically start and end time, but it can also be activated manually. Another
possible manual activation is the one of the Exercise mode.

While using Control-IQ™, the user should only inject insulin provided by and through
the pump.

Studies and trials showed a reduction in hypo- and hyperglycaemia: these results demon-
strate that Control-IQ™ is safe and efficient [64].

Control-IQ™ technology is not recommended for those who use less than 10 units of insulin
per day and that weigh less than 24,9 kilograms due to the requirement for a safe running
of the algorithm. Moreover, it should not be used on children under the age of 6 years
old. Additionally, the technology also limits the basal rate to 3 units/hour when the pump
doesn’t receive a CGM reading for 20 minutes and it shuts off when the sensor session ends.

While using Control-IQ™, the user should only inject insulin provided by and through
the pump.

2.3 From Glycated Hemoglobin to Time in Range
As already explained in section 2.1, continuous glucose monitoring is playing a key role

in the management of type 1 diabetes, mainly in children and adolescents. This tool is used
to guide the person with diabetes and caregivers when striving for optimization of glycaemic
control. Coupled with an insulin pump, this system is capable of maintaining the glucose
levels inside specific ranges to avoid any complications, using a parameter called Time in
Range.

But before this, which was the parameter used to diagnose and keep under control di-
abetes? The glycated hemoglobin (HbA1c). The HbA1c values reflect the average glucose
concentrations in the blood over the past three months. Therefore, the glycated hemoglobin
allows to know if the glycaemia has exceeded the "guard" levels in people with diabetes or
at risk of becoming one. Biochemically, HbA1c is formed through a process called glyco-
sylation, in other words when a sugar molecule binds to the hemoglobin contained in red
blood cells, proportionally to glycaemia. HbA1c is less effective than normal hemoglobin for
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oxygen transport. Furthermore, glycation of hemoglobin is a major cause of organ damage
during diabetic disease.

However, not all HbA1c measurements provide results that match the BG values mea-
sured by the patients themselves and this could be due to some diseases that can affect
erythrocyte life, such as anemia [65]. Still, the glycated hemoglobin remains a good param-
eter for the patients to supervise their glycaemic values. The HbA1c value is also used to
assess the efficacy of new drugs for improving BG control in clinical studies as well as to
keep an eye on the incidence and progression of cardiovascular complications [65].

Since the development and massive usage of the aforementioned technologies, a new
parameter that can fit better the their requirements had to be found. This is why, in
February 2019, an international panel of physicians, researchers and individuals affected by
T1DM with expertise in CGM met at the Advanced Technologies & Treatments for Diabetes
(ATTD) Congress [66] to convene on consensus recommendations leading to the formulation
of guidelines expressing the ranges of desired blood glucose levels which compose the time
in ranges.

The metric includes three key CGM measurements made of percentage of readings and
time per day spent in these ranges [66]:

• within target glucose (TIR), inside the range 70-180 mg/dL,

• below target glucose range (TBR), below 70 mg/dL,

• above target glucose range (TAR), above 180 mg/dL.

Ideally, all diabetics have blood glucose levels consistently within the target range (TIR of
100%); however, with currently available treatment options, TIR of up to 70% are realistic.
In depth (Figure 2.3):

• TIR should be more than 70% of the daily readings and, during this time, blood glucose
levels should be between 70 and 180 mg/dL,

• TBR should be less than 4% of the daily readings when blood glucose levels are between
54 and 70 mg/dL and less than 1% when they are below 54 mg/dL,

• TAR should be less than 25% of the daily readings when blood glucose levels are
between 180 and 250 mg/dL and less than 5% when they are above 250 mg/dL.

Recent evidence suggests that 80-90% TIR can be achieved by avoiding hypoglycemia or
severe hyperglycemia events primarily using automated insulin delivery systems, in everyday
conditions [65].

In conclusion, it can be stated that TIR doesn’t share the same time limitations as HbA1c
and has the ability to provide instant feedback on a changed insulin regimen. This infor-
mation enables people with diabetes to optimize food intake and exercise, make informed
treatment decisions regarding meal timing and insulin dose correction, and, more impor-
tantly, respond in a timely and appropriate manner to mitigate or prevent the condition
acute glycemic events. Therefore, TIR may work as a more understandable daily metric
compared to HbA1c, as a study proposed by Petersson et al. on children and adolescents
suggests [68]. In addition to reflecting the daily experiences of people with diabetes, re-
cent evidence advises that TIR itself can predict future risk of diabetes complications like
retinopathy [69] and cardiovascular diseases [67].
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Figure 2.3: Stacked bar representation of time in ranges [67].

2.4 Algorithms to improve closed-loop systems
Children and adolescents with type 1 diabetes who use non-automated insulin delivery

strategies often fail to achieve target blood glucose levels in the real world. Over the past
decade, however, technological advances in various aspects of insulin delivery have had a
particularly important impact on clinical diabetology, as reported in section 2.2.

The introduction of a changing automated closed-loop insulin delivery system with algo-
rithms that help minimize hypoglycemia and control hyperglycemia. These systems cannot
fully automate diabetes management, but will motivate patients to strive to maximize blood
sugar control [70]. This new technology can also help parents of young children, since they
are responsible for daily T1D cares including insulin bolusing and a carbohydrate estimation.
From the study conducted by Patton and colleagues [71], young children, like adolescents,
adhered to individual pump behaviors, but showed some variability in their adherence to hy-
perglycemia. Thus, targeting pump behaviors in young children and adolescents may have
the potential to optimize glycemic control.

Technological innovations have revolutionized the treatment of type 1 diabetes. Although
technological advances can potentially improve diabetes outcomes, maintenance of target
glycemic control, at the present time, remains largely dependent on patient and family
motivation, competence, and obedience to daily diabetes care requirements. The greatest
impact in the future will come from combining these pharmacological solutions with existing
automated insulin delivery methods that integrate insulin pumps and glucose sensors. These
systems will use algorithms enhanced by Machine Learning [41].

Recently, Machine Learning has become popular with its growing applications, specially
in diabetes researches. Despite this, most of the studies are focused on the implementation
and upgrade of blood glucose predictions algorithms [72] and only in the latest years is
becoming widely used for the optimization of hypo- and hyperglycaemia situations and
insulin pumps improvements.

The bibliographical research to assess the latest enhancement in this field was based on
articles published within the range 2017-2022, since the artificial intelligence has become
predominant in the academic world, especially in the health management.
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For example, in 2017, an artificial pancreas method consisting of a CGM system, an
insulin pump, and an adaptive control algorithm attempted to find an effective way to control
blood sugar and insulin levels [73]. The main goal is dynamic iterative and patient-centric
optimization to create this will produce good results in the simulation. In the same year,
Herrero et al. [74] proposed a new technique that can automatically adjust the pre-prandial
insulin bolus used by the insulin pump to compensate for the delay in subcutaneous insulin
absorption, thereby avoiding the initial postprandial hyperglycemia, and achieving a TIR of
77.5% and 89.5% of adolescents and adults passed the computer test. Toffanin et al. [75]
suggest an automatic approach based on the so-called Run-to-Run (R2R) strategy, which
adjusts the insulin therapy based on the performance measured during the previous run,
usually the day before the current one, using CGM measurements. Through the UVA/Padova
simulator, they obtained a significal increase in the percentage spent in the range 70–180
(p-value < 0.001) with a reduction of the time spent below 70 mg/dl. A year later, Cappon
et al. [76] published a preliminary study showing the potentiality of using Neural Networks
for the personalization and optimization of the meal insulin bolus calculation which brought
to a small but statistically significant (P < .001) reduction of blood glucose risk index.

In 2019, Seo et al. [77] propose a ML algorithm for predicting postprandial hypoglycemia,
since it’s still a challenge due to extreme glucose fluctuations that occur around mealtimes.
The authors went through four machine learning models with a unique data-driven feature
set: a random forest (RF), a support vector machine using a linear function or a radial
basis function, a K-nearest neighbor, and a logistic regression. Among them, the RF model
showed the best performance with the average sensitivity of 89.6%, the average specificity
of 91.3%.

In 2020, Askari et al. [78] proposed an adaptive and predictive control framework that
combines disruption prediction and pattern learning based on subject historical data and sub-
sequent predictions. They achieved it 84.4% of the time and had no events of hypoglycemia
or hyperglycemia. That same year, Colmegna et al. [79] tested control laws with linear
parameter changes on a computer, with the ultimate goal of minimizing user intervention,
focusing on moderate-intensity exercise.

A work proposed by Tyler et al. [80], a K-nearest-neighbours decision support system
(KNN-DSS) was used to identify causes of hyperglycaemia or hypoglycaemia and determine
necessary insulin adjustments from a set of 12 potential recommendations. The algorithm
achieves an agreement with board-certified endocrinologists of 67.9% when validated on real-
world human data allows for early identification of dangerous insulin regimens and may be
used to enhance glycaemic outcomes and prevent life-threatening complications in people
with T1D.

In 2021, several studies have been produced about this argument. Noaro et al. [81]
proposed machine learning based model, based on multiple linear regression (MLR) and least
absolute shrinkage and selection operator (LASSO), to improve the calculation of mealtime
insulin boluses in T1D therapy using CGM data in UVa/Padova T1D simulator environment.
The results show that the error for bolus calculation was reduced to 0.86 U vs 1.45 U in
literature findings as well as hypoglycemia incidence from 44.60–45.01% of literature methods
to 35.93%. Dave et al. [82] present a machine learning model for probabilistic prediction
of hypoglycemia in 30- and 60-minute time horizons based on CGM datasets. The model
showed good results in predicting hypoglycemia with >91% sensitivity for 30- and 60-minute
prediction horizons while maintaining specificity >90%. Model performance was also highest
for nocturnal hypoglycemia with a 95% sensitivity circa.
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For what concern the parameters’ optimisation of an insulin pump, there are no pub-
lished papers or articles focused. Few of them have been found but they all represent a
first approach to the subject. For example, the work proposed by Chow and collegues [83]
provides a new formula developed by regression analysis of clinical data in insulin pump
therapy for patients with type 1 and 2 diabetes in order to determine the starting basal rates
of insulin infusion. Another interesting work is the one carried on by Nimri et al. [84] in
which they tested whether frequent insulin dose adjustments guided by an automated arti-
ficial intelligence-based decision support system is as effective and safe as those guided by
physicians in controlling glucose levels: they obtained great results since the glucose control
was statistically non-inferior to those held by the physicians.
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Chapter 3

Materials and Methods

The main purpose of this work is to optimize the choice of parameters set by the clinicians
to improve the usage of the Control-IQ algorithm, with the ultimate goal of enhancing the
patients’ TIR.

The medical team sets up the algorithm by entering BR, ICR, and ISF variables. It is
difficult for an inexperienced physician to choose the most effective values, especially the
first two. In addition, ISF affects the quality of life of patients with diabetes and therefore
should be prioritized when optimizing.

The desired outcome is an algorithm that automatically outputs optimal values, manually
tuned by clinicians to standardize the introduction of Control-IQ and increase its effective-
ness. To this end, data from insulin pumps is used in machine learning methods to gain
insightful information about the relationship between measurements and settings, making
improvements feasible.

Therefore, the experimental work was divided into two parts: the first part looked for the
connection and relationship between insulin and blood glucose, and the second part looked
for their connection with the parameters set by clinicians for the Control-IQ.

3.1 Dataset

Patients are required by the clinicians at Ancona’s pediatric Ospedale Salesi to upload
their DexCom G6® sensor and Tandem™’s t:slim X2™ insulin pump data on the Diasend1

platform.
The hospital gave us data coming from the website after having removed any personal

information (for privacy reasons) belonging to the subjects, except for their year of birth
and sex, from their files.

Firstly, all the 48 patients registered on the platform were examined to individuate the
candidates for this study. For all of them, the main interest was on blood glucose level,
insulin injections, carbohydrates intake and pump settings. A time range of 180 days was
considered and this become another discriminating factor to choose the perfect subjects. Not
all subjects have the same months covered. Nevertheless, as the main intent was to create
a dataset with the most continuous data possible, participants were selected according to

1https://www.diasend.com/
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Demography

Patient ID Year Patient ID Year

Sub1 2010 Sub11 2010

Sub2 2004 Sub12 2008

Sub3 2006 Sub13 2007

Sub4 2008 Sub14 2011

Sub5 2008 Sub15 2003

Sub6 1990 Sub16 2013

Sub7 2003 Sub17 2003

Sub8 2008 Sub18 2003

Sub9 2008 Sub19 2009

Sub10 2011 Sub20 2014

Table 3.1: Patients’ demography. First column display their assigned ID, while the second
column displays their year of birth.

the continuity of the period of the year. Thus, patients with fragmented glycaemic and/or
insulin values upload were discarded.

Out of the remaining subjects, only the ones who had uploaded ingested carbohydrates
quantities were chosen, thus discarding 10 of them. In the end, out of the initial 48 patients,
only 20 of them were considered to be of interest.

Thus, 20 subjects compose the analysed dataset: 15 of them are females, while 5 are
males. In Table 3.1 can be seen the year of birth for each patient.

The next move was to examine the information downloaded from the Diasend platform.
Two files were considered:

1. an Excel file, composed of five sheets with data about:

(a) glycaemic values in mg/dL and the date and time at which they have been received
by the pump, coming from the sensor.

(b) blood glucose values in mg/dL along with the date and time in which they were
recorded by the DexCom G6® sensor (that measures values every 5 minutes).

(c) insulin consumption in U/h for basal and in U for bolus, bolus setting, carbohy-
drate consumption in grams and the associated date and time. In addition, the
total amount of basal and bolus injections in U is displayed at the end of each
day.

(d) pump settings;
(e) events recorded by the pump, such as change in basal rate, insulin cartridge

inserted or sleep activity initiation.
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2. a PDF file, reporting the comparison of 8 of the most recently uploaded pump settings
coming from the days in which users uploaded their data on the Diasend platform
and highlighting the differences. Since some limitations of the platform and the wide
time range considered, not all the information were visible on this file. Fortunately, a
drop-down menu on Diasend gives the possibility to explore the settings for a specific
day in a specific time interval. Because of this, some patients were discarded for the
pump setting analysis but this will be explained deeply later in section 3.3.2.

3.2 Pre-processing
The downloaded raw data coming from the Excel and PDF file were manipulated in order

to create a starting database useful for our purpose. In detail:

• from the Excel file, only information about date, time, glycaemic values, basal, bo-
lus and carbohydrates quantities were selected. Due to fact that the timestamps for
insulin and glycaemic values are different, two excel sheets were organized: the first
one with timestamps and glycaemic values and the second one with timestamps, basal,
carbohydrates and bolus information.

• from the PDF file, each Personal Profile, thus time segments, ICR and basal values,
of each change were transposed on a Excel file to be later used for the pump settings’
analysis. As a consequence of the lack of ISF values, this parameter wasn’t considered
during the study.

Now, a complete description of the steps followed for the pre-processing is provided for
both parts of this thesis. This work has been done on Google’s Colaboratory, working in
Python.

3.2.1 Pre-processing of glycaemic and insulin data
To prepare the data for being analysed, glycaemia and insulin pieces of information had

to be comparable. In fact, as already explained in Section 3.1, the frequency at which blood
glucose levels and insulin velocities and injections are recorded are different. For this reason,
data have been homogenized.

Thus, the following points were followed:

1. firstly, after the conversion of date and time into a datetime object, all the minutes
were rounded to the nearest multiple of five minutes. This was made in order to easily
compare these values in the next steps.

2. secondly, all the duplicated values of date and time values were removed. This part was
necessary because, after a quick investigation of the raw data, it has been noted that
in some patients multiple time rows, all equal among them, were saved and associated
with different values of glycaemia or basal rate. Therefore, to eliminate every possible
errors that could affect the subsequent analysis, these values were removed and only
those paired with the highest values were kept. To do so, the groupby function of
Pandas’ library was used.
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3. lastly, since the discrepancy between glycaemic and all the insulin data in terms of
time instants, the merge_asof 2 3 function was used. This is similar to a left-join
except that we match on nearest key rather than equal keys. Our key is the ’time’
(date, hours and minutes) and the ratio behind its functioning is to compare the value
in the right data frame (B, time column of insulin data) with the one on the left (A,
time column of glycaemic data), and if there is no perfect match, it takes the previous
one and it merges them, by attaching the values of B to the comparable times of A.
It is also possible to choose a latency (in seconds) to be tolerated: in this case, since
blood glucose levels are measured every 5 minutes by the DexCom G6® sensor, the
time delta for the "tolerance" parameter was set at 299 seconds (less than 5 minutes).

At the end of this step, some empty cells were generated in the columns related to the
insulin data and they were filled with zeros. There’s physiological explanation behind
this procedure: generally speaking, no values recorded mean that no injections have
been programmed by the algorithm. In fact, the algorithm does not leave the original
BR, set by the clinician, because it has predicted serious hypoglycemia in the next 30
minutes, suspending insulin delivery. Thus, since these new empty cells are created
after the merging and that in that specific time instant the algorithm didn’t plan an
injection, they were filled with zeros.

After this process, the clean data was saved in a new Excel file with a single merged
time column, glycaemic and insulin values (basal rate, bolus and carbohydrates). The first
dataset is ready for the Machine Learning step.

3.2.2 Pre-processing of insulin pump data

The work on the pump settings was done for only 12 subjects. This choice was done
based on the balance of their basal data, the content of their settings’ changes, if they were
using Control-IQ or not, and the availability of data, otherwise if it was possible to download
the same data belonging to the same period.

For the pump settings’ analysis a similar pre-processing has been followed. Point by
point:

1. at the beginning, to match the glycaemic values and time instant with the different
pump settings, the merge of both information was made. The procedure is similar to
the one depicted in point 3 of 3.2.1. The same key and tolerance value were used.

2. in the second place, the Personal Profile data were written, thanks to a fully automatic
algorithm, to the right position and time slot, accordingly to the information acquired
from the original PDF. In this way, it has been obtained a file with time, glycaemic
data, ICR and target basal rate.

2https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.merge_asof.
html

3https://towardsdatascience.com/how-to-merge-not-matching-time-series-with-pandas-
7993fcbce063
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3.3 Modelling

In this section, definitions and explanations of the Machine Learning (ML) modelling
methods and the steps followed in the pump settings’ analysis used in this work are presented.

3.3.1 Machine Learning approaches

This section reports the definitions and explanation of the machine learning modelling
approaches used in this work.

Logistic Regression (LR), Random Forest (RF) and Zero-inflated regressor (ZIR) were
chosen as ML algorithms for our purpose. For all of them, basal insulin and glycaemic info
were used but the manipulation were different according to the algorithms purpose, that is
classification for the first two models, and regression for the last one.

Firstly, the focus was on a classification model able to tell if the Control-IQ™ algorithm
decided to either change the basal rate or not based on the analysis of the 1 and 0 labels,
respectively injection or not. For this reason, LR and RF were implemented. But, due to the
nature of the dataset, some adjustmets had to be done to further generalize our approach. In
fact, since the insulin rate often goes to zero to avoid hypoglycemic situations, the database
is strongly unbalanced on zero. This is an issue that can affect the performance of the model,
causing difficulty in learning to classify the minority class. Thuse, it requires more effort to
achieve balanced levels of performance in classification.

Moreover, it was necessary to use a model capable of distinguishing the different meanings
behind these values. Thus, the ZIR model, that include both classification and regression
steps, was implemented because it was able to satisfy our requirement.

It is possible to visualize the idea behind the whole conceptualization in Figure 3.1
In the following pages, a deep explaination of how these algorithms work is provided.

Logistic regression

Logistic regression estimates the probability of an event occurring, such as voted or didn’t
vote, based on a given dataset of independent variables. Since the outcome is a probability,
the dependent variable is bounded between 0 and 1. Thus, the logistic regression is used
when the dependent variable is categorical 4. The ultimate goal of this approach was to
compute if Control-IQ™ decided to change the insulin rate or not based on info coming from
glycaemic values and carbohydrate intake.

By using the module called statsmodels5, a logistic regression model was built, through
the Logit(y,X) function where y is the column of 0 and 1s of the basal file and X is constituted
by data coming from glycaemic and carbohydrate info.

In the example of logistic regression applied to the glycaemia file where the columns for
the 6 previous basal levels were added, the logistic regression equation was:

4https://www.ibm.com/topics/logistic-regression
5https://www.statsmodels.org/stable/index.html
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Figure 3.1: Block diagram representing the data analysis approach followed in this study.

Pr(y = 1|X) =
exp(β0 + β1Glycemia+ β2Carbs+ β3Glyctminus1 + β4Glyctminus2+

1 + exp(β0 + β1Glycemia+ β2Carbs+ β3Glyctminus1 + β4Glyctminus2+

β5Glyctminus3 + β5Glyctminus4 + β6Glyctminus5 + β7Glyctminus6)

β5Glyctminus3 + β5Glyctminus4 + β6Glyctminus5 + β7Glyctminus6)
(3.1)

where Glycemia indicates the glycaemic recorded values, Carbs indicated the carbohy-
drates recorded intake and from Glyctminus1 to Glyctminus6 indicates the recorded glycaemic
values within 30 minutes.The addition of these 6 time-shifted columns was done based this
strategy: Control-IQ™ predicts the glycaemic trend of the following 30 minutes, meaning
that the basal velocity of each row where it is present is based on the blood glucose level
recorded 30 minutes prior, which is to say 6 glycaemic measurements prior. The empty cells
generated by this process were removed.

By using the open-source library Scikit-learn6 and its functions, for each patient, the
model was fitted and the script computed its accuracy (see Eq. 3.2), its predicted values, its
confusion matrix, its precision (Prec, see Eq. 3.3), recall (Rec, see Eq. 3.4) and F1-score
(F1, see Eq. 3.5) and its receiver operating characteristic (ROC) curve and area under it.

Here are reported the equations of the used metrics [85], where TN represents the true

6https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html
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negatives, FP represents the false positives, FN represents the false negatives and TP repre-
sents the true positives:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

Prec =
TP

TP + FP
(3.3)

Rec =
TP

TP + FN
(3.4)

F1 =
2 ∗ Prec ∗Rec

Prec+Rec
=

2 ∗ TP
2 ∗ TP + FP + FN

(3.5)

Random Forest

The Random Forest approach was used in an attempt to improve the performance of the
Logistic Regression.

The RF algorithm picks N random records from the dataset and builds a decision tree
based on them, repeatedly for the chosen number of trees wanted by us (in this case, 200
trees) and each tree predicts the category to which the new record belongs and then the
latter is assigned to the category that wins the majority vote.

The RF algorithm presents some interesting advantages: it is not biased because there
are multiple trees and each one is trained on a subset of data, it is stable and it works well
even when data has missing values or it has not been scaled well.

By using the open-source library Scikit-learn7 and its functions, the RandomForestClas-
sifier functions was implemented.

Firstly, the algorithm was fed with the same dataset used for the LR but, due to the
huge amount of data, the model did’t perform well. Probably, the dataset wasn’t organized
in suitable way for the Random Forest. Thus, the ri-organization consisted in:

• firstly, the randomization of all values was made to avoid that samples were taken from
the same days or weeks.

• as we have previously stated, the database is strongly imbalanced. So to allow the
Random Forest algorithm to correctly classify the zeros and ones, a personalized per-
centage for each patient was computed based on the amount of 0 and 1. According to
the results, they were split for the training and testing phases.

• lastly, after the two matrices were completed, all the rows had been randomized again.

7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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Figure 3.2: Histogram representation of distribution of basal values for subject 3

Always through the same library as before, Prec, Rec and F1, the accuracy, balanced
accuracy and the confusion matrix were computed. Here it is reported the formula of the
balanced accuracy, an important metric for imbalanced database.

AccB =
TP + TN

2
(3.6)

Zero-inflated Regressor

Our dataset has an unusually high amount of zero targets in it and they have different
meanings (an example in Figure 3.2): fistly, they can be associated with no injection by
the insulin pump because the glycaemic curve is in the ranges or to avoid hypoglycaemia;
secondly, they can be generated after the merge to line up insulin and blood glucose data.

Thus, we have to work with the so called zero-inflated dataset, and this constitute a
problem for any model because they can be deflected by such behavior, including linear
regression, support vector machines, and also neural networks. The probability that any of
these models will output a zero is quite small.

An estimator that solves problems related to zero-inflated datasets is the Zero-inflated
Regressor (ZIR) and the idea behind it is quite simple. In fact, it is based on (Figure 3.3):

• a classifier C: its task is to find if the target is zero or not.

• a regressor R: its task is to output a (usually positive) prediction whenever the classifier
indicates that the there should be a non-zero prediction.
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Figure 3.3: Schematic representation of how the Zero-inflated Regressor works.

The regressor is only trained on examples where the target is non-zero, making it easier
to focus. When predicting, first ask the classifier if the output should be 0. If it is, output
zero. Otherwise, ask the regressor for its prediction and print it.

This is a meta-model, i.e. a model that consists of other models, thus aggregating both
classification and regression steps. The great thing is that it can be plug in any classifier
and regressor, according to the requirement of the study.

By using the module called sklego.meta library8, a ZeroInflatedRegressor model was
implemented, combining different kindS of classifiers and regressors. Among the classifiers,
Random Forest classifier, Gradient Boosting and Extra Tree classifier were chosen while for
the regression analysis Random Forest regressor, Multivariate Linear regression and Extra
Tree regression were implemented.

Gradient Boosting classifiers are a group of machine learning algorithms that combine
many weak learning models together to create a strong predictive model. Decision trees
are usually used when doing gradient boosting and they are becoming popular because of
their effectiveness at classifying complex datasets. The main objective of Gradient Boosting
classifiers is to minimize the loss, or the difference between the actual class value of the
training example and the predicted class value.

Extra Trees algorithm (Extremely Randomised Trees) is an ensemble learning method
essentially based on decision trees. Like Random Forest, Extra Trees Classifier randomises
specific decisions and subsets of data to minimise overlearning of data and overfitting. Ex-
traTrees, like Random Forest, builds multiple trees and splits nodes based on random subsets
of features, but with two key differences: it does not bootstrap observations (i.e. random
sampling without replacementis performed) and it splits nodes according to random splits,

8https://scikit-lego.readthedocs.io/en/latest/meta.htmll
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not the best splits. In terms of computational cost and hence execution time, the Extra Trees
algorithm is faster. This algorithm saves time because the whole procedure is the same, but
it randomly selects the split point and does not calculate the optimal point.

The combination used are the following:

1. Random Forest classifier and Multivariate Linear Regression: they have been used in
our previous study, obtaining good results in terms of accuracy. Thus, we want to test
them in this new combined approach.

2. Gradient Boosting with both Random Forest Regression and Multivariate Linear Re-
gression: due to its capability and efficacy of working with elaborate database, it was
paired with these two regression model that have been previously successfully used and
that their reliability has been founded and demonstrated in several studies [77].

3. Extra Tree Classifier and Regression: since it is similar to the Random Forest approach,
it has been selected to evaluate its goodness in terms of computational speed and
accuracy compared to the aforementioned Random Forest.

At the very beginning, the same predictors used for the RF and LR were considered but
the results were unsatisfying. Thus, the number of independent variables was incremented
by adding three new features: the differences between 10,20 and 30 minutes delayed glucose
values. This decision was based on some considerations made by the clinicians and some
findings in the literature [82], reporting that the rate of glucose changes is an important
descriptor to consider for the overall glycaemic control.

Here are reported the equations of the used metrics [85];

MAE =
D∑
i=1

|xi − yi| (3.7)

MSE =
D∑
i=1

(xi − yi)
2 (3.8)

RMSE =

√
1

n
Σn

i=1

(di − fi
σi

)2

(3.9)

R2 = 1− sum squared regression
total sum of squares

= 1−
∑

(yi − ŷi)
2∑

(yi − ȳi)2
(3.10)
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180-days time in range

Patient ID TIR Patient ID TIR

Sub3 83.24% Sub14 69,31%

Sub4 72,20% Sub15 49,84%

Sub5 89,25% Sub16 68,13%

Sub7 62,48% Sub17 86,27%

Sub8 42,73% Sub18 77,50%

Sub13 92,20% Sub20 69,29%

Table 3.2: Patients’ TIR computed for the total 180-days period.

3.3.2 Pump settings’ analysis

First thing first, for all the 12 subjects, a Python algorithm was applied to calculate their
TIR, based on the clinicians’ guidelines [66]. This step was done to have a general view of
the trend of the TIRs for each patient. The results are visible in Table 3.2.

Data analysis was done based on the settings’ changes for each subject. All of them had
changes in either BR or ICR over different date intervals and with a different number of
parameters’ settings. The overall changes of the parameters created different date intervals
regarding BR and/or ICR changes for each subject in which different time intervals of interest
could be studied. Among the 13 patients, two of them had always kept the same BR and
ICR parameters for all the 180 days. These differences will be underlined in the following
sections.

By working on time masks coded in Python, computations were conducted, on a Colab
notebook, only applied to the data linked to the date intervals of interest and to the time
intervals of interest. Several approaches have been followed, in particular:

1. Approach A: for each date interval and each time slots, TIRs were computed in order
to investigate the overall glycaemic control during the day. Also TIRs for lunch and
dinner time were computed to compare the adherence to the target threshold. the
different time masks were based on both the basal rate and insulin-to-carbohydrate
ratio changes. The subjects’ meal TIRs (lunch: 11:30-15:00 and dinner 18:30 - 23:00)
were computed for each of their different date intervals. This was done to analyse how
the combination of changes of the parameters perform, meaning how well they control
blood glucose levels keeping them inside the guidelines’ thresholds [66]. These mealtime
intervals were based on the metabolic regulation of food intake both in healthy and
diabetic individuals [86, 87] and on clinicians’ experience. This preliminary approach
was performed only on those subjects who have kept the same time segments in each
Personal Profile change (5 subjects).

2. Approach B: TIRs were calculated in three diverse time periods (11:00-12:30, 12:30-
14:00 and 14:00-16:00) to assest if the insulin pump’s setting were good enough to

31



avoid postprandial spikes. The same was done for the dinner time, considering three
other time segmets (18:00-19:30, 19:30-21:00, 21:00-23:00).
This analysis was mainly focused on understanding which parameters influence the
most the glycaemic control after the meal ingestion in order to define a standard for
the postprandial spikes and see how the insulin pump control works in this condition.
In fact, it is normal for the level of glucose in the blood to rise a small amount after
eating, even in people who do not have diabetes. However, if the rise is too high, it
can affect your quality of life today and contribute to serious health problems down
the road. Even though after-meal blood glucose spikes are temporary, several spikes a
day, day after day, can raise the HbA1c level, and a high HbA1c level has been shown
to raise the risk of long-term diabetes complications.
In a person who doesn’t have diabetes, eating foods containing carbohydrate causes
two important reactions in the pancreas: the immediate release of insulin into the
bloodstream, and the release of a hormone called amylin. The insulin starts working
almost immediately (to move glucose out of the bloodstream and into cells) and finishes
its job in a matter of minutes. The amylin keeps food from reaching the small intestine
too quickly. As a result, the moment blood glucose starts to rise, insulin is there
to sweep the incoming glucose into the body’s cells. In most cases, the after-meal
blood glucose rise is barely noticeable. On the contrary, in people with diabetes, the
timing is all fouled up: rapid-acting insulin that is infused by a pump at mealtimes
takes approximately 15 minutes to start working, 60–90 minutes to “peak,” or reach
maximum effectiveness, and four hours or more to finish working. Meanwhile, amylin
is either produced in insufficient amounts or not at all, so the movement of food from
the stomach to the intestines is not slowed the way it should be. As a result, food
digests even faster than usual. This combination of slower insulin and faster food can
cause the blood glucose level to rise quite high soon after eating. Once the mealtime
insulin finally kicks in, the high is followed by a sharp drop. The exact timing of a high
blood glucose spike can vary from person to person and meal to meal. The differences
between the healthy and pathological management of glucose levels is shown in Figure
3.4.
Thus, it is essential to know the exact time of food ingestion to examine all these
factors in a reliable way. Unfortunately, we haven’t notes about it, we have therefore
individuated the just presented three time slots based solely on the aforementioned
studies, on the clinicians knowledge about the topic, and on our hypotheses.
Moreover, the standard deviation of the difference between the actual basal rate and
the target insulin flux set by the clinician and the mean glucose values for the range
14:00-16:00 and 21:00-23:00 of all the different periods were calculated in order to
assert how the insulin pump parameters work to keep blood glucose levels inside the
guidelines’ thresholds.

3. Approach C: a preliminary analysis of the overnight control has been conducted. In
fact, the majority of the subjects have setting changes in the interval between 00:00
and the 06:30, allowing us to investigate how good the settings perform while circadian
rhythms influence the subjects’ glucose metabolism. Circadian rhythms are fundamen-
tal biological processes that allow organisms to predict and adjust to changes in the
environment due to the 24-hour rotation of the earth on its own axis [89]. These
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Figure 3.4: Postprandial spikes in healthy and diabetic patient [88]

rhythms are synchronised by the circadian clock, which temporally organises chemi-
cal, molecular and psychological processes based on light and dark cycles. Numerous
studies [90–93] have demonstrated that individuals affected by T1D have less insulin
sensitivity during the second half of the night, leading to higher insulin dosage, even in
absence of external influences like physical activity and food intake. This phenomenon
is called the The term "dawn phenomenon", first introduced in 1981, describes a spon-
taneous hyperglycaemia or increased insulin requirement to maintain normoglycaemia
in the early morning hours, without nocturnal hypoglycaemia (Figure 3.5). In patients
with T1D, the dawn phenomenon did not occur predictably, posing a major challenge
for blood glucose management.

The analysis was performed on time slot from 00:00 to 06:30, when the night profile
is activated; the end point was chosen accordingly with the clinician experience on
the matter and on the guidelines founded in the manual of Tandem t:slim X2 9. In
fact, the offset of night control is "premature" compared to the actual awakening time:
this is done to gradually pass from the nocturnal settings to the daily ones without
unexpected changes or glycaemic peaks.

Furthermore, two additional time slots were individuated: from 00:00 to 03:30 and
03:30 to 06:30, the latter one to investigate the response of the Control-IQ technology
to the dawn phenomenon. For each of them, TIRs were computed, always considering
the several periods defined previously and based on the setting changes, but the ranges
were modified based on the pump settings for the night control: the hypoglycaemia
falls in the range from 0 to 112.5 mg/dL, normoglycaemia from 112.5 ro 120 mg/dL
and hyperglycaemia from 120 mg/dL and over. Further, the hours spent in each of
these states were calculated.

9https://www.tandemdiabetes.com/docs/default-source/product-documents/t-slim-x2-
insulin-pump/aw-1006509_b_user-guide-tslim-x2-control-iq-7-4-mgdl-ita-artwork_web.pdf?
sfvrsn=18a507d7_196
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Figure 3.5: Representation of the "Dawn Phenomenon"

The following equation has been used for the computation of standard deviation:

SD =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (3.11)
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Chapter 4

Results

In this section, results obtained with different Machine Learning approaches, described
in Chapter 3 are reported.

Firstly, results achieved by mean of Logistic Regression are presented: confusion matrix,
Prec, Rec and F1 values and ROC curves.

It then reports the results from the Random Forest: confusion matrix, ROC curves and,
again Prec, Rec and F1 scores.

Then the results coming from the Zero-inflated Regressor are shown in terms of MAE,
MSE, RMSE and R2.

Finally, it gives the result of the pump setup analysis, for each approach described in
Chapter 3, which is the TIRs computed for every time interval of interest.

In Chapter 5 the proposed results will be deeply discussed.

4.1 Logistic Regression

In this section, results coming from Logistic regression approach, described in Subsection
3.3.1, are reported. This algorithm showed a discred success in managing glycaemic data
and its performance has improved, compared to our previous study in which the glycaemic
columns reporting the blood glucose levels in the 2 previous columns were added, considering
the new 6 time-shifted columns that have been added to the predictors’ matrix. Normalisa-
tion was tested to verify if results could be improved but resulted in minuscule and negligible
variations.

Figures 4.1,4.2, 4.3,4.4 and 4.5 display the confusion matrix of each subject. The number
on the first square (first row and column) represents the true negatives (TN), the second
square (first row and second column) represents the false positives (FP), the third square
(second row and first column) represents the false negatives (FN) and the fourth square
represents the true positives (TP). Above each matrix, the accuracy score is reported.

Regarding ROC curves, only the best one are displayed for space-saving reasons. Figure
4.6 shows the plots for subjects 3, 5, 6, 10, 16 and 17 respectively. Table 4.1 displays the
Prec, Rec and F1 values for the two labels 0 and 1 for each subject.

35



(a) Confusion matrix table resulting from the
logistic regression on basal data for Subject 1.

(b) Confusion matrix table resulting from the
logistic regression on basal data for Subject 2.

(c) Confusion matrix table resulting from the
logistic regression on basal data for Subject 3.

(d) Confusion matrix table resulting from the
logistic regression on basal data for Subject 4.

Figure 4.1: Confusion matrices resulting from the logistic regression on basal data for subjects
1, 2, 3 and 4.
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(a) Confusion matrix table resulting from the
logistic regression on basal data for Subject 5.

(b) Confusion matrix table resulting from the
logistic regression on basal data for Subject 6.

(c) Confusion matrix table resulting from the
logistic regression on basal data for Subject 7.

(d) Confusion matrix table resulting from the
logistic regression on basal data for Subject 8.

Figure 4.2: Confusion matrices resulting from the logistic regression on basal data for subjects
5, 6, 7 and 8.
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(a) Confusion matrix table resulting from the
logistic regression on basal data for Subject 9.

(b) Confusion matrix table resulting from the
logistic regression on basal data for Subject 10.

(c) Confusion matrix table resulting from the
logistic regression on basal data for Subject 11.

(d) Confusion matrix table resulting from the
logistic regression on basal data for Subject 12.

Figure 4.3: Confusion matrices resulting from the logistic regression on basal data for subjects
9, 10, 11 and 12.
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(a) Confusion matrix table resulting from the
logistic regression on basal data for Subject 13.

(b) Confusion matrix table resulting from the
logistic regression on basal data for Subject 14.

(c) Confusion matrix table resulting from the
logistic regression on basal data for Subject 15.

(d) Confusion matrix table resulting from the
logistic regression on basal data for Subject 16.

Figure 4.4: Confusion matrices resulting from the logistic regression on basal data for subjects
13, 14, 15 and 16.
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(a) Confusion matrix table resulting from the
logistic regression on basal data for Subject 17.

(b) Confusion matrix table resulting from the
logistic regression on basal data for Subject 18.

(c) Confusion matrix table resulting from the
logistic regression on basal data for Subject 19.

(d) Confusion matrix table resulting from the
logistic regression on basal data for Subject 20.

Figure 4.5: Confusion matrices resulting from the logistic regression on basal data for subjects
17, 18, 19 and 20.

40



(a) ROC curve for subject 3. (b) ROC curve for subject 5

(c) ROC curve for subject 6 (d) ROC curve for subject 10

(e) ROC curve for subject 16 (f) ROC curve for subject 17

Figure 4.6: Plot for the ROC curve and area resulting from the logistic regression on basal
data for subjects 3,5,6, 10,16 and 17.
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Table 4.1: Metrics of the results coming from the logistic regression. The values for Precision
(Prec), Recall (Rec) and F1-score (F1) for labels 0 and 1 are reported.

ID Label Prec Rec F1

Sub 1 0 0.59 0.89 0.62
1 0.52 0.40 0.22

Sub 2 0 0.85 1.00 0.92
1 0.00 0.00 0.00

Sub 3 0 0.57 0.85 0.70
1 0.52 0.16 0.24

Sub 4 0 0.81 0.14 0.24
1 0.57 0.97 0.72

Sub 5 0 0.63 0.47 0.54
1 0.62 0.75 0.60

Sub 6 0 0.61 0.69 0.65
1 0.65 0.56 0.60

Sub 7 0 0.55 0.59 0.57
1 0.58 0.54 0.56

Sub 8 0 0.55 0.32 0.41
1 0.54 0.75 0.63

Sub 9 0 0.56 0.48 0.51
1 0.55 0.63 0.59

Sub 10 0 0.58 0.80 0.67
1 0.54 0.30 0.39

Sub 11 0 0.63 0.41 0.50
1 0.58 0.77 0.66

Sub 12 0 0.56 0.61 0.59
1 0.56 0.51 0.54

Sub 13 0 0.93 1.00 0.96
1 0.36 0.03 0.06

Sub 14 0 0.61 0.79 0.69
1 0.61 0.40 0.48

Sub 15 0 0.60 0.36 0.45
1 0.59 0.80 0.68

Sub 16 0 0.61 0.78 0.68
1 0.58 0.38 0.46

Sub 17 0 0.64 0.67 0.66
1 0.60 0.56 0.58

Sub 18 0 0.68 0.98 0.76
1 0.53 0.03 0.06

Sub 19 0 0.59 0.38 0.46
1 0.58 0.76 0.66

Sub 20 0 0.64 0.90 0.75
1 0.48 0.16 0.24
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4.2 Random Forest

This section reports the results coming from the Random Forest procedure defined in
Subsection 3.3.1. Normalisation was also tested to verify if results could be improved but
enhancements have been obtained.

Figures 4.7,4.8, 4.9,4.10 and 4.11 display the confusion matrix of each subject. The
number on the first square (first row and column) represents the true negatives (TN), the
second square (first row and second column) represents the false positives (FP), the third
square (second row and first column) represents the false negatives (FN) and the fourth
square represents the true positives (TP). Above each matrix, the accuracy score is reported.

Regarding ROC curves, only the best one are displayed for space-saving reasons. Figure
4.12 shows the plots for subjects 3, 5, 7, 10, 16 and 17 respectively.

Table 4.2 displays the Prec, Rec and F1 values for the two labels 0 and 1 for each
subject. Instead, Table 4.3 reports the values of the balanced accuracy, the arithmetic mean
of sensitivity and specificity. Its use case is when dealing with imbalanced data, i.e. when
one of the target classes appears a lot more than the other, like ours.

4.3 Zero-inflated Regressor

This section reports the results coming from the Zero-inflated regressor procedure defined
in Subsection 3.3.1.

As previously stated, this procedure was chosen to manage the heavy unbalanced dataset
and the huge amount of zeros generated by the sensor.

Firstly, the Zero-inflated regressor was applied to the same dataset of the Logistic regres-
sion and Random Forest, in which the glycaemic columns reporting the blood glucose levels
in the 6 previous rows were added. Due to the mediocre and insufficient performance of the
model, four additional predictors were added, such as the rate of change of glucose levels
within 5,10,20 and 30 minutes. The outcomes are satisfactory compared to the previously
even though they are not as acceptable as we expected.

Normalization was performed but it hadn’t improved the results, thus, they will not be
reported here.

The Table 4.4 presents the metrics of the results coming from the Zero-inflated regressor
approach. It displays the MAE, MSE, RMSE and R2 values for each subject and for
each of the four combinations described in Subsection 3.3.1. The acronyms stands for: RF
isRandom Forest Classifier, MLR is Multivariate Linear Regression while GB and EXTRA
TREE stands for Gradient Boosting and Extratrees classifier and regressor, respectively.
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(a) Confusion matrix table resulting from the
random forest on basal data for Subject 1.

(b) Confusion matrix table resulting from the
random forest on basal data for Subject 2.

(c) Confusion matrix table resulting from the
random forest on basal data for Subject 3.

(d) Confusion matrix table resulting from the
random forest on basal data for Subject 4.

Figure 4.7: Confusion matrices resulting from the random forest on basal data for subjects
1, 2, 3 and 4.
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(a) Confusion matrix table resulting from the
random forest on basal data for Subject 5.

(b) Confusion matrix table resulting from the
random forest on basal data for Subject 6.

(c) Confusion matrix table resulting from the
random forest on basal data for Subject 7.

(d) Confusion matrix table resulting from the
random forest on basal data for Subject 8.

Figure 4.8: Confusion matrices resulting from the random forest on basal data for subjects
5, 6, 7 and 8.
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(a) Confusion matrix table resulting from the
random forest on basal data for Subject 9.

(b) Confusion matrix table resulting from the
random forest on basal data for Subject 10.

(c) Confusion matrix table resulting from the
random forest on basal data for Subject 11.

(d) Confusion matrix table resulting from the
random forest on basal data for Subject 12.

Figure 4.9: Confusion matrices resulting from the random forest on basal data for subjects
9, 10, 11 and 12.
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(a) Confusion matrix table resulting from the
random forest on basal data for Subject 13.

(b) Confusion matrix table resulting from the
random forest on basal data for Subject 14.

(c) Confusion matrix table resulting from the
random forest on basal data for Subject 15.

(d) Confusion matrix table resulting from the
random forest on basal data for Subject 16.

Figure 4.10: Confusion matrices resulting from the random forest on basal data for subjects
13, 14, 15 and 16.
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(a) Confusion matrix table resulting from the
random forest on basal data for Subject 17.

(b) Confusion matrix table resulting from the
random forest on basal data for Subject 18.

(c) Confusion matrix table resulting from the
random forest on basal data for Subject 19.

(d) Confusion matrix table resulting from the
random forest on basal data for Subject 20.

Figure 4.11: Confusion matrices resulting from the random forest on basal data for subjects
17, 18, 19 and 20.
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(a) The random forest ROC curve for subject 3. (b) The random forest ROC curve for subject 5

(c) The random forest ROC curve for subject 7 (d) The random forest ROC curve for subject
10

(e) The random forest ROC curve for subject 17 (f) The random forest ROC curve for subject 18

Figure 4.12: Plot for the ROC curve and area resulting from the random forest on basal
data for subjects 3,5,7, 10,17 and 18.

49



Table 4.2: Metrics of the results coming from the random forest. The values for Precision
(Prec), Recall (Rec) and F1-score (F1) for the two labels 0 and 1 are reported.

ID Label Prec Rec F1

Sub 1 0 0.74 0.68 0.71
1 0.57 0.65 0.61

Sub 2 0 0.94 0.96 0.95
1 0.16 0.11 0.13

Sub 3 0 0.85 0.73 0.79
1 0.56 0.73 0.63

Sub 4 0 0.84 0.64 0.73
1 0.75 0.79 0.65

Sub 5 0 0.64 0.82 0.72
1 0.84 0.68 0.69

Sub 6 0 0.63 0.73 0.67
1 0.75 0.65 0.69

Sub 7 0 0.72 0.80 0.76
1 0.83 0.76 0.79

Sub 8 0 0.61 0.61 0.61
1 0.63 0.63 0.63

Sub 9 0 0.73 0.76 0.74
1 0.50 0.73 0.75

Sub 10 0 0.69 0.71 0.70
1 0.63 0.60 0.61

Sub 11 0 0.70 0.74 0.72
1 0.74 0.71 0.72

Sub 12 0 0.68 0.69 0.69
1 0.68 0.66 0.67

Sub 13 0 0.97 0.99 0.69
1 0.58 0.24 0.34

Sub 14 0 0.71 0.76 0.73
1 0.68 0.62 0.65

Sub 15 0 0.66 0.63 0.64
1 0.70 0.73 0.72

Sub 16 0 0.71 0.72 0.71
1 0.64 0.63 0.64

Sub 17 0 0.76 0.84 0.79
1 0.79 0.69 0.73

Sub 18 0 0.88 0.85 0.87
1 0.70 0.74 0.72

Sub 19 0 0.69 0.64 0.67
1 0.70 0.74 0.72

Sub 20 0 0.75 0.80 0.77
1 0.63 0.56 0.68
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Table 4.3: Balanced accuracy computer for each patient for the random forest classification

Balanced Accuracy

Patient AccB Patient AccB

Sub1 0.66 Sub11 0.72

Sub2 0.53 Sub12 0.67

Sub3 0.73 Sub13 0.61

Sub4 0.71 Sub14 0.69

Sub5 0.74 Sub15 0.67

Sub6 0.65 Sub16 0.67

Sub7 0.77 Sub17 0.76

Sub8 0.62 Sub18 0.79

Sub9 0.73 Sub19 0.69

Sub10 0.65 Sub20 0.67

Table 4.4: Metrics of the results coming from the zero-inflated regressor. The values for
MAE, MSE, RMSE and R2 values for each combination are reported.

ID Metrics RF+MLR GB+MLR GB+RFR EXTRA TREE

Sub 1

MAE 0.40 0.37 0.36 0 .40
MSE 0.53 0.0.53 0.53 0.56
RMSE 0.73 0.72 0.73 0.75

R2 0.10 0.10 0.10 0.10

Sub 2

MAE 0.28 0.27 0.27 0.28
MSE 0.74 0.74 0.74 0.77
RMSE 0.86 0.86 0.86 0.86

R2 0.10 0.10 0.10 0.10

Sub 3

MAE 0.26 0.32 0.29 0 .26
MSE 0.26 0.26 0.25 0.26
RMSE 0.51 0.51 0.50 0.51

R2 0.21 0.16 0.21 0.21

Sub 4

MAE 0.40 0.38 0.37 0 .38
MSE 0.40 0.39 0.39 0.45
RMSE 0.68 0.62 0.62 0.67

R2 0.17 0.17 0.20 0.20

Sub 5

MAE 0.25 0.31 0.28 0 .25
MSE 0.25 0.24 0.23 0.25
RMSE 0.50 0.49 0.48 0.50

R2 0.24 0.23 0.28 0.23
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Sub 6

MAE 0.32 0.31 0.30 0 .32
MSE 0.25 0.20 0.20 0.25
RMSE 0.50 0.45 0.44 0.50

R2 0.19 0.22 0.25 0.20

Sub 7

MAE 0.56 0.59 0.53 0 .52
MSE 1.00 0.89 0.83 0.99
RMSE 0.10 0.94 0.90 0.99

R2 0.23 0.20 0.25 0.26

Sub 8

MAE 0.36 0.42 0.40 0 .37
MSE 0.36 0.29 0.29 0.37
RMSE 0.60 0.54 0.54 0.60

R2 0.10 0.10 0.10 0.10

Sub 9

MAE 0.49 0.45 0.42 0 .46
MSE 0.77 0.66 0.65 0.75
RMSE 0.87 0.81 0.80 0.87

R2 0.10 0.10 0.10 0.10

Sub 10

MAE 0.42 0.38 0.39 0 .42
MSE 0.47 0.40 0.40 0.49
RMSE 0.68 0.63 0.63 0.70

R2 0.10 0.11 0.12 0.11

Sub 11

MAE 0.56 0.59 0.53 0 .52
MSE 1.00 0.89 0.83 0.99
RMSE 0.1 0.94 0.90 0.99

R2 0.23 0.20 0.25 0.26

Sub 12

MAE 0.51 0.49 0.48 0 .50
MSE 0.75 0.67 0.67 0.75
RMSE 0.86 0.82 0.82 0.85

R2 0.10 0.10 0.11 0.10

Sub 13

MAE 0.10 0.10 0.10 0 .10
MSE 0.10 0.10 0.10 0.10
RMSE 0.10 0.10 0.10 0.10

R2 0.20 0.18 0.19 0.18

Sub 14

MAE 0.34 0.33 0.32 0 .32
MSE 0.35 0.31 0.30 0.35
RMSE 0.59 0.56 0.55 0.59

R2 0.22 0.22 0.25 0.22

Sub 15

MAE 0.74 0.69 0.67 0 .71
MSE 1.00 0.80 0.80 0.99
RMSE 1.00 0.80 0.80 0.99

R2 0.11 0.15 0.18 0.14

Sub 16

MAE 0.31 0.27 0.27 0 .30
MSE 0.26 0.21 0.21 0.25
RMSE 0.51 0.46 0.46 0.50

R2 0.12 0.13 0.14 0.14

Sub 17

MAE 0.41 0.42 0.40 0 .41
MSE 0.67 0.67 0.66 0.71
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RMSE 0.82 0.82 0.80 0.84
R2 0.10 0.10 0.10 0.12

Sub 18

MAE 0.27 0.27 0.25 0 .25
MSE 0.29 0.27 0.26 0.30
RMSE 0.54 0.52 0.51 0.55

R2 0.20 0.18 0.21 0.21

Sub 19

MAE 0.33 0.32 0.30 0 .33
MSE 0.31 0.26 0.26 0.32
RMSE 0.56 0.51 0.51 0.57

R2 0.10 0.10 0.10 0.10

Sub 20

MAE 0.30 0.34 0.33 0 .30
MSE 0.30 0.27 0.27 0.30
RMSE 0.54 0.52 0.52 0.54

R2 0.12 0.10 0.10 0.12

4.4 Pump settings’ analysis
This section reports the results coming from the pump settings’ analysis approaches

defined in Subsection 3.3.2. In primis, results coming from the approach A are reported,
so those showing TIRs computed during meal time and during each time segments of each
date interval. Lastly, results computed during Approaches B and C, regarding the after-meal
spikes and night control, are proposed.

4.4.1 Approach A
The results about the TIRs trend during the different periods are depicted in Figure 4.13

while the TIRs computed during lunch and dinner time are reported in the following list1:

1. Subject 4:

(a) Lunch time: PP1=74,42%, PP2=69,18%, PP3=61,08% and PP4=66,95%
(b) Dinner time: PP1=53,08%, PP2=50,65%, PP3=66,18% and PP4=55,45%

2. Subject 5:

(a) Lunch time: PP1=89,13%, PP2=82,69%, PP3=83,77% and PP4=88,88%
(b) Dinner time: PP1=88,18%, PP2=83,87%, PP3=84,51% and PP4=88,81%

3. Subject 15:

(a) Lunch time: PP1=34,98%, PP2=36,27%, PP3=29,85%, PP4=38,44% and PP5=22,34%
(b) Dinner time: PP1=58,16%, PP2=45,93%, PP3=30,14%, PP4=42,09% and PP5=19,32%

4. Subject 18:
1The abbreviation PP stand for Personal Profile, thus PP1, for example, means that we are considering

the period 1 with that Personal Profile setting
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(a) Lunch time: PP1=79,88% and PP2=70,70%

(b) Dinner time: PP1=76,88% and PP2=71,00%

5. Subject 20:

(a) Lunch time: PP1=60,42%, PP2=62,61%, PP3=51,23%, PP4=60,28% and PP5=48,16%

(b) Dinner time: PP1=58,20%, PP2=62,61%, PP3=51,80%, PP4=46,29% and PP5=48,32%

Figure 4.13: TIRs trends for subjects
4, 5, 15, 18 and 20, from top to bot-
tom and from left to right.
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4.4.2 Approach B

The results regarding TIRs calculated in three diverse time periods for lunch and dinner
time, as explained in Subsection 3.3.2, are reported. The analysis focused primarily on
understanding which parameters had the greatest impact on postprandial glycemic control
in order to define criteria for postprandial spikes and to understand how insulin pump control
performed in this setting.

Tables 4.5,4.6, 4.7,4.8, 4.9,4.10, 4.11, 4.12, 4.13, 4.14, 4.15 and 4.16 show the TIRs,
together with the the standard deviation (SD) of the difference between the actual and
target basal rate and the mean glucose value (MGV) computed for the third slot, for both
lunch and dinner. Pre meal stands for the time segment of 11:00-12:30 and 18:00-19:30, meal
time means 12:30-14:00 and 19:30-21:00 slots while for after meal the time ranges 14:00-16:00
and 21:00-23:00 have been considered.

Table 4.5: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 3

Period Pre meal Meal time After meal

PP1 98,53% 96,43% 88,10%

PP2 89,68% 95,23% 83,83%

PP3 77,46% 77,18% 74,40%

PP1 88,75% 93,25% 89,90%

PP2 96,03% 81,74% 86,22%

PP3 74,45% 81,60% 73,57%

Table 4.6: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 4

Period Pre meal Meal time After meal

PP1 69,65% S71,08% 81,93%

PP2 71,32% 71,16% 64,96%

PP3 70,68% 43,47% 62,23%

PP4 70,44% 64,51% 69,98%

PP1 32,37% 42,79% 75,02%

PP2 33,55% 44,59% 62,59%

PP3 66,40% 57,81% 71,55%

PP4 43,38% 47,52% 68,75%
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Table 4.7: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 5

Period Pre meal Meal time After meal

PP1 80,26% 94,70% 85,28%

PP2 88,69% 83,55% 82,42%

PP3 90,12% 84,31% 80,54%

PP4 70,40% 94,38% 88,71%

PP1 86,86% 91,54% 87,35%

PP2 79,74% 88,65% 84,34%

PP3 82,07% 83,08% 87,18%

PP4 86,45% 81,46% 89,01%

Table 4.8: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 7

Period Pre meal Meal time After meal

PP1 50,81% 62,26% 41,68%

PP1 53,48% 46,07% 43,59%

Table 4.9: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 8

Period Pre meal Meal time After meal

PP1 54,20% 74,4% 39,63%

PP2 45,16% 51,37% 50,16%

PP3 22,16% 16,42% 12,65%

PP1 5,83% 18,75% 26,20%

PP2 23,30% 30,07% 23,45%

PP3 17,46% 16,66% 14,12%
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Table 4.10: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 13

Period Pre meal Meal time After meal

PP1 100,0% 94,4% 100,00%

PP2 94,10% 92,4% 91,4%

PP1 98,1% 66,6% 66,6%

PP2 91,5% 91,76% 90,06%

Table 4.11: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 14

Period Pre meal Meal time After meal

PP1 68,27% 88,54% 90,65%

PP2 61,78% 80,06% 90,15%

PP3 85,62% 88,88% 96,72%

PP1 46,11% 58,18% 85,57%

PP2 37,21% 56,99% 86,25%

PP3 42,50% 80,12% 85,98%

Table 4.12: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 15

Period Pre meal Meal time After meal

PP1 25,61% 38,67% 36,08%

PP2 26,55% 34,89% 43,56%

PP3 21,34% 29,77% 31,60%

PP4 36,80% 47,86% 34,66%

PP1 32,78% 69,96% 65,75%

PP2 43,98% 59,65% 45,56%

PP3 21,20% 34,56% 38,04%

PP4 40,56% 46,90% 39,11%
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Table 4.13: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 16

Period Pre meal Meal time After meal

PP1 38,68% 51,99% 51,82%

PP1 66,08% 74,62% 60,44%

Table 4.14: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 17

Period Pre meal Meal time After meal

PP1 91,74% 83,74% 77,13%

PP2 86,26% 84,45% 78,84%

PP3 89,47% 95,65% 70,33%

PP1 88,67% 86,96% 83,45%

PP2 84,50% 84,27% 85,18%

PP3 79,72% 93,64% 82,03%

Table 4.15: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 18

Period Pre meal Meal time After meal

PP1 78,26% 83,23% 75,62%

PP2 81,00% 65,79% 64,57%

PP1 75,29% 84,29% 72,55%

PP2 74,26% 74,80% 65,42%
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Table 4.16: Lunch and dinner TIRs computed for each of the three time segments of for each
period of subject 20

Period Pre meal Meal time After meal

PP1 38,57% 68,53% 63,46%

PP2 61,00% 63,52% 62,40%

PP3 54,82% 46,62% 57,84%

PP4 60,22% 58,73% 61,82%

PP5 41,35% 54,77% 51,31%

PP1 67,74% 61,30% 51,72%

PP2 74,09% 62,94% 55,44%

PP3 49,12% 46,86% 62,63%

PP4 55,18% 50,00% 28,95%

PP5 57,10% 48,23% 46,78%

4.4.3 Approach C
The results regarding TIRs calculated in three diverse time periods during the night, as

explained in Subsection 3.3.2, are reported. The analysis focused primarily on understanding
which parameters has the higher influence while working with the night settings.

Tables 4.17, 4.18,4.19,4.20,4.21,4.22,4.23,4.24,4.25,4.26,4.27 and 4.28 show the TIRs, com-
puted for the three nocturnal time segments. Total stands for the overall night control from
00:00 to 06:30, First period is referred to 00:00-03:30 while second period is 03:30-06:30.
The caption TIR(%) PP is used to denote the TIRs computed in the period n with spe-
cific Personal Profile settings while Hours (h) reports the hours spent in the hypoglycaemia,
normoglycaemia and hyperglycaemia for each period and each time segment.

Table 4.17: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 3.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 54,02 14,59 31,38 48,7 9,48 41,77 59,9 20,29 19,8
Hour(h) 57 15 33 27 5 23 30 10 10

TIR(%) PP2 55,07 20,83 24,09 58,6 18,9 22,39 50,21 23,40 26,38
Hours(h) 25 10 11 15 5 6 10 5 5

TIR(%) PP3 39,02 14,5 46,37 33,10 10 56,7 46,1 20,0 33,84
Hours(h) 340 127 404 157 48 270 183 79 134
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Table 4.18: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 4.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR(%) 32,7 10,3 56,96 20,47 6,37 73,14 47,45 15,12 37,42
Hours(h) 85 27 148 29 9 104 56 18 44

TIR(%) PP2 30,2 9,57 60,16 18,99 5,73 75,26 43,7 14,18 42,04
Hours(h) 64 20 128 22 7 87 42 14 40

TIR(%) PP3 22,8 9,46 67,7 16,62 6,6 76,76 30,18 12,86 56,95
Hours(h) 40 16 119 16 6 74 24 10 46

TIR(%) PP4 24,81 11,10 64 21,9 8,44 69,61 27,17 14,20 57,6
Hours(h) 57 25 145 26 10 85 29 15 60

Table 4.19: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 5.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 32,6 11,52 55,78 23,53 8,71 67,7 43,5 14,8 41,5
Hour(h) 132 47 226 52 19 149 80 27 77

TIR(%) PP2 38,7 12,4 48,8 33,29 8,16 58,5 45,24 17,51 37,24
Hours(h) 112 36 141 52 13 92 59 23 49

TIR(%) PP3 50,8 10,95 38,2 50,9 8,66 49,3 50,67 13,67 35,64
Hours(h) 172 37 130 94 16 74 78 21 56

TIR(%) PP4 223,4 10,95 65,58 17,11 8,44 74,4 30,97 13,91 55,11
Hours(h) 16 8 45 6 3 28 10 4 17

Table 4.20: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 7.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 47,14 8,95 43,50 35,9 7,69 56,31 60,21 10,43 29,35
Hour(h) 430 82 400 177 38 277 253 44 123
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Table 4.21: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 8.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 15,31 7,06 77,6 20,98 5,71 73,29 8,64 8,64 82,70
Hour(h) 22 10 109 16 4 56 5 5 53

TIR(%) PP2 10,9 3,68 85,41 10,53 3,45 86,00 11,32 3,94 84,73
Hours(h) 55 18 429 28 9 232 27 9 197

TIR(%) PP3 9,11 2,08 88,10 6,74 1,16 92,08 11,93 3,11 84,89
Hours(h) 43 10 420 17 3 236 25 7 183

Table 4.22: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 13.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 0,00 3,4 96,5 0,0 5,60 94,39 0,0 0,93 99,0
Hour(h) 0 1 19 0 1 10 0 0 9

TIR(%) PP2 45,63 9,3 45,05 45,9 9,22 44,78 45,23 9,40 45,35
Hours(h) 352,58 79,5 449 189,2 43 241,4 163,3 37 207,4

Table 4.23: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 14.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 5,45 3,37 91,17 2,35 1,20 96,4 9,23 6,01 64,75
Hour(h) 14,41 9 241 3,41 2 141 11 7 101

TIR(%) PP2 4,96 2,42 82,61 4,82 1,48 93,68 5,11 3,45 91,43
Hours(h) 27 13 507 14 4 268 13 9 238

TIR(%) PP3 2,84 0,71 96,4 1,06 0 98,93 4,90 1,55 93,47
Hours(h) 2 0 56 0,33 0 31 1,30 0 25,08
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Table 4.24: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 15.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 36,3 9,02 54,5 25,9 6,36 67,6 48,73 12,14 39,12
Hour(h) 39 10 59 15 4 40 24 6 19

TIR(%) PP2 37,10 8,46 54,4 25,9 7,27 66,7 49,64 9,8 40,54
Hours(h) 65 15 95 24 7 62 41 8 33

TIR(%) PP3 19 5,3 75,5 13,15 3,74 83,10 25, 7,09 67,02
Hours(h) 40 11 161 15 4 94 25 7 67

TIR(%) PP4 32,77 6 61,2 24,29 5,39 70,30 42,47 6,7 50,8
Hours(h) 146 27 273 58 13 167 88 14 106

TIR(%) PP5 29,8 9,6 60,5 21,38 11,32 67,29 39,16 7,69 53,14
Hours(h) 8 2 15 3 1,3 9 5 0,3 6

Table 4.25: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 16.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 43,34 9,75 46,89 41,85 7,97 50,17 45,07 11,81 43,10
Hour(h) 289 65 312 149 28 172 138 37 160

TIR(%) PP2 36,76 11,89 51,33 41,62 9,40 48,96 31,08 14,81 54,10
Hours(h) 138 45 193 84 19 99 54 26 94

TIR(%) PP3 53,43 12,32 34,24 56,11 8,70 35,18 50,22 16,6 33,11
Hours(h) 44 10 28 25 4 16 19 6 12

Table 4.26: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 17.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 25,57 9,35 65,06 21,3 7,03 71,6 30,67 12,14 57,17
Hour(h) 167 61 425 76 2[0.25ex]5 255 91 36 170
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Table 4.27: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 18.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 25,55 10,90 63,54 21,37 7,87 70,74 30,52 14,49 54,98
Hour(h) 93,58 40,31 233 42,5 16 141 51 24,25 92

TIR(%) PP2 25,90 11,33 62,76 21,67 7,78 70,53 30,86 15,49 53,63
Hours(h) 191,2 84,00 463,5 42,50 31,08 281,5 105,0 52,58 182,0

Table 4.28: TIRs computation during the night and hours spent in each hypo-,normo- and
hyperglycaemia for patient 20.

Periods and Hours Total First period Second Period
hypo normo hyper hypo normo hyper hypo normo hyper

TIR (%) PP1 36,2 11,4 52,3 25,6 7,66 66,72 48,8 16,02 35,14
Hour(h) 162 52 235 62 19 163 100 33 72

TIR(%) PP2 32,22 14,51 53,25 28,30 8,37 63,32 36,91 21,8 41,2
Hours(h) 74 34 123 37 11 80 37 23 43

TIR(%) PP3 23,78 7,36 68,84 21,08 5,18 73,72 26,9 9,9 63,16
Hours(h) 43 13 125 21 5 72 23 8 53

TIR(%) PP4 24,3 14,23 61,3 19,8 9,6 70,4 29,70 19,9 50,67
Hours(h) 23 13 58 10 5 36 13 9 22

TIR(%) PP5 17,53 8,54 73,9 14,6 5,95 79,3 20,7 11,45 67,7
Hours(h) 26 13 110 12 4 63 14 8 47
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Chapter 5

Discussion

This part discusses, in each of its sections, the results reported in Chapter 4, achieved with
the different machine learning approaches described in Subsection 3.3.1 and consideration
about the pump settings’ analysis, as described in Subsection 3.3.2.

5.1 Machine Learning Approaches

Regarding Logistic Regression method, results are mediocre even though a slight im-
provement can be appreciated compared to the previous study. This is quite encouraging
considering the extension of the time range to 180 days and the significant work made for
the pre-processing steps, as described in Subsection 3.2.1. Normalising the data turned out
to be useless and no enhancement in the results were visible.

The confusion matrices show how results were moderate at best: for example, Figure
4.1a, related to subject 1, shows 7104 cells were there was no injection (0)) were correctly
predicted versus 915 were there was injection (1) were correctly predicted. This means that
the approach does not efficiently recognise how and why the change in basal rate is chosen
by the Control-IQ™ technology. This reflects on the same subject’s Prec, Rec and F1 values
reported in Table 4.1. An analogous analysis can be made on subjects’ 13 and 18 results,
visible at Figures 4.4a and 4.5b and at Table 4.1.

For subjects 2,3 and 13 the situation is even worst: in fact, the Logistic Regression fails
to predict the injection label, meaning that the probability to predict a 1 is so low, that even
if the algorithm only predicts 0, it is still accurate. This means that the Accuracy score, in
this case, is not a reliable metric. The low value of this approach on this specific subject is
especially notable for Prec, Rec and F1 values which are all equal to 0.00 or rather near.

For what concern subjects 4,5,8, 11,15 and 19 they show the inverse trend, in the sense
that they have data mainly imbalanced on 1s: for example, subject 5 has 6020 values for
the true positive square compared to the 3310 values for the true negative one. This is also
demonstrated by the results visible in Table 4.1, where the metrics lean toward the injection
label.

Instead, the remaining subjects show a discrete results visible on both confusion matrices
(Figures 4.1a,4.2b, 4.2c, 4.3a,4.3b, 4.3d, 4.4b,4.4d, 4.5a, 4.5b and 4.5d) and in Table 4.1,
underlying that, if the database is more balanced than the one that has been used, it is a
quite reliable method to detect and understand the changes made by the sensor.
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The ROC curves in Figure 4.6 are the best obtained, which means they have the largest
area under the curve, only confirms the previous discussion.

The results obtained by logistic regression are quity satisfactory. The main problem may
be traced back to the characteristics of the record: a very imbalanced dataset, that is also
very uneven, due to the disproportion of non-null values in the glycaemic and basal columns,
especially in the carbohydrates one.

Even though some of these patients can be grouped by similarity, generally speaking the
whole analysis gave conflicting results.

The Random Forest approach was implemented in an attempt to improve the results
of the unsatisfactory analysis of Control-IQ™ decision, about to whether change or not the
basal rate, coming from the aforementioned Logistic Regression.

The first attempt to use this algorithm was not so satisfactory, leading to the improvement
of the split of train and test data to overcome the problem of high imbalanced database, as
explained in Subsection 3.3.1. In fact, the results obtained from the majority of the patients
are more stable and acceptable compared to the ones achieved by them in the previous
approach. This can also be seen in subjects’ 5 and 8 confusion matrices (Figures 4.8a,4.8d )
and values reported in Table 4.2, showing that balancing the data was a good choice for the
improvement of the results and that the obtained results for each subject is in full accordance
with this analysis. This also means that accuracy scores are generally a lot more valid and
trustworthy and more homogeneous.

The same consideration can be made for all the subjects that were performing similarly
to the just quoted, exception made for patients 2 and 13. Probably, their database ware
so scarce, and thus heavily unbalanced on zeros, that none of this approach can lead to
appreciable results. All this considerations are also verified by the results reported in Table
4.2, where the Prec, Rec and F1 are always around the zero for label 1 as already hinted
for Table 4.1. Also in Table 4.3 this trend is clearly visible: subjects 2 and 13 are those
who have the lower AccB, proving the elevated imbalanced dataset with respect the other
patients where the AccB remains stable and similar to the Accuracy score.

Normalisation was also tested to verify if results could be improved but no enhancements
have been obtained.

To sum up the results gained through the classification problem, the prevalence of the
Random Forest with respect the Logistic Regression can be affirmed even though a greater
generalization of the former approach is required, maybe adding other and more significant
predictors.

About the Zero-inflated Regressor, it was implemented to further generalize the approach
with unbalanced data and to aggregate the classification and regression problem in a single
algorithm. Initially, as deeply explained in Subsection 3.3.1, no additional predictors were
added, thus feeding it with the glycaemic values, carbohydraets and the 5,10,15,20,25 and
30 minutes time-shifted glycaemic values, but the outcomes were so discouraging that have
not been reported here. For this reason, the rate of changes at 5,10,20 and 30 minutes were
added, reaching 12 indipendent variables.

The metrics used for the evaluation of this model are MAE, MSE, RMSE and R2 score.
The MAE represents the average of the absolute difference between the actual and predicted
values in the dataset, the MSE is the average of the squared difference between the original
and predicted values in the data set and measures the variance of the residuals while the
RMSE is the square root of MSE and how well a regression model can predict the value of
a response variable in absolute terms. The R2 represents the proportion of the variance in
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the dependent variable which is explained by the linear regression model. It is a scale-free
score i.e. irrespective of the values being small or large, the value of R square will be less
than one.

In general, the lower value of MAE, MSE, and RMSE implies higher accuracy of a
regression model. However, a higher value of R2 is considered desirable because tells how
well the predictor variables can explain the variation in the response variable.

Going back to our results, firstly a general consideration about the four different combina-
tion should be made: all of them showed a similar trend in the results, decreasing the errors
and significantly increasing the R2 after the addition of the new predictors. The combination
between Random Forest and Multivariate Linear Regression continues to be stable enough
even after the increase in the time horizon and the new features. The Gradient Booster
coupled with both Random Forest regressor and Multivariate Linear Regressor showed an
appreciable improvements of all the metrics and demonstrated the validity of this classifier
when working with glycaemic data. Surprisingly, also the ExtraTrees classifier and regressor
have revealed a huge stability with this database and high speed of computation, despite the
huge amount of data used.

Deeply on the results visible in Table 4.4, the outcomes are strongly discordant among
all the subjects. Half of them (Sub 1,2,8,9,10,11,12, 13, 15, 17, 19 and 20) reports low values
of R2 associated with high error, demonstrating that to the connection between the change
of insulin rate and glycaemia was not fully understand. This tendency is common to all the
four combinations.

For the remaining subjects the results are more promising and encouraging. For example
subject 5 has obtained the best performance, in terms of high R2 and low errors, when the
Gradient Boosting and Random Forest regressor have been used. The same consideration
can be made for subjects 6, 7 and 14, On the other hand, for the same patiens and for Sub
3, Sub 4 and Sub 18 appreciable results are obtained with the ExtraTrees combination.

The general low values of R2 don’t mean that the model is bad or worthless of being
interpreted: it is not possible to include all the relevant predictors to explain an outcome
variables, like the endogenous ones related to some psychological factors, seasonality, changes
in habits and so on. Thus, the future studies must consider some of these fundamental
variables that can strongly influence the diabetes management and convert to a model where
categorical predictors, together with the continuous ones obtained thanks to the sensor, can
be added.

5.2 Pump settings’ analysis
The results reported in Section 4.4 for all approaches will be commented here. Firstly,

the outcomes coming obtained by Approach A will be discussed and then Approach B and
C divided for each patient.

About the five subjects considered for the first approach, the following considerations
can be made, looking at Figure 4.13:

1. Subject 3: there is a similar behaviour in all the four changes, keeping the TIR in the
desirable range (>70%) in the first half of the day while in the second half a drop in the
time in range is visible for all the profile except the third. In fact, an important increase
in TIR is notable: in this period, only a change in I:C was performed in the second half
of the day, proving that this patient is more influenced by the insulin-to-carbohydrate
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ration than changes on the basal rate. This is confirmed by the fact that during period
4, another change in ICR was made for the afternoon leading to a sudden decrease of
the TIR. Same consideration can be proposed for the TIRs compted during lunch and
dinner time where the Personal Profile activated during the third time range was the
one to keep the TIR constant and closer to the threshold.

2. Subject 5: in this case, all the Personal Profile set demonstrate to be valid in keep-
ing the TIR in the so called "green" range. Considering that the ICR settings were
changed only twice during the 180 days while the BR was constantly modified, it can
be hypothesized that this patient is more influenced by the BR changes, even though
they don’t significantly affect the adherence to the targets. Similar is the behaviour
during the meals.

3. Subject 15: here the BR was the parameters that changed the most compared to the
I:C, underlying the this subject is strongly and positively influenced by the BR. In
fact, the changes were mainly made in the second half of the day where a significant
drop of the TIR can be seen. Period 5 counts only three days, thus the results are not
statistically significant. The lunch TIRs slowly decreased through the periods while
those computed during the dinner were gradually increasing, supporting what it was
previously stated.

4. Subject 18: only two profiles were modified leading to a small decrease in the TIR
value. The only change reported is the ICR, meaning that it is has a deep influence
on the glycaemic control. Same observation can be made regarding the meal time.

5. Subject 20: in this case, all the changes made throughout the 180 days lead to a
worsening of the glycaemic control in the second half of the day. This is also supported
by the droop of TIR during dinner time. Since the main madification were made on
the target BR, the decrease can be justified by it.

Regarding Approaches B and C, they will be evaluated both for each subject. In depth:

• Subject 4: for what concern the lunch analysis made in the three time segments, as
visible in Table 4.5, TIR has always remained above the threshold. Only in the third
period the percentage decrease a little bit but it can be due to some endogenous facts.
Probably the reason is the modulation of the time segment at lunch time (from 13:00
to 12:30) that has also change the values of the ICR value. Regarding the postprandial
spike, the TIR values are lower compared to previous two settings, meaning that maybe
changing the setting at lunch time can influence the subsequent glycaemic control. This
is stated also by the mean glucose value computed for the range 14:00-16:00 for each
period(101,94 mg/dL vs 95,92 mg/dL vs 145,86mg/dL). Regarding the dinner time, a
similar trend is visible with a clear reduction in the after dinner time in range. Since
no modification in BR and I:C were reported, surely other external factors are influ-
encing the evening control. Also the MGV is higher and the SD is greater (PP1=0,49,
PP2=0,49, PP3=0,57) meaning that the targer BR values are not adeguate. For the
night control, the normoglyceamia isn’t the preponderant status for the patient but
oscillates between hypo and hyper glycaemia, as can be seen in Table 4.17. What is
interesting to be observed is that the patient spend more time in the hypoglycaemia
situation in all the three periods then hyperglyceamia, thus not showing the "dawn
phenomenon".
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• Subject 4: despite some oscillations around the threshold for the lunch time, it is
interesting to underlying that as we have previously stated in the approach A, this
patient is strongly affected by the ICR: no changes in this parameters throughout the
periods have been made in the slots 18:00-21:00, reaching lower values of TIR, far
from the threshold (Table 4.6). This is visible also from the SD (SD PP1=0,73 vs
SD PP4=0,87 for premeal and SD PP1=0,57 vs SD PP4=0.67), that becomes greater
period by period. For approach C, a situation of hyperglycaemia is visible during
all night while in the second half (03:30-06:30) it passes from a situation of hypo to
hyperglycaemia during the 180 days (Table 4.18). Again, the reason is mainly due to
the changes of ICR made for period 3.

• Subject 5: the control during lunch time is adequate keeping the glucose in the ranges.
Noteworthy the dinner time: no time segments have been set before 21:00, maintain-
ing the same BR target fixed at 15:00 and, during the four periods, the BR changed
the most (Table 4.7), confirming what has been said before in Approach A. The cu-
rious aspect is that, despite the TIRs are above the 70% threshold, during the range
21:00-23:00 the MGV are high (PP1=134mg/dL, PP2=145mg/dL, PP3=153mg/dL,
PP4= 151mg/dL) as well as the SD(PP1=0,71, PP2=0,74, PP3=0,84 and PP4=0,62).
About the Approach C, this subject alternate phases of hypoglycaemia with phases of
hyperglycaemia, not only during the same period but also among them even though
the BR and ICR changes in the last period (Table 4.19).

• Subject 7 : this subject has no parameters changes for the 180-days span. Both
lunch and dinner control weren’t satisfactory especially in the post prandial phase in
which a drastic reduction of TIR is visible (Table 4.8), associated with high MGV
200 mg/dL for both) and very high SD (1.15 for both in the phases 14:00-16:00 and
21:00-23:00). During the night, the subject spent the first half in hypoglycaemia and
then in hyperglycaemia with a sensible predominance of hyperglycaemia (252.5 h vs
177 h). No further consideration about which parameters influences the most can be
made due to the absence of changes (Table 4.20).

• Subject 8: the glycaemic control for this patient is very peculiar: despite three changes
in the BR for the time segments, the TIRs are far from the suggested target values
during the 6 time segments under analysis for the meal study (Table 4.9), suggesting
that the BR values are not efficient. This behaviour is more evident during the night,
where the patient spent almosto 90% of the time in hyperglycaemia (Table 4.21).
Perhaps, external factors had influenced the treatment.

• Subject 13: the first period is not statistically significant since it is constituted by only
three days, therefore it will not be take into consideration. For period 2, the lunch TIRs
are always in the safe range keeping a MGV during the postprandial at 116 mg/dL and
low values of SD (0.19), meaning that there are no much differences between the target
values and the injected insulin. For the dinner time, an after meal time segment was
added compared while the other parameters stayed the same, obtaining good results
considering the large period of time (Table 4.10). During the night, instead, even if
there is a balance between hypo and hyper situation (45,63% vs 45,08%) the hours
spent in hyperglycemia are higher (353h vs 449h), as visible in Table 4.22. In this
phase, a time segment at 04:00 was added but probably the chosen settings are not
efficient to avoid hyperglycaemia.
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• Subject 14: for both meal time, a significant improvement is visible especially in the
post prandial regulation where the TIRs have reached satisfactory targets. Probably,
rearranging the time segments was useful for this patient since they increased from 5
to 7 segments, mainly during the night and and meal time. Deeply, in period 3 the
greater improvement are reported: this is due to the variation of ICR, meaning that
these changes were efficient (Table 4.11). For the overnight period, the integration of
one time segment in period 2 and 3 wasn’t so successful since the patient still face the
hyperglycaemia (Table 4.23).

• Subject 15: the fifth period is not so significant since it is about the last three days
of our range, thus it will not be considered. For this patience a lot of parameters
changes were done, making difficult to understand the reasons behind such a poor
glycaemic control. In fact, during both lunch and dinner time the TIRs are far from
the suggested threshold, reaching peaks of MGV of 262,79 mg/dL and 241,55 mg7dL
for post lunch and post dinner during PP3, respectively. Moreover, the SD are very
high (average value of SD for all the 180 days is 1.1) suggesting that the settings are so
incorrect for this subject that the pump algorithm has to work far from the clinician
recommendations or the endogenous factors have a great impact on the treatment.
During the night, the hyperglycaemia trend is confirmed, even though a target is set
for the middle of the night. So, the BR and ICR changes were not very efficient.

• Subject 16: in this case, period 1 shows the best management of glycaemic fluctuation
in both lunch and dinner phases, as visible at Table 4.13. Also the MGV states this,
keeping the glucose at 139 mg/dL during the phase 14:00-16:00 and 132,14 mg/dL for
21:00-23:00. But, even if in the other two time periods normoglycamia is maintained
with TIRs far above the 70%, the MGV are quite high (for example, for period 3 during
the post prandial phase values of 151,93 mg/dL and 143,5 mg/dL were registered)
suggesting that this patient has great glucose excursion. Since the most intense changes
were made for the BR values, we can hypothesize that this patient is strongly influenced
by the BR setting. This is also visible in the SD: in fact, the excursion were smaller in
the first period while for the other two they were more significant (PP1=0,47, PP2=0,70
and PP3=0,92 during 14:00-16:00 and PP1=0,53, PP2=0,71 and PP3=0,68 during
21:00-23:00). Some additional time segments were added in the third period but they
seems to not influence the glycaemic control. About the overnight control, subject
16 wavers between the hypo- and hyperglycaemia.The major changes carried out were
those relative to the BR, keeping fixed throughout the 18a days the same ICR values,
corroborating our first thoughts about the BR influence.

• Subject 17: this subject has no parameters changes for the 180-days span. It is interest-
ing to note that, compared to Subject 7, even though no changes have been registered,
the TIRs during the meals and the night (Tables 4.14 and4.26) are stable and not so
drastically low. Looking at the SD (during the lunch periods were 0.56, 0.44 and 0.48
while for the dinner periods 0.38,0.29 and 0.36), we can imagine that this patient is,
for sure, dependent on the BR changes.

• Subject 18: only two periods have been define here, due to the ICR changes. Unfor-
tunately, there was a single parameter change for a time segments not considered in
none of these approaches, but some general consideration can be made. For example,
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from period 1 to period 2 a slight decrease in TIRs can be noted, particularly in the
post prandial segment Table (4.15), together with an increase in the MGV (145 mg/dL
vs 157,4 mg/dL for lunch time and 146,06mg/dL vs 159,60 mg/dL for dinner time)
and in the SD (0,57 vs 0,64 for lunche and 0,55 vs 0,62 fur dinner), underlying that,
maybe, the BR has an impact on the glycaemic control more than ICR. During the
night, the patient spent most of the time in a hyperglycaemia situation, mainly in the
dawn phenomenon phase (53h vs 31h for hypoglycaemia), meaning that the settings
were not so efficient.

• Subject 20: for this patient, the majority of the periods are defined by the BR changes,
suggesting that it is the one to influence the most the overall control. In fact, when
changes of BR were made, it lead to an increase of the TIRs during the first four
period for lunch time, as visible at Table 4.16. What it has just hinted, it’s con-
firmed by the results obtained during the dinner analysis: throughout all the periods
BR changed, and probably, these changes are not adequate, primarily on the after-
dinner phase were TIRs are smaller than the other two phases and the MGV are
higher period-by-period (PP1=180,2mg/dL, PP2=172,53mg/dL, PP3=176,07mg/dL,
PP4=209,9 mg/dL). During the night, the patient have faced more episodes of hyper-
gylycemia than hypoglycemia, mainly in the second half of the night and in the second
half of the 180-days of span (Table 4.28). These fluctuations are also related to the
BR changes made in the 00:00-06:30 time slot, thus validating our hypothesis.

To conclude, in average, all patients spent their time in the suggest glucose range with
some oscillations that could be mainly related to other factors, such as the psyco-physical
condition or particular domestic dynamics, and not only due to wrong settings.

This preliminary study demonstrates that there is a strong correlation between the
changes made for the insulin pumps parameters and the glucose oscillations. This is more
evident during the meal time and the night, opening the gates to a new field of investigation.

Moreover, it would be interesting to deeply investigate the night control since most of the
patients are reporting low percentages of time spent in the normoglycaemia range suggested
by the Control-IQ algorithm.
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Chapter 6

Conclusion

Hybrid closed-loop systems such as Tandem™’s t:slim X2™ insulin pump can provide
better glycaemic control than gold standard insulin self-injection therapy, but they still do
not fully mimic glucose metabolism.

These systems have also been shown to reduce the burden of diabetes management and
improve the overall quality of life for patients who use them. Although they have the power
to significantly change the way T1D is managed, more research is needed to improve their
performance.

In this particular work, the focus is on improving the performance of this hybrid closed-
loop system, based on the Control-IQ™, and its user-personalized parameter settings, leading
to an automatic decision. Several drawbacks should be underlined, such as the availability
of data: it was scarce and, for many subjects, pieces of information were missing, both for
the Machine Learning approaches and the pump settings (ISF). Additionally, the storage of
said data is not adequate for satisfactory and easy analysis. That means that the results of
this thesis only represent a preliminary step towards what could be a definitive and reliable
algorithm to be used by the clinical team.

Despite this, some significant and precious information can be gather from this study such
as which algorithm best perform with unbalanced dataset, the importance of an adequate
and precise pre-processing, what parameters can be used for evaluate the glycaemic control
and the meaning and differences of the pump’s settings for each subject.

For future studies, it will be interesting to work with a greater time range covering
an entire year as well as working with more patients would be an excellent way to gain a
deeper insight into the topics of interest. In any case, subjects need to be educated about
uploading data and ensuring that their efforts may lead to tighter and more precise glycaemic
control and development in the diabetes treatments. Also changes in the storage of data are
desirable, especially those of the pump settings.

It would also be helpful to create clusters of patients according to some specific charac-
teristics or parameters such as gender, age or glycaemic management, to see if they mark off
some differences in the results.

As it could be imagined, machine learning approaches showed how algorithms that are
oriented to imbalanced data work better on this dataset. More predictors should be take
into consideration in order to underlying any differences and gain precious information for
the development of a reliable algorithm to be used by the clinical team. About that, more
subject-specific information should be added like weight, time from the diagnosis, additional
information about habits, illness and so on. Hence, it is highly recommended to patients
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to keep a personal diary in order to annotate all these valuable information that can help
clinicians to adequately modify the treatment.

Moreover, identify in advance which parameter can mostly influence the classification
algorithms to obtain more accurate results could be an important step forward limiting the
dispersion of results and computational time. Knowing which parameters directly impact
on the basal rate allow us to develop a more sensitive algorithm that can positively affect
the glycaemic control, even though such approaches cannot grasp synergistic influences of
parameters on the dependent variable.

Regarding the pump settings’ analysis, it is essential and crucial to work on more data
belonging to more subjects. This study is quite limited to be able to make any general
assumption on its outcome and even though the analysis of the relationship between the
number of changes and TIRs values showed a strong connection, it cannot be generalised
and further research is needed.

It would be interesting to use some other metrics to evaluate the glycaemic control, mainly
to understand if the computed TIRs are reporting the reality or there are more fluctuations
of the glycaemic curve, hidden by the time in range.

Despite the outstanding problems described above, this work represents the first attempt
to create a complete algorithm that can be embedded in a single sensor capable of automat-
ically modifying and adjusting pump settings based on blood glucose levels to deliver the
correct insulin dose.

Further research should be carried out to achieve a fully closed system able to realistically
simulate healthy glucose metabolism. The development of such a system will change the lives
of all those affected by T1D, especially for children and adolescents.
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