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Abstract

The aim of the present thesis is to propose a framework to model, simulate and control a
small spacecraft in the proximity of a space station through manifold calculus. In particular,
two maneuvers are modeled and simulated, namely reorientation under directional constraints
and rendezvous in the presence of physical obstacles. The mathematical model of the roto-
translational motion of a spacecraft as well as the design of control fields are entirely written
by coordinate-free Lie-group-type formulations. A number of numerical experiments comple-
ment the theoretical endeavor, illustrate the achieved progress and guide the reader through an
evaluation of the most convenient control strategy.
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Sommario

L’attuale progetto affronta lo sviluppo di tecniche di controllo per veicoli spaziali di piccole
dimensioni attraverso l’applicazione della teoria dei manifold e dei campi potenziali artificiali.
In particolare, sono due le manovre prese in considerazione: il riorientamento con vincoli
direzionali e il rendezvous in presenza di ostacoli fisici.

Più nel dettaglio, il riorientamento con vincoli direzionali consiste nell’assicurare che even-
tuali strumentazioni montate a bordo del veicolo spaziale si mantengano direzionate all’interno
di aree definite obbligatorie, come per esempio il mantenimento del contatto radio di antenne
montate a bordo, mentre altre si mantengano al di fuori di zone definite proibite, tale problema
riguarda particolari strumentazioni sensibili a forti intensità luminose come alcuni telescopi
soggetti alla luce solare; il rendezvous in presenza di ostacoli fisici consiste nell’assicurare
l’avvicinamento di un veicolo spaziale a un altro evitando gli ostacoli presenti, questi possono
essere: detriti spaziali, zone di comunicazione radio o altri veicoli spaziali, solitamente a una
fase di rendezvous segue una fase di docking la quale porta i due veicoli spaziali ad agganciarsi,
anche la fase di docking è oggetto di studio di tale progetto.

Lo scopo finale di tale progetto è quello di suggerire quale fra le tecniche proposte in seguito
è la migliore secondo delle metriche considerate dall’autore, fra le quali la traiettoria compiuta
e la quantità di carburante utilizzato.

Le tecniche proposte si basano sulla teoria dei manifold e la definizione di campi potenziali
artificiali, questi ultimi sono stati articolati in due componenti principali: le zone attrattive,
necessarie per attrarre il soggetto verso un punto di arrivo voluto, sia per la manovra di rendezvous
che per quella di riorientamento, e le zone repulsive, definite in prossimità di ostacoli, che servono
per deviare la traiettoria al di fuori di aree proibite.

In seguito alla modellazione si è passato alla simulazione e confronto fra le varie soluzioni
proposte, sono stati eseguiti diversi esperimenti, simulati, prendendo in considerazione situazioni
differenti per evidenziare le criticità e le qualità di ogni algoritmo di controllo.

Infine, le conclusioni commentano i risultati ottenuti e suggeriscono future prospettive di
approfondimento.

III



IV



Contents

List of Figures VI

List of Tables XI

1 Introduction 1
1.1 Autonomous rendezvous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Reorientation under directional constraints . . . . . . . . . . . . . . . . . . . . 2
1.3 Choice of mathematical representation of rotational dynamics . . . . . . . . . 3
1.4 Artificial potential fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Reference frames, physical model and equations of motion of a spacecraft 5
2.1 Application scenario and reference frames . . . . . . . . . . . . . . . . . . . . 5
2.2 Physical model and equations of motion . . . . . . . . . . . . . . . . . . . . . 8
2.3 Numerical implementation of the equations of motion . . . . . . . . . . . . . . 10

3 Reorientation under directional constraints 12
3.1 Rotational dynamics control by dynamics replacement and a virtual-attractive-

repulsive potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Additive potential function and related gradient . . . . . . . . . . . . . . . . . 14
3.3 Mixed multiplicative-additive potential and related gradient . . . . . . . . . . . 18
3.4 Relation with a navigation function . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Position control during cruising and docking under positional constraints 21
4.1 Control strategy during cruising in the presence of physical obstacles . . . . . . 21
4.2 Virtual potential design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Speed intensity determination . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Attitude control during a cruising phase . . . . . . . . . . . . . . . . . . . . . 25
4.5 Final guidance to docking in the absence of physical obstacles . . . . . . . . . 26
4.6 Alignment to a docking axis during final guidance . . . . . . . . . . . . . . . . 28

V



Contents

5 Results of numerical experiments 29
5.1 Numerical simulations on reorientation . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 Experiment 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Numerical simulations about rendezvous . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Illustration of a complete rendezvous maneuver . . . . . . . . . . . . . . . . . 57

6 Conclusion 59

7 Appendix 61

Bibliography 62

VI



List of Figures

1.1 A view of the International Space Station (ISS). . . . . . . . . . . . . . . . . . 1
1.2 Logo of the Orbital Debris Program Office (ODPO). . . . . . . . . . . . . . . 2

2.1 Visual representation of the thrust provided by a single thruster. . . . . . . . . . 6
2.2 A pictorial view of a small-sized spacecraft. . . . . . . . . . . . . . . . . . . . 6
2.3 A pictorial view of the LVLH reference frame attached to a space station (in red

color). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5.1 Numerical results obtained for the Experiment 1 using additive-potential-based
control algorithm. Top panel: values of the distance between the actual attitude
and the desired attitude, and value of the potential during reorientation; the
dashed line represents the theoretically evaluated minimum value of the potential
pertaining to this experiment. Bottom panel: Angle between the boresight
direction of the antenna and the mandatory direction; the green area represents
the mandatory zone. Time is measured in seconds. . . . . . . . . . . . . . . . 31

5.2 Trajectory achieved by the mandatory axis as explained in Experiment 1 using
additive-potential-based control algorithm. Left panel: The trajectory is shown
on a sphere that surrounds the satellite and centered in the center of gravity
of the spacecraft. Right panel: Two-dimensional representation of the sphere,
the mandatory zone and the trajectory of the mandatory axis. The red cross
represents the attitude reached at the end of the simulation, while the red circle
represents the initial attitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Numerical results obtained for the Experiment 1 using mixed additive-multiplicative
potential-based control algorithm. Top panel: values of the distance between
the actual attitude and the desired attitude, and value of the potential during
reorientation; the dashed line represents the theoretically evaluated minimum
value of the potential pertaining to this experiment. Bottom panel: Angle be-
tween the boresight direction of the antenna and the mandatory direction; the
green area represents the mandatory zone. Time is measured in seconds. . . . . 33

VII



List of Figures

5.4 Trajectory achieved by the mandatory axis as explained in Experiment 1 using
mixed additive-multiplicative potential-based control algorithm. Left panel:
The trajectory is shown on a sphere that surrounds the satellite and is centered
in the center of gravity of the spacecraft. Right panel: Two-dimensional repre-
sentation of the sphere, the mandatory zone and the trajectory of the mandatory
axis. The red cross represents the attitude reached at the end of the simulation,
while the red circle represents the initial attitude. . . . . . . . . . . . . . . . . 34

5.5 Numerical results obtained for the Experiment 2 using an additive-potential-
based control algorithm. Top panel: values of the distance between the actual
attitude and the desired attitude, and value of the potential during reorientation;
the dashed line represents the theoretically evaluated minimum value of the
potential pertaining to this experiment. Bottom-left and bottom-right panels:
Angle between the boresight direction of the sensor and each forbidden direction;
the red areas represent the forbidden zones. Time is measured in seconds. . . . 36

5.6 Numerical results obtained for the Experiment 2 tackled with a virtual additive
potential. Left panel: 3D visualization of boresight trajectory. Right panel: 2D
representation of the maneuver. The green cross represents the attitude reached
at the end of the simulation, while the green circle represents the initial attitude.
The red cross represents the desired attitude. . . . . . . . . . . . . . . . . . . 36

5.7 Numerical results obtained for the Experiment 2 tackled with a virtual mixed
potential. Left panel: 3D visualization of boresight trajectory. Right panel: 2D
representation of the maneuver. The green cross represents the attitude reached
at the end of the simulation and the desired one, while the green circle represents
the initial attitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8 Numerical results obtained for the Experiment 2 tackled with a virtual mixed
potential. Top panel: values of the distance between the actual attitude and the
desired attitude, and value of the potential during reorientation; the dashed line
represents the theoretically evaluated minimum value of the potential pertaining
to this experiment. Bottom-left and bottom-right panels: Angle between the
boresight direction of the sensor and each forbidden direction; the red areas
represent the forbidden zones. Time is measured in seconds. . . . . . . . . . . 38

VIII



List of Figures

5.9 Numerical results obtained for the Experiment 3 tackled with a virtual additive
potential. Top-left panel: values of the distance between the actual attitude
and the desired attitude, and value of the potential during reorientation; the
dashed line represents the theoretically evaluated minimum value of the potential
pertaining to this experiment. Bottom-left and bottom-right panels: Angle
between the boresight direction of the sensor and each forbidden direction; the
red areas represent the forbidden zones. Time is measured in seconds. . . . . . 40

5.10 Numerical results obtained for the Experiment 3 tackled with a virtual additive
potential. Left panel: 3D visualization of boresight trajectory. Right panel: 2D
representation of the maneuver. The green cross represents the attitude reached
at the end of the simulation and the desired one, while the green circle represents
the initial attitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.11 Numerical results obtained for the Experiment 3 tackled with a virtual mixed
additive-multiplicative potential. Left panel: 3D visualization of boresight
trajectory. Right panel: 2D representation of the maneuver. The green cross
represents the attitude reached at the end of the simulation and the desired one,
while the green circle represents the initial attitude. . . . . . . . . . . . . . . . 41

5.12 Numerical results obtained for the Experiment 3 tackled with a virtual mixed
additive-multiplicative potential. Top-left panel: values of the distance between
the actual attitude and the desired attitude, and value of the potential during
reorientation. Bottom-left and right-hand panels: Angle between the boresight
direction of the sensor and each forbidden direction; the red areas represent
forbidden zones. Time is measured in seconds. . . . . . . . . . . . . . . . . . 42

5.13 Trajectory obtained for Experiment 4 tackled with a virtual additive potential.
The two red circles at the start of antenna and telescope trajectories represent
their start points, while the red crosses represent the final points of the two.
The blue crosses are the desired final points for the boresight of the already
mentioned instrumentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IX



List of Figures

5.14 Numerical results obtained for the Experiment 4 tackled with a virtual additive
potential. Top-left panel: values of the distance between the actual attitude
and the desired attitude, and value of the potential during reorientation; the
dashed line represents the theoretically evaluated minimum value of the potential
pertaining to this experiment. Bottom-left and bottom-right panels: Angle
between the boresight direction of the sensor and each forbidden direction, as
well as angle between the boresight direction of the antenna and the mandatory
direction; the red areas represent the forbidden zones, while the green area
represent the mandatory zone. Time is measured in seconds. . . . . . . . . . . 44

5.15 Numerical results obtained for the Experiment 4 tackled with a virtual mixed
additive-multiplicative potential. Top-left panel: values of the distance between
the actual attitude and the desired attitude, and value of the potential during re-
orientation. Bottom-left and bottom-right panels: Angle between the boresight
direction of the sensor and each forbidden direction, as well as angle between
the boresight direction of the antenna and the mandatory direction; the red areas
represent forbidden zones, while the green area represent the mandatory zone.
Time is measured in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.16 Trajectory obtained for the Experiment 4 tackled with a virtual mixed additive-
multiplicative potential. The two red circles at the start of antenna and telescope
trajectories represent their start points, while the red crosses represent the final
and desired points of the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.17 Numerical results obtained for the Experiment 1 about cruising phase: Trajectory
in the LVLH coordinate frame. Reminding that theX (orVbar) axis points toward
the direction of motion over the orbit, hence a negative value of the x coordinate
indicates a spacecraft that is, in fact, chasing the space station from behind. The
ovals denote the boundaries of the safety regions surrounding each obstacle. . . 48

5.18 Numerical results obtained for the Experiment 1 about cruising phase: Trajectory
along the landscape of the virtual potential function. . . . . . . . . . . . . . . . 49

5.19 Numerical results obtained for the Experiment 1 about cruising phase: Cold gas
consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.20 Numerical results obtained for the Experiment 1 about cruising phase: Detail of
the final guidance maneuver to attain docking. The color code is the same as in
previous figures concerning Experiment 1. Ht “ 1 for all the docking phase. . . 51

5.21 Numerical results obtained for the Experiment 1 about cruising phase: Detail of
the off-orbit effect caused by random disturbances. . . . . . . . . . . . . . . . 52

X



List of Figures

5.22 Numerical results obtained for the Experiment 2 about cruising phase: Obstacles
moving in a uniform rectilinear motion. The blue and green dashed lines
represent the position, respectively, of obstacle 3 and obstacle 4, at minimum
distance from spacecraft during cruising phase. While the continuous blue and
green ovals without a red dot inside are the final positions of moving obstacles. 53

5.23 Numerical results obtained for the Experiment 3 about cruising phase: Trajectory
in the LVLH coordinate frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.24 Numerical results obtained for the Experiment 3 about docking phase: Trajectory
in the LVLH coordinate frame. (Since the Z axis actually points toward the
Earth, the picture looks upside down.) The dashed green line represent the
safety cardioid-shaped contour that the spacecraft should keep out of. . . . . . 55

5.25 Numerical results obtained for the Experiment 3 about rendezvous: Velocity of
the spacecraft in the LVLH coordinate frame. . . . . . . . . . . . . . . . . . . 55

5.26 Numerical results obtained for the Experiment 3 about rendezvous: Propellant
consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.27 Numerical results obtained for the Experiment 3 about rendezvous: Euler angles
computed on the basis of the instantaneous attitude matrix-indicator R. . . . . . 57

5.28 Complete rendezvous from initial point to docking port: Trajectory in the LVLH
coordinate frame. The main plot shows the complete trajectory from the initial
aim point to the arrival docking port, while the box is a zoom in of far-end and
near-end approaching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

XI



List of Tables

5.1 Physical parameters and constants entering the spacecraft model. . . . . . . . . 29
5.2 Numerical data corresponding to the numerical Experiment 1 tackled with a

virtual additive potential. The initial and desired attitude are represented using
a 3 ˆ 3 matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Numerical data corresponding to the numerical Experiment 1 using mixed
additive-multiplicative potential-based control algorithm. . . . . . . . . . . . . 33

5.4 Numerical data corresponding to the numerical Experiment 2 tackled with a
virtual additive potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Numerical data corresponding to the numerical Experiment 3. . . . . . . . . . 39
5.6 Numerical data corresponding to the numerical Experiment 4 using an additive

potential-based control algorithm. The rotation matrices are expressed in JPL
quaternion notation for the sake of notation conciseness. . . . . . . . . . . . . 43

5.7 Reference values for the Experiment 1 about cruising phase. Recalling that the
Z (or Rbar) axis points toward the Earth, hence a quota of 150 m in the LVLH
reference frame indicates a target location below the station (as seen from the
Earth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Location and safety radius of the obstacles ordered by size. All obstacles happen
to locate below the station (as seen from the Earth). . . . . . . . . . . . . . . . 48

5.9 Speed and direction angles of the obstacles ordered by size. Note that the last
two obstacles are not moving. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

XII



XIII



Chapter 1

Introduction

1.1 Autonomous rendezvous

Autonomous guidance of small-sized unmanned spacecrafts has been a goal in applied research
since the inception of space missions. Autonomous guidance is able to overcome communi-
cations delays with the ground guidance station while benefiting from direct on-site obstacle
sensing and avoidance.

Current and future orbital missions involve operations in the proximity of large space struc-
tures, such as the International Space Station [1]. A view of the International Space Station is
reproduced in Figure 1.1. Rendezvous operations constitute a vital step in unmanned spacecrafts
missions to extend their operational life, as they allow on-orbit refueling of cold gas propellants
and maintenance [2]. Rendezvous may be broken down into a cruising phase, during which the
spacecraft leaves its orbit to approach the space station, and a docking phase, which starts a few
dozens of meters away from the station and leads the spacecraft to physically conjoin the space
station through one of the available docking ports.

Figure 1.1: A view of the International Space Station (ISS).

Source: wikimedia.org
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While the docking phase concerns precision guidance and collision avoidance with the space
station, guidance along the cruising phase is heavily affected by physical obstacles which may
be moving or fixed with respect to the station and the spacecraft. Obstacles may be active
satellites, micrometeoroids or space debris, parts of vehicles arisen from collisions still in orbit
around the Earth. A serious accident on records happened in February 2009, when Iridium-
33 communication satellite and Kosmos-2251 (non-operating) military satellite accidentally
collided [3] at an altitude of 776 km above the territory of Siberia at a speed of 11.7 km/s. Both
satellites were destroyed in the impact producing more than 2,300 fragments. One third of such
fragments entered the atmosphere and disintegrated, while the rest is still orbiting the Earth
today. A large number of space debris orbiting the Earth are currently being watched upon by
NASA through the Orbital Debris Program Office whose logo is reproduced in Figure 1.2.

Figure 1.2: Logo of the Orbital Debris Program Office (ODPO).

Source: orbitaldebris.jsc.nasa.gov.

1.2 Reorientation under directional constraints

Reorientation of a spacecraft is likewise a fundamental operation to be carried out during an
exploratory mission. Large-angle attitude slew maneuvers are required to achieve retargeting
of payload instrumentation during science missions [4]. Reorientation from one direction to
another must be operated in such a way that the boresight of sensitive instrumentation, such as
cryogenically cooled infrared telescope [4] and star sensor [5], is not directed toward any bright
object such as the Sun, the Earth or the Moon, while the antenna does not lose communication
with the ground or the station [6]. In particular, boresight evasion introduces the notion of attitude
forbidden constraints [5]. Automated reorientation in the presence of attitude constraints poses
a challenging computational task for the on-board guidance control system [7].
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Automated reorientation plays a crucial role even during the docking phase, since safe
docking may take place only if the docking axis of the spacecraft is precisely oriented along the
docking axis of the station docking port. In this phase, orientation is supposed to happen with
extreme precision, facilitated by the alleged absence of directional obstructions.

1.3 Choice of mathematical representation of rotational dynamics

The mathematical representation to model the roto-translational dynamics of a spacecraft, as
well as the control strategy to make a spacecraft execute the necessary movements in space, are
a subject of continued debate in the scientific community. In particular, the mathematical repre-
sentation of the rotational dynamics may be picked from the realms of Tait-Bryan representation,
quaternions and rotation matrices. Tait-Bryan angles carry an intuitive and easy-to-visualize
value [8], although the conversion from angular to Cartesian coordinate is burdened by complex
trigonometric expressions and from inherent singularities [7]. Quaternion-based representa-
tions are often invoked in aerospace engineering [7], although quaternions are affected by the
well-known problem of unwinding due to the redundancy of the unit quaternion (namely, when
the rotation angle is sufficiently large, the trajectory of attitude maneuver may be longer, leading
to increased propellant consumption and longer maneuver time) [5].

A distinguishing feature of the present thesis endeavor is that attitudes are represented
through orthogonal rotation matrices and the corresponding control actions are represented
through vector fields on the space of skew-symmetric matrices. These matrices are treated
as a whole, without any need to resort to angles nor scalar velocities. Although inherently
redundant, coordinate-free rotation-matrices representations result to be singularity free [9] and
easy to manage in modeling and control design thanks to the underlying theory of Lie groups
[10, 11, 12], hence, rotation-matrices representations are the mathematical tool of choice in the
present thesis endeavor. A relation between quaternion and rotation-matrix representations is
discussed in the Appendix.

1.4 Artificial potential fields

Automated control of rigid bodies, such as drones, satellites, ground robots as well as remotely
operated underwater vehicles, may benefit from the theory of virtual attractive-repulsive poten-
tials, which has been explored and extended across the decades [13, 16, 17, 18, 19, 20, 21, 22,
23, 14, 15]. Artificial-potential-based control relies on artificial potential functions constructed
so as to assign a potential value to each point of the state space in a way that promotes state
transition toward a set goal while demoting state transitions toward undesired obstructions. In
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particular, is cited the paper [24] that revises and utilizes gradient-based control fields in con-
junction with further physically-plausible forces, the paper [25] that extends the theory of virtual
attractive-repulsive potential to control the rotational dynamics by Lie-group theory, and the
paper [7] that introduces the notion of barrier-type potentials to control the attitudinal dynamics
of a spacecraft (in quaternion representation).

The aim of the present thesis is to devise a complete navigation and attitude control strategy
for a spacecraft bound to an orbital station to effect space missions and automated docking.
After recalling the principal equations governing the motion of an orbital spacecraft, a control
strategy is defined to effect reorientation under mandatory/forbidden directional constraints. In
addition, is presented a multi-objective control strategy to make a spacecraft approach safely an
orbital station, while avoiding still as well as moving obstacles, until the final guidance phase
that guarantees collision-free docking with the correct attitude.

1.5 Overview of the thesis

The present document is organized as follows. Chapter 2 recalls necessary details from orbital
dynamics, including the set of reference frames used to describe the equations of motion and
the kinds of propulsion systems available within a small-sized spacecraft. Chapter 3 details
the notion of spacecraft reorientation under directional constraints, with special emphasis on
mandatory and forbidden cones of the celestial sphere. In this chapter, appropriate virtual
attractive-repulsive potentials to achieve reorientation are presented along with related gradient-
type control torque terms. Chapter 4 of this document discusses automated rendezvous with the
main station by breaking down a rendezvous maneuver task into three subtasks, namely: cruising
in the presence of obstacles, far-end docking and near-end docking. Each subtask is discussed
and tackled separately through an appropriate control strategy adapted to the required degree
of precision needed. The general control strategy follows a speed control paradigm, based on
sliding mode control, aided by virtual attractive-repulsive potential theory. Chapter 5 illustrates
the theoretical content of this thesis through an extensive series of numerical experiments based
on several cases-of-study from the scientific literature. Chapter 6 concludes the document and
suggests a number of possible improvements to the current endeavor to be tackled in future
research projects.
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Chapter 2

Reference frames, physical model and equations of motion of a
spacecraft

The present chapter aims at recalling several essential details concerning the reference frames
used to describe the equations of motion of a small-sized spacecraft, the type of physical actuators
that govern such motion and a mathematical model of motion. The terminology that shall be
used within this document is recalled as well.

2.1 Application scenario and reference frames

The scenario taken into consideration in the present thesis endeavor involves a main station,
which is assumed to stay in a stable orbit around the Earth and to be controlled directly by a
ground station or by on-board personnel and is hence operated independently. The scenario
also involves a small-sized unmanned spacecraft, endowed with a sensor (e.g., a telescope) to
achieve scientific missions, a communication device (e.g., a radio antenna) to keep in touch with
the ground station and/or the main station, and an on-board autonomous control system that is
able to provide appropriate navigation and control actions.

In the examined scenario, the spacecraft, whose control is the main subject of present
investigation, is supposed to be endowed with two series of actuators, namely a series of cold-
gas-based reaction thrusters that serve to control its translational dynamics, and a series of
reaction wheels that serve to control its rotational dynamics [2]. It is assumed that the number
and disposition of thrusters and wheels are appropriate to make the spacecraft fully operated,
namely, to ensure that the control actions generated by the devised control algorithm find
appropriate realization. To what concerns the cold gas ejecting thrusters, it is assumed that their
thrust cannot be modulated and is either null (when ‘off’) or maximum (while ‘on’) as shown in
Figure 2.1.
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Figure 2.1: Visual representation of the thrust provided by a single thruster.

Source: [2]

Conversely, the spacecraft is assumed to be endowed with, at least, three reaction wheels (one
per axis) through which it is possible to modulate any sort of active torque. (Special instances
of under-actuated systems are studied, e.g., in [26].) A view of a small spacecraft is reproduced
in Figure 2.2.

Figure 2.2: A pictorial view of a small-sized spacecraft.

Source: https://www.nasa.gov

An inertial reference frame FI is introduced to describe the direction of bright objects whose
direct light exposure should be avoided, such as the Sun, the Earth, the Moon. The inertial
reference frame FI is also necessary to specify the direction of a celestial object to be observed
by a telescope, as well as the boresight of a transmitting antenna located on a main station. Such
reference frame is introduced on the proviso that the mentioned directions stay constant within
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the timespan of a given mission. Target attitudes, mandatory and forbidden pointing directions
during reorientation maneuvers are referred to the frame FI.

A station-fixed reference frame FS is also introduced. Such reference frame is integral with
the space station and plays a fundamental role during rendezvous maneuvers and docking, in
this phase the spacecraft takes as docking reference the orientation of the axis of the port that it
is assigned to. In addition, during the cruising phase of rendezvous maneuver, the dynamics of
the spacecraft is expressed in terms of the location of the station through the Clohessy-Wiltshire
equations, which are valid for objects orbiting the Earth on circular orbits and that are spaced
apart a few kilometers. The station-fixed reference frame FS is sometimes referred to as ‘local
vertical, local horizontal’ (LVLH). Among the three orthogonal axes, one is directed from the
center of the station to the center of the Earth (Rbar or ZLVLH) and is associated with a unit-vector
ez :“ r0 0 1sJ, one is directed tangentially to the orbit in the direction of motion (Vbar or XLVLH)
and is associated with a unit-vector ex :“ r1 0 0sJ. A third axis (labeled either Hbar or YLVLH) is
oriented so as to form a right-handed frame with the former two. The symbol J denotes matrix
transpose. A view of the LVLH reference frame is reproduced in Figure 2.3.

Figure 2.3: A pictorial view of the LVLH reference frame attached to a space station (in red color).

Source: https://space.stackexchange.com

A spacecraft-fixed reference frame FC is introduced as well, which describes the relative
orientation and location of the spacecraft with respect to the inertial frame FI or the station-fixed
frame FS, depending on the maneuver being effected. (The subscript C stems from the fact
that, in the rendezvous literature, the spacecraft is often referred to as chaser.) The Cartesian
axes of the reference frame FC are assumed to be aligned to the principal axes of inertia of the
spacecraft. The relative orientation and location enter the control goals to be fulfilled by the
spacecraft.
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Chapter 2. Reference frames, physical model and equations of motion of a spacecraft

2.2 Physical model and equations of motion

Under the assumption that the space station and the spacecraft are both orbiting the Earth at
slightly different quotas, the translational motion of the spacecraft in the station-fixed reference
frame FS may be described through the Clohessy-Wiltshire equations. The Clohessy–Wiltshire
equations describe a simplified model of orbital relative motion, in which both the station and
the spacecraft are in a circular orbit. The Clohessy–Wiltshire model provides a first-order
approximation of the spacecraft’s motion in a station-fixed reference frame [27].

Denoting by p the coordinate vector of the spacecraft with respect to the station-fixed
reference frame FS, the Clohessy–Wiltshire model reads

m:p “ frt ` fcc ` fvd ` frd, pp0q “ p0, 9pp0q “ v0 (2.1)

where the term frt denotes the resultant of the mechanical forces exerted by the reaction thrusters
on the body of the spacecraft, fvd denotes viscous drag due to friction with atmospheric particles,
the term fcc denotes the resultant of fictitious forces (Coriolis and centrifugal), frd denotes the
resultant of random disturbances affecting the motion of the spacecraft and m denotes the total
mass of the spacecraft at a given time.

The fictitious force term takes the expression:

fcc :“ m

»

—

–

0 0 0

0 ´ω0 0

0 0 3ω2
0

fi

ffi

fl

p ` m

»

—

–

0 0 ´2ω0

0 0 0

´2ω0 0 0

fi

ffi

fl

9p (2.2)

where ω0 denotes the orbital rate of the space station. For a circular orbit around a central body,
the orbital rate is assumed to be constant and is evaluated through the expression ω0 “

a

µ{r3,
where r denotes the radius of the circular orbit traveled by the station and µ denotes a standard
gravitational parameter [28]. (In the present context, the standard gravitational parameter reads
µ “ GMC, where G denotes the universal gravitational constant and MC denotes the Earth’s
mass.)

The viscous drag is considered to be non-negligible only in the direction of motion (corre-
sponding to the axis Vbar of the LVLH system), hence the braking force takes the expression

fvd :“ ´1
2
ρV 2

0 SCDex (2.3)

where ρ denotes the density of the atmosphere, V0 denotes the orbital speed of the spacecraft, S
denotes the frontal cross-section area of the spacecraft and CD denotes a drag coefficient. The
orbital speed may be written in terms of the orbital rate as V0 “ r ω0 and is henceforth constant.

8



Chapter 2. Reference frames, physical model and equations of motion of a spacecraft

All the other known perturbations can be considered orders of magnitude smaller than the drag
force and so negligible.

Further forcing terms, essentially of random nature, are taken into account through the
disturbance force frd.

To what concerns the rotational dynamics, the spacecraft is considered as a rigid body acted
upon by a series of mechanical torques due to the reaction wheel and external disturbances.
A constructive detail to bear in mind is that the thrusters are arranged in such a way that two
thrusters at a time are eventually switched on in order to exert a null torque on the spacecraft
body. Such design aids control development since it essentially decouples translational-oriented
actuation from rotational-oriented actuation.

The attitude of a spacecraft with respect to the space station is quantified by a rotation matrix
R P SOp3q (namely, a special orthogonal matrix). Such rotation matrix is defined to be the
one that aligns the spacecraft-fixed reference frame FC to either the inertial reference frame FI

or to the station-fixed reference frame FS, depending on what is the current maneuver being
described. The equations of motion may be derived in a standard minimal-action variational
setting which leads to classical Euler-Poincaré equations. Since the spacecraft is subjected to
non-conservative torques, such equations are not ‘pure’ [29].

The rotational dynamics of a rigid body is expressed by a system of two first-order differential
equations [10]:

$

&

%

9R “ RΩ, Rp0q “ R0

J 9Ω “ QΩ ` Trw ` Trd, Ωp0q “ Ω0

(2.4)

where 9R P TRSOp3q denotes the rotational speed-matrix of the spacecraft, Ω P sop3q denotes the
skew-symmetric angular speed-matrix of the spacecraft, the symbol J : sop3q Ñ sop3q denotes
the inertia operator, the operator Q : sop3q Ñ sop3q denotes the resultant of inherent torques
due to inertia and mass unbalance within the spacecraft, Trw P sop3q denotes the mechanical
torque exerted by the reaction wheels and Trd P sop3q denotes a random disturbance term.

The operator J, which is not a matrix, and the operator Q stem from the Euler-Poincaré
equations of motion on the Lie group SOp3q. It is assumed here that the inertia tensor of the
spacecraft is constant. The function JΩ is hence linear (and invertible) in Ω, while the function
QΩ is quadratic. As it is clarified in Chapter 3, it is not necessary to specify the structure of
the operator Q, since a fully actuated system may be controlled under the principle of dynamics
replacement [25], based on inherent dynamics deletion. In the model (2.4), the second equation
establishes the rotational speed in the reference frame FC. The mechanical torque field Trw

depends on the actual attitude R through the chosen control law. The first equation in the system
(2.4), often referred to as ‘reconstruction equation’, allows one to reconstruct the actual attitude
of the spacecraft in the chosen reference frame.

9



Chapter 2. Reference frames, physical model and equations of motion of a spacecraft

Remarking that, in the present thesis, the rotation matrix R is the only quantity that is
introduced to represent the attitude of a spacecraft, nor quaternions nor Euler nor Tait-Bryan
angles are introduced. In addition, the matrix R is always treated as a whole, without any needs
to resort to its entries or angular coordinates.

The mass of a spacecraft changes over time due to propellant consumption during rendezvous.
Since the total mass m enters the equations of dynamics (2.1), mass decay needs to be taken
into account. Mass decay is described through the differential equation [30]:

9m “ ´
nf̄rt
gIsp

, mp0q “ m0 (2.5)

In the above expression, the constant scalar f̄rt ą 0 denotes the maximum thrust of each atlatl,
the symbol g denotes the gravitational acceleration, the constant Isp denotes the specific impulse
of each atlatl. (Specific impulse is a measure of how efficiently a reaction mass engine creates
thrust.) The variable n denotes the number of active thrusters at a given time and may take only
the values 0, 2, 4, 6.

Mass distribution also affects the rotational inertia of a spacecraft. However, it is assumed
that the contribution of the propellant mass to the total inertia is negligible, hence the inertia
tensor is considered constant throughout this document.

2.3 Numerical implementation of the equations of motion

All in one, the system (2.4) constitute a system of differential equations on the tangent bundle
TSOp3q, while the Clohessy–Wiltshire model is a system of differential equations in R3.

The Clohessy–Wiltshire model may be implemented numerically by the help of a forward
Euler numerical scheme. Let the discrete-time counterparts of the position vector as ps, of the
linear velocity v :“ 9p as vs, of the resultant of all forces f :“ frt ` fcc ` fvd ` frd as fs, and of
the mass as ms, where s denotes the step counter. Denoting by h the numerical time-step, the
numerical scheme then reads

$

&

%

vs`1 “ vs ` hfs{ms

ps`1 “ ps ` h vs
(2.6)

The result of such iteration is a numerical approximation of the actual trajectory, namely the
quantity ps approximates the actual coordinate vector pphsq. It is worth noting that, in an ideal
setting, the orbital translational motion happens on the x´ z plane, hence the coordinate y does
not play any role in the model.

Similarly, upon denoting by ns the discrete-time counterparts of the number of active

10
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thrusters, the equation (2.5) may be solved numerically as

ms`1 “ ms ´
nshf̄rt
gIsp

(2.7)

To what concerns the numerical integration of the equations (2.4), it pays to introduce
discrete-time counterparts of the involved variables, namely Rs for the attitude matrix, Ωs for
the angular speed matrix, and Ts for the resultant torque matrix T :“ Trw ` Trd. Then the
rotational model (2.4) may be simulated numerically by the following iteration

$

&

%

Rs`1 “ RsExpphΩsq

Ωs`1 “ Ωs ` h J´1pQΩs ` Tsq
(2.8)

Notice briefly that the first iteration rule stems from the theory of numerical integration of
differential equations on Lie-group bundles. In the above relations, the symbol Exp denotes
matrix exponential. More details can be found in the papers [10, 25].
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Chapter 3

Reorientation under directional constraints

The first control problem to be treated is reorientation in the presence of directional constraints.
Reorientation consists in generating a control action that changes the attitude of the spacecraft
from an initial attitude, represented by a rotation matrix Ri P SOp3q, to a desired attitude,
represented by a rotation matrix Rd P SOp3q. Without any further constraints, the problem
would be solved by the geodesic motion (namely, the shortest path in the space SOp3q) from
Ri to Rd. In actual space missions, however, reorientation must take into account directional
constraints, which may be classified as

• mandatory directions, specified by unit vectors eM,i P R3 and angular amplitudes θM,i,
that represent cones of amplitude θM,i around given directions eM,i P R3, where one of
the axis of the spacecraft must always lie within,

• forbidden directions, specified by unit vectors eF,i P R3 and angular amplitudes θF,i, that
represent cones of amplitude θF,i around given directions eF,i P R3, where one of the axis
of the spacecraft must always keep out from.

The angles θM,i are generally wider than the angles θF,j . An example of mandatory-type
constraint arises from the requirement that the boresight of the onboard antenna keeps within
the cone of contact of a ground-station antenna. An example of forbidden-type constraint arises
from the necessity to make the boresight of a light-sensitive telescope avoid sunbeams and other
brights sources.

The directions eM,i and eF,i are generally specified in the inertial reference frame FI, while
the boresight axes of the antenna, hereafter denoted as eBA, and of the sensor, hereafter denoted
as eBS, aboard the spacecraft are specified in the spacecraft-fixed reference frame FC.

Reorientation is effected via virtual potential functions based on the above information. The
virtual potential functions defined in the following are based on both an attractive term and
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on barrier-type repulsive terms and enter the equations of dynamics through their Riemannian
gradient.

3.1 Rotational dynamics control by dynamics replacement and a virtual-
attractive-repulsive potential

The aim of control design for reorientation purpose is to determine an appropriate control action
that affects the rotational dynamics of the spacecraft through equations (2.4).

In the present thesis, the reaction-wheel torque-type control field is taken as

Trw :“ ´ QΩ ´ Kf Ω ´ RJ∇RV (3.1)

where V : SOp3q Ñ R denotes a virtual attractive-repulsive potential and ∇R denotes the
Riemannian gradient at R P SOp3q corresponding to the canonical inner product in the tangent
bundle TSOp3q.

The first term on the right-hand side of the relation (3.1) stems from the principle of dynamics
replacement. The purpose of such form of cancellation is to overrule the internal dynamics of
a rigid body with the aim of replacing it with a desired dynamics. Such principle may also be
referred to as decoupling [31].

The second term introduces a sort of rotational braking effect, whose purpose is to slow
down the rotational motion and make the effective control torque less sensitive to excessive
control actions. This term, discussed in [25, 5, 24], also prevents the control algorithm to
oscillate excessively around the optimal solution, which is a well-known effect in gradient-
based optimization. The constant Kf ą 0 determines the relative importance of such term. In
general, dissipative forces proportional to speed are added to promote asymptotic stabilization
of a dynamical system [31].

The third term on the right-hand side of the relation (3.1) provides a torque that drives
the attitude of the rigid body toward the minimum of the potential function V . The potential
function must be cautiously crafted in such a way to effectively drive the spacecraft from the
initial attitude to the desired attitude while avoiding undesired (forbidden) direction and yet
meeting favorable (mandatory) inclination. Notice that the potential is defined in the inertial
reference frame FI, and so is its Riemannian gradient ∇RV , hence it needs to be brought back
to the spacecraft-fixed reference frame FC before entering the equations by a pre-multiplication
by the FI-to-FC reference conversion matrix RJ.

On the basis of the chosen control law (3.1), the angular acceleration of the spacecraft reads

J´1
pQΩ ` T q “ J´1

p´Kf Ω ´ RJ∇RV ` Trdq (3.2)
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hence, it does not depend on the internal dynamics anymore. According to literature, the
inertia matrix of a spacecraft may be taken diagonal (by an appropriate choice of coordinate
system FC) and even isotropic [2, 7]. For the sake of simplification, it is assumed that the three
eigenvalues of such matrix take the same value JC ą 0, which readily implies that JΩ “ JCΩ.

3.2 Additive potential function and related gradient

As a first attempt to define a potential function, based on additive-repulsive potential theory
developed in [25, 7, 1], the following expression is taken

VADDpRq :“ ApRq `
ÿ

i

BipRq (3.3)

where A : SOp3q Ñ R denotes an attractive potential, whose purpose is to attract the attitude
of the spacecraft toward the desired attitude Rd, while each Bi : SOp3q Ñ R is a barrier-
type repulsive potential aimed at making the spacecraft avoiding the forbidden direction while
keeping up with the mandatory directions.

In order to specify the structure of the attractive term, it is necessary to recall the notion
of geodesic distance in SOp3q. Given two attitudes R1, R2 P SOp3q, their geodesic distance is
defined as

dpR1, R2q :“ }LogpRJ
1 R2q}F (3.4)

where Log denotes the principal matrix logarithm and the symbol } ¨ }F denotes a Frobenius
matrix norm.

Now, the attractive potential is defined as an upside-down bell-shaped function of the geodesic
distance between the current attitude and the desired attitude as

ApRq :“ ´1
2
KAℓ

2 exp

ˆ

´
d2pRd, Rq

ℓ2

˙

(3.5)

which appears to be a monotonically increasing function with a minimum in R “ Rd. The
constant KA ą 0 determines the absolute strength of this component of the torque, while the
constant ℓ ą 0 represents the radius of influence of the potential over the space SOp3q: the larger
ℓ, the larger its influence area is.

In order to compute the Riemannian gradient of the attractive potential component, it is
worth recalling the golden formula (manifold calculus in system theory and control is described
in [32, 33]):

∇Rd
2
pRd, Rq “ 2RLogpRJ

dRq (3.6)
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Henceforth is taken the torque term corresponding to the attractive potential as

´RJ∇RA “ ´KA exp

ˆ

´
d2pRd, Rq

ℓ2

˙

LogpRJ
dRq (3.7)

The repulsive component of the potential is designed to be of barrier type. In the present
endeavor, barriers are designed to either keep a given axis of the spacecraft away from forbidden
directions or in the angular proximity of mandatory direction.

Given a mandatory direction eM P R3 expressed in the reference system FI and an axis of
the spacecraft eBA P R3 expressed in the reference system FC, the cosine of the angle between
these two directions is given by eJ

MReBA, where R denotes the current attitude of the spacecraft
with respect to the inertial reference system. In order to make sure that the axis eBA keeps at
an angular distance from the mandatory direction eM lesser than a prescribed threshold θM, the
following constraint needs to be imposed

eJ
MReBA ´ cos θM ą 0 (3.8)

Such constraint appears as a linear inequality in the attitude matrix R.
A barrier potential to secure adherence to such directional constraint reads

BMpRq :“ ´KM logpeJ
MReBA ´ cos θMq (3.9)

where KM ą 0 determines the strength of the corresponding torque term in the control action,
while log denotes natural logarithm. It is immediate to recognize that, as the axis ReBA gets
closer to the surface of the mandatory cone, hence the difference eJ

MReBA ´ cos θM approaches
0, the function BMpRq approaches `8 hence providing an infinitely steep potential wall (a
barrier, in fact).

The above barrier-type virtual potential component is designed to produce an artificial
repulsion from the surface of an obstacle, which is represented as the zero sublevel set of a
smooth function. The potential component (3.9), albeit formally different, produces the same
effect as the virtual potential introduced in [34], which goes to infinity as the inverse of a known
scalar-valued analytic function in the close vicinity of an obstacle and decays to zero at some
positive level surface sufficiently far from the obstacle. Such approach is, in turn, based on the
obstacle-avoidance technique introduced long before in [31] under the acronym FIRAS (Force
Inducing an Artificial Repulsion from a Surface).

The function (3.9) may equivalently be written as BMpRq :“ ´KM logptrpReBAe
J
Mq ´

cos θMq, where tr denotes matrix trace. Now, in order to compute the Riemannian gradient of
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such matrix-to-scalar function, it pays to recall the formula

∇RB “ Rσ

ˆ

RJ BB

BR

˙

(3.10)

where σ : R3ˆ3 Ñ sop3q is a matrix-to-matrix function defines as σpY q :“ 1
2
pY ´ Y Jq that

represents an orthogonal projection over the space of skew-symmetric matrices, while the symbol
B

BR
denotes the ordinary Jacobian matrix. (It is compelling to specify that the expression (3.10)

holds under the assumption that the tangent bundle TSOp3q is endowed with the canonical inner
product xV1, V2yR :“ trpV J

1 V2q for every V1, V2 P TRSOp3q.)
In the present case

BBM

BR
“ ´

KM

eJ
MReBA ´ cos θM

eMe
J
BA (3.11)

Therefore, the torque component corresponding to a mandatory-type barrier potential takes the
expression

´RJ∇RBM “
KM

eJ
MReBA ´ cos θM

σpRJeMe
J
BAq (3.12)

Likewise, given a forbidden direction eF P R3 expressed in the reference system FI and an
axis of the spacecraft eBS P R3 expressed in the reference system FC, the cosine of the angle
between these two directions is given by eJ

FReBS. In order to make sure that the axis eBS keeps
at an angular distance from the mandatory direction eF larger than a prescribed threshold θF, the
following constraint needs to be imposed

cos θF ´ eJ
FReBS ą 0 (3.13)

(For comparison purpose is recalled, e.g. from [5], that such constraint written on the basis of a
quaternion rqJ q0s

J would read

cos θF ´ pq20 ´ qJqqeJ
FeBS ´ 2eJ

Fqq
JeBS ´ 2eJ

Fq0q
ˆeBS ą 0

where q0 denotes the real part of the quaternion and the operator p¨qˆ returns a sop3q matrix
from a R3 vector. Notice that the Jet Propulsion Laboratory (JPL) convention is used to denote
quaternions as is customary in the aerospace domain.)

A barrier potential to secure adherence to such directional constraint reads

BFpRq :“ ´KF logpcos θF ´ trpReBSe
J
Fqq (3.14)

where KF ą 0 determines the strength of the corresponding torque term in the control ac-
tion. The torque component corresponding to such a forbidden-type barrier potential takes the
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expression
´RJ∇RBF “

KF

eJ
MReBS ´ cos θF

σpRJeFe
J
BSq (3.15)

Gluing all pieces together, the complete additive potential expression reads

VADDpRq “ ´
1

2
KAℓ

2 exp

ˆ

´
d2pRd, Rq

ℓ2

˙

´ KM

ÿ

i

logpeJ
M,iReBA ´ cos θM,iq

´ KF

ÿ

i

logpcos θF,i ´ eJ
F,iReBSq

(3.16)

The corresponding control torque term TADDpRq :“ ´RJ∇RVADDpRq reads

TADDpRq “ ´ KA exp

ˆ

´
d2pRd, Rq

ℓ2

˙

LogpRJ
dRq `

ÿ

i

KM

eJ
M,iReBA ´ cos θM,i

σpRJeM,ie
J
BAq

`
ÿ

i

KF

eJ
F,iReBS ´ cos θF,i

σpRJeF,ie
J
BSq

(3.17)

where summations run over the number of mandatory/forbidden constraints, respectively. It is
decided to weight the mandatory terms with the same constant KM and all forbidden terms with
the same constant KF, although, in practice, every coefficient may be chosen to take a different
value.

It is interesting, and perhaps counter-intuitive, to notice that the torques corresponding to
mandatory-type constraints look alike the terms corresponding to forbidden-type constraints.
However, the scalar coefficients in the former types of constraints are positive-valued, while the
coefficients in the latter types are negative-valued, hence they behave in an opposite way.

An important aspect to evaluate is the expression of the potential function V̄ADD and of the
corresponding gradient-based torque component T̄ADD “ ´RJ

d r∇RVADDsR“Rd
at the expected

equilibrium point. Calculations show that
$

&

%

V̄ADD “ ´1
2
KAℓ

2 ´ KM

ř

i logpeJ
M,iRd eBA ´ cos θM,iq ´ KF

ř

i logpcos θF,i ´ eJ
F,iRd eBSq

T̄ADD “
ř

i
KM

eJ
M,iRdeBA´cos θM,i

σpRJ
d eM,ie

J
BAq `

ř

i
KF

cos θF,i´eJ
F,iRdeBS

σpRJ
d eF,ie

J
BSq

(3.18)
since dpRd, Rdq “ 0 and LogpRJ

dRdq “ 0. The expression V̄ADD is useful in numerical
simulation to verify whether the gradient-based control algorithm seeks in fact the minimum of
the potential function.

The expression T̄ADD tells that even at the equilibrium point exists a non-zero torque that
tend to orient the spacecraft in a direction that is not exactly the desired one. In formal terms, the
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solution of the equation TADDpRq “ 0 differs from R “ Rd because of the residual pull-push
effect of the barriers. This effect is not necessarily disruptive for at least two reasons: 1) during
reorientation, even if the boresight of a telescope does not match exactly the preferred direction
of observation of a target, an observation mission might still be carried out; 2) during docking,
a tolerance in the alignment might be borne [35] (as in underwater missions [36]).

With the aim of fixing the above-noted inconsistency, in the next section is presented an
alternative control strategy.

3.3 Mixed multiplicative-additive potential and related gradient

There has been a vast effort in the process of selecting suitable potential functions. While
authors agree that each sub-goal needs to be assigned a specific function (one to represent
the reorientation goal and one to represent each constraint), existing approaches differ on how
to combine such terms to concur in the definition of a virtual potential. To recall a few, the
paper [7] suggest a mixed multiplicative/additive potential, where the component associated to
re-orientation is multiplied by the sum of the barrier-type components associated to directional
obstacles. The paper [5] follows a similar approach, although the components associated
to re-orientation and obstacles differ in mathematical structure. The paper [37] remarks that a
combination of partial potentials may yield a function with potentially multiple critical points and
recall the notion of ‘navigation functions’ which constitute possible remedies to such difficulty.
The function proposed in [37] is a nonlinear combination of the reorientation potential and of
the sum of the reorientation-potential with the product of constraint-enforcing potentials.

In the present thesis, it is deemed appropriate to explore the features of a mixed potential
inspired by the paper [7]. Such mixed potential is a variant of the additive potential (3.3) and
reads

VMIXpRq :“ ApRq ` MpRq
ÿ

i

BipRq (3.19)

where the barrier functions take the same expression as in (3.9) and (3.14), the attractive function
ApRq takes the same expression as in (3.5), while the additive potential is taken as a quadratic
function as

MpRq :“ ´1
2
d2pR,Rdq (3.20)

which is a monotonically increasing function with one minimum in R “ Rd.
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The detailed expression of the mixed-form potential reads

VMIXpRq “ ´
1

2
KA ℓ2 exp

ˆ

´
d2pR,Rdq

ℓ2

˙

´
1

2
d2pR,Rdq

˜

KM

ÿ

i

logpeJ
M,iReBA ´ cos θM,iq ` KF

ÿ

i

logpcos θF,i ´ eJ
F,iReBSq

¸

(3.21)

The torque control component corresponding to the Riemannian gradient of such virtual potential
may be determined by going through the same calculations shown in Section 3.2. The obtained
expression TMIXpRq :“ ´RJ∇RVMIXpRq reads

TMIX “ ´ KA exp

ˆ

´
d2pR,Rdq

ℓ2

˙

LogpRJ
dRq

`

˜

KM

ÿ

i

logpeJ
M,iReBA ´ cos θM,iq ` KF

ÿ

i

logpcos θF,i ´ eJ
F,iReBSq

¸

LogpRJ
dRq

`
1

2
d2pR,Rdq

˜

ÿ

i

KM

eJ
M,iReBA ´ cos θM,i

σpRJeM,ie
J
BAq `

ÿ

i

KF

eJ
F,iReBS ´ cos θF,i

σpRJeF,ie
J
BSq

¸

(3.22)

With reference to the classical error-feedback control, it is worth noticing that in the above
expression E :“ LogpRJ

dRq represents the reorientation error. It is immediate to recognize that,
at the sought equilibrium point R “ Rd, it holds that VMIXpRdq “ 0 and, more importantly, that
TMIXpRdq “ 0. Such approach might potentially be able to overcome the problem of non-zero
torque at equilibrium entailed by the approach presented in Section 3.2. The virtual potential
(3.21) may be interpreted as an additive repulsive potential weighted by an additive potential
increasing with the distance to the desired attitude.

A potential drawback of the mixed multiplicative-additive approach just detailed is that, as
opposed to the additive approach explained in Section 3.2, there is no chance to balance, through
a weighting constant, the opposed actions of the attractive term and of the repulsive terms.

3.4 Relation with a navigation function

The barrier terms, that the above-discussed virtual potential functions are based on, may be
recast in a different expression by exploiting the properties of the logarithm. In fact, upon
defining the total barrier term

BT :“ KM

ÿ

i

logpeJ
M,iReBA ´ cos θM,iq ` KF

ÿ

i

logpcos θF,i ´ eJ
F,iReBSq (3.23)
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it is immediate to recognize that

BT “
ÿ

i

logpeJ
M,iReBA ´ cos θM,iq

KM `
ÿ

i

logpcos θF,i ´ eJ
F,iReBSq

KF

“ log

˜

ź

i

peJ
M,iReBA ´ cos θM,iq

KM

ź

i

pcos θF,i ´ eJ
F,iReBSq

KF

¸ (3.24)

It readily follows that

exppBTq “
ź

i

ź

j

peJ
M,iReBA ´ cos θM,iq

KMpcos θF,j ´ eJ
F,jReBSq

KF (3.25)

Hence the total barrier function may be regarded as a product of partial function that are positive
only in the permissible zones delimited by each barrier, a design strategy suggested in [37],
where the weighting coefficients KM and KF play the role of order parameters.
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Chapter 4

Position control during cruising and docking under positional
constraints

Autonomous navigation toward the space station aimed at complete docking is one of the
primary goals of control design. Since navigation is a complex task, it is customary to break it
into subtasks [2] to be separately tackled on the basis of the current physical distance between the
spacecraft and the docking port. In the present thesis, the approaching trajectory is subdivided
in three boats: cruising, far-end docking and near-end docking, as detailed in the next sections.

4.1 Control strategy during cruising in the presence of physical obstacles

The maneuver of a spacecraft requires, in the presence of obstacles, to be carried out au-
tonomously by the help of sensors by a guidance algorithm. The algorithm devised in the
present thesis is based on virtual attractive-repulsive potential theory and is declined in three
versions: a version adapted from [2], a version based on impulsive control drawn from [1], and
a version build on impulsive control by an adaptive desired speed.

During an approaching phase, the motion of the spacecraft is referred to the station’s LVLH
reference system, hence the attitude matrix R, in the present context, is the one that aligns the
spacecraft-fixed reference frame FC to the station-fixed reference frame FS.

According to the work [2], the control algorithm switches on the thrusters according to a
first-order sliding-mode control method, described by the relation:

frt “ ´2φ f̄rtR signpσq (4.1)

which expresses the fact that a pair of thrusters per axis of the spacecraft is eventually switched
on, hence exert a thrust twice as large as the maximum thrust. Which pair of thrusters is currently
switched on is determined by the sliding output vector σ P R3, whose value is inessential except
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Chapter 4. Position control during cruising and docking under positional constraints

for the signs of its components. The variable φ P t0, 1u represents a flag employed in impulsive
control.

In general, sliding mode control (SMC) is based on discontinuous feedback that switches
among a number of control laws according to a pre-defined decision rule. For a basic review of
its features, readers might consult [38, 39]. For a more advanced account of SMC, interested
readers might consult [40].

It is worth highlighting that the force term frt and the number n are related through the
relation

φ }frt}
2

“ 2n f̄ 2
rt (4.2)

which, in fact, allows determining the number of active thrusters on the basis of the output of
the control algorithm.

The variable σ depends on the mismatch between the current velocity 9p of the spacecraft
and the desired velocity 9pd P R3, as well as on the mismatch between the current position p of
the spacecraft and the desired position pd P R3, through the linear combination

σ :“ 9p ´ 9pd ` cpp ´ pdq (4.3)

The constant c ě 0 determines the relative weight between position and velocity mismatch.
The quantity pd is determined by the position of the target of the cruising phase, which

normally is located from within a few hundreds to a few dozen meters away from the docking port,
and is generally constant. The desired velocity changes along the trajectory and is determined
through a virtual potential by the following expression

9pd “ vd
´∇pVC

}∇pVC}
(4.4)

where vd ą 0 denotes the desired speed, determined independently of the virtual potential,
while ∇pVC P R3 denotes the gradient of the potential VC : R3 Ñ R. As a result, it holds that
} 9pd} “ vd, hence, the entity and the direction of the desired speed are determined independently
by the control algorithm.

The cruising phase ends when the distance between the spacecraft and the desired position
is less than a given threshold, namely, as soon as }p ´ pd} ě 50.

4.2 Virtual potential design

The virtual potential function is designed to decrease when a spacecraft gets closer to the target
location and to increase when a spacecraft gets closer to a physical obstacle. The gradient-based
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Chapter 4. Position control during cruising and docking under positional constraints

sliding-mode control algorithm is hence designed to seek the minimum of the potential function.
The virtual potential is constructed as a sum of terms, one of which is attractive and depends

on the desired location, while further terms are repulsive and depend on the location and on the
safety radii of physical obstacles. Formally, the potential reads

VCppq “ ACppq `
ÿ

i

PC,ippq (4.5)

where AC : R3 Ñ R denotes the attractive-type component and PC,i : R3 Ñ R denote the
repulsive-type components. The sum runs over the number of obstacles within the radius of
sensitivity of the proximity sensors aboard the spacecraft.

The attractive-type component of the potential function is defined by

ACppq :“ 1
2
HA}p ´ pd}

2 (4.6)

where HA ą 0 is a constant that determines the strength of the attractive component of the
potential. The component ACppq is monotonically increasing with a unique minimum in p “ pd.

In order to enable the spacecraft to avoid the physical obstacles, a number of repulsive-
type components need to be designed that exhibit their maximum value in correspondence to
the location of the obstacles and whose action peter out rapidly as the distance between the
spacecraft and the obstacles increases. It is denoted as oi P R3 the location of each obstacle in
the station-fixed reference frame FS and by ηi the safety radius of each obstacle. Obstacles are
assumed to be of spherical shape, hence each safety radius may be thought of as the sum of the
radius of the spherical obstacle augmented by an extra safety distance (which should not exceed
the sensitivity radius of the proximity sensor). On the basis of such data, the repulsive-type
component of the potential associated to the ith obstacle is defined as

PC,ippq :“
1

2
HR exp

ˆ

´
}p ´ oi}

2

η2i

˙

(4.7)

where the constant HR ą 0 determines the strength of each repulsive term. Notice that the
expression chosen represents only a soft constraint, although it cannot be ensured that the
spacecraft will not enter the obstacles, a reasonable safety distance may be determined through
a careful handcrafting of the safety radii.

The anti-gradient of the virtual potential function reads

´∇pVC “ ´HApp ´ pdq ` HR

ÿ

i

exp

ˆ

´
}p ´ oi}

2

η2i

˙

p ´ oi
η2i

(4.8)
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It is important to remark that the present setting stays unvaried whether the obstacles are
fixed with respect to the reference frame FS or are moving, instead.

4.3 Speed intensity determination

The desired speed may be determined on the basis of different criteria. In the present thesis, the
performances of three strategies are compared to determine such speed.

The computationally simplest strategy is drawn from reference [2] and consists in setting the
desired speed to the maximum allowable speed v̄ and the flag φ to ‘on’-state, namely

vd “ v̄, φ “ 1 (4.9)

The next strategy examined is inspired by the notion of impulsive control discussed in [1].
It consists in switching on the reaction thrusters only when the spacecraft effectively gets off
the right track, hence keeping them off whenever not necessary, with the aim to save propellant.
Formally

vd “ v̄, φ “

$

&

%

1, if ∆ξ ą τ

0, otherwise
(4.10)

where ∆ξ :“
›

›

›

9p
} 9p}

´
∇pVC

}∇pVC}

›

›

›
and τ denotes a predefined threshold that determines the sensitivity

of the algorithm to difference in direction. It is found empirically that the threshold should be
of the order of 10´2. In fact, it is set τ “ 0.05. Notice that this strategy only influences the
‘off’-state of the thrusters, while it does not influence the ‘on’-state.

An allegedly more proficient strategy also influences the ‘on’-state of the thrusters by deter-
mining the speed amplitude. The law suggested to determine speed is such that the more the
spacecraft gets closer to the target, the lesser the cruising speed is. In formulas:

$

’

’

’

&

’

’

’

%

vd “ min
!

v̄, 5∆ξ}p ´ pd}
1
4

)

φ “

$

&

%

1, if ∆ξ ą τ

0, otherwise

(4.11)

The relationship to determine the desired speed intensity is empirically handcrafted. The hard-
limiting check prevents the computed speed to exceed its maximum allowable value.
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Chapter 4. Position control during cruising and docking under positional constraints

4.4 Attitude control during a cruising phase

During cruising, it is not essential to control the attitude of a spacecraft, which may keep
a constant orientation resulting from previous maneuvers, until the beginning of the docking
phase. This statement can be made provided that the spacecraft has a sufficient number of
sensors on board to detect the presence of obstacles whatever the attitude is. Nevertheless, to
aid stability of a spacecraft [2] against unforeseen events, in the present thesis, it is deemed it
appropriate to explore attitude regulation strategies.

A way to control orientation during cruising is to establish a desired attitude Rd and to set
up a control strategy to make sure the actual attitude matrix R of the spacecraft adheres to the
desired attitude. In order to control the attitude of the spacecraft, a control torque is chosen
according to synchronization theory [11] to be

Trw :“ ´ QΩ ´ Kf Ω ´ KS logpRJ
dRq (4.12)

where KS ą 0 determines the strength of coupling in the leader/follower pair. (Notice
that the term KS logpRJ

dRq stems as the Riemannian gradient ∇R of the potential function
1
2
KS d

2pR,Rdq and may be recognized as the ‘proportional’ component of a Lie-group type PID
controller.)

To what concerns the desired attitude, two possibilities are explored. A first attempt consists
in setting up a fixed attitude matrix that coincides with the one required for docking, namely
Rd “ I3. As a second attempt, the desired attitude is set up to the one which corresponds to the
direction of the desired speed 9pd as defined in (4.4). The relation between the (time-varying)
matrix Rd and the components of the desired speed vector 9pd may be found in [2], in equations
(15)-(17).

A third strategy, corresponding to lack of synchronization, is tested against the former two
methods. This corresponds to setting the control torque as

Trw :“ ´ QΩ ´ Kf Ω (4.13)

which aims at just passivating the spacecraft and to mitigate the effects of unpredictable distur-
bances.

A fourth strategy, loosely based on [25], consists in setting up a control torque that tends
to align the speed 9p of the spacecraft to the desired speed resulting from the virtual potential
function described in Section 4.1, namely ´

∇pVC

}∇pVC}
. The corresponding torque term reads

Trw :“ ´ QΩ ´ Kf Ω `
KFBP

}∇pVC}
p 9pp∇pVCq

J
´ p∇pVCq 9pJ

q (4.14)
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where KFBP ą 0 denotes the aligning torque. Notice that the rightmost terms corresponds to
the cross product 9p ^ p∇pVCq in sop3q, which vanishes when these vectors are parallel.

4.5 Final guidance to docking in the absence of physical obstacles

In close proximity to the space station, at a distance of a few dozen meters, it is reasonable and
safe to assume that no large obstacles stand in the way to the space station. During the final
approach maneuver, therefore, the only obstacle to be taken into account is the outer structure
of the space station itself.

In order to avoid colliding with any part of the station, a technique adapted from [1] is
deployed, based on a safety zone whose border takes the shape of a cardioid curve. The radius
of the cardioid must be selected in such a way to encompass the whole space station in order
to allow a spacecraft to safely approach from every direction. The cardioid itself includes a
recess, a cuspid whose tip coincides with the docking port and whose asymptote coincides with
the docking axes (taken to be the X axis of the LVLH reference frame). The actual maneuver
during docking is divided into two subtasks.

The first subtask is termed far-end approaching. It ensures that, no matter what is the
direction of arrival of the spacecraft, it gets positioned to the right of the docking port while
avoiding the outskirts of the space station by keeping out of the cardioid-shaped safety region.
This procedure takes, as input, the desired location pfe P R3 for this intermediate step and the
safety radius of the space station, that shall be denoted as rS. The tip of the cardioid cusp
is located at pfe P R3 and the cusp opens along the X axis. The far-end approaching phase
continues until the distance between the spacecraft and the desired position is less than a given
threshold, namely, as soon as }p ´ pfe} ě 1 .

The current distance and angle of arrival, in the LVLH reference frame FS, are calculated as
$

&

%

ρ “ }p ´ pfe}

θ “ π
2

´ atan2ppp ´ pfeq
Jex,´pp ´ pfeq

Jezq
(4.15)

where the function atan2p¨q returns the correct and unambiguous value for the angle while
converting from Cartesian coordinates to polar coordinates.

The cardioid is built from its parametric equations and a preferred direction is evaluated at
each position during the far-end phase from the boundary tangent vector of the cardioid
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γfe “

$

’

’

’

&

’

’

’

%

9x “ ´Htpsinpθq ´ sinp2θqq

9y “ 0

9z “ ´Htpcospθq ´ cosp2θqq

(4.16)

where Ht ą 0.
The control strategy used is a variable desired speed control similar to the one described

from the cruising phase
$

’

’

’

&

’

’

’

%

vd “ min
!

v̄fe,∆ξρ
1
4

)

φ “

$

&

%

1, if ∆ξ ą τ

0, otherwise

(4.17)

where ∆ξ :“
›

›

›

9p
} 9p}

´
γfe

}γfe}

›

›

›
and v̄fe “ v̄

10
, the expression of v̄fe is chosen empirically after

evaluating some real cases of docking maneuvers.
The second subtask is termed near-end approaching, it ensures slow and steady docking in

the absence of any obstacle of sort, except for the docking port. Such procedure takes, as input,
the desired location pne P R3 to drive the spacecraft to the docking port. Since the spacecraft is
now aligned with the docking axis, the preferred direction is defined as

γne “ ´ex (4.18)

during the all phase.
The control strategy used in this phase is a variable desired speed control as described before

but considering instead a non-impulsive control, this choice depends on the necessity to have the
best level of precision possible. Respect than the previous phases, it can be easily understood
this requirement in proximity of the docking port. In formulas:

vd “ mintv̄ne,∆ξρ
1
4 u (4.19)

where ∆ξ :“
›

›

›

9p
} 9p}

´
γne

}γne}

›

›

›
, ρ :“ }p ´ pne} and v̄ne “ v̄fe.

The near-end approaching phase continues until the distance between the spacecraft and the
desired position is ideally zero, especially considering the position p of the spacecraft as the
position of its center of mass, the end of this phase comes when that distance is equal to the one
between the center of mass and the juncture port of the spacecraft.
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4.6 Alignment to a docking axis during final guidance

In order to regulate the attitude of a spacecraft during the final guidance stage, a control torque
is again chosen according to synchronization to be

Trw :“ ´ QΩ ´ Kf Ω ´ KD logpRJ
dRq (4.20)

with KD ą 0.
During final guidance, the desired attitude of the spacecraft is constant to Rd “ I3, which

describes a state of stable alignment between the reference system FC and the frame FS. Hence,
the expression of the active torque may be simplified to Trw “ ´ QΩ ´ Kf Ω ´ KD logpRq.
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Results of numerical experiments

The parameters that appear in the mathematical model of a spacecraft motion are summarized
in Table 5.1.

Parameter Symbol Value
Initial spacecraft mass m0 600 (kg)
Maximum allowable speed v̄ 6 (m/s)
Principal inertia JC 144 (kg¨m2)
Maximum thrust f̄rt 10 (N)
Frontal area S 1.44 (m2)
Drag coefficient CD 2.20 (´)
Specific impulse Isp 220 (s)
Gravitational acceleration g 9.81 (m/s2)
Atmosphere density ρ 10´12 (kg/m3)
Orbit radius r 6, 878 ¨ 103 (m)
Gravitational parameter µ 3.986 ¨ 1014 (m3/s2)

Table 5.1: Physical parameters and constants entering the spacecraft model.

5.1 Numerical simulations on reorientation

In order to test the reorientation strategy, numerical experiments adapted from [7] are performed.
Simulations come with two different potentials, namely additive-potential and mixed-potential.
Since it occurred to detect some inconsistencies in the numerical data, some data are adapted to
restore consistency.

In these experiments, the spacecraft is assumed to be endowed with a radio antenna whose
boresight axis is eBA “ ey and a sensor whose boresight axis is eBS “ ez. In order to evaluate
the performance of reorientation, the following figure of merit, referred to as Reorientation
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Performance Indicator, is defined:

RPI :“ 100

ˆ

1 ´
dpRa, Rdq

dpRi, Rdq

˙

p%q (5.1)

where Ra denotes the attitude actually achieved by the reorientation control algorithm in the
given time frame. All experiments in the present section are performed with a stepsize h “ 0.01

(sec).
In the following experiments, the initial angular speed Ω0 is set to 03 (which denotes a null

3 ˆ 3 matrix).

5.1.1 Experiment 1

The first experiment consisted in simulating reorientation from an initial attitude, described by
the matrix Ri to a desired attitude, described by the rotation matrix Rd, in the presence of a
mandatory zone, according to Case 2 discussed in the paper [7].

The problem is tackled by an additive-potential-based control algorithm as explained in
Section 3.2. In this experiment, the potential and the associated torque read

$

&

%

VADDpRq “ ´1
2
KAℓ

2 exp
´

´
d2pRd,Rq

ℓ2

¯

´ KM logpeJ
MReBA ´ cos θMq

TADDpRq “ ´KA exp
´

´
d2pRd,Rq

ℓ2

¯

LogpRJ
dRq `

KM

eJ
MReBA´cos θM

σpRJ eM eJ
BAq

(5.2)

The Table 5.2 shows the data pertaining to this simulation tackled with a virtual additive potential.

Description Symbol Value

Initial attitude Ri

»

–

0.3181 0.9375 ´0.1409
0.7050 ´0.3333 ´0.6260
0.6339 ´0.0998 0.7670

fi

fl

Desired attitude Rd

»

–

0.0265 0.7821 0.6226
0.2073 0.6050 ´0.7688
0.9779 ´0.1494 0.1462

fi

fl

Mandatory direction eM r0.8530 ´ 0.2653 0.4495sJ

Aperture of the mandatory cone θM 70 (°)
Constant KA KA 2.8 ¨ 10´1JC
Constant ℓ2 ℓ2 50
Constant Kf Kf 1.4JC
Constant KM KM 1 ¨ 10´5JC

Table 5.2: Numerical data corresponding to the numerical Experiment 1 tackled with a virtual additive
potential. The initial and desired attitude are represented using a 3 ˆ 3 matrix.
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The numerical results obtained with an additive potential are illustrated in the Figure 5.1.
The result achieved by the control algorithm in the given time frame is RPI “ 100% and the
trajectory can also be visualized in Figure 5.2.

Figure 5.1: Numerical results obtained for the Experiment 1 using additive-potential-based control
algorithm. Top panel: values of the distance between the actual attitude and the desired attitude, and
value of the potential during reorientation; the dashed line represents the theoretically evaluated minimum
value of the potential pertaining to this experiment. Bottom panel: Angle between the boresight direction
of the antenna and the mandatory direction; the green area represents the mandatory zone. Time is
measured in seconds.

As it may be readily appreciated from the figure, the optimization-based control algorithm
effectively attains the minimum value of the potential function while keeping the boresight of the
antenna within the mandatory cone. It is interesting to point out that, through some handcrafting
of the constants, it is possible to operate while being really close to the barrier and reach the
goal.
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Figure 5.2: Trajectory achieved by the mandatory axis as explained in Experiment 1 using additive-
potential-based control algorithm. Left panel: The trajectory is shown on a sphere that surrounds
the satellite and centered in the center of gravity of the spacecraft. Right panel: Two-dimensional
representation of the sphere, the mandatory zone and the trajectory of the mandatory axis. The red cross
represents the attitude reached at the end of the simulation, while the red circle represents the initial
attitude.

Now is presented a different approach to the same problem (Case 2 of the paper [7]) that uses
a variant of the previously explained potential-based maneuver, which is the mixed additive-
multiplicative potential-based approach explained in Section 3.3. From now on, this approach
is referred to as mixed-potential-based control. The potential and the associated torque of this
experiment read:
$

’

’

’

&

’

’

’

%

VMIXpRq “ ´1
2
KAℓ

2 exp
´

´
d2pRd,Rq

ℓ2

¯

´ KM
d2pRd,Rq

2
logpeJ

MReBA ´ cos θMq

TMIXpRq “ ´KA exp
´

´
d2pRd,Rq

ℓ2

¯

LogpRJ
dRq ` KM logpeJ

MReBA ´ cos θMqLogpRJ
dRq

`
d2pRd,Rq

2
KM

eJ
mReJ

BA´cos θM
σpRJ eM eJ

BAq

(5.3)
The Table 5.3 shows the data pertaining to this simulation tackled with a virtual mixed potential.
The initial and desired attitude are not shown as they are the same as additive potential as well
as the mandatory direction and its aperture of mandatory cone.
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Description Value
Constant KA 9.3 ¨ 10´2JC
Constant ℓ2 50
Constant Kf 1.4JC
Constant KM 0.1JC

Table 5.3: Numerical data corresponding to the numerical Experiment 1 using mixed additive-
multiplicative potential-based control algorithm.

The numerical results obtained with a mixed potential are illustrated in the Figure 5.3. The
result achieved by the control algorithm in the given time frame is RPI “ 100%. By comparing
the two approaches that tackle the same problem (Figure 5.2 and Figure 5.4), where the former
shows the additive potential case while the latter displays the mixed potential case, it can be
noticed that the trajectories are not exactly the same but really similar to each other. This is, in
fact, a particular case in which the constraint for the attitude is only to stay inside the mandatory
zone, hence the trajectories are really close to the fastest way to get to the desired attitude and
will only differ slightly when handcrafting the constants in the algorithm.

Figure 5.3: Numerical results obtained for the Experiment 1 using mixed additive-multiplicative potential-
based control algorithm. Top panel: values of the distance between the actual attitude and the desired
attitude, and value of the potential during reorientation; the dashed line represents the theoretically
evaluated minimum value of the potential pertaining to this experiment. Bottom panel: Angle between the
boresight direction of the antenna and the mandatory direction; the green area represents the mandatory
zone. Time is measured in seconds.
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Figure 5.4: Trajectory achieved by the mandatory axis as explained in Experiment 1 using mixed additive-
multiplicative potential-based control algorithm. Left panel: The trajectory is shown on a sphere that
surrounds the satellite and is centered in the center of gravity of the spacecraft. Right panel: Two-
dimensional representation of the sphere, the mandatory zone and the trajectory of the mandatory axis.
The red cross represents the attitude reached at the end of the simulation, while the red circle represents
the initial attitude.

5.1.2 Experiment 2

The second experiment consisted in simulating reorientation in the presence of four forbidden
zones, according to Case 1a discussed in the paper [7]. The problem is firstly tackled, again, by
an additive-potential-based control algorithm as explained in Section 3.2. In this experiment,
the potential and the associated torque read
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VADDpRq “ ´1
2
KAℓ

2 exp
´

´
d2pRd,Rq

ℓ2

¯

´ KF logpcos θF1 ´ eJ
F1ReBSq

´KF logpcos θF2 ´ eJ
F2ReBSq ´ KF logpcos θF3 ´ eJ

F3ReBSq

´KF logpcos θF4 ´ eJ
F4ReBSq

TADDpRq “ ´KA exp
´

´
d2pRd,Rq

ℓ2

¯

LogpRJ
dRq `

KF

eJ
F1ReBS´cos θF1

σpRJeF1e
J
BSq

`
KF

eJ
F2ReBS´cos θF2

σpRJeF2e
J
BSq `

KF

eJ
F3ReBS´cos θF3

σpRJeF3e
J
BSq

`
KF

eJ
F4ReBS´cos θF4

σpRJeF4e
J
BSq

(5.4)

The Table 5.4 shows the data pertaining to this simulation tackled with a virtual additive
potential. Notice that, as in the previous experiment, some constants are parameterized to the
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inertial coefficient JC for convenience.

Description Symbol Numerical value

Initial attitude Ri

»

–

0.4726 ´0.3499 ´0.8089
´0.8129 0.1814 ´0.5534
0.3404 0.9191 ´0.1987

fi

fl

Desired attitude Rd

»

–

´0.4112 0.4083 0.8150
0.8165 0.5625 0.1302

´0.4053 0.7190 ´0.5646

fi

fl

Forbidden direction eF1 eF1 r´0.174 0.934 ´ 0.34sJ

Forbidden direction eF2 eF2 r0 ´ 0.7071 0.7071sJ

Forbidden direction eF3 eF3 r0.8532 ´ 0.4361 ´ 0.2861sJ

Forbidden direction eF4 eF4 r´0.1220 ´ 0.1400 ´ 0.9830sJ

Aperture of the first forbidden cone θF1 40 (°)
Aperture of the second forbidden cone θF2 40 (°)
Aperture of the third forbidden cone θF3 30 (°)
Aperture of the fourth forbidden cone θF4 20 (°)
Constant KA KA 5 ¨ 10´1JC
Constant ℓ2 ℓ2 50
Constant Kf Kf 1.5JC
Constant KF KF 3.5 ¨ 10´2JC

Table 5.4: Numerical data corresponding to the numerical Experiment 2 tackled with a virtual additive
potential.

The numerical results obtained with an additive potential are illustrated in the Figure 5.5.
The result achieved by the control algorithm in the given time frame is RPI “ 95.8%.

As it may be readily appreciated from the figure, the optimization-based control algorithm
effectively attains the minimum value of the potential function while keeping the boresight of
the sensor away from the forbidden cones. While the objective of avoiding forbidden areas is
accomplished, the desired rotation matrix is not achieved. In fact, from Figure 5.6 can be seen
that initially eBS moves towards Rd that is signaled by the red cross but when it approaches the
directional obstacle the algorithm operates a change of trajectory to avoid entering that area and
starts coasting, with a reasonable distance, the forbidden area. Eventually though it struggles
to reach the exact orientation as it only swings by the desired attitude. From the top panel of
Figure 5.5 it can be seen how the geodetic distance almost reaches zero around 55 seconds in
the simulation but then slowly increases and never reaches the goal. Moreover, it can be seen in
the bottom left panel how the boresight of the antenna once it gets close to the forbidden area
number 3 starts coasting near it while maintaining distance. The combination of the behaviors
just explained makes clear that the goal is not reached because two opposites constraints need to
be respected. While it is true that through some manual adjustments of the constants a better RPI
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can be reached, the problem remains because the trajectory obtained always coasts the forbidden
area and then misses the desired attitude.

Figure 5.5: Numerical results obtained for the Experiment 2 using an additive-potential-based control
algorithm. Top panel: values of the distance between the actual attitude and the desired attitude, and
value of the potential during reorientation; the dashed line represents the theoretically evaluated minimum
value of the potential pertaining to this experiment. Bottom-left and bottom-right panels: Angle between
the boresight direction of the sensor and each forbidden direction; the red areas represent the forbidden
zones. Time is measured in seconds.

Figure 5.6: Numerical results obtained for the Experiment 2 tackled with a virtual additive potential. Left
panel: 3D visualization of boresight trajectory. Right panel: 2D representation of the maneuver. The
green cross represents the attitude reached at the end of the simulation, while the green circle represents
the initial attitude. The red cross represents the desired attitude.
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The same experiment is repeated for mixed-potential explained in Section 3.3 using the same
data as additive potential case for initial and desired rotational matrices and also for directional
obstacles and amplitudes, instead the torque and the potential read:
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while the variables used for this version of the experiment had to be handcrafted and modified
to obtain a good-looking trajectory: KA “ 2 ¨ 10´1JC, ℓ2 “ 50, Kf “ 2JC, KF “ 2.8 ¨ 10´2JC.
The result obtained are displayed in Figure 5.8 and also the trajectory obtained is presented in
Figure 5.7.

Figure 5.7: Numerical results obtained for the Experiment 2 tackled with a virtual mixed potential. Left
panel: 3D visualization of boresight trajectory. Right panel: 2D representation of the maneuver. The
green cross represents the attitude reached at the end of the simulation and the desired one, while the
green circle represents the initial attitude.
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Figure 5.8: Numerical results obtained for the Experiment 2 tackled with a virtual mixed potential.
Top panel: values of the distance between the actual attitude and the desired attitude, and value of the
potential during reorientation; the dashed line represents the theoretically evaluated minimum value of
the potential pertaining to this experiment. Bottom-left and bottom-right panels: Angle between the
boresight direction of the sensor and each forbidden direction; the red areas represent the forbidden
zones. Time is measured in seconds.

Let be Trajectory 1 the trajectory accomplished using the additive potential-based control
shown in Figure 5.6 and Trajectory 2 the one accomplished using the mixed potential-based
control shown in Figure 5.7. Let now compare the trajectory obtained: firstly, it is important to
notice that the desired attitude is reached only using the mixed potential-based control, in fact
in Figure 5.7 the red cross marking the desired attitude is not visible since it coincides with the
reached attitude signaled with a green cross. Considering the first part of the two trajectories,
it is clear that while Trajectory 1 has a more direct approach to the obstacle (forbidden zone
number 3), instead Trajectory 2 moves towards the obstacle with a direction that has more slope.
Comparing the section where the two trajectories coast around the obstacle is visible a similar
behavior given that the distance slowly increases towards the end of the simulation. While they
have a similar behavior, the result differs because in the coasting phase Trajectory 1 is longer
than Trajectory 2 resulting in a greater distance from the obstacle and, consequently, from the
goal.
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5.1.3 Experiment 3

The third experiment concerning reorientation is similar to Experiment 2 with slight differences
in obstacle positions and corresponds to Case 1b discussed in the paper [7]. The Table 5.5
displays the values of the constants used in this simulation. In this case the potential and the
associated torque are exactly the ones used in Experiment 2 and are written in equation (5.4).

Description Symbol Numerical value

Initial attitude Ri

»

–

0.4566 0.8892 0.0269
0.3579 ´0.1559 ´0.9207

´0.8145 0.4300 ´0.3894

fi

fl

Desired attitude Rd

»

–

´0.8140 0.1648 0.5570
0.4620 ´0.3975 0.7928
0.3520 0.9027 0.2474

fi

fl

Forbidden direction eF1 eF1 r´0.163 ´ 0.986 0.02sJ

Forbidden direction eF2 eF2 r0 ´ 0.573 0.819sJ

Forbidden direction eF3 eF3 r0.067 0.462 ´ 0.88sJ

Forbidden direction eF4 eF4 r0.813 ´ 0.548 ´ 0.19sJ

Aperture of the first forbidden cone θF1 40 (°)
Aperture of the second forbidden cone θF2 40 (°)
Aperture of the third forbidden cone θF3 20 (°)
Aperture of the fourth forbidden cone θF4 20 (°)
Initial angular speed 03

Table 5.5: Numerical data corresponding to the numerical Experiment 3.

As a first attempt, the problem is tackled by an additive-potential-based control algorithm
as explained in Section 3.2. The values of the coefficients chosen in this experiment are
KA “ 4.5 ¨ 10´1JC, ℓ2 “ 50, Kf “ 3JC, KF “ 0.1 ¨ 10´3JC.

The numerical results obtained with an additive potential are illustrated in the Figure 5.9
and the trajectory achieved is shown in Figure 5.10. The optimization-based control algorithm
effectively attains the minimum value of the potential function while keeping the boresight of
the sensor away from the forbidden cones, moreover the result achieved by the control algorithm
in the given time frame is RPI “ 100%.
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Figure 5.9: Numerical results obtained for the Experiment 3 tackled with a virtual additive potential.
Top-left panel: values of the distance between the actual attitude and the desired attitude, and value of
the potential during reorientation; the dashed line represents the theoretically evaluated minimum value
of the potential pertaining to this experiment. Bottom-left and bottom-right panels: Angle between the
boresight direction of the sensor and each forbidden direction; the red areas represent the forbidden
zones. Time is measured in seconds.

Figure 5.10: Numerical results obtained for the Experiment 3 tackled with a virtual additive potential.
Left panel: 3D visualization of boresight trajectory. Right panel: 2D representation of the maneuver.
The green cross represents the attitude reached at the end of the simulation and the desired one, while
the green circle represents the initial attitude.
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As a further attempt, the problem is tackled by a mixed additive-multiplicative potential-
based approach, as explained in Section 3.3. In this experiment, the potential and the associated
torque read
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(5.6)

The values of the coefficients chosen in this experiment are KA “ 2.7 ¨ 10´1JC Kf “ 2JC,
KF “ 1 ¨ 10´3JC.

The numerical results obtained are illustrated in the Figure 5.12 while the trajectory com-
pleted is represented in Figure 5.11.

Figure 5.11: Numerical results obtained for the Experiment 3 tackled with a virtual mixed additive-
multiplicative potential. Left panel: 3D visualization of boresight trajectory. Right panel: 2D represen-
tation of the maneuver. The green cross represents the attitude reached at the end of the simulation and
the desired one, while the green circle represents the initial attitude.
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Figure 5.12: Numerical results obtained for the Experiment 3 tackled with a virtual mixed additive-
multiplicative potential. Top-left panel: values of the distance between the actual attitude and the desired
attitude, and value of the potential during reorientation. Bottom-left and right-hand panels: Angle
between the boresight direction of the sensor and each forbidden direction; the red areas represent
forbidden zones. Time is measured in seconds.

In this experiment, the result achieved by the control algorithm in the given time frame
is RPI “ 100%. In this case using two different potential-based controls does not show any
particular convenience supplying almost the exact trajectories and data.

5.1.4 Experiment 4

The fourth experiment concerning reorientation is based on a mandatory zone and three forbidden
zones, it corresponds to Case 3 discussed in the paper [7]. The Table 5.6 shows the reorientation
data pertaining to this simulation, firstly completed using an additive potential-based control
algorithm using the following equations:
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Description Numerical value
Initial attitude Ri p0.714, 0.637, 0.13,´0.26q

Desired attitude Rd p´0.23,´0.08,´0.491, 0.84q

Mandatory direction eM r0.813 ´ 0.548 ´ 0.192sJ

Forbidden direction eF1 r0 1 0sJ

Forbidden direction eF2 r0 ´ 0.819 0.573sJ

Forbidden direction eF3 r0.122 0.139 ´ 0.982sJ

Aperture of the mandatory cone θM 70 (°)
Aperture of the first forbidden cone θF1 40 (°)
Aperture of the second forbidden cone θF2 40 (°)
Aperture of the third forbidden cone θF3 20 (°)
Initial angular speed 03

Table 5.6: Numerical data corresponding to the numerical Experiment 4 using an additive potential-
based control algorithm. The rotation matrices are expressed in JPL quaternion notation for the sake of
notation conciseness.

The values of the coefficients chosen in this experiment are KA “ 4.5 ¨ 10´2JC, ℓ2 “ 50,
Kf “ 1.8JC, KM “ 4 ¨10´3JC, KF “ 6 ¨10´3JC. The results obtained with an additive potential
are illustrated in the Figure 5.14 while in Figure 5.13 is displayed the trajectory of the evolution
of the attitude projected in two dimensions.

Figure 5.13: Trajectory obtained for Experiment 4 tackled with a virtual additive potential. The two red
circles at the start of antenna and telescope trajectories represent their start points, while the red crosses
represent the final points of the two. The blue crosses are the desired final points for the boresight of the
already mentioned instrumentation.
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Figure 5.14: Numerical results obtained for the Experiment 4 tackled with a virtual additive potential.
Top-left panel: values of the distance between the actual attitude and the desired attitude, and value of
the potential during reorientation; the dashed line represents the theoretically evaluated minimum value
of the potential pertaining to this experiment. Bottom-left and bottom-right panels: Angle between the
boresight direction of the sensor and each forbidden direction, as well as angle between the boresight
direction of the antenna and the mandatory direction; the red areas represent the forbidden zones, while
the green area represent the mandatory zone. Time is measured in seconds.

While the optimization-based control algorithm effectively keeps the boresight of the sensor
away from the forbidden cones and the boresight of the antenna within the mandatory zone, the
attained orientation does not match at all the desired one and also the algorithm is not able to
reach the minimum of the potential function. In fact, the result achieved by the control algorithm
in the given time frame is only RPI “ 32.3%.

As a further attempt, the problem is tackled by a mixed additive-multiplicative potential-
based approach, as explained in Section 3.3. The values of the coefficients chosen in this
experiment are Kf “ 2.5JC, KM “ 1.5 ¨ 10´1JC, KF “ 1.2 ¨ 10´2JC. The numerical results
obtained are illustrated in the Figure 5.15 and the trajectory is displayed in Figure 5.16 while
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the potential and torque related to this experiment read:
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Figure 5.15: Numerical results obtained for the Experiment 4 tackled with a virtual mixed additive-
multiplicative potential. Top-left panel: values of the distance between the actual attitude and the desired
attitude, and value of the potential during reorientation. Bottom-left and bottom-right panels: Angle
between the boresight direction of the sensor and each forbidden direction, as well as angle between the
boresight direction of the antenna and the mandatory direction; the red areas represent forbidden zones,
while the green area represent the mandatory zone. Time is measured in seconds.
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Figure 5.16: Trajectory obtained for the Experiment 4 tackled with a virtual mixed additive-multiplicative
potential. The two red circles at the start of antenna and telescope trajectories represent their start points,
while the red crosses represent the final and desired points of the two.

The result achieved by the control algorithm in the given time frame is RPI “ 100%.
The difference between the two strategies is substantial, in fact, the trajectories follow two

completely different paths and end up with very different RPI percentages. In the additive
potential case, the path chosen by the algorithm makes the boresight of the telescope go towards
the right of the first forbidden zone as seen in Figure 5.13 while instead in the mixed potential
case the telescope boresight goes towards the left of the obstacle. By going to the right of the
obstacle, in Figure 5.13, is clear that the trajectory in the given time frame stops (before reaching
the desired attitude signaled with blue crosses) in such way that the telescope boresight is very
close to the first forbidden zone while the antenna boresight is very close to the barrier of the
mandatory zone, this is due to physical constraints. In fact, the trajectory encounters a point
in which the satellite physically cannot go beyond because the angle between the right most
outer parts of the forbidden zone and the mandatory zone is greater than the angle between the
boresight of the antenna and the telescope and if the algorithm decides to iterate over the points
marked with the two red crosses (one in the mandatory zone and one near the first forbidden
zone), one constraint of the two would be broken and either the antenna would exit the mandatory
zone or the telescope would fall inside the obstacle. To better understand the situation, we can
use Figure 5.14 as reference where is noticeable in the bottom panels two particular behaviors
of the mandatory and forbidden angles that just skim the surface of respectively, the green and
red areas, denoting that the constraints are really close to be broken. In the case tackled with a
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virtual mixed potential, instead, the algorithm runs a different approach. It makes the telescope
boresight pass through the left side of the first obstacle, in this manner the antenna boresight
is free to move at first away from the desired attitude and once the telescope has avoided the
obstacle, both boresight can finally move towards the desired attitude while satisfying both
constraints given (this time the two red crosses overlap the two blue crosses in Figure 5.13
because the attitude reached coincides with the desired one).

5.2 Numerical simulations about rendezvous

A number of experiments concerning rendezvous are performed. A first set of experiments are
performed in the presence of obstacles whose position is fixed with respect to the reference
frame FS. A second set of experiments are devoted to testing the behavior of the guidance
algorithm in the presence of moving obstacles. A third set of experiments are, instead, dedicated
to evaluating the performance of a guidance strategy that consists in joint translation and attitude
control.

5.2.1 Experiment 1

The first experiment is performed by assuming the presence of obstacles whose position is
fixed with respect to the reference frame FS. The aim of this experiment is to compare the
performances of the three control strategies described in Section 4.1 in terms of propellant
consumption. In this experiment, it is set h “ 0.01 (sec).

The initial location, desired location and initial speed are summarized in Table 5.7.

Description Symbol Value
Initial location pi r´16,100 0 3, 000sJ (m)
Initial speed 9pi r´0.5 0 0.01sJ (m/s)
Desired location pd r0 0 150sJ (m)

Table 5.7: Reference values for the Experiment 1 about cruising phase. Recalling that the Z (or Rbar)
axis points toward the Earth, hence a quota of 150 m in the LVLH reference frame indicates a target
location below the station (as seen from the Earth).

Notice that the control algorithm is implemented in such a way that the cruising phase is
deemed concluded whenever the distance between the spacecraft and the target is less than 50

m.
The Table 5.8 shows the location of four obstacles along with their safety radius.
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Safety radius (m) Location (m)
η1 “ 650 (m) o1 “ r´10, 000 0 1, 500sJ (m)
η2 “ 350 (m) o2 “ r´5, 500 0 1900sJ (m)
η3 “ 150 (m) o3 “ r´2, 800 0 0sJ (m)
η4 “ 50 (m) o4 “ r´2, 100 0 200sJ (m)

Table 5.8: Location and safety radius of the obstacles ordered by size. All obstacles happen to locate
below the station (as seen from the Earth).

In this experiment, the components of the random disturbance Frd are zero-mean random
Gaussian variables with standard deviation of 100 N. Notice that the random disturbance takes
a non-zero component along the y axis, henceforth the motion of the spacecraft will take place
slightly off the x´ z plane and the control algorithm will need to compensate for such unwanted
effect (the desired position is located on the vertical plane, in fact).

The numerical results are illustrated in Figure 5.17, which shows the trajectory of the
spacecraft along the x ´ z plane in the LVLH coordinate frame, and in Figure 5.18, which
shows the trajectory of the spacecraft along the landscape of the virtual potential function used
to achieve automated guidance.

Figure 5.17: Numerical results obtained for the Experiment 1 about cruising phase: Trajectory in the
LVLH coordinate frame. Reminding that the X (or Vbar) axis points toward the direction of motion
over the orbit, hence a negative value of the x coordinate indicates a spacecraft that is, in fact, chasing
the space station from behind. The ovals denote the boundaries of the safety regions surrounding each
obstacle.
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In particular, the Figure 5.17 shows how the spacecraft is enabled to traverse the space,
keeping sufficiently far from the obstacles while approaching the target location. The results
displayed in this figure show that, in the absence of obstacles, the spacecraft is driven to take the
shortest router, except that, in the vicinity of the obstacles, the spacecraft is forced to turn around
the safety surface of the obstacles found on its path, hence taking a detour from a straight path.
The degree of curvature depends certainly on the chosen values of the parameters, which may
be subject to a more or less conservative design, and on the safety radii of the obstacle which,
to some extent, depend on the sensitivity range of the sensors mounted aboard the spacecraft.
Notice that it is assumed that the space station has mapping abilities and provides a detailed map
of the main obstacles sites and sizes so that a spacecraft endowed with proximity sensors may
safely navigate through them.

Figure 5.18: Numerical results obtained for the Experiment 1 about cruising phase: Trajectory along
the landscape of the virtual potential function.

On the other hand, the Figure 5.18 serves to illustrate the shape and the function of the
devised potential energy function. The landscape of the potential presents a global minimum
corresponding to the desired location, as well as four peaks in correspondence to the obstacles’
central location. The trajectory of the spacecraft develops bypassing the areas of higher potential
while “rolling down” toward the minimal-potential location.

Such results are obtained by setting the values of the parameters defined in the context of
attractive-repulsive potential as HA “ 10´2 and HR “ 106. Obtained trajectories appear quite
similar to one another and the three control strategies are able to achieve the desired location
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where the cruising phase ends.
However, the consumption of propellant resulting from the application of the three control

strategies results to be quite different. The consumption resulting from the three regulation
strategies are displayed in the Figure 5.19. The introduction of impulsive control hence re-
sults in a sensible reduction of propellant consumption compared to non-impulsive regulation.
Furthermore, the reduction of total mass corresponding to the regulation algorithm based on
impulsive control and variable desired speed compared to the constant-speed case is similar and
depending on different cases it produces a better or worse performance. This happens because
of a different behavior at the end of cruising phase, while the first control, thanks to its lowest
speed at the end of cruising phase, follows the desired direction and so takes a shorter route to
the far-end phase end point, the second control is less affected by any changes of trajectory due
to a higher speed and follows a wider path to reach the desired point.

Figure 5.19: Numerical results obtained for the Experiment 1 about cruising phase: Cold gas consump-
tion.

A further element of evaluation of the control strategies under comparison is the final speed
upon reaching the predefined target location. No control requirements are defined on this matter,
hence the control strategies do not embody any information about a final desired speed. However,
the regulation strategy based on variable speed implicitly makes the final speed vanish to zero
since it is proportional to the distance to the target. The effects of explicit speed limitation are
illustrated in the Figure 5.20, from which it is apparent how, in this instance, the spacecraft
arrives ready to start the docking sequence.

50



Chapter 5. Results of numerical experiments

Figure 5.20: Numerical results obtained for the Experiment 1 about cruising phase: Detail of the final
guidance maneuver to attain docking. The color code is the same as in previous figures concerning
Experiment 1. Ht “ 1 for all the docking phase.

The position at which the far-end maneuver stops is indicated as pfe P R3 “ r40 0 0sJ (m),
while the position at which the near-end maneuver stops is indicated as pne P R3 “ r15 0 0sJ

(m). Notice that the final target pne is located 15 m right to the center of the station – whose
coordinate in the FS system is r0 0 0sJ by definition – to comply with the actual position of the
docking port.

Because of the above-mentioned evaluation elements, it is deemed it appropriate to perform
the subsequent experiments only on the basis of the impulsive-control, variable-speed regulation
strategy.

Since in the experiments a disturbance is present even along the y axis, it is interesting to
evaluate the effects of such disturbance on the ability of a spacecraft to adhere to the orbital plane.
The control strategies do not have as explicit goal to keep the motion of a spacecraft over the
vertical (x ´ z) plane but the final guidance implicitly attains such goal. The Figure 5.21 shows
the effects of the disturbances on the y coordinate of the spacecraft in the LVLH reference frame.
Worth it to highlight how in the proximity of the first obstacle along the route, corresponds a
peak of off-orbit displacement, this result is a consequence of the repulsive force, which is
remarkably strong due to the radius of that obstacle, combined with natural y displacement
caused by random disturbances.
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Figure 5.21: Numerical results obtained for the Experiment 1 about cruising phase: Detail of the off-orbit
effect caused by random disturbances.

5.2.2 Experiment 2

The aim of the second experiment is to verify the correct behavior of the guidance algorithm
of the first experiment in a case of moving obstacles. The same obstacles as Experiment 1 are
now supposed to shift over time in a uniform rectilinear motion by setting an initial speed and a
direction angle. Every obstacle is considered moving on the x´z plane in the LVLH coordinate
frame. The initial conditions are shown in Table 5.9.

Speed (m/s) Direction angle (°)
ν1 “ 1 (m/s) θ1 “ 140 (°)
ν2 “ 0.5 (m/s) θ2 “ ´80 (°)
ν3 “ 0 (m/s) θ3 “ 0 (°)
ν4 “ 0 (m/s) θ4 “ 0 (°)

Table 5.9: Speed and direction angles of the obstacles ordered by size. Note that the last two obstacles
are not moving.

The Figure 5.22 shows the trajectory of the spacecraft during the cruising phase. As shown
in the figure, the algorithm behaves correctly near the obstacles by directing the spacecraft away
from the obstacles’ motion direction, while it performs as usual for the last two fixed obstacles.

As already described, to ensure the avoidance it is considered a spacecraft endowed with
sensors capable to detects debris and other obstacles from enough distance or a spacecraft
already provided with the position of each obstacle over time.
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No other major differences can be evaluated between this experiment and the previous one
because the results about propellant consumption and off-orbit displacement depends majorly
on the obstacles’ direction and speed.

Figure 5.22: Numerical results obtained for the Experiment 2 about cruising phase: Obstacles moving
in a uniform rectilinear motion. The blue and green dashed lines represent the position, respectively,
of obstacle 3 and obstacle 4, at minimum distance from spacecraft during cruising phase. While the
continuous blue and green ovals without a red dot inside are the final positions of moving obstacles.

5.2.3 Experiment 3

The purpose of the third experiment on rendezvous is to evaluate how joint position/orientation
regulation affect the performance of spacecraft guidance algorithm.

In the present experiment, random disturbances on the mechanical torque affecting the
orientation of the spacecraft are taken into account. In particular, the non-entries of the term
Trd are chosen to be zero-mean Gaussian random variables of standard deviation 0.01 N¨m.

Four attitude-regulation control torques are tested, corresponding to the cases discussed in
Section 4.4. The values of the parameters are chosen to be KS “ 2.5 JC, KFBP “ 0.002 JC

and Kf “ 2.5 JC. (As in the previous experiments, the coefficients are parameterized as units
or fractions of the inertia coefficients JC for convenience.) The numerical results are illustrated
in Figure 5.23, which shows the trajectory of the spacecraft along the x ´ z plane in the LVLH
coordinate frame.
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Figure 5.23: Numerical results obtained for the Experiment 3 about cruising phase: Trajectory in the
LVLH coordinate frame.

From this figure, it appears clearly that the variable-desired-attitude strategy fails in the
proximity of the largest obstacle. On the other hand, the strategy based on not setting a desired
attitude, the one based on a fixed (horizontal) attitude and the ones based on velocity alignment
perform similarly to one another.

The above results tell that the best performing control strategy corresponds to setting a
constant desired attitude (which, in the present endeavor, is chosen to be the docking orientation).
It should be, however, recognized that the strategy that entails the least consumption of propellant
consists in not operating the reaction wheels at all during the cruising phase, hence leaving the
spacecraft at the mercy of inertia and little accidental impacts.

During the docking maneuver, both position and orientation regulation are of prime impor-
tance, to guarantee that the spacecraft approaches the docking port of the space station at the
right location and with the right orientation.

The Figure 5.24, shows the trajectory of the spacecraft along the x ´ z plane in the LVLH
coordinate frame during a docking phase.

From the figure, it is readily observed that in all cases the trajectory of the spacecraft
keeps well behind the safety contour during the far-end-approaching phase, while the near-end-
approaching maneuver drives the spacecraft straight behind the docking port.
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Figure 5.24: Numerical results obtained for the Experiment 3 about docking phase: Trajectory in the
LVLH coordinate frame. (Since the Z axis actually points toward the Earth, the picture looks upside
down.) The dashed green line represent the safety cardioid-shaped contour that the spacecraft should
keep out of.

As a further element of evaluation, the Figure 5.25, shows the velocity of the spacecraft
along the x axis and along the z axis in the LVLH coordinate frame during the whole rendezvous
maneuver.

Figure 5.25: Numerical results obtained for the Experiment 3 about rendezvous: Velocity of the spacecraft
in the LVLH coordinate frame.

The velocity curves corresponding to a variable-speed, impulsive control strategy in con-
nection with the four discussed orientation regulation methods show that the no-desired-attitude
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and the variable-desired-attitude methods stand out negatively. Such methods, as a matter of
fact, cause a sudden rise of velocity in the proximity of large obstacles.

The Figure 5.26, shows the consumption of propellant during the whole rendezvous maneu-
ver. Vertical lines within the figure stand as delimiters of the three different phases of rendezvous
(cruising, far-end approach and near-end approach).

From the mass-decay curves emerges that most propellant is consumed during the cruising
phase. Also, the curves show that the fixed-horizontal-attitude strategy causes the most limited
consumption of propellant during the entire rendezvous maneuver.

In addition to the above elements to evaluate the behavior of the control strategies under
examination, the Figure 5.27 shows the orientation of the spacecraft along the entire rendezvous
maneuver in terms of Euler angles computed on the basis of the instantaneous attitude matrix-
indicator R.

Figure 5.26: Numerical results obtained for the Experiment 3 about rendezvous: Propellant consumption.

It is immediate to notice that the speed-alignment-based attitude control strategy does not
stand as particularly appealing as it leads to a very low convergence rate and, if sped up, entails
an excessive disturbance to the navigation algorithm.

It is important to remark that the choice of a constant desired attitude is possible only if the
spacecraft is provided with a sufficient number of on-board proximity sensor positioned all over
the spacecraft, if that is not possible due to different reasons, the best choice would be to let the
chaser pointing always toward the space station, but this strategy has not been elaborated in the
present thesis.
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Figure 5.27: Numerical results obtained for the Experiment 3 about rendezvous: Euler angles computed
on the basis of the instantaneous attitude matrix-indicator R.

5.3 Illustration of a complete rendezvous maneuver

From the previous evaluated experiments, a complete maneuver is performed from initial aim
point to a docking port through cruising, far-end approaching and near-end approaching.

Figure 5.28 illustrates the cruising and docking phases. Shown result is performed using the
variable-speed impulsive control algorithm explained in Section 4.3 and, for attitude control,
fixed horizontal desired attitude strategy described in Section 4.4, these already mentioned strate-
gies are the most suitable for cruising phase among the ones studied in this thesis (weaknesses
and strengths are evaluated in Experiment 1 and Experiment 3). The far-end and near-end phases
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are performed as described in Sections 4.5 and 4.6. All constants used come from Experiment
3.

From the figure below is clear that a smooth trajectory is performed across the obstacles and
around the space station, while the spacecraft keeps enough far from the radii of the obstacles
and from the cardioid region. A fixed attitude control strategy is able to point the spacecraft
toward the docking axis and, as seen in Experiment 3, to reduce the propellant consumption.
Hence, the solution obtained ensures a steady rendezvous and a stable trajectory during all three
phases.

Figure 5.28: Complete rendezvous from initial point to docking port: Trajectory in the LVLH coordinate
frame. The main plot shows the complete trajectory from the initial aim point to the arrival docking port,
while the box is a zoom in of far-end and near-end approaching.
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Chapter 6

Conclusion

The aim of the present thesis was to propose a framework to model, simulate and control a small
unmanned spacecraft, orbiting in close proximity of a space station, through manifold calculus.
Two maneuvers were modeled and simulated, that is, reorientation under directional constraints
and rendezvous in the presence of fixed as well as moving obstacles.

Obstacle avoidance was traditionally considered a high-level planning problem, while in
recent research endeavors part of such task has been shown to be manageable by real-time
low-level control algorithms [31]. The present thesis follows such modern line of research and
is based on multi-objective optimization.

The main theoretical instrument utilized in the present thesis is that of virtual attractive-
repulsive potential. In fact, a physical object moves in a force field derived as anti-gradient of
a potential function which embodies localized information about the spacecraft to be guided
and the surrounding environment. It was believed that the complexity of tasks that can be
tackled by means of this approach is limited, because of local minima in the potential function
[31] which may lead a controlled object to a stable configuration different from the intended
goal. However, it has been shown even by the present contribution that virtual-potential-based
guidance, if properly designed and tuned, shows the ability to lead to acceptable results under
reasonable tolerance levels.

A distinguishing feature of the present thesis is that, unlikely most research papers in the
area that invoke the use of coordinates or quaternions, the mathematical model of the roto-
translational motion of a spacecraft as well as the design of control fields were written in a
coordinate-free Lie-group-type notation.

A number of numerical experiments, aimed at complementing the theoretical developments,
were discussed to illustrate the achieved progress and to guide the reader though a series of
evaluations. Such evaluation stages were aimed at establishing which control strategy, among
various possible combinations, appears to be the most convenient one.
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During the development of the present thesis, a number of minor issues emerged which
would need a closer examination.

An aspect to pay attention to is the effect of repulsive fields far away from the obstacles,
both physical and directional, which may drive a spacecraft slightly off-track with respect to
the intended target. Such problem has been dealt with by tuning the constant parameters in the
guidance algorithm, although a hard-limiting strategy would perhaps prove more effective as it
would cut off completely the repulsive fields whenever sufficiently far from their source.

A further aspect to pay attention to concerns alignment of a spacecraft attitude to a docking
axis during final guidance in a robust way. Currently, final guidance is performed by setting up
a torque term that tends to keep the reference frame FC aligned to the frame FS irrespective
of possible orientation constraints or disturbances. Attitude control during such phase may be
made more robust by introducing mandatory as well as forbidden directions and by enriching
the torque control field by components related to such directional constraints.
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Appendix

In a computer code, a unit quaternion denotes a point on a 4D hypersphere S3 and a 3D rotation
matrix denotes an element on the special orthogonal group SOp3q up to machine precision.
While a rotation matrix is seldom expressed directly through its numerical entries, a quaternion
often is. When the entries of a quaternion are described by a small number of digits, e.g., by
four decimal digits, its conversion to a rotation matrix does not result in a true rotation. The
conversion of a quaternion rqi qj qk q0s

J written in JPL notation to a rotation matrix R may be
expressed as

R̃ “

»

—

–

1 ´ 2pq2j ` q2kq 2pqiqj ´ qkq0q 2pqiqk ` qjq0q

2pqiqj ` qkq0q 1 ´ 2pq2i ` q2kq 2pqjqk ´ qiq0q

2pqiqk ´ qjq0q 2pqjqk ` qiq0q 1 ´ 2pq2i ` q2j q

fi

ffi

fl

,

where q0 denotes the real part of the quaternion. To fix non-unitarity, it is added a projection to
the SOp3q group based on singular value decomposition (SVD), namely

UDV J
“ R̃, R :“ UV J,

where U, V denote the orthogonal factors of the SVD.
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