
i

Università Politecnica delle Marche

Department of Engineering

Master’s Degree in Mechanical Engineering

Sviluppo di un algoritmo di Deep-learning per il

riconoscimento automatico dell’area inquadrata dalla

telecamera di un dispositivo portatile per la

rilevazione del Gap&Flush azionato da operatori

umani

Deep-learning based automated recognition of the

area framed by the camera of a hand-held gap and

flush measurement device operated by human

operators

Candidate:

Samuele Calcabrini

Advisor:

Prof. Paolo Castellini

Coadvisor:

Ing. Nicola Giulietti

Prof. Paolo Chiariotti

Academic Year 2020-2021

Università Politecnica delle Marche

Department of Engineering

Master’s Degree in Mechanical Engineering

Sviluppo di un algoritmo di Deep-learning per il

riconoscimento automatico dell’area inquadrata dalla

telecamera di un dispositivo portatile per la

rilevazione del Gap&Flush azionato da operatori

umani

Deep-learning based automated recognition of the

area framed by the camera of a hand-held gap and

flush measurement device operated by human

operators

Candidate:

Samuele Calcabrini

Advisor:

Prof. Paolo Castellini

Coadvisor:

Ing. Nicola Giulietti

Prof. Paolo Chiariotti

Academic Year 2020-2021

Università Politecnica delle Marche

Master’s Degree in Mechanical Engineering

Department of Engineering

Via Brecce Bianche – 60131 Ancona (AN), Italy

To my family, my girlfriend,

my fellow students and my friends

Sommario

La Quarta Rivoluzione Industriale si basa sulla cosiddetta Trasformazione

Digitale. La tecnologia ha fatto passi da gigante negli ultimi anni e questo ha

portato alla creazione di vari dispositivi intelligenti. [1]

La spinta alla digitalizzazione arriva principalmente dal settore industriale; le

aziende sono chiamate a competere in modi diversi, puntando non solo sulla

qualità del prodotto, ma anche sull’innovazione e sui servizi.

L’impatto del processo digitale sui modelli di business è enorme.

Il modo in cui sia i clienti che i fornitori interagiscono tra loro sta cambiando

rapidamente grazie alla sempre maggior implementazione di un processo pro-

duttivo articolato e automatizzato all’interno della catena di fornitura.

Prodotti e servizi stanno cambiando, rinnovandosi e riposizionandosi grazie

all’inserimento di dispositivi al tempo stesso più funzionali e user-friendly messi

a disposizione da una vasta gamma di applicazioni digitali.

Lo scenario competitivo e il modo in cui le imprese devono rispondere è in con-

tinua evoluzione; le aziende devono il loro successo principalmente all’efficienza

della loro supply chain. Ciò ha portato ad un profondo cambiamento nella

domanda in tutti i principali settori di utenza, dalla finanza all’industria, dalla

distribuzione ai servizi di pubblica utilità.

Una domanda che ora è più che mai focalizzata sulle caratteristiche e sulle

specifiche qualità di nuovi componenti, chiamati Digital Enabler, in quanto

consentono all’utente di interagire e proiettarsi sempre più verso l’utilizzo di

operazioni innovative nel campo della trasformazione digitale. [5]

In questo mondo pervasivo, dispositivi intelligenti come smartphone, veicoli di

ultima generazione, smartwatch o un qualsiasi altro dispositivo Internet of Thing

(IoT) stanno diventando onnipresenti e nella maggior parte dei casi riguardano

la comunicazione e l’archiviazione di informazioni in specifici database chiamati

cloud.

Con la proliferazione dei dispositivi IoT e l’avvento dei social media, viene

generata un’enorme quantità di dati e la maggior parte di essi è non strut-

turata e multimodale. Questo improvviso aumento di scambio di una notevole

quantità di informazioni ha comportato la necessità di un’accurata analisi dei

dati generati, che a sua volta ha creato molte opportunità per i produttori

e specifiche esigenze per gli utenti, che richiedono sempre più ampi spazi di

archiviazione e un’accurata elaborazione dei dati.

ix

Accanto alla proliferazione dei dati, un altro aspetto fondamentale e stimolante

nel regno dell’Industry 4.0 è la cosiddetta Computer Vision, che in gran parte

rappresenta il futuro della controversa ricerca nel campo del Machine Learning

(ML) e del Deep Learning (DL) - la base dell’apprendimento automatico che

nel prossimo futuro potrebbe consentire alle macchine di prendere le proprie

decisioni. Questo processo richiede tecniche computazionalmente sempre più

efficienti per utilizzare questi dati in modo significativo. [1]

Nel campo del ML e del DL, un ruolo chiave è giocato dalle Reti Neurali Artifi-

ciali, le Artificial Neural Networks, modelli matematici che traggono ispirazione

dalla funzione del cervello biologico. [14]

La maggior parte delle applicazioni di visione artificiale ruota attorno alle

architetture delle Reti Neurali Convoluzionali, le Convolutional Neural Network

(CNN), una tipologia di rete neurale artificiale basata sul sistema di visione

degli esseri umani. [1] [14]

La visione artificiale gioca un ruolo fondamentale per i problemi di Classifi-

cazione, che compaiono quando la rete deve essere addestrata a riconoscere le

varie classi di dati che vengono fornite in input. Un modello di classificazione

si basa principalmente su tre set di dati: il Training set, in cui si trovano le

immagini utilizzate per addestrare la rete; il Validation set, che contiene le

immagini usate per valutare le prestazioni del modello e infine il Test set, con le

immagini usate per testare il modello e valutarne la capacità di generalizzazione.

In questo contesto, si inserisce il progetto GO0DMAN (http://go0dman-project.

eu), un progetto europeo che consiste nello sviluppo di un dispositivo portatile

intelligente, dotato di un laser scanner usato per la misurazione del Gap &

Flash, il (G3F). Il dispositivo G3F è destinato all’uso in una linea di produzione

automobilistica per il controllo di qualità. Puntando il laser sui punti di in-

tersezione tra le diverse parti di un’auto, il G3F restituisce la misurazione del

Gap & Flash come output, consentendo di valutare eventuali difetti presenti nei

veicoli durante il processo produttivo.

Poiché il G3F si basa su un sensore laser a triangolazione, questo studio esamina

e produce un’architettura di classificazione delle immagini basata sulle Reti

Neurali Convoluzionali (CNN).

Il sistema permette di riconoscere diversi colori e i vari componenti di una

determinata auto.

In questo modo è possibile regolare la potenza del laser in base alle diverse

tipologie di colori e materiali per ottenere un miglior risultato di acquisizione.

Lo studio è stato affrontato cercando, in primo luogo, di risolvere un problema

di classificazione binaria connesso a due diversi tipi di materiali, che ha portato

all’identificazione di due classi, denominate lamiera-lamiera e lamiera-fanale.

E’ stata eseguita l’ottimizzazione degli iperparametri della rete al fine di poter

identificare i valori e i parametri fondamentali per ottenere una migliore accu-

x

ratezza della rete neurale.

Dopo aver valutato i risultati della classificazione binaria, si è andati quindi

ad affrontare le problematiche legate al modello multiclasse, alimentando la

rete neurale con un set di dati costituiti da 40.000 immagini che sono servite

per addestrare la rete a riconoscere 10 diverse combinazioni di colori e parti di

auto, che hanno portato alle seguenti 10 classi: bianco-bianco, bianco-fanale,

nero-nero, nero-fanale, rosso-rosso, rosso-fanale, grigio-grigio, grigio-fanale, gri-

gio scuro-grigio scuro e grigio scuro-fanale L’ottimizzazione degli iperparametri,

effettuata per la classificazione binaria, ha aiutato ad affrontare anche il prob-

lema della classificazione multiclasse.

I risultati sono stati analizzati valutando l’accuracy e la loss, grazie alle quali è

stato possibile valutare le prestazioni del modello.

Il presente lavoro è strutturato come segue:

• Capitolo 1 : in questo capitolo introduttivo viene fatta una panoramica

dell’Industria 4.0, concentrandosi principalmente sul ruolo della mis-

urazione; alla fine del capitolo viene presentato il dispositivo G3F insieme

agli obiettivi e alle finalità di questo studio;

• Capitolo 2 : questo secondo capitolo descrive in dettaglio le tecnologie

all’avanguardia disponibili in letteratura, quali Sistemi di visione, Machine

Learning e Deep Learning per la Computer Vision;

• Capitoli 3 : il terzo capitolo spiega il lavoro svolto; elenca ed elabora

integralmente le varie architetture che sono state implementate per la

realizzazione di questo specifico progetto;

• Capitolo 4 : il capitolo conclusivo riassume lo studio e il lavoro complessivo

insieme ad una valutazione finale dei risultati raggiunti e una panoramica

sui possibili futuri sviluppi del progetto in questione.

Una volta effettuate varie prove al fine di trovare la combinazione di iper-

parametri in grado di restituire il miglior risultato possibile, è stato ottenuto un

classificatore capace di distinguere 10 differenti classi con un’accuracy prossima

all’unità nella fase di training e pari a circa 0.94 per la validation. Per quanto

riguarda la loss invece, si ha un valore prossimo allo zero per l’addestramento, e

un valore attorno allo 0.3 durante la validazione.

Questa leggera perdita di accuratezza del modello tra la fase di training e di

validazione è però in parte compensata dal fatto che il classificatore tende a

confondere le auto bianche da quelle grigio chiare, così come ha difficoltà nel

distinguere una macchina nera da una grigio scura (distinzione a volte impossi-

bile anche all’occhio umano). Al fine dello scopo con cui è stato svolto il lavoro,

xi

risulta comunque irrilevante per il G3F trovarsi di fronte ad un’auto bianca o

grigio chiara, in quanto la potenza che dovrà essere emessa dal sensore laser a

triangolazione al fine di avere un’acquisizione il più possibile accurata, è per lo

più identica; discorso analogo può essere fatto per auto nere e grigio scure.

Il lavoro eseguito è indice del valore aggiunto che gli algoritmi di Intelligenza

Artificiale sono in grado di apportare al settore industriale, favorendo una

maggiore velocità ed una miglior accuratezza delle analisi, con un guadagno in

termini di tempistiche durante la fase produttiva e una importante riduzione

degli sprechi, fattori chiave nel mondo dell’Industry 4.0.

xii

Abstract

The Fourth Industrial Revolution is based on the so called Digital Transfor-

mation. Technology has advanced by leaps and bounds over the past few years,

and this has led to the creation of various smart devices.[1]

The push for digitalization comes mainly from the industrial sector; companies

are called to compete in different ways, focusing not only on the quality of

products, but also on services and innovation.

The impact of digital processing on business models has been huge.

The way in which both customers and suppliers interact is changing at a very

fast pace thanks to the ever increasing implementation of articulated and auto-

mated process within the supply chain.

Products and services are changing, renewing and repositioning themselves

thanks to the inclusion of features that are both more functional and user-

friendly which are made available by a plethora of digital applications.

The competitive scenario and the way in which business have to respond is

evolving constantly; companies owe their success predominantly to the efficiency

of their supply chain. This brought about a profound change in demand in all

major user sectors, from Finance to Industry, from Distribution to Utilities.

Demand is now more focused than ever on the specific features and qualities

of innovative components, such as Digital Enabler, which enable the user to

interact in a better way and perform innovative operations in the field of digital

transformation.[5]

In this pervasive world, smart devices such as smartphones, last-generation

vehicles, smartwatches, or any Internet of Thing (IoT) devices are becoming

ubiquitous and in the majority of cases involve communicating and storing

information with huge database centers called cloud.

With the proliferation of IoT devices and the advent of social medias, a huge

amount of multimedia data is being generated and most of it is unstructured

and multimodal. This sudden rise in the exchange of huge amounts of informa-

tion has meant a sudden rise of demand for computation of multimedia data

which has in turn created many opportunities for producers and special needs

for the users who increasingly require larger storage spaces and accurate data

processing.

Alongside the proliferation of data, another challenging aspect in the realm of

the 4.0 industry is the so called Computer Vision which in large part represents

xiii

the future of the controversial Machine Learning (ML) and Deep Learning

(DL) research - the basis of automatized learning that could allow in the near

future machines to take their own decisions. This process will require various

computationally efficient techniques to make use of this data in a meaningful

manner.[1]

In the field of ML and DL there are Artificial Neural Networks, mathematical

models that draw inspiration from the function that make a biological brain

work.[14]

Most of the computer vision applications revolve around Convolutional Neural

Network (CNN) architectures, a typology of artificial neural network based on

the vision system of human beings. [1] [14]

Computer Vision plays a fundamental role for Classification issues, which appear

when the network is to be trained to recognize the various classes of data that

are provided during the input process. A classification model is mainly based

on three sets of data: the Training set, in which images are situated and used

to train the network; the Validation set, which contains the images used to

evaluate the model performance and finally the Test set where the images are

located to test the model.

The GO0DMAN project, a European project which regards the development of

a smart portable laser scanner for Gap&Flash measurement (G3F), fits well

into this context. The G3F device is intended to be used in an automotive

production line for quality control. By aiming the laser at the intersection

points between different parts of a vehicle, the G3F returns the measurement

of the Gap&Flash as output, allowing to evaluate eventual defects present in

the cars during the production process.

Since the G3F is based on a triangulation laser sensor, this study examines

and produces an architecture of image classification based on the Convolutional

Neural Network (CNN).

The system allows to recognize different colours and the various components of

a vehicle.

In this way it is possible to adjust the laser power according to the different

typologies of colours and materials in order to obtain a better acquisition result.

We begun our study by trying to address a binary classification problem con-

nected with two different types of materials, which led to the identification

of two classes, named sheetmetal-sheetmetal and sheetmetal-headlight . The

optimization of the network hyperparameters was carried out to identify the

values and parameters which are fundamental to obtain a better accuracy of

the neural network.

After evaluating the results of the binary classification, we then proceeded to

address issues connected to the multiclass model, by feeding the neural network

with data made up of 40, 000 images which served to train the network to rec-

xiv

ognize 10 different combinations of colours and parts: white-white, white-light,

black-black, black-light, red-red, red-light, grey-grey, grey-light, dark grey-dark

grey and dark grey-light, where the colours represented the sheet-metal colour

scheme of the car and the light term indicated the headlight of the vehicle. The

optimization of hyperparameters, carried out for the binary classification also

helped to address the multiclass problem.

The results were analyzed by assessing the accuracy and the loss factors, by

which it was possible to evaluate the performance of the model.

The present work is structured as follows:

• Chapter 1 : in this introductory chapter, an overview of Industry 4.0 is

made, focusing mainly on the role of the measurement; at the end of the

chapter the G3F device is presented together with the objectives and

purposes of this study;

• Chapter 2 : this second chapter describes in detail the state-of-the-art

technologies currently available, such as the Vision system, Machine

Learning and Deep Learning regarding the Computer Vision;

• Chapters 3 : the third chapter explains the work done; it lists and fully

elaborates the various architectures which have been implemented for this

specific project;

• Chapter 4 : the conclusive chapter sums up the project which has been

carried out together with the achieve results and it ends with an overview

on possible future developments.

xv

Contents

1. Introducing issues connected to the Industry 4.0 1

1.1. Introduction to Industry 4.0 . 1

1.2. The role of measurements and sensors in Industry 4.0 4

1.3. The G3F device and the GO0DMAN project 6

1.4. Thesis purpose . 8

2. State of the Art technology 11

2.1. Vision systems . 11

2.1.1. Optics designed for vision systems 13

2.1.2. Formation of images . 17

2.1.3. Lighting . 21

2.1.4. Software tools for vision systems 23

2.2. Machine Learning and Deep Learning for Computer Vision . . 27

2.2.1. Introduction to Artificial Intelligence (AI) and Machine

Learning (ML) . 27

2.2.2. Introduction to Deep Learning for Computer Vision . . 32

2.2.3. Artificial Neural Networks 33

2.2.4. Convolutional Neural Networks (CNN) 50

3. Materials and methods 57

3.1. Introduction to the project . 57

3.2. Binary classification . 58

3.2.1. Multiple architectures with an online cats and dogs dataset 58

3.2.2. Binary classification with VGG16 architectures 65

3.3. Multi-class classification . 69

3.3.1. VGG16 base model . 71

3.3.2. Inception models . 75

4. Results and conclusion 79

A. Results tables 89

xvii

List of Figures

1.1. Gap & Flush definition. Source:[7] 7

2.1. Representation of a color image. Source:[13] 12

2.2. Formation of an object through a converging lens. Source:[13] . 17

2.3. Example of artificial neural network. Source:[18] 34

2.4. Sigmoid Function. Source:[19] 45

2.5. Tanh Function. Source:[19] . 46

2.6. Relu Function. Source:[19] . 47

2.7. Leaky relu Function. Source:[20] 47

3.1. VGG-16 architecture. Source:[21] 58

3.2. VGG Nets of Various Depth. Source:[21] 59

3.3. Inception module. Source:[22] 60

3.4. Fully connected layer vs global average pooling. Source:[23] . . 61

3.5. GoogLeNet architecture. Source:[24] 61

3.6. Dataset images used for binary classification 66

3.7. Red car images dataset . 70

3.8. Comparison of white and light gray car dataset images 70

3.9. Comparison of black and dark gray car dataset images 71

4.1. Model loss and accuracy . 82

xix

List of Tables

2.1. Types of LUT. Source:[13] . 24

4.1. VGG16 results for cats and dogs dataset 79

4.2. VGG16 results for binary classification 80

4.3. VGG16 results for multiclass classification 81

4.4. InceptionResNetV2 results for multiclass classification 81

4.5. InceptionV3 results for multiclass classification 82

4.6. Probability matrix for test set (Images from 96 to 101) 84

4.7. Probability matrix for test set (Images from 445 to 450) 84

A.1. Xception results for cats and dogs dataset 89

A.2. InceptionResNetV2 results for cats and dogs dataset 90

A.3. InceptionV3 results for cats and dogs dataset 90

A.4. ResNet50 results for cats and dogs dataset 91

xxi

Chapter 1.

Introducing issues connected to the

Industry 4.0

1.1. Introduction to Industry 4.0

The Digital Transformation is taking center stage in the fourth industrial revo-

lution. The term Industry 4.0 refers to the industrial system transformed by

digital technology. An ecosystem made of state-of-the-art factories, machines

and objects capable of dialoguing with each others, aware of topical environ-

mental issues and capable of interconnecting with the final consumer.

The Digitalization is radically changing the production and service sectors and

the way business is carried out. This phenomena is also modifying the ways in

which consumers and suppliers interact with each other.

In a relatively short period of time this new type of digital transformation has

been almost universally embraced on a daily basis not just by those businesses

which need to use state of the art technology but also by companies which

operate in more traditional business sectors not normally associated with hi-tech

gadgets, innovative machines and interconnected devices.

As a result an increasingly pressing demand for new skills is arising.

The Digital Transformation requires the use of more sophisticated technologies

and higher throughput of services for Information Technologies (IT). This has

led to an increase of interest for tools that are extremely useful for the advanced

analysis of Big Data within the predictive analytics optics. In recent time there

has also been an considerable and rapid rise in Cognitive Learning and Machine

algorhythms Learning.

Advanced Manufacturing, the Internet and the Industrial Robotics sectors have

now become integral paradigms in the Iot within the Fourth Industrial Revolu-

tion.

We are now witnessing a shift towards a "service economy" through the adoption

of new flexible systems, capable of supplying valuable ethereal components

dedicated to the improvement of commercial digital transactions during the

buying and selling of goods regarding both the suppliers and the final consumers.

1

Chapter 1. Introducing issues connected to the Industry 4.0

The Digital Transformation involves a number of fundamental changes that are

taking place in the technological, cultural, organizational, social, creative and

managerial areas.

The changes brought about by the use of innovative state-of-the-art technol-

ogy by placing IT at the forefront of many businesses thanks to the digital

transformation process are many and can be summarized as follows:

• improvement of business performances, thanks to the implementation

of innovative systems conceived as strategic lever for cost containment

leading to eventually better profit margins;

• increased visibility of businesses in the market place;

• greater operational efficiency between different departments;

• a more cost effective production process;

• better and safer conditions for the personnel working in the production

process;

• greater efficiency in the way the industrial space is planned and used;

• a more rapid and efficient identification of new opportunities in collateral

business segments;

• the development of a quicker and more effective way of finding new

potential geographic markets thanks to the use of dedicated apps;

• a substantial improvement of customer relations and management.

To successfully build upon the many changes brought about this epochal

transformation, shifts in cultural and technological attitudes will need to take

place hand in hand. Those who are involved in the production process in

organized structures particularly at managerial level will have to be willing

to embrace the technological changes wholeheartedly throughout the entire

structure, positively encouraging interaction and collaboration between different

departments in order to obtain the highest level of technological integration

throughout the entire system.

A fresh approach to innovation is therefore needed. This will mean a complete

new way of thinking about technology and its implementation at all levels from

the humble operator to the decision makers to allow IT to fully permeate the

system in order to maximize efficiency.

Technology allows interconnection and cooperation between the workforce and

all productive resources both within and outside the productive boundaries. The

fourth industrial revolution is synonymous with connectivity between physical

2

1.1. Introduction to Industry 4.0

and digital systems and closely associated with complex analysis carried out by

Big Data and in order to implement the necessary changes in real time. This

revolution concerns the use of intelligent, interconnected and permanently on

line machines.

Despite the obvious difficulties the contemporary world is experiencing in im-

plementing the new IT systems, the unstoppable advent of the so-called fourth

industrial revolution, is nevertheless bringing about a profound transformation

is the mechanisms by which productive systems have managed to create up to

now, at least in the westernize world, goods and services that have radically

transformed our lives in the last couple of centuries.

The fourth industrial revolution, made possible by the availability of sensors

and low-cost connections, is associated with an increasingly pervasive use of

data and information, computational and data analysis technologies, new mate-

rials, automated, digitized and connected machines, components and systems

(internet of things and machines).

Within the realm of the 4.0 revolution, it is now possible to manage real networks

that incorporate, integrate and connect machinery, installations and production

facilities, logistics, warehousing system and distribution channels.

Thanks to this digital transformation and the use of cyber physical production

systems, manufacturing sites are able to react virtually in real time to changes

in demand, product specifications and flows procurement of raw materials,

optimizing the processes of adaptation to new requirements. Margins of errors

can also be considerably reduced while improving delivery lead time through

engineering data control. Increased flexibility, higher speed and improved accu-

racy are fundamental gains normally associated with the introduction of 4.0

technology within the operational procedures.

The scope of a systematic introduction of Industry 4.0 is a conceptual one and

goes well beyond the individual company just as it goes beyond the individual

machine. Innovation 4.0 is not just about putting state-of-the-art devices and

machines at the forefront of the production process, but to properly integrate

and combine people, information systems and operational procedures harmo-

niously through a number of dedicated technologies so that the entire system

can benefit from it. An intelligent approach to 4.0 technology should eventually

lead to better services, safer and more pleasant working environments and

ultimately to the manufacturing of smarter and cheaper products as well.

Actors within the supply chain who until recently have played a relatively

marginal role in the determining the nature, the characteristics and prices of

certain services or products have suddenly taken centre stage in the entire pro-

cess: the accurate analysis and the response to individual, specific needs of the

discerning customer has now become fundamental in the manufacturing process

in order to satisfy demand in the best and fastest way possible; thanks to the

3

Chapter 1. Introducing issues connected to the Industry 4.0

application of technological programmes, it is now possible to shift production

rapidly in order to implement mass customization rapidly.

Suddenly it is now becoming possible to vary the type of production in order to

respond to the changes in demand or type of product, within a logic of modu-

larity and continuous re-configurability. There has been a significant impact

in terms of sustainability too, particularly with reference to aspects related to

recycling, workplace safety, the optimization in the use of raw materials and

consumption of energy. The implementation of the so called circular business

models, are also useful to eliminate whenever possible emission leakage and re-

duce resource inputs, while minimizing waste during the operational procedures

via the achievement of a zero defect production.

All of this has led to an increase of performance in the productive process and a

better interaction between man and machine thanks to a dedicated technology

which reduces considerably errors and accidents, while helping to improve safety

within the working environment.

Production systems that support and assist operators while performing their

duties, lead to a reduction in stress related work. They are also extremely

useful in helping with the organization of the workforce and personnel by using

dedicated programmes which optimize the duties that need to be assigned

in specific areas. Other important advantages concern the assignment of less

pleasant tasks to automatized machines and the integration of workers with

disabilities.

Furthermore the 4.0 transformation thanks to the application of digital technolo-

gies makes possible in most cases to implement a rapid shifts in the production

of goods and in the offer of services to better satisfy the sudden changes in

market demand. [5]

1.2. The role of measurements and sensors in

Industry 4.0

A measure is a type of information which consists of a number, an uncertainty

and a unit of measurement which is assigned to represent a parameter in a

given system state.

To measure means to transduce a physical phenomenon into information.

A measurement process is a process where an object in input, named measurand,

which is related to a physical quantity is measured at a point in time when the

moment is enters the measurement system. It will be returned by the system

as output data, a quantity that is correlated to the input quantity.

Measurements, particularly those of mechanicals quantities, have always been

4

1.2. The role of measurements and sensors in Industry 4.0

the basis of human knowledge and represented scientific and technical progress.

In the engineering field measuring is fundamental for verifying the performance

of buildings, structures, driving and operating machines, land, marine and air

vehicles, and is also use for quality control checks during the production of

industrial goods.

For this reason,in professional activities, as well as in everyday life, humans

have to deal constantly with many measuring instruments.

In most cases, the most important aspects deriving from the technical mea-

surements is what can be deduced and extrapolated from those figures. One

fundamental aspect to obtain reliable information from the measurements, is to

minimize the uncertainty factor which plays a big part in the result itself. [4]

All the scenarios regarding Industry 4.0 address the concepts of data and

information. Quantitative data about physical quantities originate from mea-

surement. This is why measurement plays a fundamental role.

Measuring instruments, due to their nature and to their complex interaction

with the measurand and the measurement environment, produce data that is

always intrinsically affected by uncertainty. Measurements are made to make

decisions. Uncertainty of measurement affects the level of confidence in decisions

made on the basis of uncertain data; minimizing uncertainty is therefore essen-

tial to guarantee the quality of the data; this implies the ability to understand

and to manage the entire measurement process.

In the contemporary manufacturing sector, a large variety of production environ-

ments have now specific arrangements for the various stages of the manufacturing

process. (Multi-Stage)

Highly automated sectors now use a number of dedicated sensors placed along

the production line, which are used to ensure the correct implementation of

the manufacturing process and to guarantee through quality checks the best

possible results.[6]

According to the Industry 4.0 paradigm, Zero Defect Manufacturing (ZDM)

is one of the pillars of the modern digital production process. A zero-defect

strategy requires accurate measuring of data during the process and from the

product itself and a close integration of the manufacturing methods and quality

control.

In particular, one of the fundamental strategies to approach zero-defect manu-

facturing is the application of in-line quality control covering the production

process in its entirety. In multi-stage production systems, the earlier a defect is

detected, the better: in fact, early identification of non-conformity, performed

at single process level on parts and sub-assemblies, prevents further defects

to propagate to down-stream processes. Quality control is a decision-making

process, aimed to asses if a part or a product complies to the specifications

required; this is done by measuring specific characteristics and comparing them

5

Chapter 1. Introducing issues connected to the Industry 4.0

to the requirements set at the design phase. The outcome is a diagnostic

judgment. In such process, measurement uncertainty plays a fundamental role;

if data is uncertain, the following diagnosis will be uncertain too.

Uncertainty of measurement is therefore a central concept in the digitalized

manufacturing process. In a real production scenario, however, uncertainty of

measured data can be an issue, mainly due to the possible variation of the harsh

environmental conditions in which measurements take place.

The various structures located in strategic areas which are dedicated to the

manufacturing process are designed and implemented in multi-stage production

lines, with the purpose to integrate process and quality control.

Such schemes include smart Quality Control Stations (QCS), which are de-

signed to exhibit real-time adaptive behaviours, in order to keep measurement

uncertainty under control even in the presece of variations of process/product

parameters; they can implement data pre-processing to collect synthetic quality

indicators, self-diagnosis and self-calibration to maximize the confidence level

of the sensors output. Even in industrial plans with a high level of automation,

operators can still play a fundamental role. For a variety of technical reasons and

in order to keep occupational levels at an ethically and economically acceptable

level, highly specialized personnel, is often in charge of sometimes complex oper-

ations, that might include the measuring of certain parameters. Indeed, humans

in the loop (HITL) not only perform production tasks but are involved in all

aspects of associated decision making, essentially contributing with calibrated

but autonomous decisions to the production process; when performing quality

control tasks, human autonomous contribution can be considered a QCS. The

roles and relevance of humans-in-the-loop are fundamental. One of the main

roles of human agents is data acquisition, sensing and communication. When

operators are "in the measurement loop process", specific problem arise, mainly

related to human behaviours and dexterousness, factors which may have an

important impact on measurement uncertainty; indeed, in these conditions,

measurement uncertainty depends upon the level of accuracy of the measuring

instruments and the dexterity of the human operator. This raises questions like

ergonomics, operator training, design of human-machine interface, etc. as well

as operator-dependent measurement uncertainty.[7]

1.3. The G3F device and the GO0DMAN project

In modern digital manufacturing plans, the implementation of 100% ’in-line

quality control’ during the production process is a strategic key employed to

target a zero-defect manufacturing (ZDM). This is particularly relevant in

a multi-stage production, where the overall system performance depends on

6

1.3. The G3F device and the GO0DMAN project

each single process and on the interaction between the various stages of the

manufacturing process. In fact, actions performed in real time and the early

identification of deviations and trends, performed at a single process level,

considerably prevents the generation of defects and their propagation to the

down-stream processes, enabling the entire manufacturing system also to self-

adapt to different conditions. However, a zero-defect strategy requires reliable

information to support any decision. Furthermore obtaining reliable information

also requires accurate data gathered from the manufacturing process and the

product itself, a close integration between various production stages and quality

control and the capability to keep measurement uncertainty under control.

These concepts are the basis of a recent European project, the GO0DMAN

project, which implements a ’distributed system architecture’ on agent-based

Cyber-Physical Systems (CPS) and smart in-line quality control systems de-

signed to exhibit real-time adaptive behaviours, in order to keep measurement

uncertainty under control even in the case of variations of process/product

parameters and in the presence of disturbances.[10]

The goal of the GO0DMAN project was to develop a multi-stage production

management methodology and system architecture that can guarantee high

quality products without interfering, while improving the production efficiency

of the entire system. The GO0DMAN project constitutes a real implementation

on a worldwide scale of the Industry 4.0 paradigm, through the integration

and convergence of technologies for measurement and quality control, for data

analysis and knowledge management, at single process and at factory level.[9]

The automotive industry is a relevant example of multistage manufacturing

targeting zero-defect objective. Within the automotive industry, the car-body

assembly represents a key sub-set of multi-stage process. In this process, for

instance, checking gaps and flushes among adjacent surfaces is of uttermost

importance for both aesthetic and functional purposes. Indeed, these quantities

are measured through the whole car body assembly chain.

We define Gap the space between two opposite surfaces, measured along the

tangent plane on the surfaces considered. Flush is the mismatch between two

surfaces, i.e. the distance between two adjacent surfaces measured in the or-

thogonal direction to the tangent plane on the surfaces in exam (Figure 1.1).

Depending on the automation level of the assembly process, gap and flush

Figure 1.1.: Gap & Flush definition. Source:[7]

7

Chapter 1. Introducing issues connected to the Industry 4.0

can be measured automatically - in dedicated measurement areas, exploiting

non-contact methods based on optical triangulation - or manually by operators,

who exploit feeler gauges and dial gauges. However, in the latter situation,

no continuous data acquisition can be obtained, so no recorded data can be

obtained at the end of the inspection process.

Contrarily, compliance to the Industry 4.0 paradigm requires continuous data

availability and the possibility to push information gathered from the line to

the plant middleware. As a consequence, it becomes important to substitute

conventional manual devices with new instrumentation, in the form of the

OT (operational technology), continuously connected to the IT level of the

plant. In this situation, operators assume new responsibilities, becoming direct

actors of the whole data acquisition chain. Indeed, when the measurements are

performed by human operators, the uncertainty associated to the measurement

system should be combined with the uncertainty resulting from the actions and

behaviour carried out by the operators. Since the human uncertainty factor can

at times be at higher than that associated to the automatized measurement

system, it becomes clear of the need to develop dedicated measurement devices

in order to implement associated strategies that would ease the operator during

his tasks and would also reduce the overall uncertainty of the measurement.[10]

The GO0DMAN PROJECT has therefore designed, devised and implemented

and built a hand-held, non-contact laser scanner, the G3F.

The G3F [7], [8], [9], [10] is a device that measures gap and flush during the

car body assembly; thanks to its compact size, it fits in a smart phone cover:

an InfraRed distance sensor, a laser-line projector and a camera, are assembled

together in order to create a triangulation system. Data acquisition and addi-

tional sensor devices are performed and provided by a Raspberry Pi. A laser

beam is projected orthogonally both at the surface and at the gap between two

adjacent car parts. Then a picture of the projection is taken and, based on the

laser profile, the gap and flush are measured.

1.4. Thesis purpose

A challenging fundamental aspect in the realm of the 4.0 industry is the so

called Computer Vision which in large part represents the future of contro-

versial Machine Learning (ML) and Deep Learning (DL) research - the basis

of automatized learning that could allow in the near future machines to take

their own decisions. This process will require various computationally efficient

techniques to make use of this data in a meaningful manner.[1]

In the field of ML and DL there are Artificial Neural Networks, mathematical

models that draw inspiration from the function that make a biological brain

work.[14]

8

1.4. Thesis purpose

Most of the computer vision applications revolve around Convolutional Neural

Network (CNN) architectures, a typology of artificial neural network based on

the vision system of human beings. [1] [14]

Computer Vision plays a fundamental role in addressing Classification problems,

which appear when the network is to be trained to recognize the various classes

of data that are provided during the input process. A classification model is

mainly based on three sets of data: the Training set, in which images are placed

in order to train the network; the Validation set, which contains the images

used to evaluate the model performance and finally the Test set which contains

the images used to test the model.

The GO0DMAN project, a European project that consists of a development of a

smart portable laser scanner for Gap&Flash measurement (G3F), fits perfectly

into this context. The G3F device is intended to be used in an automotive

production line for quality control. By aiming the laser at the intersection

points between different parts of a car, the G3F returns the measurement of

the Gap&Flash as output, allowing to evaluate eventual defects present in the

vehicles during the production process.

Since the G3F is based on a triangulation laser sensor, this study examines

and produces an architecture of image classification based on the Convolutional

Neural Network (CNN).

The system allows to recognize different colours and the various components of

a car.

In this way it is possible to adjust the laser power according to the different

typologies of colours and materials in order to obtain a better acquisition result.

We begun our study by trying to address a binary classification problem con-

nected with two different types of materials, which led to the identification of

two classes, named sheetmetal-sheetmetal and sheetmetal-light. The optimization

of the network hyperparameters has been carried out in order to identify the

values and parameters which are fundamental to obtain better accuracy of the

neural network.

After evaluating the results of the binary classification, we then proceeded

by addressing issues connected to the multiclass model, by feeding the neural

network with a bank made up of 40, 000 images which served to train the

network to recognize 10 different combinations of colours and parts: white-white,

white-light, black-black, black-light, red-red, red-light, grey-grey, grey-light, dark

grey-dark grey and dark grey-light, where the colours represent the sheet-metal

colouring of the car and the light term indicates the headlight of the vehicle.

The optimization of the hyperparameters, carried out for the binary classification

has also helped to address the multiclass problem.

The results were analyzed by assessing accuracy and loss, by which it was

possible to evaluate the performance of the model.

9

Chapter 1. Introducing issues connected to the Industry 4.0

10

Chapter 2.

State of the Art technology

This chapter provides an overview of the tools used to achieve the project

purposes set out in the first chapter.

Firstly, we are going to analyze in detail the vision systems currently in use in

this kind of technological process, such as the G3F, an instrument that permits

the acquisition, through a triangulation laser sensor, of images thus obtaining in

output precise measurements of the gap and flush. A good knowledge of image

acquisition and processing technologies is therefore fundamental.

Secondly, we will then proceed to analyze the technologies and tools that are

available when interfacing with machine learning and deep learning. As stated

in the first chapter, the work was carried out in order to create a classification

architecture based on artificial neural networks. In order to have a global vision

of the potential of these artificial intelligence tools, the various types of machine

learning will be first described. We are then going to focus on deep learning for

computer vision, based on the study and analysis of artificial neural networks.

In particular, an important role in the project was played by convolutional

neural networks, for which the main components of a general architecture will

be described.

2.1. Vision systems

Images have been used for many years to collect data, but until recently there

was no automated quantitative analysis, but only a qualitative analysis. Only

after elements concerning image processing have been introduced then it has

been possible for the first time to quantify observations. Today all this takes

places automatically thanks to dedicated software.

Vision systems deal with images; these systems produce images from which the

output quantity is obtained. The vision systems produces digital images of a

scene via a process that involves several elements. Each single image contains

vital information which is then extrapolated to collect data.

The extraction of information takes place through a process called image

processing.

11

Chapter 2. State of the Art technology

If you have distorted images or image that do not accurately represent a given

scene, an uncertainty of measurement is produced. It is important to master the

image detection. A good image acquisition process enables the user to acquire

the correct information during the image processing phase.

An image is a source of multiple information; accuracy in the extraction of

useful data during the acquisition phase is fundamental.

Images are, in other words, multidimensional data structures; a single image

consists of a pixel matrix Iij, when I is the intensity of the scene and ij is the

pixel position.

A colour vision is obtained by superimposing the basic colors, red, green and

blue (commonly known as the RGB colour model). Three different images are

then superimposed to obtain a single color image. If we superimpose a time

sequence on the image, we get a color video which is time dependent (Figure

2.1)

Figure 2.1.: Representation of a color image. Source:[13]

Each image is a scalar representation given by the sum of the intensity of the

red, green and blue colours, which are represented in a two-dimensional domain

to which time can possibly be associated. The data structure that is obtained

when dealing with vision systems is therefore a two-dimensional representation

of one or more scalars, depending on whether it is a colour or a black and white

image. The scalars therefore represent the chromatic intensity of light.

As for the visual field concerning images, the I indicates the light intensity that

occurs in that pixel. If, on the other hand, the images belong to the infrared

range, the scalar band (in general 7-14 µm) still represents a luminous intensity

but it isn’t visible to the human eye.

The scalar size of the image can sometimes be something other than light, such

as the rate of vibration of a particular point. The scalar size of the image

depends on the sensor in use; in this case images may come from different tools

(i.e. ultrasound, radar, etc.), that do not use light but acoustic or electromag-

netic waves.

Images map a 3D object, O(x, y, z) into a two-dimensional domain, since the

12

2.1. Vision systems

image is the intensity I in space ij, Iij.

The elements that affect a given measurement system are normally optics, light-

ing, sensors, devices that convert analog data into digital and data processing.

A calibration of the system in use is always required. Measurement uncertainty

mainly depends on several factors, such as the geometry of the image, the light

intensity and the frame acquisition, on which the uncertainty over time depends.

When light interacts with objects or materials with different refractive indices, a

series of events occur, such as reflection, diffusion, refraction and total internal

reflection. [13]

2.1.1. Optics designed for vision systems

Light is an electromagnetic wave that travels in the form of a beam. In uniform

refractive index materials, light travels in a straight line, creating a beam of

light. When light interacts with objects or materials with different refractive

indices, a series of events occur, such as reflection, diffusion, refraction and total

internal reflection.

Reflection occurs when an incident beam that affects a specular surface at an

angle θi returns with an angle of θr = θi symmetrically with respect to the

normal at the surface. When dealing with specular surfaces it is very difficult

to acquire images as reflection phenomena normally occur.

Diffusion occurs when dealing with a rough surface; the radius incident on the

surface is returned in space in all directions. The ideal diffuser model is a model

that sees diffused light with a function:

Idiff ∝ cos θ (2.1)

when θ is the angle that is formed with the normal at the surface.

The intensity of the scattered light, according to the ideal diffuser model, is

maximum in the direction normal to the surface and is minimum in the direction

tangent to the surface.

In reality, surfaces have characteristics that range from being mirrors to being

diffusers. This behaviour varies as the roughness of the surface itself varies. In

general, it is easier to obtain better images from diffusive rather than specular

surfaces. If a surface has periodic roughness, such as parallel grooves, it is

difficult to obtain good lighting. Roughness is a fundamental parameter. It is

better to have a random roughness with a wavelength inferior to that of light

to obtain a good diffuser.

Once a diffusive surface has been chosen, it is necessary to position the camera

correctly in order to obtain the desired image.

Refraction, on the other hand, occurs when a material with refractive index ni

passes into a medium with refractive index nt, different from ni.

13

Chapter 2. State of the Art technology

The phenomenon of total internal reflection occurs in prisms or optical fibers.

[13]

As for the lenses, these are transparent optical elements consisting of refracting

elements in which at least one surface is curved. A symmetrical lens might have

spherical or aspherical surfaces with symmetry with respect to a common axis

of revolution, called the optical axis.

Each lens has a beam with its own center; they are optical components that

if crossed by light produce refraction. A lens is therefore characterized by

refraction phenomena.

The optical axis is defined as the axis that unites the centers of the spheres

with which the lenses are made; this axis corresponds to a reference line of the

lense; typically a system with several lenses is made in such a way that all the

lenses are aligned on the same optical axis.

There are different types of lenses; converging lenses (or positive lenses) are

convex lenses, which surface is thicker in the center and thinner in the perimeter

area. The beams of light which hit the surface parallel to the optical axis are

deflected and made to pass through a single point which takes the name of focal

point; the distance between the center of the lens and the focal point is called

the focal distance, f .

Divergent lenses (or negative lenses) are lenses in which the thickness in the

center is less than that of the edges. If I have a beam of light parallel to the

optical axis, the beams are deflected and spread out in space. If the lens is well

designed, the outgoing beams all appear to come from a point to the left of the

lens and at a distance equal to the focal distance f .

To resume:

• A light parallel to the optical axis arriving in a converging lens is deflected

onto the focus;

• A light that comes from a point of light that is on the focus, is transformed

into a parallel beam of light;

• In a diverging lens, parallel beams of light are made to diverge from the

focus itself;

• A light beam passing through the center of the lens is not deflected.

Real lenses behave differently from ideal lenses described above; what char-

acterizes the real lenses from the ideal ones are the so called phenomenon of

aberration, which is classified into spherical and chromatic. A spherical aberra-

tion is a phenomenon that occurs when, for example, we consider a spherical

lens in which the light arrives from the left parallel to the optical axis and the

beams focus in different points; the beams close to the optical beam have the

14

2.1. Vision systems

most distant focus, while the beams closer to the perimeter area of the lens end

have the focus closest to the lens. The ∆z interval between two focal points is

called a spherical aberration. This phenomenon leads to blurry images. The

issue aberration can be addressed with the use of complex mechanical devices.

A reduction of the aperture might also reduce the aberration but causes also a

reduction of the light exposure.

Chromatic aberration instead occours with a variation of the refractive index of

the wavelength of light. This aberration is evident when non-monochromatic

light is used. This type of aberration can also be corrected with specific devices.

Cylindrical lenses are lenses in which there is no rotational symmetry, i.e. they

have a spherical profile in only one direction. They are characterized by the

formation of a focal line. Cylindrical lenses can also be divergent or convergent

and can be used to produce a flat beam of light, by adding a spherical lens

before the cylindrical lens. Cylindrical lenses are also used to project laser lines

(used in 3D scanners).

Grin lenses (graded index) are glass cylinders doped in order to have a parabolic

refractive index higher in the center and lower at the edges. The light enters the

lens in an axial direction and then bends, deviating its path. These type of lens

as well as the cylindrical ones have in common a cylindrical shape which is one

of the most common shapes obtained in modern mechanical process, making

them fairly easy to produce.

Finally, in some applications it is necessary to obtain a separation between

different types of lights (reflective and diffuse). In such cases, devices such beam

splitters might be used; a thin layer of metal is applied into half of a surface of

the splitter in order to obtain different reflective properties. In this way two

different types of beams are obtained [13]

Light is commonly defined as a transverse electromagnetic wave, in which

the electric field E and magnetic field B are orthogonal to the direction of

propagation. The fundamental properties of light are:

• Wavelength, λ: period of oscillation of the electric field (or magnetic field);

• Phase, φ;

• Amplitude, E;

• Polarization: position of the electric field vector.

The electromagnetic wave travels with velocity C = λf , when f is the

frequency.

A different wavelength is perceived by the human eye as a colour. The visible

spectrum ranges from deep red (700nm) to violet (400nm); the human eyes are

more sensitive to green (550nm). The light intensity is characterized by the

15

Chapter 2. State of the Art technology

equation I ∝
∣∣E2

∣∣.
Light is not normally polarized, but there is also polarized light. Light is defined

as polarized when the E field of the wave has a position which does not vary

or which varies regularly over time. To better understand the polarization of

light, it is useful to break down the electric field vector E in the two orthogonal

directions to z:

Ex = |Ex| sin(ωt) (2.2)

Ey = |Ey| sin(ωt + φ) (2.3)

Ex and Ey are two sinusoids with different amplitude and phase.

• If the phase shift between Ex and Ey is zero, we have a horizontal

polarization;

• If the phase shift is 90°, we have a circular polarization;

• If the phase shift is 45° we have an elliptical polarization.

As far as linear polarization is concerned, therefore, it occurs when the

components of the electric field vector are in phase, that is when the two vectors

move synchronously; the resultant is zero when both vectors are zero and the

resultant is maximum when both vectors are maximum.

In the case of light with circular polarization, when one of the two components

of the magnetic field is maximum the other is zero and vice versa; given that

the magnetic field vector resulting from the two components Ex and Ey is a

rotating vector, which can rotate clockwise or counterclockwise according to

the signs of the phase shifts.

Regarding the elliptical polarization, when a non-polarized light hits a surface,

the reflected light is generally polarized at a specific angle called Brewster’s

angle; at this angle there is a perfect polarization, which is however difficult to

obtain in reality.

In general, an atomizer is an optical component that is transparent only at a

certain position of the electric field, so it transmits only a component of the

polarization. A polarizer is characterized by an axis along which light passes.

It is known that two polarizers with crossed axes, that is two polarizers in which

one is rotated 90° with respect to the other, do not allow light to pass.

Wave sheets (or retarders) are birefringent optical components, i.e. in which the

refractive index is different on two perpendicular axes; light which has E along

x has a different refractive index than that which has E along y (nx Ó= ny).

This difference gives rise to a phase shift, which can be calculated as:

16

2.1. Vision systems

Γ =
2π∆nL

λ
(2.4)

Polarization can be manipulated to eliminate reflections. A λ
2 foil leads to a

phase shift of half a wavelength (π); the effect is the rotation of the polarization

of deg 90. A λ
4 foil leads to a phase shift of π

2 ; the linear polarizations are

modified in circular polarizations and vice versa.[13]

2.1.2. Formation of images

A converging lens has its own optical axis perpendicular to the plane in which

the lens itself lies. If we consider a two-dimensional object located on a plane,

and we want to see how this is represented, we can see from the Figure 2.2 how

the lens is characterized by two foci, one upstream and one downstream. d0 is

de object dimension, that is situated at a distance o from the lens.

Figure 2.2.: Formation of an object through a converging lens. Source:[13]

If the object is illuminated, beams of light emanate from the object itself.

There are also luminous objects that do not need to be illuminated. However,

the light spreads in space and intercepts the lens. The hypotheses of a beam

parallel to the lens, passing through the center and the front focus of the lens

itself, are considered. The beams, starting from P and following different optical

paths, all cross in P ′. P ′ is the image of P . Similarly, by carrying out this

operation for each point of the object d0, the image di is obtained, which is

formed at a distance i from the lens; di is smaller than d0 and is overturned.

As the lens changes, the image observed also varies.

One of the most important choices that need to be made during this process to

obtain the desired image is to use the most appropriate focal lenght. In general,

a short focal length (wide angle) corresponds to a small image, as the lens is

located near the sensor, in proximity to the back focus, so there is a high field

of view and a high angle of view. A long focal length (telephoto) corresponds

instead to a large image, due to the fact that the lens is placed far from the

sensor, so that there is a reduced field of view and a reduced angle of view.

The choice of focal length is based on the equations of thin lenses:

17

Chapter 2. State of the Art technology

1

f
=

1

i
+

1

o
(2.5)

where f is the focal, o is the distance between the lens and the object and i

is the distance between the lens and the sensor.

M =
di

do

+
1

o
(2.6)

where M is the transverse magnification, that represent the ratio between

the image dimension, di, and the object dimension, do. With the equations 2.5

and 2.6 the first design of an optical system is realized. Typically di is fixed

and depends on the sensor available, while do is chosen by the optical engineer

instead.

Diverging (or negative) lenses also form images, but, unlike those formed with a

converging lens, images formed with a diverging lens are generated in the front

and are virtual images. Normally, negative lenses are not used individually for

the realization of images, but are used by assembling more lenses together to

form a single lens. In this type of lens there is a combination of lenses that is

traced back to a focal length. [13]

With a real lens, however, a point does not become another real point due a

number of issues that afflict a real lens such as the phenomena of diffraction.

Light is a wave; if the wave starts from a point, the image that obtained won’t

be a real point but a so-called Airy Disc. In other words, there is a distribution

of light intensity which has a non-point dimension, which, in optical terms, will

be visible as a dot with various rings around it. The formation of the Airy

disk is caused by diffraction, that is the anomalous behaviour of the light beam

at the edges of the lens; when an electromagnetic wave passes through a slit,

such as a lens, the light at the edges of the slit is affected by the diffraction

phenomena, as light undergoes a curvature. The ray that starts from the

starting point of the considered object, passing through the lens is diffracted,

that is it branches out in several directions creating a series of constructive and

destructive interferences. When dealing with a real lens, the image of a point

can be calculated using the formula 2.7

r =
1.22λi

D
(2.7)

From the equation 2.7 it can be observed that the ability of a lens to focus

is limited; indeed, being D the diameter of the lens, a larger lens has a better

resolution, but considerable dimensions attract a number of issues such as

practical use, storage and last but not least elevated costs of production. A lens

is characterized by an impulsive response, which limits the optical resolution

18

2.1. Vision systems

and which corresponds to the spatial arrangement of the light that occurs in

the image plane when the lens is stimulated by an object.

The depth of field is another fundamental parameter concerning the systems

of vision, which serves to represent the distance interval ∆o within which it is

possible to consider the object in focus. Each optical system finds a 3D scene

in front of it. ∆o is acceptable when the blur caused by the geometric optics is

less than, or equal to the blur that occurs during the diffraction phenomenon;

in other words, the three-dimensionality of the image is tolerated as long as

there is no greater blur than that obtained by diffraction.

The question is therefore to determine the distance interval ∆o, called depht

of field (DOF), within which the objects appear sufficiently in focus. The dof

changes by changing the aperture of the diaphragm, which is the useful diameter

of the lens; the smaller is the aperture, the greater is the depth of field. If we

consider the depth of focus ∆i, which represents the distance the sensor moves

from the initial position, we have:

∆i = 2.44λ(
i

D
)2 (2.8)

From the Formula 2.8 we can observe that with the same amount of λ and f

the depth of focus varies as the diameter of the lens changes and in particular

the smaller the diameter, the greater the depth of focus and the greater the

ability to focus on a scene despite not having the sensor in the right position.

Both the depth of focus and the depth of field depend on the ratio f
D

where

f is fixed while D is variable. The ratio f
D

is the numerical aperture of the

lens, a typical number of the lens, F#. By decreasing the diameter of the lens,

the depth of field and focus increase, the optical resolution decreases and the

image becomes less bright. It is necessary to close the diaphragm just enough

to obtain the right focus. If the objects are small you need a smaller depth of

field.

There are lenses, called telecentric lenses, which deviate from the laws of optics

of thin lenses and have a constant M magnification as the distance from the

object varies. These lenses realize a parallel vision with zero angle of view,

without perspective. With these lenses there is no need to correct dimensional

errors. They are lenses made with two lenses separated by a distance equal to

the sum of their focal lengths. [13]

Resolution is a property of the lens system that determines the ability to form

images with small details. This leads to a certain degree of uncertainty for what

concerns the accuracy of measurement. Resolution is limited by diffraction. In

reality, diffraction can be seen and mathematically modeled as the limits that

the optical system has in responding to incoming signals. There is a certain

analogy with the impulse response.

19

Chapter 2. State of the Art technology

Being F# = f
D

and d = 2.44λ d
D

you have:

d = 2.44λF# (2.9)

From the equation 2.9 we deduce that the diameter of the dot image d grows

by reducing D and then closing the aperture. If you want to have images made

up of points of smaller diameter, in order to obtain more accurate details, it

is necessary to use large diameter lenses; for practical reasons, however, it is

impossible to have excessively large diameter lenses. To have a better resolution

you have to open the diaphragm, but this leads to a penalty of the depth of

field; it is therefore necessary to use the best combination obtainable taking

into consideration the application in used in order to obtain the best result.

The MTF (Modulation Transfer Function) arises from the following analogy;

a scene is a distribution of light intensity in a plane (x, y). The spatial signal,

intended as the distribution of light in space represented by a signal of two

variables, is transferred into the image system. The image system has a response

function that characterizes it and transfers the input signal o(x, y) to the output,

in the form of i(x, y). A perfect system would produce i(x, y) = kor(x, y), with

k scaling factor. Real systems, however, are far from perfect. If we could do an

analogy with a signal in time, we could affirm that lenses might have a similar

function of the response in frequency characteristic of the so called pass-base

systems of low frequencies that can be found in time keeping devices. As the

name might suggest, a pass-bass filter allows only the passage of low frequencies.

In the so called ‘space dominion’ we talk about space frequency which is given

by the inverse of space. A lens is therefore a pass-bass filter for space frequen-

cies. This means that every lens gives a specific response in space frequency:

frequency is low when the luminous signal changes slowly through space and

it ‘s instead high when,- going through space -, the intensity of light changes

rapidly from one point to the next.

The MTF therefore stands as a function of transferability from the object to

the image and describes the impossibility of an optical system to respond to

high space frequencies.

The attenuation of a certain frequency is therefore represented by the MTF

function. The resolution power can be defined by [lp
mm

]; when we are in the

presence of two lines that get higher in intensity or frequency, there is a treshold

after which the modulation becomes equivalent to zero: this limit is called the

resolution power. In this case the MTF worsens by two or three magnitudes

moving from the center to the side of the edge of the lens. It is therefore

necessary that the resolution lens has to be in line with the magnitude of the

space resolution of the sensor. There would be point no point in using an

expensive, high resolution lens if the resolution was higher than that of the

sensor.[13]

20

2.1. Vision systems

2.1.3. Lighting

The illumination of an image depends on the lens, sensor and illumination.

Illumination represents the light that is sent into an object. When light is sent

to a surface, it interacts with the object and part of this light returns back

to the camera.The light-surface interaction depends on the colour and optical

characteristics of the surface: some materials are translucent, others opaque

and others complete transparent.

The optical characteristics of a surface materials affect how an incident surface

becomes light as it goes towards the camera. The system influences the incident

light. What arrives at the camera can be reflected or scattered light. If you

have translucent or transparent surfaces, part of the light will never be returned

to the camera, but it enters the material, thus diminishing the amount of light

that returns to the sensor.

Also a phenomenon called fluorescence takes place when you send light with a

certain wavelength towards an object. The light is then returned with a different

wavelength.

The problems caused by incorrect lighting can be many, so it is necessary to use

the most appropriate lighting according to the task that needs to be carried out.

When choosing a particular type of lighting, it is necessary to establish first

wether you are dealing with colour or black and white images. In the presence

of a black and white image, for example, one needs to deal predominately with

the intensity of the radiation. Instead, when dealing with colour images, the

operator needs to deal the spectrum of the illuminating source in relation to

the colours that need to be seen.

Other fundamental factors have to be taken into consideration when we want

to illuminate a particular surface, for example choosing the right exposure

according to the characteristics and textures of what needs to be illuminated,

its size and shape, whether the object(s) is in motion, and whether specific

details are required. Furthermore, the more multifaceted a three dimensional

object is, the larger of the amount of shadows produced by the illumination

process, therefore even great accuracy is required when setting the parameters.

There are a number of different types of lighting such as laser lighting. Laser

light technology emits light with particular characteristics, i.e. monochromatic,

coherent (the waves are all in phase), collimated (the light emits a beam in

a single direction) and sometimes polarized (although not always). The word

"laser" stands for Light Amplification Through Stimulated Emission of Radiation.

We speak of the emission of an electromagnetic field in the band of light waves;

the electromagnetic field propagates in the z direction and is characterized by a

21

Chapter 2. State of the Art technology

certain wavelength and is generally described by its electric field.

The emission is coherent, that is, it maintains the same wavelength in space

and time.

If we consider an atom, electrons are generally found in the lowest energy

state; if electrification occurs, these electrons move to the excited state. The

excitation of an atom occurs through the absorption of energy which in the

form of the interaction with a photon or alternatively by creating a strong

electric field. This phenomenon is unstable; the electrons do not remain in the

excited state, but return to the lowest energy state and begins to emit light.

There is a spontaneous emission which is neither monochromatic, nor coherent

or collimated.

The emission of a laser is a stimulated emission, because the electron is in an

excited state. Then an incident photon is sent to destabilize the electron, causing

it to fall to the basic energy state. A new photon is then emitted which copies

the incident photon in wavelength, phase and direction. The incident photon

is transformed into two identical photons; this is called the light amplification

process.

In order for the laser to be functioning, an active material (a material that

emits light) in a cylindrical shape is used, which is positioned orthogonally to

two mirrors that are used to ensure that the photons emitted by the material

along its axis are brought back inside. Paraxial photons travel n times in the

material. Only the not perfect paraxial photons manage to escape from the

cavity. A photon that encounters an atom duplicates itself, thus amplifying

the source. There is therefore an intense radiation along the axis; as a result,

a laser beam is formed which is projected because one of the two mirrors is

semi-reflective.

In the active material there must be more excited atoms than the base atoms,

that is, the so-called population inversion must occur. This occurs when energy

is supplied to the material via electrical or optical pumping.

A laser can be characterized by a continuous or pulsed emission. In the case

of continuous emission, the light intensity and therefore the power is constant

over time. With a pulsed emission laser instead, the intensity goes from zero

intensity to a maximum level over a certain time interval; in this case the power

is not constant and takes the name of energy per pulse.

A typical laser beam follows a Gaussian intensity distribution, i.e. maximum

intensity is found in the core, which diminishes as we move in the more periph-

eral areas; it also sports a high energy density, i.e. a high power per unit area

(it can exceed 3 kW
m2) which can present a serious challenge when used because

of its intrinsic hazardous characteristics. [13]

22

2.1. Vision systems

2.1.4. Software tools for vision systems

Regarding the analysis of the images, there are various tools for modifying the

grey level obtained by overlaying the intensity of the three fundamental colours,

i.e. the so called RGB standard, red, green and blue. Palettes, for example, are

used to restore the colours that have to be shown on a screen or to change the

colours of an image on screen. Palettes are born to represent a monochromatic

section of the image itself. If the screen is in colour, it works with the three

basic colours red, green, blue, that are overlaid to obtained the desired colour.

There are three diagrams with the grey intensity display on the abscissa and the

intensities of red, green and blue on the ordinate. Look up tables can be created

in which the intensity of the three colours are related to the intensity of grey.

These look up tables are used to map the different levels of grey into a triad of

colours. If for example we want to obtain a black and white image on a colour

monitor, we will need to have the same amount of red, green and blue on each

pixel; a darker grey will be obtained if the intensities are low, while a lighter

grey will displayed if the intensities are greater. At a grey level of 255 we have

the primary colours red, green and blue at their maximum intensity resulting

in a white image. If for example the intensity of grey is instead lower, a darker

image we will obtained. Based on the different distribution of the intensity of

the red, green and blue colours, a large number of colours can be generated.

The image histogram is instead a function H that associates to each grey level

k the number of pixels nk of the image having that grey level: H(K) = nk

The grey intensity level for an 8-bit image ranges from 0 to 255. For a colour

image, you have one histogram for red, one for green and one for blue. If the

histogram is well centered and wide enough, the scene is well exposed and there

is no saturation. An underexposed scene instead will need a greater aperture

and different settings for lighting, exposure time and camera gain.

The LUT (Look Up Table) consists of algorithms that act on the gray level and

allow the user to change the contrast and the brightness present in a scene.

The LUT shows a more intelligible image on the monitor without modifying

the information content but only the intensity of grey. A new image is cre-

ated in which the intensity of the grey level is changed through the function

Ioutput = f(Iinput). The resulting image has a different contrast and a different

brightness. If Ioutput = Iinput the result doesn’t change. In other cases, correc-

tive actions can be undertaken to adjust various parameters according to the

LUTs showed in the table 2.1.[13]

23

Chapter 2. State of the Art technology

LUT Transfer Function Sheading correction

Equalize Equalize histogram Increase the intensity dy-
namic by evenly dis-
tribuiting a give grey-level
interval [min, max] over
the full grey scale [0, 255].
Min and max default val-
ues are 0 and 255 for an
8-bit image.

Reverse Reverse histogram Reverses the pixel values,
producing a photometric
negative of the image.

Logaritmic Power 1

Y

Square Root

Logaritmic histogram Increases the brightness
and contrast in dark re-
gions. Decrease the con-
trast in bright regions.

Exponential Power Y

Square

Eponential histogram Decreases the brightness
and increases the contrast
in bright regions. De-
creases the contrast in the
dark regions

Table 2.1.: Types of LUT. Source:[13]

An image is a pixel matrix; operators with images do operations on pixels. In

general, the following operation applies: pn = pa(Op)(pb), where Op indicates

the operator. As regard to images the following operations can be carried out:

• Multiplication: pn = min(pa · pb, 255);

• Division: pn = max(pa

pb

, 0);

• Addition: pn = min(pa + pb, 255);

• Subtraction: pn = max(pa − pb, 0).

Spatial filters are meant to be working in space. They serve the purpose of

letting through or stopping high or low spatial frequencies that represent the

inverse of the space period.

A high pass filter does not pass spatial low frequencies. It does not affect the

regions of the scene where the intensity is uniform, but enhances the parts with

sudden changes in brightness. It is useful for highlighting the edges of an object.

A low pass filter instead, favours regions with constant or little variable bright-

ness in space.

24

2.1. Vision systems

Spatial filters are used to reduce noise, identify edges and enhance or eliminate

details. The spatial filter algorithm is based on a matrix called the core or kernel

of the algorithm, which is typically a 3 x 3 matrix, but can in some casesc also

be larger. The filter equation is: Pi,j = f(Pi,j ; Pi−1,j ; Pi,j−1; Pi,j+1; ...), where

Pi,j is the native pixel, while other Ps are the pixels adjacent to the original

pixel. A new image is generated pixel by pixel; at the edge of the image the

adjacent pixels will be smaller than those positioned in a central pixel. Smaller

kernels have a lower spatial resolution. The spatial filters then produce a new

image; they operate on the central pixel, producing a new distribution of light

intensity on it; this happens through a convolution algorithm given by:

Pi,j =

a=i+1∑

a=i−1

b=j+1∑

b=j−1

ka,bPa,b

1

N
(2.10)

The new image must be such as to ensure that 0 ≤ Pi,j ≤ 255

Spatial filters are divided into linear and non-linear filters and can be low pass

or high pass filters.

Between the linear high-pass filters are placed the Gradient Filter and the

Laplacian Filter. The Gradient filter is represented by the matrix below:

a −d −c

b x −b

c d −a

The term x can be 0, if we consider only the edges so there is no trace of

the original image in the final solution or 1 if we consider the edges and the

central element. In this case the central image will still be present in the final

result. The terms a, b, c and d are instead numbers that can all be identical.

This filter highlights the variations in light intensity in certain directions which

are the ones that make the value of the matrix elements change from negative

to positive and viceversa.

The Laplacian filter instead works in all directions and is given by:

a d c

b x b

c d a

where x is positive while a, b, c and d are negative. x can be = |2x(a + b + c + d)|
if in the final result we want to obtain only the edges or > |2x(a + b + c + d)| if

instead we want to obtain also the original image in the final result. This filter

enhances the noise located in the regions where the brightness varies in space.

As for the linear low pass filters, we can distinguish between the Smoothing

filter and the Gaussian filter. The Smooting filter acts as a linear operator. It

25

Chapter 2. State of the Art technology

attenuates variations of bright light in the vicinity of a pixel. The matrix to be

considered is the same as that seen for the Laplacian filter. If x is equal to zero,

the original image in the final solution is not retained; if x is equal to 1, the

original image is maintained. The larger the kernel, the bigger will be the space

affected and the higher the number of pixels; consequentially a more accurate

picture and a better resolution will be obtained.

As far as the Gaussian filter is concerned, the term x of the matrix is > 1 and so

the maximum value is therefore found in the center, as dictated in the Gaussian

distribution function. This filter produces a similar effect to Smoothing filter,

but since x > 1, the low pass effect is less pronounced.

Among the non-linear filters there is the Prewitt filter, which is a high pass filter

that highlights the edges of an object and is given by the following matrix:

−1 0 1

−1 0 1

−1 0 1

Morphology is the science of forms, aimed at making dimensional measure-

ments in a two-dimensional domain. It concerns measurements involving the

length or shape (2D) measurements of objects in the scene. There are several

operations that need to be carried out during a morphological analysis of images.

Binarization is a special Look up Table that divides an image into two regions,

an object region and a background region. A black image corresponds to a bit

equal to 0; a bright image corresponds to a bit equal to 1. A value is imposed

below which a specific pixel is turned off, and above which the pixel is turned

on. This allows objects that are not of interest to become optically invisible

disappear. There are automated thresholding techniques that allow each time

to choose the threshold level that gives the best results.

When an image is binarized, the problem of Clustering arises. Clasterization is

used when classes greater than one need to be obtained. Sometimes different

thresholds are used in various regions in an iterative way until the right repre-

sentation is found. To prepare an object for measurement, some operations are

necessary, such as erosion and dilation.

Erosion eliminates isolated pixels and erodes the spikes on the edges of the

image. This process is therefore used to reduce or eliminate noise. Erosion

eliminates bright spots and decreases the size of particles. The process of

Dilatation can also be used to modify the shape of a given object within the

image by adding virtual material; thus holes can be filled and shapes can be

altered making it an effective tool ideal to be used in combination with erosion.

Therefore, since dilatation and erosion change the shape of objects, they are

frequently used in sequence. From the sequence of these two operations we

obtain:

26

2.2. Machine Learning and Deep Learning for Computer Vision

• Opening(I) = Dilatation[Erosion(I)]: to removes micro objects and

smooth edges ;

• Closing(I) = Erosion[Dilatation(I)]: to fill in holes before the erosion

process is implemented.

[13]

2.2. Machine Learning and Deep Learning for

Computer Vision

2.2.1. Introduction to Artificial Intelligence (AI) and Machine

Learning (ML)

There is no formal definition of Intelligence. According to a cognitive approach it

can be seen as the ability to solve a problem. The psychologist Howard Gardner

has identified nine macro groups of intelligence by defining the following multi-

intelligences:

1. Naturalist (nature smart);

2. Musical (sound smart);

3. Logical-mathematical (number/reasoning smart);

4. Existential (life smart);

5. Interpersonal (people smart);

6. Bodily-kinesthetic (body smart);

7. Linguistic (word smart);

8. Intra-personal (self smart);

9. Spatial (picture smart).

The concept of intelligence has changed a great deal in the last couple of

centuries; for example reading skills, a privilege which only the very reach and

powerful could access to until recently has now become common in large parts

of the planet. It is therefore always necessary to contextualize intelligence.

This also applies to Artificial Intelligence. The Artificial Intelligence (AI) is

a branch of engineering that is mainly based on the process of being able to

apply human learning methodologies to machines.

When it comes to AI, there are basically two schools of thought:

• Strong AI or AGI, Artificial General Intelligence: machines in the near future

will be able to perform any task currently performed by human at the same or

even higher level with self-awareness;

27

Chapter 2. State of the Art technology

• Weak AI : this theory does not foresee a development self-awareness by machines,

which will remain just devices only capable of performing certain given tasks.

To this date, the only form of AI that has produced appreciable results when

implemented in practical applications is Weak AI.

According to the Moravec Paradox, from a computational point of view, it is

much easier for a machine to solve problems that seem to be complex for the

human mind, while it becomes extremly complex for a machine to deal with

issues that the average human being finds easy to deal with.

Artificial Intelligence is typically divided into research algorithms (problem

solving), issues connected to the representation of knowledge and Machine

Learning (ML).

The idea behind ML is to feed data into the machine in order for the machine

itself to build a model without any external interference or rules imposed from

the outside. Whit a traditional AI, we define an algorithm and a set of rules

that establish how a machine will behave according to a number of different

settings and situations. With ML instead, we provide the machine with a

number of different scenarios and settings; subsequently an algorithm will be

used to choose the most appropriate setting thus creating a set of rules to be

followed.

ML is therefore an AI field that deals with the development of machines capable

of solving problems by choosing data previously imputed to the system in the

most appropriate way; these sets of methods therefore create a system that

is able to successfully assimilate data in its possession, a process which has a

strong affinity with human learning.

There are two learning methods, incremental (or online) and static (or batch).

With incremental learning, the so called trial by error, the process is refined

gradually by learning from the mistakes previously made. To update the system

the only thing that needs to be done is to feed it with new data. To upgrade a

static training system instead the entire system must be retrained.

The types of learning in ML can be divided in Supervised Learning, in which a

mathematical model is implemented connecting the input data with the output

data, the so called Unsupervised Learning, in which we obtain by input data

and Reinforcement Learning, a process which is similar to the learning activities

experienced by human beings. [14]

We are living in an age of great abundance of data; using machine learning

algorithms, it is possible to transform this data into knowledge.

Machine learning has evolved as a subfield of artificial intelligence and encom-

passes knowledge derived from data in order to being able to make reliable

predictions. [3]

A Machine Learning model can be a mathematical expression or a complex

data structure deriving from the theory of computer science or, in some cases,

28

2.2. Machine Learning and Deep Learning for Computer Vision

a combination of both. It is therefore an intersection between statistics, core

computer science and software engineering. A ML model can learn from the

actions of humans or of natural events and can simulate future behaviour re-

garding unknown situations. In simple terms, a model can predict future events

based upon historical data. These actions are stored as records in the database.

So, having a consistent and comprehensive dataset is essential for building a

fully working useful model.

A ML model can learn from a certain dataset in order to give later predictions.

It analyzes the value of predictor variables and builds a mathematical form or

a data structure that can predict the values of the target variable. Predictor

variables are often called features.

Variables are continuous and categorical. Continuous variables can have any

value within a specific range. Categorical variables are generally classified as

string data type, and these can only have a fixed number of different values.

Like any software development project, the ML model development projects

also are typified by a number of different lifecycles. There are four major stages

in a typical ML model development:

1. Data exploration, analysis and research: various kinds of slicing, dicing

and visual operations are carried out at this stage by using a proper

sample of the total dataset. A trial and error procedure concerning several

models is also implemented at this stage. At the end, one particular model

is chosen to proceed;

2. Model training/learning: this stage involves tuning parameters and hyper-

parameters of the chosen model in order to make the system learn from

the provided dataset. Parameters essentially carry information requested

by the model while hyperparameters are employed for fine-tuning (a better

explanation of parameters and hyperparameters is given below);

3. Model testing: this stage deals with testing the developed model with an

unknown dataset;

4. Model deployment and scaling: this stage involves converting the model

into Big Data technology. At this stage a development of proper data

engineering platform is carried out together with the optimization of

scaling parameters and infrastructure. Scaling is required for handling

huge volumes of data. The process cannot be carried out without the use

of specific hardware and a dedicated supporting infrastructure.

These four stages are repeated cyclically after obtaining the user’s feedback

about the deployed model. [2]

Machine learning projects can be very different. As a ML projects involve a lot

29

Chapter 2. State of the Art technology

of research-related activities, a team of people with the right skill is normally

employed on the early stages. These projects go through several iterations, and

it may happen that after a lot of time-consuming research, no output is actually

obtained on the final stage. A flexible and open approach is therefore required

as a precondition when embarking in similar projects.

Each machine learning model is backed up by an algorithm. From the concept of

computer science and mathematical formulas, it can be said that an algorithm

may need some externally supplied information to proceed. This information is

called parameters. Hyperparameter instead are optional for a model. In the

model definition, there is no existence of hyperparameters, which are instead

normally required to tune the neural network and make it strong enough to

produce an optimal result.

Machine learning practice can be divided into two types depending on the

objective that need to be achieved:

1. Predictive machine learning: this type of machine learning practice is

often used when predictions are needed but data is unknown;

2. Descriptive machine learning: ML models that are built to explain some

kind of hidden behavior or a particular pattern within the data.

Before designing a model, it is crucial to know what kind of issues the designer

is trying to address. It is therefore vital to obtain a detailed analysis of the

dataset required to carry out the task. Generally the various models of ML are

divided in the types:

• Classification model: this process is implemented when data has to be

subdivided in different categories. Classification is a supervised learn-

ing learning process and comes under predictive ML. There are various

techniques of classification models such as Decision Tree, the Logistic

Regression and the Naïve Bayes just to name but a few;

• Regression model: if the target variable is continuous variable, a regres-

sion model is obtained. It also comes under the predictive ML and the

supervised learning category. There are a number of regression techniques

such as linear regression, the decision tree regression and others;

• Clustering model: if we have to look for groups or chunks inside the dataset

without knowing the target’s variables, we have a clustering problem. It

comes under unsupervised learning and can be of both predictive and

descriptive ML types. In a typical clustering model, tightly related data

is grouped by analyzing its features. These groups are called clusters.

After designing the model, it is necessary to test its level of performance in

order to get reliable data. This parameter is called accuracy. Accuracy is a

30

2.2. Machine Learning and Deep Learning for Computer Vision

factor that can be successfully employed when addressing issues connected with

training processes as well as the validation or tests of datasets. An input dataset

of a ML project can be split into three parts in the following way:

• Training set (50%): set of data with which the model is built;

• Validation set (25%): it is used to test the performance of the model and

to estimate prediction errors for the selected model;

• Test set (25%): it is used to test the model and to assess the generalization

error of the final chosen model.[14]

Typically the data set is initially divided only into the training set (70%) and

the validation set (30%) in order to find the most appropriate model. Once

the model has been chosen, with the new photos employed for the test set, the

ability of the architecture to generalize new data is evaluated.

The accuracy will be calculated differently depending on whether you are dealing

with classification, regression or a clustering issues. For a classification problem,

for example, accuracy is measured by the ratio between the number of data

instances correctly classified and the total number of records. This accuracy

can assume values between zero and one. A larger value of this ratio indicates

a better classification.

An other important aspect to consider when dealing with a machine learning

problem is the so called error of the model. The overall error in a model is

made up of two factors, bias and variance. [2]

In the context of machine learning models, variance measures the consistency

or variability of the model prediction by classifying a serious of given examples

when retraining the model over a number of times with different subsets of

the training dataset. The result of a too high variance would be, in a very

complex model, a low accuracy in the test set due to the difficulty for the

model to generalize new data. High variance is therefore a barrier in designing

a perfect model. The bias, instead, measures the general difference between

the predictions and the correct values if we retrain the model several times

on different training datasets; bias is the measure of systematic error which is

not related to randomness. During the classification process there might be

issues connected to the model when it classifies a certain type of data labeled

in a specific way corresponding to a set of values or characteristics. Sometimes

the presence of highly regular classes creates biases in the model. A very

highly complex model will have high variance and a low bias. A mathematical

expression for the overall error is: Error = Bias + V ariance. Decreasing bias

will increase variance and vice versa. A good model should have the optimum

combination between variance and bias values. [2] [3]

31

Chapter 2. State of the Art technology

The combination between bias and variance during the ML development model

often create two side-effects commonly known as underfitting and overfitting:

• Underfitting: it is caused by shortage of training data, in what is known

as an immature model thus causing high bias and low variance. An

underfitted model fails to predict properly future developments or work

accurately in all situations. Sometimes, even though we have sufficient

training data, the number of iterations done for the training is low, which

is again causing high bias;

• Overfitting: as opposed to underfitting this side effects occurs when the

system experiences a high variance and a low bias. This happens when

the data imputed is over abundant to finely tuned in order to achieve

a high degree of precision in the model. Therefore the over-tuning of

parameters or too much iteration on the training data can be in some

cases counter-productive. There might be instances for example when

a model, previously fed with comprehensive highly accurate and finely

tuned data, might fail to perform well due to its inability to recognize a

certain type of new data because it might contain parameters not present

in its system .

[2]

One way to achieve a good compromise between bias and variance is to adjust

the complexity of the model through regularization. The Regularization is a

very useful method to obtain collinearity (a high degree of correlation between

characteristics), eliminating noise from the data and preventing overfitting. The

concept on which regularization is based is to introduce additional information

(bias) to penalize the extreme values of the parameters (weights). The most

common form of regularization is the L2 Regularization which in mathematical

terms is expressed as:

λ

2

∥∥w2
∥∥ =

λ

2

m∑

j=1

w2
j (2.11)

where λ is the regularization parameter, through which the adherence of the

model to the training data can be checked. By increasing the λ value, the

regularization intensity is increased. [3]

2.2.2. Introduction to Deep Learning for Computer Vision

Computer Vision is at the forefront of AI research and a virtual intersection

between state-of-the-art computation, storage and deep learning research.[1]

32

2.2. Machine Learning and Deep Learning for Computer Vision

Deep Learning is a process of supervised learning in successive layers of increas-

ingly meaningful representations. [2]

Some important applications in computer vision include:

• Self-driving transportation;

• Fraud detection;

• Security systems;

• Public administration;

• Content analysis, management and retrieval.

Computer vision requires various computationally efficient techniques to use

data in a meaningful manner. In recent times, the considerable growth in CPU

(Central Processing Unit) speed has not matched the speed of data creation.

This in turn has led to the development of many parallel processing architectures

and the rise of GPUs (Graphic Processing Units), which previously employed in

computer game technology, and now are increasingly used for the computational

purposes.

Deep learning is a powerful combination of methods and techniques which

provide the blueprint for flexible models to be used. It combines multilayer

perceptron algorithms with various mathematical concepts. In deep learning,

the model, when properly tuned, automatically finds the optimum combination

of input features, enhancing the accuracy of a decision-making process.

the process of Deep learning can be scantily described as mapping/connecting

data from A to B. A and B broadly represent the input and the output respec-

tively. A more accurate and comprehensive interpretation of Deep Learning

might be the performance of universal function approximations; in other words,

with sufficient labeled data, the system should be able to approximate any

function. The complexity of a function can be increased by extending its layer

and by adding more units on the various layers i.e. to add more variables

and parameters to a function. Deep learning has better learning abilities than

those associated to traditional machine learning algorithms because it can

select efficiently the most appropriate features from datasets. Thanks to the

increased efficiency and speed of data processing and the relatively easy use of

its applications, deep learning is quickly becoming a personal favourite of many

researchers and one of the most widely-used algorithm in the field of AI. [1]

2.2.3. Artificial Neural Networks

Our brain can recognize features and objects swiftly even when those are

perceived in a form that might not be not familiar with what had been previously

33

Chapter 2. State of the Art technology

memorized by our neural cells. Whenever we touch an object, we can feel it. This

is possible because of the sensors in our fingers tips which are connected directly

to our brain. All human body sensors work simultaneously to collect data which

is then processed and passed on to our brain. Based on this information, the

brain makes the final decision and sends the relevant instructions or information

to the appropriate body part.

Neural networks are inspired from the human brain and its inner workings.

Even today with all the modern technology at our own disposal it is still a quiet

daunting task to fully comprehend how intricate the human brain is and how it

works. Nevertheless its main functions and features could be briefly resumed as

follow: the human brain is composed of approximately 100 billion nerve cells

called neurons. Each neuron can relate to thousands of other neurons that

are found in a large network. A neuron communicates with other neurons in

the form of electrochemical signals. Every feeling, thought and emotion we

experience comes from millions of small neurons communicating to each other.

Without these neurons who work and carry messages throughout our body

constantly, we wouldn’t be able to feel or do anything.

A typical neural network consists of many artificial neurons called units that

are arranged in a series of layers. A typical artificial neural network consists of

different layers, as shown in Figure 2.3:

Figure 2.3.: Example of artificial neural network. Source:[18]

• Input layer : The input layer contains those units (artificial neurons) that

receive input from the outside world on which the network will learn,

recognize or otherwise process;

• Output layer : The output layer contains units that respond to the infor-

mation about how it has learned some or all the tasks it was supposed to

learn;

• Hidden layers: The hidden layers are units that are positioned between

the input and output layers. The job of the hidden layers is to transform

the input into a form that is comprehensible for the output layer.

34

2.2. Machine Learning and Deep Learning for Computer Vision

We can create different types of neural networks by connecting nodes in a

different manner and changing the flow direction of data. Each type of neural

network has a different level of complexity which is directly related to the tasks

that need to be carried out for a specific application. [1]

Feedforward Neural Network

The simplest of all neural networks, the feedforward neural network, moves

information in one direction only. Data moves from the input nodes to the output

nodes, passing through the hidden nodes. There is no feedback mechanism from

the output to the input area; hence, the feedforward network can be simply

expressed graphically with a directed acyclic graph.

It is possible to distinguish the single layer perceptron from the multilayer

perceptron; the single layer perceptron is the most basic form of artificial neural

network that consists of input and output layers with no hidden layers. It is a

type of feedforward neural network with 0 hidden layers. A multilayer perceptron

(MLP) instead, is a class of feedforward neural network. MLP consists of three

layers; an input layer, an output layer and one (or more) hidden layer. Multilayer

perceptrons or feedforward networks are the fundamental and classical form of

Deep Learning models.

The hidden layers do not supply information in order to establish the true output

value from the input data. Instead they are used by the learning algorithms in

order to choose the optimum value of parameters to approximate function F ,

which maps input to output.

Each layer within network consists of units. Units of hidden layers are called

hidden units. By adding more layers and hidden units, the dimensionality of the

network increases and so does the complexity of the function. Mathematically

speaking, each layer can be defined as a vector in which a number of units

represent elements of the vector. A neural network therefore can be interpreted

as connections between vector and scalar elements, where every single element

of a given layer is connected, through a vector, to every other single element of

the adjacent layers.

Focusing on deep learning, there are broadly two types of models: linear and non-

linear. Linear models use simple mathematical properties, generally additivity

and multiplicity, in order to obtain the desired solution. These models can fit

on linearly separable data and they are simple and easy to use too.

In the real world, however, we almost exclusively encounter situations that

present challenges that cannot be solved with linear functions but require instead

complex and linear models.

The Deep learning technique introduces non-linearity into the network. In

Deep Learning, we use an approximation function F with various parameters.

During the mapping of input to output, this technique is useful to obtain

35

Chapter 2. State of the Art technology

data concerning the parameters optimum value within the function itself. This

process in turn optimizes the obtainment of a generic mapping function essential

to achieve reliable results during data tests.[1]

Cost/Loss Functions

Deep Learning algorithms use optimization techniques, i.e. minimization or

maximization of a function to get the optimum solution. In the optimization

process, a given function is minimalized to achieve a stable global minimum.

Even during the process of maximization, should this be required, it is prefer-

able to minimize the negative value of the specific function, a process virtually

equivalent to the maximization of the original function. The function that needs

to be maximized or minimized may be defined as cost function, loss function or

error function (or more generally it might be called objective function).

The training of the neural network is quite similar to other machine learning

algorithms, but the computation of the gradient is more difficult in nonlinear

networks. In linear models, we use a convex function (for a function to be convex,

the line connecting two points on the graph of the function must lie above the

function) as an optimization function. The advantage of the convex function is

that it converges to a very low value with any initial value of parameters, but

due to nonlinearity in the neural network, the associated cost function becomes

non-convex and hence, cost function does not converge to a very low value.

In this case therefore iterative and gradient-based optimization techniques are

employed to converge the cost function to a possible low value.

The cost/loss functions are used to estimate parameters of the universal approx-

imation function that maps input X to output Y and eventually quantifies the

performance of the approximated model. To get the best approximate model,

the parameter of the model need to be estimated in order to achieve a minimum

loss.

Maximum likelihood algorithm is the most widely practiced algorithm for

the estimation of parameters. As regards the maximum likelihood principle,

let’s take m sample points from any probability distribution P (X), where

X = {x1, · · · , xm}. Next, let’s define the model as P̂ (X; w, b), such that it

determines the probability that xi (where i ∈ {1, 2, · · · , m}) belongs to distribu-

tion P (X) having parameters w and b. Now it is possible to define the maximum

likelihood estimator for θ - that is used as a condensed form of parameters w

and b - as:

θ̂ = θMLE = argmaxP̂ (X; w, b) = argmax

m∏

i=1

P̂ (xi; w, b) (2.12)

With the help of the equation 2.12, the parameter values w and b are estimated

36

2.2. Machine Learning and Deep Learning for Computer Vision

so that probability of xi belonging to the distribution P (X) is maximum.

We can see that θ̂ is a product of multiple probabilities, which leads to an

error affecting numerical precision. To avoid any numerical precision error,

we generally prefer to take the logarithm of θ̂, which changes the product of

probability density to the sum of probability density. Logarithm is an increasing

function that doesn’t change the maximum point of the original function. After

taking a log of θ̂, we can write θ̂ as:

θ̂ = argmax
∑

i

m log(P̂ (xi; w, b)) (2.13)

The scaling of the function will not change the maximum point of the original

function, so we can divide θ̂ by m (total number of data point) and again define

θ̂ as expectation or average of θ̂.

θ̂ = argmaxE(
∑

i

m log(P̂ (xi; w, b))) (2.14)

The Maximum likelihood estimation can also be interpreted as a technique that

minimizes the dissimilarity between complex models and approximated models.

Kullback-Leiber divergence or KL divergence is an algorithm that compares

two probability distributions. KL divergence helps to measure the amount of

loss of information when a complex distribution system is replaced with an

approximated distribution one. Mathematically, we can write KL divergence as:

KLD = P (X) − P̂ (X)

= log(P (X)) − log(P̂ (X))

= E(log(P (X))) − E(log(P̂ (X)))

(2.15)

There is no condition on P (X) as it is an original distribution; so, to minimize

dissimilarity, we will have to optimize the term containing P̂ . We can see that

minimizing the above equation means maximizing E(log(P̂ (X))), which is the

same as minimizing −E(log(P̂ (X))), which is the same as maximization of the

equation 2.14.

The fundamental concept in supervised learning is the estimation of the condi-

tional probability of model Y |X; w. We can define the relation between input

X and output Y as follows:

Y = F̂ (X; w, b)+ ∈= θT X+ ∈ (2.16)

For m data points, we can write:

yi = θT xi + ε = wT xi + b + εi, i = 0, · · · , m (2.17)

37

Chapter 2. State of the Art technology

Where F̂ is the approximated function, θ(w, b) is the parameter of the function,

and ∈ is an error term or random noise in the model. Let’s assume that this error

term is independently and identically distributed and also normally distributed,

i.e. ∈∼ N(0, σ2). Form data points, we can write probability density of error

term ∈i as:

p(∈i) =
1√
2πσ

exp

(
− (∈i)2

2σ2

)
(2.18)

From equation 2.18, we can write that probability distribution of output yi

will also be Gaussian, that is:

p(yi|xi; w, b) =
1√
2πσ

exp

(
− (yi − wT xi − b)2

2σ2

)
(2.19)

In other words, we can say that yi, will be a random variable that is distributed

according to the Gaussian distribution, with mean θT xi and variance σ2, that

is:

yi|xi; w, b ∼ N(wT xi + b, σ2) (2.20)

There are various cost functions such as the least square function, the cross-

entropy function and the softmax function.[1]

The equation 2.19 is a function of y for fixed w and b, but it can also be

interpreted as a function of w and b. In mathematical terms, it can be written

as:

p(Y |X; w, b) = L(w, b) = L(w, b; X, Y) (2.21)

L(w, b) =

m∏

i=1

p(yi|xi; w, b) (2.22)

L(w, b) =
m∏

i=1

1√
2πσ

exp

(
− (yi − wT xi + b)

2σ2

)
(2.23)

We can define L(w, b) as the likelihood function. We can write l(w, b) =

log(L(w, b)). Now, we want to maximize the log likelihood function l(w, b) using

the maximum likelihood principle.

38

2.2. Machine Learning and Deep Learning for Computer Vision

l(w, b) = log(L(w, b))

= log

(
m∏

i=1

1√
2πσ

exp

(
− (yi − wT xi + b)2

2σ2

))

=

m∑

i=1

log

(
1√
2πσ

exp

(
− (yi − wT xi + b)2

2σ2

))

= mlog
1√
2πσ

− 1

2σ2

m∑

i=1

(yi − wT xi + b)2

(2.24)

In the preceding equation, we can see that the first term is constant, so

maximizing l(w, b) is the same as minimizing:

m∑

i=1

(yi − wT xi + b)2 (2.25)

We define this minimizing function as the least square loss function, and in

mathematica terms we write this as function of w and b,

J(w, b) = J(w, b) =
1

2

m∑

i=1

(yi − wT xi + b)2 (2.26)

And we can define the mean square error as:

1

m
J(w, b) =

1

m

(
1

2

m∑

i=1

(yi − wT xi + b)2

)
(2.27)

From equation 2.27, it can be said that by applying probabilistic assumptions

on the distribution of data, we can use the least square cost function to estimate

the optimum value of parameters of the approximated model.

We can see that cost function J(w, b) will always be non-negative due to square

factor. When the output from approximated model will be very close to the out-

put of the true model, then the value of J(w, b) will be very low, i.e. J(w, b) ≈ 0;

but, if J(w, b) is large, then parameters of the approximated model are not

useful. So, our objective is to find the value of parameters w and b such that it

makes the value of cost function as low as possible.[1]

In binary classification, y takes two values, either 0 or 1. Intuitively, it can

be seen that the model should not give values larger than 1 and smaller than 0,

because the output value y is always set between 0 and 1. In order to achieve

this constraint, a function needs to be chosen which determines the output of

the model between 0 and 1. The sigmoid function therefore is a function that

keeps the output value between 0 and 1. The Sigmoid function is also known as

39

Chapter 2. State of the Art technology

the logistic function. In mathematical terms, the sigmoid function is defined as:

g(z) =
1

1 + e−z
(2.28)

And we can define output Y of a model as:

Y =
1

1 + e−(wT X+b)
(2.29)

Where, w and b are the parameters of the model. Any smooth function can

be used as long as it keeps the output value between 0 and 1.

To better understand the loss function should have in order to estimate that

can estimate the optimum values of parameters for a binary classification, the

quadratic loss function should be employed to estimate the optimum value of

the parameters. Let’s define an actual and predicted output of model as y and

ŷ respectively.

Then, the loss function should be J(w, b) = 1
2 (y− ŷ). It is preferable to minimize

the convex function to obtain a stable global minima, but in the case of binary

classification, the optimization function turns out to be non-convex with multiple

local minima. The non-convexity arises because the presence of the nonlinear

sigmoid function.

In this case certain probabilistic assumptions were used in order to obtain the

quadratic cost function. Let’s define a few probabilistic assumptions to derive

the cross-entropy cost function.

Assumptions:

P (y = 1|x; θ) = P (y = 1|x; w, b) = F̂ (x; w, b) (2.30)

P (y = 0|x; θ) = P (y = 0|x; w, b) = 1 − F̂ (x; w, b) (2.31)

The first equation explains that the approximate function of the model (F̂ (x))

estimates the probability of y = 1. Now, y can be either a 0 or 1. So, probability

of y = 0 will be 1 − F̂ . We can merge the above two equations and write

P (y|x; w, b) as:

P (y|x; w, b) = (F̂ (x; w, b))y.(1 − (F̂ (x; w, b)))(1−y) (2.32)

Consequently when y = 1, the above equation gets transformed into the first

equation of the assumption, and when y = 0, the equation turns out to be the

second equation of the assumption.

As with the least square function, the maximum likelihood principle will be

employed to estimate an optimum value of parameters for a binary classification

problem.

40

2.2. Machine Learning and Deep Learning for Computer Vision

Let’s now define the likelihood function L(w, b). Therefore:

p(Y = 1|X; θ) = L(w, b) = L(w, b; X, Y) (2.33)

For m independent training examples, we can then write L(w, b) as:

L(w, b) =
m∏

i=1

p(yi|xi; w, b) (2.34)

L(w, b) =
m∏

i=1

(F̂ (xi; w, b))yi

.(1 − (F̂ (xi; w, b))1−yi

) (2.35)

Let’s take log of L(w, b) and define this as the log likelihood function (w, b):

l(w, b) = log

(
m∏

i=1

(F̂ (xi; w, b))

)yi

.(1 − (F̂ (xi; w, b))1−yi

)

=
∑

i=1

myi log(F̂ (xi; w, b))(1 − yi) log(1 − F̂ (xi; w, b))

(2.36)

And the total cost of the model may be defined as:

l(w, b) =
1

m

m∑

i=1

yi log F̂ + (1 − yi) log(1 − F̂ (xi; w, b)) (2.37)

So, to find the best value of parameters that fit the model, we will have to

maximize the log likelihood function l(w, b) or minimize the negative of l(w, b).

So, the cost function may be written as:

(
− 1

m

m∑

i=1

yi log
(
F̂ (xi; w, b)

)
+ (1 − yi) log

(
1 − F̂ (xi; w, b)

)
)

(2.38)

For simplicity, we will define the approximate output F̂ (xi; w, b) = aii. So,

eq. 2.38 can be written as:

J(w, b) = −
(

1

m

m∑

i=1

yi log(ai) + (1 − yi) log(1 − ai)

)
(2.39)

We will maintain the same simplistic notation for the approximate output of

network.[1]

It is possible to extend the cross-entropy applicability for variables with n

probable values.

41

Chapter 2. State of the Art technology

For the purposes of binary classification it can be assumed that:

P (xi; θ) = P (x; w, b) = F̂ (x; w, b) = a (2.40)

For n possible values, we can rewrite the generic form of the above equation

as:

P (xi; θ) = P (xi; w, b) = F̂ (xi; w, b) = ai (2.41)

In this case, we will get a vector of output a, of which, the value of each

element of the vector will set between 0 and 1 and the total sums of all the

elements will be equal to 1.

In mathematical terms, the softmax function is defined as:

softmax(xi) =
exp (xi)∑
n exp (xi)

(2.42)

Knowing the cross-entropy function for binary variable from the equation

2.39, we can extend the equation for n values and write it as follows:

J(w, b) = − 1

m

(
m∑

i=1

n∑

j=1

yj log(aj)

)
(2.43)

where m is the total number of samples and n is the total number of classes.

We can see that, for n = 2, we will get the same cost function that we derived

for the binary variable, where y1 = y1, y2 = 1 − y1. Similarly, if a1 = a, then

a2 = 1 − a.

During the prediction process, the output class has been transformed in an

one-hot encoder vector. One-hot encoding is a mechanism where one categorical

variable is decomposed into a set of continuous variables [2]. As regards to the

input value, the cost function therefore can be written as follows:

J(w, b) = −
n∑

j=1

yj log (aj) = −(0 + · · · + yk log (ak) + 0) = − log (ak) (2.44)

[1]

The softmax function is also employed as an activation function for the output

layer, when multi-class classification is needed. The sigmoid function (further

discussed below), is instead used as activation function for the output layer in a

binary classification.

Optimization

The optimization techniques are used to train the neural network. Essentially,

this means to estimate the corresponding model parameters at which the cost

42

2.2. Machine Learning and Deep Learning for Computer Vision

function takes its minimum value.

The Gradient Descent and the Stochastic Gradient Descent are considered to

be two important optimization techniques.[1]

The Gradient Descent is employed to determine the direction of steepest

descent used to converge the cost function. To get the convergning point, the

slope of the function f(x) needs to be calculated and consequently infinitesimal

displacements δx will have to be carried out in order to reach the minimum

point.

The function y = f(x) can be calculated as follows:

δy = f(x + δx) − f(x) ⇒ δy

δx
=

f(x + δx) − f(x)

δx
(2.45)

For very infinitesimal displacement, the following equation can be employed:

δy

δx
=

dy

dx
= f ′(x) (2.46)

f ′(x) ≈ f(x + δx) − f(x)

δx
⇒ f(x + δx) ≈ f(x) + δx.f ′(x) (2.47)

More comprehensively, it can be written f(x+δx) = f(x−δx.sign(f ′(x))). It

is also know that in an increasing function, f ′(x) > 0, whereas for a decreasing

function f ′(x) < 0. We can therefore infer from this equation that, in the

increasing function f(x − δx) is less than f(x). Hence, to decrease the value of

f(x), the value of infinitesimal displacement δx will have to be imputed towards

the opposite direction of f ′(x). Similarly, the same procedure can be apllied for

the decreasing function.

Based on what has been discussed above, it can be deduced that the new point

will be x′ = x − αf ′(x), where α is defined as learning rate, which determines

the size of the infinitesimal displacement.

Generally, it is preferable to set a very low value for α in consecutive steps

in order to obtain the conversion of an optimal rate to the desired minimum

point without any unwanted ’jumps’. In multiple dimensions, when there are

multiple independent variables, f ′(x) it will be necessary to compute in both

direction. For multivariate inputs, it will be necessary to calculate the gradient

of function f(X), which is denoted as ∇xf(x). This gradient computation

technique is defined as gradient descent, also known as batch gradient descent;

the cost function for the batch gradient descent is therefore defined as:

J(w, b) =
1

m

(
1

2

∑

i=1

m
1

2
(ŷi − yi)2

)
(2.48)

[1]

43

Chapter 2. State of the Art technology

The Batch gradient descent utilizes all the samples placed in the training

set and sums up the gradients to update parameters at every step. When

the optimization of a model for a large dataset is required, there might be

issues connected with the slow speed of the algorithm and its tendency of

becoming computationally expansive. To overcome these problems, researchers

have devised a new algorithm called Stochastic Gradient Descent, also known

as SGD.

In SGD the gradient for the first training example is calculated first. Then,

its value gets imputed into the sample in order to update the parameter. The

updated parameter becomes than the initial parameter for the second training

example, a process which is then repeated again through the various steps. In

conclusion, in SGD, when working with training samples, the gradient has to

been calculated in the first place. The subsequent errors are then employed to

update the parameters of the model itself. In contrast to the batch gradient

descent, in SGD a complete set of training dataset is needed to implement

the infinitesimal displacements for the steepest descent. However, with the

employment of SGD there might be a correlated unwanted factor called the

zig-zag motion which affects the primary objective i.e. the obtainment of

convergence to the global minimum. A local minimum is instead obtained which

in most cases can be considered as an acceptable result because close enough to

the global minimum

The cost function for the batch gradient descent algorithm is given by the

equation 2.47. In SGD instead, as the gradient is calculated for each training

sample, the cost function gets changed to the equation: J(wi, bi) = 1
2 (ŷi − yi)2

that can be also written as J(w, b) = 1
m

(
1
2

∑m

i=1 J(wi, bi)

)
.[1]

Activation Function

A linear model with a single neuron is fed with a linear combination of weights

and inputs.

In mathematical terms, a prediction for the output y is expressed as:

y = linear

(∑
w.x + b

)
(2.49)

The formula produces a linear decision boundary and consequently, a linear

classifier. We use a neural network to build non-linear models, in which each

neuron gets an input similar to that generalized in linear models.

A generic equation can therefore be written in which the neuron gets the input

values as follows:

y = Activation function

(∑
w.x + b

)
(2.50)

44

2.2. Machine Learning and Deep Learning for Computer Vision

In a linear model, the linear function is used as an activation function.

It can be said that if a linear activation function is used for a neural network,

the network will always compute linear functions regardless of the number of

layers it might or might not have in its system. In other words the network will

behave like there are no hidden units. Similarly, it can be observed that if the

activation function is modified in the output layer from linear to sigmoid, the

same neural network will behave like a logistic regression model because the link

from the input to the output unit is a linear combination of weights and original

inputs. A linear activation function can therefore be used in output units when

issues such as regression and time series prediction occur. A different activation

function - non-linear - must be used when dealing with hidden layers. [1]

The Sigmoid Function

f(x) =
1

1 + e−x
(2.51)

Figure 2.4.: Sigmoid Function. Source:[19]

Figure 2.4 shows a graph of the sigmoid function. Traditionally, the sigmoid

function has been used as an activation function in neural networks. As

previously discussed, an its characteristic is to limit the range of its values

between 0 and 1. It is widely used in binary classification. Although the sigmoid

function encompasses the non-linearity, it has a few drawbacks:

• Vanishing gradient: When the output value of hidden units correspond to

0 or 1, gradient become zero due to saturation (slope = 0). We know that

the gradient should not carry a zero value while updating the parameters,

otherwise there will be no errors propagating backwards, (the backward

propagation effect will be discussed later) and the parameters won’t get

updated. Due to this potential problem, extra caution is required while

initializing the parameters.

45

Chapter 2. State of the Art technology

• Non-zero centered output: An output value in any given hidden unit

generates non-zero centered data, thus creating a zig-zag dynamic descent

during gradient descent updates, which will inevitably lead to a slower

convergence.

[1]

The Tanh Function

f(x) =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
=

1 − e−2x

1 + e−2x
(2.52)

Figure 2.5.: Tanh Function. Source:[19]

The Tanh Function is another non-linear function used as an activation

function. Its output value is always limited to a range between −1 and 1. The

Tanh function can be interpreted as a ’elongated’ version of the sigmoid function.

In mathematical terms, it can be expressed as tanh(x) = 2σ(2x) − 1. The Tanh

function also carries some side effects such as the vanishing gradient problem,

but is generally preferred over the sigmoid function due to its zero-centered

output.[1]

The Relu Function

g(x) = max(0, x) (2.53)

Rectified linear units commonly known as relu function, use the equation

2.53. The Relu function is easy to optimize due to its similarity with the linear

function. The difference between a linear function and a Relu function is that

has a zero output value when x is less than or equal to zero. Figure 2.6 shows

the graph of the relu function. The derivative of the Relu function is equal to

1 in the middle of its domain. The hidden units will remain active when x is

greater than zero. It helps to avoid the problem of the vanishing gradient when

46

2.2. Machine Learning and Deep Learning for Computer Vision

Figure 2.6.: Relu Function. Source:[19]

x is greater than zero. In contrast to the Sigmoid and Tanh functions, where

the gradient value decreases as the value of x gets larger, the gradient of the

Relu function remains constant thus helping to achive a faster convergence.[1]

The Leaky relu Function Unlike the Sigmoid and Tanh functions, Relu

provides sparse network due to its characteristics (outputs 0 when x ≤ 0). It

has certain advantages over the Sigmoid and Tanh, the Relu function has its

disadvantages too. It can be observed that range of the Relu function goes from

0 to infinity. This means a possibility of a very high output of the activation

function which might lead to exploding gradients and a slower convergence.

When x ≤ 0, gradients become zero, so weights cannot be updated during back

propagation. This problem is commonly known as the dying relu problem. To

mitigate this problem, a new activation function, called Leaky relu, has been

devised.

g(x) = max(αx, x) (2.54)

Figure 2.7.: Leaky relu Function. Source:[20]

It is based on the g(x) = max(αx, x) function, where α is a very small number.

47

Chapter 2. State of the Art technology

In Relu function, when x ≤ 0, it returns to 0, but in Leaky relu, it will return to

the (αx) value. The value of α is generally kept close to 0.01 or even smaller.[1]

Backpropagation

In feedforward neural networks, we take an input x and then information from

x flows through the hidden layers to produce output ŷ. As information from

x can only flows forward, this process takes the name of forward propagation.

Once the ŷ output is obtained, the J cost function can then be defined. This

represents the error between a true y output and the predicted ŷ output. Using

the backpropagation algorithm, information (essentially the gradients) is fed

from the cost function back to the network. This essentialy can be seen as a

process that uses the feedback mechanism to enhance the model performance. In

backpropagation, information is fed again to the network, but this time backwards

that’s why this technique is known as backpropagation. Backpropagation can be

carried out also in a generalized linear model and can therefore be employed to

compute the gradient of even function.[1]

Overfitting and Underfitting

In any model learning process, it is essential for the model to generalize from

the training data so it can make predictions for the future based on the data

previously unknown. In practical term however, two scenarios normally occur:

1. Overfitting: the model has managed to assimilate training data too well

capturing even the tiniest of details such as noise. This can produce

undesired side-effects and seriously undermine the performance of the

model which is not capable of understanding new information which differs

even slightly from previously stored data;

2. Underfitting: the model is not able to learn significant details necessary

to classify data supplied from the input area, i.e. it can’t adapt data from

the training set or can’t generalize new incoming data.

There are several issues that might be related to the overfitting side-effect.

The abundance of data although a positive factor when establishing parameters

and characteristic as close as possible to reality should always be supported

by the model’s capability of being able to effectively generalize the scenario.

Deep neural networks, might have millions of different parameters (weights and

biases) which may cause the model to overfit. To effectively train the model, it

is therefore crucial to detect those cases in which the model overfits which isn’t

an easy task. A lower accuracy on the unforeseen data (test data) compared to

that of the training set might be a sign of overfitting. We can use the following

methods to prevent overfitting in deep neural networks:

48

2.2. Machine Learning and Deep Learning for Computer Vision

• A larger amount of data: more data means an increased capability for the

model to capture all the significant details and estimate the parameters

appropriately;

• Train/Dev/Test set: it is always recommendable to have a separate

dev/validation set in order to be able to finely tune hyperparameters,

keeping the test set completely unforeseen. This is because in neural

networks there are a lot of hyperparameters to play with. Using the

test set accuracy to set the hyperparameters leads to leaking of the test

(unforeseen) data information, a factor often responsible for the failure of

the model in production system;

• Reduce the size of the network: this is a solution that in most case can

not be implemented as larger more powerful networks have substantial

advantages over small ones;

• Regularization: It is the most commonly used method for preventing

overfitting. It basically adds an extra component (penalty term) to the

cost function in order to modify the network. In this way the model is

punished for being too complex. The simplification of the model leads to a

better generalization performance. The L1 and L2 are two regularization

techniques which add an extra penalty term in the cost function so that

network is able to learn small weights;

• Drop out: In this technique, neurons (or nodes) in each layer (except

those belonging to the output layer) of the network are dropped out

(deactivated) with a probability p. Probability p is a hyperparameter whish

is set during the training process and which default value is normally set

at 0.5. It is worth noting that all neurons are kept in an activated state

(no drop out) while testing/inferencing;

• Early stopping: it has been often observed that by increasing the number

of epochs, the accuracy during the validation phase stops increasing when

it reaches a certain epoch, while the loss value stabilizes or decreases.

Therefore by implementing the early stopping, the training process gets

interrupted before the model reaches the overfitting stage.

Although underfitting is a less common problem than overfitting, it can equally

affect the performance and efficiency of the model by over simplifying certain

operations which can lead the system to overlook certain details supplies by the

training data. Furthermore the implementation of a very high regularization

coefficient (λ) to avoid overfitting might at the end lead to the creation of the

opposite problem i.e. underfitting. Underfitting is easier to detect with a good

performance metric-like accuracy. The underfit model gives poor performance

49

Chapter 2. State of the Art technology

during testing as well as during the training data process. To prevent underfitting

in deep neural networks, there are two solutions:

• An increment in the number of layers or the number of neurons: with

a larger number of layers or neurons, it is possible to create more free

parameters to be estimated in order to increase the learning capacity of

the model;

• Decreasing the regularization coefficient.

[1]

2.2.4. Convolutional Neural Networks (CNN)

Introduction to CNN

Convolutional neural networks are a family of models which have been devised

by using the same principle utilized by the human brain when it recognizes

and then processes data (objects, people, colours, etc.) through the visual

cortex. Effectiveness in extracting relevant characteristics is the key to a good

performance of any machine learning algorithm.

Some types of neural networks, such as convolutional neural networks, are able

to automatically learn the characteristics from the raw data that are most

useful for a certain task. For this reason, the layers of convolutional neural

networks are rightly considered feature extractors: the first layers (those placed

just after the input layer) extract low-level features from the raw data while

the subsequent layers (which are often fully connected layers, such as those in a

multi-layer perceptron) use these characteristics to predict a continuous target

value or label of a class.

Some types of multi-layer neural networks, and in particular deep convolutional

neural networks, are organized in a so called hierarchy of characteristics, com-

bining for example low-level characteristics (low or high). For example, if we are

dealing with images, then low-level features, such as edges and protusions, are

extracted from the first few layers and then combined together to form high-level

features. These high-level features can reveal more complex shapes, such as the

general outlines of objects. A convolutional neural network computes feature

maps from an input image, where each element comes from a local group of

pixels in the input image. This local group of pixels is called a local receptive

field. Convolutional neural networks are normally very effective when employed

for image-related tasks essentially because of two mains factors:

• Sparse connectivity: a single feature map element is connected to only a

small group of pixels. This behaviour is very different from connecting to

the entire input images, as it happens for example with the perceptron;

50

2.2. Machine Learning and Deep Learning for Computer Vision

• Sharing parameters: the same weights are used for different pixel groups

for the same input image.

Replacing a fully connected standard multi-level perceptron with a convo-

lutional layer substantially reduces the number of weights (parameters) of the

network and improves the ability of the system to capture relevant features. In

the context of images, it makes sense to assume that neighboring pixels are

typically more relevant to each other than pixels that are more distant.

Convolutional neural networks normally consist of several convolutional and

subsampling layers, followed by one or more fully connected layer. Fully con-

nected layers are essentially multi-layer perceptrons, where each unit of input, i,

is connected to each output unit, j, with weight wij .

It is important to note that subsampling layers, commonly called pooling layers,

have no parameters to learn; for example, there are no weights or units of bias

in the pooling layers. In contrast, the convolutional and fully connected layers

both have weights and biases to be optimized through the training phase. [3]

Convolution operation

A discrete convolution (sometimes simply called convolution) is a fundamental

operation in a convolutional neural network.

The relevant indexes indicate the dimensions of a multidimensional array (ten-

sor); for example, An1×n2
is a bidimensional array of n1 × n2 dimension. The

square brackets are also considered as tools to denote the indices of a multidi-

mensional array; for example, A[i, j] refers to the element at the index i, j of

the array A. Finally, the special simbol ∗ indicates the convolution operation

between two vectors.

With these notations, it is possible to define a convolution for two vectors, x̄

and w̄, as ȳ = x̄ ∗ w̄, where the vector x̄ is the input (also called signal) and w̄

is denominated filter or kernel. In mathematical terms, a convolution is defined

as follows:

ȳ = x̄ ∗ w̄ → y[i] =

+∞∑

k=−∞

x[i − k]w[k] (2.55)

The index i scrolls through each element of the output vector ȳ. There

are two problematic aspects to the above formula, which which have to be

considering: the fact that the summation crosses the indices from −∞ to+∞ is

fairly peculiar, since in machine learning we always have to deal with vectors

of finite characteristics. For example, if x̄ has 10 characteristics with indices

0, 1, 2, ·, 9, then the indices from −∞ to −1 and from 10 to +∞ are outside

the limits of x̄. Therefore, to correctly calculate the sum represented in the

formula 2.54, it must be assumed that x̄ and w̄ are padded with zeros. This

51

Chapter 2. State of the Art technology

will produce an infinite sized output vector ȳ with many zeros. Since this is

not useful in practical situation, x̄ is padded with only a finite number of zeros.

This process is called zero padding or, simply, padding. Here, the number of

zeros added on each side is denoted by p.

Assuming that the original input, x̄, and filter, w̄, have n and m elements

respectively, where m ≤ n and the padded vector, x̄p has dimensions n + 2p,

the practical formula for calculating a discrete convolution can be expressed as

follows:

ȳ = x̄ ∗ w̄ → y[i] =
k=m−1∑

k=0

xp[i + m − k]w[k] (2.56)

Once the infinite index problem has been solved, there is a the second second

issues which needs to be addressed i.e. the indexing of x̄ with i + m − k. It

is important to note that x̄ and w̄ are indexed in different directions in the

summation. Calculating the summation with an index running in the reverse

direction is equivalent to calculating the summation with both indices pro-

ceeding in the same direction after the invertions one of these vectors, x̄ or

w̄ has taken place alongside the zero padding. At this point the dot product

can be calculated. The filter w̄ is inverted (rotated) (w̄r), the scalar product

x̄[i : i + m].w̄r is then calculated to obtain an element, y[i], which x̄[i : i + m] is

a part of x̄ with m dimensions. This operation is repeated with a sliding method,

in order to obtain all the output elements. The values obtained by the use of the

sliding method form a so called stride, another hyperparameter of a convolution

which must be a positive number and smaller than the size of the input vector.[3]

The cross-correlation between an input vector and a filter is denoted by

ȳ = x̄ ∗ w̄ and it is very similar to a convolution, with one small difference:

in a crosscorrelation, the multiplication is performed in the same direction.

Therefore, it is not mandatory to rotate the filter matrix, w̄. In mathematical

terms, the crosscorrelation is defined as:

ȳ = x̄ ∗ w̄ → y[i] =

+∞∑

k=−∞

x[i + k]w[k] (2.57)

As for padding and sliding the same rules apply to correlation.[3]

Technically, padding can also be applied with p ≥ 0. Depending on the choice

of p, the peripheral cells can be treated differently from those located "inside"x̄.

There are three commonly used padding modes:

• full padding: the padding parameter, p, is set to p = m − 1. Full padding

increases the size of the output; therefore, it is rarely used in convolutional

52

2.2. Machine Learning and Deep Learning for Computer Vision

neural network architectures;

• same padding: this padding is normally used to ensure that the output

vector is identical to the input vector, x̄ in term of size. In this case,

the padding parameter, p, is calculated according to the size of the filter,

provided that the input and output sizes are the same;

• valid padding: it refers to the case when no padding (p = 0) has been

performed.

The most commonly used padding mode in convolutional neural networks is

the same padding. One of its advantages over other padding modes is that it

preserves the vector dimensions - both the height and the width of the input

images when image processing and computer vision tasks are carried out- a

factor which greatly simplifies very much the design of a network architecture. In

valid padding, as opposed to full padding and same padding the volume of tensors

is substantially reduced in multi-layer neural networks, a big disadvantage that

can considerably affect the performance of the model.

In practice, when working with convolutional network it is advisable to preserve

the spatial dimensions by using the same padding for convolutional layers. If a

reduction of spatial dimension needs to carried out, it is preferable employed

pooling layers. When full padding is employed, the output produced is larger

than the size of the input. Full padding is therefore normally used in signal

processing applications, where it is important to minimize the effects of the

extremities. However, in the context of deep learning, the effects of extremities

are usually not a problem, so a practical use of full padding is rarely seen.[3]

The output size of a convolution is determined by the total number of times the

filter w̄ is scrolled along the input vector. Assuming that the input vector is of

size n and the filter is of size m, the size of the output resulting from ȳ = x̄ ∗ w̄,

with padding p and stride s, would be determined as follows:

o =
⌊n + 2p − m

s

⌋
+ 1 (2.58)

where
⌊
.
⌋

denotes the floor operation, which returns the largest integer that

is less than or equal to the input.[3]

When we are dealing with a 2D input, such as a matrix X̄n1×n2
and a filter

matrix W̄n1×n2
, where m1 ≤ n1 and m2 ≤ n2, then the matrix Ȳ = X̄ ∗ W̄ is

the result of a 2D convolution between X and W. In mathematical terms it can

be defined as:

Ȳ = X̄ ∗ W̄ → Y [i, j] =
+∞∑

k1=−∞

+∞∑

k2=−∞

X[i − k1, j − k2]W [k1, k2] (2.59)

53

Chapter 2. State of the Art technology

If one of the above dimensions is omitted, the remaining formula will be the

same as in the 1D convolution. All the techniques used for 1D convolution,

such as zero padding, rotation of the filter matrix and the use of strides, are

also applicable in 2D convolution, as long as they extend independently in both

dimensions. [3]

Pooling

Subsampling is typically applied in two forms of pooling operations in convo-

lutional neural networks: max pooling and mean pooling (also called average

pooling). The pooling layer is normally denoted by Pn1×n2
. Here, the index

determines the size of the neighbouring pixels (the number of adjacent pixels in

each dimension), on which the max or average operation is calculated. These

neighboring elements are called the pool size. The benefit of pooling is a multiple.

Max-pooling introduces a local invariance. This means that small variations in

the surrounding area do not change the max-pooling result. Therefore, it helps

to generate characteristics that are more resistant to the noise present in the

input data. Additionally, pooling reduces the size of features, thereby improving

computational efficiency. Finally, a reduction in the number of features helps to

reduce the propensity for overfitting. While pooling is still an essential element

of many convolutional neural network architectures, a number of devices have

been developed without a pooling layer. In order to reduce the size of features,

researchers employ convolutional layers with a stride of 2 to avoid using pooling

layers. In a sense, a convolutional layer with a stride of 2 can be considered as

a pooling layer with weights to be learned.[3]

The Dropout

Choosing the most appropriate size of a network, either for a traditional (fully

connected) neural network or for a convolutional neural network, is always a

challenging issue. For example, the size of a weight matrix and the number of

layers must be optimized in order to achieve a reasonable performance. A simple

network, with no hidden layers, can only capture a linear decision boundary.

The efficiency of a network is measured by the capacity of the model to learn and

approximate the cost function. Small networks, or networks with a relatively

small number of parameters, have a relatively low capacity and therefore are

more prone to underfitting and to a less efficient performance, as they cannot

learn the underlying structure of complex datasets. However, large networks, as

previously mention, can be prone to overfitting: the network stores training data

with such precision, that might find difficult to understand new details coming

from brand new data. When dealing with real machine learning issues, it is not

know a priori what the size of the network should be. One way to solve this

54

2.2. Machine Learning and Deep Learning for Computer Vision

problem is to build a network with a relatively large capacity (it is preferable

to choose a slightly higher capacity than what a forecast suggests) and big

enough to operate well on the training dataset. To avoid overfitting, one or

more regularization schemes should be applied to achieve a good generalization

performance on new data, such as the test dataset. L1 and L2 regularizations

can also be used for neural networks, with L2 at present being the most common

choice. However, there are other methods to achieve the regularization, such as

drop out. In recent years, drop out has emerged as a widely used technique for

the regularization of deep neural networks with the aim of avoiding overfitting,

i.e. to improve the generalization capacity of the network. The drop out is

normally applied to the hidden units of the upper layers and works in the

following way: during the training phase of a neural network, at each iteration

a fraction of the hidden units are randomly discarded with a probability pdrop

or kept with a probability pkeep = 1 − pdrop. The drop out value is set by the

operator with a probability of p = 0.5 being the most common choce. Because

of a certain number of input neurons are being discarded during the drop out

process, the weights associated with the remaining neurons acquire a new value

and a new size (resizing) to account for the missing neurons. Thanks to the

effect resulting from the random drop out, the network is forced to learn a

redundant representation of the data. As the network cannot count anymore on

the activation of its hidden units (they could be deactivated at any time during

training) it is obliged to learn more general and solid patterns from the data.

in this way overfitting is prevented.

Loss Functions for a CNN

Some activation functions, such as Relu, are mainly used for the hidden layers

of a neural network to introduce a share of non-linearity into the model. But

others, such as sigmoid (employed mainly when confronted with binary issuess)

or softmax (used mainly during multiclass classification), are added to the

output layer) which is responsible for establishing what kind of probability a

certain data output has to belong a certain class (destined to become the output

of the model). If sigmoid or softmax activations are not included in the output

layer, the model would compute the logits - logarithm of probabilities - instead

of calculating the probabilities of certain data input belonging to a certain

class. For issues connected to classification (whether binary or multiclass),

and according to the type of output (logit or probability) when training a

model, an appropriate cost function needs to be employed. The binary cross-

entropy is mainly used for problems connected to the binary classification, while

the categorical cross-entropy is employed for issues connected with multi-class

classification.

55

Chapter 3.

Materials and methods

3.1. Introduction to the project

With ConvNets becoming more of a commodity in the computer vision field, a

number of attempts have been made.

As reported in the first chapter, the following work takes part for an European

project, which is based on the development of a device that aims to allow better

detection of defects in an automotive production chain. In particular, this tool,

the G3F, consists of a smartphone cover with a triangulation laser sensor inside.

Pointing the laser at a car in a production chain, the sensor shows in output

Gap&Flush measurement of the area under consideration. These quantitities

allow the operator to determine if the various parts of the car are well assembled

or not, thus avoiding going to sell defective components. To obtain the best

possible acquisition, it is necessary to adjust the power emitted by the laser

according the components and colors of the car that are taken into consideration

from time to time.

For this purpose, with the following work, a software architecture based on

convolutional neural networks has been studied to guarantee this classification.

Two main classification problems were treated: a binary classification that

allows you to distinguish a separation between two sheet-metal or that between

sheet-metal and headlight, and a multiclass classification, with which the neural

network was trained to recognize ten different classes. These classes were made

to be able to identify various car colors. In detail, five different colors have been

selected and for each color two classes have been created: one class relating

to the separation between two sheets-metal and the other class relating to the

division between light and sheet.

The efficiency of the various models was assessed by considering accuracy and

loss during the training and validation phase. For a classification problem,

the accuracy is defined by the ratio between the number of records predicted

correctly and the total number of records. It is a probability metric, and value

ranges from 0 and 1. A higher value infers a better accuracy and classification

problem. It also can be expressed in term of percentages like probability. [2]

57

Chapter 3. Materials and methods

The term loss, on the other hand, refers to the loss measured for a single data

point. Unlike accuracy, the loss is not a percentage value and can be even

greater than one. The greater the loss, the less efficient is the classifier. [3]

3.2. Binary classification

3.2.1. Multiple architectures with an online cats and dogs

dataset

We began by building a program making use of the iteration process that would

allow the user to obtain all the possible combination of hyperparameters. To

begin, a program, that through iteration would allow you to try out all the

various combinations of hyperparameters was built. In particular, five models

were chosen: VGG16, Xception, InceptionResNetV2, InceptionV3 and ResNet50.

Each model was combined with two batch size values, 32 and 64, two learning

rate values, 0.001 and 0.0001 and five optimizers: the SGD, the Adam, the

Adadelta, the Adagrad and the RMSprop.

VGG Net

Convolutional networks (ConvNets) have recently enjoyed a great success in

large-scale image and video recognition which has become possible thanks to the

spreding of large public image repositories, such as ImageNet, and also thanks to

a number of high-performance computing systems, such as GPUs or large-scale

distributed clusters. In particular, an important role in the advance of deep

visual recognition architectures has been played by the ImageNet Large-Scale

Visual Recognition Challenge (ILSVRC), which has served as a testbed for

several large-scale image classification systems, such as high-dimensional shallow

feature encodings and the deep ConvNets.[15]

One of the most popular deep ConvNets is the VGG-16 architecture, shown

below:

Figure 3.1.: VGG-16 architecture. Source:[21]

58

3.2. Binary classification

The VGG Net, firstly proposed by the Visual Geometry Group- University of

Oxford, is known for its simplicity as it utilizes only 3x3 convolutional layers

stacked on top of one. The VGG Net has very attractive features because of its

uniform architecture and relatively small filter with a size of 3x3 that help to

reduce the total number of parameters. The blocks featuring the same filter

size are utilized a number of times. However, since the VGG Net uses a great

number of filters in different layers, the number of parameters can be quiet

large resulting in heavy and sometimes slow computation. The following image

is about the various depths:

Figure 3.2.: VGG Nets of Various Depth. Source:[21]

[1]

Inception network

The winning architecture of the ImageNet challenge 2014 was the GoogLeNet/

Inception Network, which has proved to be an important milestone in the field

of CNN architecture.

Deeper networks have their own disadvantages; one of them being the issue

connected to the vanishing gradients which make difficult for those layers who

first receive data, to process, learn and memorize information. When in the

presence of a large number of layers, it can be observed that the number of

weights is also high. As a consequence, training becomes computationally very

expensive, both in terms of memory and time. Deep networks are also prone to

overfitting and as a result they do not generalize well. [1]

59

Chapter 3. Materials and methods

Although VGGNet has compelling features due to its architectural simplicity,

there are two sides of the same coin: the proper evaluation of a network requires

a lot of computation and this might require more time to carry out the requested

tasks. The computational cost of Inception model instead is much lower than

VGGNet. This feature has made the Inception networks an attractive choice

in big-data scenarios, where a huge amount of data needs to be processed

at a reasonable cost. Inception is also employed in scenarios where memory

or computational capacity is inherently limited, for example in mobile vision

settings. It is certainly possible to find the most appropriate solutions in order to

address specific issues such as memory shortages, or to customize up to a certain

degree the performance of a given system by optimizing of a certain operations

via computational tricks. However, it must be noted that this methods often

add extra complexity to the system. [16]

The network architecture of GoogLeNet builds upon the classical architectures

we have discussed previously and exploits some new techniques that will be

examined shortly devised to address issues such as the vanishing gradients, the

overfitting and underfitting.

• 1x1 convolution and Inception module: The idea behind the inception

Figure 3.3.: Inception module. Source:[22]

module is to use convolutions of different sizes to capture information at

varied scales. In Fig.3.3, we see that convolutions of different sizes - 1x1,

3x3 and 5x5 have been used to extract all different levels of features from

the previous layer. 1x1 convolutions serve the purpose of reducing the

computations by limiting the number of input channels;

• Global average pooling layer : As can be observed from Fig.3.4, in a fully

connected network, all inputs are connected to every output. In a global

60

3.2. Binary classification

Figure 3.4.: Fully connected layer vs global average pooling. Source:[23]

average pooling case, each 7x7 slice gets mapped to 1x1 filter by pooling

on average all the 7x7 values, thereby creating a set of 1024 values with

no parameters left required to be estimated, unlike what happens in a the

fully connected layer. This simple trick of average pooling requires less

computation helps to improve the accuracy of the model.

Figure 3.5.: GoogLeNet architecture. Source:[24]

[1]

Res Net

Ideally, in a model, accuracyshould improve when increasing the number of

layers. In practice, this doesn’t happen very often, because as seen before,

the vanishing gradient issues arises. Due to the increasing depth, input layers

do not receive the required information necessary to change weights from the

output layers. As a result, the training error starts increasing after a particular

depth is reached, causing what is called in technical terms a degradation problem.

Introduced in 2015 by Microsoft Research as part of ImageNet Challenge

2015, the revolutionary residual Networks (or ResNet) have greatly contributed

to solving the degradation problem and have led to a better accuracy in the

training phase of very deep neural networks. [1]

61

Chapter 3. Materials and methods

Xception

Xception is a convolutional neural network architecture based entirely on depth-

wise separable convolution layers. This architecture has 36 convolutional layers

forming the feature extraction base of the network. The 36 convolutional layers

are structured into 14 modules, all of which have linear residual connections.

This makes this type of architecture very easy to implement and modify, as

only 30 to 40 code lines are used with high level libraries such as Keras or

TensorFlow, (the simplicity of this type of architecture resembles for example

the VGG-16). In contrast, a model of architecture such as the Inception V3 is

instead for complex to develop and implement. [17]

Program structure

To train the classifier, a dataset of cats and dog has been extrapolated from the

web. This dataset consists of 21000 images utilized for the train set and 4004

images destined to the validation set.

To iterate the various models described above with the different values of the

hyperparameters, a list, featured below, was created:

numClass = 2

shape =(150 , 150 , 3)

input_tensor = Input (shape)

base_models = [VGG16(weights=None , include_top=False ,

input_tensor = input_tensor ,

input_shape = shape) ,

Xception (weights=None , include_top=False ,

input_tensor = input_tensor ,

input_shape = shape) ,

InceptionV3 (weights=None , include_top=False ,

input_tensor = input_tensor ,

input_shape = shape) ,

ResNet50 (weights=None , include_top=False ,

input_tensor = input_tensor ,

input_shape = shape) ,

ResNet50V2 (weights=None , include_top=False ,

input_tensor = input_tensor ,

input_shape = shape)]

batch_size = [3 2 , 6 4]

62

3.2. Binary classification

l r = [0 . 0 0 1 , 0 . 0 0 0 1]

opt = [0 , 1 , 2 , 3 , 4]

p = [base_models , batch_size , l r , opt]

import i t e r t o o l s

t = l i s t (i t e r t o o l s . product (∗p))

parameters = t [0]

for parameters in t :

i f parameters [3] == 0 :

opt imize r = SGD(parameters [2])

i f parameters [3] == 1 :

opt imize r = Adam(parameters [2])

i f parameters [3] == 2 :

opt imize r = Adadelta (parameters [2])

i f parameters [3] == 3 :

opt imize r = Adagrad (parameters [2])

i f parameters [3] == 4 :

opt imize r = RMSprop(parameters [2])

Various layers were then added to the basic models; in particular, a pooling

layer has been added in order to reduce the size of the image, maintaining

its main characteristics. Later two dense layers (a fully connected layers)

were added (one with 1024 neurons and the other with 2 neurons). In the

1024-neurons dense layer, the relu was used as an activation function. In the

2-neurons last layer a sigmoid was instead used, because the problem in question

regards a binary classification. A binary cross entropy was set as a cost function

and accuracy was chosen as a method for evaluating the performance of the

model.

x = parameters [0] . output

x = GlobalAveragePooling2D () (x)

l e t ’ s add a f u l l y −connected l a y e r

x = Dense (1024 , a c t i v a t i o n=’ r e l u ’) (x)

and a l o g i s t i c l a y e r −− l e t ’ s say we have 200 c l a s s e s

63

Chapter 3. Materials and methods

p r e d i c t i o n s = Dense (numClass , a c t i v a t i o n=’ s igmoid ’) (x)

model = Model (inputs=parameters [0] . input ,

outputs=p r e d i c t i o n s)

model . compile (l o s s=’ b inary_crossentropy ’ ,

opt imize r=opt imizer ,

met r i c s =[’ accuracy ’])

batch_size = parameters [1]

The data augmentation was then carried out to expand the starting dataset.

train_datagen = ImageDataGenerator (

r e s c a l e =1./255 ,

shear_range =0.2 ,

zoom_range =0.2 ,

h o r i z o n t a l _ f l i p=True)

Once the model was trained with the training phase, the validation phase

was then implemented.

t h i s i s a genera tor t h a t w i l l read p i c t u r e s found in

s u b f o l e r s o f ’ data / t r a i n ’ , and i n d e f i n i t e l y genera te

ba tche s o f augmented image data

t ra in_generator = train_datagen . f low_from_directory (

’ data / t r a i n ’ , # t h i s i s the t a r g e t d i r e c t o r y

t a r g e t_s i z e =(150 , 150) , # a l l images w i l l be r e s i z e d

batch_size=batch_size ,

class_mode=’ binary ’) # since the

binary_crossentropy

was used ,

binary l a b e l s w i l l need

to be employed

t h i s i s a s i m i l a r generator , f o r v a l i d a t i o n data

va l ida t i on_gene ra to r = test_datagen . f low_from_directory (

’ data / v a l i d a t i o n ’ ,

t a r g e t_s i z e =(150 , 150) ,

batch_size=batch_size ,

class_mode=’ binary ’)

50 epochs have been set with a number of steps per epoch equal to 2000
batchsize

.

64

3.2. Binary classification

The results were saved on a csv file in which the accuracy and the loss for the

various combination of hyperparameters were reported.

h i s t o r y = model . f i t _g e n e r a t o r (

t ra in_generator ,

steps_per_epoch=2000 // batch_size ,

epochs =50,

va l idat ion_data=va l idat ion_generator ,

va l i da t i on_s t ep s =800 // batch_size)

acc = h i s t o r y . h i s t o r y [’ accuracy ’] [−1]

val_acc = h i s t o r y . h i s t o r y [’ val_accuracy ’] [−1]

l o s s = h i s t o r y . h i s t o r y [’ l o s s ’] [−1]

va l_ lo s s = h i s t o r y . h i s t o r y [’ va l_ lo s s ’] [−1]

c o l s = [" model " , " batch_size " , " l r " , " opt " , " acc " ,

" val_acc " , " l o s s " , " va l_ lo s s "]

pp = [parameters [0] , parameters [1] , parameters [2] ,

parameters [3] , round(acc , 2) , round(val_acc , 2) ,

round(l o s s , 2) , round(va l_loss , 2)]

df = pd . DataFrame ([pp] , columns = c o l s)

df . to_csv (’ a r c h i t e t t u r e _ v a r i e . csv ’ , mode=’ a ’ , header=False)

Having obtained the best results with the VGG16 architecture, we went to

work on the project with this model.

3.2.2. Binary classification with VGG16 architectures

After evaluating the performance of various models of neural networks on a

dataset of images of cats and dogs, we moved on to study the classification

related to the real issues connected with the identification and classification of

various parts and colours of vehicles. With a dataset consisting of 31174 photos

utilized for the training phase and 6002 photos employed during the validation

phase, the classifier was then trained by using the VGG16 architecture as the

start up model, to recognize two classes: one which concerned the separation

between two parts made of metal sheets, and the other which deal with the

separation between sheet-metal and a headlight. Two images samples belonging

to the two classes used for the dataset are shown in figure 3.6.

To obtain an efficient and comprehensive classification of dataset with the

widest combinations of light settings and weather conditions, photos were taken

at different times of day and in different days.

In computer vision it is essential to limit as much as possible the creation of

65

Chapter 3. Materials and methods

(a) SheetMetal-

SheetMetal

(b) SheetMetal-

Headlight

Figure 3.6.: Dataset images used for binary classification

bias by the model itself.

For example, during the training of a network with a dataset of images that are

too similar to one another, the architecture could memorize photos it receives

as input in the training phase, without being able to generalize efficiently

new photos that might show slightly different characteristics. A problem, as

discussed before, called overfitting.

It is therefore fundamental to create a large dataset with images as different as

possible.

As for the program code, a list was firstly created which allowed to iterate

the various hyperparameters; in particular, we set learning rates of 0.0001

and 0.000001, with batch size values of 32 and 64 and the same five types of

optimizers for the previous code were also used.

c l a s s e s = os . l i s t d i r (’ data_new/ t r a i n ’)

num_classes = len (c l a s s e s)

vgg_base = VGG16(weights=’ imagenet ’ ,

inc lude_top=False ,

input_shape =(150 , 150 , 3))

batch_size = [32 , 64]

l r = [0 . 0 0 0 1 , 0 . 0 0 0 0 1]

opt = [0 , 1 , 2 , 3 , 4]

p = [batch_size , l r , opt]

import i t e r t o o l s

66

3.2. Binary classification

t = l i s t (i t e r t o o l s . product (∗p))

parameters = t [0]

for parameters in t :

i f parameters [2]==0:

opt imize r=Adam(parameters [1])

i f parameters [2]==1:

opt imize r=Adagrad (parameters [1])

i f parameters [2]==2:

opt imize r=SGD(parameters [1])

i f parameters [2]==3:

opt imize r=RMSprop(parameters [1])

i f parameters [2]==4:

opt imize r=Adadelta (parameters [1])

The layers shown below were then added to the basic VGG16 model; three

dropout with three dense layers were added on top of the flatten layer which

was employed to allow the mapping between the input layer and the first hidden

layer :

def build_model () :

model = t f . keras . models . S equent i a l ([

our vgg16_base model added as a l a y e r

vgg_base ,

here i s our custom

#p r e d i c t i o n l a y e r (same as b e f o r e)

Flat ten () ,

Dropout (0 . 5 0) ,

Dense (1024 , a c t i v a t i o n=’ r e l u ’) ,

Dropout (0 . 2 0) ,

Dense (512 , a c t i v a t i o n=’ r e l u ’) ,

Dropout (0 . 1 0) ,

Dense (1 , a c t i v a t i o n=’ s igmoid ’)

])

vgg_base . t r a i n a b l e = True

model . compile (opt imize r=opt imizer ,

l o s s=’ b inary_crossentropy ’ ,

met r i c s =[’ accuracy ’])

return model

67

Chapter 3. Materials and methods

batch_size=parameters [0]

model = build_model ()

Since this architecture deals with a binary classification issue, as reported in

the previous section, it has been necessary to set for the last layer a sigmoid as

the activation function while binary crossentropy has been employed as the loss

function.

Data generators were then added, which were used for carrying out various

operations ofdata augmentation, necessary to expand the data set.

b u i l d our image data genera tor s −−

train_datagen = ImageDataGenerator (

r e s c a l e =1.0/255 ,

rotat ion_range =40,

width_shift_range =0.2 ,

he ight_shi f t_range =0.2 ,

shear_range =0.2 ,

zoom_range =0.2 ,

h o r i z o n t a l _ f l i p=True ,

f i l l_mode=’ nea r e s t ’)

NOTE: no image aug f o r e v a l & t e s t da tagenera to r s

val_datagen = ImageDataGenerator (r e s c a l e =1.0/255)

test_datagen = ImageDataGenerator (r e s c a l e =1.0/255)

The training and validation images were then recalled from the directory,

resizing each image to the dimensions of (150, 150, 3).

Step −2: c r ea t e generators , which ’ f l ow ’ from d i r e c t o r i e s

crea t e the genera tor s po in t i n g to f o l d e r s c rea t ed above

ALL IMAGES TO BE RESIZED to (150 ,150 ,3)

t ra in_generator = train_datagen . f low_from_directory (

’ data_new/ t r a i n ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ binary ’)

va l_generator = val_datagen . f low_from_directory (

’ data_new/ v a l i d a t i o n ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ binary ’)

t e s t_generator = test_datagen . f low_from_directory (

68

3.3. Multi-class classification

’ data_new/ t e s t ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ binary ’)

t r a i n model on genera tor wi th batch s i z e = 32

t ra in_steps = tra in_generator . n // batch_size

va l_steps = val_generator . n // batch_size

t e s t_s teps = tes t_generator . n // batch_size

The neural network was then trained and the results were subsequently saved

to a csv file.

Step −3: t r a i n our model

h i s t o r y = model . f i t _ge n e r a t o r (

t ra in_generator ,

steps_per_epoch=2000 // batch_size ,

epochs =50,

va l idat ion_data=val_generator ,

va l i da t i on_s t ep s =800 // batch_size)

Step −4: e v a l u a t e model ’ s performance on

#t r a i n / e v a l / t e s t d a t a s e t s

acc = h i s t o r y . h i s t o r y [’ accuracy ’] [−1]

val_acc = h i s t o r y . h i s t o r y [’ val_accuracy ’] [−1]

l o s s = h i s t o r y . h i s t o r y [’ l o s s ’] [−1]

va l_ lo s s = h i s t o r y . h i s t o r y [’ va l_ lo s s ’] [−1]

c o l s = [" batch_size " , " l r " , " opt " , " acc " , " val_acc " ,

" l o s s " , " va l_ lo s s "]

pp = [parameters [0] , parameters [1] , parameters [2] ,

round(acc , 2) , round(val_acc , 2) , round(l o s s , 2) ,

round(va l_loss , 2)]

df = pd . DataFrame ([pp] , columns = c o l s)

df . to_csv (’VGG16_binary . csv ’ , mode=’ a ’ , header=False)

3.3. Multi-class classification

Once we obtained a classifier that successfully addressed issues connected with

a binary classification issue, we moved on to a multiclass classification. In

particular, a dataset of 41818 images was created for the training phase. These

images were made in order to create ten different classes; five colours were

69

Chapter 3. Materials and methods

selected: white, black, red, light grey and dark grey; for each colour, two classes

were chosen, one that identified the separation between two sheet metal parts

and another class that represented the separation between sheet metal and the

headlight.

(a) RedMetal-

RedMetal

(b) RedMetal-

Headlight

Figure 3.7.: Red car images dataset

(a) WhiteMetal-

WhiteMetal

(b) WhiteMetal-

Headlight

(c) GrayMetal-

GrayMetal

(d) GrayMetal-

Headlight

Figure 3.8.: Comparison of white and light gray car dataset images

Figures 3.7, 3.8 and 3.9 show examples of the images used for the dataset. As

the black and dark grey and the white and light grey colours were very similar

in tone, this posed a serious problem to the ability of the neural network to

recognize classes efficiently, an issue that sometimes even the human eye finds

70

3.3. Multi-class classification

(a) BlackMetal-

BlackMetal

(b) BlackMetal-

Headlight

(c) GrayMetal-

GrayMetal

(d) GrayMetal-

Headlight

Figure 3.9.: Comparison of black and dark gray car dataset images

difficult to deal with.

3.3.1. VGG16 base model

Given the excellent results obtained by using the VGG16 architecture as a basic

model within binary classification, it was then decided to use the very same

basic model for multiclass classification as well.

The code used is similar to that employed for binary classification. The hy-

perparameters that have been iterated are the same: batch size of 32 and 64,

learning rate of 0.0001 and 0.00001. Adadelta, Adagrad, RMSprop, SGD and

Adam mathematical models were used as optimizers.

c l a s s e s = os . l i s t d i r (’ data_new_1/ t r a i n ’)

num_classes = len (c l a s s e s)

vgg_base = VGG16(weights=’ imagenet ’ ,

inc lude_top=False ,

input_shape =(150 , 150 , 3))

batch_size = [3 2 , 64]

l r = [0 . 0 0 0 1 , 0 . 0 0 0 0 1]

opt = [0 , 1 , 2 , 3 , 4]

71

Chapter 3. Materials and methods

p = [batch_size , l r , opt]

import i t e r t o o l s

t = l i s t (i t e r t o o l s . product (∗p))

parameters = t [0]

for parameters in t :

i f parameters [2]==0:

opt imize r=Adam(parameters [1])

i f parameters [2]==1:

opt imize r=Adagrad (parameters [1])

i f parameters [2]==2:

opt imize r=SGD(parameters [1])

i f parameters [2]==3:

opt imize r=RMSprop(parameters [1])

i f parameters [2]==4:

opt imize r=Adadelta (parameters [1])

When the various layers were added to the basic model, it was necessary to

insert softmax (required by a multiclass classification instead sigmoid) as an

activation function. Furthermore a categorical crossentropy had to be chosen as

the loss function, instead of binary crossentropy.

def build_model () :

model = t f . keras . models . S equent i a l ([

our vgg16_base model added as a l a y e r

vgg_base ,

here i s our custom p r e d i c t i o n l a y e r (same as b e f o r e)

Flat ten () ,

Dropout (0 . 5 0) ,

Dense (1024 , a c t i v a t i o n=’ r e l u ’) ,

Dropout (0 . 2 0) ,

Dense (512 , a c t i v a t i o n=’ r e l u ’) ,

Dropout (0 . 1 0) ,

Dense (num_classes , a c t i v a t i o n=’ softmax ’)

])

vgg_base . t r a i n a b l e = True

model . compile (opt imize r=opt imizer ,

72

3.3. Multi-class classification

l o s s=’ ca t ego r i c a l _c r o s s en t r o p y ’ ,

met r i c s =[’ accuracy ’])

return model

batch_size=parameters [0]

model = build_model ()

The data augmentation parameters to build the image data generator were

the same as those used for binary classification, changing only the class mode

from binary to categorical. The network was trained with 20 epochs and the

results were saved in a csv file.

b u i l d our image data genera tor s −−

datagen = ImageDataGenerator (

v a l i d a t i o n _ s p l i t =0.3 ,

r e s c a l e =1.0/255 ,

rotat ion_range =40,

width_shift_range =0.2 ,

he ight_shi f t_range =0.2 ,

shear_range =0.2 ,

zoom_range =0.2 ,

h o r i z o n t a l _ f l i p=True ,

f i l l_mode=’ nea r e s t ’)

Step −2: c r ea t e generators , which ’ f l ow ’ from d i r e c t o r i e s

crea t e the genera tor s po in t i n g to f o l d e r s c rea t ed above

ALL IMAGES TO BE RESIZED to (150 ,150 ,3)

t ra in_generator = datagen . f low_from_directory (

’ data_new_1/ t r a i n ’ ,

subset = ’ t r a i n i n g ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ c a t e g o r i c a l ’

)

va l_generator = datagen . f low_from_directory (

’ data_new_1/ t r a i n ’ ,

subset = ’ v a l i d a t i o n ’ ,

t a r g e t_s i z e =(150 ,150) ,

73

Chapter 3. Materials and methods

batch_size=batch_size ,

class_mode=’ c a t e g o r i c a l ’

)

t e s t_generator = datagen . f low_from_directory (

’ data_new_1/ t e s t ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ c a t e g o r i c a l ’

)

t r a i n model on genera tor wi th batch s i z e = batch s i z e

t ra in_steps = tra in_generator . n // batch_size

va l_steps = val_generator . n // batch_size

t e s t_s teps = tes t_generator . n // batch_size

Step −3: t r a i n our model

h i s t o r y=model . f i t _ge n e r a t o r (

t ra in_generator ,

steps_per_epoch=tra in_steps ,

epochs =20,

va l idat ion_data=val_generator ,

va l i da t i on_s t ep s=val_steps

)

Step −4: e v a l u a t e model ’ s performance on

#t r a i n / e v a l / t e s t d a t a s e t s

acc = h i s t o r y . h i s t o r y [’ accuracy ’] [−1]

val_acc = h i s t o r y . h i s t o r y [’ val_accuracy ’] [−1]

l o s s = h i s t o r y . h i s t o r y [’ l o s s ’] [−1]

va l_ lo s s = h i s t o r y . h i s t o r y [’ va l_ lo s s ’] [−1]

c o l s = [" batch_size " , " l r " , " opt " , " acc " , " val_acc " ,

" l o s s " , " va l_ lo s s "]

pp = [parameters [0] , parameters [1] , parameters [2] ,

round(acc , 2) , round(val_acc , 2) , round(l o s s , 2) ,

74

3.3. Multi-class classification

round(va l_loss , 2)]

df = pd . DataFrame ([pp] , columns = c o l s)

df . to_csv (’ VGG16_multiclass . csv ’ , mode=’ a ’ , header=False)

3.3.2. Inception models

In an attempt to achieve better results from those obtained by using the VGG16

architecture as a basic model, the classifier was modified, inserting firstly the

Inception Res Net V2 and subsequently the Inception V3. Having obtained the

best result with InceptionV3 as a base model, utilizing a batch size of 32, a

learning rate of 0.0001 and the SGD as optimizer, an analysis with 200 epochs

was performed with these hyperparameters.

InceptionV3 with SGD optimizer

The final code used was similar to the previous ones. In this case, however, the

various combinations of hyperparameters werenn’t iterated; instead, the values

of the hyperparameters which led to the best result were used: batch size of 32,

learning rate of 0.0001 and the SGD optimizer.

c l a s s e s = os . l i s t d i r (’ data_new_2/ t r a i n ’)

num_classes = len (c l a s s e s)

model_base = InceptionV3 (weights=’ imagenet ’ ,

inc lude_top=False ,

input_shape =(150 , 150 , 3))

batch_size =32

l r = 0.0001

opt = SGD(l r)

def build_model () :

model = t f . keras . models . S equent i a l ([

our vgg16_base model added as a l a y e r

model_base ,

here i s our custom p r e d i c t i o n l a y e r

#(same as b e f o r e)

Flat ten () ,

75

Chapter 3. Materials and methods

Dropout (0 . 5 0) ,

Dense (1024 , a c t i v a t i o n=’ r e l u ’) ,

Dropout (0 . 2 0) ,

Dense (512 , a c t i v a t i o n=’ r e l u ’) ,

Dropout (0 . 1 0) ,

Dense (num_classes , a c t i v a t i o n=’ softmax ’)

])

model_base . t r a i n a b l e = True

model . compile (opt imize r=opt ,

l o s s=’ ca t ego r i c a l _c r o s s en t r o py ’ ,

met r i c s =[’ accuracy ’])

return model

batch_size=batch_size

model = build_model ()

b u i l d our image data genera tor s −−

datagen = ImageDataGenerator (

v a l i d a t i o n _ s p l i t =0.3 ,

r e s c a l e =1.0/255 ,

rotat ion_range =40,

width_shift_range =0.2 ,

he ight_shi f t_range =0.2 ,

shear_range =0.2 ,

zoom_range =0.2 ,

h o r i z o n t a l _ f l i p=True ,

f i l l_mode=’ nea r e s t ’)

Step −2: c r ea t e generators , which ’ f l ow ’ from d i r e c t o r i e s

crea t e the genera tor s po in t i n g to f o l d e r s c rea t ed above

ALL IMAGES TO BE RESIZED to (150 ,150 ,3)

t ra in_generator = datagen . f low_from_directory (

’ data_new_2/ t r a i n ’ ,

subset = ’ t r a i n i n g ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ c a t e g o r i c a l ’

76

3.3. Multi-class classification

)

va l_generator = datagen . f low_from_directory (

’ data_new_2/ t r a i n ’ ,

subset = ’ v a l i d a t i o n ’ ,

t a r g e t_s i z e =(150 ,150) ,

batch_size=batch_size ,

class_mode=’ c a t e g o r i c a l ’

)

t r a i n model on genera tor wi th batch s i z e = batch s i z e

t ra in_steps = tra in_generator . n // batch_size

va l_steps = val_generator . n // batch_size

Step −3: t r a i n our model

h i s t o r y=model . f i t (

t ra in_generator ,

steps_per_epoch=tra in_steps ,

epochs =250 ,

va l idat ion_data=val_generator ,

va l i da t i on_s t ep s=val_steps ,

)

model . save (’ model . h5 ’)

Step −4: e v a l u a t e model ’ s performance on t r a i n / e v a l d a t a s e t s

acc = h i s t o r y . h i s t o r y [’ accuracy ’] [−1]

val_acc = h i s t o r y . h i s t o r y [’ val_accuracy ’] [−1]

l o s s = h i s t o r y . h i s t o r y [’ l o s s ’] [−1]

va l_ lo s s = h i s t o r y . h i s t o r y [’ va l_ lo s s ’] [−1]

77

Chapter 3. Materials and methods

c o l s = [" batch_size " , " l r " , " opt " , " acc " , " val_acc " ,

" l o s s " , " va l_ lo s s "]

pp = [batch_size , l r , opt , round(acc , 2) , round(val_acc , 2) ,

round(l o s s , 2) , round(va l_loss , 2)]

df = pd . DataFrame ([pp] , columns = c o l s)

df . to_csv (’ InceptionV3_SGD . csv ’ , mode=’ a ’ , header=False)

In addition to saving the results on a csv file, the accuracy and loss trends in

the training and validation phases were plotted.

l i s t a l l data in h i s t o r y

print (h i s t o r y . h i s t o r y . keys ())

summarize h i s t o r y f o r accuracy

p l t . p l o t (h i s t o r y . h i s t o r y [’ accuracy ’])

p l t . p l o t (h i s t o r y . h i s t o r y [’ val_accuracy ’])

p l t . t i t l e (’ model␣ accuracy ’)

p l t . y l a b e l (’ accuracy ’)

p l t . x l a b e l (’ epoch ’)

p l t . l egend ([’ t r a i n ’ , ’ v a l i d a t i o n ’] , l o c=’ upper␣ l e f t ’)

p l t . show ()

summarize h i s t o r y f o r l o s s

p l t . p l o t (h i s t o r y . h i s t o r y [’ l o s s ’])

p l t . p l o t (h i s t o r y . h i s t o r y [’ va l_ lo s s ’])

p l t . t i t l e (’ model␣ l o s s ’)

p l t . y l a b e l (’ l o s s ’)

p l t . x l a b e l (’ epoch ’)

p l t . l egend ([’ t r a i n ’ , ’ v a l i d a t i o n ’] , l o c=’ upper␣ l e f t ’)

p l t . show ()

All the achieved results are shown in the next chapter.

78

Chapter 4.

Results and conclusion

With the tests and tools utilized as described in the third chapter, the following

figures reported in the grids below were obtained. The results achieved with

the initial dataset of the cats and dogs case are shown in the tables in appendix

A, in which the "lr" is the learning rate of the classifier, the "acc" and the "val

acc" indicate the accuracy for the train set and the validation set, and the "loss"

and the "val loss" point out the loss for training and validation set.

The table below shows an example of the results obtained during a the first

sample test carried out using the VGG16 as the basic model:

Table 4.1.: VGG16 results for cats and dogs dataset
Model batch size lr opt acc val acc loss val loss

VGG16 32 0.001 SGD 0.53 0.55 0.69 0.69

VGG16 32 0.001 Adam 0.5 0.49 0.69 0.69

VGG16 32 0.001 Adadelta 0.56 0.55 0.69 0.69

VGG16 32 0.001 Adagrad 0.51 0.49 0.69 0.69

VGG16 32 0.001 RMSprop 0.49 0.49 0.69 0.69

VGG16 32 0.0001 SGD 0.49 0.51 0.69 0.69

VGG16 32 0.0001 Adam 0.51 0.5 0.69 0.69

VGG16 32 0.0001 Adadelta 0.51 0.48 0.69 0.69

VGG16 32 0.0001 Adagrad 0.49 0.47 0.69 0.69

VGG16 32 0.0001 RMSprop 0.5 0.51 0.69 0.69

VGG16 64 0.001 SGD 0.5 0.47 0.69 0.69

VGG16 64 0.001 Adam 0.51 0.49 0.69 0.69

VGG16 64 0.001 Adadelta 0.49 0.48 0.69 0.69

VGG16 64 0.001 Adagrad 0.51 0.51 0.69 0.69

VGG16 64 0.001 RMSprop 0.5 0.48 0.69 0.69

VGG16 64 0.0001 SGD 0.52 0.5 0.69 0.69

VGG16 64 0.0001 Adam 0.5 0.52 0.69 0.69

VGG16 64 0.0001 Adadelta 0.49 0.51 0.69 0.69

VGG16 64 0.0001 Adagrad 0.5 0.49 0.69 0.69

VGG16 64 0.0001 RMSprop 0.53 0.51 0.69 0.69

79

Chapter 4. Results and conclusion

The table below shows the results obtained for the binary classification using

VGG16 as a basic model:

Table 4.2.: VGG16 results for binary classification
Model batch size lr opt acc val acc loss val loss

VGG16 32 0.0001 Adam 0.99 0.99 0.02 0.05

VGG16 32 0.0001 Adagrad 1.0 0.99 0.0 0.08

VGG16 32 0.0001 SGD 1.0 0.99 0.0 0.09

VGG16 32 0.0001 RMSprop 0.57 0.62 0.95 0.6

VGG16 32 0.0001 Adadelta 0.5 0.51 0.7 0.69

VGG16 32 0.00001 Adam 0.5 0.5 0.69 0.69

VGG16 32 0.00001 Adagrad 0.5 0.5 0.69 0.69

VGG16 32 0.00001 SGD 0.5 0.5 0.69 0.69

VGG16 32 0.00001 RMSprop 0.5 0.5 0.69 0.69

VGG16 32 0.00001 Adadelta 0.5 0.5 0.69 0.69

The code was stopped after ten iterations since the results obtained with

the first combinations of hyperparameters were considered to be more than

satisfactory. It can also be noted that the best results were obtained with

a batch size of 32, a learning rate of 0.0001, using Adam, Adagrad or SGD

optimizers.

Once the binary classification problem was solved, we moved on to address

the multiclass issue. Table 4.3 shows the results of the network for the multiclass

classification with the VGG16 base model.

Using Adam, Adagrad and SGD mathematical models as optimizers, with a

batch size of 32 and a learning rate of 0.0001 the network achieved satisfactory

results. The accuracy in the training phase was, in fact, very high, with values

between 0.99 for the SGD and the Adam and 1.0 for the Adagrad; also the loss,

during training, is satisfactory, with value of 0.04 with the SGD and 0.02 for

the Adam and the Adagrad optimizers.

During the validation phase there was a slight reduction of efficiency, which

led to accuracy values of 0.94 for all optimizer and loss of 0.49 for the Adam

optimizer and 0.25 for the SGD and Adagrad.

80

Table 4.3.: VGG16 results for multiclass classification
Model batch size lr opt acc val acc loss val loss

VGG16 32 0.0001 Adam 0.99 0.94 0.02 0.49

VGG16 32 0.0001 Adagrad 1.0 0.94 0.02 0.25

VGG16 32 0.0001 SGD 0.99 0.94 0.04 0.25

VGG16 32 0.0001 RMSprop 1.0 0.9 0.04 149.88

VGG16 32 0.0001 Adadelta 0.9 0.89 0.88 2.96

VGG16 32 0.00001 Adam 1.0 0.94 0.0 1.75

VGG16 32 0.00001 Adagrad 1.0 0.94 0.15 0.69

VGG16 32 0.00001 SGD 0.98 0.94 0.36 0.51

VGG16 32 0.00001 RMSprop 1.0 0.95 0.0 1.68

VGG16 32 0.00001 Adadelta 0.41 0.66 1.81 1.59

VGG16 64 0.0001 Adam 1.0 0.94 0.01 0.39

VGG16 64 0.0001 Adagrad 1.0 0.94 0.03 0.21

VGG16 64 0.0001 SGD 1.0 0.94 0.09 0.24

VGG16 64 0.0001 RMSprop 1.0 0.94 0.04 1.71

VGG16 64 0.0001 Adadelta 0.92 0.9 1.04 1.09

VGG16 64 0.00001 Adam 1.0 0.95 0.0 0.41

VGG16 64 0.00001 Adagrad 1.0 0.95 0.21 0.29

VGG16 64 0.00001 SGD 0.97 0.94 0.52 0.5

VGG16 64 0.00001 RMSprop 1.0 0.95 0.0 0.68

VGG16 64 0.00001 Adadelta 0.48 0.8 1.72 1.54

In an attempt to achieve even better results than those obtained with the

VGG16 architecture as a basic model, the classifier was modified, inserting first

the Inception Res Net V2 and then the Inception V3 as basic models. The

results obtained with the inception base models are shown in tables 4.4 and 4.5

Table 4.4.: InceptionResNetV2 results for multiclass classification
Model batch size lr opt acc val acc loss val loss

InceptionResNetV2 32 0.0001 Adam 0.98 0.94 0.05 0.31

InceptionResNetV2 32 0.0001 Adagrad 0.99 0.93 0.03 0.43

InceptionResNetV2 32 0.0001 SGD 0.99 0.93 0.04 0.44

InceptionResNetV2 32 0.0001 RMSprop 0.51 0.38 3.69 4.96

InceptionResNetV2 32 0.0001 Adadelta 0.2 0.26 2.54 2.21

InceptionResNetV2 32 0.00001 Adam 0.95 0.9 0.18 0.64

InceptionResNetV2 32 0.00001 Adagrad 0.59 0.64 1.28 1.12

InceptionResNetV2 32 0.00001 SGD 0.62 0.65 1.13 1.11

InceptionResNetV2 32 0.00001 RMSprop 0.96 0.91 0.18 1.28

InceptionResNetV2 32 0.00001 Adadelta 0.14 0.19 4.17 2.69

InceptionResNetV2 64 0.0001 Adam 0.18 0.18 2.21 2.21

InceptionResNetV2 64 0.0001 Adagrad 0.18 0.18 2.3 2.3

InceptionResNetV2 64 0.0001 SGD 0.18 0.18 2.29 2.29

InceptionResNetV2 64 0.0001 RMSprop 0.18 0.18 2.21 2.21

InceptionResNetV2 64 0.0001 Adadelta 0.18 0.18 2.3 2.3

InceptionResNetV2 64 0.00001 Adam 0.18 0.18 2.28 2.28

InceptionResNetV2 64 0.00001 Adagrad 0.18 0.18 2.3 2.3

InceptionResNetV2 64 0.00001 SGD 0.18 0.18 2.3 2.3

InceptionResNetV2 64 0.00001 RMSprop 0.18 0.18 2.28 2.28

InceptionResNetV2 64 0.00001 Adadelta 0.18 0.18 2.3 2.3

81

Chapter 4. Results and conclusion

Table 4.5.: InceptionV3 results for multiclass classification
Model batch size lr opt acc val acc loss val loss

InceptionV3 32 0.0001 Adam 0.99 0.94 0.04 0.26

InceptionV3 32 0.0001 Adagrad 0.99 0.95 0.03 0.21

InceptionV3 32 0.0001 SGD 0.99 0.95 0.04 0.18

InceptionV3 32 0.0001 RMSprop 0.99 0.94 0.07 0.53

InceptionV3 32 0.0001 Adadelta 0.89 0.89 1.07 1.0

InceptionV3 32 0.00001 Adam 1.0 0.95 0.0 0.34

InceptionV3 32 0.00001 Adagrad 1.0 0.95 0.27 0.3

InceptionV3 32 0.00001 SGD 0.98 0.95 0.57 0.48

InceptionV3 32 0.00001 RMSprop 1.0 0.95 0.01 0.59

InceptionV3 32 0.00001 Adadelta 0.99 0.94 0.03 0.28

InceptionV3 64 0.0001 Adam 1.0 0.95 0.03 0.23

InceptionV3 64 0.0001 Adagrad 0.99 0.95 0.05 0.2

InceptionV3 64 0.0001 SGD 0.99 0.95 0.02 0.64

InceptionV3 64 0.0001 RMSprop 0.89 0.89 1.4 1.36

InceptionV3 64 0.0001 Adadelta 1.0 0.95 0.0 0.36

InceptionV3 64 0.00001 Adam 1.0 0.95 0.27 0.34

InceptionV3 64 0.00001 Adagrad 0.95 0.94 0.74 0.69

InceptionV3 64 0.00001 SGD 1.0 0.95 0.0 0.67

InceptionV3 64 0.00001 RMSprop 0.46 0.67 1.77 1.56

Having obtained the even better result with the InceptionV3 as a base model,

adopting a batch size of 32, a learning rate of 0.0001 and the SGD as optimizer,

a test with 200 epochs was performed with these hyperparameters.

In order to have a better view of the results obtained, the graphs of the two

fundamental parameters used to evaluate the performance of a classification

problem, namely the accuracy and the loss, have been plotted. The accuracy

and loss trends are shown in the figure 4.1

(a) Accuracy (b) Loss

Figure 4.1.: Model loss and accuracy

It can be noted how the accuracy values show an increasing trend both for

the training and validation phase, until a maximum value is reached. As for the

training, the accuracy starts from very low values, close to zero, up to values

82

tending to the maximum, close to 0.98/0.99; as regards to the validation phase,

values initially start higher than those registered during the training phase, to

reach maximum values around 0.93/0.94.

The loss figures showed instead an opposite trend. They started with figures

close to the maximum value and then set close to zero during the training phase

and at 0.3 during the validation phase.

This difference in accuracy and loss values between the training and validation

phases might be a symptom of a slight tendency of the model to overfitting,

which could be partially addressed by trying to further generalize the starting

dataset.

After evaluating the accuracy and loss of the training and validation phases,

about 800 images were employed, which showed only white and dark grey cars.

Around of a quarter of the 800 images were classified under "WhiteSheetmetal-

WhiteSheetmetal" category, while the following 200 images belonged to the

"WhiteSheetmetal-Headlight" class; images from 400 to 600 concerned the

"DarkGreySheetmetal-Headlight" classification and finally, the last 200 images

(from 600 to 800) dealt with the class "DarkGreySheetmetal-DarkGreySheetmetal".

To evaluate the efficiency of the model, a matrix was extracted showing the

probabilities for each photo to belong to a class. The code for extrapolate this

probability matrix is reported below.

model = keras . models . load_model (’ model . h5 ’)

b u i l d our image data genera tor s −−

datagen = ImageDataGenerator (

r e s c a l e =1.0/255)

#p r e d i c t i o n t e s t

t e s t_generator = datagen . f low_from_directory (

d i r e c t o r y=’data_new_2/ t e s t ’ ,

t a r g e t_s i z e =(150 , 150) ,

class_mode=None ,

s h u f f l e=Fal se

)

without t h i s code weird ou tpu t s w i l l come

t e s t_generator . r e s e t ()

pred=model . p r e d i c t (tes t_generator , verbose =1)

83

Chapter 4. Results and conclusion

Running the above code w i l l g i v e output in p r o b a b i l i t i e s

#so at f i r s t I need to conver t them to c l a s s number

pred i c t ed_c l a s s_ ind i c e s=np . argmax (pred , a x i s =1)

Parts of the probability matrix are shown below, in order to more easily

understand how it works. At the top of the matrix, there are identification

numbers of each class: 0 indicates the "WhiteSheetmetal-WhiteSheetmetal"

class, the 1 the "WhiteSheetmetal-Headlight" class, the 2 the "GraySheetmetal-

Headlight" class, the 3 the "GraySheetmetal-GraySheetmetal" class, the 4

the "DarkGraySheetmetal-Headlight" class, the 5 the "DarkGraySheetmetal-

DarkGraySheetmetal" class, the 6 the "BlackSheetmetal-Headlight" class, the

7 the "BlackSheetmetal-BlackSheetmetal" class, the 8 the "RedSheetmetal-

Headlight" class and the 9 the "RedSheetmetal-RedSheetmetal".

In the left column, instead, the identification numbers of the photos of the test

set are represented. As reported above, it can be considered indicatively that

the first 200 photos should belong to class 0, photos from 200 to 400 should

belong to class 1, photos from 400 to 600 should belong to class 4 and the last

200 photos (from 600 a 800) should belong to class 5.

The probability values shown in the tables have been approximated to the

second decimal place.

Table 4.6.: Probability matrix for test set (Images from 96 to 101)
Image 0 1 2 3 4 5 6 7 8 9

96 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00

97 0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00

98 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

99 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

100 0.11 0.00 0.00 0.89 0.00 0.00 0.00 0.00 0.00 0.00

101 0.05 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.7.: Probability matrix for test set (Images from 445 to 450)
Image 0 1 2 3 4 5 6 7 8 9

455 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

456 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

457 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

458 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

459 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

460 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Although there are no black and light grey cars in the test dataset, it can be

noted that the model interpreted some colours of some vehicles as black and

light grey. This happened because the classifier sometimes confused the white

colour with light-grey, while the dark-grey colours were interpreted as black.

This issue hasn’t nevertheless posed a real problem for the purpose of the test

84

as the laser of the G3F would need to generate an almost identical power when

faced with the black or dark grey colours. The same situation would apply for

the colours white and light grey.

As already discussed in the previous chapters, for the realization of the project

in question, it was fundamental in the beginning, to create a valid dataset.

When working with computer vision in order to train a neural network and

address classification problems in the most appropriate way, it is crucial to

acquire a high number of images with the widest number of characteristics,

colours and exposure. This method helps avoiding the creation of a bias in the

architecture, which often leads the network to memorize almost perfectly the

input images, without being able to generalize and recognize new images with

different characteristics (overfitting).

The development of this project began with a research to find on the web a

useful ready-made dataset. It is indeed possible today to find online various

types of datasets and neural network architectures, which enable even those

who don’t have a vast experience in programming, to interface in a satisfactory

manner with the vast world of artificial intelligence.

Once the tests with various basic architectures available on the web were

completed employing a dataset of standard images of cats and dogs, we then

created our own customized dataset.

Short videos were made on different models and colours of cars and at different

times of the day. The frames were extracted from the videos and became the

images of the dataset used to carry out the project.

The code used to extract the individual frames from the videos is shown below:

vidcap = cv2 . VideoCapture (’ v1 .mp4 ’)

succes s , image = vidcap . read ()

count = 0

while s u c c e s s :

cv2 . imwrite (" frame " # count , image)

succes s , image = vidcap . read ()

print (’Read_a_new_frame : ’ , s u c c e s s)

count += 1

The final dataset, obtained by extrapolating each frame from each video,

contains more than 40000 images. Such a large dataset has certainly proved a

solid base for the creation of a good classifier.

Once a robust dataset is in place, it is then important to look for the most

appropriate model for the project in order to obtain the best possible classifica-

tion.

Instead of creating your own architecture from scratch, it is today possible,

85

Chapter 4. Results and conclusion

thanks to the numerous opportunities offered by the web, to start with pre-

existing classification models, such as the VGG16 and the InceptionV3, to see

which of those models can provide the best result with the dataset utilized.

Another important step undertaken for this project was the creation of a pro-

gram code, which allowed to iterate the various combinations of basic models

and hyperparameters in order to effectively evaluate which would be the best

combination in order to achieve the programmed objectives.

Once the most appropriate basic model with the relevant combination of hyper-

parameters is found, more layers can then be added to enhance the performance

of the network. However by manipulating the system, unwanted side effects

might appear that might result in a reduction in the efficiency and speed. Over-

fitting (when the network is too complex) or underfitting (when the model is to

’shallow’ with not enough layers) are two issues linked to the dataset efficiency.

As in most engineering project is therefore fundamental for a good engineer to

find the right balance between the different components in order to achieve the

best performance.

Each machine learning problem is unique. It is not possible therefore to find a

priori the entire set of values for the most effective hyperparameters. It is instead

a long process of trial and error, tests and experiments. A good knowledge of

algorithm techniques, patience and utter dedication to work can put the project

on the right track although the path to success might still be a long one.

The results that obtained with this work have been achieved thanks to the

implementation of a number of tests and experiments. It was useful to start with

a basic models, which was then modified by adding various layers to improve

the efficiency of the network.

For the binary classification, the use of the VGG16 and an SGD optimizer as

a basic model, with a batch size of 32 and a learning rate of 0.0001, brought

very good results, with accuracy values close to unity and loss values tending

to zero, both during the train and validation phases.

During the multiclass classification, in which the network was trained to classify

ten different classes, the VGG16 was firstly used.

To further improve the results obtained in the first place, two inception networks

were then subsequently employed. The final classifier was finally train to use a

standard model InceptionV3 thanks to the best results obtained with this model.

The final analysis showed an accuracy during the training phase of values close

to 1, while in the validation phase, the results obtained were close to the 0.94

mark. The loss values instead set around zero during the training phase and

shifted to 0.3 during the validation phase.

The effect caused by the slight decay of accuracy verified during the validation

process caused by the tendency of the model to confuse very similar colours

was nevertheless offset by the fact that the G3F laser would need to employ

86

a virtually identical power when the sensor is detecting those similar colours,

thus making the results obtained very reliable for the purpose of our project.

Another fundamental aspect that should be considered when dealing with com-

puter vision is that of data augmentation. Through operations such as rotation,

transformation, mirroring, etc. can be expanded thus allowing the network to

better generalize new images.

Thanks to this kind of architecture based on artificial convolutional neural

networks, it would be possible therefore to give further practical help to the

operator, who’s during the production phase utilizes the G3F.

Thanks to this kind of state-of-the-art artificial intelligence, it is possible today

to effectively address problems that often arise with the loss of efficiency cause

by human error during the different phase of production and quality checks.

This is what lies behind Industry 4.0. Technology far from being a replacement

of human intellect and skills should be employed to be fully integrated during

the different manufacturing phases interacting whenever possible with its human

counterpart. To conclude, the work presented was based on the implementation

of a classification system based on convolutional neural networks with the aim

of being able to classify the various colours and the various parts of a vehicle.

The project was devised as a support to the G3F, a portable device based on a

triangulation laser sensor, which in the production phase, allows for measure-

ment and control of gaps and flushes. Thanks to the architecture devised and

utilized, it was possible to adjust the laser power of this device, according to the

different characteristics of the vehicles used for the test. This in turn improved

the effectiveness and accuracy of the device. Overall the results obtained can

be considered to be excellent both with binary and multiclass classifications.

The network was succesfully trained to recognize ten different classes effectively.

For the binary classification the VGG16 was adopted as the basic model, while

for the recognition of the ten classes, the best results were those obtained by

adopting an InceptionV3 with the SGD optimizer.

For the multiclass problem a test phase was also carried out, from which the

probability matrix was extrapolated with mixed results. However as previously

discussed, the use of a nearly identical laser power for similar colour mean that

the test results proved to be more than reliable.

A fundamental aspect of this work can be found in the architecture developed

for this project which can be used to classify all types of images. A change

of datasets and the resetting of the parameters fine tuning should enable the

network to learn entire new sets of classifications without any major issues.

Further developments of this work should be aimed at the study of semantic

segmentation, which splits entire images into groups of pixels that can be

subsequently labelled and classified individually. A simple classification system

87

Chapter 4. Results and conclusion

allows the network to recognize only what exist in the actual image, without

taking into account the actual position of certain details within the picture

that is getting classified. The segmentation instead, makes it possible for the

neural network to be trained so that specific areas with intrinsically different

characteristics can be identified as in the case of having to identify the edges

separating two adjacent materials such as those of two metal-sheets or of a

metal-sheet and a headlight.

Implementing the segmentation should drastically improve the effectiveness of

the G3F, ensuring a better performance during the acquisition process.

88

Appendix A.

Results tables

Table A.1.: Xception results for cats and dogs dataset
Model batch size lr opt acc val acc loss val loss

Xception 32 0.001 SGD 0.53 0.51 0.69 0.69

Xception 32 0.001 Adam 0.5 0.48 0.69 0.69

Xception 32 0.001 Adadelta 0.5 0.5 0.69 0.69

Xception 32 0.001 Adagrad 0.47 0.48 0.69 0.69

Xception 32 0.001 RMSprop 0.5 0.51 0.69 0.69

Xception 32 0.0001 SGD 0.5 0.5 0.69 0.69

Xception 32 0.0001 Adam 0.5 0.52 0.69 0.69

Xception 32 0.0001 Adadelta 0.5 0.51 0.69 0.69

Xception 32 0.0001 Adagrad 0.5 0.51 0.69 0.69

Xception 32 0.0001 RMSprop 0.48 0.47 0.69 0.69

Xception 64 0.001 SGD 0.5 0.5 0.69 0.69

Xception 64 0.001 Adam 0.46 0.51 0.69 0.69

Xception 64 0.001 Adadelta 0.5 0.48 0.69 0.69

Xception 64 0.001 Adagrad 0.48 0.43 0.69 0.69

Xception 64 0.001 RMSprop 0.51 0.52 0.69 0.69

Xception 64 0.0001 SGD 0.5 0.46 0.69 0.69

Xception 64 0.0001 Adam 0.52 0.48 0.69 0.69

Xception 64 0.0001 Adadelta 0.5 0.5 0.69 0.69

Xception 64 0.0001 Adagrad 0.5 0.53 0.69 0.69

Xception 64 0.0001 RMSprop 0.49 0.53 0.69 0.69

89

Appendix A. Results tables

Table A.2.: InceptionResNetV2 results for cats and dogs dataset
Model batch size lr opt acc val acc loss val loss

InceptionResNetV2 32 0.001 SGD 0.51 0.53 0.7 0.7

InceptionResNetV2 32 0.001 Adam 0.5 0.49 0.69 0.69

InceptionResNetV2 32 0.001 Adadelta 0.49 0.49 0.69 0.69

InceptionResNetV2 32 0.001 Adagrad 0.45 0.45 0.69 0.69

InceptionResNetV2 32 0.001 RMSprop 0.49 0.5 0.69 0.69

InceptionResNetV2 32 0.0001 SGD 0.53 0.5 0.69 0.69

InceptionResNetV2 32 0.0001 Adam 0.49 0.52 0.69 0.69

InceptionResNetV2 32 0.0001 Adadelta 0.49 0.46 0.69 0.69

InceptionResNetV2 32 0.0001 Adagrad 0.5 0.53 0.69 0.69

InceptionResNetV2 32 0.0001 RMSprop 0.48 0.5 0.69 0.69

InceptionResNetV2 64 0.001 SGD 0.51 0.49 0.69 0.69

InceptionResNetV2 64 0.001 Adam 0.49 0.52 0.69 0.69

InceptionResNetV2 64 0.001 Adadelta 0.47 0.44 0.69 0.69

InceptionResNetV2 64 0.001 Adagrad 0.49 0.49 0.69 0.69

InceptionResNetV2 64 0.001 RMSprop 0.51 0.51 0.69 0.69

InceptionResNetV2 64 0.0001 SGD 0.5 0.49 0.69 0.69

InceptionResNetV2 64 0.0001 Adam 0.48 0.51 0.69 0.69

InceptionResNetV2 64 0.0001 Adadelta 0.51 0.52 0.69 0.69

InceptionResNetV2 64 0.0001 Adagrad 0.51 0.49 0.69 0.69

InceptionResNetV2 64 0.0001 RMSprop 0.51 0.5 0.69 0.69

Table A.3.: InceptionV3 results for cats and dogs dataset
Model batch size lr opt acc val acc loss val loss

InceptionV3 32 0.001 SGD 0.48 0.52 0.7 0.71

InceptionV3 32 0.001 Adam 0.5 0.48 0.69 0.69

InceptionV3 32 0.001 Adadelta 0.49 0.52 0.69 0.69

InceptionV3 32 0.001 Adagrad 0.5 0.49 0.69 0.69

InceptionV3 32 0.001 RMSprop 0.5 0.51 0.69 0.69

InceptionV3 32 0.0001 SGD 0.49 0.52 0.69 0.69

InceptionV3 32 0.0001 Adam 0.48 0.48 0.69 0.69

InceptionV3 32 0.0001 Adadelta 0.52 0.53 0.69 0.69

InceptionV3 32 0.0001 Adagrad 0.49 0.51 0.69 0.69

InceptionV3 32 0.0001 RMSprop 0.49 0.54 0.69 0.69

InceptionV3 64 0.001 SGD 0.51 0.5 0.69 0.74

InceptionV3 64 0.001 Adam 0.52 0.49 0.69 0.69

InceptionV3 64 0.001 Adadelta 0.48 0.51 0.69 0.69

InceptionV3 64 0.001 Adagrad 0.52 0.5 0.69 0.69

InceptionV3 64 0.001 RMSprop 0.52 0.48 0.69 0.69

InceptionV3 64 0.0001 SGD 0.5 0.49 0.69 0.69

InceptionV3 64 0.0001 Adam 0.5 0.51 0.69 0.69

InceptionV3 64 0.0001 Adadelta 0.5 0.48 0.69 0.69

InceptionV3 64 0.0001 Adagrad 0.52 0.55 0.69 0.69

InceptionV3 64 0.0001 RMSprop 0.5 0.49 0.69 0.69

90

Table A.4.: ResNet50 results for cats and dogs dataset
Model batch size lr opt acc val acc loss val loss

ResNet50 32 0.001 SGD 0.52 0.49 0.7 0.7

ResNet50 32 0.001 Adam 0.49 0.5 7.67 7.67

ResNet50 32 0.001 Adadelta 0.48 0.5 0.69 0.7

ResNet50 32 0.001 Adagrad 0.48 0.51 0.7 0.69

ResNet50 32 0.001 RMSprop 0.51 0.52 7.67 7.67

ResNet50 32 0.0001 SGD 0.53 0.49 0.69 0.69

ResNet50 32 0.0001 Adam 0.49 0.52 0.69 0.69

ResNet50 32 0.0001 Adadelta 0.47 0.52 0.69 0.7

ResNet50 32 0.0001 Adagrad 0.5 0.5 0.69 0.69

ResNet50 32 0.0001 RMSprop 0.49 0.49 0.69 0.69

ResNet50 64 0.001 SGD 0.51 0.52 0.69 0.69

ResNet50 64 0.001 Adam 0.5 0.5 0.69 0.69

ResNet50 64 0.001 Adadelta 0.48 0.49 0.69 0.69

ResNet50 64 0.001 Adagrad 0.48 0.48 0.69 0.69

ResNet50 64 0.001 RMSprop 0.48 0.54 0.69 0.69

ResNet50 64 0.0001 SGD 0.52 0.51 0.69 0.69

ResNet50 64 0.0001 Adam 0.53 0.48 0.69 0.69

ResNet50 64 0.0001 Adadelta 0.49 0.47 0.69 0.69

ResNet50 64 0.0001 Adagrad 0.5 0.5 0.69 0.69

ResNet50 64 0.0001 RMSprop 0.47 0.45 0.69 0.69

91

Bibliography

[1] Nikhil Singh, Paras Ahuja, Foundamentals of Deep Learning and Computer

Vision, bpb Publications.

[2] Avishek Nag, Pragmatic Machine Learning with Python, bpb Publications.

[3] Sebastian Raschka, Vahid Mirjalili, Machine Learning con Python, Apogeo.

[4] Gianluca Rossi, Misure meccaniche e termiche, Carocci.

[5] Nazzareno Bordi (2020), Digital Transformation, Advanced course in In-

dustry 4.0, Università Politecnica delle Marche.

[6] Nicola Paone (2020), The role of measurements and sensors in Industry

4.0 , Advanced course in Industry 4.0, Università Politecnica delle Marche.

[7] Elisa Minnetti, Paolo Chiariotti, Nicola Paone, Gisela Garcia, Helder

Vicente, Luca Violini, Paolo Castellini, A smartphone based hand-held

gap&flush measurement system for in-line quality control of car body as-

sembly, Università Politecnica delle Marche, Department of Industrial

Engineering and Mathematical Sciences, Via Brecce Bianche, 60131, An-

cona, Italy, Volkswagen Autoeuropa, Q.ta do Anjo, 2954-024 Portugal.

[8] Alessia Baleani, Paolo Chiariotti, Nicola Paone, Luca Violini, Paolo

Castellini, Analysis of reproducibility and repeatability of a hand-held laser

scanner for gap&flush measurement in car-assembly line, Università Politec-

nica delle Marche, Department of Industrial Engineering and Mathematical

Sciences.

[9] Elisa Minnetti, Paolo Chiariotti, Nicola Paone, Gisela Garcia, Helder

Vicente, Luca Violini, Paolo Castellini, A smart portable laser scanner

for Gap&Flush measurment, Università Politecnica delle Marche, Depart-

ment of Industrial Engineering and Mathematical Sciences, Ancona, Italy,

Volkswagen Autoeuropa, Palmela, Portugal.

[10] Elisa Minnetti, Paolo Chiariotti, Nicola Paone, Gisela Garcia, Helder Vi-

cente, Luca Violini, Paolo Castellini, Smart portable laser triangulation

system for assessing gap and flush in car body assembly line, Univer-

sità Politecnica delle Marche, Department of Industrial Engineering and

93

Bibliography

Mathematical Sciences, Ancona, Italy, Volkswagen Autoeuropa, Palmela,

Portugal.

[11] Dr. Adrian Rosebrock, Deep Learning for computer vision with Python,

pyimagesearch.

[12] Dr. Adrian Rosebrock, Practical Python and OpenCV, pyimagesearch.

[13] Nicola Paone, Misure e controlli industriali, Phd course for Industrial

Engineering, Università Politecnica delle Marche, Ancona

[14] Gianfranco Barone, Online Course in Artificial Intelligence and Machine

Learning, Unione Professionisti

[15] Karen Simonyan & Andrew Zisserman, Very Deep Convolutional Networks

for large-scale Image Recognition, Visual Geometry Group, Department of

Engineering Science, University of Oxford

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Re-

thinking the Inception Architecture for Computer Vision, Zbigniew Wojna,

University College London

[17] François Chollet, Xception: Deep Learning with Depthwise Separable Con-

volutions, Goole, Inc.

[18] Machine learning e deep learning si spostano dal Cloud all’Edge: gli im-

patti sul settore manufatturiero, https://www.eurotech.com/it/news/

edge-machine-learning-deep-learning

[19] https://qastack.it

[20] https://ichi.pro/it/funzioni-di-attivazione-99956793768697

[21] Muneeb ul Hassan, VGG16-Convolutional Network for Classification and

Detection, https://neurohive.io/en/popular-networks/vgg16/

[22] Jaejun Yoo, Inception and Xception https://www.slideshare.net/

thinkingfactory/pr12-inception-and-xception-jaejun-yoo

[23] Sik-Ho Tsang, Review: GooLeNet (Inception v1)-Winner of ILSVRC 2014

(Image Classification), https://medium.com/coinmonks

[24] https://ichi.pro/it/bias-e-varianza-55598046545165

94

