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1 Sunto esteso in italiano

Nel primo capitolo della tesi si è esaminato il quadro delle fonti energetiche utilizzate
in Europa con particolare attenzione ai programmi e agli obiettivi di transizione en-
ergetica come, ad esempio, il Green Deal. Si è evidenziato il ruolo chiave di iniziative
volte a ridurre le emissioni di gas serra e promuovere l’efficienza energetica. Succes-
sivamente, il contesto italiano è stato analizzato in relazione agli obiettivi del Piano
Nazionale Integrato per l’Energia e il Clima (PNIEC), delineando le strategie adot-
tate per raggiungere gli obiettivi di riduzione delle emissioni e di sviluppo sostenibile.

Si è poi passati ad una analisi dei ruoli e dei settori chiave in cui l’idrogeno può
essere sostituito alle fonti fossili, fornendo inoltre indicazioni su come questo possa
essere anche un valido sostituto delle batterie a ioni di litio per l’accumulo energetico
di periodi di tempo estesi.

Nel secondo capitolo, si è esplorato il potenziale dell’idrogeno come fonte ener-
getica alternativa e sostenibile considerando le sue possibili applicazioni nei settori
chiave per la riduzione delle emissioni di carbonio e il miglioramento dell’efficienza
energetica.

Si sono esaminati approfonditamente le proprietà dell’idrogeno e le varie tec-
nologie di produzione, concentrandosi su metodologie come l’elettrolisi dell’acqua
alcalina (AWE), la membrana a scambio di anioni (AEM), l’elettrolisi a ossido solido
(SOE) e la membrana a scambio di protoni (PEM). Questo approfondimento for-
nisce una base teorica solida per comprendere il funzionamento e le potenzialità
dell’idrogeno come vettore energetico nelle future applicazioni.

Nel terzo capitolo, è stata presentata una descrizione dettagliata del processo
di modellazione matematica di un elettrolizzatore a membrana a scambio di pro-
toni (PEM), fornendo un’analisi approfondita dei diversi parametri coinvolti nel suo
sviluppo. Sono stati esaminati parametri cruciali come la densità di corrente di
scambio di riferimento, l’energia di attivazione, i coefficienti di trasferimento di car-
ica e altri fattori influenti.

Questo approfondimento fornisce una base teorica solida per la comprensione dei
meccanismi e dei processi che regolano il funzionamento dell’elettrolizzatore PEM,
fondamentale per il successivo sviluppo e ottimizzazione del modello.

Nel quarto capitolo, si è illustrato il processo di adattamento delle equazioni
di base per la modellazione di un elettrolizzatore PEM al fine di tener conto delle
variazioni delle condizioni operative, in particolare pressioni fino a 100 bar e tem-
perature fino a 70C.

Sono state apportate modifiche alle equazioni esistenti per integrare gli effetti
della pressione e della temperatura sulle reazioni elettrochimiche all’interno della
cella PEM.
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Questo adattamento è essenziale per garantire la precisione e l’affidabilità del
modello in contesti operativi realistici e variegati, consentendo una simulazione ac-
curata delle prestazioni dell’elettrolizzatore in condizioni diverse da quelle atmos-
feriche.

Nel quinto capitolo, sono stati dettagliati due setup sperimentali adottati per la
raccolta dei dati, forniti dall’Istituto Westfalische Hochschule e coordinati dal dott.
Florian Wirkert.

I due sistemi differiscono tra loro nel modo in cui consentono di variare i parametri
di pressione e temperatura durante i test.

Uno dei setup mantiene costante la temperatura e varia la pressione, mentre
l’altro mantiene costante la pressione e varia la temperatura. Questi approcci sper-
imentali consentono di esaminare in modo esaustivo gli effetti delle variazioni di
pressione e temperatura sulle prestazioni dell’elettrolizzatore PEM.

Nel sesto capitolo, sono stati presentati i risultati ottenuti attraverso
l’implementazione del modello matematico descritto nel capitolo quattro utilizzando
il linguaggio di programmazione Python.

Questo approccio ha permesso di ottenere i parametri cinetici necessari tramite
un processo di fitting tra il modello matematico e i dati sperimentali, creando cos̀ı
una baseline. Successivamente, sono state seguite due metodologie per i due setup
sperimentali.

Nel caso del setup con pressione variabile e temperatura costante, gli esponenti
dei rapporti delle pressioni parziali tra idrogeno, ossigeno e acqua sulla pressione
di riferimento sono stati variati al fine di minimizzare il root mean square error
(RMSE) tra i dati sperimentali e le previsioni del modello.

Questo approccio ha consentito di ottenere gli esponenti ottimali per ciascun
valore di pressione testato.

Dai dati ottenuti si osserva una diminuzione non lineare degli esponenti con
l’aumento della pressione: ciò implica una riduzione non lineare delle perdite di at-
tivazione nella curva di polarizzazione dell’elettrolizzatore.

Questo suggerisce un effetto non proporzionale della pressione sulle reazioni
stesse con importanti implicazioni sulle prestazioni delle PEM. L’implementazione
di tecnologie PEM più efficienti e adatte a una gamma più ampia di condizioni opera-
tive, specialmente in ambienti ad alta pressione, potrebbe rivoluzionare l’applicazione
di questa tecnologia.

Tuttavia, ulteriori studi e conferme sperimentali sono necessari per confermare
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tali conclusioni e comprendere appieno i meccanismi sottostanti.

Per il setup con temperatura variabile e pressione costante, i valori dei coeffi-
cienti di trasferimento di carica (alpha) sono stati variati tra zero e uno al fine di
minimizzare il RMSE tra i dati sperimentali e il modello.

I valori del coefficiente di trasferimento di carica all’anodo e al catodo aumentano
con l’aumentare della temperatura come evidenziato dai dati ottenuti.

Ci si aspettava effettivamente un andamento di questo tipo innanzitutto perchè
una temperatura più alta favorisce la mobilità ionica nel materiale elettrolitico
della cella PEM, consentendo un trasporto più veloce degli ioni verso gli elettrodi.
Di conseguenza, si accelera il trasferimento di cariche attraverso il contatto elet-
trodo/elettrolita, aumentando il coefficiente di trasferimento di carica.
Le reazioni degli elettrodi più rapide incoraggiano anche lo scambio di elettroni tra
l’elettrodo e gli ioni dell’elettrolita.

Inoltre, una migliore conformazione dell’interfaccia elettrodo/elettrolita a tem-
perature più elevate favorisce un miglior contatto elettrico, aumentando i tassi di
trasferimento ionico e, di conseguenza, il coefficiente di trasferimento di carica.
Questo fenomeno è in linea con le osservazioni riportate in letteratura.

Sebbene sia abbastanza complesso creare una relazione quantitativa esatta tra
il coefficiente di trasferimento di carica e la temperatura, l’incremento continuo di
tali valori sottolinea il ruolo della temperatura nell’impatto sulle prestazioni della
cella. Sulla base dei dati sperimentali raccolti, ulteriori analisi possono rivelare una
relazione esatta personalizzata per la specifica cella in studio.

L’uso di Python ha giocato un ruolo cruciale in entrambi i casi, poiché ha per-
messo di sviluppare algoritmi in grado di determinare sia i parametri cinetici sia i
valori ottimali degli esponenti e degli alpha, fondamentali per adattare il modello
alle condizioni operative specifiche e ottenere risultati accurati.

In conclusione, il lavoro svolto ha fornito una base solida per la previsione del
funzionamento di elettrolizzatori PEM in condizioni di pressione e temperatura el-
evate, con l’obiettivo di ridurre le perdite interne del sistema.

Si è quindi dimostrato come l’ottimizzazione dei parametri cinetici e la model-
lazione matematica possano contribuire significativamente a migliorare le prestazioni
dell’elettrolizzatore in ambienti operativi più estremi.

I risultati ottenuti forniscono un’importante comprensione delle relazioni com-
plesse tra le variabili operative e le prestazioni del sistema, aprendo la strada allo
sviluppo di tecnologie più efficienti e affidabili per la produzione di idrogeno verde.
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Abstract

Europe is at the forefront of a massive energy revolution that will lower carbon
emissions and increase sustainability. This shift, which includes increasing energy
efficiency and modernizing the grid, from fossil fuels to renewable energy sources like
wind, solar, and hydropower, is essential to the EU’s plan to meet the 2030 climate
targets and become carbon neutral by 2050.

Nowadays, the chemical and refining industries in Europe rely heavily on hy-
drogen, making it an indispensable component of their energy landscape. Future
uses for it could include transportation, heating, and power generation, which could
greatly aid the EU in meeting its emission reduction goals and improve overall en-
ergy security. The most efficient method of producing hydrogen without emitting
CO2 is through the use of electrolyzers, which enable the production of ”green hy-
drogen”. Working with electrolyzers that have ever-higher efficiency values is one of
the main goals of today’s green hydrogen production: getting more hydrogen with
the same, or lower, amount of electric energy. Using electrolyzers that run at pres-
sures greater than atmospheric ones is one of the options that are being currently
explored; indeed, increasing the electrolytic cell’s operating temperature is another
method of reducing the input energy consumption.

Therefore, after providing a general overview of the state of hydrogen produc-
tion worldwide and the global goals associated with the decarbonisation process,
this study covers several different hydrogen production techniques.

To analyze and forecast improvements in cell efficiency, a Polymeric Electrolyte
Membrane (PEM) electrolyzer in a controlled pressure and temperature environ-
ment has been considered a viable option.

To predict the electrolytic cells’ behaviour, a mathematical model is developed
using Python, tested, and validated with experimental data of a PEM electrolyzer.
Experimental data, which have been obtained at the Westfalische Hochschule Insti-
tute, are used as a baseline for the current work.

In the end, the developed model showed a strong affinity with the data, mainly
thanks to its adaptability and flexibility. In the future, to validate the model for
higher operating pressures and subsequently forecast the system’s behavior, it is
expected to use it with different data from those used in this work.
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Nomenclature

Symbol [Unit] Meaning:

V [V] Voltage
Nc [-] Number of cells
VAct,c [V] Cathode activation overpotential
VAct,a [V] Anode activation overpotential
i [A] Current
Rcell [Ω] Cell resistance
R [J/(mol·K)] Gas constant
F [C/mol] Faraday constant

n [-]
Number of electrons involved in the
electrochemical reaction

Tcell [K] Cell temperature
Pa [Pa] Pressure on the anode side
Pc [Pa] Pressure on the cathode side
TH2O [°C] Water temperature
δNafion [cm] Nafion 115 membrane thickness
Tref [K] Reference temperature
Pref [Pa] Reference pressure
AAnt [-] Antoine equation constant A
BAnt [K] Antoine equation constant B
CAnt [K] Antoine equation constant C
pH2O [Pa] Partial pressure of water
pO2

[Pa] Partial pressure of oxygen
pH2

[Pa] Partial pressure of hydrogen
Erev [V] Reversible potential
E [V] Open circuit voltage (OCV)
αanode [-] Anode charge transfer coefficient
αcathode [-] Cathode charge transfer coefficient
i0,ref,a [A/cm²] Reference exchange current density at the anode
i0,ref,c [A/cm²] Reference exchange current density at the cathode
Eaa [J/mol] Activation energy at the anode
Eac [J/mol] Activation energy at the cathode
Epro [V] Protonic potential
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σref [S/cm] Reference conductivity
exponent pO2

(a) [-] Exponent for partial pressure of oxygen at the anode
exponent pH2O(b) [-] Exponent for partial pressure of water
exponent pH2

(c) [-] Exponent for partial pressure of hydrogen
i0,anode [A/cm²] Anode exchange current density
i0,cathode [A/cm²] Cathode exchange current density
σmem [S/m] Proton conductivity of membrane
Vtrans [V] Mass transport overpotential
Vohm [V] Ohmic overpotential
Acell [cm²] Cell active area
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Glossary

PEM: Proton Exchange Membrane
IEA: International Energy Agency
RMSE: Root Mean Square Error
EU: European Union
EC: European Commission
PNIEC: Integrated National Energy and Climate Plan
LHV: Lower Heating Value
AWE: Alkaline Water Electrolyzer
AEM: Anion Exchange Membrane
SOE: Solid Oxide Electrolyzer
LCOH: Levelized Cost of Hydrogen
MEA: Membrane Electrode Assembly
PCD: Porous Current Distributors
CCM: Catalyst Coated Membrane
FKM: Flat Gasket
PTL: Porous Transport Layer
HER: Hydrogen Evolution Reaction
OER: Oxygen Evolution Reaction
CTC: Charge Transfer Coefficient
OCV: Open Circuit Voltage
PPs: Pole Plates
GDLs: Gas Diffusion Layers
PEEK: Polyether Ether Ketone
PU: Flexible Polyurethane
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Introduction

For more than a century, the main energy sources in the World were fuels such as
coal, oil, and gas. The International Energy Agency (IEA) estimated that over 81%
of the World’s primary energy consumption in 2018 comes from the use of these
primary energy sources [1] as shown in figure 1.

Figure 1: World’s total energy supply [1]

The global awareness of the effects on the environment (e.g., climate change)
coming from fossil fuels has pushed toward the exploitation and deployment of re-
newable energy sources through several agreements signed by industrialised coun-
tries. In 2021, the IEA reported that renewables satisfied 12.9% of the global final
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energy consumption [2]; undoubtedly, renewable energy sources will keep their con-
tinuous growth trend until almost all the energy needed all over the World is covered
[3].

Although renewables like solar and wind energy have the potential to be a sus-
tainable, affordable, and environmentally friendly power source and lower green-
house gas emissions, they face energy production variability that affects the relia-
bility of satisfying the end-users’ energy demands as well as the physical integrity
of transmission grids [4].

To overcome this limitation, energy storage systems like batteries are generally
used; however, up to now [5] they partially limit this issue since they are not able to
completely satisfy the end-users’ energy demand when renewables are not working
(e.g., high investment cost and low durability [6]), and are also not able to provide
an electrical reserve for longer periods. Besides batteries, as reported by Hassan et
al. [7], hydrogen is becoming more and more acknowledged in Europe as a promis-
ing solution that helps with the intermittent problems related to renewable energy
sources. This process, which is called ”power-to-hydrogen”, transforms the excess
of renewable energy into hydrogen for storage purposes which is used for satisfying
future energy consumption.
Furthermore, it offers better exploitation of renewable energy sources, making the
transition to a low-carbon energy system more efficient [8]. Indeed, hydrogen is seen
as a potential energy vector and interesting fuel in its basic chemical form or, also,
in chemical compositions as proposed by Abdin et al. [9]; in particular, water-based
electrolysis is seen as a game changer for the ”green” energy production while fed
by renewable electricity.

The goal of this work is to highlight the potential that hydrogen might offer to
the decarbonisation process the World is currently undergoing, with a focus on op-
timizing hydrogen production through the use of systems and techniques that lower
the energy requirements for its production.

Investigating electrolyzer behaviour when operating at high pressures and tem-
peratures causes huge investments. To predict the efficiency reliability in advance
would help a lot to decide for many researchers and companies, whether such huge
efforts would make sense.

In particular, in the scientific literature, there are several mathematical models
capable of resembling the performance curves of water-based electrolyzers, but a
few of them employ optimization procedures to fit the numerical results with the
experimental data properly.

Indeed, the knowledge of specific parameters, which are mostly unknown due to
scarce data availability and manufacturers’ copyrights, is required and this is the
goal that an optimization procedure might have in further enhancing the prediction
capability of a model.
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The polarization curves are obtained in many works such as those of Nafeh et
al. [10], Dale et al. [11], Myles et al. [12]) that evaluate the cell’s voltage in the
following way (equation 1):

V = Nc · (E + VAct,c + VAct,a + iRcell) [V ] (1)

However, this equation is hard to use since the value of the membrane resistance
is unknown.

That said, a numerical model capable of fitting the polarisation curve obtained
from two different electrolyzers at given operating conditions, installed in the lab-
oratory of the Westfalische Hochschule Institute in Germany, was developed in a
Python environment. The main goal is to evaluate those electro-chemical parame-
ters that are difficult to retrieve from electrolyzers’ manufacturers. To succeed in
this task, known ranges from the scientific literature were used and, through an it-
erative process, the obtained (and used) values were those showing the lowest Root
Mean Square Error (RMSE). After this process, different operating conditions were
investigated by the model and compared with additional experimental results.

The document is structured as follows: Section 2 highlights the current energy
situation in Europe, focusing mainly on the Italian scenario and how hydrogen can
fit into this framework to support the decarbonisation process. Section 3 discusses
the chemical-physical characteristics of hydrogen, also providing insights on issues
related to its operational security. It explains how hydrogen is classified into differ-
ent ”colours” according to the type of energy source used for its production. Finally,
hydrogen production technologies are analysed with a focus on PEM electrolyzers.

Section 4 reports the parameters and the governing equations of the water elec-
trolysis through PEM technologies, explaining why specific parameters and their
numerical values are chosen concerning others. The purpose of this section is also
to explain how pressure and temperature affect the input power of the water elec-
trolyzers.

Section 5 describes in detail the mathematical model developed in Python. Sec-
tion 6 provides an overview of the experimental apparatus and its architecture,
focusing also on how the electrolysis pressure system works and how pressure values
affect energy consumption.

Section 7 shows the main results obtained from the developed model and its val-
idation through experimental data obtained in measurement campaigns performed
in the hydrogen labs of Westfalische Hochschule institute.
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The model’s integration and implementation strategies are finally reported, enabling
it to properly resemble the PEM electrolyzer’s behavior operating at different con-
ditions, which are aligned with those found in the laboratory, and allow to operate
it with different settings.
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2 European energy scenario

At present, Europe is leading the way in a significant energy revolution that aims
to lower carbon emissions and advance sustainability.

A key component of the European Union’s plan to fulfill the 2030 climate targets
and become carbon neutral by 2050 is the energy transition taking place in the con-
tinent. This transition entails a substantial move away from fossil fuels and toward
renewable energy sources including hydroelectric, solar, and wind power in addition
to advancements in energy efficiency and grid modernization.

In this scenario, hydrogen is becoming a vital part of the energy landscape in
Europe and has potential uses in several industries that could greatly help the EU
meet its emission reduction targets. Nowadays, the chemical and refining industries
are the main users of hydrogen, but it has a lot of potential for use in the future
including power generation, heating, and transportation.

2.1 Energy transition in Europe

When the European Union (EU) unveiled the ”Green Deal package”, which con-
tained its goals to be achieved by 2020, it became the first to set important energy
and climate targets back in 2009. The European Green Deal is a bold action plan
intended to make the continent a global leader in the fight against climate change
and drastically reduce its environmental impact. The primary objective of this en-
deavor is to reduce net greenhouse gas emissions down to 55% by 2030 in comparison
to 1990 levels. By 2050, this ground-breaking initiative aims to make Europe the
first continent in the World to be climate-neutral by establishing a standard for envi-
ronmentally conscious growth and responsible stewardship on a worldwide basis [13].

To address citizens’ concerns and redouble the efforts to tackle climate change,
the president of the European Commission (EC) unveiled the European Green Deal,
a broad and ambitious policy initiative aimed at bringing the energy transition across
the continent. Decoupling the economic growth from resource usage is the primary
objective of this new strategy, which aims to make the EU a net-zero greenhouse
gas emission society by 2050 and thus transform the society into a resource-efficient
and competitive economy [14].

For instance, in 2017 Europe imported from Russia 39% of hard coal, 30% of
crude oil, and 39% of European natural gas consumption [15]. European climate
policies and targets affected the demand for these resources, lowering the reliance
on fossil fuel consumption. That said, the following five points represent a summary
of the goals for pursuing successfully the energy transition:

1. decarbonization;

2. import independence and fuel diversity;

3. technology development and research innovation;
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4. completion of the internal energy market and effective retail competition;

5. affordability for the European industry.

As a result, the core idea behind the energy transition is to analyse the current
energy mix and determine how it might be changed in favor of using cleaner energy
sources. Figure 2 shows the current overview of the energy sources used to produce
electricity according to the IEA [16].

Figure 2: European total energy supply by source [16]

A considerable amount of energy comes from fossil fuels like coal and oil, as well
as methane. On the other hand, only a small part of it comes from renewable energy
sources, with a huge percentage of this section derived from nuclear sources.

When comparing the Italian scenario with the European one, no appreciable
distinctions can be noticed. Figure 3 shows that also in Italy the majority of the
energy demand is satisfied by the use of fossil fuels, with renewable energy sources
accounting for a negligible amount (notably, the portion of nuclear energy is zero due
to the 1989 referendum related to the abolition of nuclear power plants in Italy)[17].
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Figure 3: Italian total energy supply by source [17]

In light of this, the goals of Italy and the EU are to gradually decrease the use
of fossil fuel-powered systems (e.g., thermal power plants, etc.) and increase the
production and consumption of the energy produced by renewables.

In particular, Italy has set emission targets within the National Integrated Plan
for Energy and Climate (PNIEC) by achieving specific values:

1. 56% emission reduction from power-intensive industries;

2. 35% emission reduction from commercial, transport, and residential sectors;

3. 30% production from renewables.

Therefore, having an integrated approach to energy generation and consumption
is crucial to achieving such achievements; from this point of view, the application
of the ’sector coupling’ technique is essential. Indeed, ’sector coupling’ offers an
important added value in the decarbonisation process of the EU energy system, to
increase flexibility needs and the reliability of energy systems, as well as reducing
the global costs of the energy transition.

When the term ”sector coupling” was first used, it mostly referred to the elec-
trification of the end-use sectors (e.g., transportation and heating) to increase the
deployment of renewable energy and provide balancing services to the power sector,
assuming that the supply of electricity is or can be largely come from renewables.
Supply-side ”sector coupling” has been also added to the definition of ”sector cou-
pling” more recently. The integration of the gas and power industries through
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”power-to-hydrogen” technologies is the main goal of supply-side integration [18].
Likewise, the EC uses a wider definition of ”sector coupling” since it is considered
as a tactic to give the energy system more adaptability so that the decarbonization
process might be accomplished more affordably.

Technologies classified as ”power-to-hydrogen” should receive special attention
[19]. Currently, the use of batteries for energy storage purposes is a valid option for
short-term storage, but not for long-term one. Indeed, as presented by Lund et al.
[20], this is highly troublesome since there might be a regular mismatch between en-
ergy supply and demand given the unpredictable nature of renewable energy sources
and the short-term storage capability of such a technology.

When compared to electricity produced by conventional power plants, electricity
produced from renewable sources—such as wind and solar power—has a distinctive
attribute because it is difficult to control or block in response to demand. This im-
plies that generated energy still needs to be managed in some way even in situations
where production exceeds demand.

Green hydrogen offers a workable fix for this issue. Electrolyzers that produce
hydrogen by water electrolysis can be powered by excess energy when the produc-
tion of renewable energy surpasses the demand. Through this process, electrical
energy can be transformed into hydrogen, which is easily stored and can be used
for a variety of purposes in the future, including heating, producing electricity, and
fueling automobiles.

There would have not been many options if this extra energy was not used to
create hydrogen, like exporting it (which is not always practical or feasible) or storing
it in electric batteries, which have capacity, cost, and lifespan restrictions. Thus,
creating green hydrogen from the excess energy not only keeps renewable resources
from being wasted but also helps to stabilize the electrical system and encourages
the use of clean, sustainable energy.

As a result, hydrogen storage becomes especially useful when there is low demand
and high production from renewable sources, as noted by Blanco et al. [21] since it
enables the electrical system to fully benefit from the energy produced.
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2.2 Current and future hydrogen applications

Hydrogen currently covers a lot of applications that can be divided into three main
technological roles according to Ramachandran et al. [22] and Yue et al. [23]):

1. it can be characterized as a new energy vector that is complimentary to elec-
tricity and replaces fossil fuels;

2. it can be used as a chemical component for the production of secondary fuels
(e.g., e-fuels), derivatives, and commodities;

3. it can represent chemical storage (in various forms) with high energy density
to accumulate important amounts of energy that can be subsequently reused
for different applications and end uses.

Figure 4 shows a map of hydrogen applications divided by sectors.

Figure 4: Hydrogen final usage as energy vector [24]
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Beside considerably contributing to the decarbonisation of the so-called ”hard-
to-abate” sectors, hydrogen as an energy vector is highly intriguing for diversifying
the production and consumption in other sectors. Simultaneously, the ”blending”
process of incorporating hydrogen into the natural gas network might result in a de-
crease of CO2 emissions that fall under the responsibility of home users (e.g., boilers
that operate with a mixed fuel).

On the other end, the redox reaction that occurs in fuel cells does not result in the
formation of CO2, and quite high efficiencies are achieved due to an electro-chemical
conversion rather than a thermo-electrical one such as in the case of combustion in
conventional power generation systems (e.g., turbogas cycles or steam cycles).

When it comes to storing energy, hydrogen can be used as a vector for large
amounts of energy (e.g., GWh). Mostly, this energy can be stored for longer periods
(e.g., months) unlike electric batteries that have important rates of self-discharge
when operating for this purpose. The storage capacity of the current storage tech-
nologies is shown as a function of the withdrawal time in figure 5.

Hydrogen ensures the possibility of balancing energy demand and supply through-
out the year; moreover, it allows to provide greater grid flexibility, mitigating the
variability of renewables and bridging the gap between energy production and de-
mand [25].

Figure 5: Storage capacity of current technologies [26]
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3 Hydrogen properties and production

This section discusses the characteristics of hydrogen taking into account its chemical-
physical behavior to emphasize its strengths and weaknesses. To compare the tech-
nologies in terms of costs and benefits, it is explained how this molecule can be
obtained while considering various electrolysis techniques and production methods.
The financial costs of each technology are analysed as well.

3.1 Hydrogen properties

By comparing hydrogen to conventional fossil fuels, some intriguing features arise.
In particular, hydrogen’s high energy content with a Lower Heating Value (LHV)
of 33.33 kWh/kg [27] (coal has 8 kWh/kg) makes it a high energy density carrier.
As drawbacks, the hydrogen gas phase has a low mass density which is detrimental
to energy density and storage because high pressures are needed for storing a con-
siderable amount of hydrogen (e.g., density of 0.082 kg/m3 @ 0 − 25°C and 1 bar
[28]). Furthermore, even working at high pressure values (e.g., range of 700–1000 bar
which indicates plant complexities and safety issues) does not mean reaching high
density values due to the inverse relationship between pressure and the compressible
factor ”z” of gases as shown in figure 6.

Figure 6: Hydrogen density vs pressure values [29]
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To get over this, hydrogen transformation into liquid phase might be thought
as a possible solution to increase its energy density; however, extraordinarily low
melting temperatures are required (e.g., boiling point of −259.16°C at 1 bar [28])
and thus further cooling energy is needed.

Because of its broad flammability limits (e.g., from 4 to 75% of its volume in
air [30]) and extremely low activation energies (e.g, 0.02 mJ [31]), hydrogen poses
a significant safety risk. Although storing hydrogen under proper conditions is
generally safe, it is important to strictly follow safety procedures and guidelines.
The risks related to hydrogen storage must be reduced by proper design, routine
maintenance, and adherence to safety regulations.

3.2 Hydrogen production

Hydrogen is the most effective energy vector and it can be obtained from a variety
of raw materials, including water. Water electrolysis is one of the main techniques
used to produce pure hydrogen but, as presented by Holladay et al. [32], there are
plenty of technologies to obtain it. It was thought to be one of the most promis-
ing technologies for producing highly pure hydrogen from renewable energy sources
while having no carbon emissions and only oxygen as a byproduct. This process has
been evaluated in terms of sustainability and environmental impact. The produced
oxygen (O2) and hydrogen (H2) are directly used for other end-uses along with be-
ing reconverted in electricity through fuel cells. However, only 27 million tonnes are
produced through electrolysis so far [33].

Global energy consumption has been steadily rising in recent years as a result
of better living standards and population growth. Moreover, the development of
renewable energy sources has become more and more important as both environ-
mental pollution and global warming increased. One of the most promising clean
and sustainable energy sources is hydrogen which does not emit carbon and pro-
duces oxygen and pure water as a byproduct.

In 2021 [34], hydrogen demand reached 94 million tonnes, overtaking the pre-
pandemic figure of 91 million tonnes in 2019 and accounting for 2.5% of the global
final energy consumption. Current governmental policies suggest the hydrogen de-
mand may increase up to 115 million tonnes by 2030, although only a small portion
(less than 2 million tonnes) will come from new applications. This projection falls
short of the 130 million tonnes required to fulfill the existing global climate commit-
ments, which include 25% from new uses, and it is far from the nearly 200 million
tonnes needed by 2030 to align with the net-zero targets to be reached by 2050.
The majority of the industrial uses for the produced hydrogen are in the fertilizer,
petrochemical, and power sectors [35].
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Water electrolysis leads to a high hydrogen yield with high purity (e.g., 99.999%).
The reaction occurring in water electrolysis (the overall one is presented by equation
4), which can be divided for the anode (equation 2) and the cathode (equation 3)
side, is described by the following equations:

Anode side: H2O → 2H+ +
1

2
O2 + 2e− (2)

Cathode side: 2H+ + 2e− → H2 (3)

Overall cell: 2H2O → 2H2 +O2 (4)

As shown in Figure 7, there are numerous ways to produce hydrogen starting
from both renewable energy sources and fossil fuels. The section where hydrogen is
produced using renewable energy, meaning the splitting of water through ”green”
electricity, is the one that is currently keeping a lot of attention.

Figure 7: Different hydrogen production methods [36]
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Hydrogen can be also classified based on the energy source with which it is
produced; thus, the following classifications (indicated through ”colors” of hydrogen)
are reported (see also figure 8):

1. Grey hydrogen is obtained from fossil sources (either steam methane reforming
or gasification);

2. Blue hydrogen is obtained from fossil sources equipped with carbon capture
systems (either steam methane reforming or gasification);

3. Turquoise hydrogen is obtained from methane (e.g., pyrolysis process);

4. Green hydrogen is obtained from renewable energy sources (e.g., water-based
electrolysis process).

It is evident that ”green” hydrogen is the key to the current and future energy
transition.

Figure 8: Hydrogen colors’ classification [37]

Next paragraphs aim to provide an overview of the current state of several hy-
drogen generation technologies, including alkaline, anion exchange, polymeric, and
solid oxide electrolyzers technologies. Furthermore, it is explained why the use of
polymeric materials at high operating pressures further improves hydrogen produc-
tion.
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3.3 Alkaline Water Electrolysis (AWE)

Alkaline water electrolysis is a well-established technology for producing hydrogen
up to the MW range for commercial use. Alkaline electrolysis uses an aqueous
solution (either KOH or NaOH) as electrolyte, and runs at lower temperatures
between 30° and 80°C. The electrolyte concentration is between 20% and 30% in
volume. Asbestos diaphragm and nickel materials are used as electrodes in the
alkaline water electrolysis process [38],[39]. Alkaline water electrolysis has several
benefits; among them, it uses inexpensive catalysts based on non-noble metals which
can be used to create multi-cell stacks for commercial applications. On the other
hand, the system’s drawbacks include the use of an electrolyte that is corrosive, low
current densities, and low pressure (> 400 mA/cm2 @ambient pressure)[40]. Figure
9 displays a graphic representation of an alkaline electrolysis’s reaction.

Figure 9: Alkaline electrolysis reaction [41]
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3.4 Anion Exchange Membrane (AEM)

AEM water electrolysis is a developing technology for green hydrogen production
(see Figure 10). In recent years, many research organizations and institutions have
been actively working on the development of AEM water electrolysis due to its low
cost and high performance compared to other conventional electrolysis technologies.
The first journal publication on AEM water electrolysis was by We and Scott in
2011, and since then many researchers have contributed to its development. AEM
water electrolysis technology is similar to conventional alkaline water electrolysis,
but it replaces traditional diaphragms (asbestos) with an anion exchange membrane
(quaternary ammonium ion exchange membranes). AEM water electrolysis offers
several advantages such as the use of cost-effective transition metal catalysts instead
of noble metal catalysts, and the ability to use distilled water or low-concentrated
alkaline solutions (1M KOH) as the electrolyte instead of highly concentrated so-
lutions (5M KOH). Despite these significant advantages, AEM water electrolysis
still requires further improvements in MEA stability and cell efficiency, which are
essential for large-scale or commercial applications. Currently, reported stability is
2000 hours with Sustainion, 1000 hours for Fumatech (A201 and FAA3-50), and
over 35, 000 hours for the Enapter multicore AEM electrolyzer.

Figure 10: AEM electrolysis reaction [41]
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3.5 Solid Oxide Electrolysis (SOE)

Donitz and Erdle initially described SOEs in the 1980s [42]. SOE has gained sig-
nificant attention due to its ability to transform electrical energy into chemical one
and produce ultra-pure hydrogen efficiently. Steam is produced via SOE which uses
water at temperatures between 500 and 850°C and high pressures. The primary
benefit of the SOE technology over low-temperature electrolysis ones is, indeed,
its higher operating temperature. Nevertheless, the SOE technology must address
certain problems with instability and deterioration before facing widespread com-
mercialization [43]. Figure 11 shows a graphic representation of SOE’s reaction.

Figure 11: SOE electrolysis reaction [41]
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3.6 Proton Exchange Membrane (PEM)

Grubb created the first PEM water electrolysis in the early 1950s, and General
Electric Co. was founded in 1966 to address the shortcomings of the alkaline wa-
ter electrolysis process [44]. The PEM technology employs Nafion®, Fumapem®

that uses solid polysulfonated membranes as an electrolyte (e.g., proton conductor).
The PEM technology offers numerous benefits including reduced gas permeability,
elevated proton conductivity (e.g., 0.1 ±, 0.02 S/cm), reduced thickness (20–300
mm), and high pressure operation [45]. One of the best ways to convert renewable
energy sources into very pure hydrogen is through PEM water electrolysis. Indeed,
this technology has many benefits such as a small footprint, compact design, high
efficiency, fast response, high current density (e.g., over 2 A/cm2), and lower tem-
perature operation (e.g., 20–80°C). Additionally, the process produces ultra-pure
hydrogen as well as oxygen as a byproduct [46].

From the chemical point of view, water is electrochemically split into hydrogen
and oxygen at the respective electrodes in PEM water electrolysis, with hydrogen
being produced at the cathode and oxygen at the anode. Process water feeds the
anode where it splits into protons (H+), electrons (e−), and oxygen (O2); subse-
quently, the proton conducting membrane transports these protons to the cathode
side. Figure 12 depicts a schematic representation of the electrolysis process.

Figure 12: PEM electrolysis’ reaction [41]

According to Xiang et al.[47], 2020 sees AEM and PEM starting at comparable
capital cost levels, with SOE being much higher.

Another important point is the electricity consumption, which was 50 kWh/kgH2

[48] in 2020 and should progressively drop down to 40kWh/kgH2
by 2050 for both
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AWE and PEM. With a lower initial electricity consumption of 40kWh/kgH2
in 2020

and a further reduction down to 35kWh/kgH2
by 2050, SOE may have an efficiency

advantage as well.
PEM electrolyzer’s Levelized Cost Of Hydrogen (LCOH) can be estimated be-

tween 40–60 €/MWh as also reported by Bernuy-Lopez in [49]. This method also
produces very pure hydrogen (99.999%).

Although the SOE’s overall electricity consumption efficiency is higher and its
operating and maintenance costs are significantly lower compared to the other anal-
ysed technologies so far, its initial costs are significantly higher. In terms of capital
costs, AWE and PEM are more affordable and sustain competitive cost reductions
over the long term in both capital and operating/maintenance costs [47].

Despite its high energy content in terms of kWh/kg (e.g., 33.3 kWh/kg for hy-
drogen versus 12.2 kWh/kg for gasoline [58]), which makes it a very interesting fuel,
hydrogen’s weakness lies in its low mass density in gas phase which results in a
significant disadvantage in terms of energy density and storage (e.g., 2.22 kWh/l
for hydrogen whereas gasoline has a density of 8.89 kWh/l). [50]); for this rea-
son, high operating pressures are required. To obtain hydrogen at higher pressures,
it is therefore needed to use compressors that raise the fluid pressure to facilitate
storage and transportation, or systems that produce high pressure hydrogen directly.

The advantage offered by PEM electrolyzers lies in the solid structure that acts as
an electrolyte (specifically Nafion®) that allows maintaining its physical structure
even at pressures higher than ambient pressures. This can be done either through
mechanical compression (e.g., using screws to hold all parts of the cell at a preset
pressure value) or through hydrodynamic compression with a fluid that keeps the
system at set pressure (and temperature) values. This is made possible by a partic-
ular mechanism that consists of a flexible material pocket into which the membrane
is put to enable uniform compression of the membrane.

When looking at a cell module similar to the one shown in Figure 13, two Porous
Current Distributors (PCDs) and two corrosion-protected planar copper monopolar
plates for current conduction, in and out of the pocket, are visible from the outside.
The Catalyst Coated Membrane (CCM) layer, which is made of a thin layer of
Nafion, is visible from the center of the structure. To get the process media to
the active sites, plastic cell frames with built-in conduits for the media are used as
proposed by Wirkert et al. [51].

Summing up, PEM electrolyzers provide an intriguing option for producing hy-
drogen both now and in the future.
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Figure 13: Simple model of a PEM electrolyzer cell [51]

34



4 Parameters used in the developed numerical

model

To develop a mathematical model that can accurately resemble PEM electrolyzers’
performance, it is imperative to establish the distinctive parameters of the elec-
trolytic cells, namely those that use a solid membrane. In light of this, the following
parameters are:

• Reference exchange current density (anodic and cathodic sides);

• Activation energy (anodic and cathodic sides);

• Charge transfer coefficients (anodic and cathodic sides);

• Reference conductivity of the membrane;

• Activation protonic energy;

• Variable parameters: operative pressure, operative temperature, water pres-
sure, reference pressure, reference temperature, number of cells and active
area;

• Constant parameters: gas constant, Faraday’s constant, number of electrons,
hydrogen’s lower heating value, membrane thickness.
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4.1 Reference exchange current density

The reference exchange current density is a critical parameter that describes the
intrinsic electrochemical activity of the electrode material for a specific reaction at
a given reference condition. It is a measure of the rate at which an electrochemical
reaction occurs without any applied external voltage, and it is indicative of the cat-
alytic activity of the electrode material. Both the electrolyzer and fuel cell operate
better if the reference exchange current density is higher because this means that
the electrode material is more efficient in catalyzing the reaction. Since it directly
affects the efficiency and power output of such devices, this parameter is essential
for their design and optimization. The type of membrane, the operating conditions,
and the catalyst material have a substantial impact on the actual value of the refer-
ence exchange current density. The metric i0 has been extensively used in technical
applications to assess the suitability of catalysts, including water electrolyzers and
fuel cells. Di-hydrogen is not very soluble in aqueous solutions and makes it chal-
lenging to experimentally determine the i0 for catalysts that are highly reactive to
the hydrogen reaction [52]. To compute the true current density passing through
the electrolytic cell, the i0 value has to be known a priori; indeed, considering the
Arrhenius equation modified as proposed by Noyan et al. [53] [54], it can be com-
puted as reported in Eq. 5 that refers to the current density circulating at the anode
of the electrolytic cell, while eq. 6 occurs at the cathode side:
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The anodic and cathodic current densities in electrolyzers can vary due to several
reasons, including the used materials, the operating conditions, and the reactions
that take place at each electrode. The anodic side of electrochemical systems, such
as electrolyzers and fuel cells, frequently experiences harsher conditions than the
cathodic side. Compared to the cathode reactions like the Hydrogen Evolution
Reaction (HER), the anodic reactions—like the Oxygen Evolution Reaction (OER)
in water electrolysis usually entail several electron transfer steps, which makes them
intrinsically more complex and kinetically slower. Higher overpotentials are needed
to drive the anodic reactions as a result of this complexity. The values selected
for the exchange current densities, i0,an for the anode and i0,cat for the cathode,
differ significantly one from another in the current available scientific literature as
discussed also by Carmo et al. in [40]. In addition, challenging-to-quantify catalyst
physical parameters affect the exchange current density, being an issue since the
polarization curves that a model could predict rely significantly on the exchange
current density that varies by more than seven orders of magnitude according to
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Tijani et al. [55]. Indeed, this aspect is especially challenging for the anodic side
[40].

4.2 Activation energy

The lowest energy needed to make the electrochemical reactions occur at the elec-
trodes—the OER on the anodic side and the HER on the cathodic side is the acti-
vation energy in the context of an electrolyzer. Since the activation energy gives a
picture of how quickly a reaction proceeds, it is an important factor. For an effective
electrolysis, a lower activation energy is preferred because it allows the reaction to
proceed more readily and at a lower applied potential. Indeed, the losses associated
with the different working regimes must be considered to compute the cell voltage.
At low current values, activation losses (overpotential) become significant and are
calculated as follows:
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The anodic side is disadvantaged compared to the cathodic one in terms of
activation energies’ values, as it happens for current densities (see paragraph 4.1).
The HER at the cathode is less complex than the OER at the anode. Whereas
the HER uses one or two electrons, depending on the mechanism, the OER uses
four electrons transfer to convert water into oxygen gas, protons, and electrons.
When compared to the HER, the activation energy of the OER is usually higher
due to its complexity which involves several steps and intermediates. The activation
overpotential’s value is strongly dependent on the current density i0, which changes
in response to changes in activation energy as reported in Eq. 5. In particular,
when activation energy Ea increases, the current density i0 decreases. This effect
corresponds to a final growth of activation overpotential (see equation 7, where
i0 is the denominator of the logarithm) and consequently of the cell’s electrical
consumption.
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4.3 Charge transfer coefficients

Often represented by the symbol α, the Charge Transfer Coefficient (CTC) is a di-
mensionless parameter that offers information about the kinetics of the electrochem-
ical reactions, specifically on the energy barrier for electron transfer throughout the
reaction. The Butler-Volmer equation, which expresses the rate of an electrochem-
ical reaction about the applied potential, heavily relies on it. The charge transfer
coefficient, which is a measure of how favorably an electron is transferred in a forward
direction towards the product and in a backward direction towards the reactants,
varies from 0 to 1. The activation overpotential and the CTC are closely linked. It
has been observed that the previous overvoltage diminishes as the CTC increases
from 0.1 to 1 at both the anode-cathode electrodes. Compared to the cathodic side,
electrochemical reactions at the anodic one require more energy. Another explana-
tion would be that more energy is needed at the anode to start the electro-kinetics
process that breaks the connection between the oxygen and hydrogen atoms of a
water molecule. On the other hand, since the two species react quickly to generate
hydrogen molecules, the reaction between the hydrogen ion and the electron at the
cathode side does not require more energy [56]. As a result, a lower CTC is obtained
so that a less symmetric barrier is obtained. The Volmer-Heyrovsky or Volmer-Tafel
mechanisms, conversely, are more commonly used in the HER and result in more
symmetric energy barriers and higher CTCs. The temperature is the variable that
has the biggest impact on this parameter, and in many works, such as in Niroula
et al. [57], the relationship between CTC and temperature has been presented as a
linear dependence.

4.4 Reference conductivity of the membrane

A PEM’s reference conductivity is defined as its capacity to conduct either protons
or hydrogen ions under particular operating conditions. In such a context, the con-
ductivity is commonly expressed in terms of Siemens per meter (S/m). Due to their
major effects on the membrane’s conductivity, particular temperature and humidity
levels are frequently included in the reference conditions. The conductivity is im-
portant for PEM membranes since it establishes the membrane’s ability to transfer
protons from one side to another with an efficiency that impacts the device’s overall
performance. The membrane’s structure and material composition affect the value
of the reference conductivity; for instance, under certain conditions, the reference
conductivity of Nafion® usually ranges from 0.1 to 0.2 S/m. It is worth noting that
a membrane’s ability to transfer protons efficiently increases with the conductivity,
which is advantageous for applications like electrolyzers and fuel cells. As Eq. 9
reports, a higher reference conductivity (σref [58]) corresponds to a higher membrane
conductivity (σ); hence, as the conductivity increases, ohmic losses decrease (Vohm)
as demonstrated through Eq. 10 (δ is membrane width) reported by Falcao et al.
[59]. Higher conductivity results in greater proton transfer across the membrane

38



that reduces inefficiencies as previously described.

σ = σref · exp

[

−Epro

R

(

1

Tref

−
1

Tcell

)]

[S/m] (9)

Vohm =

(

δ

σ

)

· i [V ] (10)

4.5 Activation protonic energy

The concept of the ”activation protonic energy” refers to the energy needed to start
the electrolysis process in a PEM electrolyzer. The energy barrier that needs to
be broken for protons (H+) to pass through the membrane from the anode to the
cathode and to let the electrochemical reactions take place at both electrodes is re-
ferred to as the activation energy. Since the activation energy affects the electrolysis
process’s overall efficiency and energy requirements, its barrier is important. The
electrolysis process can be more effective and use less electrical energy to produce a
fixed amount of hydrogen if the activation energy is lower. One of the main research
areas for creating more efficient and sustainable hydrogen production processes is
to overcome this obstacle.

4.6 Variable parameters

• Operative pressure and temperature:
Pressure and temperatures are instances of arbitrary parameters that can be
used for characterising both the eletrolyser and fuel cells devices. Currently,
the goal of this work is to develop a model that can forecast how a PEM
electrolyzer will behave at different pressure and temperature conditions. The
pressure has been specifically examined at the anode and cathode sides: the
first one involves an oxygen reference pressure, while the second one considers a
hydrogen one. Conversely, temperature refers to the ”operative temperature”
since it is thought to be stable across all the cells. Since these values may
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be deemed arbitrary, they have been altered during the simulation to forecast
how the cells would behave in various operating conditions.

• Water pressure:
As the result of the varying temperature of the system, the water partial
pressure at the cathode side changes as described by Antoine’s equation [60].
The parameters needed to calculate the pressure value are presented in table
1, and the expression to calculate the exact value is presented in equation 11.

Table 1: Antoine’s equation parameters

Parameter Description

Aant 5.203
Bant 1733.926
Cant -39.485

pH2O = 10

(

Aant−
Bant

Tcell+Cant

)

· 133.322 [Pa] (11)

• Reference pressure and temperature:
The values of the reference temperature and pressure match the circumstances
in which the PEM electrolyzer’s parameters are determined. The model is built
using these parameters. Reference temperature and pressure values are used to
determine values for kinetics parameters, including reference exchange current
density, activation energy, charge transfer coefficients, reference conductivity
of the membrane, and activation protonic energy, depending on the operating
circumstances provided by the experimental data.

• Number of cells and active area:
In an electrolyzer, the number of cells refers to the total count of individual
cells stacked together, while the active area is the surface area within each cell
where the electrochemical reactions occur, directly impacting the efficiency and
output of hydrogen and oxygen production. In this work, these two parameters
change for the two different electrolyzers used to obtain the experimental data.
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4.7 Constants parameters

After discussing the primary model parameters, it is crucial to consider additional
parameters and constants that have been used to derive the mathematical model
that characterizes the PEM electrolyzers’ behaviour. Table 2 lists these values:

Table 2: Electrolyzer’s constants

Parameter Value

Gas constant [9], R (J/mol·K) 8.314
Faraday’s constant [9], F (C/mol) 96485
Number of electrons [59] , n 2
Lower heating value of hydrogen [27], LHV (MJ/kg) 120
Nafion 115 membrane thickness, δ (cm) 0.0127
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5 Cell voltage model

In this section, a numerical model that can accurately forecast the electrolyzer’s
behavior from the fundamental equation is presented. To do this, each term in the
equation is expressed by taking into account its meaning; then, these terms are
modified to produce a more versatile model that resembles the operation of PEM
electrolysers at different operating conditions.

5.1 Basic cell model

Literature easily provides the fundamental equation that describes the progression
of the cell voltage at ambient pressure (Carmo et al. [40], Falcao et al. [59], Lubello
et al [61]), as presented in Eq. 12; this equation expresses the voltage value required
for the electrolysis reaction to occur:

V = E + Vact + Vtrans + Vohm [V ] (12)

Since it is the theoretical voltage needed by the electrolyzer without accounting
for losses, the first term E, which is known as the Open Circuit Voltage (OCV),
is sometimes referred as the reversible cell voltage (E). In order to break through
the molecular bonds, the activation overvoltage (Vact) is the voltage loss ascribed to
accelerate the electrochemical reaction. Gas bubbles created by the reaction prod-
ucts and flow restriction to the catalyst sites, such as current collector and separator
plate morphology, are the main causes of mass transfer losses (Vtrans). Lastly, there
are the ohmic losses (Vohm) that are due to the resistance done towards the elec-
tron flow via separator plates and current collectors, as well as proton conduction
through membranes [40]. Further details on this are reported below:

• Open Circuit Voltage (OCV)
The open circuit voltage has been computed by using the Nernst’s equation
as follows:

E = Erev +

(

R · Tcell

n · F

)

· ln

(

pH2
· (pO2

)0.5

pH2O

)

[V ] (13)

Here Erev is calculated as follows:

Erev = 1.229−
(

0.9 · 10−3
)

· (Tcell − 298) [V ] (14)

The number of electrons involved in the reaction ”n” is considered equal to 2
in this model (Falcao et al. [59]).

• Activation overpotential
The energy needed to start a reaction is known as the activation overpotential
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which is a loss of energy in a reaction. Utilization, loading, temperature,
and catalyst material have a direct impact on this loss. The Butler-Volmer’s
equation describes the activation overpotential applicable to the anode (eq. 7)
and cathode (eq. 8) separately (see paragraph 4.2). The accurate modeling of
this phenomenon is challenging due to the influence of numerous parameters,
including material processing, temperature, active catalyst areas, utilization,
distribution, age, pressure, and morphology [62].

• Mass transport overpotential
In PEM electrolyzers the mass transport overpotential, also referred to as the
concentration overpotential, is mainly present at the cathode and is caused by
restrictions in the transport of reactants to the reaction sites or the removal
of products. When current densities are high, this phenomenon becomes im-
portant. This term has been neglected in this work as the focus is not on high
current density operations.

• Ohmic overpotential
The voltage loss connected to the resistance to ions flowing through the elec-
trolyte and electrons flowing through the external circuit, which consists of
the electrodes and any connecting materials, is known as the ohmic overpo-
tential in PEM electrolyzers. This kind of overpotential, which is affected by
factors like membrane conductivity, electrode and contact resistances, current
density, temperature, and humidity is crucial to the overall effectiveness and
performance of a PEM electrolyzer. The Ohmic overpotential is expressed by
Eq. 10 (paragraph 4.4)

5.2 Parameters optimization

The parameters described in Section 4 are known only for a particular Membrane
Electrode Assembly (MEA) at specific operating conditions. Currently, the ranges
in which the previously explained parameters vary are known from the scientific lit-
erature, but at this stage, their exact values cannot be used since they are unknown.

Specifically, a model has been created to predict the behavior of PEM operating
at two different conditions (e.g., fixed temperature and varying pressure, and vice
versa) using experimental data from the hydrogen laboratory of the Westfalische
Hochschule institute.

The developed model, which makes use of the following equations (Eqs. 15, 16,
17 model overpotentials, while equation 13 in paragraph 5.1 models the open circuit
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voltage), is examined in detail in the following, and its reliability is assessed by
comparing the numerical results with experiments.

Vact,anode =

(

RTcell

nFαanode

)

ln
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• Variable pressure model:

This workflow has been used to modify the general electrolyzer model to fit
the variable pressure polarization curve found in the experimental test.

1. Identification of the kinetic parameters: The initial step is the
research of the kinetic parameters for the PEM cell membrane at specific
pressure and temperature conditions, which are required by the developed
model;

2. Gap in the scientific literature: Upon reviewing the scientific litera-
ture, it is clear that data on these specific kinetic parameters at specific
conditions of pressure and temperature are not available, thus leading to
proceed with optimizing the parameters using a Python-based optimiza-
tion process;

3. Parameter estimation through fitting: Kinetic parameters (table 3)
are obtained from an initial fitting process at a constant temperature of
40◦C and pressure of 10 bar. Starting from this point onward, the param-
eters have been considered constants by assuming they do not depend on
both the pressure and temperature;
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4. Optimization of pressure ratios: Finally, exponents a, b, and c (Eqs.
15 and 16) for the pressure ratios are derived to optimize the polarization
curves. The model is adjusted with experimental data provided at pres-
sures of 20, 40, 60, and 100 bar with a constant temperature of 40◦C. This
step ensured that the model could accurately resemble the experimental
results at different operating pressure conditions while maintaining the
integrity of the temperature-dependent responses observed.

This workflow not only facilitates a precise characterization of the PEM but
also enhances the predictability and applicability of the model at different
operating conditions.

Parameters

Alpha anode (αanode)
Alpha cathode (αcathode)

Reference anode exchange current (i0,ref,a)
Reference cathode exchange current (i0,ref,c)

Activation energy anode (Eaa) [J/mol]
Activation energy cathode (Eac) [J/mol]

Protonic energy (Epro) [J/mol]
Reference conductivity (σref)

Table 3: Kinetic parameters

• Variable temperature model:

A similar strategy has been used for temperature variant polarization curves,
just as it was for adapting the model to the variable pressure data.

1. Literature review: An exhaustive review of the existing scientific liter-
ature is carried out to search for kinetic parameters relevant to the PEM
membrane at specified operational conditions. The scientific literature
review revealed a lack of data for the membrane at particular pressure
and temperature;

2. Baseline parameter acquisition: Kinetic parameters at atmospheric
pressure are used and the temperature is fixed at 40°C. This step is fun-
damental for then parameterizing the PEM electrolyzer operations at
different conditions;
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3. Coefficient values: The model presented herein generally can be ap-
plied in a wide range of operations. Specifically, when operating at atmo-
spheric pressure, the coefficients ’a’, ’b’, and ’c’ are equal to zero. This
simplification is justified because there is no need to adjust the reference
current density values i0,ref , at atmospheric pressure as it would be nec-
essary at pressures exceeding this value as presented in Bove et al. work
[53].

4. Thermal optimization of alpha coefficients: Subsequent steps in-
volve the optimization of the alpha coefficients (Eqs. 15 and 16) at tem-
peratures of 50°C, 60°C, and 70°C. This optimization is crucial to align the
theoretical model with experimental data, ensuring that the increasing
trend of alpha values with the temperature does not exceed the feasible
operational range 0−1. This constraint is fundamental to maintaining the
validity and reliability of the model across a wide range of temperature
spectra.

This methodology not only facilitates the accurate calibration of the model
parameters at different thermal conditions but also ensures the predictability
and applicability of the model at different operating conditions.
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6 Experimental setup

The Westfälische Hochschule has kindly supplied all the data needed to develop the
model.

A simplified scheme of how the electrolyzerworks is presented in figure 14.
The PEM (Proton Exchange Membrane) electrolyzer operates with water that must
meet very high purity standards and be free of contaminants. At the anode, water
undergoes oxidation, producing oxygen, protons (H+), and electrons (e−). These
protons then migrate through the PEM. At the cathode, the protons (H+) combine
with electrons supplied by the external circuit to form hydrogen gas (H2).
The recirculation of water is essential for managing the temperature and maintaining
the hydration of the membrane, ensuring efficient operation. Analyzers are placed
at the outlets of both the anode and cathode to monitor and ensure the quality and
purity of the produced gases.
Additionally, nitrogen is used to control the pressure within the electrolytic cells,
contributing to the stability and safety of the system. This setup ensures high effi-
ciency and reliability in hydrogen production.

Thanks to specific technologies developed at the Westfälische Hochschule, two
tests have been carried out at a fixed temperature and variable pressure (first setup
described) and vice versa (second one) to get the polarization curve of the analysed
PEM electrolyzers.

Figure 14: General layout of the electrolyzer test rig [63]
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6.1 Variable pressure and fixed temperature setup

The work by Wirkert et al. [51] has been followed to obtain the polarization curves
for fixed temperature and variable pressure.

The study emphasizes how crucial it is to maximize the electrical conductivity
and flow media throughout the components of the electrolyzer, particularly at their
interfaces, to guarantee the efficient operation of each cell in the stack. Additionally,
all the cell’s active area must have the same operating conditions. The degree of
cell compression is the main factor affecting these conditions. Previous studies have
shown that uneven cell compression hurts the effectiveness and long-term depend-
ability of cells, indicating the necessity of concentrated development efforts directed
toward attaining even compression.

Furthermore, the application of mechanical cell compression is contingent upon
certain attributes, including the dimensions of the active cell area and the aggregate
count of cells within a stack. Because of this specificity, any solutions created can
only be used with specific cell or stack configurations.

Deviations from the ideal operating conditions may result from even small changes
in component specifications or the number of cells in a stack, thus requiring addi-
tional engineering work and adjustments.

This work presents a modular system design (see Figure 15) that uses a hy-
draulic medium to compress each cell uniformly. This method ensures consistent
cell compression regardless of variations in the active cell area or the number of cells
in a stack, and it remains effective at any gas output pressure. Furthermore, by
employing the hydraulic medium as a coolant, the process flow media is effectively
separated from the heat management, thus allowing for an independent optimiza-
tion of each.

Figure 15: Photograph of the PEMEL stack with a reinforced pressure housing [51].
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The core components of this cell are monopolar plates made of copper foil, which
are integrated into a plastic frame to form half of a flexible pocket. When assem-
bled, these half-cells create a space between them, intended to house internal cell
components such as Porous Current Distributors (PCD) and the Catalyst Coated
Membrane (CCM). The entire cell assembly, shown in Figure 16, is subjected to
homogeneous compression by a pressurized hydraulic medium surrounding the cell.
The cell frame, made of an electrically insulating plastic material known as Polyether
Ether Ketone (PEEK), is designed to withstand all process media and operating con-
ditions. Additionally, process media transport channels are integrated into each of
the four sides of the frame, connecting two opposing channels to the inner space for
the media inlet and outlet via smaller channels evenly distributed along the sides of
the active area.

Thanks to this system, which is shown in Figure 17, it is possible to carry on
tests with various stacks that differed in the number of cells and dimensions, yielding
significant results.

Figure 16: Two half cells consisting of plastic cell frames with integrated media
channels comprising a monopolar plate[51]
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Figure 17: Modular PEM stack where the number of cells per stack can be easily
varied [51]
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This configuration allowed for the recording of the polarization curves shown in
figure 19, and the tests were conducted as follows: a six-cell PEM electrolysis stack
(see Figure 18) was set up in a pressure vessel for this investigation, which sealed
the reactor against the environment up to 120 bar. It was successfully demonstrated
that subsequent operation was possible up to a pressure level of 100 bar (hydrogen
and oxygen).

Documenting the polarization curve is a crucial step in assessing an electrolysis
stack’s performance. The integrated power electronics, which can provide direct
current up to 2800 A at a maximum of 16 V, were used for this purpose.

The ”constant current” mode was used to record the polarization curve. The
experiment involved increasing the current step-by-step until a current density of 1
A/cm2 was achieved. To obtain more accurate information about the voltages in
the stack, the resulting stack voltage was measured at the inverter’s terminals.

The polarization curves at hydrogen outlet pressures of 10 bar, 20 bar, 40 bar,
60 bar, and 100 bar are displayed in Figure 19. The curves were recorded between
40 and 50C, which is considered a moderate temperature.

Table 4 lists a detailed description of all the setup data.

Figure 18: Photograph of a prototype electrolyzer stack based on hydraulic com-
pression [63]
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Figure 19: Polarization curves of a prototype PEM electrolysis stack based on hy-
draulic compression at various gas pressures [63]

Table 4: Variable pressure cell’s setup

Parameter Description

Number of cells, Nc 6
Active area [cm2] 210
Pole plate anode Au coated Cu
PTL anode Titanium compound
Catalyst anode Ir/IrOx
Membrane Nafion 115
Catalyst cathode Pt/C
PTL cathode Carbon Paper
Pole plate cathode Au coated Cu
Temperature 40 °C - 50 °C
Pressure varying
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6.2 Variable temperature and fixed pressure setup

The setup for this investigation, largely presented in Rost et al. [64] work, can be
summed up as follows. The test cell was engineered based on research related to
PEM fuel cell test systems with hydraulic single-cell compression, ensuring homo-
geneous current density distribution. A hydraulic medium (water or oil) surrounds
the active cell components for temperature control, resulting in uniform tempera-
ture distribution. This principle was adapted for PEM water electrolysis, creating
a single-cell test system for operation up to 80°C and 6.0 A/cm², with a maximum
area of 25 cm2 (150 A).

The PEM test system allows easy exchange of active cell components: Pole
Plates (PPs), anodic Porous Transport Layers (PTLs), cathodic Gas Diffusion Lay-
ers (GDLs), and Catalyst Coated Membranes (CCMs). These components fit into a
frame made of Polyether Ether Ketone (PEEK), chosen for its resistance to process
water and gases. An integrated channel and gasket system guides process media
and prevents leakage.

The test cell, loosely assembled initially, is inserted into a flexible Polyurethane
(PU) pocket, and integrated into a pressure housing filled with silicone oil. Increas-
ing hydraulic pressure compresses the cell uniformly. The housing, designed for up
to 10 bar, includes a heat exchanger for precise temperature and pressure control,
enabling reproducible conditions and flexibility in material testing.

An image of this setup is presented in figure 20.
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Figure 20: Photograph of the polymer electrolyte membrane water electrolyzer
(PEM) test system [64]

With the help of this configuration, the polarization curves for a five-cell stack
of 25 cm2 each (see Figure 21) could be recorded. The tests were conducted in
this manner: after the initial run-in procedure, which involved continuously loading
the stack with 25 A for an hour, the test stack was subjected to defined steps of
the current application, ranging from 0.0 to 50 A (equivalent to 2.0 A/cm2) for 60
seconds each, before being gradually reduced by the protocol. The voltages of each
test cell were measured and recorded simultaneously.

Polarization curves were also measured in additional experimental runs at various
temperatures (40C, 50C, 60C, and 70C) while maintaining the process water flow.
The resulting curves are shown in Figure 21.
Finally, table 5 shows a detailed description of the cells’ parameters.
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Figure 21: Experimental polarization curves for variable temperature setup [64]

Table 5: Variable temperature cell’s setup

Parameter Description

Number of cells, Nc 5
Active area [cm2] 25
Pole plate anode Coated Titanium sheet
PTL anode Titanium compound
Catalyst anode Ir/IrOx
Membrane Nafion 115
Catalyst cathode Pt/C
PTL cathode Carbon Paper
Pole plate cathode Coated Titanium sheet
Temperature varying
Pressure ambient
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7 Results and comments

This section presents the comparison between the numerical results obtained through
the model described in Section 5 and the experimental ones obtained from the elec-
trolytic cell setup reported in Section 6. The main aim is to validate the mathe-
matical model (see the entire code in the Appendix) to make it more accurate and
reliable.

The comparison between numerical and experimental data is crucial for assessing
the effectiveness of the model as a predictive tool in real-world testing, which is
particularly significant in the context of hydrogen production as already discussed
in Section 3.

Furthermore, this evaluation not only highlights the strengths and limitations
of the current model but also provides valuable insights into possible improvements
and refinements necessary for future applications of the model. The results of this
comparison will lead to more accurate and efficient electrolytic cell designs in the
ongoing efforts toward sustainable hydrogen production.

7.1 Variable pressure and fixed temperature

Firstly, the mathematical model has been used to predict the behavior of the elec-
trolytic cell at different pressures while maintaining a constant temperature (see the
code in the Appendix ”Pressure Adaptation”).

By keeping the temperature constant, the effects of pressure changes are isolated,
thus allowing for a more precise analysis of its impacts on the cell’s electrochemical
processes.

Results from the setup presented in Section 6 are fundamental for validating the
robustness and adaptability of the model at different pressure conditions, being a
critical factor for designing scalable and flexible hydrogen production systems. The
kinetic parameters (table 3) of the model are initially estimated through a fitting
process using experimental data obtained at specific operating conditions, namely
at a pressure of 10 bar and a temperature of 40°C.

The model provides several parameter combinations that allow for the minimiza-
tion of the error between the model and the experimental data during the optimiza-
tion process because of the use of Python. The algorithm found the combination
of numerical values of the parameters that gave the lowest RMSE, and these values
(table 6) are used in the following calculations.

This approach allowed to establish a reliable baseline for the model’s parame-
ters, as presented in Figure 22 and table 6 that are critical for performing accurate
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simulations and predictions with other operating conditions.

Figure 22: Model fitting @40°C and 10 bar

Table 6: Baseline kinetic parameters at 40°C and 10 bar
Parameter Value
RMSE 0.0069
Alpha anode (αanode) 0.952
Alpha cathode (αcathode) 0.510
Reference anode exchange current (i0,ref,a) 0.749
Reference cathode exchange current (i0,ref,c) 0.755
Activation energy anode (Eaa) [J/mol] 7067.56
Activation energy cathode (Eac) [J/mol] 5120.99
Protonic energy (Epro) [J/mol] 98.64
Reference conductivity (σref) 0.0020
Exponent pO2

(a) 0.25
Exponent pH2O (b) 0.44
Exponent pH2

(c) 1.00
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Table 7 provides a detailed comparison between the model and the experimental
results obtained at a fixed pressure of 10 bar and temperature of 40C along with
respective relative percentage error defined as Eq. 18

relative error =

∣

∣

∣

∣

experimental voltage−model voltage

experimental voltage

∣

∣

∣

∣

× 100 [%] (18)

Table 7: Comparison of model and experimental voltage values with respective
relative percentage errors

Index Model voltage
(V)

Experimental
voltage (V)

Relative error
(%)

1 1.591 1.600 0.541
2 1.604 1.608 0.229
3 1.668 1.661 0.409
4 1.724 1.713 0.609
5 1.766 1.756 0.550
6 1.806 1.801 0.288
7 1.848 1.844 0.229
8 1.921 1.921 0.004
9 1.965 1.971 0.294
10 2.022 2.030 0.421
11 2.058 2.065 0.348
12 2.093 2.101 0.403
13 2.151 2.161 0.434
14 2.193 2.197 0.214
15 2.193 2.198 0.216
16 2.226 2.227 0.076
17 2.266 2.265 0.070
18 2.322 2.315 0.281
19 2.327 2.319 0.357
20 2.354 2.344 0.437
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7.2 Higher pressure values

The application of the developed model to predict the behavior of the PEM elec-
trolyzer at significantly higher pressures of 60 and 100 bar, while using the exponents
determined at a baseline pressure of 10 bar, has revealed substantial discrepancies
between the model and the experimental data. As shown in Figures 23 and 24),
the voltage predicted by the model does not align well with the observed values at
higher pressures.

These discrepancies, clearly listed in Tables 8 and 9, are primarily attributed
to the model’s reliance on kinetic exponents that are optimized at lower pressure.
Knowing that the reaction kinetics can significantly change at different pressure
regimes, the assumption that exponents remain constant across different pressure
values may lead to inaccurate predictions.

Figure 23: Comparison between the model and experimental polarization curve
without exponents optimization @60 bar and 40°C
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Figure 24: Comparison between the model and experimental polarization curve
without exponents optimization @100 bar and 40°C

Table 8: Comparison of model predictions and experimental data at 60 bar with
respective relative percentage errors

Index Model voltage
(V)

Experimental
voltage (V)

Relative error
(%)

1 1.622 1.663 2.514
2 1.810 1.855 2.396
3 1.879 1.928 2.513
4 1.919 1.973 2.728
5 1.958 2.017 2.928
6 1.990 2.050 2.940
7 2.031 2.093 2.955
8 2.062 2.124 2.912
9 2.113 2.177 2.935
10 2.141 2.203 2.820
11 2.187 2.245 2.592
12 2.223 2.280 2.531
13 2.253 2.299 2.019
14 2.293 2.327 1.456
15 2.319 2.349 1.257
16 2.352 2.376 1.002

60



Table 9: Comparison of model predictions and experimental data at 100 bar with
respective relative percentage errors

Index Model voltage
(V)

Experimental
voltage (V)

Relative error
(%)

1 1.587 1.663 4.593
2 1.646 1.716 4.055
3 1.696 1.772 4.279
4 1.752 1.833 4.421
5 1.786 1.875 4.764
6 1.829 1.925 4.997
7 1.867 1.971 5.262
8 1.906 2.014 5.355
9 1.942 2.056 5.564
10 1.975 2.096 5.771
11 2.010 2.136 5.889
12 2.043 2.174 6.013
13 2.078 2.213 6.124
14 2.109 2.247 6.142
15 2.142 2.283 6.198
16 2.176 2.317 6.110
17 2.206 2.350 6.122
18 2.241 2.382 5.912
19 2.279 2.418 5.766
20 2.311 2.447 5.544
21 2.378 2.508 5.169

The deviations underscore the need for a second phase of model fitting focused
specifically on optimizing the kinetic exponents for higher pressure conditions. By
re-adjusting these exponents, the model’s accuracy increases and thereby reduces
the gap between the numerical and experimental values. This optimization process
is crucial not only for improving the model’s predictive capabilities but also for ex-
tending its applicability to a wider range of operating conditions.

In the optimization phase, the minimization of the Root Mean Square Error
(RMSE) between the numerical and experimental data is obtained by adjusting
the pressure dependency exponents in the model which influence the predicted cell
voltages at different operating conditions. The objective function, which is defined to
compute the RMSE, guided the optimization process using the experimental voltage
values as a reference.

To optimize the exponents, a numerical optimization technique using the L-
BFGS-B algorithm is employed, which is a well-suited method for problems with
bound constraints as reported in the Appendix ”Pressure Adaptation”, namely in
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module 1. This approach allowed for fine-tuning the exponents within a predefined
range, ensuring realistic and physically plausible model adjustments. The specific
details of the Python script used for this optimization, including the implementation
of the objective function and the optimization routine, are detailed in the Appendix
”Pressure Adaptation”.

7.3 Optimization results

Following the optimization of the kinetic exponents as detailed in the Appendix
”Pressure Adaptation”, significant improvements are observed in the model’s accu-
racy. The subsequent sections present both a qualitative and a quantitative analysis
of these enhancements, highlighting the reduced discrepancies between the model
and the experimental results.

As shown in Figures 25 and 26, the optimized model demonstrates a remarkable
improvement in predicting the voltage across different operating conditions, which
confirms the effectiveness of the parameter adjustments made in the optimization
process.

Figure 25: Comparison between the model and experimental polarization curve with
exponents optimization @60bar and 40°C
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Figure 26: Comparison between the model and experimental polarization curve with
exponents optimization @100bar and 40°C

Tables 10 and 11 report the effectiveness of optimizing the kinetic exponents in
our model. By adjusting these exponents, the prediction capability of the model in-
creased further. Tables compare the optimized model data against the experimental
values, showing both the initial and optimized percentage errors. The remarkable re-
duction of the errors highlights the success of the optimization process in enhancing
the model’s accuracy.
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Table 10: Comparison of model predictions and experimental data at 60 bar with
respective relative percentage errors

Index Optimized
model
voltage
(V)

Experimental
voltage (V)

Relative
error %

(with opti-
mization)

Relative
error %
(without
optimiza-

tion)
1 1.672 1.663 0.52 2.51
2 1.861 1.855 0.32 2.40
3 1.930 1.928 0.10 2.51
4 1.970 1.973 0.17 2.73
5 2.008 2.017 0.43 2.93
6 2.041 2.050 0.48 2.94
7 2.082 2.093 0.55 2.96
8 2.112 2.124 0.54 2.91
9 2.163 2.177 0.62 2.94
10 2.192 2.203 0.53 2.82
11 2.237 2.245 0.34 2.59
12 2.273 2.280 0.32 2.53
13 2.303 2.299 0.18 2.02
14 2.343 2.327 0.71 1.46
15 2.370 2.349 0.89 1.26
16 2.402 2.376 1.12 1.00
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Table 11: Comparison of model predictions and experimental data at 100 bar with
respective relative percentage errors

Index Optimized
model
voltage
(V)

Experimental
voltage (V)

Relative
error %

(with opti-
mization)

Relative
error %
(without
optimiza-

tion)
1 1.729 1.663 3.95 4.59
2 1.788 1.716 4.23 4.05
3 1.839 1.772 3.74 4.28
4 1.894 1.833 3.33 4.42
5 1.928 1.875 2.81 4.76
6 1.971 1.925 2.39 5.00
7 2.009 1.971 1.95 5.26
8 2.048 2.014 1.70 5.35
9 2.084 2.056 1.35 5.56
10 2.118 2.096 1.01 5.77
11 2.152 2.136 0.76 5.89
12 2.185 2.174 0.53 6.01
13 2.220 2.213 0.30 6.12
14 2.251 2.247 0.18 6.14
15 2.284 2.283 0.03 6.20
16 2.318 2.317 0.02 6.11
17 2.348 2.350 0.07 6.12
18 2.383 2.382 0.05 5.91
19 2.421 2.418 0.11 5.77
20 2.454 2.447 0.26 5.54
21 2.520 2.508 0.50 5.17

By extending this technique to data at pressures of 20 and 40 bar, it is possible
to obtain through the model the polarization curves at various pressures. With a
small RMSE value for each curve, as listed in Table 12, the modelled curves fit the
experimental data well as shown in Figure 27.
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Figure 27: Comparison between the model and experimental polarization curve at
different pressure values and 40°C

Table 12: RMSE values for different pressure levels used in experimental tests
Pressure RMSE
10 bar 0.0069
20 bar 0.0139
40 bar 0.0113
60 bar 0.0123
100 bar 0.0359

Throughout the optimization process explained in this section, the kinetic expo-
nents are adjusted to minimize the error between the numerical and experimental
data. The results of this optimization provided valuable insights into how these
exponents vary with increasing pressure levels. These data are crucial for enhanc-
ing the model’s adaptability and precision across different operating conditions. To
effectively illustrate these variations, Table 13 presents the optimized values of the
exponents at different pressures. These findings are essential for documenting the
model’s behaviour under different conditions. A graphical representation is displayed
in Figure 28.
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Figure 28: Optimized exponents at different pressures

Table 13: Optimized exponents values at different pressures
Pressure Exponent a Exponent b Exponent c
20 bar 0.8079 0.4794 2.0417
40 bar 0.4910 0.5910 1.4499
60 bar 0.3091 0.6277 1.1103
100 bar 0.2689 0.8274 1.0352
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The model’s robustness and dependability have been demonstrated by the signif-
icant improvement in its ability to correctly predict the experimental data brought
about by the optimization of kinetic exponents across different pressure levels. The
model fits the tested conditions well, capturing the dynamics of the system at pres-
sures up to 100 bar according to the results of these adjustments.

In the future, more experimental data at even higher pressures will be required
to verify and further improve the model. More research will be essential to guaran-
tee that the model can work dependably in harsher environments by increasing its
applicability and practicality in real-world situations.

An electrolyzer’s activation losses can be efficiently decreased by raising the pres-
sure inside (see equations 15 and 16). This decrease is important because improved
reaction kinetics and greater gas diffusion are made possible by increased pressure,
which results in more effective operation. The activation energy needed for the
electrochemical reactions drops with increasing pressure, which lowers overall en-
ergy losses. Because operating at greater pressures can considerably increase the
efficiency of hydrogen production, this connection is essential for maximizing the
performance of electrolyzers.

However, while the pressure rises, the exponents a and c decrease (see table 13):
this brings to light a diminishing return on the benefits of increasing pressure. The
initial increase in pressure has a substantial impact on reducing losses, but as the
pressure continues to rise, the incremental benefit becomes smaller. This non-linear
behavior suggests that the effectiveness of each subsequent increase in pressure di-
minishes progressively.

The analysis of losses in an electrolyzer, using a Python model with a fitting
algorithm, further supports this observation. The results indicate that while higher
pressure reduces activation losses, the decreasing exponents imply a progressively
less significant impact on loss reduction with continued pressure increases.

This result is crucial for optimizing the efficiency of electrolyzers because it
emphasizes the necessity of weighing the advantages of increased pressure against
diminishing returns, potential expenses, and technical difficulties related to oper-
ating at extremely high pressures. By building more effective electrolyzer systems
that can function well under a variety of pressures, the efficiency and viability of hy-
drogen generation technologies are eventually increased. This relationship is made
easier by an understanding of this relationship. It is feasible to create a hydrogen
generation process that is more economical and sustainable by carefully controlling
operational pressures.
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7.4 Variable temperature and fixed pressure

Following the analysis of variable pressure conditions, the mathematical model has
also been applied to explore the behaviour of the PEM electrolyzer at variable tem-
peratures while keeping the ambient pressure. This investigation focuses on how
temperature fluctuations affect the electrochemical processes within the cell by pro-
viding interesting insights into the dynamics of hydrogen production.

By fixing the pressure at the atmospheric level, the effects of the temperature
variations allow to get a detailed examination of their impacts on the efficiency and
stability of the electrolytic process. The findings from this study are essential for
assessing the temperature sensitivity of the cell, which is crucial for optimizing op-
erational strategies.

Since alpha values are the only parameters that depend on the temperature,
they are the main subject of this discussion as explained in Section 4. Follow-
ing the findings of Bove et al. [53], which were previously discussed in Section 5,
the proposed model has been modified by neglecting the reference current density
correction. To achieve this, the pressure ratio exponents have been set equal to zero.

The kinetic parameters for this model setup are initially estimated through a
fitting process using experimental data obtained at specific operating conditions,
specifically at an ambient pressure of 1 bar and a temperature of 40C. The param-
eter combination is executed to have the lowest RMSE as described in Section 7.1.

This method provides a solid foundation for the model’s parameters as shown
in Figure 29 and Table 14, thus facilitating the achievement of accurate simulations
and predictions with new variable conditions.
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Figure 29: Model fitting @40°C and 1 bar

Table 14: Baseline kinetic parameters at 40°C and 1 bar
Parameter Value
RMSE 0.0214
Alpha anode (αanode) 0.800
Alpha cathode (αcathode) 0.300
Reference anode exchange current (i0,ref,a) 0.020
Reference cathode exchange current (i0,ref,c) 0.225
Activation energy anode (Eaa) [J/mol] 38723.72
Activation energy cathode (Eac) [J/mol] 4589.81
Protonic energy (Epro) [J/mol] 3049.91
Reference conductivity (σref) 0.0070
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7.5 Higher temperatures and optimization results

In the next phase of this study, while keeping all the parameters fixed except those
related to alpha, the temperature is incrementally raised to 50°C, 60°C, and 70°C.
This approach is fundamental to isolate the impact of temperature on the alpha
coefficients, which play a critical role in the model’s ability to accurately replicate
the electrochemical processes under varying thermal conditions.

To align the model predictions more closely with the experimental data at higher
temperatures, a curve fitting technique is used specifically focusing on optimizing
the alpha values as reported in the Appendix ”Temperature Adaptation” in module
1. This methodological choice is driven by the need to understand and quantify how
these key parameters adapt to changes in temperature, ensuring that the model
remains still robust and predictive across different scenarios.

Results of these optimizations are shown in the following figures, which depict
the adjusted alpha values and their effectiveness in reducing the discrepancies be-
tween the model and experimental results. This enhanced model, with temperature-
specific alpha values, provides a more accurate and reliable tool for predicting the
performance of the PEM electrolyzer at different temperature conditions.

Figure 33 represent the variation of alpha with the temperature.
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Figure 30: Comparison between the model and experimental polarization curve with
alpha optimization @50°C and 1 bar

Table 15: RMSE and optimized alpha values at 50°C
Parameter Value
RMSE 0.0129
Alpha anode (αanode) 0.800
Alpha cathode (αcathode) 0.543
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Figure 31: Comparison between the model and experimental polarization curve with
alpha optimization @60°C and 1 bar

Table 16: RMSE and optimized alpha values at 60°C
Parameter Value
RMSE 0.0079
Alpha anode (αanode) 0.800
Alpha cathode (αcathode) 0.900
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Figure 32: Comparison between the model and experimental polarization curves
with alpha optimization @70°C and 1 bar

Table 17: RMSE and optimized alpha values at 70°C
Parameter Value
RMSE 0.0103
Alpha anode (αanode) 1.000
Alpha cathode (αcathode) 1.000
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Figure 33: Alpha’s values at different temperatures

Summing up, the developed model has demonstrated excellent agreement with
the experimental data provided. The polarization curves at different temperatures,
which are shown in Figure 34, clearly depict how well the optimized model fits the
experimental data. This fitting procedure does not only validate the model’s ro-
bustness but also its reliability in simulating the electrochemical processes of the
electrolytic cell at different temperature conditions.

Working with this workflow has allowed to minimize the difference between the
the model and experimental data by using empirically derived alpha values. Given
the lack of specific scientific literature relations for the variation of alpha with tem-
perature, such as the correlation presented in Section 4, the empirical approach is
indispensable. By systematically adjusting the alpha values based on the fitting
process, the model is effectively tailored to resemble the behaviour observed in ex-
periments.

This methodology not only underscores the adaptability of the developed model
to different operating conditions but also highlights the potential for further refine-
ment and application in other similar systems where temperature plays a crucial
role in system performance.
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Figure 34: Comparison between the model and experimental polarization curve with
alpha optimization

There are several reasons why the charge transfer coefficient values at the anode
and cathode increase as the temperature rises (see Tables 15, 16 and 17). First of
all, the higher temperature promotes ion mobility in the electrolyte material of the
PEM cell, allowing for quicker ion transport to the electrodes.
Consequently, this quickens the pace at which charges are transferred across the
electrode/electrolyte contact, raising the charge transfer coefficient. Higher temper-
atures also encourage quicker electrode reactions, which speed up the exchange of
electrons between the electrode and electrolyte ions.

Moreover, better electrical contact is fostered by improved electrode/electrolyte
interface conformation at higher temperatures, which allows for increased ion trans-
fer rates and, in turn, raises the charge transfer coefficient. This phenomenon is
consistent with observations made in the literature. In different publications, such
as in Niroula et al. [57], a positively associated linear relationship has been estab-
lished between temperature and charge transfer coefficient (see figure 33).

While creating an accurate quantitative relationship between charge transfer
coefficient and temperature proves problematic for the model, the continual increase
in these values highlights the role of temperature in impacting cell performance.
Based on the experimental data collected, further analysis can disclose an exact
relationship customized for the particular cell being studied.

76



Conclusions

Reducing greenhouse gas emissions to combat climate change and achieve sustain-
ability is an important challenge. This entails switching to cleaner technologies and
renewable energy sources instead of fossil fuels. In this shift, green hydrogen—which
is created with renewable energy sources like solar and wind—is essential.

The use of green hydrogen has the potential to greatly lower the carbon footprint
of industries like heavy industry and long-distance transportation that are difficult
to electrify. It also ensures a steady supply by acting as a storage medium for excess
renewable energy. Achieving a carbon-neutral economy and a sustainable future
requires green hydrogen.

This study reports the insights of a numerical model developed in Python to re-
semble the performance of a PEM electrolyzer operating at different operating con-
ditions in terms of both pressure and temperature. The model has been thoroughly
validated with experimental data provided by Westfälische Hochschule (Section 6),
showing excellent agreement and thereby proving its accuracy and reliability in sim-
ulating real-world operational scenarios (see Figures 27 and 34).

The flexibility of the developed model under investigation allows for a poten-
tial extension to higher pressures operation (see Section 7.1) and temperatures (see
Section 7.4) beyond those specifically analyzed within this work. Such an extension
remains feasible within reasonable proximity to the conditions already examined,
suggesting that the model can be effectively scaled up to meet more demanding
operational settings.

Furthermore, the benefits of letting electrolyzers operate at a pressure higher
than the atmospheric one and high temperatures are considerable. Indeed, higher
temperatures can lead to a reduction in electrical consumption, primarily due to the
lowering of the OCV (see Eq. 14). Similarly, high pressure operation can drastically
lower the system’s overall energy consumption by possibly eliminating, or signifi-
cantly reducing, the need for a subsequent hydrogen compression stage, although it
is difficult to predict in advance whether the electrolyzer’s energy consumption will
increase as a result of an increase in the OCV (see Eq. 13) or decrease as a result
of a decrease in activation losses (see Eqs. 15 and 16).

Generally, the need for external hydrogen compression can be reduced or deleted
in low pressure applications like methane blending by incorporating such condi-
tions into the system design. This increases also the efficiency and the financial
sustainability of hydrogen production technologies in applications that require high
pressures like hydrogen fuel for cars and trucks with 700 and 350 bar, respectively
[65].

In conclusion, the results of this work not only demonstrate the effectiveness
of the developed model but also highlight its applicability for future enhancements
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and broader implementation. The gained insights lay a solid foundation for ongoing
advancements in the field of electrolytic hydrogen production, steering towards more
sustainable and efficient energy solutions.
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Appendix

Pressure adaptation

Module 1:

"""Pressure adaptation model"""

import numpy as np

from scipy.optimize import curve_fit

import pandas as pd

import matplotlib.pyplot as plt

from exponents_optimization import optimize_exponents

from v_prediction_pressure import V_predicted_pressure

#data import:

df = pd.read_csv(’pressure_data/ui_10_norm.csv’, sep=’\s+’,\

header=None).iloc[::3, :]

x_10 = df[1].iloc[::-1].reset_index(drop=True).loc[1:] \

# Current density

x_10 = pd.to_numeric(x_10)

y = df[0].iloc[::-1].reset_index(drop=True).loc[1:] \

# Voltage

y = pd.to_numeric(y)

temperature = 50

pressure = 10

def fo(x, alphaanode, alphacathode, i0refa, i0refc, Eaa,\

Eac, Epro, sigmaref, exponent_pO2, exponent_pH2O, exponent_pH2):

# Constants

R = 8.314 # Gas constant (J/mol*K)

F = 96485 # Faraday constant (C/mol)

n = 2 # Number of electrons involved in the \

#electrochemical reaction

# Temperature and pressure conversion

T = temperature + 273.15 # Cell temperature (K)

Pa = pressure * 100000 # Pressure on the anode side (Pa)

Pc = pressure * 100000 # Pressure on the cathode side (Pa)

TH2O = temperature # Water temperature

deltha = 0.00127 # Nafion 115 membrane thickness (cm)

Tref = T # Reference temperature

Pref = pressure * 100000 # Reference pressure
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# Antoine equation for water pressure

Aant = 5.20389

Bant = 1733.926

Cant = 39.485

pH2O = (np.exp(Aant - (Bant / (TH2O + Cant)))) * 1000

# Partial pressures

pO2 = Pa - pH2O # Partial pressure of oxygen (Pa)

pH2 = Pc - pH2O # Partial pressure of hydrogen (Pa)

# Open circuit voltage (OCV)

Erev = 1.229 - (0.9 * 10**-3 * (T - 298))

# Reversible potential (V)

E = Erev + ((R * T) / (n * F)) * (np.log((pH2 * \

(pO2**0.5)) / pH2O))

# Overpotentials

anode_overpotential = ((R * T) / (n * F * alphaanode)) \

* np.log(x / (i0refa *((pO2 / Pref)**exponent_pO2) * \

((pH2O / Pref)**exponent_pH2O)* np.exp((-Eaa / R) * \

((1 / T) - (1 / Tref)))))

cathode_overpotential = ((R * T) / (n * F * alphacathode))\

* np.log(x / (i0refc* ((pH2 / Pref)**exponent_pH2) * np.exp\

((-Eac / R) * ((1 / T) - (1 / Tref)))))

ohmic_loss = (deltha / (sigmaref * np.exp((-Epro / R) * \

((1 / Tref) - (1 / T))))) * x

return E + anode_overpotential + cathode_overpotential + \

ohmic_loss

initial_guess = [0.8,0.23,0.006058, 0.006058, 1000,1000,100,\

0.0075,0.25, 1, 1]

param_bounds=([0,0,0,0,1000,1000,100,0,0.25,0.25,0.25],[1,1,\

10**0,10**0,150000,150000,20000,0.02,4,4,4])

# alphaanode,alphacathode,i0refa, i0refc, Eaa,Eac,Epro,

#sigmaref,exponent_pO2,exponent_pH2O,exponent_pH2

#curve fitting:

popt, pcov = curve_fit(fo, x_10, y,p0=initial_guess,\

bounds=param_bounds)
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y_pred = fo(x_10, *popt)

V_10 = V_predicted_pressure(x_10,temperature,temperature,\

pressure,pressure,popt[0],popt[1],popt[2],popt[3],popt[4],\

popt[5],popt[6],popt[7],popt[8],popt[9],popt[10])

percentual_error = abs((y-y_pred)/y)*100

rmse_10 = np.sqrt(np.mean((y - V_10)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_10, y, label=’experimental data’)

plt.plot(x_10, V_10, color=’red’, label=’Model data’)

plt.title(’Comparison between model and experimental data \

@10 Bar’)

plt.xlabel(’Current Density [A/cm^2]’)

plt.ylabel(’Cell Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_10:.4f}\n’ \

f’alphaanode: {popt[0]:.3f}\n’ \

f’alphacatode: {popt[1]:.3f}\n’ \

f’i0refa: {popt[2]:.3f}\n’ \

f’i0refc: {popt[3]:.3f}\n’ \

f’Eaa: {popt[4]:.2f}\n’ \

f’Eac: {popt[5]:.2f}\n’ \

f’Epro: {popt[6]:.2f}\n’ \

f’sigmaref: {popt[7]:.4f}\n’\

f’exponent_pO2: {popt[8]:.2f}\n’\

f’exponent_pH2O: {popt[9]:.2f}\n’\

f’exponent_pH2: {popt[10]:.2f}’

plt.legend(loc=’lower right’, frameon=True, framealpha=1, \

shadow=True, borderpad=1)

plt.show()

print(legend_text)

# Experimental data 60 Bar:

df_60 = pd.read_csv(’pressure_data/ui_60_norm.csv’,\

sep=’\s+’, header=None).iloc[::3, :]

x_60 = df_60[1].iloc[::-1].reset_index(drop=True)
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x_60= pd.to_numeric(x_60)

y_60 = df_60[0].iloc[::-1].reset_index(drop=True)

y_60 = pd.to_numeric(y_60)

V_60 = V_predicted_pressure(x_60,temperature,temperature,\

pressure,60,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5],\

popt[6],popt[7],popt[8],popt[9],popt[10])

percentual_error_60 = abs((y_60-V_60)/y_60)*100

rmse_60 = np.sqrt(np.mean((y_60 - V_60)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_60, y_60, label=’experimental data’)

plt.plot(x_60, V_60, color=’red’, label=’Model data’)

plt.title(’Comparison between model and experimental data \

@60 Bar’)

plt.xlabel(’Current Density [A/cm^2]’)

plt.ylabel(’Cell Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_60:.4f}\n’ \

f’alphaanode: {popt[0]:.3f}\n’ \

f’alphacatode: {popt[1]:.3f}\n’ \

f’i0refa: {popt[2]:.3f}\n’ \

f’i0refc: {popt[3]:.3f}\n’ \

f’Eaa: {popt[4]:.2f}\n’ \

f’Eac: {popt[5]:.2f}\n’ \

f’Epro: {popt[6]:.2f}\n’ \

f’sigmaref: {popt[7]:.4f}\n’\

f’exponent_pO2: {popt[8]:.2f}\n’\

f’exponent_pH2O: {popt[9]:.2f}\n’\

f’exponent_pH2: {popt[10]:.2f}’

plt.legend(loc=’lower right’, frameon=True, framealpha=1,\

shadow=True, borderpad=1)

plt.show()

# Experimental data 100 Bar

df_100 = pd.read_csv(’pressure_data/ui_100_norm.csv’,\

sep=’\s+’, header=None).iloc[::3, :]
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x_100 = df_100[0].iloc[::-1].reset_index(drop=True)

x_100= pd.to_numeric(x_100).iloc[1:]

y_100 = df_100[1].iloc[::-1].reset_index(drop=True)

y_100 = pd.to_numeric(y_100).iloc[1:]

V_100 = V_predicted_pressure(x_100,temperature,temperature,\

pressure,100,popt[0],popt[1],popt[2],popt[3],popt[4],popt[5],\

popt[6],popt[7],popt[8],popt[9],popt[10])

percentual_error_100 = abs((y_100-V_100)/y_100)*100

rmse_100 = np.sqrt(np.mean((y_100 - V_100)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_100, y_100, label=’experimental data’)

plt.plot(x_100, V_100, color=’red’, label=’Model data’)

plt.title(’Comparison between model and experimental data\

@100 Bar’)

plt.xlabel(’Current Density [A/cm^2]’)

plt.ylabel(’Cell Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_100:.4f}\n’ \

f’alphaanode: {popt[0]:.3f}\n’ \

f’alphacatode: {popt[1]:.3f}\n’ \

f’i0refa: {popt[2]:.3f}\n’ \

f’i0refc: {popt[3]:.3f}\n’ \

f’Eaa: {popt[4]:.2f}\n’ \

f’Eac: {popt[5]:.2f}\n’ \

f’Epro: {popt[6]:.2f}\n’ \

f’sigmaref: {popt[7]:.4f}\n’\

f’exponent_pO2: {popt[8]:.2f}\n’\

f’exponent_pH2O: {popt[9]:.2f}\n’\

f’exponent_pH2: {popt[10]:.2f}’

plt.legend(loc=’lower right’, frameon=True, framealpha=1,\

shadow=True, borderpad=1)

plt.show()

# Experimental data 20 and 40 Bar:

df_20 = pd.read_csv(’pressure_data/ui_20_norm.csv’,\
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sep=’\s+’, header=None).iloc[::3, :]

x_20 = df_20[1].iloc[::-1].reset_index(drop=True)

x_20= pd.to_numeric(x_20).iloc[1:]

y_20 = df_20[0].iloc[::-1].reset_index(drop=True)

y_20 = pd.to_numeric(y_20).iloc[1:]

df_40 = pd.read_csv(’pressure_data/ui_40_norm.csv’,\

sep=’\s+’, header=None).iloc[::3, :]

x_40 = df_40[1].iloc[::-1].reset_index(drop=True)

x_40= pd.to_numeric(x_40).iloc[1:]

y_40 = df_40[0].iloc[::-1].reset_index(drop=True)

y_40 = pd.to_numeric(y_40).iloc[1:]

# exponents optimization:

exponents_20 = optimize_exponents(x_20,y_20,temperature,\

temperature,pressure,20,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7])

V_20_optimized = V_predicted_pressure(x_20,temperature,\

temperature,pressure,20,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7],exponents_20[0],exponents_20[1],\

exponents_20[2])

exponents_40 = optimize_exponents(x_40,y_40,temperature,\

temperature,pressure,40,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7])

V_40_optimized = V_predicted_pressure(x_40,temperature,\

temperature,pressure,40,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7],exponents_40[0],exponents_40[1],\

exponents_40[2])

exponents_60 = optimize_exponents(x_60,y_60,temperature,\

temperature,pressure,60,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7])

V_60_optimized = V_predicted_pressure(x_60,temperature,\

temperature,pressure,60,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7],exponents_60[0],exponents_60[1],\

exponents_60[2])

exponents_100 = optimize_exponents(x_100,y_100,temperature,\

temperature,pressure,100,popt[0],popt[1],popt[2],popt[3],\

popt[4],popt[5],popt[6],popt[7])

V_100_optimized = V_predicted_pressure(x_100,temperature,\

temperature,pressure,10,popt[0],popt[1],popt[2],popt[3],popt[4],\
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popt[5],popt[6],popt[7],exponents_100[0],exponents_100[1],\

exponents_100[2])

differenze = V_100_optimized-y_100

differenza_massima = differenze.abs().max()

indice_max = differenze.abs().idxmax()

valore_y_100 = y_100[indice_max]

differenza_percentuale = (differenza_massima / valore_y_100) * 100

rmse_60_optimized = np.sqrt(np.mean((y_60 - V_60_optimized)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_60, y_60, label=’experimental data’)

plt.plot(x_60, V_60_optimized, color=’red’, label=’Optimized\

model data’)

plt.title(’Comparison between model and experimental data \

with exponents correction @60 Bar’)

plt.xlabel(’Current Density [A/cm^2]’)

plt.ylabel(’Cell Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_60_optimized:.4f}\n’ \

f’exponent_pO2: {exponents_60[0]:.2f}\n’\

f’exponent_pH2O: {exponents_60[1]:.2f}\n’\

f’exponent_pH2: {exponents_60[2]:.2f}’

plt.plot([], [], ’ ’, label=legend_text)

plt.legend(loc=’lower right’, frameon=True, framealpha=1, \

shadow=True, borderpad=1)

plt.show()

rmse_100_optimized = np.sqrt(np.mean((y_100 - V_100_optimized)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_100, y_100, label=’experimental data’)

plt.plot(x_100, V_100_optimized, color=’red’, label=’Optimized\

model data’)

plt.title(’Comparison between model and experimental data with\

exponents correction @100 Bar’)

plt.xlabel(’Current Density [A/cm^2]’)

plt.ylabel(’Cell Voltage [V]’)

plt.grid(True)

85



legend_text = f’RMSE: {rmse_100_optimized:.4f}\n’ \

f’exponent_pO2: {exponents_100[0]:.2f}\n’\

f’exponent_pH2O: {exponents_100[1]:.2f}\n’\

f’exponent_pH2: {exponents_100[2]:.2f}’

plt.plot([], [], ’ ’, label=legend_text)

plt.legend(loc=’lower right’, frameon=True, framealpha=1, \

shadow=True, borderpad=1)

plt.show()

percentual_error_60_optimized = abs((y_60-V_60_optimized)\

/y_60)*100

percentual_error_100_optimized = abs((y_100-V_100_optimized)\

/y_100)*100

print(f"Maximum different between data and model: \

{differenza_massima:.3f} [V] ({differenza_percentuale:.1f}%)")

rmse_10 = np.sqrt(np.mean((y - V_10)**2))

rmse_20 = np.sqrt(np.mean((y_20 - V_20_optimized)**2))

rmse_40 = np.sqrt(np.mean((y_40 - V_40_optimized)**2))

rmse_60 = np.sqrt(np.mean((y_60 - V_60_optimized)**2))

rmse_100 = np.sqrt(np.mean((y_100 - V_100_optimized)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_10, y, color=’red’, label=’Experimental Data \

10 bar’)

plt.scatter(x_20, y_20, color=’y’, label=’Experimental Data \

20 bar’)

plt.scatter(x_40, y_40, color=’green’, label=’Experimental\

Data 40 bar’)

plt.scatter(x_60, y_60, color=’b’, label=’Experimental\

Data 60 bar’)

plt.scatter(x_100, y_100, color=’black’, label=’Experimental\

Data 100 bar’)

plt.plot(x_10, V_10, color=’red’, label=’Optimized Model 10\

bar’)

plt.plot(x_20, V_20_optimized, color=’y’, label=’Optimized \

Model 20 bar’)

plt.plot(x_40, V_40_optimized, color=’green’, label=’Optimized\

Model 40 bar’)

plt.plot(x_60, V_60_optimized, color=’b’, label=’Optimized \

Model 60 bar’)

plt.plot(x_100, V_100_optimized, color=’black’, label=’Optimized\
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Model 100 bar’)

plt.title(’Comparison between Experimental Data and \

Optimized Model’)

plt.xlabel(’Current Density [A/cm^2]’)

plt.ylabel(’Cell Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE 10 bar: {rmse_10:.4f}\n’ \

f’RMSE 20 bar: {rmse_20:.4f}\n’ \

f’RMSE 40 bar: {rmse_40:.4f}\n’ \

f’RMSE 60 bar: {rmse_60:.4f}\n’ \

f’RMSE 100 bar: {rmse_100:.4f}’

plt.legend(loc=’lower right’, frameon=True, framealpha=1,\

shadow=True, borderpad=1)

plt.show()

print(legend_text)

pressures = [20,40, 60, 100]

exponents_at_10 = [popt[8],popt[9],popt[10]]

exponents_at_20 = [exponents_20[0],exponents_20[1],\

exponents_20[2]]

exponents_at_40 = [exponents_40[0],exponents_40[1],\

exponents_40[2]]

exponents_at_60 = [exponents_60[0],exponents_60[1],\

exponents_60[2]]

exponents_at_100 = [exponents_100[0],exponents_100[1],\

exponents_100[2]]

exponents = np.array([

[exponents_at_20[0], exponents_at_20[1],\

exponents_at_20[2]],

[exponents_at_40[0], exponents_at_40[1], \

exponents_at_40[2]],

[exponents_at_60[0], exponents_at_60[1],\

exponents_at_60[2]],

[exponents_at_100[0], exponents_at_100[1],\

exponents_at_100[2]]

])

labels = [’exponent_pO2(a)’, ’exponent_pH2O(b)’, \

’exponent_pH2(c)’]

plt.figure(figsize=(10, 6))
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for i in range(len(labels)):

plt.plot(pressures, exponents[:, i], \

label=labels[i], marker=’o’)

plt.title(’Exponents values at different pressure values’)

plt.xlabel(’Pressure (bar)’)

plt.ylabel(’Exponents values’)

plt.legend()

plt.grid(True)

plt.show()
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Module 2:

"""exponents optimization script"""

import numpy as np

from scipy.optimize import minimize

from v_prediction_pressure import V_predicted_pressure

def optimize_exponents(currents, voltages, T_ref, \

temperature, P_ref, pressure,alphaanode, alphacathode,\

i0refa, i0refc, Eaa, Eac, Epro, sigmaref):

def objective_function(exponents):

exponent_pO2, exponent_pH2O, exponent_pH2 = exponents

predicted_voltages = []

for current in currents:

voltage = V_predicted_pressure(current, T_ref,\

temperature, P_ref, pressure,alphaanode, alphacathode, i0refa,\

i0refc, Eaa, Eac, Epro, sigmaref, exponent_pO2, exponent_pH2O, \

exponent_pH2)

predicted_voltages.append(voltage)

rmse = np.sqrt(np.mean((predicted_voltages - voltages)\

**2))

return rmse

initial_exponents = [0.25, 1, 1]

result = minimize(objective_function, initial_exponents,\

method=’L-BFGS-B’, bounds=[(0.25, 4), (0.25, 4), (0.25, 4)])

return result.x
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Module 3:

"""Calculation of polarization curve given\

kinetics parameters"""

import numpy as np

def V_predicted_pressure(x, T_ref, temperature,\

P_ref, pressure, alphaanode, alphacathode, i0refa,\

i0refc, Eaa, Eac, Epro, sigmaref, exponent_pO2, \

exponent_pH2O, exponent_pH2):

# Constants

R = 8.314 # Gas constant (J/mol*K)

F = 96485 # Faraday constant (C/mol)

n = 2 # Number of electrons involved in

#the electrochemical reaction

# Temperature and pressure conversion

T = temperature + 273.15 # Cell temperature (K)

Pa = pressure * 100000 # Pressure on the anode side (Pa)

Pc = pressure * 100000 # Pressure on the cathode side (Pa)

TH2O = temperature # Temperature of the water

# Material and reaction parameters

deltha = 0.00127 # Nafion 115 membrane thickness (cm)

Tref = T_ref + 273.15 # Reference temperature

Pref = P_ref * 100000 # Reference pressure

# Antoine equation for water pressure

Aant = 5.20389

Bant = 1733.926

Cant = 39.485

pH2O = (np.exp(Aant - (Bant / (TH2O + Cant)))) * 1000

# Partial pressures

pO2 = Pa - pH2O # Partial pressure of oxygen (Pa)

pH2 = Pc - pH2O # Partial pressure of hydrogen (Pa)

# Open circuit voltage (OCV)

Erev = 1.229 - (0.9 * 10**-3 * (T - 298))

# Reversible potential (V)

E = Erev + ((R * T) / (n * F)) * (np.log((pH2 *\

(pO2**0.5)) / pH2O))

# Overpotentials

anode_overpotential = ((R * T) / (n * F * alphaanode))\

* np.log(x / (i0refa *((pO2 / Pref)**exponent_pO2) * \

((pH2O / Pref)**exponent_pH2O)* np.exp((-Eaa / R) *\

90



((1 / T) - (1 / Tref)))))

cathode_overpotential = ((R * T) / (n * F * alphacathode)) \

* np.log(x / (i0refc* ((pH2 / Pref)**exponent_pH2) *\

np.exp((-Eac / R) * ((1 / T) - (1 / Tref)))))

ohmic_loss = (deltha / (sigmaref * np.exp((-Epro / R)\

* ((1 / Tref) - (1 / T))))) * x

return E + anode_overpotential + cathode_overpotential \

+ ohmic_loss
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Temperature adaptation

Module 1:

"""Temperature adaptation model"""

import numpy as np

from scipy.optimize import curve_fit

import pandas as pd

import matplotlib.pyplot as plt

from scipy.optimize import differential_evolution

from v_prediction import V_predicted

file_path = ’Polarization_curves_40_to_70_degrees.xlsx’

data = pd.read_excel(file_path, decimal=’,’,skiprows=2)

max_index = data[’Current density 40’].idxmax()

data_until_max = data.loc[max_index:]

x_40 = data_until_max[’Current density 40’]

y_40 = data_until_max[’Cell1 40’]

temperature = 40

pressure = 1.01325

exponent_pO2 = 0

exponent_pH2O = 0

exponent_pH2 = 0

def model(x, params):

alphaanode, alphacathode, i0refa, i0refc, Eaa,\

Eac, Epro, sigmaref = params

# Costants

R = 8.314 # gas constant (J/mol*K)

F = 96485 # Faraday constant (C/mol)

n = 2 # electrons involved in the reaction

T = temperature + 273.15 # Cell temperature (K)

Pa = pressure * 100000 # anode pressure (Pa)

Pc = pressure * 100000 # cathode pressure (Pa)

TH2O = 40 # water temperature

# Parametri materiali e reazione

deltha = 0.00127 # Nafion 115 thickness (cm)

Tref = temperature + 273.15 # reference temperature

Pref = pressure * 100000 # reference pressure
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# Antoine’s equation for water pressure

Aant = 8.07131

Bant = 1733.926

Cant = 39.485

pH2O = (np.exp(Aant - (Bant / (TH2O + Cant)))) * 1000

# Partial pressures

pO2 = Pa - pH2O # oxygen Partial pressure (Pa)

pH2 = Pc - pH2O # hydroge Partial pressure (Pa)

# Open circuit voltage (OCV)

Erev = 1.229 - (0.9 * 10**-3 * (T - 298))\

# reversible voltage (V)

E = Erev + ((R * T) / (n * F))*np.log(((pO2)**0.5)*pH2/pH2O)

# overpotentials

anode_overpotential = ((R * T) / (n * F * alphaanode)) * \

np.log(x / (i0refa *((pO2 / Pref)**exponent_pO2) * \

((pH2O / Pref) **exponent_pH2O)* np.exp((-Eaa / R) * \

((1 / T) - (1 / Tref)))))

cathode_overpotential = ((R * T) / (n * F * alphacathode)) \

* np.log(x / (i0refc *((pH2 / Pref)**exponent_pH2)*\

np.exp((-Eac / R) * ((1 / T) - (1 / Tref)))))

ohmic_loss = (deltha / (sigmaref * np.exp((-Epro / R) * \

((1 / Tref) - (1 / T))))) * x

return E + anode_overpotential +\

cathode_overpotential + ohmic_loss

def cost_function(params):

predicted = model(x_40, params)

return np.sum((y_40 - predicted) ** 2)

bounds = [(0, 0.8), (0, 0.30), (0, 0.1), (0, 10), (0, 40000), \

(0, 10000), (0, 4000), (0.0055, 0.0070)]

result = differential_evolution(cost_function, bounds)

popt = result.x

#parameters for minimum RMSE:
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parameters = [0.800, 0.300, 0.020, 0.225, 38723.72, 4589.81, \

3049.91, 0.0070]

y_pred_40 = model(x_40, parameters)

rmse_40 = np.sqrt(np.mean((y_40 - y_pred_40)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_40, y_40, label=’Experimental data’)

plt.plot(x_40, y_pred_40, color=’red’, label=’Model data’)

plt.title(’Comparison between model and experimental data @40°C \

and 1 bar’)

plt.xlabel(’Current density [A/cm^2]’)

plt.ylabel(’Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_40:.4f}\n’ \

f’alphaanode: {parameters[0]:.3f}\n’ \

f’alphacathode: {parameters[1]:.3f}\n’ \

f’i0refa: {parameters[2]:.3f}\n’ \

f’i0refc: {parameters[3]:.3f}\n’ \

f’Eaa: {parameters[4]:.2f}\n’ \

f’Eac: {parameters[5]:.2f}\n’ \

f’Epro: {parameters[6]:.2f}\n’ \

f’sigmaref: {parameters[7]:.4f}’

plt.legend(loc=’lower right’, frameon=True, framealpha=1, \

shadow=True, borderpad=1)

plt.show()

# experimental data @ 50°C

def model_50C(x, alphaanode, alphacathode):

return V_predicted(x, temperature, 50, pressure, pressure, \

alphaanode, alphacathode, parameters[2], parameters[3], \

parameters[4], parameters[5], parameters[6], parameters[7])

x_50 = data_until_max[’Current density 50’]

y_50 = data_until_max[’Cell1 50’]

initial_alpha_50 = [popt[0], popt[1]]
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alpha_bounds = ([popt[0],popt[1]],[1,1])

alpha_opt_50, _ = curve_fit(model_50C, x_50, y_50, \

p0=initial_alpha_50, bounds=alpha_bounds)

y_pred_50 = model_50C(x_50, *alpha_opt_50)

rmse_50 = np.sqrt(np.mean((y_50 - y_pred_50)**2))

plt.figure(figsize=(10, 6))

plt.scatter(x_50, y_50, label=’Experimental data’)

plt.plot(x_50, y_pred_50, color=’red’, label=’Model data’)

plt.title(’Comparison between model and experimental data @50°C \

and 1 bar’)

plt.xlabel(’Current density [A/cm^2]’)

plt.ylabel(’Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_50:.4f}\n’ \

f’alphaanode: {alpha_opt_50[0]:.3f}\n’ \

f’alphacathode: {alpha_opt_50[1]:.3f}\n’ \

plt.legend(loc=’lower right’, frameon=True, framealpha=1, \

shadow=True, borderpad=1)

plt.show()

# experimental data @ 60°C

def model_60C(x, alphaanode, alphacathode):

return V_predicted(x, temperature, 60, pressure, pressure,\

alphaanode, alphacathode, parameters[2], parameters[3],\

parameters[4], parameters[5], parameters[6], parameters[7])

x_60 = data_until_max[’Current density 60’]

y_60 = data_until_max[’Cell1 60’]

initial_alpha_60 = [alpha_opt_50[0],alpha_opt_50[1]]

alpha_bounds = ([alpha_opt_50[0],alpha_opt_50[1]],[1,0.9])

alpha_opt_60, _ = curve_fit(model_60C, x_60, y_60, \

p0=initial_alpha_60, bounds=alpha_bounds)

y_pred_60 = model_60C(x_60, *alpha_opt_60)

rmse_60 = np.sqrt(np.mean((y_60 - y_pred_60)**2))
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plt.figure(figsize=(10, 6))

plt.scatter(x_60, y_60, label=’Experimental data’)

plt.plot(x_60, y_pred_60, color=’red’, label=’Model data’)

plt.title(’Comparison between model and experimental data @60°C \

and 1 bar’)

plt.xlabel(’Current density [A/cm^2]’)

plt.ylabel(’Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_60:.4f}\n’ \

f’alphaanode: {alpha_opt_60[0]:.3f}\n’ \

f’alphacathode: {alpha_opt_60[1]:.3f}\n’ \

plt.legend(loc=’lower right’, frameon=True, framealpha=1,\

shadow=True, borderpad=1)

plt.show()

print(legend_text)

# experimental data @ 70°C

def model_70C(x, alphaanode, alphacathode):

return V_predicted(x, temperature, 70, pressure, pressure,\

alphaanode, alphacathode, parameters[2], parameters[3], \

parameters[4], parameters[5], parameters[6], parameters[7])

x_70 = data_until_max[’Current density 70’]

y_70 = data_until_max[’Cell1 70’]

initial_alpha_70 = [alpha_opt_60[0],alpha_opt_60[1]]

alpha_bounds = ([alpha_opt_60[0],alpha_opt_60[1]],[1.0,1.0])

alpha_opt_70, _ = curve_fit(model_60C, x_70, y_70,\

p0=initial_alpha_70, bounds=alpha_bounds)

y_pred_70 = model_70C(x_70, *alpha_opt_70)

rmse_70 = np.sqrt(np.mean((y_70 - y_pred_70)**2))

plt.figure(figsize=(10, 6))

plt.figure(figsize=(10, 6))

plt.scatter(x_70, y_70, label=’Experimental data’)

plt.plot(x_70, y_pred_70, color=’red’, label=’Model data’)
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plt.title(’Comparison between model and experimental data @70°C \

and 1 bar’)

plt.xlabel(’Current density [A/cm^2]’)

plt.ylabel(’Voltage [V]’)

plt.grid(True)

legend_text = f’RMSE: {rmse_70:.4f}\n’ \

f’alphaanode: {alpha_opt_70[0]:.3f}\n’ \

f’alphacathode: {alpha_opt_70[1]:.3f}\n’ \

plt.legend(loc=’lower right’, frameon=True, framealpha=1, \

shadow=True, borderpad=1)

plt.show()

print(legend_text)

plt.figure(figsize=(10, 6))

plt.scatter(x_40, y_40,color=’red’, label=’Experimental \

data at 40°C’)

plt.scatter(x_50, y_50,color=’b’, label=’Experimental data\

at 50°C’)

plt.scatter(x_60, y_60, color=’black’, label=’Experimental\

data at 60°C’)

plt.scatter(x_70, y_70, color=’y’, label=’Experimental data\

at 70°C’)

plt.plot(x_40, y_pred_40, color=’red’, label=’Optimized\

model at 40°C’)

plt.plot(x_50, y_pred_50, color=’b’, label=’Optimized\

model at 50°C’)

plt.plot(x_60, y_pred_60, color=’black’, label=’Optimized\

model at 60°C’)

plt.plot(x_70, y_pred_70, color=’y’, label=’Optimized \

model at 70°C’)

plt.title(’Comparison between experimental data and \

optimized model at different temperatures’)

plt.xlabel(’Current density [A/cm^2]’)

plt.ylabel(’Voltage [V]’)

plt.grid(True)

plt.plot([], [], ’ ’)

plt.legend(loc=’lower right’, frameon=True, framealpha=1,\

shadow=True, borderpad=1)

plt.show()
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Module 2:

"""Calculation of polarization curve\

given kinetics parameters"""

import numpy as np

def V_predicted(x,T_ref,temperature,P_ref,pressure,\

alphaanode,alphacathode,i0refa, i0refc, Eaa,Eac,\

Epro, sigmaref):

# Costants

R = 8.314 # gas constant (J/mol*K)

F = 96485 # Faraday constant (C/mol)

n = 2 # electrons involved in the reaction

T = temperature + 273.15 # Cell temperature (K)

Pa = pressure * 100000 # anode pressure (Pa)

Pc = pressure * 100000 # cathode pressure (Pa)

TH2O = temperature # water temperature

deltha = 0.00127 # Nafion 115 thickness (cm)

Tref = T_ref + 273.15 # reference temperature

Pref = P_ref* 100000 # reference pressure

exponent_pO2 = 0 # exponent a

exponent_pH2O = 0 # exponent b

exponent_pH2 = 0 # exponent c

# Antoine’s equation for water pressure

Aant = 8.07131

Bant = 1733.926

Cant = 39.485

pH2O = (np.exp(Aant - (Bant / (Cant+TH2O)))) * 1000

# Partial pressures

pO2 = Pa - pH2O # oxygen Partial pressure (Pa)

pH2 = Pc - pH2O # hydroge Partial pressure (Pa)

# Open circuit voltage (OCV)

Erev = 1.229 - (0.9 * 10**-3 * (T - 298))

# reversible voltage (V)

E = Erev + ((R * T) / (n * F))*np.log(((pO2)**0.5)*pH2/pH2O)

# overpotentials

anode_overpotential = ((R * T) / (n * F * alphaanode)) * np.log\

(x / (i0refa *((pO2 / Pref)**exponent_pO2) * ((pH2O / Pref)\

**exponent_pH2O)* np.exp((-Eaa / R) * ((1 / T) - (1 / Tref)))))

cathode_overpotential = ((R * T) / (n * F * alphacathode)) *\
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np.log(x / (i0refc *((pH2 / Pref)**exponent_pH2)* np.exp\

((-Eac / R) * ((1 / T) - (1 / Tref)))))

ohmic_loss = (deltha / (sigmaref * np.exp((-Epro / R) *\

((1 / Tref) - (1 / T))))) * x

return E + anode_overpotential + \

cathode_overpotential + ohmic_loss
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