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Abstract

In recent times, the control of multiple mobile robots is becoming increasingly
successful. Multi-robot structures can perform tasks that cannot be done by a
single robot. Therefore, the study of the simultaneous motion of multiple robots is
becoming more and more common.

Different kinds of robots that can be used for this purpose; in this thesis, two
of them are studied, a classical non-holonomous type and another omnidirectional
or holonomous one, that is capable of moving freely without necessarily change
orientation. The project is inspired by an existing system capable of moving omni-
directionally and supporting high loads. The robot is developed by the company
KUKA and is called OmniMove. It is capable of transporting objects such as train
wagons, aircraft parts, etc.

The study attempts to recreate a similar structure consisting of two holonomous
robots connected with a platform. From the literature, the type of control used in
structures already developed in academic institutions were studied.

Once the type of control to be implemented in our structure had been decided, we
moved on to write a programme that could be implemented in ROS (Robot Operating
System), a software capable of interact to real or virtual robots via our commands.
The programme was written in Python and involves acquiring and sending data to
control and monitor the robots. These will have to move in a synchronised manner,
for whatever path is given to them.

The programme was then implemented with a closed-loop feedforeward controller
that allows us to correct the robot’s trajectory according to errors that can be
measured during movement. Another method for measuring errors was studied and
implemented, observing its advantages and drawbacks.

In addition to programming the movement of the two robots, a first prototype
for connecting the robots was designed and realised. A platform that rests on three
load-bearing spheres, one in the centre of each robot and one in the centre of the
platform that supports it from the ground. These spheres allow the robots to deviate
slightly from the trajectory described by the synchronism. If the platform’s anchoring
points were rigid, the robots’ components could be ruined after only few applications.
In order to support the load-bearing spheres and not move the platform under normal
working conditions, soft material supports were created to allow the robots to move
without repercussions and to support the platform. Several simulations were carried
out both in the design area, to create and realise the soft components and to design
the platform, and to control the navigation of the robots.
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From the prototype, it was possible to observe the actual behaviour of the platform
and deduce conclusions and future improvements applicable to the platform itself as
well as to the entire system.
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Sommario

Negli ultimi tempi il controllo di molteplici robot mobili sta riscontrando sempre
più successo. Con strutture multi-robot si possano compiere compiti che non pos-
sono essere eseguiti da un singolo robot. Pertanto, lo studio della movimentazione
simultanea di molteplici robot è sempre più frequente.

Diverse sono le tipologie di robot possono essere usati per a tale scopo. In questa
tesi di laurea ne vengono studiati due, uno di tipo classico non olonomo e un altro
omnirezionale o olonomo, capace cioè, di muoversi liberamente senza dover cambiare
forzatamente orientamento. Il progetto si inspira ad un sistema già esistente capace
di muoversi in maniera omnidirezionale e di supportare elevati carichi. Il robot in
questione è sviluppato dall’azienda KUKA e si chiama OmniMove. È capace di
trasportare oggetti come vagoni di treni, parti di aerei ecc.

Lo studio cerca di ricreare una struttura simile composta da due robot olonomi
collegati con una piattaforma. Dalla letteratura sono state studiate le strutture già
sviluppate in ambito accademico, concentrandosi sulla tipologia di controllo usata.

Una volta decisa la tipologia di controllo da implementare nella nostra struttura si
è passati alla scrittura di un programma implementabile nel software ROS (Robot
Operating System) in grado di far interagire i nostri comandi, scritti nei codici,
con dei robot reali o virtuali. Il programma è stato scritto con Python e prevede
l’acquisizione e l’invio di dati per controllare e monitorare i robot. Questi si dovranno
muovere in maniera sincronizzata, per qualsiasi percorso fornitogli.

Si è poi implementato il programma con un controllore a ciclo chiuso in retroazione
che ci permette di correggere la traiettoria del robot in base a degli errori misurabili
nel corso della movimentazione. Un altro metodo di misurazione degli errori è stato
studiato e implementato osservandone i pregi e i difetti.

Oltre alla programmazione della movimentazione dei due robot è stato progettato
e realizzato un primo prototipo di connessione tra gli stessi. Una piattaforma che
appoggia su tre sfere portanti, una al centro di ciascun robot e una al centro della
piattaforma che tramite un supporto la sostiene dal terreno. Queste sfere consentono
ai robot di potersi discostare leggermente dalla traiettoria descritta dal sincronismo.
Se i punti di ancoraggio della piattaforma fossero stati rigidi la componentistica dei
robot si sarebbe potuta rovinare dopo poche applicazioni. Per sostenere le sfere
portanti e non far muovere la piattaforma nelle condizioni normali di lavoro, sono
state create dei supporti di materiale morbido che consentono di far muovere i robot
senza ripercussioni e, contemporaneamente, di supportare la piattaforma. Sono state
compiute svariate simulazioni sia nell’ambito progettuale, per realizzare i supporti
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morbidi e per progettare la piattaforma che per controllare la navigazione dei robot.
Dal prototipo è stato possibile osservare il comportamento reale della piattaforma,

dedurne delle conclusioni e ipotizzare dei futuri miglioramenti, applicabili sia alla
piattaforma stessa che all’intero sistema.
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Chapter 1

Introduction

Mobile robots and manipulators mounted on mobile platforms are becoming more
and more useful in a large variety of indoor service applications: industrial, medical,
military, and domestic. A partial list of environments where mobile platforms
can assist ill, disabled and elderly people is: hospitals and clinics, dormitories for
handicaped and elderly people, and sheldered workshops for physically disabled
people. Moreover, they can be used in environments that are dangerous for humans,
where extreme caution must be exercised because, for example, an unexploded bomb
is being transported.

Three fundamental requirements of such robots are:

• maneuvrability,

• safety for people and machines,

• manipulability and dexterity.

Omnidirectional mobile robots are more and more used for this kind of strucure
due to their extreme manoeuvrability which, returning to the case above, of the
unexploded bomb, would make as few movements as possible in handling it.

Several omnidirectional platforms have been known to be realized by driving
wheel with steering, universal wheels, spherical tires, or crawler mechanisms [7].
Groups of mobile robots can carry out tasks that a single robot could not perform.
Most research in the area of formation control is focused on holonomic robots, since
their superior mobility allows for better control and allows for the research on more
sophisticated control techniques [8]. Holonomic robots in addiction can move freely
in the space. Platforms where these kinds of robot are mounted can be useful for
hazardous environment where space are limitated like wearhouse or chemical lab.
After these considerations, it was decided to design and study a structure with two
holonomic robots so that they could move in any direction without change orientation
and could carry twice the payload of a single robot. Formation control was focused
on two nonholonomic robots, because kinematics is more difficult, although that of
the holonomic robot was not neglected.

The structure of this thesis is organised as follows. The following sections of this
chapter explain the project goal and what has been studied in the literature from
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Chapter 1 Introduction

the basics to understanding the workings of a holonomic robot. The second chapter
describes the programming background required to replicate the work and the system
used to control the robots. Furthermore, all simulation programmes are explained
describing also the mathematics behind the structure’s motion. Finally, the prototype
built, the design programme used, and the tests developed are explained, along with
their conclusions and future improvements.

1.1 Fundamentals Basics

The study of the state of the art allows us to understand the workings of the mecha-
nisms to be studied and the solutions already present in the academic documentation.
From these we can critically analyse the project by evaluating improvements or
methodologies to be integrated into the prototype to be developed. The initial study
also involved the entire robot programming part, in the Python language through
the ROS Robot Operating System, then the formation control of platforms and the
omnidirectional robots were studied.

1.1.1 Formation Control

Formation control of multiple autonomous mobile robots and vehicles has been
studied extensively over the last decade for both theoretic research and practical
applications. Various approaches and strategies have been proposed for the formation
control of multiple robots. However, multi-robot coordination methods can be
partitioned into three class approaches:

• virtual structure approach,

• behavioral approach,

• leader follower approach[9].

Each of them has several advantages and weaknesses.

Virtual Structure Approach

Consider a rigid body where the relative positions of points on the body are fixed.
When the body moves in space with six degrees of freedom, points on the body
continue to maintain their relative positions, although their positions in space change.
If robots always maintain their relative positions with respect to a frame of reference,
as the points of a rigid body do; they can be thought of as forming a rigid structure
that does not physically exist. We call this a Virtual Structure. However, robots
that forms a virtual structure with their position still have some degrees of freedoms,
for example they can change their orientations. [10] The main advantage is that is
easy to prescribe the behavior of the whole group and maintain the formation very
well during the maneuvers. The main disadvantage of the current virtual structure
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1.2 Robots

implementation is the centralization, which leads a single point of failure for the
whole system.

Behavioral Approach

The approach of the controller in this case does not depend on the platform, so
several effective controllers will exist. The idea we exploit is that tracking controllers
can be designed independently of the coordination scheme, thus providing additional
control power [11]. So several desired behaviors are prescribed for each robot such
as obstacle avoidance, collision avoidance, goal seeking and formation keeping. The
limitation of behavior-based approach is that it is difficult to analyze mathematically,
therefore it is hard to guarantee a precise formation control.

Leader-Follower Approach

By leader following method, to prescribe a formation maneuver, we only need to
specify the leader’s motion and the desired relative positions between the leader
and the followers. When the motion of the leader is known, the desired positions
(desired distance and angle) of the followers relative to the leader can be achieved by
local control law on each follower[11]. This approach is characterized by simplicity,
reliability and no need for global knowledge and computation.

The last approach was the one used for this thesis. As there are only two robots
to be moved simultaneously, it was considered the simplest and most effective. Many
other researches used this method for formation control, and many implementations
have been made, such as the fuzzy logic technique. The purpose of it is to keep the
follower robot at a correct distance by monitoring it and giving values between 0
and 1 according with the distance, which will correct the robot’s velocities[12].

1.2 Robots

The key feature of robots is their mechanical structure. Robots can be classified
into robot manipulators that have a fixed base, and mobile robots where instead their
base is movable. Robots are mechanical components linked together to perform tasks
that help humans, in fact robotics comes from the term robota which in the Slavic
language means executive work. These tasks, performed by robots, are more precise,
reliable and safe than those performed by humans. At the same time, the control and
programming of these robots can be difficult if flexibility is required or if a variety
of tasks can be performed to achieve the same goal, so robots that can work with
humans while respecting safety rules have become more popular in recent times. The
capability to exert an action, is provided by an actuation system which animates
the mechanical components of the robot. The concept of such a system refers to the
context of motion control, dealing with servo motors, drives and transmissions.The
capability for perception is entrusted to a sensory system which can acquire data on
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Chapter 1 Introduction

the internal status of the mechanical system (proprioceptive sensors, such as position
transducers) as well as on the external status of the environment (exteroceptive
sensors, such as force sensors and cameras)[1].

Robot Manipulators

Robot manipulators consist of a series of rigid bodies (links) connected by joints; a
manipulator consists of an arm that provides mobility, a wrist that provides dexterity,
and the end effector that allows us to perform the tasks required by the robot.

The fundamental structure of robot manipulators can be an open kinematic
structure or a closed kinematic structure. The former unlike the closed kinematic
structure has only one sequence of links connecting two end parts of the chain. In the
closed kinematic structure on the other hand, the sequence of links form a loop (see
Figure 1.1), improving the performance of the structure: increasing load capacity,
robustness and accuracy.

Figure 1.1: Example of robot with closed kinematic structure[1].

A manipulator’s mobility is ensured by the presence of joints. The articulation
between two consecutive links can be realized by means of either a prismatic or a
revolute joint. In an open kinematic chain, each prismatic or revolute joint provides
the structure with a single degree of freedom (DOF).

A prismatic joint creates a relative translational motion between the two links,
whereas a revolute joint creates a relative rotational motion between the two links.
Revolute joints are usually preferred to prismatic joints in view of their compactness
and reliability. On the other hand, in a closed kinematic chain, the number of DOFs
is less than the number of joints in view of the constraints imposed by the loop.

The degrees of freedom should be properly distributed along the mechanical
structure in order to have a sufficient number of joints to execute a given task. In
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1.2 Robots

the more general case of a task consisting of arbitrarily positioning and orienting an
object in three-dimensional (3D) space, six DOF are required.

The kinematic structure allows us to position the robot wrist, the part that allows
us to maneuver the end effector. Being, the wrist, the end part of the structure will
have to be small, complicating the mechanical design.

The wrist can be called spherical if the axes of the 3 joints converge at the same
point, with the advantage that the position and orientation of the end effector are
decoupled, however, complicating the design of the component (see Figure 1.2)[1].

Figure 1.2: Spherical Wrist[1].

Mobile Robots

Mobile robots consist of a rigid structure equipped with a locomotion system that
makes it capable of moving freely in space. This locomotion system can be moved in
several ways:

• Wheeled which typically consist of a rigid body (Base or chasiss) and a wheel
system that confer movement with respect to the ground. These will be the
only types of robots that will have an in-depth discussion in this paper;

• Legged where the movement is inspired by living organisms, composed of multi
rigid bodies interconnected with prismatic joints or more often with revolute
joints;

• Tracked locomotion which allow movement in any kind of solid terrain;

• Undulatory locomotion that move with a snake-like wave motion, and can be
used in narrow aquatic environments such as oil or gas installations (see Figure
1.3) [2].

We can classify robots into holonomic and non-holonomic.
This distinction is related to the way the robot moves, in other words the ratio

between the number of controllable joints and the total number of degrees of freedom.
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Figure 1.3: Snake Robot example[2].

If the number of controllable degrees is equal to the total number of degrees of
freedom, the robot is called holonomic. It can move freely in any direction without
forcibly changing orientation. A good example of this type of robot are those that
have omnidirectional wheels or steerable drive wheels.

If the controllable degrees of freedom are less than the total degrees of freedom,
the robot is known as non-holonomic drive. A car, for example, has three degrees
of freedom, but we can only control the acceleration (forwards or backwards) and
the steering angle of the steering wheel. In this way, we slip in curves, so we do not
control everything, but rely on the friction between the wheels and the ground.

1.2.1 Conventional Wheels

Although the reliability, robustness and speed of robotic systems with four or more
steered drive wheels has been validated and improved for years, generally, to avoid all
the problems related to path traking, and steering flexibility [13], robots have drive
systems with two fixed drive wheels, driven by electric motors, with usually caster
wheels serving as stability points. An example of robot that use this configuration is
the MIR 200, which was used in this study, in a virtual environment. The non-steered
wheels, on the other hand, can be divided into three categories[14]:

• the fixed wheels which are rigidly mounted on the robot chassis and have a
constant orientation over time;

• the steerable wheels which have two axes of rotation, the first one equal to that
of the fixed wheels, while the second one, placed vertically, passing through the
centre of the wheel, allows changing orientation with respect to the chassis;

• the caster wheels which also have two axes of rotation, but the vertical one
does not pass through the wheel centre but is offset by a certain constant offset.
This feature makes it possible to quickly change direction automatically by
aligning the wheel to the chassis. This type of wheel is very often used to create
a static balancing point without affecting the mobility of the mobile base.
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1.2 Robots

An illustration of the previous wheels can be seen in Figure 1.4.

Figure 1.4: Conventional Wheels[1].

1.2.2 Conventional Robots - MIR 200

In this section the conventional robot used in the simulation is explained.
MIR 200 is a rectangular mobile robot 890 mm long and 580 mm wide (see Figure

1.5). This robot is equipped with 2 fixed stering wheel placed in its center, and
four caster wheels on the corners. These allow all the movement of a non holonomic
robot, in fact, is not possible going in the y direction without first turning. MIR
200 is equipped with two sick s300 laser scanners on opposing corners of the robot,
giving it a 360-degrees detection radius without any blind spots[3]. One sick s300
laser scanner has a limitated range of detection (270-degrees), 90 degrees of blind
spots, the exactly range that we do not need because we will scan the internal part
of the robot. This type of robot is totally defined in a simulated environment, his
model and all the funcionalities it has are available in Gazebo.

Figure 1.5: MIR200: schematic and manufacturer image [3].
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Chapter 1 Introduction

1.2.3 Omnidirectional Wheels

Omnidirectional traction systems apply the rotational force of each individual wheel in
one direction similarly to conventional wheels, with the difference, however, that they
can slide freely in a lateral direction. The main advantage of using omnidirectional
systems is to decouple the rotation from the translational motion, although this
affects the speed of the operation, which will not be the fastest.

Mechanum wheels also called Ilon wheels or Swedish wheels are the most common
wheels used in omnidirectional handling.

In a conventional wheel, the friction between the wheel surface and the ground
generates the forces and torques that move the vehicle. However, in the case of the
mecanum wheel, they are generated by the friction with the rollers of the wheel (see
figure 1.6). The rollers, attached with a 45° angle, allow the wheel to generate a
twisting force that makes the vehicle to move in 3 DOF (farward-backwards, right-left,
rotation around the vertical axis).

The 45° angle and the shape of the rollers complicate the design of the wheels but
provide a smoother contact with the surface and increase the load capacity supported
by the single wheel itself [14].

Figure 1.6: Omni Wheel Example [3]

There are different types of wheels, the most common, and the ones used in the
robots available in the laboratory, are the traditional ones with the roller support on
the side. They allow us to have an higher load that can be supported, but with the
drawback of not being able to move on inclined surfaces. In these surfaces, in fact,
the roller support could touch the surface, as we can see in Figure1.7a, compromising
the omni-directional functionality, that is instead guaranteed even in these types
of surfaces with Swedish wheels with centrally mounted rotating rollers (see Figure
1.7b) [4].

Recapitulating the Mecanum wheels have the following advantages: compact
design, high load capacity, easy control, low speed and low pushing force when
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1.2 Robots

moving diagonally. As disadvantages, we can mention: discontinuous contact, high
sensitivity to locomotion surface irregularities, complex design [15].

(a) Traditional Mecanum wheel on in-
clined surface.

(b) Mecanum wheel with centrally mounted rollers.

Figure 1.7: Traditional and Centrally mounted rollers Mecanum wheels[4].

1.2.4 Omnidirectional Robot

Omnidirectional movement can be achieved by mounting four Mechanum wheels
in the corners of a rectangular structure. We can see how to perform eight main
movements without changing the orientation of the robot in the Figure 1.8.

Each wheel must be moved with the same angular speed at the same time during
the operation. By changing the velocities of the diagonal wheels we achieved a motion
between 0° to 360°. For example the forward motion is achieved when all four wheels
are driven in the same direction (see Figure 1.8a).

For the displacement in sideways, diagonal pairs of wheels are driven in opposite
directions (see Figures1.8e,f,g,h)[16].

AgileX- Scout mini rover

The omnidirectional robot available in the lab of the MATCH department is the one
developed by AgileX Robotics, a Chinese company founded in 2016.

Scout Mini Rover is the smaller version of the Scout 2.0 robot. It is a robot with
high manoeuvrability, speed, and considerable loading capacity. The robot can be
equipped with omnidirectional wheels or not (see Figure 1.9).

In our case, the robot was equipped with Swedish wheels each with differential
traction. In the specifications we can see that the maximum capacity of the robot is
20 kg for each omnidirectional wheel, so the maximum additional load that can be
supported, subtracting the weight of the robot itself is approximately 50 kg [17].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.8: Motion of Omnidirectional platform

Figure 1.9: Wheel Equipment Available for Scout Mini

It is a ROS-compatible robot, so it is very versatile for academic and research
experiments. The robot can be controlled via local reference system velocities or by
controlling each individual wheel, describing trajectories such as those explained in
the paragraph above. The robot is equipped with sliding guides that allow us to
quickly connect the robot with other structures.

In addition, the robot is equipped with a LidaR laser, which will be discussed later,
and with instrumentation, including wifi routers and other electronic equipment
that allow us to communicate with the robot from a fixed computer. On the other
hand they create encumbrances that will hinder the movement of the plate that will
connect the two robots (see Figure: 1.10).

10



1.3 Kinematic of a Rigid Body

Figure 1.10: Scout Mini Robot with electronic equipment

1.3 Kinematic of a Rigid Body

To better understand the principle of this thesis project, it is good to recall one of
the fundamentals of kinematics.

A rigid body is defined as a collection of particles with the property that the
distance between the particles remains unchanged during a translation or rotation,
barring negligible movements.

For a generic rigid body in a 3D frame with origin in "O" (see Figure 1.11a), we
can take two casual points "i" and "j" owned to the rigid body. Defing the vector ri⃗

and rj⃗ as two time-dependent vectors that connect the origin to the point "i" and "j";
with the tip tail method we can define the vector (ri⃗ - rj⃗), that for the propperty of
the rigid body will be a constant.

Considering for a better understanding the vector (ri⃗ − rj⃗) = a⃗ we know that also
a⃗2 is a constant.

If we derive it we found
(ri⃗ − rj⃗) · d(ri⃗−rj⃗)

dt = (ri⃗ − rj⃗) · (vi⃗ − vj⃗) = 0 so if a scalar product of two vectors is
zero it means that these vectors are perpendicular between them, (ri⃗ −rj⃗) ⊥ (vi⃗ −vj⃗).

For the propperties of a vector product if two vectors are perpendicular, it will
exist another vector, that we will call ω⃗ that will link them in the following way:

(vi⃗ − vj⃗) = ω⃗ × (ri⃗ − rj⃗) (1.1)

If we isolate vi⃗ we will find the Fundamental Kinematic Equation of a Rigid Body:

vi⃗ = vj⃗ + ω⃗ × (ri⃗ − rj⃗) (1.2)

11
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(a) Two points in a rigid body (b) A rigid body with a local frame

Figure 1.11: Graph of a rigid body in a 3D space.

We do not know anything about the vector ω⃗, so we can define a local frame in
our body with versors e1, e2 and e3 each one time-dependent (see Figure 1.11b). In
an analogous way if we do the same steps we did of the vector a⃗, we will see that
e1 ⊥ de1

dt so it will exist a vector ω1⃗ that:

de1
dt

= ω1⃗ × e1 (1.3)

Similarly for the others versors so:⎧⎪⎪⎪⎨⎪⎪⎪⎩
de1
dt = ω1⃗ × e1

de2
dt = ω2⃗ × e2

de3
dt = ω3⃗ × e3

(1.4)

We can now applying the follow formule for a vector product:
x⃗ × b⃗ = c⃗

x⃗ = 1
b2 b⃗ × c⃗ + λb⃗ ∀λ ∈ R, and x⃗ ⊥ b⃗

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω1⃗ = e1 × de1

dt + λ e1

ω2⃗ = e2 × de2
dt + µ e2

ω3⃗ = e3 × de3
dt + ν e3

(1.5)

Knowing that de1
dt is perpendicular to e1 it is possible to write it as linear combina-

tion of e2 and e3.
de1
dt

= q e2 + w e3

Multiplying once for e2 and then for e3 we can find q and w, so the equation will be:
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de1
dt

= (
de1
dt

· e2) e2 + (
de1
dt

· e3) e3

Only now we can performing the vector product in the system of equations 1.5.
The results will be:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1⃗ = λ e1 + (−de1
dt · e3) e2 + (de1

dt · e2) e3

ω2⃗ = (de2
dt · e3) e1 + µ e2 + (−de2

dt · e1) e3

ω3⃗ = −(de3
dt · e2) e1 + (de3

dt · e1) e2 + ν e3

(1.6)

We can demostrate that all the terms for each ω1⃗, ω2⃗, ω3⃗ in a single direction are
the same. For example:

(−
de1
dt

· e3) = (
de3
dt

· e1) (1.7)

That is because e1 · e3 = 0 due to their perpendicularity.
If we derive it de1

dt · e3 + e1 · de3
dt = 0 so the equation 1.7 is verified.

This system of equation must be valid for every λ, µ, ν so we take them so that
ω1⃗= ω2⃗= ω3⃗ = ω⃗. So we take:⎧⎨⎩λ = de2

dt · e3, µ = de3
dt · e1, ν = de1

dt · e2

ω⃗ = λ e1 + µ e2 + ν e3
(1.8)

Finally we can rewrite the equations 1.4 finding the Poisson’s Equations.⎧⎪⎪⎪⎨⎪⎪⎪⎩
de1
dt = ω⃗ × e1

de2
dt = ω⃗ × e2

de3
dt = ω⃗ × e3

(1.9)

Now if we take a casual point "P" in our body and we define the vectors ro′⃗ ,rP⃗

and ξP⃗ as shown in Figure 1.12 by carrying out the following calculations, we arrive
at the fundamental law of kinematics for the rigid body knowing what the omega
vector is.

rP⃗ = ro′⃗ + ξP⃗

ξP⃗ = rP⃗ − ro′⃗

ξP⃗ = ξ1 e1 + ξ2 e2 + ξ3 e3

Where ξ1, ξ2 and ξ3 are constants.
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Figure 1.12: Another rapresentation of a rigid body in a 3D space

vP⃗ = vo′⃗ + dξP⃗

dt

dξP⃗

dt
= ξ1

de1
dt

+ ξ2
de2
dt

+ ξ3
de3
dt

But for the Poisson’s Equations:

dξP⃗

dt
= ξ1 ω⃗ × e1 + ξ2 ω⃗ × e2 + ξ3 ω⃗ × e3 =

= ω⃗ × (ξ1 e1 + ξ2 e2 + ξ3 e3) =
= ω⃗ × ξP⃗

Finally we obtain: ⎧⎨⎩vP⃗ = vo′⃗ + ω⃗ × ξP⃗

vP⃗ = vo′⃗ + ω⃗ × (rP⃗ − ro′⃗ )
(1.10)

ω⃗ is indipendent from the origin O’ chosed and it is unique. This last statement
can be proved by absurdity.

1.3.1 Physic meaning of Omega

For better understand the meaning of the vector ω⃗ is better to consider a 2D rigid
body in a two-dimensional reference system (see Figure 1.13a), where the z-direction
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is outgoing from the sheet.

(a) Rigid body with a 2D local frame (b) Comparison between local and global frame

Figure 1.13: Rigid body in 2D space

In that case: e3 = k and does not change over time (de2
dt = 0),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ = de2
dt · e3, µ = 0, ν = de1

dt · e2

ω⃗ = λ e1 + ν e3

λ = de2
dt · e3 = −de3

dt · e2

ω⃗ = de1
dt · e2 e3

(1.11)

If we now describe e1 and e2 as follow (see Figure 1.13b):
e1 = cos θ i + sin θ j

e2 = − sin θ i + cos θ j

de1
dt = θ̇ (− sin θ i + cos θ j) = θ̇ e2

So ω⃗ is the vector "angular velocity" perpendicular to the moving plane with
module as the angular velocity: ω⃗ = θ̇ e2 · e2 e3 = θ̇ k

To summarise, if we have a rigid body and we know the position of a point that
belongs to this body we can know the position and the velocity of all points belonging
to the rigid body due to the vector ω⃗ and the vectors that connect a initial frame
with the local frame of the body. The vector ω⃗ is the angular velocity and in a 2D
motion does not change, in all the point of the rigid body is the same.
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Chapter 2

Programming Background

2.1 Introduction of ROS

The purpose of this chapter is to illustrate the systems used to create the code for
the simultaneous movement of the two robots. First of all, two main tasks can be
distinguished:

• the creation of the actual code for handling the robot;

• the methodology for tracking the distance between the robots, with speed
correction.

The first involved the use of ROS (Robot Operating System) which is a system that
allows us to communicate with the robot through different programming languages.
The second was done using two different methodologies: one using LIDAR (Light
Detection And Ranging), a laser located above the robot, and the other using the
Adaptive Monte Carlo Localization (AMCL) method. Using in both cases the robot
visualisation and localisation programme Rviz. These two tools, in combination,
allow us to verify the behaviour of the robots in real time, allowing trajectory and
speed correction with a feedforward control system.

2.1.1 ROS - Robot Operating System

ROS is an open-source, meta-operating system that provides the services you would
expect from an operating system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between
processes, and package management [5]. Unlike conventional operating systems,
it can be used for numerous combinations of hardware implementation. ROS is a
supporting system for controlling a robot and sensor with an hardware abstraction
and developing robot application based on existing conventional operating systems.
For that it could be defined as a meta operating system because it runs on existing
operating systems(see Figure2.1).

Using ROS give us different advantages: ROS data communication is supported not
only by one operating system, but also by multiple operating systems, hardware, and
programs, making it highly suitable for robot development where various hardware
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Figure 2.1: ROS as meta operating system [5].

are combined. In addiction, different types of programming languages can be used:
the ROS program provides a client library to support various programming languages.
The library can be imported in programming languages that are popular in the
robotics field such as Python, C++, and Lisp as well as languages such as JAVA, C#,
Lua, and Ruby. In other words, you can develop a ROS program using a preferred
programming language. Package management: multiple processes having the same
purpose are managed as a package so that it is easy to use and develop, as well
as convenient to share, modify, and redistribute. Public repository: each package
is made public to the developer’s preferred public repository (e.g., GitHub) and
specifies its licence.[5]. The main purpose of ros is to build an environment where we
can develop robotic softwares that can communicate each other to reach a certain
goal.

2.1.2 How Ros Works

To better understand how ROS works, it could be useful to explain the most used
ROS terms.

ROS is developed in units of nodes. We can think nodes as an executable program,
the smallest unit of processor running in ROS. Nodes are created for each purpose
such as sensor data conversion, obstacle recognition, motor drive, encoder input, and
navigation.

A node registers information such as name, message type, URI address and port
number of the node. The registered node can act as a publisher, subscriber, service
server or service client based on the registered information, and nodes can exchange
messages using topics and services.

Messages are variables such as integer, floating point, and Boolean that can be
sends or received between nodes. Without the master the connection between nodes
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and messages is impossible. The master acts as a name server for node-to-node
connections and message communication. The command roscore is used to run the
master, and if you run the master, you can register the name of each node and get
information when needed.

The topic can be imagined as a conversation topic. The publisher nodes give
commands to the topic and subscriber nodes receive the information from the topic
that are maybe changed because of the publisher command.

The term ‘publish’ stands for the action of transmitting relative messages corre-
sponding to the topic. The publisher node registers its own information and topic with
the master and sends a message to connected subscriber nodes that are interested in
the same topic[5].

The subscriber node in fact, will receive the relative messages corresponding to
the topic and will register its own information with the master and receive publisher
information that publishes relative topic from the master. A subscriber is declared in
the node and can be declared multiple times in one node, as well as in the publisher
one.

For execute multiple nodes, we can create launch files that with the command
roslaunch can execute different nodes at the same time and others operations such
as configuring namespace and nodes changing package parameters, node names,
environment variables etc.

Hence ROS is the system that allow the communication of robot and computer or
other devices towards messages from different nodes to different topics. The type of
communication could be different. For exchanging messages there are three different
ways followed, described and summarized in the table 2.1:

• a topic which provides a unidirectional message transmission/reception;

• a service which provides a bidirectional message request/response;

• an action which provides a bidirectional message goal/result/feedback.

Table 2.1: Topics, services and actions in ROS[5].
Type Features Description

Topic Asynchronous Unidirectional Used when exchanging data continuously
Service Synchronous Bi-directional Used when exchanging data continuously

Used when it is difficult to use the service due
Action Asynchronous Bi-directional to long response times after the request or when

an intermediate feedback value is needed

It is good to remark that topics transmit unidirectional continuous flow (that
remain connected) to send or receive messages. They are suitable for sensor data
that requires publishing messages periodically. On the other hand, services don’t
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maintain the connection so are useful to reduce the load of the network by replacing
topic.

In the end, action servers perform the actions and send the feedback to the action
client. They are often used to command complex robot tasks such as cancelling
transmitted goal while the operation is in progress.

Figure 2.2: Message communication example [5].

In the figure above (see Figure 2.2) we can see an example of message communi-
cation that could be useful to understand how the communication between topics,
subscribers and publishers work. In this example have been used two nodes, the
master and the /turtle1/cmd_vel’ topic. Turtlesim_node and turtle_teleop_key
node are both connected with the master. Turtlesim node as a subscriber will give
information to the master and that will provide the visual motion of the simulated
robot. Turtle_teleop, instead, is written as a publisher; pressing the arrows in the
keyboard it will give transational and rotational messages to the master but also
directly to the virtual robot to perform the desired movement. The codes presented
in this work are similar to this one, one or more publishers control the robot motion
and subscribers take information from the simulated or real environment and from
the robot itself to know the position or the speed of it.

2.2 Simulations

Simulations have been very usefull in this thesis project. There are a lot of software
capable to simulate a real enviroment and a real behaviuor of the robot. However
a very popular simulator in the field of robotics is Gazebo because of its high
performance even though it is open source. It is strictly related to ROS because
developed and distribuited from the same company. Other simulation sistem are
used to the visualization to know and identificate the position of the robot or to
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measure the distance from the obstacles etc. One of this type of system is Rviz,
explained in the next section.

2.2.1 Gazebo Simulator

Gazebo is a 3D simulator that provides robots, sensors, environment models for
3D simulation required for robot development, and offers realistic simulation with
its physics engine. Installing the package TurtleBot3 on Gazebo simulator we can
access to different robot model we can upload in the environment. In addiction
different simulated maps, already settled, can be placed. These will allow the robot
to move around a place with obstacles, to detect them and to avoid them during
the navigation. In our case the robot model uploaded was the MIR200, because
as explained before there was not availabilty of a scout mini omnidirectional robot
model.

As described in the section (1.2.2), MIR200 is equipped with two distance lasers
and with a camera. We can see this type of model in Figure (2.3). The MIR200
model was placed in a "big square map" (as shown in Figure 2.4) that contains
obstacles and allows to see topics that will be not visible in an empty map.

Figure 2.3: MIR200 model in Gazebo.

Figure 2.4: Example of a Map in Gazebo
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2.2.2 Rviz

ROS can be used with different tools, these could be of visualization like the one
described in this pharagraph. Rviz is a 3D visualization tool that transforms ROS
messages in something we can watch virtually in a 3D space. For example it is
possible to visualize objects near our robot due to a LSD (Laser Distance Sensor) or
what a camera can see, if it is installed in the robot. With the laser has been possible
to create a map of where the robot was placed, to identify the fixed obstacle, walls,
desktops, computer etc and the movable one’s like chairs people etc. A mobile robot
model in Rviz can be displayed and received distance data from the LSD laser (see
Figure 2.6), this option has been used in this thesis project for calculate the distance
between another robot, but the details will be written later in this lecture. With
this functionality the robot can localize itself and could be autonomous to go to a
certain position without colliding objects. In general, it can be used in navigation,
see figure 2.5.

Figure 2.5: Example of navigation in Rviz [5].

In Rviz we can see the active topic that we had booted in ROS with Python nodes
or launch files. The most interesting topic that has been used in this thesis are:

• Axes which display the xyz axes of what we need, such as the robot frame or a
robot goal position.

• Laser scan display scan values, useful to see what the robot perceives near it.

• Map displays the occupancy map, used in navigation, on top of the ground
Plane.

• Robot model displays the robot in a 3D shape already defined by the constructor
of the robot or by developer that let his work open source.
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• TF displays the coordinate transformation TF used in ROS. It is displayed with
the xyz axes much like the previously mentioned axes, but each axis expresses
the hierarchy with an arrow according to the relative coordinates.

• Pose Displays the pose (location + orientation) on 3D. The pose is represented
in the shape of an arrow where the origin of the arrow is the position(x, y,
z,) and the direction of the arrow is the orientation (roll, pitch, yaw). For
instance, pose can be represented with the position and orientation of the 3D
robot model, while it can be represented with the goal point.

Figure 2.6: Measuring distance with LSD laser [5].

With them we controlled the actual and target position of the follower robot,
in order to know if it followed the right path and to know how accurate it was to
maintain the distance constant.

2.2.3 Orientation and Pose of the Robot

The pose of a robot can be described as a combination of positions and orientations.
Here, the position is expressed by three vectors x, y, and z, and the orientation by
four vectors x, y, z, and w, called a quaternion. The quaternion is not intuitive
because they do not describe the rotation of three axes (x, y, z), such as the roll,
pitch, and yaw angles that are often used. However, the quaternion form is free
from the gimbal lock or speed issues that present in the Euler method of roll, pitch
and yaw vectors. The gimbal lock is a problem that happens when two axis align
together. It will cause a loss of one degree of freedom in a three-dimensional space.
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(a) A normal three-gimbal set. (b) A gimbal lock.

Figure 2.7: Gimball lock illustration

As shown in Figure 2.7 when one axes overlaps with another (causing a lock) the
model in the figure offset the blue one with a specific value, or changes the plane
to the opposite direction, such as from 90 degree to -90 degree at once. The first
scenario means when I rotate my device from left to right, my models may rotate
from top to bottom as well, even though I don’t rotate my device in such manner.
Therefore, the quaternion type is preferred in robotics, and ROS also uses quaternion
for this reason. Of course, functions to convert Euler values to quaternions are
provided for convenience. In our case to visualize in a better way the orientation of
our robots it has been used the Coordinate Transformation (TF) package that lets
the user keep track of multiple coordinate frames over time and can easily transform
from eulerian coordinate to quaternian ones and vice-versa.
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Controlling Two Robots

The structure studied in this thesis can be composed of two Scout Mini robots, so
two holonomic robot, or two MIR200. The original project consisted on develop a
structure composed by two holonomic robot connected with a platform, but during
the internship there was not the availability of two fully functional holonomic robot,
so we create a structure with two MIR200. However the kinematic of two holonomic
synchronize robot has been studied.

3.1 Kinematics

Regarding the consideration made in section 1.3, our structure could be represented
as a rigid body moving on the 2D space, where we need to know and control the
velocity of two points. These two points are the baricentric point of our robots (see
Figure 3.1).

Figure 3.1: Schematization of the Structure.

Controlling the structure with a leader-follower aproach, we will control directly
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the leader robot and the second one will follow the leader in a certain way.
However, we have to distinguish the original project from the one that was realised

at the end.

3.1.1 Kinematics of a Structure of two Holonomic Robots

Taking in consideration the Figure (3.1) applying the fundamental law of kinematic
(equation 1.10) we will know the global frame velocities of the second robot, knowing
these of the leader (robot 1).
v2⃗ = v1⃗ + ωz⃗ × d⃗

v2⃗ = v1⃗ + ωz⃗ × (r2⃗ − r1⃗)
That into a matrix form is:

vL1⃗ =

⎛⎜⎜⎝
vLx1

vLy1

ωL1

⎞⎟⎟⎠

vG1⃗ =

⎛⎜⎜⎝
vGx1

vGy1

ωG1

⎞⎟⎟⎠ =

⎡⎢⎢⎣
cos θ1 − sin θ1 0
sin θ1 cos θ1 0

0 0 1

⎤⎥⎥⎦ ·

⎛⎜⎜⎝
vLx1

vLy1

ωL1

⎞⎟⎟⎠

vG2⃗ =

⎛⎜⎜⎝
vGx2

vGy2

ωG2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
vGx1

vGy1

ωG1

⎞⎟⎟⎠+ ω1⃗ ×

⎛⎜⎜⎝
(x2 − x1)
(y2 − y1)

0

⎞⎟⎟⎠

vL2⃗ =

⎛⎜⎜⎝
vLx2

vLy2

ωL2

⎞⎟⎟⎠ =

⎡⎢⎢⎣
cos θ2 sin θ2 0

sin −θ1 cos θ1 0
0 0 1

⎤⎥⎥⎦ ·

⎛⎜⎜⎝
vGx2

vGy2

ωG2

⎞⎟⎟⎠ (3.1)

Each ω with any subscript are the same in a synchronize motion. If we know the
velocities of the robot 1 we can give the velocities of the robot 2 in order to maintain
costant the distance between the robot.

Omnidirectional robots can also maintain the distance between them by changing
their orientation. Anyway this motion is a particular case that can be performed
giving certains commands that will change the set-up of the second robot that will
execute the different motion, changing its orientation (see Figure 3.2).

In this section we assumed that we can control the local velocities of the robot.
Actually for the Scout mini AgileX is like this. Therefore it is important to know
how the velocities are splitted for each mecanum wheel.

3.1.2 Kinematic of a Mecanum wheel System

A typical system of four mechanum wheels is shown in Figure 3.3. The parameters
of this configuration are shown in table 3.1. In this configuration wheels sizes are
the same[16].
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(a) Step 1. (b) Step 2. (c) Step 3.

Figure 3.2: Particular motion of a omnidirecional structure.

Table 3.1: Robot Parameters.

The configuration parameters and system velocities are defined as follows:

• x,y, θ robot’s position (x, y) and
its orientation angle θ (The angle
between X and XR);

• XGY, inertial frame; x,y are the co-
ordinates of the reference point O
in the inertial basis;

• XROYR robot’s base frame; Carte-
sian coordinate system associated
with the movement of the body cen-
ter.

• SiPiEi, coordinate system of ith
wheel in the wheel’s center point
Pi;

• O,Pi, the inertial basis of the Robot
in Robot’s frame and Pi = XP i, YP i

the center of the rotation axis of the
wheel i;

• OPi
⃗ , is a vector that indicates the

distance between Robot’s center
and the center of the wheel ith;

• lix, liy, li,half of the distance be-
tween front wheels and liy half of
the distance between front wheel
and the rear wheels.

• lix distance between wheels and the
base (center of the robot O);

• ri, denotes the radius of the wheel
i (Distance of the wheel’s center to
the roller center)

• rr, denotes the radius of the rollers
on the wheels.

• αi, the angle between OPi and XR;

• βi, the angle between Si and XR;
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Figure 3.3: Wheels Configuration and Posture definition.

• γi, the angle between vir and Ei;

• ωi [rad/s], wheels angular velocity;

• viω [m/s], (i= 0,1,2,3) ∈ R, is the ve-
locity vector corresponding to wheel
revolutions;

• vir the velocity of the passive roller
in the wheel i;

• [wsi wEi ωi]T, Generalized velocity
of point Pi in the frame SiPiEi;

• [vsi vEi ωi]T, Generalized velocity
of point Pi in the frame XROEi;

• vx vy [m/s] - Robot linear velocity;

• ωz [rad/s], Robot angular velocity.

Developing the calculs, fully described in the article [16] we can arrive at the
following results. They will allow us to control the velocity of each wheel knowing
the velocity of the baricentrum of the robot.

⎛⎜⎜⎜⎜⎝
ω1

ω2

ω3

ω4

⎞⎟⎟⎟⎟⎠ = 1
r

⎡⎢⎢⎢⎢⎣
1 −1 −(lx + ly)
1 1 (lx + ly)
1 1 −(lx + ly)
1 −1 (lx + ly)

⎤⎥⎥⎥⎥⎦ ·

⎛⎜⎜⎝
vx

vy

ωz

⎞⎟⎟⎠
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3.1 Kinematics

(a) W heel i in the robot coordinate. (b) W heel i motion principle.

Figure 3.4: Parameters of ith wheel.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω1 = 1
r (vx − vy − (lx + ly) ωz

ω2 = 1
r (vx + vy + (lx + ly) ωz

ω3 = 1
r (vx + vy − (lx + ly) ωz

ω4 = 1
r (vx − vy + (lx + ly) ωz

We can also know how much the local velocities are in x and y direction knowing
the angular velocities of each wheel, in other words using the inverse formula.

⎛⎜⎜⎝
vx

vy

ωz

⎞⎟⎟⎠ = r

4

⎡⎢⎢⎣
1 1 1 1

−1 1 1 −1
− 1

(lx+ly)
1

(lx+ly) − 1
(lx+ly)

1
(lx+ly)

⎤⎥⎥⎦ ·

⎛⎜⎜⎜⎜⎝
ω1

ω2

ω3

ω4

⎞⎟⎟⎟⎟⎠
If we know the velocities of the wheels and some of them are zero, we can come

back to the basic movement of an holonomic robot (see Figure 1.9).

3.1.3 Kinematics of a structure with two MIR200 robots

Studying the kinematic of a non-holonomic structure we have to add the constrain
that the angle θ1 and θ2 are the same.

Indicating with:

vL1⃗ =

⎛⎜⎜⎝
vLx1

vLy1

ωL1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
xL1̇
yL1̇
θL1̇

⎞⎟⎟⎠
and the other vectors with an analogous form we now want to control only the

speed in direction x, and the agular velocity "ω" in the local frame of the robot, so it
is obvious that the velocity in direction "y" is zero. The vector will come:

29



Chapter 3 Controlling Two Robots

vL1⃗ =

⎛⎜⎜⎝
xL1̇
0

θL1̇

⎞⎟⎟⎠
Now we want to convert this vector in the global frame "vG1⃗ ". Excluding the

angular velocity ω, which will be the same in all configurations (both in the local and
global framing of each robot) from the inverse rotation matrix, the vector will result:

vG1⃗ =
(︄

xG1̇
yG1̇

)︄
=
[︄
cosθ −sinθ

sinθ cosθ

]︄
·
(︄

xL1̇
0

)︄
(3.2)

⎧⎨⎩xG1̇ = cos θ xL1̇
yG1̇ = sin θ xL1̇

vG2⃗ =
(︄

xG2̇
yG2̇

)︄
=
(︄

xG1̇
yG1̇

)︄
+ ω⃗ ×

(︄
(x2 − x1)
(y2 − y1)

)︄
(3.3)

⎧⎨⎩xG2̇ = cos θ xL1̇ − ω (y2 − y1)
yG2̇ = sin θ xL1̇ + ω (x2 − x1)

In the local frame they are:

vG2⃗ =

⎛⎜⎜⎝
xL2̇
yL2̇
ω

⎞⎟⎟⎠ =

⎡⎢⎢⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤⎥⎥⎦
⎛⎜⎜⎝

xG2̇
yG2̇
ω

⎞⎟⎟⎠ (3.4)

that in an extended form is:

vL2⃗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xL2̇ = cos2 θ xL1̇ − ω cos θ (y2 − y1) + sin2 θ xL1̇ + ω sin θ (x2 − x1)
yL2̇ = −ω sin θ (y2 − y1) + ω cos θ (x2 − x1)
ω⃗ = ω⃗

With two non-holonomic robot we can determine that:

(x2 − x1) = d sin θ

(y2 − y1) = d cos θ

So the entity on y direction will disappear as aspected.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xL2̇ = xL1̇ + ω d (1 − 2 cos2 θ)
yL2̇ = ω d sin θ cos θ − ω d cos θ sin θ = 0
ω⃗ = ω⃗
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3.2 Programs

3.2 Programs

Knowing the kinematic of the robot we can start to write a program that will control
the second robot. First it has been studied how to perform basic movemnt of a single
robot, that have been used later for controlling the leader robot. Basic programs
had been developed in the first period of the thesis project. Then the OOP method
(Object-Oriented Programming) has been integrated with the associated different
advantages.

First of all we have to connect the robot with our computer or create a simulation
environment in Gazebo. For the first request the MATCH institute in Leibniz
University has developed commands to connect the computer to the Scout Mini
robot. The simulation environment has been created with a launch file that will boot
a "big square map" placing two MIR200 robots called mir1 and mir2 in a certain
position. The leader robot (mir1) is placed in the origin and the follower robot is
placed one meter far from the origin in the x direction.

The topics used as Subscriber, to get information from the robot are: ground_truth,
amcl_pose, odom or similar. Those used as Pubisher, to publish information to the
robots, are cmd_vel or similars.

To see an example of how they are linked together, we can see the Figure 3.5 where
we can see that the two topics ground of the mir_1 and mir_2 robots go to the
function circled in red, which performs the calculations and gives the speed messages
to mir_2 via the topic cmd_vel. The latter topic will interact with gazebo so as to
show the movement of the mir_2 robot.

Figure 3.5: Node graph.

Several codes were written, some controlling the Scout Mini Rover robot others
the two MIR200 robots in the simulation environment, essentially only the topics
change, because the type of control is the same.

Analysing the code that controls the robot follower, we see that first of all, all the
necessary packages have been added to implement a programme that can be used
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on ROS and with which we can perform all the mathematical calculations. A class,
according to the OOP method, dominates the code. It consists of several functions
that perform certain tasks each. In the constructor "__init__", the attributes of the
robot have been defined: the distance between the two robots and the appropriate
publishers and subscribers. For this code, three Subscribers have been identified, each
finding respectively: position and orientation of robot 1, position and orientation of
robot 2 and speed of robot 1, where with robot 1 we define the leading robot and
with robot 2 the follower.

All three Subscribers have as reference topics, from which they take data, as
ground_truth topic of their respective robots. There is also a Publisher that provides
speed information to robot 2, hence it is able to command it. Therefore the various
messages to be exchanged between Subscribers and Publishers were described, as
they will be in the form of position (Odometry) for the former and speed (Twist) for
the latter.

Then, the callback functions were defined, which are useful for the Subscribers that
must provide information on the position and orientation of the robots. The latter is
expressed in quaternions so an appropriate function transforms it into radians. These
callback functions will be applied to both robot 1 and robot 2. As for the Subscriber,
which obtains information on the speed of robot 1, it will have an appropriate callback
function that will have messages of type Twist with angular and linear velocities
in all three spatial directions, although one will be zero (because we are in plane
motion) and therefore the variable will not be called back.

The equation 3.3 was then used to calculate the global velocity of robot 2, and then
transformed to local with the appropriate steps described in section 3.1.3, defining
the local linear velocity of robot 2 in the x-direction and angular velocity in the
z-direction.

The steps to obtain the global velocity of robot 1 from the local velocity were not
done because the topic ground_truth is defined in the global reference system.

In the main function, the node name is defined, as programming for ROS requires,
and the class with the described functions is executed in a loop. In this way, robot 2
will follow robot 1 in a synchronised manner, accelerating in a curve if outside and
decelerating if inside, maintaining a constant distance between the robots.

3.2.1 Closed Loop Control Systems

In section 3.2, we described the programme to control the second robot which will
follow the first one in a synchronised manner and maintain a constant distance equal
to the initial one. With this method, however, we cannot guarantee that this distance
remains the same over time, becouse external agents or noise and inaccuracy of all the
sensors (IMU and encoder) could change the trajectory of the second robot, which
could even collide with the leading robot. The robot control system was therefore
implemented to prevent any misalignment due to mechanical issues such as wheel
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slippage from leading the follower robot into an incorrect trajectory. For this, it was
appropriate to include a closed-loop control system with feedback in the code.

A function was created based on the following schematisation (see Figure 3.6). In
this function we have to provide three types of information: the actual position, the
target position and the desired (target) speed of robot 2. We obtain information of
the current position of robot 1 and 2 via the same topics used in the description
in section 3.2 by defining them now as "Actual Position ROBOT". By defining the
distance between the two robots as ’d’ and decomposing it into the two directions ’x’
and ’y’ ( dx and dy), the desired theoretical position (target position) of robot 2 in
the local reference system was calculated by applying the rotation matrix.⎧⎨⎩x2 = x1 + dx cos θ1 − dy sin θ1

y2 = y1 + dx sin θ1 + dy cos θ1

The orientation, on the other hand, was taken directly from the message indicating
the orientation of robot 1, as they must be the same. The position of robot 2 was
calculated in the local reference system because every feedforward control system is
in the local reference system.

Figure 3.6: Closed loop control diagram.

Once the theoretical position was calculated, the deviation between this and the
actual position was calculated in order to determine the errors ex, ey. The target
velocity of robot 2 was calculated as in section 3.1.3. It depends on the current
position of the two robots and the speed of robot 1. By entering all the parameters
in the closed-loop control system function, we are able to obtain as output a linear
and angular velocity that will be given to robot 2, which will be retroactive because
it will be continuously updated and modified according to the two errors of distance
and orientation in the two directions and will therefore adjust the robot’s velocity
until it reaches the desired theoretical velocity. To better understand, in the figure
below we can see a deviation between the target position and the current position,
which will result in an increase in robot2’s linear speed until the desired position is
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(a) Rviz interface with actual and target
frames.

(b) Gazebo interface of two MIR robots moving.

Figure 3.7: Two MIR robots synchronised in a simulation environment.

reached.
In order to display the actual deviation of the second robot from the desired

trajectory, the use of Gazebo was not sufficient; therefore, an additional parameter
was added to the function concerning the current and target position of robot 2,
which allows us to display in RVIZ the terns of axes that show us exactly the position
and orientation of the function to which it has been applied. They are visible in the
Figure 3.7a in green and red colour

3.3 LiDAR Sensor- amcl localization setup

The laser mounted on the Scout Mini Rover is produced by the SLAMTEC and
it is the RPLidar A3 model. This laser is capable of scanning both indoor and
outdoor environments. It is very thin, has a footprint of only 4 cm, and is silent as it
uses brushless motors. It can scan distant objects up to 25 metres away and has a
scanning range of 360◦. RPLidar A3 adopts laser triangulation ranging principle,
and with high-speed RPVision ranging engine,it measures distance data 16000 times
per second and keeps its excellent performance in a long distance.

This laser was used to obtain the actual position information of the follower robot
from the leader robot, a different approach which does not use amcl topic, and which
can be compared with the latter. To get orientation and position in the x-direction,
the acquisition of laser data was limited to a certain angular range so that only
points in that range were acquired. The laser provides only one value for each point.
This value is equal to the distance in polar co-ordinates between the point and the
laser (radius). To know the angle associated with each point, the position in the data
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3.3 LiDAR Sensor- amcl localization setup

(a) 360 Degree Omnidirectional Laser
Range Scanning.

(b) Laser triangulation ranging principle.

Figure 3.8: RPLidar A3 illustrations [6]

acquisition range was taken into account. To explain it better, the laser rotates, and
in a turn of 360° it acquires 1947 points and measures their distance. This means
that every 0.184 degrees it takes a value from the objects around it. So knowing the
position of the acquired value in the range 0-1947 we can easily derive the angle by
multiplying this value with 0.184. Now knowing the angle and distance, it is possible
to transform these values into cartesian coordinates, obtaining the x and y of each
point. From those points, a linear regression was performed to obtain the line that
best approximates the position of the points and thus its inclination. In addition to
this through the RPLidar it is possible to measure the average distance of all points
in this range in the x direction by multiplying the radius by the cosine of the angle
of that point. It is possible to repeat the same steps to obtain a distance in the y
direction without the necessity of doing a linear regression.

Scout Mini Rover has an irregular shape, so to be able to use such a system it
would be necessary to create rigid, flat surfaces to be mounted on top of them, at
the height of the laser so as to have more accurate data (see Figure 3.9).

Figure 3.9: Illustration to get the actual position via RPLidar A3.

To perform linear regression, instead of creating a code with all the formulation to
search for the line that minimises the sum of the deviations between the estimated
and observed values, also known as regression residuals, and then defining for each
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point:
yî = a + b xi ∀i

the difference between the actual and predicted data is:

yi = yî + ϵi

so an error is made for each observation:

ϵi = yi − yî

The line that minimises the deviation will be:

n∑︂
i=1

ϵ2
i =

n∑︂
i=1

(yi − yî)2 =
n∑︂

i=1
(yi − a − b xi)2 = min

Figure 3.10: Simple Linear Regression Diagram.

it was preferred to use a commonly used Python package for this type of need. The
package scikit-learn is a widely used Python library for machine learning, built on top
of NumPy and some other packages. It provides the means for preprocessing data,
reducing dimensionality, implementing regression, classifying, clustering, and more.
Like NumPy, scikit-learn is also open-source. The system needs to be given the x- and
y-coordinates of the points to be studied in the form shown in Figure 3.11, obtaining
as results, via the "LinearRegression()" function, the coefficient of determination
and the slope coefficient. With these two parameters we can understand how far
the approximated line deviates from the values with which it was constructed, and
through the angular coefficient we know the orientation in radians of the robot
follower.
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Figure 3.11: Input Scikit-learn package for Linear Regression.

3.4 Mapping the Environment

The first essential feature for navigation is the map. Like a navigation system, a
robot needs a map, so we need to create a map and give it to the robot, or the robot
should be able to create a map by itself. For this thesis project the map was created
by the robot via the RPLidar on it. The Lidar can measure distance to the obstacle
on the XY plane and a map can be created using the AMCL (Adaptive Monte Carlo
Localization) aproach. AMCL is the upgrade of Monte Carlo Localization aproach
(MCL).

When the robot moves, MCL generates N new samples that approximate the
robot’s position after the motion command. This high number of samples is also
called particle filter that consists on three steps:

1. Re-sampling: Draw with replacement a random sample from the sample set
according to the (discrete) distribution defined through the importance weights.
This sample can be seen as an instance of the belief.

2. Sampling: Use previous belief and the control information to sample from the
distribution which describes the dynamics of the system. The current belief
now represents the density given by the product of distribution and an instance
of the previous belief. This density is the proposal distribution used in the
next step

3. Importance sampling: Weight the sample by the importance weight, the
likelihood of the sample X given the measurement Z [18].

As you get additional measurements, you predict and update your measurements
which makes your robot have a multi-modal posterior distribution. The number of
samples required to achieve a certain level of accuracy varies drastically. During
position tracking, on the other hand, the uncertainty is typically small and often
focused on lower dimensional manifolds. Thus, many more samples are needed during
global localization to accurately approximate the true density, than are needed for
position tracking. An often criticized limitation of plain particle filters is their poor
performance in higher dimensional spaces. This is because the number of particles
needed to populate a state space scales exponentially with the dimension of the state
space. That is where Adaptive feature comes to solve this issue. The AMCL adjusts
the number of particles in the filter: when the robot’s pose is highly uncertain,
the number of particles is increased; when the robot’s pose is well determined, the
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number of particles is decreased. This enables the robot to make a trade-off between
processing speed and localization accuracy[19]. Even though the AMCL package
works fine out of the box, there are various parameters which one can tune based on
their knowledge of the platform and sensors being used.

In the study of this thesis the amcl package has been modified to get a better
result during the motion of the robot Scout Mini Rover setting the parameters of
the RPLidar the metodolody used is the try and error one. A map is created and
the AMCL package is now configured to get better results while the robot moves
(see Figure 3.12). They may be useful to future application, such as autonomus
navigation.

Figure 3.12: Map created with RPLidar A3 in MATCH department.
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Platform Design

This chapter will deal with the connection of the robots by describing the structure
that has been implemented and prototyped. Besides being synchronised, the two
robots will have to have a platform that connects them. This platform will have to be
strong enough to support a static load equal to the sum of the load supported by each
individual robot. Furthermore, it will have to prevent the two robots from hindering
their motion. This is because the motors of the Scout Mini Rover robots are very
fragile and an unplanned displacement could damage them. These displacements are
due to the way we track the robot and the mechanics of the latter. As explained in
the paragraph 1.2.3, wheel contact is discontinuous and there could be slippage due
to ground-rollers contact.

Differents tools and methodologies were used to design this plate. First of all, the
3D modelling software used was SolidWorks, and all simulations were performed with
SolidWorks Simulation. The idea was to create soft components that mounted on the
plate would allow free movement between the robots, while still giving the structure
some stability. 3D printing of soft material was used to observe the behaviour of
the geometries assumed for the soft component, while FDM was used to create
supporting components useful for assembling the structure.

Technical Specifications

It is good to specify the characteristics that our plate must have:

• It must be able to support a minimum weight of 100kg;

• It must allow for possible movement at the mounting points on the robots, an
estimated 10 cm of movement.

• It must not hinder the cushioning of the robots following loads.

• It shall accommodate a standing person or another robot.

• It must not obstruct the movement of the robots by colliding with electrical
equipment or surrounding objects.
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4.1 SolidWorks

Solidworks is a 3D drawing tool with a variety of functionalities. A variety of objects
with the strangest shapes can be drawn in a simulative environment. The software
can be used for both solid and surface modelling. In this study, it was used for
the evaluation of overall dimensions and for the design of robot connection plate
components.

A 3D model of the chassis of the Scout Mini Rover robot without wheels can be
find in the AgileX library on github. This model, however, in Solidworks is not seen
as a single model but as many small surfaces and hundreds of objects (see Figure
4.1a). Due to the large number of components, it is therefore a large drawing file,
making it very difficult to work on it with normal performance laptops.

Being a step file, it is not possible to have reference points and it was difficult to
position the omni-directional wheels at the exact point of the end of the dedicated
supports. Therefore, it was easier to create a rough three-dimensional model of the
Scout Mini Rover robot, taking into account the overall dimensions and electronic
components (see Figure 4.1b).

(a) Scout Mini Rover real model. (b) Scout Mini Rover rough 3D model.

Figure 4.1: Three dimensional Scout Mini Rover Models

To connect the robot to the platform, commercial components were used, which
come from conveyor rollers for transporting industrial pallets. They are not actually
rollers but spheres, and they are also called load-bearing spheres. These consist of a
main ball that touches the platform, which is enclosed in a structure with other balls
to reduce friction on the main one (see Figure 4.2). This technology provides good
mechanical characteristics, such as a high load bearing capacity (80 kg load bearing
capacity)[20] and allows us to move the robot underneath, with negligible platform
movement.

The platform, however, supported with three load-bearing spheres, mounted only
in the robot structure, would move for any slightest disturbance. This must be
avoided. Therefore it was decided to use components made of soft material, which
would not disturb the movement of the robots underneath but give stability to the
structure.

40



4.1 SolidWorks

Figure 4.2: Heavy-duty ball caster with base flange (load-bearing spheres).

(a) Horizontal Wheel in resting position. (b) Deformed Horizontal Wheel

Figure 4.3: Horizontal Wheel movement.

The final shape of the spokes between the inner and outer rim was derived from
several try and error tests with the help of the solidworks simulation environment
and the 3D printer for soft materials. The only trick that we took in consideration
was that the lenth of the spoke had to be at least long as the outer rim diameter less
the inner rim diameter. The first two wheel prototypes were 3D printed on a reduced
scale, due to the available printing surface of the printer. From these prototypes, we
should have seen whether the geometry given to the spokes was suitable for bringing
the inner rim closer to the outer rim. However, the material of the 3D printer was
soft but not durable and by the second or third application, cracks were occurring
(see highlighted parts in Figure 4.4). With this drawback and the fact that in any
case the component created was of reduced dimensions, we moved on to others design
approaches: the simulative one to verify the conformity of geometries and that of
a moulding design to cast the material in a 3D printable mould and realised the
horizontal wheel with the actual dimensions.
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(a) F irst prototype of Horizontal wheel. (b) Second prototype of Horizontal wheel.

Figure 4.4: Horizontal wheel printed in a soft material.

4.2 Simulation Tests

Using SolidWork simulation, the displacements of the inner cylinder of the various
Horizontal wheels created were simulated and it was seen which points were exposed
to high stress that would trigger a breakage in the course of time.

To do this, it was necessary to define the material. Therefore, a silicone material
called Dragonskin 30 was chosen. This is a super-strong and flexible soft material
suitable for our purpose, but it requires special precautions to make it. To realise
the Horizontal wheel, once the male and female mould had been printed using the
FDM 3D printer, the silicone material was prepared.

Composed of two liquid parts, these are placed and mixed in a container in equal
quantities. The container is then placed in a depressurised environment, until the
pressure of 0.1 [bar] is reached. Reaching this depression prevents the creation of
bubbles inside the mould during solidification. The compound will then be poured
into the previously lubricated mould and after a certain period of time it will solidify,
giving the object the desired characteristics. After this step, at the end of the cure
time, the compound will have solidified and the removal of the burrs (the excess
material on the mould) will take place. Finally two horizontal wheel were made, one
for hosting a single load-bearing ball and the second one for hosting two of them
(see Figure 4.5).

As far as simulations are concerned, one of the first prototypes of the Horizontal
wheel was simulated. In the Figure 4.3, its geometry can be seen and it can be
deduced that the part of the spoke attached to the outer ring is subjected to excessive
stress, which was then verified by the simulation values. Therefore, the prototype
has been modified to the final version, where it does not have any parts subjected to
stresses greater than the breaking stress because these parts have been appropriately
resized (see Figure 4.6). The simulation, however, shows us that the displacement
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Figure 4.5: Horizontal wheel casted with Dragon-skin 30.

of the inner ring is not as great as in the previous case, and that there is a section
shrinkage of about 2 tenths of a millimetre, which is quite acceptable.

(a) Strain simulation. (b) Stress simulation.

Figure 4.6: Final prototype of Horizontal wheel.

4.3 Prototype

The designed prototype of the platform consists of a large plate that supports the
robots in two points by means of load-bearing spheres and in one point on the
ground by means of a cushioned support that also has a load-bearing sphere in its
extremity. The designed plate is assumed to be made of aluminium and will house
all the components to be connected to the robots. In this plate, the stress resistance
indicated in the specifications was verified with a FEM simulation, which showed
that there are no stresses that lead the material to cracking, and the maximum
displacements that occur are less than 0.7 mm, which is completely acceptable and
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remediable. If more stability is required, an additional cushioned support can be
added to the front. The virtual prototype can be seen in the Figure 4.7.

Figure 4.7: Virtual prototyope.

The first real prototype was made with the materials available in the MATCH
department’s warehouse and the FDM 3D printer. Two aluminium profiles and two
plates are the basic components of the frame. In the aluminium plate, the support
of the horizontal wheel is assembled and the two profiles attached. An initial version
consisted of supporting the platform with three load-bearing spheres, all positioned
on the robots.

In this case, it is not necessary to have an intermediate support point between the
two robots so the support with the suspension damper that rest on the ground it
would not be necessary anymore (see Figure 4.8).

On the other hand, the realisation of this prototype showed that the structure is
unstable except for minimal movements. Therefore, a version with an intermediate
support, similar to the one designed, but without a suspension damper, was chosen.
The shock absorber was not included due to the timing of the suppliers. Although
not satisfying a technical specification, the inserted support made it possible to
visualise the behaviour of the plate to the movement of the robots.
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(a) Platform supports on the robots, consisting of 3 supporting spheres.

(b) Assembled platform without intermediate support.

Figure 4.8: Platform prototype without intermediate support.
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Results

As far as the robot positioning control system is concerned, this is very much
influenced by the errors encountered during movement due to all the sensors (IMU
and encoders) as well as the drift in odometry caused by the slip of the robot’s
wheels. This is why the closed-loop control system with retroaction was necessary
to solve this type of problem. By acquiring positions using the Adaptive Monte
Carlo Localisation method, the system will update the position error and correct the
speed of the robot follower, allowing the target position to be reached in the shortest
possible time.

On the other hand, the study was performed in a simulation environment where
sensor-related problems are minimal, and mechanics-related problems such as wheel
slippage do not occur. It is therefore difficult to distinguish in Gazebo or Rviz the
type of code launched between the system with feedforward controller and the one
that controls the robot follower with only kinematic formulation. It will therefore be
necessary to verify the correctness of the codes in a real environment. One problem
with the chosen formation control however remains. If for some reason the leader
robot fails unexpectedly, for example, the follower robot will wait for it, whereas if
the follower robot fails unexpectedly, the leader robot will continue its motion and
damage the linking structure and the robots themselves.

The RPLidar laser localisation system of the Scout Mini Rover robot was useful
for comparing the data acquired with the AMCL methodology in order to have a
more truthful and less noise-dependent data. On the other hand, it will be necessary
to arrange the robots of flat surfaces at the height of the laser. Therefore the current
arrangement of the instrumentation will have to be changed, perhaps by adding a
new laser in a lower position used only for this purpose. On the other hand, this
type of data acquisition can be used with the MIR200 robots because they already
have a parallelepiped shape. With the lasers placed in the back corner, it is possible
to measure the distance in the x-direction and the orientation, while with the one
in the front (and by analogy also the one in the back), it is possible to see whether
the robot follower is going too fast or too slow, by acquiring on-off data. When, for
example, MIR2 slightly overtakes the front of the leader robot, the front laser will
perceive a drop in the current distance, which means that robot 2 is advancing too
fast.

47



Chapter 5 Results

The platform connecting the robots is useful in preventing any movements or
misalignments during the movement of the structure from causing the motors to
strain and the robots to drag during their movement. The omission of certain
components, such as the plate and the use of profiles to compensate this deficiency,
actually proved to be a better alternative for prototypes like this. In fact, angle
brackets can be fitted to the profiles, to which other profiles can be fitted, to create
a more complex structure, without creating holes or anything else. This is precisely
how the intermediate support was installed.

The use of wood was essential for the assembly of the load-bearing spheres, which
could be positioned in any direction by drilling the wood directly with the screws. The
two robots have different fairings, the most recent one, although not operative due to
the breakage of a motor, has a perforated plate that allows multiple components to be
mounted on it. However, it is lower than the original, so a wooden shim was installed
to even out the difference in height in the support for the load-bearing spheres. In
addition, the laser in this latest robot has been placed in the centre and hinders the
movement of the plate. The latter should be positioned above all the components,
but a profile that is too high could lead to problems with tip loading, so it would be
better to review the arrangement of the electronic components by lowering them as
much as possible while checking that the lasers still work at maximum performance.
Furthermore, the plates used to rest on the load-bearing spheres are only coated with
aluminium, they have a plastic material inside. Simply pressing the structure with
the body weight will result in grooves that would not occur with an all-aluminium
plate as in the virtual prototype.

The simulations for the horizontal wheel were useful but not totally. Those of
the final horizontal wheel show that the inner ring does not reach the outer one
with an imposed displacement of 50 mm. When the object is finished, however, the
displacements of the inner ring are as desired (they reach the outer ring). The shape
of the spokes, however, creates resistances in certain directions, resistances which
are negligible because the mere weight of the robots counteracts them. The possible
movement of the plate with the horizontal wheels is by a wide margin. Tests were
carried out by moving only one robot, and it was able to do this without disturbing
the stationary robot in the various directions, for about 10-15 cm if the robot rotates,
it can make a rotation of about 180° before affecting the movement of the other
robot.

The sudden stop of the robot’s movement, however, causes an oscillation of the
platform, which is dampened slightly by the horizontal wheels. It also allowed us to
understand how to position this component so that it could move freely in space,
guaranteeing all possible movements that a holonomic robot system could perform.
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5.1 Conclusion

Analysing all results, it can be seen that with this thesis work, a first prototype
structure for handling heavy objects in confined spaces has been developed.

The analysis of the state of the art analysed the use of platforms moved by
holonomous robots, highlighting the main advantages and disadvantages. The type
of formation control chosen was the leader-follower type. Programming training
and the study of kinematics was essential for writing the control code. In this case,
the lack of possibility of having fully functioning holonomous robots diverted the
study of the platform towards a system controlled by two non-holonomous robots.
This made the research more interesting from the point of view of kinematics, and
considering and studying a more complex system will be easier to implement in
holonomous robots in the future. The handling of the robots was implemented with a
closed-loop control system with feedback so as to improve the synchronisation of the
two robots. A further method for tracking the robot follower was developed, albeit
with considerable disadvantages in terms of construction, but with the enormous
advantage of simplicity. The structure if implemented with a cushioned support will
be able to support a maximum load of 100 kg. The platform will allow possible
asynchronous movements without impacting the robot components.

The mapping of the working environment in the MATCH department provides
a map of a real environment, from which the Scout Mini Rover robots can locate
themselves. As there was no second robot available, however, it was not possible
to apply the codes created in this mode. Moreover, even if we wanted to verify
the behaviour of the two MIR 200 robots in reality, the environment would have
been too tight to move them without the risk of robots’ collisions with objects
placed in the laboratory. To understand the size of these robots in the mapped
environment in Figure 3.12, we can see a well-defined rectangle in the centre of the
room, this is a MIR200 robot that was placed there to carry out other research
purposes. Considering that all the black dots are obstacles, it is evident that the
synchronised movement of two parallel rectangles of this size, which moreover have
no holonomic movement, is complex and dangerous.

The first prototype of the platform to connect the two robots provided the necessary
indications to improve it, focusing on the most critical aspects, oscillation, damping,
torque damping.

5.2 Future Implementations

This thesis project can be implemented in the future in several ways.
Firstly, if the robots remain two, it is necessary to have a joint that absorbs the

torque and a support that has a damper. Another robot could be added and solve
these problems. The formation control could remain the same or change, adopting
more complex ones.
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The robot follower tracking system using lasers can also be reused, but solving the
problems described above. Nowadays, RPLidar lasers can recognise robots by their
shape and deduce their position, so this method can also be implemented even if the
complexity will increase.

The platform will have to have at least rigid plates in contact with the supporting
spheres so as not to cause grooves and direct the movement in particular directions.
If larger spaces are available, real robots can be tested and the methodology for
mapping the environment can be replicated. An autonomous navigation system
could also be implemented to the system, capable of reaching a given target position
without colliding with surrounding objects, thus following the best path. Finally, this
structure could be implemented to transport objects or people in warehouses or to
support an anthropomorphic robot that will perform various tasks in a collaborative
robot perspective.
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