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Abstract

Nella tesi, redatta in lingua inglese, si conduce uno studio dettagliato su HQC
(Hamming Quasi Cyclic), un crittosistema post-quantum basato su codici.
Inizialmente, si offre una panoramica dei concetti fondamentali della teoria dei
codici, per poi procedere con I'analisi delle diverse famiglie di codici impiegate
in HQC: codici a ripetizione, codici BCH, codici Reed-Solomon e, infine, i
codici Reed-Muller.

Successivamente, si esamina con dovizia di particolari il background matem-
atico su cui si fonda HQC, con attenzione alla definizione del problema SDP
(Syndrome Decoding Problem) nella sua versione decisionale. Inoltre, ven-
gono presentate le varianti di questo problema, ovvero 2-QCSD e 3-QCSD con
parita e cancellazioni. Nel prosieguo, senza pretesa di esaustivita, si affronta
il tema della teoria della complessita. In particolare, vengono definite diverse
classi di complessita (P, NP, NP-complete e NP-Hard) ed i relativi problemi
noti, tra cui la fattorizzazione di interi, SDP, SAT, vertexCover, setCover e
Halting Problem. Inoltre, si assume ragionevolmente che le varianti di SDP
considerate appartengano alla classe di complessita di SDP, cioe la classe dei
problemi NP-Complete.

Il lavoro prosegue con una minuziosa descrizione delle basi teoriche di HQC,
delineando chiaramente la distinzione tra la versione PKE (Public Key Encryp-
tion) e KEM (Key Encapsulation Mechanism). Vengono forniti dettagli ap-
profonditi riguardanti i parametri e le diverse configurazioni dei quattro round
della competizione NIST, comprendenti le dimensioni di chiave pubblica, chi-
ave segreta, testo cifrato, e ’eventuale chiave segreta condivisa. In aggiunta, si
offre un approfondito e rigoroso studio matematico del DFR, (Decoding Failure

Rate) relativo al decoder HQC originale.



Il culmine del lavoro di tesi e rappresentato dalla presentazione del nuovo
decoder HQC, il quale incorpora il tradizionale decoder HQC arricchendolo
con un pre-filtraggio del rumore basato su una strategia di correlazione. E
cruciale sottolineare che la concezione di questo nuovo decoder HQC ¢ il cuore
pulsante del lavoro, la sua parte piu significativa e il punto focale dell’intera
ricerca. Tale decoder nasce da una considerazione strettamente ancorata alla
teoria dell’informazione: c’¢ informazione che nella decodifica classica di HQC
rimane inutilizzata, quindi, il suo impiego si traduce inevitabilmente in un
notevole aumento dell’efficienza. La tesi offre, pertanto, un’analisi matematica
dettagliata del DFR per il nuovo decoder, comparandolo esplicitamente con
il DFR del decoder HQC tradizionale. In aggiunta, si valuta attentamente la
complessita computazionale del nuovo decoder, evidenziando in modo esplicito
il suo esiguo incremento rispetto alla controparte originale.

In conclusione, vengono presentate simulazioni implementate in C e Python
a conferma dei risultati teorici, con l'intento di evidenziare i benefici derivanti
dall’introduzione del decoder proposto. In particolare, il nuovo decoder con-
sente di ridurre le dimensioni della chiave pubblica e del testo cifrato, con-
tribuendo cosi a ridurre la quantita di dati trasmessi su canale pubblico. Va
notato che l'entita di questa riduzione e fortemente influenzata dalla config-
urazione utilizzata, pertanto, nei prossimi capitoli di tale tesi, questo aspetto
verra esaminato dettagliatamente per le diverse configurazioni di HQC.

Infine, nella parte finale della tesi sono delineati alcuni scenari di interesse
pratico in cui I'introduzione del nuovo decoder puo apportare benefici, special-
mente in contesti in cui si adoperano chiavi effimere per garantire la Perfect
Forward Secrecy (PFS), come ad esempio nel protocollo TLS (Transport Layer

Security) e nelle VPN (Virtual Private Network).



Abstract

This thesis explores the Hamming Quasi Cyclic (HQC) post-quantum code-
based cryptosystem, delving into coding theory principles and examining code
families such as repetition, BCH, Reed-Solomon, and Reed-Muller codes. Ad-
ditionally, mathematical aspects, particularly the Syndrome Decoding Prob-
lem (SDP) and its variants (2-QCSD, 3-QCSD), are scrutinized, with a brief
introduction of complexity theory.

The theoretical foundations of HQC, distinguishing between Public Key
Encryption (PKE) and Key Encapsulation Mechanism (KEM) versions, are
thoroughly detailed. The parameters and configurations of NIST competition
rounds are extensively discussed, accompanied by a mathematical analysis of
the Decoding Failure Rate (DFR) for the original HQC decoder.

The focal point of the thesis is the groundbreaking introduction of a new
HQC decoder. This innovative decoder incorporates noise pre-filtering based
on a correlation strategy, harnessing information completely overlooked in the
classic HQC decoder. This pivotal addition unequivocally ensures greater ef-
ficiency. Furthermore, the DFR for the new decoder is meticulously analyzed
and compared with the classical HQC decoder.

Simulations, conducted using both C and Python code, validate theoretical
findings, highlighting the proposed decoder’s advantages in reducing public key
and ciphertext sizes leading to a decrease in data transmitted over a public
channel. The degree of reduction is configuration-dependent, prompting a
detailed examination of various HQC configurations in subsequent chapters.

Finally, some practical scenarios are outlined in which the introduction of
the new decoder can bring benefits, especially in contexts where ephemeral
keys are used to ensure Perfect Forward Secrecy (PFS), such as in the TLS

(Transport Layer Security) protocol and in Virtual Private Networks (VPNs).



Introduction

In recent years, significant strides have been made in the field of quantum
computing, which employs the intricate principles of quantum mechanics to
tackle complex mathematical problems. A quantum computer is a machine
that employs quantum-physical phenomena to perform computations in a way
that is fundamentally different from a "normal” classical computer. While a
classical computer is, at any point in time, in a fixed state, such as a bit string
representing its memory contents, the state of a quantum computer can be a
"mixture”, a so-called superposition, of several states [1]. The potential power
of quantum computers far surpasses that of classical computers. Consequently,
if large-scale quantum computers are ever built, they will have the capability
to undermine many of the cryptosystems that currently safeguard our digital
communications. Some hard mathematical problems which can be solved in
polynomial time with quantum computers are at the basis of many widespread
cryptographic primitives and protocols, like Rivest, Shamir, Adleman (RSA),
ElGamal, Digital Signature Algorithm (DSA), Elliptic Curve Digital Signature
Algorithm (ECDSA), Diffie-Hellman and others [2] [3].

In the field of quantum algorithm development, two pioneering algorithms
have formed a solid foundation for potentially breaking today’s theoretically
grounded public-key cryptosystems. In 1994, Shor introduced an efficient
polynomial-time algorithm designed for solving integer factorization and dis-
crete logarithm problems, based on the existence of quantum computers [4].

In 1996, Grover introduced a quantum algorithm characterized by a square



Introduction

root of N complexity for searching an element within an unsorted database
comprising N records [5]. Upon realization on quantum computers, Grover’s
algorithm has the potential to undermine symmetric-key cryptosystems. To
counteract attacks based on Grover’s algorithm, it becomes necessary to dou-
ble the key sizes in order to maintain a comparable level of security against

classical computers.

In line with the preceding statements, the implications of a quantum com-
puting breakthrough, which experts believe is merely a matter of time, are
profound, jeopardizing the confidentiality and integrity of modern communi-
cations. While quantum computers have yet to materialize in the present,
it remains imperative to diligently pursue the establishment of cryptographic
systems that can withstand quantum computer menace, and by extension, tra-
ditional computing threats. These cryptographic solutions should seamlessly
integrate with and operate within existing networks and communication sys-
tems. As a response to this impending challenge, the field of post-quantum

cryptography (also called quantum-resistant cryptography) has emerged.

Recognizing the urgency of preparing for the post-quantum era, the Na-
tional Institute of Standards and Technology (NIST), a pivotal agency within
the United States government responsible for technology management, ini-
tiated in 2013 a process to solicit, evaluate, and standardize one or more
quantum-resistant public-key cryptographic algorithms [6]. Over the years,
this cryptographic competition has progressed through a series of rigorous
rounds, each designed to scrutinize various aspects of cryptography, including
public-key encryption (PKE), key encapsulation mechanisms (KEMs), and

digital signature schemes.

In a bid to ensure an exhaustive selection process, this contest was metic-
ulously divided into three distinct rounds for each of the aforementioned cat-
egories. As of the present moment, NIST has successfully concluded the third

round of the Post-Quantum Cryptography (PQC) standardization process.
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’ PQC Algorithm \ Status \ Type \ PKE/KEM vs. Signature ‘

CRYSTALS-Kyber | Standard | Lattice PKE/KEM
CRYSTALS-Dilithium | Standard | Lattice Signature
FALCON Standard | Lattice Signature
SPHINCS Standard | Hash Signature

HQC Round 4 | Code PKE/KEM

BIKE Round 4 | Code PKE/KEM

Classic McEliece Round 4 | Code PKE/KEM

SIKE Broken | Isogeny PKE/KEM

Table 1: Current state of the NIST PQC Standardization Process

Four candidate algorithms (CRYSTALS-KYBER as PKE/KEM, CRYSTALS-
Dilithium, FALCON and SPHINCS+ as digital signature schemes) have been
selected for standardization [7]. Additionally, four other algorithms (BIKE,
Classic McEliece, HQC, and SIKE) advanced into a further round, the fourth,
to be chosen for Key Encapsulation Mechanisms (KEMs). To summarize,
refer to Table 1 [8]. It’s worth noting that the fourth round is currently un-
derway, and SIKE has been subjected to an attack, compromising its security.
This phase is crucial in order to identify a robust Key Encapsulation Mecha-
nism, with a keen focus on exploring alternatives to the prevailing lattice-based
schemes that have held prominence up to the conclusion of the third round.
Notably, within the realm of these alternatives, code-based cryptography,
underpinned by principles drawn from coding theory, has emerged as a stand-
out contender. BIKE and HQC, both rooted in structured codes, present
compelling options for a KEM that does not rely on lattices. It is anticipated
that, upon the culmination of this fourth round, NIST will select at most one

of these two candidates for formal standardization.

11
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Our contribution

The focal point of this thesis work is the design of a new decoder for HQC. In
particular, our contribution lies in defining a novel decoding algorithm based on
correlation. Specifically, we observed that in the decoding algorithm proposed
in HQC, the knowledge of the secret key was entirely disregarded, even though
it is known to the legitimate user intending to decrypt. In HQC, the overall
error pattern added to the codeword is assumed to be entirely random during
the decryption phase. However, as previously mentioned, we observed that
this is not the case in reality. For this reason, the fundamental idea is to
leverage this information that is completely overlooked in HQC to enhance the
efficiency of the decoding algorithm. To this end, what we have introduced is a
new decoding mechanism that involves the introduction of a preliminary noise
filtering stage with a correlation-based strategy. We will delve into the details
of this new algorithm extensively throughout this work. However, intuitively,
it is reasonable to expect that utilizing previously overlooked information may
contribute to achieving higher performance.

In this context, better performance inevitably means that, with an equal
Decoding Failure Rate (DFR), the size of the ciphertext and the public key
can be reduced. As an immediate application, we would like to emphasize
that the proposed decoder can replace the traditional HQC decoder in all
those numerous practical contexts where ephemeral keys are required, such as
in Transport Layer Security (TLS) or Virtual Private Networks (VPNs).

To conclude, it is worth noting that our theoretical curve analysis of the
DFR enhances comprehension of the decoder’s performance. However, estab-
lishing an upper bound for the DFR is crucial for proving the IND-CCA (and
IND-CCAZ2) property. A formal proof of IND-CCA necessitates a demonstra-
ble upper bound on success probability; lacking this impedes the claim of

IND-CCA.

12
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Thesis organization

The organization of this thesis is structured to provide a clear and logical
progression of the topics discussed. In Chapter 1, we lay the groundwork by
introducing fundamental concepts and terms that will be essential for com-
prehending the rest of the thesis. Chapter 2 delves deeper into the world of
Coding Theory. Specifically, we focus on a family of codes known as linear
block codes, which includes cyclic codes and related variations like shortened
cyclic codes and quasi-cyclic codes. On top of that, we also offer a brief in-
troduction to non-binary linear codes for context. Chapter 3 shifts the focus
to the codes employed in HQC (Hamming Quasi Cyclic), a post-quantum
code-based cryptosystem. This chapter delves into the inner mechanics of
HQC codes, dissecting their design and exploring their encoding and decoding
mechanisms, affording an in-depth understanding of the cryptosystem’s core
operations. In chapter 4 we turn our attention to important security concepts
and we also take a closer look at the mathematical problems upon which HQC
is constructed. In Chapter 5 we provide an in-depth exploration of how HQC
is designed, highlighting the various settings and parameters used in different
NIST rounds. In Chapter 6 we offer a detailed exploration of the core idea that
motivated this thesis, the proposal of a new decoder for HQC based on corre-
lation. We also assess the complexity of the introduced decoder and discuss its
Decoding Failure Rate (DFR). In Chapter 7, we present the results of empiri-
cal experiments conducted to assess the performance of the newly introduced
decoder. These findings offer a valuable empirical assessment of the decoder’s
real-world applicability and effectiveness, which are further described in the
subsequent chapter, Chapter 8. In the last chapter, Chapter 9, we wrap up our
study. Here, we bring together the most important things we’ve discovered in
this thesis. We also suggest some ideas for future research, encouraging more

exploration and innovation in the field of post-quantum cryptography.

13



Chapter 1

Notation and preliminaries

Polynomials Throughout the thesis, given a positive integer n, we denote
by R, := Z4|z]/(z" — 1) the polynomial ring consisting of polynomials of
maximum degree n— 1 with coeflicients in Z, = {0, 1, ---¢—1}. As usual, for ¢
being a prime number, F, = Z, denotes the finite field of order ¢g. Additionally,
we denote by R,(w) = {ae R, | wt(a) = w}, where wt(-) denotes Hamming
weight, the set of polynomials in R, with weight w. When ¢ = 2, we ease
notation and simply indicate the polynomial ring as R. Sometimes, we will
view the elements of R, as vectors over Z,, relying on the following canonical

representation:
Z a;v' = a(r) e Ry <= (ap,a1, -+ ,an1) = a€Z.

Using the canonical representation mentioned above, occasionally, we denote
the set of binary n-tuples, namely Fy, as V' = R. The support of a poly-
nomial a, that is, the set with the indexes of set coefficients, is indicated as
supp(a). Sporadically, given two polynomials a and b in R,, we indicate the

j-th coeflicient of their product c € R, as (ab);. Formally:

c; = (ab); = Z a; - by, forje{0,1,---n—1}

i+k=7 mod n

14



Chapter 1 - Notation and preliminaries

Circulant Matriz Let v = (v, vy, -+ ,v,_1) € F4, then the circulant matrix

induced by v is defined and denoted as follows:

Vo Up—1 ... U1
U1 Vo D)
— nxn
rot(v) = ‘ o | e
Un—1 Up—2 ... g

Each column is the cyclically shifted version of a downward position of the
column to its left. Similarly, each row is the cyclically shifted version of a
rightward position of the row above. Since a circulant matrix is uniquely
determined by its first column (or row), if its coeflicients are in Z,, it is possible
to establish a ring isomorphism between the circulant matrix of size n and R,,.
Specifically, we can identify the elements of a circulant matrix with first column
(vo, vy, -+ ,Up—1) With a corresponding element of R, through the following

bijective map:

Vo Up—1 ... U1
(%1 Vo o V2 _

D . —>U0—|—v1'x+~-vn_1-x”1€7€q
Un—1 Upn—2 ... g

For ¢ = 2, it turns out that there exists an isomorphism between R and the
set of circulant matrices with size n and elements in the binary finite field Fs.
The null element (i.e., the all zero vector) and the identity (i.e., the vector
(1,0,---,0)) for R will be indicated as 0 and 1, respectively. Furthermore, in
a circulant matrix of size n, enumerating rows and columns from 0, the i-th
row, when read from left to right, is identical to the (n — i)-th column when
read from bottom to top. This observation leads to an intriguing property of
circulant matrices: all rows and all columns have the same Hamming weight,

meaning they contain the same number of 1s.

15



Chapter 1 - Notation and preliminaries

Probability Distributions Given some set A, we write a & A when a is
drawn uniformly at random from the elements of A. We use L@;{W to indicate
the Bernoulli distribution over Fy with parameter p, i.e., the distribution that
returns vectors of length n and such that any entry is 1 with probability p
and 0 with probability 1 — p. If a € F} (or, equivalently, a € R) is distributed
according to @n,p, we write a ~ k@}nyp. The probability that a has Hamming

weight w corresponds to

frup(w) = (Z) p(1—p)" .

Security Level and Big-O Notation We say that a cryptographic algo-
rithm achieves a Security Level (SL) of z bits if the most efficient attack has
a computational cost of 2*. Throughout the thesis, we employ big-O notation
to express the computational cost of an algorithm. Specifically, an algorithm’s
computational cost is defined as the number of operations required for its exe-
cution. This number of operations is expressed as a function of the input size.
Let n denote the length of an algorithm’s input. A function f(n) is considered
to be a big-O of ¢g(n) if the limit as n tends to infinity of f(n) over g(n) is less

than a positive constant «. Formally:

When f(n) = O(g(n)) we say that g(n) is an asymptotic upper bound for
f(n), to emphasize we are suppressing constant factors.

Let A be an algorithm with input size equal to n, and let T'(n) be the
function describing the computational cost of the algorithm as the input size
varies. If T'(n) = O(n®) for a constant «, we say that A has polynomial time
complexity. Instead, if T(n) = O(2"#) for a constant 3, we say that A has

exponential time complexity.

16



Chapter 2

Rudiments of Coding Theory

We will now proceed to explore some fundamental definitions and properties
about coding theory, a specialized field within information theory. Specifically,
coding theory is dedicated to the study and analysis of error-correcting codes.
These codes are essential for ensuring the accurate and reliable transmission of
information across various communication channels and data storage systems.
Firstly, it is essential to establish a clear distinction between two structurally
different types of codes: block codes and convolutional codes. Furthermore,
within the realm of block codes, a finer categorization can be made, differen-
tiating between linear and non-linear block codes. Notably, non-linear block
codes, while theoretically intriguing, remain rarely employed in practical ap-

plications and have been subject to comparatively limited research efforts.

In this chapter, we embark on a comprehensive exploration of binary lin-
ear block codes [9], shedding light on their prominent characteristics. It is
important to note that our discussion, while in-depth, may not cover every
aspects of these codes, but it will certainly provide a strong foundation and
understanding of their key aspects. Furthermore, our focus will not be limited
solely to binary linear block codes, indeed, in the last section of this chapter

we will also extend our attention to non-binary codes.

17



Chapter 2 - Rudiments of Coding Theory

2.1 Introduction to Linear Block Codes

We assume that the output of an information source is a continuous sequence
of symbols over Fy, referred to as the information sequence. In block cod-
ing, this sequence gets divided into message blocks, each of uniform length,
with every message block containing k information bits. This division re-
sults in a total of 2* unique messages. At the channel encoder, each in-
put message u = (ug,u, - -ux_1) is encoded into a longer binary sequence
v = (vg,v1, - v,_1) of n binary digits with n > k. This elongated binary
sequence v is called the codeword of the message u. Since there are 2% dis-
tinct messages, there exist 2¥ codewords, with each codeword corresponding
to a unique message. This set of 2% codewords is described as constituting
an [n,k] block code. For a block code to serve its intended purpose effec-
tively, it’s imperative that the 2¥ codewords associated with the 2 distinct
messages maintain their distinctiveness. The additional n — k& binary symbols
introduced to each input message by the channel encoder are referred to as
redundant bits. These serve the primary purpose of endowing the code with
the ability to detect and correct transmission errors resulting from channel
noise or interference. An essential consideration in designing the channel en-
coder is how to generate these redundant bits in a manner that enhances the
error-correcting capabilities of the code.

The code rate, denoted as R and defined as the ratio R = % represents
the average number of information bits carried by each code bit. For a block
code with length n and 2¥ codewords, the encoding and decoding processes
can become notably intricate, particularly when £ assumes substantial values,
unless the code exhibits certain structural characteristics. This complexity is
rooted in the encoder’s requirement to store all 2¥ codewords and the decoder’s
need for a decoding table containing 2" entries to estimate the transmitted
codeword. As such, it becomes imperative for us to shift our focus toward

block codes that can be implemented in a feasible manner, as the practicality

18



Chapter 2 - Rudiments of Coding Theory

of the system is a critical consideration. One structural attribute that stands

out as highly preferable for a block code is linearity.

Definition 2.1 (Binary linear block code). A binary block code C of length n
with 2% codewords is called an [n,k] linear block code if its 28 codewords form

a k-dimensional subspace of the vector space R of all the n-tuple over .

Due to the linearity property, given two codewords u and v € C, it follows

that their sum, x = u + v also belongs to C.

2.1.1 Generator and Parity-Check Matrix

According to Definition 2.1, each codeword v € C can be expressed as a linear
combination of k linearly independent codewords in C, namely go, &1, - , 8k_1,

which serve as a basis for the code. Using this basis, encoding can be done

as follows. Let u = (ug,uy, - ,ur_1) be the message to be encoded. The
codeword v = (vg,v1, - ,v,_1) for this message is given by the following
linear combination of g, g1, - ,8k_1, with the & message bits of u as the
coefficients:

Vzuo-g0+u1-g1+...+uk_1-gk_1.

We may arrange the k linearly independent codewords, go, g1, - ,8x_1 of C

as rows of a £ x n matrix over F, as follows:

o Jo,0 dgo1 .-+  Yon-—1
g1 g1,0 g1 -+ Gin-1
G = - (2.1)
k-1 9k-1,0 9k-11 --- Gk—1n—1

Then, the codeword v for a message u can be expressed as the matrix product

of u and G, in symbols, v =u- G.

Definition 2.2 (Generator Matrix). We say that G € F5*" is a Generator
Matriz for the [n,k] code C if C = {m - G | m € F§}

19



Chapter 2 - Rudiments of Coding Theory

C is spanned by the rows of G, therefore, it is called the row space of G.
In general, an [n k| linear code has more than one basis, therefore, a generator
matrix of a given [n,k] linear code is not unique. Since a binary [n,k| linear
code C is a k-dimensional subspace of R, its null (or dual) space, denoted
Cy, is an (n — k)-dimensional subspace of the same vector space given by the

following set of n-tuples:

Ci={welFy:(w,v)=0forall veC}

where (w,v) denotes the inner product of w and v.

The code C4 can be regarded as a binary [n, n — k] linear code, known as
the dual code of C. This code consists of n—k linearly independent codewords,
namely hg, hy,--- ,h,_;_1. Therefore, every codeword in C; can be expressed
as a linear combination of these n — k linearly independent codewords, which
constitute a basis for C4. As done previously, we may arrange the n— k linearly
independent codewords, hg, hy, -+, h, ;1 of C4 as rows of a (n—k) x n matrix

over Fq as follows:

h0 h0,0 hO,l h(],n—l
H — hl _ hl,() hl,l v hl,n—l (22)
hnfkfl h/nfkfl,O hnfkfl,l s hnfkfl,nfl

Then H is a generator matrix of the dual code Cy4 of the binary [n,k] linear

block code C.

Definition 2.3 (Parity-Check Matrix). Given an [n,k] code C, we say that
He Fén_k)m is a Parity-Check Matriz for C if H is a generator matriz of the
dual code Cy.

Since H is the generator matrix of the dual code, C is said to be the null

space of H. Therefore, a linear code is uniquely specified by two matrices, a

20



Chapter 2 - Rudiments of Coding Theory

generator matrix and a parity-check matrix. In particular, the two matrices
are deeply linked to each other, specifically G - HT = 0.

Furthermore, in many practical scenarios, it is desirable to structure code-
words in such a way that they can be divided into two parts: an information
part containing k unchanged information bits, and a redundancy part with
n — k symbols. A linear code with this structure is said to be in systematic
form. The specific alignment of the information sequence within the codeword
is not important; what matters is that the information sequence remains un-
altered in the codeword. For convention, the information sequence is usually
assumed to be right-aligned in the codeword. Under this assumption, a linear
block code in systematic form is defined by a generator matrix G of the form
G = [P | I] where P is a k x (n—k) matrix. Similarly, the parity-check matrix

of a linear block code in systematic form H takes the form H = [I,_ | PT].

2.1.2 Error Detection with Linear Block Codes

When a codeword v € C is transmitted over a binary-input binary-output
channel, it results in a received vector r. Due to channel noise, r and v may
differ in some positions. To describe this scenario, an error pattern e is defined.
The received vector r can be expressed as r = v + e. Therefore, ¢; = 1 for
r; # v; and e; = 0 for r; = v; with 7 = 0,--- ,n — 1. At the receiver, neither
v nor e is known. The decoder’s task is to first detect if there are errors in r.
Once the presence of errors is detected, the decoder can eventually estimate
the error pattern e and then, the estimated transmitted codeword is computed

as v* =r + e*, where e* is the estimate of e.

Definition 2.4 (Syndrome). Let H € an_k)xn be the parity-check matriz for
a [n,k] code C and let v be a generic n-tuple over Fo. The syndrome of v is

denoted and defined as s = H-v? e Fy .

It is noteworthy that v belongs to the code C if and only if H - v’ = 0.
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Specifically, if s # 0, it indicates that v is not a codeword in C, and errors
are detected. If s = 0, the decoder assumes r is error-free and accepts it
as the transmitted codeword. However, if r is a codeword but differs from
v, the decoder makes a decoding error. This happens when e transforms v
into another codeword in C and this occurs when e is identical to a nonzero

codeword in C, known as an undetectable error pattern.

2.1.3 Error Correction with Linear Block Codes

Clearly, error detection serves as a prerequisite for error correction. For binary
codes, error detection enables their correction, whereas, for non-binary codes
error detection is the initial preparatory step for subsequent error correction.
To formally assess the error-correcting capacity of a linear block code, it is

first necessary to define what is meant by norm function.

Definition 2.5 (Norm function). A norm function |-|| on a vector space V' is a
map that assigns a real value to each vector in 'V and that meets the properties

of positivity, homothety and triangular inequality.

The concept of a norm function (|| - || : V' — R), depends on the specific
vector space and the underlying field on which it is defined. When considering
the vector space V' = R, composed of the 2™ n-tuples over the finite field 5,
a common choice is the Hamming norm. The Hamming norm for a vector is
quite straightforward - it is the count of non-zero elements within the vector.

Regarding the properties of a norm function, it is important to note that
the Hamming norm possesses all of them. Firstly, it is is always non-negative,
meaning that [v| = 0 for any vector v € V, and it equals zero only when
the vector is the null vector. Additionally, the Hamming norm satisfies the
property of homothety. This means that when we multiply a vector by a
scalar ¢ (which is either 0 or 1 in Fy), we find that |c- v| = ¢ ||v|. Lastly,

the Hamming norm also adheres the triangle inequality. In fact, for any pair
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of vectors v and w € V| it holds true that ||[v + w| < |[v] + [|w].

Definition 2.6 (Metric or Distance function). A metric function d(-) on a
vector space V' is a map that assigns a real value to a pair of vector in V and

that meets the properties of positivity, symmetry and triangular inequality.

Given a normed vector space (equipped with a norm function), it is possible
to define the metric function induced by the norm as d(v,w) = ||[v — w|. This
means that every normed vector space is also a metric space (equipped with a
metric), while, in general, the opposite is not true.

Regarding the Hamming norm, based on what has been discussed so far, it
is evident that it induces a metric function known as the Hamming distance.
Specifically, the Hamming distance between two n-tuples, denoted as u and v,
is defined as the number of positions at which u and v differ, therefore, it is
equal to the Hamming weight of their sum. It is important to emphasize that
the Hamming distance, which is the metric induced by the Hamming norm,
satisfies all the functional properties required to effectively consider it as a
metric. Once the concept of a metric is defined, we are ready to introduce a

crucial property of linear block codes, namely the minimum distance.

Definition 2.7 (Minimum Distance). Let C be a [n,k] linear code over R and
let w be a norm on R. The minimum distance of C is

d= min ~ w(u—v).
u, v € C, u#v

The minimum distance of a code holds significant importance as it plays a
pivotal role in determining the code’s error-correcting capabilities. When we
delve into the Hamming norm, the concept of the minimum distance revolves
around identifying the shortest distance between codewords within the code.
It goes without saying that a high minimum distance is a desirable attribute
for a code, as it substantially diminishes the likelihood of misinterpretation

when decoding the transmitted codeword.
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According to the relationship between Hamming norm, Hamming metric
and Hamming weight, it holds that:

d= min wu—v)= min d(u,v)= min wt(u+v)= min wt(x)
u,veC,u#v u,veC,u#v u,veC,u#v xeC,x#0

where x = v + w € C is a codeword according to the linearity of the code.
For 0 < i < n, let A; represent the number of codewords in C with a weight

of i. The sequence of numbers Ag, Ay, ..., A, is referred to as the weight

distribution of C. The weight distribution of a block linear code C is closely

associated with the parity-check matrix H of the code.

Theorem 2.1. For an [n,k] linear block code C represented by the null space
of a parity-check matrix H, if there are no d — 1 or fewer columns in H that
sum to a zero vector, the minimum distance (or weight) of C is at least d. In
other words, a linear code has distance d if and only if any d — 1 columns of
the parity check matrix are linearly independent, and there exist d columns that
are linearly dependent.

Proof. Consider a [n,k] code C with a minimum distance of d. By contra-
diction, assume there are d — 1 linearly dependent columns in H € Fén_k)xn.
Let hy,hy,--- h; | be these d — 1 linearly dependent columns. Now, let’s
take a binary vector x € F} with ones in entries corresponding to columns
hy,hy,--- ;h;_;. Since hy, hy, -+, hy_; are linearly dependent for the initial
assumption, it follows that H -x? = 0. Therefore, x is a codeword of C with a
weight of d — 1. This contradicts the fact that the minimum distance of C is d.
Therefore, any d — 1 columns must be linearly independent. Finally, assuming
that the minimum distance is d, there must exist a binary vector y € C with a
weight of d. Since y is a codeword, it follows that H-y” = 0. Hence, we obtain
a linear combination of the corresponding d columns in the parity-check matrix

H that equals 0. Hence, there must exist d linearly dependent columns. [

Theorem 2.1 guarantees that the minimum weight (or minimum distance)
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of an [n,k] linear block code C with a parity-check matrix H is equal to the
smallest number of columns in H whose vector sum is a zero vector. Specifi-
cally, it gives a lower bound on the minimum distance (or weight) of a linear
block code. In general, it is very hard to determine the exact minimum dis-
tance (or weight) of a linear block code; however, it is much easier to give a

lower bound on its minimum distance (or weight).

2.1.4 Decoding of Linear Block Codes

When a codeword v € C is transmitted, denoting r as the received vector,
maximum-likelihood decoding (MLD) aims to decode r into a codeword v that
maximizes the conditional a-posteriori probability P(r|v). In the case of a Bi-
nary Symmetric Channel (BSC), this corresponds to finding the codeword v
that minimizes the Hamming distance d(r, v) between r and v. This is known
as minimum-distance or nearest-neighbor decoding. In minimum-distance de-
coding, the decoder must calculate the distance between r and every codeword
in C and select a codeword v (which may not be unique) that is closest to r.
This process is referred to as complete error-correction decoding and requires
evaluating the distance between r and all 2¥ codewords in C. However, for large
values of k, implementing this complete decoder becomes practically infeasible.

Nonetheless, for many linear block codes, efficient algorithms have been
developed for incomplete error-correction decoding, which achieves good per-
formance with significantly reduced decoding complexity. Regardless of the
specific codeword transmitted over a noisy channel, the received vector r can
be one of the 2™ n-tuples over F5. The decoding scheme employed at the de-
coder essentially divides the vector space V' = R, comprising all n-tuples over
[Fy, into 2* regions. Each region contains one exclusive codeword from C, and
the goal of decoding is to identify the region that contains the received vector
r and decode it into the appropriate codeword v. These regions are known as

decoding regions.
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An algebraic method for partitioning 2" received vectors into 2* decoding
regions involves constructing a so-called standard array for a [n,k] linear block
code. This 2("=%) x 2% array contains the 2¥ codewords in its first row. Sub-
sequent rows are generated one at a time by adding a selected vector e;, not
present in the previous rows, to each codeword v; in the top row and placing
the resulting sum e; + v; beneath v,. The choice of e; is made to ensure no
repetitions for vectors in the array. This process continues until no more vec-
tors can be chosen from the vector space V, resulting in a standard array for
C, where each row corresponds to a coset, and the first element serves as the

coset leader.

Based on the structure of the standard array, the sum of two vectors within
the same coset yields a codeword. Moreover, there are no duplicated vectors in
the array, and every n-tuples in the vector space V' appears exactly once in the
array. Additionally, all the vectors in a coset share the same syndrome, which
is the syndrome of the coset leader. In other words, (e; + v;) - H' =e; - HT

(s