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Abstract

Nella tesi, redatta in lingua inglese, si conduce uno studio dettagliato su HQC

(Hamming Quasi Cyclic), un crittosistema post-quantum basato su codici.

Inizialmente, si offre una panoramica dei concetti fondamentali della teoria dei

codici, per poi procedere con l’analisi delle diverse famiglie di codici impiegate

in HQC: codici a ripetizione, codici BCH, codici Reed-Solomon e, infine, i

codici Reed-Muller.

Successivamente, si esamina con dovizia di particolari il background matem-

atico su cui si fonda HQC, con attenzione alla definizione del problema SDP

(Syndrome Decoding Problem) nella sua versione decisionale. Inoltre, ven-

gono presentate le varianti di questo problema, ovvero 2-QCSD e 3-QCSD con

parità e cancellazioni. Nel prosieguo, senza pretesa di esaustività, si affronta

il tema della teoria della complessità. In particolare, vengono definite diverse

classi di complessità (P, NP, NP-complete e NP-Hard) ed i relativi problemi

noti, tra cui la fattorizzazione di interi, SDP, SAT, vertexCover, setCover e

Halting Problem. Inoltre, si assume ragionevolmente che le varianti di SDP

considerate appartengano alla classe di complessità di SDP, cioè la classe dei

problemi NP-Complete.

Il lavoro prosegue con una minuziosa descrizione delle basi teoriche di HQC,

delineando chiaramente la distinzione tra la versione PKE (Public Key Encryp-

tion) e KEM (Key Encapsulation Mechanism). Vengono forniti dettagli ap-

profonditi riguardanti i parametri e le diverse configurazioni dei quattro round

della competizione NIST, comprendenti le dimensioni di chiave pubblica, chi-

ave segreta, testo cifrato, e l’eventuale chiave segreta condivisa. In aggiunta, si

offre un approfondito e rigoroso studio matematico del DFR (Decoding Failure

Rate) relativo al decoder HQC originale.



Il culmine del lavoro di tesi è rappresentato dalla presentazione del nuovo

decoder HQC, il quale incorpora il tradizionale decoder HQC arricchendolo

con un pre-filtraggio del rumore basato su una strategia di correlazione. È

cruciale sottolineare che la concezione di questo nuovo decoder HQC è il cuore

pulsante del lavoro, la sua parte più significativa e il punto focale dell’intera

ricerca. Tale decoder nasce da una considerazione strettamente ancorata alla

teoria dell’informazione: c’è informazione che nella decodifica classica di HQC

rimane inutilizzata, quindi, il suo impiego si traduce inevitabilmente in un

notevole aumento dell’efficienza. La tesi offre, pertanto, un’analisi matematica

dettagliata del DFR per il nuovo decoder, comparandolo esplicitamente con

il DFR del decoder HQC tradizionale. In aggiunta, si valuta attentamente la

complessità computazionale del nuovo decoder, evidenziando in modo esplicito

il suo esiguo incremento rispetto alla controparte originale.

In conclusione, vengono presentate simulazioni implementate in C e Python

a conferma dei risultati teorici, con l’intento di evidenziare i benefici derivanti

dall’introduzione del decoder proposto. In particolare, il nuovo decoder con-

sente di ridurre le dimensioni della chiave pubblica e del testo cifrato, con-

tribuendo cos̀ı a ridurre la quantità di dati trasmessi su canale pubblico. Va

notato che l’entità di questa riduzione è fortemente influenzata dalla config-

urazione utilizzata, pertanto, nei prossimi capitoli di tale tesi, questo aspetto

verrà esaminato dettagliatamente per le diverse configurazioni di HQC.

Infine, nella parte finale della tesi sono delineati alcuni scenari di interesse

pratico in cui l’introduzione del nuovo decoder può apportare benefici, special-

mente in contesti in cui si adoperano chiavi effimere per garantire la Perfect

Forward Secrecy (PFS), come ad esempio nel protocollo TLS (Transport Layer

Security) e nelle VPN (Virtual Private Network).



Abstract

This thesis explores the Hamming Quasi Cyclic (HQC) post-quantum code-

based cryptosystem, delving into coding theory principles and examining code

families such as repetition, BCH, Reed-Solomon, and Reed-Muller codes. Ad-

ditionally, mathematical aspects, particularly the Syndrome Decoding Prob-

lem (SDP) and its variants (2-QCSD, 3-QCSD), are scrutinized, with a brief

introduction of complexity theory.

The theoretical foundations of HQC, distinguishing between Public Key

Encryption (PKE) and Key Encapsulation Mechanism (KEM) versions, are

thoroughly detailed. The parameters and configurations of NIST competition

rounds are extensively discussed, accompanied by a mathematical analysis of

the Decoding Failure Rate (DFR) for the original HQC decoder.

The focal point of the thesis is the groundbreaking introduction of a new

HQC decoder. This innovative decoder incorporates noise pre-filtering based

on a correlation strategy, harnessing information completely overlooked in the

classic HQC decoder. This pivotal addition unequivocally ensures greater ef-

ficiency. Furthermore, the DFR for the new decoder is meticulously analyzed

and compared with the classical HQC decoder.

Simulations, conducted using both C and Python code, validate theoretical

findings, highlighting the proposed decoder’s advantages in reducing public key

and ciphertext sizes leading to a decrease in data transmitted over a public

channel. The degree of reduction is configuration-dependent, prompting a

detailed examination of various HQC configurations in subsequent chapters.

Finally, some practical scenarios are outlined in which the introduction of

the new decoder can bring benefits, especially in contexts where ephemeral

keys are used to ensure Perfect Forward Secrecy (PFS), such as in the TLS

(Transport Layer Security) protocol and in Virtual Private Networks (VPNs).



Introduction

In recent years, significant strides have been made in the field of quantum

computing, which employs the intricate principles of quantum mechanics to

tackle complex mathematical problems. A quantum computer is a machine

that employs quantum-physical phenomena to perform computations in a way

that is fundamentally different from a ”normal” classical computer. While a

classical computer is, at any point in time, in a fixed state, such as a bit string

representing its memory contents, the state of a quantum computer can be a

”mixture”, a so-called superposition, of several states [1]. The potential power

of quantum computers far surpasses that of classical computers. Consequently,

if large-scale quantum computers are ever built, they will have the capability

to undermine many of the cryptosystems that currently safeguard our digital

communications. Some hard mathematical problems which can be solved in

polynomial time with quantum computers are at the basis of many widespread

cryptographic primitives and protocols, like Rivest, Shamir, Adleman (RSA),

ElGamal, Digital Signature Algorithm (DSA), Elliptic Curve Digital Signature

Algorithm (ECDSA), Diffie-Hellman and others [2] [3].

In the field of quantum algorithm development, two pioneering algorithms

have formed a solid foundation for potentially breaking today’s theoretically

grounded public-key cryptosystems. In 1994, Shor introduced an efficient

polynomial-time algorithm designed for solving integer factorization and dis-

crete logarithm problems, based on the existence of quantum computers [4].

In 1996, Grover introduced a quantum algorithm characterized by a square
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Introduction

root of N complexity for searching an element within an unsorted database

comprising N records [5]. Upon realization on quantum computers, Grover’s

algorithm has the potential to undermine symmetric-key cryptosystems. To

counteract attacks based on Grover’s algorithm, it becomes necessary to dou-

ble the key sizes in order to maintain a comparable level of security against

classical computers.

In line with the preceding statements, the implications of a quantum com-

puting breakthrough, which experts believe is merely a matter of time, are

profound, jeopardizing the confidentiality and integrity of modern communi-

cations. While quantum computers have yet to materialize in the present,

it remains imperative to diligently pursue the establishment of cryptographic

systems that can withstand quantum computer menace, and by extension, tra-

ditional computing threats. These cryptographic solutions should seamlessly

integrate with and operate within existing networks and communication sys-

tems. As a response to this impending challenge, the field of post-quantum

cryptography (also called quantum-resistant cryptography) has emerged.

Recognizing the urgency of preparing for the post-quantum era, the Na-

tional Institute of Standards and Technology (NIST), a pivotal agency within

the United States government responsible for technology management, ini-

tiated in 2013 a process to solicit, evaluate, and standardize one or more

quantum-resistant public-key cryptographic algorithms [6]. Over the years,

this cryptographic competition has progressed through a series of rigorous

rounds, each designed to scrutinize various aspects of cryptography, including

public-key encryption (PKE), key encapsulation mechanisms (KEMs), and

digital signature schemes.

In a bid to ensure an exhaustive selection process, this contest was metic-

ulously divided into three distinct rounds for each of the aforementioned cat-

egories. As of the present moment, NIST has successfully concluded the third

round of the Post-Quantum Cryptography (PQC) standardization process.
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PQC Algorithm Status Type PKE/KEM vs. Signature

CRYSTALS-Kyber Standard Lattice PKE/KEM
CRYSTALS-Dilithium Standard Lattice Signature

FALCON Standard Lattice Signature
SPHINCS Standard Hash Signature

HQC Round 4 Code PKE/KEM
BIKE Round 4 Code PKE/KEM

Classic McEliece Round 4 Code PKE/KEM
SIKE Broken Isogeny PKE/KEM

Table 1: Current state of the NIST PQC Standardization Process

Four candidate algorithms (CRYSTALS-KYBER as PKE/KEM, CRYSTALS-

Dilithium, FALCON and SPHINCS+ as digital signature schemes) have been

selected for standardization [7]. Additionally, four other algorithms (BIKE,

Classic McEliece, HQC, and SIKE) advanced into a further round, the fourth,

to be chosen for Key Encapsulation Mechanisms (KEMs). To summarize,

refer to Table 1 [8]. It’s worth noting that the fourth round is currently un-

derway, and SIKE has been subjected to an attack, compromising its security.

This phase is crucial in order to identify a robust Key Encapsulation Mecha-

nism, with a keen focus on exploring alternatives to the prevailing lattice-based

schemes that have held prominence up to the conclusion of the third round.

Notably, within the realm of these alternatives, code-based cryptography,

underpinned by principles drawn from coding theory, has emerged as a stand-

out contender. BIKE and HQC, both rooted in structured codes, present

compelling options for a KEM that does not rely on lattices. It is anticipated

that, upon the culmination of this fourth round, NIST will select at most one

of these two candidates for formal standardization.
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Our contribution

The focal point of this thesis work is the design of a new decoder for HQC. In

particular, our contribution lies in defining a novel decoding algorithm based on

correlation. Specifically, we observed that in the decoding algorithm proposed

in HQC, the knowledge of the secret key was entirely disregarded, even though

it is known to the legitimate user intending to decrypt. In HQC, the overall

error pattern added to the codeword is assumed to be entirely random during

the decryption phase. However, as previously mentioned, we observed that

this is not the case in reality. For this reason, the fundamental idea is to

leverage this information that is completely overlooked in HQC to enhance the

efficiency of the decoding algorithm. To this end, what we have introduced is a

new decoding mechanism that involves the introduction of a preliminary noise

filtering stage with a correlation-based strategy. We will delve into the details

of this new algorithm extensively throughout this work. However, intuitively,

it is reasonable to expect that utilizing previously overlooked information may

contribute to achieving higher performance.

In this context, better performance inevitably means that, with an equal

Decoding Failure Rate (DFR), the size of the ciphertext and the public key

can be reduced. As an immediate application, we would like to emphasize

that the proposed decoder can replace the traditional HQC decoder in all

those numerous practical contexts where ephemeral keys are required, such as

in Transport Layer Security (TLS) or Virtual Private Networks (VPNs).

To conclude, it is worth noting that our theoretical curve analysis of the

DFR enhances comprehension of the decoder’s performance. However, estab-

lishing an upper bound for the DFR is crucial for proving the IND-CCA (and

IND-CCA2) property. A formal proof of IND-CCA necessitates a demonstra-

ble upper bound on success probability; lacking this impedes the claim of

IND-CCA.
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Thesis organization

The organization of this thesis is structured to provide a clear and logical

progression of the topics discussed. In Chapter 1, we lay the groundwork by

introducing fundamental concepts and terms that will be essential for com-

prehending the rest of the thesis. Chapter 2 delves deeper into the world of

Coding Theory. Specifically, we focus on a family of codes known as linear

block codes, which includes cyclic codes and related variations like shortened

cyclic codes and quasi-cyclic codes. On top of that, we also offer a brief in-

troduction to non-binary linear codes for context. Chapter 3 shifts the focus

to the codes employed in HQC (Hamming Quasi Cyclic), a post-quantum

code-based cryptosystem. This chapter delves into the inner mechanics of

HQC codes, dissecting their design and exploring their encoding and decoding

mechanisms, affording an in-depth understanding of the cryptosystem’s core

operations. In chapter 4 we turn our attention to important security concepts

and we also take a closer look at the mathematical problems upon which HQC

is constructed. In Chapter 5 we provide an in-depth exploration of how HQC

is designed, highlighting the various settings and parameters used in different

NIST rounds. In Chapter 6 we offer a detailed exploration of the core idea that

motivated this thesis, the proposal of a new decoder for HQC based on corre-

lation. We also assess the complexity of the introduced decoder and discuss its

Decoding Failure Rate (DFR). In Chapter 7, we present the results of empiri-

cal experiments conducted to assess the performance of the newly introduced

decoder. These findings offer a valuable empirical assessment of the decoder’s

real-world applicability and effectiveness, which are further described in the

subsequent chapter, Chapter 8. In the last chapter, Chapter 9, we wrap up our

study. Here, we bring together the most important things we’ve discovered in

this thesis. We also suggest some ideas for future research, encouraging more

exploration and innovation in the field of post-quantum cryptography.
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Chapter 1

Notation and preliminaries

Polynomials Throughout the thesis, given a positive integer n, we denote

by Rq :“ Zqrxs{pxn ´ 1q the polynomial ring consisting of polynomials of

maximum degree n´1 with coefficients in Zq “ t0, 1, ¨ ¨ ¨ q´1u. As usual, for q

being a prime number, Fq “ Zq denotes the finite field of order q. Additionally,

we denote by Rqpwq “ ta P Rq | wtpaq “ wu, where wtp¨q denotes Hamming

weight, the set of polynomials in Rq with weight w. When q “ 2, we ease

notation and simply indicate the polynomial ring as R. Sometimes, we will

view the elements of Rq as vectors over Zq, relying on the following canonical

representation:

n´1
ÿ

i“0

aix
i

“ apxq P Rq ðñ pa0, a1, ¨ ¨ ¨ , an´1q “ a P Zn
q .

Using the canonical representation mentioned above, occasionally, we denote

the set of binary n-tuples, namely Fn
2 , as V “ R. The support of a poly-

nomial a, that is, the set with the indexes of set coefficients, is indicated as

supppaq. Sporadically, given two polynomials a and b in Rq, we indicate the

j-th coefficient of their product c P Rq as pabqj. Formally:

cj “ pabqj “
ÿ

i`k”j mod n

ai ¨ bk, for j P t0, 1, ¨ ¨ ¨n ´ 1u

14



Chapter 1 - Notation and preliminaries

Circulant Matrix Let v “ pv0, v1, ¨ ¨ ¨ , vn´1q P Fn
2 , then the circulant matrix

induced by v is defined and denoted as follows:

rotpvq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

v0 vn´1 . . . v1

v1 v0 . . . v2
...

...
. . .

...

vn´1 vn´2 . . . v0

˛

‹

‹

‹

‹

‹

‹

‹

‚

P Fnˆn
2

Each column is the cyclically shifted version of a downward position of the

column to its left. Similarly, each row is the cyclically shifted version of a

rightward position of the row above. Since a circulant matrix is uniquely

determined by its first column (or row), if its coefficients are in Zq, it is possible

to establish a ring isomorphism between the circulant matrix of size n and Rq.

Specifically, we can identify the elements of a circulant matrix with first column

pv0, v1, ¨ ¨ ¨ , vn´1q with a corresponding element of Rq through the following

bijective map:

Φ :

¨

˚

˚

˚

˚

˚

˚

˚

˝

v0 vn´1 . . . v1

v1 v0 . . . v2
...

...
. . .

...

vn´1 vn´2 . . . v0

˛

‹

‹

‹

‹

‹

‹

‹

‚

Ñ v0 ` v1 ¨ x ` ¨ ¨ ¨ vn´1 ¨ xn´1
P Rq

For q “ 2, it turns out that there exists an isomorphism between R and the

set of circulant matrices with size n and elements in the binary finite field F2.

The null element (i.e., the all zero vector) and the identity (i.e., the vector

p1, 0, ¨ ¨ ¨ , 0q) for R will be indicated as 0 and 1, respectively. Furthermore, in

a circulant matrix of size n, enumerating rows and columns from 0, the i-th

row, when read from left to right, is identical to the pn ´ iq-th column when

read from bottom to top. This observation leads to an intriguing property of

circulant matrices: all rows and all columns have the same Hamming weight,

meaning they contain the same number of 1s.

15



Chapter 1 - Notation and preliminaries

Probability Distributions Given some set A, we write a
$

ÐÝ A when a is

drawn uniformly at random from the elements of A. We use B n,ρ to indicate

the Bernoulli distribution over Fn
2 with parameter ρ, i.e., the distribution that

returns vectors of length n and such that any entry is 1 with probability ρ

and 0 with probability 1 ´ ρ. If a P Fn
2 (or, equivalently, a P R) is distributed

according to B n,ρ, we write a „ B n,ρ. The probability that a has Hamming

weight w corresponds to

fn,ρpwq “

ˆ

n

w

̇

ρwp1 ´ ρq
n´w.

Security Level and Big-O Notation We say that a cryptographic algo-

rithm achieves a Security Level (SL) of x bits if the most efficient attack has

a computational cost of 2x. Throughout the thesis, we employ big-O notation

to express the computational cost of an algorithm. Specifically, an algorithm’s

computational cost is defined as the number of operations required for its exe-

cution. This number of operations is expressed as a function of the input size.

Let n denote the length of an algorithm’s input. A function fpnq is considered

to be a big-O of gpnq if the limit as n tends to infinity of fpnq over gpnq is less

than a positive constant α. Formally:

fpnq P Opgpnqq ðñ lim
nÑ8

fpnq

gpnq
ă α.

When fpnq “ Opgpnqq we say that gpnq is an asymptotic upper bound for

fpnq, to emphasize we are suppressing constant factors.

Let A be an algorithm with input size equal to n, and let T pnq be the

function describing the computational cost of the algorithm as the input size

varies. If T pnq “ Opnαq for a constant α, we say that A has polynomial time

complexity. Instead, if T pnq “ Op2n¨βq for a constant β, we say that A has

exponential time complexity.

16



Chapter 2

Rudiments of Coding Theory

We will now proceed to explore some fundamental definitions and properties

about coding theory, a specialized field within information theory. Specifically,

coding theory is dedicated to the study and analysis of error-correcting codes.

These codes are essential for ensuring the accurate and reliable transmission of

information across various communication channels and data storage systems.

Firstly, it is essential to establish a clear distinction between two structurally

different types of codes: block codes and convolutional codes. Furthermore,

within the realm of block codes, a finer categorization can be made, differen-

tiating between linear and non-linear block codes. Notably, non-linear block

codes, while theoretically intriguing, remain rarely employed in practical ap-

plications and have been subject to comparatively limited research efforts.

In this chapter, we embark on a comprehensive exploration of binary lin-

ear block codes [9], shedding light on their prominent characteristics. It is

important to note that our discussion, while in-depth, may not cover every

aspects of these codes, but it will certainly provide a strong foundation and

understanding of their key aspects. Furthermore, our focus will not be limited

solely to binary linear block codes, indeed, in the last section of this chapter

we will also extend our attention to non-binary codes.

17



Chapter 2 - Rudiments of Coding Theory

2.1 Introduction to Linear Block Codes

We assume that the output of an information source is a continuous sequence

of symbols over F2, referred to as the information sequence. In block cod-

ing, this sequence gets divided into message blocks, each of uniform length,

with every message block containing k information bits. This division re-

sults in a total of 2k unique messages. At the channel encoder, each in-

put message u “ pu0, u1, ¨ ¨ ¨uk´1q is encoded into a longer binary sequence

v “ pv0, v1, ¨ ¨ ¨ vn´1q of n binary digits with n ą k. This elongated binary

sequence v is called the codeword of the message u. Since there are 2k dis-

tinct messages, there exist 2k codewords, with each codeword corresponding

to a unique message. This set of 2k codewords is described as constituting

an [n,k] block code. For a block code to serve its intended purpose effec-

tively, it’s imperative that the 2k codewords associated with the 2k distinct

messages maintain their distinctiveness. The additional n ´ k binary symbols

introduced to each input message by the channel encoder are referred to as

redundant bits. These serve the primary purpose of endowing the code with

the ability to detect and correct transmission errors resulting from channel

noise or interference. An essential consideration in designing the channel en-

coder is how to generate these redundant bits in a manner that enhances the

error-correcting capabilities of the code.

The code rate, denoted as R and defined as the ratio R “ k
n
represents

the average number of information bits carried by each code bit. For a block

code with length n and 2k codewords, the encoding and decoding processes

can become notably intricate, particularly when k assumes substantial values,

unless the code exhibits certain structural characteristics. This complexity is

rooted in the encoder’s requirement to store all 2k codewords and the decoder’s

need for a decoding table containing 2n entries to estimate the transmitted

codeword. As such, it becomes imperative for us to shift our focus toward

block codes that can be implemented in a feasible manner, as the practicality

18



Chapter 2 - Rudiments of Coding Theory

of the system is a critical consideration. One structural attribute that stands

out as highly preferable for a block code is linearity.

Definition 2.1 (Binary linear block code). A binary block code C of length n

with 2k codewords is called an [n,k] linear block code if its 2k codewords form

a k-dimensional subspace of the vector space R of all the n-tuple over F2.

Due to the linearity property, given two codewords u and v P C, it follows

that their sum, x “ u ` v also belongs to C.

2.1.1 Generator and Parity-Check Matrix

According to Definition 2.1, each codeword v P C can be expressed as a linear

combination of k linearly independent codewords in C, namely g0,g1, ¨ ¨ ¨ ,gk´1,

which serve as a basis for the code. Using this basis, encoding can be done

as follows. Let u “ pu0, u1, ¨ ¨ ¨ , uk´1q be the message to be encoded. The

codeword v “ pv0, v1, ¨ ¨ ¨ , vn´1q for this message is given by the following

linear combination of g0,g1, ¨ ¨ ¨ ,gk´1, with the k message bits of u as the

coefficients:

v “ u0 ¨ g0 ` u1 ¨ g1 ` . . . ` uk´1 ¨ gk´1.

We may arrange the k linearly independent codewords, g0,g1, ¨ ¨ ¨ ,gk´1 of C

as rows of a k ˆ n matrix over F2 as follows:

G “

¨

˚

˚

˚

˚

˚

˚

˚

˝

g0

g1

...

gk´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

g0,0 g0,1 . . . g0,n´1

g1,0 g1,1 . . . g1,n´1

...
...

. . .
...

gk´1,0 gk´1,1 . . . gk´1,n´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(2.1)

Then, the codeword v for a message u can be expressed as the matrix product

of u and G, in symbols, v “ u ¨ G.

Definition 2.2 (Generator Matrix). We say that G P Fkˆn
2 is a Generator

Matrix for the [n,k] code C if C “ tm ¨ G | m P Fk
2u
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C is spanned by the rows of G, therefore, it is called the row space of G.

In general, an [n,k] linear code has more than one basis, therefore, a generator

matrix of a given [n,k] linear code is not unique. Since a binary [n,k] linear

code C is a k-dimensional subspace of R, its null (or dual) space, denoted

Cd, is an pn ´ kq-dimensional subspace of the same vector space given by the

following set of n-tuples:

Cd “ tw P F2 : xw,vy “ 0 for all v P Cu

where xw,vy denotes the inner product of w and v.

The code Cd can be regarded as a binary [n, n ´ k] linear code, known as

the dual code of C. This code consists of n´k linearly independent codewords,

namely h0,h1, ¨ ¨ ¨ ,hn´k´1. Therefore, every codeword in Cd can be expressed

as a linear combination of these n ´ k linearly independent codewords, which

constitute a basis for Cd. As done previously, we may arrange the n´k linearly

independent codewords, h0,h1, ¨ ¨ ¨ ,hn´k´1 of Cd as rows of a pn´kqˆn matrix

over F2 as follows:

H “

¨

˚

˚

˚

˚

˚

˚

˚

˝

h0

h1

...

hn´k´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

h0,0 h0,1 . . . h0,n´1

h1,0 h1,1 . . . h1,n´1

...
...

. . .
...

hn´k´1,0 hn´k´1,1 . . . hn´k´1,n´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(2.2)

Then H is a generator matrix of the dual code Cd of the binary [n,k] linear

block code C.

Definition 2.3 (Parity-Check Matrix). Given an [n,k] code C, we say that

H P Fpn´kqˆn
2 is a Parity-Check Matrix for C if H is a generator matrix of the

dual code Cd.

Since H is the generator matrix of the dual code, C is said to be the null

space of H. Therefore, a linear code is uniquely specified by two matrices, a
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generator matrix and a parity-check matrix. In particular, the two matrices

are deeply linked to each other, specifically G ¨ HT “ 0.

Furthermore, in many practical scenarios, it is desirable to structure code-

words in such a way that they can be divided into two parts: an information

part containing k unchanged information bits, and a redundancy part with

n ´ k symbols. A linear code with this structure is said to be in systematic

form. The specific alignment of the information sequence within the codeword

is not important; what matters is that the information sequence remains un-

altered in the codeword. For convention, the information sequence is usually

assumed to be right-aligned in the codeword. Under this assumption, a linear

block code in systematic form is defined by a generator matrix G of the form

G “ rP | Iks where P is a kˆpn´kq matrix. Similarly, the parity-check matrix

of a linear block code in systematic form H takes the form H “ rIn´k | PTs.

2.1.2 Error Detection with Linear Block Codes

When a codeword v P C is transmitted over a binary-input binary-output

channel, it results in a received vector r. Due to channel noise, r and v may

differ in some positions. To describe this scenario, an error pattern e is defined.

The received vector r can be expressed as r “ v ` e. Therefore, ej “ 1 for

rj ‰ vj and ej “ 0 for rj “ vj with j “ 0, ¨ ¨ ¨ , n ´ 1. At the receiver, neither

v nor e is known. The decoder’s task is to first detect if there are errors in r.

Once the presence of errors is detected, the decoder can eventually estimate

the error pattern e and then, the estimated transmitted codeword is computed

as v˚ “ r ` e˚, where e˚ is the estimate of e.

Definition 2.4 (Syndrome). Let H P Fpn´kqˆn
2 be the parity-check matrix for

a [n,k] code C and let v be a generic n-tuple over F2. The syndrome of v is

denoted and defined as s “ H ¨ vT P Fn´k
2 .

It is noteworthy that v belongs to the code C if and only if H ¨ vT “ 0.
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Specifically, if s ‰ 0, it indicates that v is not a codeword in C, and errors

are detected. If s “ 0, the decoder assumes r is error-free and accepts it

as the transmitted codeword. However, if r is a codeword but differs from

v, the decoder makes a decoding error. This happens when e transforms v

into another codeword in C and this occurs when e is identical to a nonzero

codeword in C, known as an undetectable error pattern.

2.1.3 Error Correction with Linear Block Codes

Clearly, error detection serves as a prerequisite for error correction. For binary

codes, error detection enables their correction, whereas, for non-binary codes

error detection is the initial preparatory step for subsequent error correction.

To formally assess the error-correcting capacity of a linear block code, it is

first necessary to define what is meant by norm function.

Definition 2.5 (Norm function). A norm function }¨} on a vector space V is a

map that assigns a real value to each vector in V and that meets the properties

of positivity, homothety and triangular inequality.

The concept of a norm function (} ¨ } : V Ñ Rq, depends on the specific

vector space and the underlying field on which it is defined. When considering

the vector space V “ R, composed of the 2n n-tuples over the finite field F2,

a common choice is the Hamming norm. The Hamming norm for a vector is

quite straightforward - it is the count of non-zero elements within the vector.

Regarding the properties of a norm function, it is important to note that

the Hamming norm possesses all of them. Firstly, it is is always non-negative,

meaning that }v} ě 0 for any vector v P V , and it equals zero only when

the vector is the null vector. Additionally, the Hamming norm satisfies the

property of homothety. This means that when we multiply a vector by a

scalar c (which is either 0 or 1 in F2), we find that }c ¨ v} “ c ¨ }v}. Lastly,

the Hamming norm also adheres the triangle inequality. In fact, for any pair
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of vectors v and w P V , it holds true that }v ` w} ď }v} ` }w}.

Definition 2.6 (Metric or Distance function). A metric function dp¨q on a

vector space V is a map that assigns a real value to a pair of vector in V and

that meets the properties of positivity, symmetry and triangular inequality.

Given a normed vector space (equipped with a norm function), it is possible

to define the metric function induced by the norm as dpv, wq “ }v ´ w}. This

means that every normed vector space is also a metric space (equipped with a

metric), while, in general, the opposite is not true.

Regarding the Hamming norm, based on what has been discussed so far, it

is evident that it induces a metric function known as the Hamming distance.

Specifically, the Hamming distance between two n-tuples, denoted as u and v,

is defined as the number of positions at which u and v differ, therefore, it is

equal to the Hamming weight of their sum. It is important to emphasize that

the Hamming distance, which is the metric induced by the Hamming norm,

satisfies all the functional properties required to effectively consider it as a

metric. Once the concept of a metric is defined, we are ready to introduce a

crucial property of linear block codes, namely the minimum distance.

Definition 2.7 (Minimum Distance). Let C be a [n,k] linear code over R and

let w be a norm on R. The minimum distance of C is

d “ min
u, v P C, u‰v

wpu ´ vq.

The minimum distance of a code holds significant importance as it plays a

pivotal role in determining the code’s error-correcting capabilities. When we

delve into the Hamming norm, the concept of the minimum distance revolves

around identifying the shortest distance between codewords within the code.

It goes without saying that a high minimum distance is a desirable attribute

for a code, as it substantially diminishes the likelihood of misinterpretation

when decoding the transmitted codeword.
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According to the relationship between Hamming norm, Hamming metric

and Hamming weight, it holds that:

d “ min
u,vPC,u‰v

wpu´ vq “ min
u,vPC,u‰v

dpu,vq “ min
u,vPC,u‰v

wtpu` vq “ min
xPC,x‰0

wtpxq

where x “ v ` w P C is a codeword according to the linearity of the code.

For 0 ď i ď n, let Ai represent the number of codewords in C with a weight

of i. The sequence of numbers A0, A1, . . . , An is referred to as the weight

distribution of C. The weight distribution of a block linear code C is closely

associated with the parity-check matrix H of the code.

Theorem 2.1. For an [n,k] linear block code C represented by the null space

of a parity-check matrix H, if there are no d ´ 1 or fewer columns in H that

sum to a zero vector, the minimum distance (or weight) of C is at least d. In

other words, a linear code has distance d if and only if any d ´ 1 columns of

the parity check matrix are linearly independent, and there exist d columns that

are linearly dependent.

Proof. Consider a [n,k] code C with a minimum distance of d. By contra-

diction, assume there are d ´ 1 linearly dependent columns in H P Fpn´kqˆn
2 .

Let h1,h2, ¨ ¨ ¨ ,hd´1 be these d ´ 1 linearly dependent columns. Now, let’s

take a binary vector x P Fn
2 with ones in entries corresponding to columns

h1,h2, ¨ ¨ ¨ ,hd´1. Since h1,h2, ¨ ¨ ¨ ,hd´1 are linearly dependent for the initial

assumption, it follows that H ¨xT “ 0. Therefore, x is a codeword of C with a

weight of d´ 1. This contradicts the fact that the minimum distance of C is d.

Therefore, any d´ 1 columns must be linearly independent. Finally, assuming

that the minimum distance is d, there must exist a binary vector y P C with a

weight of d. Since y is a codeword, it follows that H¨yT “ 0. Hence, we obtain

a linear combination of the corresponding d columns in the parity-check matrix

H that equals 0. Hence, there must exist d linearly dependent columns.

Theorem 2.1 guarantees that the minimum weight (or minimum distance)
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of an [n,k] linear block code C with a parity-check matrix H is equal to the

smallest number of columns in H whose vector sum is a zero vector. Specifi-

cally, it gives a lower bound on the minimum distance (or weight) of a linear

block code. In general, it is very hard to determine the exact minimum dis-

tance (or weight) of a linear block code; however, it is much easier to give a

lower bound on its minimum distance (or weight).

2.1.4 Decoding of Linear Block Codes

When a codeword v P C is transmitted, denoting r as the received vector,

maximum-likelihood decoding (MLD) aims to decode r into a codeword v that

maximizes the conditional a-posteriori probability P pr|vq. In the case of a Bi-

nary Symmetric Channel (BSC), this corresponds to finding the codeword v

that minimizes the Hamming distance dpr,vq between r and v. This is known

as minimum-distance or nearest-neighbor decoding. In minimum-distance de-

coding, the decoder must calculate the distance between r and every codeword

in C and select a codeword v (which may not be unique) that is closest to r.

This process is referred to as complete error-correction decoding and requires

evaluating the distance between r and all 2k codewords in C. However, for large

values of k, implementing this complete decoder becomes practically infeasible.

Nonetheless, for many linear block codes, efficient algorithms have been

developed for incomplete error-correction decoding, which achieves good per-

formance with significantly reduced decoding complexity. Regardless of the

specific codeword transmitted over a noisy channel, the received vector r can

be one of the 2n n-tuples over F2. The decoding scheme employed at the de-

coder essentially divides the vector space V “ R, comprising all n-tuples over

F2, into 2k regions. Each region contains one exclusive codeword from C, and

the goal of decoding is to identify the region that contains the received vector

r and decode it into the appropriate codeword v. These regions are known as

decoding regions.
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An algebraic method for partitioning 2n received vectors into 2k decoding

regions involves constructing a so-called standard array for a [n,k] linear block

code. This 2pn´kq ˆ 2k array contains the 2k codewords in its first row. Sub-

sequent rows are generated one at a time by adding a selected vector ej, not

present in the previous rows, to each codeword vi in the top row and placing

the resulting sum ej ` vi beneath vi. The choice of ej is made to ensure no

repetitions for vectors in the array. This process continues until no more vec-

tors can be chosen from the vector space V , resulting in a standard array for

C, where each row corresponds to a coset, and the first element serves as the

coset leader.

Based on the structure of the standard array, the sum of two vectors within

the same coset yields a codeword. Moreover, there are no duplicated vectors in

the array, and every n-tuples in the vector space V appears exactly once in the

array. Additionally, all the vectors in a coset share the same syndrome, which

is the syndrome of the coset leader. In other words, pej ` viq ¨ HT “ ej ¨ HT

(since vi ¨ HT “ 0) and different cosets have different syndromes.

Consequently, there is a direct one-to-one correspondence between coset

leaders and syndromes. Each column within the array functions as a decoding

region, and the success of the decoding process relies on the accurate matching

of the received vector with the transmitted codeword and its corresponding

coset leader. To achieve optimal decoding, the choice of coset leaders should

be guided by the most probable error patterns for the specific channel. In other

words, optimality is achieved by considering the most probable error patterns

for that particular type of channel as coset leaders (correctable errors).

In case of considering the Binary Symmetric Channels (BSCs), error pat-

terns with minimal weight (fewer errors) are more probable. Therefore, se-

lecting error patterns of this type makes minimum-distance decoding (MLD)

highly effective, thus leading to the construction of an optimal standard array

for the code C.
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At this point, all the preliminary concepts required to define the error-

correcting capability of the code have been established. Specifically, let’s con-

sider an [n,k] linear block code C with a parity-check matrix H and minimum

distance d. It can be shown that all the n-tuples over F2 of weight δ “ td´1
2

u

or less can be used as coset leaders in an optimal standard array for C. In

some cases, to complete the standard array it is possible to consider some

(but not all) cosets leader (correctable errors) of weight δ ` 1. Therefore, for

a linear code C with minimum distance d, any error pattern with δ or fewer

errors is guaranteed correctable (i.e., resulting in correct decoding), but not

all the error patterns with δ ` 1 or more errors. The parameter δ is called the

error-correction capability of C. We say that C is capable of correcting δ or

fewer random errors and C is called a δ-error-correcting code.

Decoding an [n,k] linear block code C using an optimal standard array

can be challenging due to the large memory required to store 2n n-tuples.

However, this complexity can be significantly reduced by recognizing that coset

leaders encompass all correctable error patterns and that there is a direct

correspondence between pn ´ kq-tuple syndromes and coset leaders.

To simplify decoding, a table with two columns is created, containing 2n´k

coset leaders (correctable error patterns) in one column and their correspond-

ing syndromes in the other. The decoding process for the vector r begins with

the computation of its syndrome s “ r ¨ HT. The goal is to find the coset

leader e in the table whose syndrome matches s. This e is assumed to rep-

resent the error pattern from the channel noise, and r is then decoded into

the codeword v “ r ` e. This approach is known as syndrome decoding or

table-look-up decoding and significantly reduces decoder complexity compared

to standard-array-based decoding. For a long code with large n´k, a complete

table-look-up decoder is still very complex, requiring a very large memory to

store the look-up table. If we limit ourself to correcting only the error pat-

terns guaranteed by the error-correcting capability δ of the code, the size of
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p0, 0, 0, 0q

p2, 0, 0, 4q

p2, 1, 0, 3q

p4, 1, 1, 4q

Figure 2.1: Example of 4 distinct codewords alongside their respective decod-
ing spheres. Noticeably, each decoding sphere has a radius matching the code’s
correction capability, which is, in turn, intricately tied to the code’s minimum
distance

the look-up table can be further reduced. The new table consists of only

Nδ “

ˆ

n

0

̇

`

ˆ

n

1

̇

` ¨ ¨ ¨

ˆ

n

δ

̇

correctable error patterns guaranteed by the minimum distance d of the code.

With this above partial table-look-up decoding, the number of errors to be

decoded is bounded by the error-correcting capability, therefore, this is called

bound-distance decoding. To visually grasp the concept of bound distance de-

coding, refer to Figure 2.1. In this context, the term ”decoding region” denotes

the spatial vicinity around each codeword, wherein the decoding procedure is

anticipated to yield successful results. Going into more details, if the error

pattern is such that from one codeword, we move to a word that is inside the

decoding region associated with another codeword, the decoding process fails.

Restricting decoding to the minimum distance of the code means ensuring that

if the weight of the error pattern is less than the correction capability of the

code, then the error pattern, whatever it may be, is such that from one code-

word, we still end up with a word that is within the decoding region of that

codeword.
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2.2 Cyclic codes

Cyclic codes form a very special type of linear block codes. They have encoding

advantage over many other codes since encoding can be implemented with

simple shift registers with feedback connections.

Definition 2.8 (Cyclic code). An [n, k] linear block code C is said to be cyclic

if the cyclic-shift of each codeword in C is also a codeword in C. In other words,

a linear block code is said to be cyclic if the 2k codewords form a k-dimensional

subspace closed under the operation of cyclic-shift within the vector space V of

2n n-tuples in F2.

When it comes to cyclic codes, it is generally preferred to work with the

polynomial representation rather than the vectorial one. A codeword v P C is

represented by a polynomial over F2 of degree n ´ 1 or less with components

of v as coefficients. This polynomial is called code polynomial. Obviously,

there is a one-to-one correspondence between codewords and code polynomials,

therefore, a [n,k] cyclic code consists of 2k code polynomials. In an [n,k] cyclic

code C, every nonzero code polynomial has degree at least n´k but not greater

than n´1. There exists one and only one code polynomial gpxq of degree n´k

of the following form:

gpxq “ 1 ` g1 ¨ x ` g2 ¨ x2
` ¨ ¨ ¨ gn´k´1 ¨ xn´k´1

` xn´k.

The polynomial gpxq is said to be the generator polynomial of the [n,k] cyclic

code C. As is evident from the name, the generator polynomial of a cyclic

code is the ”polynomial version” of the generator matrix of a linear block

code. Therefore, all operations that involve the generator matrix in a linear

block code can also be defined in terms of the generator polynomial while

retaining the same meaning. In particular, concerning the encoding rule, it

follows that:

vpxq “ mpxqgpxq
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where mpxq “ m0 ` m1 ¨ x ` ¨ ¨ ¨mk´1x
k´1 is a polynomial over F2 of degree

k ´ 1 or less and m “ pm0,m1, ¨ ¨ ¨mk´1q is the message to be encoded.

Clearly, the generator polynomial and the generator matrix are deeply

linked to each other. Specifically, the generator matrix G P Fkˆn
2 of the [n,k]

cyclic code is simply obtained by using the n-tuple representation of the gen-

erating polynomial gpxq as the first row and its k´1 circular shifts to the right

like the remaining k ´ 1 rows. A crucial property of the generator polynomial

gpxq of an [n,k] cyclic code C is that it divides xn ` 1. Consequently, xn ` 1

can be expressed as the following product:

xn
` 1 “ gpxqfpxq

where fpxq is a polynomial of degree k over F2. The reciprocal polynomial

of fpxq denoted by hpxq “ xk ¨ fpx´1q is called parity-check polynomial of C.

Similar to what we observed with the generator polynomial and the generator

matrix, the check-parity polynomial similarly defines the check-parity matrix.

2.2.1 Systematic Encoding of Cyclic codes

Systematic encoding of an [n,k] cyclic code using a generator polynomial gpxq

is straightforward. Given a message m “ pm0,m1, ¨ ¨ ¨ ,mk´1q, it is possible to

deduce the message polynomial mpxq “ m0 ` m1 ¨ x ` ¨ ¨ ¨ ` mk´1 ¨ xk´1. This

can be multiplied by xn´k, resulting in xn´k ¨mpxq, a polynomial of maximum

degree k´1`n´k “ n´1. Dividing xn´k ¨mpxq by the generator polynomial

gpxq, we obtain:

xn´k
¨ mpxq “ apxqgpxq ` bpxq

where apxq is the quotient and bpxq is the remainder. The degree of bpXq is

n ´ k ´ 1 or less, and it takes the form bpXq “ b0 ` b1x ` ¨ ¨ ¨ ` bn´k´1x
n´k´1.

Since bpxq ` xn´k ¨ mpxq “ apxqgpxq, it means that bpxq ` xn´k ¨ mpxq is

divisible by gpxq, therefore, bpxq ` xn´k ¨ mpxq is a code polynomial. At this

30



Chapter 2 - Rudiments of Coding Theory

point we can observe that the n-tuple representation of the code polynomial

bpxq ` xn´k ¨ mpxq is in systematic form, specifically:

pb0, b1, ¨ ¨ ¨ bn´k´1,m0,m1, ¨ ¨ ¨ ,mk´1q

where the n ´ k parity check bits are the coefficients of the remainder bpxq.

2.2.2 Decoding of Cyclic codes

For the decoding of cyclic codes, being them a subset of linear block codes,

the same procedures described in subsection 2.1.4 can be applied. However,

as previously mentioned, in the context of cyclic codes, it is preferred to work

with the polynomial representation. Therefore, it is necessary to define the

polynomial equivalent of the syndrome previously defined in the vector domain.

Let rpxq “ r0 ` r1x ` ¨ ¨ ¨ ` rn´1x
n´1 represent the received polynomial. As

usual, rpxq can be expressed as the sum of a transmitted polynomial vpxq (code

polynomial) and an error polynomial epxq, namely rpxq “ vpxq ` epxq.

The initial step in decoding rpxq involves calculating its syndrome, denoted

as spxq, which is determined by the remainder when rpxq is divided by the gen-

erator polynomial gpxq of code C. If spxq “ 0, the receiver accepts rpxq as the

transmitted code polynomial. If spxq ‰ 0, this indicates the presence of trans-

mission errors. In such cases, error patterns can be detected and eventually

corrected, depending on the code’s error-correcting capabilities. It is note-

worthy that the maximum degree of the syndrome is n ´ k ´ 1, which means

that in the vector domain, it consists of n ´ k coefficients, consistent with the

syndrome definition provided in the vector domain. It’s important to empha-

size that in this case, the definition of syndrome changes to accommodate the

context of polynomials. However, the definition is tailored to ensure that the

syndrome retains the same meaning.
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2.2.3 Shortened Cyclic Codes

Let us consider a systematic [n,k] cyclic code C. Among all the 2k codewords,

assuming ℓ is a non-negative integer less than k pℓ ă kq, it is possible to

consider only the set of code polynomials that have ℓ leading high-order infor-

mation digits as zeros, namely, vn´ℓ, ¨ ¨ ¨ , vn´2, vn´1. This set comprises 2k´ℓ

code polynomials. By eliminating the ℓ zero information digits from each of

these code polynomials, we obtain a set of 2k´ℓ polynomials over F2 with max-

imum degree n´ ℓ´1. These 2k´ℓ shortened polynomials form an [n´ ℓ, k´ ℓ]

linear block code known as shortened cyclic code, which, unlike the original

code is not cyclic. A shortened cyclic code offers at least the same error-

correction capability as the original code from which it’s derived because in

the considered codewords, we are only removing 0s. Therefore, the minimum

Hamming weight which is equivalent to the minimum Hamming distance, as

discussed in subsection 2.1.3, remains unchanged.

2.2.4 Quasi-Cyclic codes

Let s and n be two positive integers and consider the ps ¨ nq-tuple over F2,

denoted and defined by c “ pc1, c2 ¨ ¨ ¨ csq, that consists of s sections of n

bits each. For 1 ď j ď s, the j-th section of c is a n-tuple over F2, i.e.,

cj “ pcj,0, cj,1, ¨ ¨ ¨ , cj,n´1q. Let c
p1q

j be the n-tuple over F2 obtained by cyclically

shifting each component of cj one place to the right. We call c
p1q

j the right

cyclic-shift of cj, namely c
p1q

j “ pcj,n´1, cj,0, ¨ ¨ ¨ , cj,n´2q. Let cp1q be the ps ¨ nq-

tuple over F2 obtained by cyclically shifting each section of c one place to the

right, formally:

cp1q
“ pc

p1q

1 c
p1q

2 ¨ ¨ ¨ cp1q
s q.

Definition 2.9. (Quasi Cyclic code) Let n, k and s be positive integers such

that k ă s ¨ n. Let c “ pc1, c2, ¨ ¨ ¨ csq be a vector in Fsn
2 (s following n-tuple
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over F2). An [sn, k, d] linear code C is Quasi-Cyclic (QC) of index s if for any

c “ pc1, c2, ¨ ¨ ¨ csq P C, the vector cp1q obtained after applying a simultaneous

circular shift to every block, namely, c1, c2, ¨ ¨ ¨ cs is also a codeword.

More formally, by considering each block ci as a polynomial in R, the code

C is a Quasi-Cyclic code of index s if for any c “ pc1, c2, ¨ ¨ ¨ csq P C it holds

that px ¨ c1, x ¨ c2, ¨ ¨ ¨ x ¨ csq P C. Specifically, if s “ 1, the QC code C is a also a

cyclic code. Therefore, cyclic codes form a subclass of QC codes. In general,

it can be stated that Quasi-Cyclic codes are codes that are cyclic section by

section (section-wise). Among QC codes, Systematic Quasi-Cyclic (QC) codes

deserve special mention due to their structured format. This structure extends

to the parity-check matrix, making them worthy of further exploration.

Definition 2.10. (Systematic Quasi-Cyclic codes) A systematic QC [sn, n]

code of index s and rate 1{s is a quasi-cyclic code with an ps´1qnˆsn parity-

check matrix of the form:

H “

¨

˚

˚

˚

˚

˚

˚

˚

˝

In 0 ¨ ¨ ¨ 0 A0

0 In 0 A1

...
. . .

...
...

0 . . . 0 In As´2

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

where A0, A1 and As´2 are n ˆ n circulant matrix as the ones described in

chapter 1.

2.3 Brief generalization to non-binary codes

In this section, our aim is to provide a comprehensive overview of the funda-

mental properties of non-binary codes, with a specific focus on how they relate

to the binary codes already discussed. Up until this point, in both section 2.1

and section 2.2, our discussions have primarily centered around block codes

with symbols derived from the binary field F2. Now, we extend our scope to
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encompass block codes with symbols originating from non-binary fields. These

codes, known as q-ary block codes, follow a similar construction approach to

binary block codes. A q-ary block code [n, k] has length n and comprises qk

codewords. In the context of a q-ary block code [n, k], a message consists of k

informative symbols, each drawn from Fq.

Definition 2.11. (Non-Binary block code) A q-ary block code of length n with

qk codewords is called a q-ary block linear code [n, k] if and only if its qk

codewords collectively form a vector subspace within the vector space of all qn

n-tuples with coefficients in Fq.

A q-ary block linear code [n, k] is defined by a generator matrix G of

dimensions kˆn with coefficients in Fq and a parity-check matrix H of dimen-

sions pn ´ kq ˆ n with coefficients in Fq. In comparison to binary codes, the

principal distinction lies in the fact that the elements of these matrices belong

to Fq instead of F2. The encoding and decoding of a q-ary block linear code

[n, k] are exactly the same as for a binary code, with the sole distinction that

the operations are conducted in Fq instead of F2. Moreover, concerning the

family of cyclic codes, it holds that a q-ary cyclic code [n,k] is generated by a

generator polynomial of degree n ´ k with coefficients in Fq defined as:

gpxq “ g0 ` g1x ` ¨gn´k´1x
n´k´1

` xn´k

where gi for i “ 0, ¨ ¨ ¨n ´ k ´ 1 P Fq.

34



Chapter 3

Codes of interest in HQC

After offering a concise overview of the essential characteristics of linear block

codes (in section 2.1) and introducing cyclic codes as a subset of linear block

codes (in section 2.2), along with a generalization of the discussion to the

non-binary case (in section 2.3), this chapter’s goal is to explore different code

types employed in Hamming Quasi-Cyclic (HQC).

3.1 Repetition codes

A repetition code (REP) denoted by Crep over F2 of length n is a binary [n,1]

linear code with a single information bit (k “ 1). The code is simply obtained

by repeating a single information bit n times. Therefore, it consists of only two

codewords, namely the all-zero codeword p0, ¨ ¨ ¨ , 0q and the all-one codeword,

p1, ¨ ¨ ¨ , 1q. Obviously, its generator matrix is Grep “ p111 ¨ ¨ ¨ 1q. In this way:

• u “ 0 Ñ v “ u ¨ Grep “ p0, ¨ ¨ ¨ , 0q

• u “ 1 Ñ v “ u ¨ Grep “ p1, ¨ ¨ ¨ , 1q

The minimum distance of a REP code, denoted as d, is exactly n. Therefore,

the corrective power of a REP code is:

δ “

Z

d ´ 1

2

^

“

Z

n ´ 1

2

^

35



Chapter 3 - Codes of interest in HQC

3.2 Binary BCH codes

BCH codes (Bose-Chaudhuri-Hocquenghem) belong to the cyclic code family

(described in section 2.2). Due to their cyclic nature, their construction relies

on defining the generator polynomial gpxq, specifically by defining its roots.

Theorem 3.1. For every positive integer m ě 3 and every positive integer t

less than or equal to 2m´1, there exists a binary BCH code with a block length

of 2m ´ 1, a minimum distance of at least 2t ` 1, and a maximum of m ¨ t

redundancy symbols.

This particular BCH code, usually denoted as [n, k, δ], is capable of cor-

recting up to δ “ t errors, hence, it is referred to as a t-error-correcting BCH

code. The construction of a BCH code capable of correcting t errors starts

with defining an extended Galois field denoted as F2m . Let α be a primitive

element of F2m , meaning α can generate all nonzero elements of F2m with its

powers. The generator polynomial gpxq of the BCH code of length 2m ´ 1 is

the minimal degree polynomial with coefficients in F2 whose roots are the 2t

consecutive powers of α, namely α, α2, ¨ ¨ ¨ , α2t.

Definition 3.1. (minimal polynomial) Let β be an element of the extended

Galois field F2m (an extension of F2). The monic polynomial with coefficients

in F2 that has the minimum degree and has β as its roots is said to be the

minimal polynomial of β and it is denoted by ϕpxq.

For 1 ď i ď 2t, let ϕipxq be the minimal polynomial of αi. Then, the

generator polynomial of the t-error correcting binary BCH code of length 2m´1

is given by the least common multiple (LCM) of ϕ1pxq, ϕ2pxq, . . . , ϕ2tpxq, i.e.,

gpxq “ LCMtϕ1pxq, ϕ2pxq, . . . , ϕ2tpxqu.

Once the generator polynomial of a BCH code is defined, as it is cyclic, the

code itself is completely defined.
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3.2.1 Decoding of binary BCH codes

Consider a [n, k, δ] binary BCH code with n “ 2m ´ 1 and assume that a

code polynomial vpxq is transmitted over a Binary Symmetric Channel. The

received polynomial is denoted as rpxq “ r0 ` r1x ` . . . ` rn´1x
n´1. Error

locations are identified through epxq “ e0 ` e1x ` . . . ` en´1x
n´1 which is

known as the error polynomial. Specifically, if ei “ 1, it means the occurrence

of an error at that particular location. Then we can write:

rpxq “ vpxq ` epxq.

As usual, the first step in decoding involves computing the syndrome of

rpxq. Since, vpxq “ mpxqgpxq, when x “ αi, it follows that vpαiq “ mpαiqgpαiq.

Given that gpαiq “ 0 for i “ 1, ¨ ¨ ¨ 2t, it consequently holds that vpαiq “ 0.

Therefore, rpαiq “ vpαiq ` epαiq “ epαiq. The equation vpαiq “ 0 can be

represented in matrix form, as:

pv0, v1, ¨, v2m´2q ¨ ¨ ¨

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

αi

...

αp2m´2q¨i

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ 0

This matrix representation allow us to define the structure of the parity-

check matrix H for a BCH code, which is crucial for syndrome computation.

Specifically:

H “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 α α2 ¨ ¨ ¨ αp2m´2q

1 α2 pα2q2 ¨ ¨ ¨ pα2q2
m´2

1 α3 pα3q2 ¨ ¨ ¨ pα3q2
m´2

...
...

...
. . .

...

1 α2t pα2tq2 ¨ ¨ ¨ pα2tq2
m´2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This matrix is a Vandermonde matrix.
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Definition 3.2. (Vandermonde matrix) In linear algebra, a Vandermonde ma-

trix is a matrix whose rows (or columns) have elements in a geometric pro-

gression starting from 1, so that the element in position (i,j) is αi
j´1.

If we consider any value of d ď 2t, it turns out that every d ˆ d submatrix

of H is still a Vandermonde matrix with a non-zero determinant indicating

that its columns are linearly independent. According to Theorem 2.1, when

calculating the minimum distance of a code, we need to determine the mini-

mum number of columns whose sum equals zero. Clearly, in this case, taking

a submatrix of H of size d ˆ d with d ď 2t, columns do not sum to zero be-

cause they are linearly independent. This implies that to obtain a zero sum,

a number of columns at least equal to 2t ` 1 is needed. Thus, the minimum

distance of this BCH code is at least 2t`1 which is referred to as the designed

minimum distance of the BCH code. The actual minimum distance can be

greater than 2t` 1; therefore, 2t` 1 serves as a lower bound for the minimum

distance of a BCH code.

Once we have defined the parity-check matrix for a BCH code, we can

determine the syndrome of rpxq as:

S “ pS1, S2, ¨ ¨ ¨ , S2tq “ r ¨ HT.

For 1 ď i ď 2t, it follows that the i-component of S is:

Si “ pr0, r1, ¨ ¨ ¨ , r2m´2q ¨

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

αi

...

αp2m´2q¨i

˛

‹

‹

‹

‹

‹

‹

‹

‚

“ r0 ` r1α
i
` ¨ ¨ ¨ ` r2m´2α

p2m´2q
“ rpαi

q.

Therefore, since rpαiq “ epαiq it follows that:

Si “ epαi
q.
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Suppose that epxq has ν errors at location j1, j2, ¨ ¨ ¨ jν , then

epxq “ xj1 ` xj2 ` ¨ ¨ ¨xjν ,

we obtain the following set of equations, where αj1 , αj2 , ¨ ¨ ¨αjν are unknown:

S1 “ αj1 ` αj2 ` ¨ ¨ ¨ ` αjν

S2 “ pαj1q
2

` pαj2q
2

` ¨ ¨ ¨ ` pαjν q
2

...

S2t “ pαj1q
2t

` pαj2q
2t

` ¨ ¨ ¨ ` pαjν q
2t

The aim of a BCH decoding algorithm is to solve this system of equations.

In particular, S1, S2, ¨ ¨ ¨ , S2t are known since the syndrome is calculated in

reception. Specifically, by solving the system we determine αj1 , αj2 , ¨ ¨ ¨αjν

where the exponents are precisely the sought-after unknowns. Given that

αj1 , αj2 , ¨ ¨ ¨αjν allow us to identify the error positions, they are referred to

as error-location numbers. For the sake of simplicity, let’s ease the notation

assuming βi “ αji . In this way, the equations above can be expressed as

follows:

S1 “ β1 ` β2 ` ¨ ¨ ¨ ` βν

S2 “ pβ1q
2

` pβ2q
2

` ¨ ¨ ¨ ` pβνq
2

...

S2t “ pβ1q
2t

` pβ2q
2t

` ¨ ¨ ¨ ` pβνq
2t

This is a non-linear system over a finite field. With the new notation, the

unknowns are βl “ αjl with 1 ď l ď ν. Solving this system, being non-linear,

is particularly challenging. In order to tackle the problem of solving the non-
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linear system in a feasible manner, the following polynomial is introduced:

σpxq “ p1 ` β1xqp1 ` β2xq ¨ ¨ ¨ p1 ` βνxq

where σpxq is a polynomial of degree ν whose roots are β´1
1 , β´1

2 , ¨ ¨ ¨ β´1
ν .

Evaluating the construction of the polynomial σpxq we realize that it can be

expressed as σpxq “ σ0 `σ1x` ¨ ¨ ¨σνx
ν where σ0 “ 1, σ1 “ β1 `β2 ` ¨ ¨ ¨ `βν ,

σ2 “ β1β2 ` β1β3 ` ¨ ¨ ¨ ` βν´1βν , ¨ ¨ ¨ , σν “ β1β2 ¨ ¨ ¨ βν . The polynomial σpxq is

said to be the error-location polynomial. At this point, it is possible to define

an equivalent set of equations using the error-location polynomial, this new

equations are known as Newton identities:

S1 ` σ1 “ 0

S2 ` σ1S1 ` 2σ2 “ 0

S3 ` σ1S2 ` σ2S1 ` 3σ3 “ 0

...

Sν ` σ1Sν´1 ` σ2Sν´2 ` ¨ ¨ ¨ ` σν´1S1 ` νσν “ 0

...

By solving the previous system, it is possible to determine σ1, σ2, ..., σν ,

and thus the polynomial σpxq. Once σpxq is determined, we evaluate its roots.

The inverses of the roots of σpxq correspond to β1, β2, β3, ¨ ¨ ¨ , βν . From the

relationship βi “ αji , we determine ji, and consequently, the error pattern

epxq “ xj1 ` xj2 ` ¨ ¨ ¨xjν . By subtracting epxq from the received polynomial

rpxq (or adding using modulo-2 addition), we obtain the decoded codeword

vpxq.

The main difficulty in this decoding algorithm lies in the resolution of the

Newton identities. In fact, besides the inherent complexity of the problem, the

solution of the Newton identities is not unique. Therefore, in general, there
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will be more than one error pattern for which the coefficients of the polyno-

mial σpxq satisfy these identities. To minimize the decoding error probability,

we need to find the most probable error pattern. For the Binary Symmetric

Channel (BSC), finding the most probable error pattern means determining the

σpxq polynomial of the minimum degree whose coefficients satisfy the Newton

identities. Indeed, the degree of the σpxq polynomial is equal to the number of

errors in the codeword, so we reasonably assume that the error count is mini-

mized. This can be achieved iteratively using an algorithm commonly referred

to as the Berlekamp-Massey (BM) algorithm. This algorithm proceeds one

equation at a time. Specifically, the algorithm determines the σpxq polynomial

of minimal degree that satisfies the k-th Newton identity. Then, it checks if

the polynomial also satisfies the subsequent equation, i.e., the k`1-th identity.

If not, a corrective term known as ”discrepancy” is introduced to make the

σpxq polynomial a solution to the k ` 1-th Newton identity. We won’t delve

further into this algorithm here, but that is the basic idea.

3.3 Non-binary BCH codes

In HQC we are going to use Reed-Solomon (RS) codes. These codes are a

specific case of q-ary BCH codes. Therefore, before delving into understanding

RS codes, it is first necessary to generalize the discussion about binary BCH

codes (in section 3.2) to the non-binary case. Let Fm
q be the extended Galois

field of the prime field Fq. Let α be a primitive element of Fm
q . A BCH code of

length qm ´ 1 over Fq, capable of correcting t errors, is a cyclic code generated

by the polynomial of minimum degree, denoted as gpxq, over Fq which has

α, α2, ¨ ¨ ¨α2t and their conjugates as roots. For 1 ď i ď 2t, let ϕipxq be the

minimum polynomial of αi over Fq. It turns out that:

gpxq “ LCMtϕ1pxq, ϕ2pxq, . . . , ϕ2tpxqu.
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The parity-check matrix H of a q-ary BCH code has the same structure of

the parity-check matrix of a binary BCH code; therefore, it is a Vandermonde

matrix. Since the parity-check matrix H is a Vandermonde matrix, as seen

in the case of binary BCH codes (in section 3.2), it follows that the minimum

distance of the code is at least 2t ` 1. To summarize, a q-ary BCH code

capable of correcting t errors has a length of n “ qm ´ 1, a maximum number

of redundancy symbols of 2mt, at least dimension qm ´ 1´ 2mt and minimum

distance of at least 2t ` 1.

3.3.1 Reed-Solomon codes

The most important and widely used class of q-ary BCH codes is represented

by Reed-Solomon (RS) codes. Specifically, these can be considered as a special

case of q-ary BCH codes when the code’s construction field, denoted as Fqm ,

is the same as the symbol field, denoted as Fq. This means that RS codes are

a specialization of BCH q-ary codes in the case of m “ 1. Let α be a primitive

element of Fqm “ Fq, an RS code with a length of qm ´ 1 “ q ´ 1 over Fq

and capable of correcting t errors, with 2t ă q, is a cyclic code generated by

the minimal-degree polynomial gpxq (the generator polynomial) over Fq that

has α, α2, . . . , α2t and their conjugates as roots. In specific terms, for an RS

code, it can be shown that the minimum distance is exactly equal to the lower

bound, i.e., d “ 2t ` 1. This means that the minimum distance of an RS code

is one more than the number of redundancy symbols. A code of this type is

referred to as maximum-distance-separable (MDS). In other words, such codes

are optimal, meaning that given the same number of redundancy symbols, it’s

not possible to correct more errors. In summary, an RS code that corrects t

errors over Fq has a length of q ´ 1, presents 2t redundancy symbols, has a

dimension of q ´ 1 ´ 2t and a minimum distance of 2t ` 1.

In all practical applications of RS codes, q is commonly chosen as a power

of 2, let’s say q “ 2s, and the code symbols are drawn from F2s . If each code
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symbol is represented by an s-tuple over F2, an RS code can be transmitted

using binary modulation, such as BPSK. During the decoding process, every s

received bits are grouped into a received symbol in F2s . Subsequently, decoding

is performed on the received symbol sequence.

3.3.2 Decoding Reed Solomon codes

To conclude this section, we will provide further insights into the decoding

process of RS codes. Unlike binary codes, RS codes decoding introduce ad-

ditional complexity due to their non-binary nature. In a binary code, once

the error position is identified, automatic correction can be applied. However,

in the non-binary scenario, after identifying the error position, direct correc-

tion is not possible because it remains uncertain which of the remaining q ´ 1

symbols is the correct one. In contrast to decoding binary BCH codes, the

decoding of RS codes requires the definition of not only the error locator poly-

nomial, denoted as σpxq, but also another polynomial called the error evaluator

polynomial, represented as Z0pxq.

Consider an RS code [q ´ 1, q ´ 2t ´ 1, 2t ` 1] over Fq, designed for

error correction on a Binary Symmetric Channel (BSC). Let’s assume the

transmitted codeword polynomial is vpxq “ v0 ` v1x ` ¨ ¨ ¨ ` vq´2x
q´2, and the

received polynomial is rpxq “ r0 ` r1x` ¨ ¨ ¨ ` rq´2x
q´2. Furthermore, the error

pattern is represented by the following polynomial:

epxq “ ej1x
j1 ` ej2x

j2 ` ¨ ¨ ¨ ` ejνx
jν

where 0 ď j1 ă j2 ă ¨ ¨ ¨ ă jν ă q´1 are the error positions and ej1 , ej2 , ¨ ¨ ¨ , ejν

are the error values at positions j1, j2, ¨ ¨ ¨ , jν .

We establish the set of syndromes as S1, S2, ¨ ¨ ¨S2t, defined as Si “ rpαiq,

where α represents a primitive element in F2m . As explained in the binary

case, we can observe that rpαiq “ epαiq since vpαiq “ 0 (where vpxq is the
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code polynomial). This leads us to the following system of equations, where

αj1 , αj2 , ¨ ¨ ¨ , αjnu are unknown:

S1 “ ej1α
j1 ` ej2α

j2 ` ¨ ¨ ¨ ` ejνα
jν

S2 “ ej1pαj1q
2

` ej2pαj2q
2

` ¨ ¨ ¨ ` ejν pαjν q
2

...

S2t “ ej1pαj1q
2t

` ej2pαj2q
2t

` ¨ ¨ ¨ ` ejν pαjν q
2t

The aim of a Reed-Solomon decoding algorithm is to solve this system of

equations. To simplify the notation let’s assume βi “ αji , then, it follows that:

S1 “ ej1β1 ` ej2β2 ` ¨ ¨ ¨ ` ejνβν

S2 “ ej1pβ1q
2

` ej2pβ2q
2

` ¨ ¨ ¨ ` ejν pβνq
2

...

S2t “ ej1pβ1q
2t

` ej2pβ2q
2t

` ¨ ¨ ¨ ` ejν pβνq
2t

As discussed for the binary case we define the error location polynomial as:

σpxq “ p1 ` β1xqp1 ` β2xq ¨ ¨ ¨ p1 ` βνxq “ σ0 ` σ1x ` ¨ ¨ ¨σνx
ν

where σpxq is a polynomial of degree ν whose roots are β´1
1 , β´1

2 , β´1
3 , ¨ ¨ ¨ β´1

ν .

After retrieving the coefficients of σpxq, we can compute the error positions.

Define the error evaluator polynomial Z0pxq as:

Z0pxq “ S1 ` pS2 ` σ1S1qx ` ¨ ¨ ¨ ` pS0 ` σ1Sν´1 ` ¨ ¨ ¨ ` σν´1S1qxν´1.

The problem of decoding an RS code translates into evaluation of the error

locator polynomial σpxq and the error evaluator polynomial Z0pxq. These two
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polynomials are closely linked by the so-called key equation:

σpxqSpxq “ Z0pxq mod x2t

where the polynomial Spxq is a known polynomial of degree 2t ´ 1 with coef-

ficients S1, S2, . . . , S2t.

Decoding RS codes involves resolving the key equation, and any method

for this purpose serves as a decoding technique. When the error count in

epxq remains within the code’s correction capability, the key equation has

two distinct solutions: σpxq and Z0pxq. Notably, the degree of σpxq is lower

than or equal to the degree of Z0pxq, which, in turn, is either lower or at

most equal to the code’s correction capability. One widely used method for

tackling the key equation is the Euclidean algorithm for successive divisions.

Following this, the error locator polynomial σpxq is determined, enabling the

identification of error positions. Subsequently, the error evaluator polynomial

Z0pxq is computed, allowing to deduce error values at specific positions. The

formula for calculating the error value at position ji is the following:

eji “
´Z0pα´jiq

σ1pα´jiq

where σ1pxq is the first derivative of σpxq with respect to x.

The final step computes the difference between the received polynomial and

the estimated error polynomial to derive the estimated transmitted codeword.

3.4 Reed Muller codes

Reed-Muller (RM) codes are linear block codes that can be defined in terms

of Boolean functions [10]. Specifically, to define codes of length n “ 2m, we

need m variables, namely v1, v2, . . . , vm, which take values in F2. Let v “

pv1, . . . , vmq range over Fm
2 , the set of all 2m binary m-tuples.
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v3 v2 v1 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 3.1: Example of a truth table for m “ 3

Definition 3.3. A function fpvq “ fpv1, ¨ ¨ ¨ , vmq that takes on the values 0

and 1 is called a Boolean function.

Such a function can be specified by a truth table, which is a list of all possi-

ble input combinations along with their corresponding outputs. For example,

when m “ 3, a possible Boolean function is the one specified by Table 3.1. The

last column of the truth table is a binary vector of length n “ 2m, denoted

by f , obtained from the Boolean function fpv1 ¨ ¨ ¨ , vmq. The last column can

be filled arbitrarily; therefore, there are 22
m
Boolean functions of m variables.

Any Boolean function can be expressed as a sum of 2m functions, namely:

1, v1, v2, ¨ ¨ ¨ vm, v1v2, v1v3, ¨ ¨ ¨ vm´1vm, ¨ ¨ ¨ , v1v2v3 ¨ ¨ ¨ ¨ ¨ vm (3.1)

Since there are 22
m

different Boolean functions in total, all these sums must

be distinct. In other words, the 2m vectors corresponding to the functions in

equation (3.1) are linearly independent. This property is of paramount impor-

tance when constructing Reed-Muller codes, as it ensures that the codewords

generated by these codes are distinct and can be reliably decoded.

Definition 3.4. (r-th binary Reed-Muller code) The r-th binary Reed-Muller

code, denoted by Rpr,mq, of length n “ 2m, for 0 ď r ď m, is the set of all vec-

tors f , where fpv1, ¨ ¨ ¨ vmq is a Boolean function representable as a polynomial

of maximum degree r.
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Since each Boolean function can be expressed as a sum of the functions

in (3.1), and since each codeword can be expressed as a Boolean function, as

stated in Definition 3.4, it follows that the r-th order RM code consists of all

linear combinations of the vectors:

1, v1, ¨ ¨ ¨ , vm, v1v2, ¨ ¨ ¨ , vm´1vm ¨ ¨ ¨ (up to degree r).

In particular, within the context of a Rpr,mq code, the code consists of (the

vector corresponding to) all polynomials in the binary variables v1 ¨ ¨ ¨ , vm of

degree equal to or less than r.

Theorem 3.2. For any positive integers m and r where 0 ď r ď m, there exists

a binary r-th order Reed-Muller code denoted by Rpr,mq with the following

parameters:

• code length: n “ 2m

• dimension: k “
řr

i“0

`

m
i

˘

• Minimum distance: d “ 2m´r

For example, let’s consider the code denoted by Rp1, 2q. This is a Reed

Muller code with r “ 1 and m “ 2; therefore, n “ 2m “ 4 and k “ m ` 1 “ 3.

This code consists of 23 “ 8 codewords each of length n. Specifically, a generic

codeword can be expressed as a linear combination of k basis functions, namely:

a01 ` a1v1 ` a2v2

where 1 “ p1, 1, 1, 1q, v2 “ p0, 0, 1, 1q and v1 “ p0, 1, 0, 1q form a basis of the

RM code and ai for i “ 0, ¨ ¨ ¨ k ´ 1 is a scalar in F2. In this way we obtain

the codewords in Table 3.2. For instance, the codeword associated with the

information sequence 001 of length k is 0011 and so on for the others.

As we proceed with the development of this thesis, our attention will be

directed towards the exploration of first-order Reed-Muller codes. Therefore,
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a0 a1 a2 Codeword
0 0 0 0000
0 0 1 v2 “0011
0 1 0 v1 “0101
0 1 1 v1 ` v2 “0110
1 0 0 1111
1 0 1 1111+v2=1111+0011=1100
1 1 0 1111+v1=1111+1100=0011
1 1 1 1111+v1 ` v2=1111+0011+0101=1001

Table 3.2: Codeword for a Rp1, 2q code

the subsequent discussion will delve into an in-depth examination and analy-

sis of these codes, aiming to provide a comprehensive understanding of their

properties and features.

3.4.1 First order Reed Muller codes

A first-order Reed-Muller code can be considered as a special case of RM codes

described in section 3.4 when r “ 1. For any vector u “ pu1, . . . , umq P Fm
2 ,

let fpuq represent the value of f at u, or equivalently, the component of f

corresponding to u. It will be useful to define F as the real vector obtained

from the binary vector f by replacing 1’s with -1’s and 0’s with +1’s. Thus,

the component of F at the position corresponding to u is:

F puq “ p´1q
fpuq (3.2)

Before discussing first-order Reed-Muller codes, let’s revisit some fundamental

concepts related to Hadamard matrices [11].

Definition 3.5. (Hadamard Matrix) A Hadamard matrix H of order n is a

n ˆ n matrix of +1’s and -1’s such that HHT “ nIn where In is the identity

matrix of order n.

In accordance with the previous definition, the real inner product of any two

distinct rows ofH is zero, therefore, distinct rows are orthogonal. Additionally,
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the real inner product of any row with itself is n. On top of that, since we have

HHT “ nIn Ø HTH “ nIn, the columns have the same properties. There

are several methods for constructing Hadamard matrices, one of the most

commonly used is the Sylvester construction. In accordance with this, starting

from the definition of the 1st-order Hadamard matrix, which is H1 “ p1q, the

construction proceeds recursively. In particular, the Hadamard matrix of order

2n, with n being any power of 2, is defined as follows:

H2n “

¨

˝

Hn Hn

Hn ´Hn

˛

‚.

In particular, it’s important to highlight that Hadamard matrices con-

structed using the Sylvester procedure are symmetric, thus, it follows that

H “ HT, hence, HHT “ HH “ nIn.

Let H be a Hadamard matrix of order n. Assuming F is a real vector of

length 2m, its Hadamard transform (or Walsh transform) is a vector of length

2m defined by:

F̂ “ F ¨ H (3.3)

The entries p´1qu¨v for u,v P Fm
2 form a Hadamard matrix of order n “ 2m.

Therefore, H is a 2m ˆ 2m Hadamard matrix given by H “ pHu,vq where

Hu,v “ p´1qu¨v with u,v P Fm
2 . From (3.3), it follows that:

F̂ puq “
ÿ

vPFm
2

p´1q
uˆv

¨ F pvq, u P Fm
2 . (3.4)

From (3.2), by substituting into (3.4), we obtain:

F̂ puq “
ÿ

vPFm
2

p´1q
u¨v

¨ p´1q
fpvq

“
ÿ

vPFm
2

p´1q
u¨v`fpvq (3.5)

According to (3.5), F̂ puq is equal to the difference between the number of

0’s and the number of 1’s in the binary vector u ¨ v ` f . This is a vector of
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length 2m obtained by iterating over v P Fm
2 . Specifically, note that when

u ¨ v ` fpvq “
řm

i“1 ui ¨ vi ` fpvq “ 0, the term p´1qu¨v`fpvq is equal to +1.

On the other hand, when u ¨ v ` fpvq “
řm

i“1 ui ¨ vi ` fpvq “ 1, the term

p´1qu¨v`fpvq is equal to -1. Based on this:

F̂ puq “ 2m ´ 2 ¨ d

˜

f,
m
ÿ

i“1

ui ¨ vi

¸

, v P Fm
2 (3.6)

where dp¨q is a metric function.

Clearly,
řm

i“1 ui ¨ vi is an inner product, making it a scalar in F2. However,

according to (3.6), we need to iterate over v P Fm
2 . By doing so, we obtain a

vector with 2m components since there are 2m distinct possible v P Fm
2 . This

approach allows us to compute the distance with respect to f , which is also a

vector with 2m components. By rearranging the terms in (3.6), we derive the

following equations:

d

˜

f,
m
ÿ

i“1

ui ¨ vi

¸

“
1

2
¨

´

2m ´ F̂ puq

¯

(3.7)

d

˜

f, 1 `

m
ÿ

i“1

ui ¨ vi

¸

“
1

2
¨

´

2m ` F̂ puq

¯

(3.8)

where
ř

uivi represents every possible codeword of the RM code.

Therefore, equations (3.7) and (3.8) show that the closest codeword to f is

the one for which
ˇ

ˇ

ˇ
F̂ puq

ˇ

ˇ

ˇ
is maximum [12]. This last consideration forms the

basis of the decoding procedure for Reed-Muller codes.

3.4.2 Encoding and Decoding Rp1,mq

The first-order Reed-Muller code, denoted as Rp1,mq, is a [2m, m ` 1, 2m´1]

linear block code. When it comes to encoding, the procedure is straightfor-

ward. Since RM codes are linear block codes, encoding is performed using a

generator matrix, following the same procedure described in subsection 2.1.1.

50



Chapter 3 - Codes of interest in HQC

The generator matrix for the Rp1,mq code comprises m ` 1 rows and 2m

columns. The first row is consistently filled with 2m 1s. Subsequently, the

matrix is constructed column by column (excluding the first row), utilizing

the binary representation of decimal numbers ranging from 0 to 2m ´ 1. For

illustrative purposes, let’s consider the Rp1, 3q code. The generator matrix

has dimensions of k ˆ n, specifically 4 ˆ 8. The initial row is filled with 1s,

and then, column by column, we observe the binary representation of decimal

numbers from 0 to 7. Specifically:

G “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

Based on the structure of the generator matrix of a Rp1,mq code, it can be

said it is the dual code of the Hamming code.

When it comes to decoding, Maximum Likelihood Decoding (MLD) re-

quires comparing the received vector f with every codeword of the code. Based

on this, we need to find the distance from f to every codeword of Rp1,mq and

then decode f as the closest codeword. Referring to equations (3.7) and (3.8),

this is equivalent to finding the largest component of
ˇ

ˇ

ˇ
F̂ puq

ˇ

ˇ

ˇ
. For a better un-

derstanding, it is important to note that a generic codeword of a Reed Muller

code can be expressed as a linear combination of 1,v1,v2,v3, ¨ ¨ ¨ ,vm. There-

fore, we have m ` 1 base functions. Specifically,
řm

i“1 uivi represents a linear

combination of these base functions with weights given by the information se-

quence u0, u1, u2, ¨ ¨ ¨ , um. A generic codeword c P Rp1,mq can be expressed

as:

c “ u0 ¨ 1 ` u1 ¨ v1 ` u2 ¨ v2 ` ¨ ¨ ¨ ` um ¨ vm

Assuming the largest component of
ˇ

ˇ

ˇ
F̂ puq

ˇ

ˇ

ˇ
is

ˇ

ˇ

ˇ
F̂ pu1, u2, ¨ ¨ ¨umq

ˇ

ˇ

ˇ
, we have to
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distinguish two different cases according to its sign, specifically:

• F̂ pu1, u2, ¨ ¨ ¨umq ě 0 Ñ from (3.7) we decode f as
řm

i“1 uivi

• F̂ pu1, u2, ¨ ¨ ¨umq ă 0 Ñ from (3.8) we decode f as 1 `
řm

i“1 uivi

It is important to notice that Hadamard transform (also known as Walsh-

Hadamard Transform and denoted by WHT) requires the construction of the

Hadamard matrix, therefore, especially when n “ 2m is large this could lead

to a noticeable memory occupation. On top of that, Hadamard transform

requires Op22mq operations since for direct calculation of F̂ “ F ¨ H2m are

needed 2m products and 2m ´ 1 additions for each of the 2m components of F.

Therefore, overall 2m ¨ 2m “ 22m products and 2m ¨ p2m ´ 1q additions, so, the

total number of required operations is 22m ` 2m ¨ p2m ´ 1q which is of the order

of Op22mq. Fortunately, there is a faster way to obtain F̂ which is called Fast

Walsh-Hadamard Transform (FWHT).

3.4.3 Fast Walsh-Hadamard Transform (FWHT)

The Fast Walsh-Hadamard Transform (FWHT) is a powerful and efficient

algorithm designed specifically for computing the Walsh-Hadamard Transform.

A direct WHT implementation of order n “ 2m requires Op22mq computations.

In contrast, the FWHT employs a different approach, reducing the complexity

to 2m ¨ log2p2
mq additions and subtractions, offering a significant performance

enhancement. The success of the FWHT derives from its divide-and-conquer

strategy, recursively decomposing a WHT of size n into two smaller WHTs of

size n{2. This approach is rooted in the recursive definition of the 2m ˆ 2m

Hadamard matrix H2m and offers a systematic and efficient way to compute

the WHT.

To further illustrate the advantages of the FWHT, let’s consider a straight-

forward example with m “ 3, resulting in n “ 23 “ 8. This basic example can

serve as a stepping stone for understanding the principles and benefits of the

52



Chapter 3 - Codes of interest in HQC

Figure 3.1: FWHT structure for m “ 3

Figure 3.2: FWHT example assuming r “ pr0, r1, ¨ ¨ ¨ r7q “ p10100110q

FWHT in more complex applications and scenarios. The implementation of

FWHT relies on the structure illustrated in Figure 3.1. For instance, assum-

ing r “ pr0, r1, ¨ ¨ ¨ r7q “ p10100110q, we obtain the results shown in Figure 3.2.

First, it is important to note that both the input and output are sequences

of length n. Secondly, it’s important to recognize that the number of stages

is equal to log2 n “ 3, as is typical in a divide-and-conquer algorithm. At

each stage, n “ 2m additions (indicated by the black branches) or subtrac-

tions (indicated by the red branches) must be calculated. Therefore, based

on the above observations, the overall number of operations is in the order

of Opn log2 nq. This demonstrates how an implementation that relies on the

structure described in Figure 3.1 offers significant computational advantages.
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3.4.4 Encoding a Rp1,mq code through FWHT

As described in subsection 3.4.2, encoding a first-order Reed-Muller code fol-

lows the standard approach of multiplying the information sequence by the

generator matrix G of the code. However, alongside this encoding method,

there exists another efficient and fully equivalent approach that uses the Fast

Walsh-Hadamard Transform described in subsection 3.4.3. In this subsection,

we will provide a detailed explanation of the encoding method based on the

FWHT, and we will further clarify its equivalence with the classical approach.

The encoding process for a first-order Reed-Muller code, using the Fast

Walsh-Hadamard Transform, begins by specifying a vector Y. Just like in

encoding, we express the information sequence as an integer modulo 2k denoted

as a P Z2k . Then, we defineY such that it consists of a single non-zero element,

positioned at index a when a ă n, or at index a ´ n when a ě n. In this

configuration, the only non-zero value in Y is n when a ă n or ´n otherwise.

Specifically:

Y “ r0 ¨ ¨ ¨ 0 ` n 0 ¨ ¨ ¨ 0s where n is indexed by a ă n

Y “ r0 ¨ ¨ ¨ 0 ´ n 0 ¨ ¨ ¨ 0s where ´n is indexed by a ´ n when a ě n

Let y be the output of the FWHT applied to Y. Specifically, as Y contains

a single non-zero term, calculating its FWHT means considering only one row

of the Hadamard matrix of order n “ 2m multiplied by a scale factor of n.

Specifically, the row indexed by a if a ă n, otherwise, the row indexed by a´n

of the flipped Hadamard matrix multiplied by n. For simplicity, let’s imagine

constructing a matrix H P F2nˆn
t˘1u

in the following manner:

H “

¨

˝

Hn

´Hn

˛

‚

where Hn is a Hadamard matrix of order n “ 2m.

54



Chapter 3 - Codes of interest in HQC

The vector y can be seen as the row of H index by a and multiplied by n.

Denoting as ha the row of H indexed by a, we obtain that:

y “ nha

Based on what has been said, it follows that y is in Fn
t˘nu

. At this point, the

vector y is turned into codeword using the mapping t`n Ñ 0,´n Ñ `1u.

After having seen how the encoding process using the FWHT works, we want

to verify the equivalence with respect to the classic encoding approach which

involves matrix multiplication between the information vector of size 1 ˆ k

where k “ m ` 1 and the generator matrix G. First, given a as an integer

number between 0 and 2k ´ 1, the vector representation is considered. For

example, if m “ 2, k “ 3 and a “ 3, the vector representation of a denoted by

a is [0 1 1]. In this case, the codeword is simply given by the sum of the row

at index 1 and the row at index 2 of G consistently with the position of the

1’s in a. In particular:

codeword “ p011q ¨

¨

˚

˚

˚

˝

1 1 1 1

0 0 1 1

0 1 0 1

˛

‹

‹

‹

‚

“ r0110s (3.9)

At this point, to understand the equivalence between the two encoding ap-

proaches, it is first necessary to consider the link between the G and the

Hadamard matrix of order n “ 2m. Returning to the example, the Hadamard

matrix of order n “ 2m “ 4 is such that the row at the index given by a, is

exactly the sum of the row at index 1 and the row at index 2 of G considering

the usual mapping. According to this, the encoding by matrix multiplica-

tion is equivalent to the encoding procedure which exploits the FWHT. The
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Hadamard matrix of order n “ 4 is:

H4 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 1 1 1

1 ´1 1 ´1

1 1 ´1 ´1

1 ´1 ´1 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

The row at index a “ 3 of H4 is p1 ´ 1 ´ 1 1q Ñ p0 1 1 0q; therefore, the

codeword obtained is equal to the one in (3.9). Now, for completeness we show

another example where it turns out that a ą n. For example, let’s keep the

same set of parameters but suppose a “ 5, hence a=(1 0 1). In this case, the

codeword is simply given by the sum of the row at index 0 and the row at

index 2 of G consistently with the position of the 1’s in a. In particular:

codeword “ p101q ¨

¨

˚

˚

˚

˝

1 1 1 1

0 0 1 1

0 1 0 1

˛

‹

‹

‹

‚

“ r1010s (3.10)

The Hadamard matrix of order n “ 4 is such that the row at the index given

by a´n, therefore index 1, is the sum of the row with index 0 and the row with

index 2 of G properly flipped and considering the usual mapping. Indeed, the

row at index 1 of H4 is p1 ´ 1 1 ´ 1q Ñ p0 1 0 1q which is exactly the flipped

version of the codeword in (3.10).

3.4.5 Decoding a Rp1,mq code through FWHT

Let r P Fn
2 be the received vector, hence, r “ c ` e where c P Fn

2 denotes

the transmitted codeword and e P Fn
2 the error pattern. First of all, the

received sequence r undergoes a transformation into soft values using the usual

mapping t0 Ñ `1, 1 Ñ ´1u, which is the reverse mapping compared to the

one employed in the encoding process described in the previous subsection.
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The resulting soft values version of r is denoted as z P Fn
t˘1u

. Initially, we refer

to the ideal case for which the error pattern e is the null vector and r “ c.

Thus, the soft version of r is exactly the vector y defined during encoding but

divided by the scaling factor n, in symbols, it can be expressed as:

z “
y

n
(3.11)

At this point, the next step of the decoding procedure involves computing the

vector Z as the FWHT of z, formally:

Z “ FWHTpz, nq “ z ¨ Hn (3.12)

Substituting equation (3.11) into equation (3.12), we obtain:

Z “
y

n
¨ Hn (3.13)

Given that y “ FWHTpY, nq “ Y ¨Hn, by substituting in equation (3.13), we

obtain:

Z “
Y ¨ Hn

n
¨ Hn (3.14)

Since, Hn ¨ Hn “ n ¨ Hn, it follows that:

Z “ nIn ¨ Y “ Y (3.15)

Therefore, we obtain exactly the vector Y as defined in the encoding process.

With Y at hand, the recovery of the encoded information represented as an

integer a P Z2k becomes a straightforward task. Initially, in accordance with

equations (3.7) and (3.8), we determine the maximum absolute value within Y

and store the index i at which it is maximum. Subsequently, if Ypiq is greater

than 0, it implies that a “ i, while, if Ypiq ď 0, it means that a “ i ` n. This

process allows us to accurately recover the original encoded information.

57



Chapter 3 - Codes of interest in HQC

On top of that, in this context, it is extremely important to note that

calculating the FWHT(z,n) is computationally equivalent to summing the n

rows of the Hadamard matrix of order n, taken as they are if the corresponding

element of z is 1, or flipped (multiplied by -1) otherwise. Clearly, in the ideal

case where the error pattern e P Fn
2 is the zero vector, following this procedure

exactly results in Z “ FWHTpz, nq “ Y “ r0 ¨ ¨ ¨ 0 ˘ n 0 ¨ ¨ ¨ 0s.

Up to this point, we have delved into the ideal scenario, where the error

pattern is represented by the zero vector. Nevertheless, in the general case,

it’s essential to acknowledge that e is not the zero vector; hence, r differs from

c. This implies that the soft version of r, formerly denoted as z, can no longer

be determined using the equation (3.11). Instead, it becomes imperative to

account for the presence of the error pattern. In the aftermath of perform-

ing the Fast Walsh-Hadamard Transform (FWHT), we obtain a vector with

dimensions of 1 ˆ n, where its constituents are no longer exclusively zero ex-

cept for one element equal to ˘n. Instead, the resulting vector is typically

”contaminated” by the influence of the error pattern. The significance of this

deviation becomes most apparent as the Hamming weight of e increases; as

it does, the values within the resulting vector Z after the application of the

FWHTpz, nq exhibit a tendency to ”flatten out”. In more explicit terms, there

is no longer a single dominant value that stands out. Naturally, as the Ham-

ming weight of the error pattern grows excessively high, it is entirely possible

for the maximum value within the vector Z not to correspond to the position

a (for a ă n) or the position a ´ n (for a ě n), leading to a decoding failure.

3.5 Concatenated codes

Concatenated codes are error-correcting codes that are constructed from two or

more simpler codes to achieve good performance with reasonable complexity.

A graphic representation of a concatenated code is shown in Figure 3.3.
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Figure 3.3: Illustrative representation of a concatenated code constructed using
an inner code and an outer code.

Going into more mathematical detail, let Fm
2 be an extension field of F2.

Each element in Fm
2 can be represented by an m-tuple over F2.

Definition 3.6. (Concatenated codes) A concatenated code comprises a non-

binary external code C1 described by the triplet [n1, k1, d1] over Fm
2 , along with

an internal binary code C2 described by the triplet [n2, k2, d2] where k2 “ m.

Let u “ pu0, ¨ ¨ ¨un1´1q P Fn1
2 be a codeword in C1. By expanding each code sym-

bol of u into anm-tuple over F2, we obtain anm¨n1-tuplew “ pw0, ¨ ¨ ¨wm¨n1´1q

over F2. Each set of m consecutive binary symbols in w is encoded into a

codeword in C2. This process results in a sequence of n1n2 binary symbols,

consisting of a sequence of n1 binary codewords in C2. This concatenated se-

quence of n1n2 binary symbols contains k1m information bits. Since there are

2k1m codewords in C1, there exist 2k1m such concatenated n1n2-bit sequences.

These sequences together form a binary pn1n2, k1mq linear block code known

as a concatenated code.

The encoding of a concatenated code consists of two stages. In the first

stage, a binary information sequence of k1m bits is divided into k1 bytes, each

containing m information bits. Each m-bit byte is considered an element in

Fm
2 . During the first stage of encoding, the k1 bytes, treated as k1 information

symbols over Fm
2 , are encoded into an n1-byte codeword u in C1. This first

encoding stage produces a coded sequence w consisting of mn1 bits (or n1

m-bit bytes). In the second stage of encoding, each group of m consecutive

bits in w is encoded into an n2-bit codeword in C2, resulting in a string of n1
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codewords in C2. This string of n1 codewords in C2 is then transmitted one C2

codeword at a time, sequentially. Given that C1 and C2 are used in the outer

and inner encoding stages, respectively, they are referred to as the outer and

inner codes, respectively. If the minimum distances of C1 and C2 are d1 and

d2, then the minimum distance of the concatenation of C1 and C2 is d1d2.

The decoding of a concatenated code is also performed in two stages. Ini-

tially, decoding is executed for each inner n2-bit received word as it arrives,

based on a decoding method for the inner code C2. The parity-check bits are

then removed, resulting in a sequence of n1 m-bit bytes. This stage of decod-

ing is known as the inner decoding. The n1 decoded bytes at the end of the

inner decoding are subsequently decoded based on the outer code C1 using a

specific decoding method. This second decoding stage, referred to as the outer

decoding, yields k1 decoded information bytes (k1m decoded information bits).

3.5.1 Tensor product codes

Tensor product codes can be seen as an example of concatenated codes by

considering their construction and how they incorporate the principles of con-

catenated coding schemes. Concatenated codes are formed by applying two or

more error-correcting codes in sequence, where the output of one code becomes

the input to the next. Tensor product codes follow a similar concept but use

a mathematical operation called the tensor product to achieve this.

Definition 3.7. Given two codes C1 and C2, with dimensions k1 and k2 and

lengths n1 and n2 such that k2 “ n1, we denote by C “ C1 b C2 their tensor

product.

Namely, the codewords of C can be interpreted as all the n2 ˆ n1 matrices

whose rows are codewords of C1 and columns are codewords of C2.
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Security Background

Public key cryptosystems use mathematical functions with trapdoor properties

to ensure that information encrypted with a public key can only be decrypted

efficiently with the corresponding private key. Moreover, the security of the

system relies on the computational infeasibility of deriving the private key

from the public key. In this regard, before delving into the concept of security

for a public key cryptosystem, it is necessary to first define what is meant by

trapdoor and one-way function.

Definition 4.1. (Trapdoor function) A trapdoor is a mathematical function

that is straightforward to compute in one direction but extremely challenging

to reverse, requiring access to a secret piece of information, usually referred to

as the ”trapdoor”.

Definition 4.2. (One-way function) A one-way function is a mathematical

function that is relatively easy to compute in one direction (i.e., given an input,

it’s easy to compute the output) but computationally difficult to reverse (i.e.,

given the output, it is extremely hard to compute the original input).

To gain a more intuitive understanding of the functioning of a trapdoor and

a one-way function from a graphical perspective, refer to Figures 4.1 and 4.2,

respectively.
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D C
fpxq

f´1pxq

f´1pxq

Easy

Easy if the secret is known

Hard if the secret is unknown

Figure 4.1: Graphical representation of a trapdoor function.

D C
fpxq

f´1pxq

Easy

Hard

Figure 4.2: Graphical representation of a one-way function.

A trapdoor is used as an encryption function; indeed, in a public key cryp-

tosystem, efficient decryption is only possible when a specific secret is known.

In this case, the secret is the private key corresponding to the public key used

during encryption. Furthermore, the public key must be inseparably linked to

the private key. Therefore, it is necessary to use a one-way function to derive

the public key from the secret key. Consequently, the security of a public key

cryptosystem is based on the computational difficulty of solving a mathemat-

ical problem. This problem can involve the inversion of a trapdoor function

without knowledge of the secret. Alternatively, it may relate to the inversion

of a one-way function. In other words, in the first case, an attacker, starting

from the encrypted message, tries to recover the corresponding plaintext. In

the second scenario, an attacker, starting from the public key, attempts to re-

cover the private key. Clearly, once the secret key is compromised, the attacker

can recover all the plaintext encrypted with the corresponding public key.
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For instance, consider RSA (Rivest Shamir Adleman), one of the oldest

and most widely used public-key cryptosystems in the pre-quantum computing

era. RSA’s security relies on the challenge of factoring large integers (often

hundreds of decimal digits) [13]. Specifically, when given an integer n derived

from the product of two carefully selected prime numbers, p and q, it becomes

computationally infeasible on classical computers to factorize n. In this case,

p and q form part of the private key, while n is included in the public key.

Based on what as been said so far, an attacker aiming to compromise

a public-key cryptosystem must solve the underlying mathematical problem.

Since there may exist various methods to tackle this problem, the attacker will

opt for the most efficient algorithm, characterized by the lowest cost, denoted

as 2λ1 . However, it’s important to note that the security of the cryptosystem

is also influenced by the specific protocol that makes use of this mathematical

problem. For instance, an attacker could attempt to exploit the protocol’s

structure without necessarily needing to discover a valid private key. In such a

scenario, assuming the attacker can somehow leverage the protocol’s structure

within which the cryptosystem is employed, we denote the cost as 2λ2 . The

security level of the cryptographic scheme is then determined by the less costly

approach between the two, given by:

λ “ log2minp2λ1 , 2λ2q

In general, when assessing the security of a cryptographic scheme, it is

essential to consider two distinct attack approaches: structural attack and

non-structural attack. The former involves exploiting the well-understood al-

gebraic structure within the scheme, while the latter focuses on recovering the

message or secret key without depending on the algebraic structure, remaining

completely agnostic to it.
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4.1 Security for code-based cryptosystems

In this section we describe difficult problems which can be used in code-based

cryptosystems with a focus on the cryptographic problems at the core of HQC,

the post-quantum public key cryptosystem under consideration in this thesis.

Traditional code-based cryptography relies on the complexity of decoding a

randomly generated linear block code ([14], [15]). Specifically, in the case of a

linear block code defined by a generator matrix G, the decoding problem can

be formalized as follows:

Problem 1. Computational Decoding Problem (C-DP)

For positive integers n, k and w, on input pG,xq P Fkˆn
2 ˆFn

2 , the computational

decoding problem asks to find u P Fk
2 and e P Fn

2 such that x “ u ¨ G ` e, with

wtpeq=w.

The problem at hand can be reframed using the parity-check matrix H of a

linear block code, as this matrix uniquely represents such a code (as described

in subsection 2.1.1). Additionally, for a clearer exposition of the problem, it is

helpful to begin by defining the following:

Definition 4.3. (SD Distribution) For positive integers n, k and w, the SD

Distribution, denoted as SDpn,k,wq, chooses H
$

ÐÝ Fpn´kqˆn
2 and x

$
ÐÝ Fn

2 such

that wtpxq “ w, and outputs pH, σpxq “ H ¨ xT q.

The SD distribution produces both the syndrome of x, denoted as σpxq, and

the parity-check matrixH. It randomly selects x from Fn
2 andH from Fpn´kqˆn

2 .

Then, by assuming that the linear block code is represented by a randomly

chosen H P Fpn´kqˆn
2 , the syndrome of x is effectively σpxq “ H ¨ xT . Defining

the SD distribution is essential for establishing the subsequent problem.

Problem 2. Computational Syndrome Decoding Problem (C-SDP)

For positive integers n, k and w, on input pH,yT q P Fpn´kqˆn
2 ˆ Fn´k

2 from

the SD distribution, the computational syndrome decoding problem asks to find

x P Fn
2 such that HxT “ yT (or, equivalently xHT “ yq and wtpxq “ w.
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Since a linear block code can be equivalently represented in terms of a

generator matrix and a parity-check matrix, it is reasonable to assume that

Problem 1 and Problem 2 are equivalent. This trivial intuition is confirmed in

the following theorem:

Theorem 4.1. C-DP and C-SDP are equivalent in terms of complexity.

Proof. Let us suppose to receive a challenge for C-DP. On input G P Fkˆn
2

and x P Fn
2 , it is possible to compute the parity-check matrix H corresponding

to the generator matrix G of the linear block code since it is G ¨ HT “ 0.

Then, once the parity-check matrix H is known, it is possible to compute the

syndrome of x, namely:

y “ x ¨ HT (4.1)

Given that x “ u ¨ G ` e, by substituting in eq. (4.1), it follows:

y “ pu ¨ G ` eq ¨ HT
“ e ¨ HT (4.2)

since pu ¨ Gq ¨ HT “ 0 because u ¨ G is a codeword.

At this stage, by solving C-SDP, it is possible to find e, which can then be used

to compute u ¨ G “ x ´ e, and thus u P Fk
2, also solving the C-DP. Therefore,

C-SDP and C-DP are equivalent when it comes to complexity.

In light of the established equivalence between C-DP (Computational De-

coding Problem) and C-SDP (Computational Syndrome Decoding Problem),

we will henceforth refer only to C-SDP. Specifically, rather than the Compu-

tational Syndrome Decoding Problem, we will refer to the same problem in its

decisional version. This problem is defined below.

Problem 3. Decisional Syndrome Decoding Problem (DSD)

On input pH,yT q P Fpn´kqˆn
2 ˆFpn´kq

2 , the decisional syndrome decoding problem

asks to decide with non-negligible advantage whether or not pH,yT q came from

the SDpn, k, wq distribution or the uniform distribution over Fpn´kqˆn
2 ˆFpn´kq

2 .
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Generally, a decisional problem is centered around determining the exis-

tence of a solution that satisfies certain conditions, while a computational

problem focuses on the actual search for such a solution. More specifically,

for the computational SDP, the solution is the vector x P Fn
2 that satisfies the

parity-check equations. On the other hand, for the decisional SDP, the solu-

tion is ”YES” if pH,yT q came from the SDpn, k, wq distribution, and therefore,

if there exists x P Fn
2 such that y “ x ¨ HT . Otherwise, the solution is ”NO”

if such a vector does not exist.

4.2 HQC underlying problems

As Hamming Quasi Cyclic (HQC) employs Systematic Quasi-Cyclic codes (de-

scribed in subsection 2.2.4), it is necessary to provide an explicit definition of

the problems upon which the cryptosystem depends. To specialize the pre-

vious discussion to the case of QC codes, it is useful to generalize Definition

4.3 to the case of Systematic Quasi Cyclic codes with index s (Definition 2.9),

obtaining the following definition:

Definition 4.4. (s-QCSD Distribution) For positive integers n, k, w and s,

the s-QCSDpn,wq Distribution chooses uniformly at random a parity check

matrix H
$

ÐÝ Fpsn´nqˆsn
2 of a systematic QC code C of index s and rate 1{s

together with a vector x “ px0, ¨ ¨ ¨xs´1q
$

ÐÝ Fsn
2 such that wtpxiq “ w for

i “ 0, ¨ ¨ ¨ s ´ 1 and outputs pH,HxT q P Fpsn´nqˆsn
2 ˆ Fsn´n

2 .

Now, expanding on the coherent line of thought that has been established in

the preceding subsection, we progress to articulate the computational formula-

tion of the SDP problem concerning Quasi Cyclic codes. Following this, we will

shift our focus towards a comprehensive examination of its decisional counter-

part, highlighting certain vulnerabilities that pave the way for the emergence

of a distinct improved version.
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Problem 4. Computation s-QCSD Problem

For positive integers n, w, and s, consider a randomly chosen parity-check

matrix H
$

ÐÝ Fpsn´nqˆsn
2 originating from a systematic QC code C of index s

and rate 1{s, along with a randomly generated vector y
$

ÐÝ F sn´n
2 (syndrome).

The computational s-Quasi-Cyclic SD Problem entails the task of finding a

vector x “ px0, ¨ ¨ ¨xs´1q P F sn
2 such that wpxiq “ w for every xi P Fn

2 with

i “ 0 ¨ ¨ ¨ s ´ 1 and such that y “ xHT .

As usual, it is advisable to define the problem in its decisional version.

Problem 5. Decisional s-QCSD Problem

On input pH,yT q P Fpsn´nqˆsn
2 ˆFsn´n

2 , the decisional s-QCSD problem asks to

determine with non-negligible advantage whether or not pH,yT q came from the

s-QCSDpn,wq distribution or the uniform distribution over Fpsn´nqˆsn
2 ˆFsn´n

2 .

The definition of the Decisional s-QCSD Problem, as presented in Problem

5, brings to light the presence of relatively straightforward distinguishers [16],

that inherently pose a challenge to its security. These distinguishers are explic-

itly designed with the purpose of differentiating a ”genuine” syndrome (gen-

erated from the s-QCSD distribution) from a completely random syndrome

(generated from the uniform distribution). To enhance the comprehension of

these distinguishers and their functionality, we will provide preliminary insights

into their mechanisms. After a thorough exploration of these distinguishers,

we will then describe the strategic solution adopted by HQC’s authors to effec-

tively address and mitigate these security concerns. Our approach commences

with two fundamental theorems, serving as the cornerstone in our quest to

gain a deeper insight into the operations of these distinguishers and their im-

plications. These theorems are of paramount importance in facilitating our

understanding of how these distinguishers operate and why they hold such

significance in the context of the Decisional s-QCSD Problem.
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Theorem 4.2. Let a and b be vectors in Fn
2 . Let wtpaq and wtpbq be the

Hamming weights of a and b, respectively. Then it follows that:

wtpa ¨ bq “ wtpaq ¨ wtpbq ´ 2 ¨ #cancellations.

Consequently:

• wtpaq is odd and wtpbq is odd, then wtpa ¨ bq is odd;

• wtpaq is even and wtpbq is even, then wtpa ¨ bq is even;

• wtpaq is odd and wtpbq is even (or vice versa), then wtpa ¨ bq is even.

Proof. By assuming c “ a ¨ b, it follows that:

c “
ÿ

iPsupppaq

ÿ

jPsupppbq

xi`j modn.

Therefore, the number of non-zero coefficients in c is determined by the product

of the number of non-zero coefficients in a, i.e., wtpaq, and the number of

non-zero coefficients in b, i.e., wtpbq, from which hypothetical cancellations,

which occur during the multiplication, must be subtracted. However, since

cancellations occur in pairs, it is valid to conclude the theorem’s validity.

Theorem 4.3. Let a and b be vectors in Fn
2 . Let wtpaq and wtpbq be the

Hamming weights of a and b, respectively. Then it follows that:

wtpa ` bq “ wtpaq ` wtpbq ´ 2 ¨ #cancellations.

Consequently:

• wtpaq is odd and wtpbq is odd, then wtpa ` bq is even;

• wtpaq is even and wtpbq is even, then wtpa ` bq is even;

• wtpaq is odd and wtpbq is even (or vice versa), then wtpa ` bq is odd.
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Proof. The proof is analogous to the one provided for Theorem 4.2.

In HQC, where QC codes are employed, the syndrome of px,yq P Fn
2 ˆ Fn

2 ,

denoted by s, is computed as s “ x ¨ h1 ` y ¨ h2. In this case, h1 and h2 are

circulant matrices, while, x and y are vectors of Hamming weight w. Moreover,

in HQC, systematic QC codes are used, hence h1 “ In. Consequently, the

parity-check matrix that represents uniquely the public code used in HQC

takes the form H “ pIn,hq where h2 “ h.

Now, let’s consider the extraction of a random binary symbol b P t0, 1u.

Then, if b “ 0, the syndrome is computed as s “ x ¨ h1 ` y ¨ h2 “ x ` y ¨ h,

whereas, if b “ 1, let’s assume s is randomly selected. At this point, it is

easy to see that the parity of s, i.e., whether s has an even or odd number of

1s, is closely related to w and the Hamming weight of h, denoted as wh. For

example, let’s assume that wh is odd. From Theorem 4.2 and Theorem 4.3, it

follows that:

• If w is odd, then y ¨ h has an odd weight. Therefore, by adding it to

x (also with an odd weight) to compute the syndrome s, we obtain an

even weight, thus s has an even weight.

• If w is even, then y ¨ h has an even weight. Therefore, by adding it to

x (also with an even weight) to compute the syndrome s, we obtain an

even weight, thus s has an even weight.

Thus, when s is randomly selected, it exhibits an approximately equal likeli-

hood of having even or odd weight. However, when s represents an ”authentic”

syndrome (generated from the s-QCSD distribution), this balance is disrupted.

In this scenario, an attacker who assesses the syndrome’s parity can consider-

ably discern whether it is a ”legitimate” syndrome or not, effectively solving

Problem 5 with non-negligible advantage.

To circumvent these trivial distinguishers, it is necessary to introduce an

additional requirement regarding the syndrome’s parity. In particular, for
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b P t0, 1u, we define the finite set Fn
2,b “ th P Fn

2 s.t. hp1q “ b mod 2u, i.e.

binary vectors of length n and parity b. Indeed, h can be seen as a polynomial;

therefore, hp1q represents the sum of a number of 1s equal to the weight of h.

Hence, if h has an even number of 1s, it follows that b “ 0; otherwise, b “ 1.

To summarize:

• b “ 0 Ñ Fn
2,0 is the set of binary n-tuples with an even number of 1s.

• b “ 1 Ñ Fn
2,1 is the set of binary n-tuples with an odd number of 1s.

Similarly for matrices, we define the finite sets:

Fnˆ2n
2,b “ tH “ pIn, rotphqq P Fnˆ2n

2 s.t.h P Fn
2,bu

F2nˆ3n
2,b1,b2

“

$

&

%

¨

˝

In 0 rotph1q

0 In rotph2q

˛

‚P F2nˆ3n
2 s.t.h1 P Fn

2,b1
andh2 P Fn

2,b2

,

.

-

At this point, what is done next is to rephrase the previously described

problems by imposing a constraint on the parity of the syndrome. Specifi-

cally, it is required that the legitimate syndrome has the same parity as the

random syndrome, thus preventing the presence of distinguishers that rely on

evaluating the syndrome’s parity.

Definition 4.5. (s-QCSD Distribution with parity) For positive integers n,

w, b1, ¨ ¨ ¨ , bs´1 and s, the s-QCSDpn,w, b1, ¨ ¨ ¨ , bs´1q Distribution with parity

chooses uniformly at random a parity-check matrix H P Fpsn´nqˆsn
2,b1,¨¨¨ ,bs´1

of a QC

code C of index s and rate 1{s together with a vector x “ px0, ¨ ¨ ¨xs´1q
$

ÐÝ Fsn
2

such that wtpxiq “ w for every i “ 0, ¨ ¨ ¨ s ´ 1 and returns in output pH,yT q

with yT “ H ¨ xT .

In particular, specializing to the case s “ 2, we obtain:

Definition 4.6. (2-QCSD Distribution with parity) For positive integers n,

w, and b, the 2-QCSDpn,w, bq Distribution with parity chooses uniformly at
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random a parity-check matrix H P Fnˆ2n
2,b of a QC code C of index 2 and rate

1{2 together with a vector x “ px0,x1q
$

ÐÝ F2n
2 such that wtpx0q “wtpx1q “ w

and outputs pH,yT q with yT “ H ¨ xT .

At this point, it is possible to define the decisional SDP problem by as-

suming the use of quasi-cyclic codes and imposing a specific constraint on the

syndrome to prevent the presence of distinguishers. By consolidating all the

results we have seen so far, we obtain:

Problem 6. Decisional 2-QCSD Problem with parity

Let h P Fn
2,b, H “ pIn rotphqq and b1 “ w ` b ˆ w mod 2. For y P Fn

2,b1,

the Decisional 2-QCSD Problem with parity, denoted as 2-DQCSDpn,w, bq,

asks to decide with non-negligible advantage whether or not pH,yq came from

the 2-QCSDpn,w, bq distribution with parity or the uniform distribution over

Fnˆ2n
2,b ˆ Fn

2,b1.

Specializing to the case s “ 3, we obtain the following distribution and

associated problem.

Definition 4.7. (3-QCSD Distribution with parity) For positive integers n,

w, b1 and b2, the 3-QCSDpn,w, b1, b2q Distribution with parity chooses uni-

formly at random a parity-check matrix H P F2nˆ3n
2,b1,b2

of a QC code C of in-

dex 3 and rate 1{3 together with a vector x “ px0,x1,x2q
$

ÐÝ F3n
2 such that

wtpx0q “wtpx1q “wtpx2q “ w and outputs pH,yT q with yT “ H ¨ xT .

Problem 7. Decisional 3-QCSD Problem with parity

Let h1 P Fn
2,b1

, h2 P Fn
2,b2

, H “

¨

˝

In 0 rotph1q

0 In rotph2q

˛

‚, b1
1 “ w ` b1 ˆ w mod 2

and b1
2 “ w ` b2 ˆ w mod 2. For py1,y2q P Fn

2,b1
1

ˆ Fn
2,b1

2
, the Decisional

3-QCSD Problem with parity, denoted as 3-DQCSDpn,w, b1, b2q, asks to de-

cide with non-negligible advantage whether or not pH, py1,y2qq came from the

3-QCSDpn,w, b1, b2q distribution with parity or the uniform distribution over

F2nˆ3n
2,b1,b2

ˆ pFn
2,b1

1
ˆ Fn

2,b1
2
q.
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The sole distinction between Problem 6 and Problem 7 in comparison to

Problem 5 is the imposition of a specific constraint on the syndrome’s parity

when it is randomly selected. This guarantees that whether the syndrome is

legitimate (generated by the s-QCSD Distribution with parity) or random, it

maintains the same parity, thus circumventing the previously described distin-

guishers.

The security of HQC under the IND-CPA (Indistinguishability under Cho-

sen Plaintext Attack) relies significantly on the complexity of the 2 and 3-

DQCSD problems (Problems 6 and 7). However, to enhance its resilience

against structural attacks, it is essential to work with a code of primitive

prime length. Nevertheless, for the chosen parameters and codes used in the

HQC implementations, the size of the message encoding, represented as m, is

typically a product of two integers, i.e., n1 ¨ n2, which is not typically prime.

To address this, we choose n as the ambient length, which is the first primitive

prime number greater than pn1 ¨n2q. We then truncate the last ℓ bits, where ℓ

is equal to n´pn1 ¨n2q, as needed. This modification results in a slightly altered

version of the DQCSD problem. We contend that this modified problem is at

least as challenging as the original one. To begin, we will define this truncated

version in its primal form.

Problem 8. Decoding with ℓ erasures

Let Crn, ks be a Quasi-Cyclic code generated by the generator matrix G P Fkˆn
2 .

Consider a codeword c “ mG ` e P Fn
2 in C, where m P Fk

2 is the information

sequence and e
$

ÐÝ Fn
2,w. Here, Fn

2,w represents the set of all n-tuples over F2

with a Hamming weight of w. Now, consider the matrix G1 P Fkˆn1

2 , obtained

by removing the last ℓ “ n ´ n1 ě 1 columns from G and the vector e1 P Fn1

2 ,

obtained by removing the last ℓ “ n ´ n1 ě 1 columns from e. The decoding

with ℓ erasures problem aims to recover m P Fk
2 from c1 “ mG1 ` e1 P Fn1

2 and

G1 P Fkˆn1

2 .

This problem seeks to recover the encoded message, given less informa-
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tion. It then becomes evident that Decoding with erasures is inherently more

challenging than decoding with complete knowledge of the encoding. Suppose

we assume that A can successfully solve the decoding problem with ℓ era-

sures, and let pc,Gq represent an instance of the decoding problem without

any erasure. The approach starts by eliminating the last ℓ columns from both

c and G, and then employing A to retrieve m P Fk
2. Given that the dimension

remains unchanged in both problems, m is also a solution to the decoding

problem without any erasures, thus confirming its level of difficulty. Because

the decoding problem and the syndrome decoding problem are equivalent (as

proofed in Theorem 4.1), the previously outlined argument remains applicable.

Consequently, the corresponding 2 and 3-DQCSD problems with ℓ “ n´n1n2

erasures, tailored to counter structural attacks, are at least as hard as those

defined in Problem 6 and Problem 7.

Assumption 1. While there is no comprehensive complexity result for quasi-

cyclic codes, the decoding of these codes is widely recognized as a challenging

task within the community. General attacks that leverage the cyclic structure of

the code have been proposed [17], but their impact on the problem’s complexity

is relatively minor (sub-linear with respect to the code length). In practical

terms, it is observed that the most effective attacks closely resemble those used

for non-circulant codes, with only a slight variation.

To sum up, it’s crucial to emphasize that HQC provides IND-CPA security,

assuming the hardness of 2-QCSD with parity and 3-QCSD with parity and

erasures. This outcome is proven in [18].

4.3 Complexity classes

In order to evaluate the potential for building a cryptographic system on a spe-

cific problem, like SDP, it is crucial to determine its inherent complexity. To

accomplish this, we offer a concise introduction to the fundamental principles
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of complexity theory [19]. It’s important to mention that the subsequent dis-

cussion will focus on presenting these essential concepts in an intuitive manner,

rather than delving into rigorous details.

Definition 4.8. P denotes the set of decisional problems that can be efficiently

solved in polynomial time with respect to the size of the input.

A problem is categorized as belonging to P if there exists at least one

algorithm capable of solving it within polynomial time. For instance, tasks

like determining whether a number n is even or odd or establishing, given an

array of n integers, whether an integer k is a part of it or not fall within the

complexity class P. In essence, problems within P are considered easy to solve.

Definition 4.9. NP denotes the class of decisional problems for which solu-

tions can be efficiently verified in polynomial time with respect to the size of

the input.

Solving many of these problems requires exponential time. Examples of

problems in NP are:

1. SAT (Satisfaiability): it is the problem of determining whether a Boolean

formula is satisfiable or unsatisfiable. In other words, it asks whether the

variables of a given Boolean formula can be consistently replaced by the

values TRUE or FALSE in such a way that the formula evaluates to

TRUE. In this case, once a solution is given, it is extremely easy to

verify its validity. On the other hand, for non-trivial instances of SAT,

determining a solution is extremely complex.

2. VertexCover: in the context of a graph GpV , Eq, a vertex cover is a subset

of vertices V˚ Ď V where, for every edge e “ uv P E , the intersection of

V˚ with the set tu, vu is not empty. Here, E represents the set of edges,

and V represents the set of vertices within the graph G. In simpler
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1 2 3 4

5

6

Figure 4.3: Example of a VertexCover instance

terms, a vertex cover in a graph is a set V˚ of nodes where every edge

either originates from or terminates at one of the nodes in the set. The

problem involves a graph G and an integer k as input, and it is expressed

as follows: ”Does there exist a vertex cover in G with a cardinality of k?”

To illustrate this concept, consider a straightforward example as shown

in Figure 4.3. If we set k “ 3, it becomes clear that there is indeed a set

of three nodes in which every edge in the graph connects to or emanates

from this specific set. For instance, a valid vertex cover could include

nodes 2, 3, and 5.

3. SetCover: given a set U of elements and a set tS1, ¨ ¨ ¨ , Snu of subsets of U ,

the set cover problem aims to determine if there exist k subsets that cover

the entire set U . For example, if we consider U “ t1, 2, 3, 4, 5, 6, 7u and

subsets S1 “ t1u, S2 “ t1, 2, 3u, S3 “ t3, 4, 5, 6u, S4 “ t5u, S5 “ t2, 4, 7u

and S6 “ t6, 7u, assuming k “ 3, one possible solution can be represented

by S2, S3 and S6. In addition, another possible solution for this SetCover

instance is S2, S3 and S5.

Generally, for SAT, VertexCover, and SetCover, once a solution is provided,

confirming its correctness is straightforward. In the instances of VertexCover

and SetCover we have examined so far, their simplicity allows for easy solution

determination. Nevertheless, this generalization doesn’t hold, particularly for
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”large” instances, where finding solutions becomes considerably challenging.

Clearly, a problem that is easy to solve is also easy to verify because, in

fact, solving it is sufficient for verifying its solutions. This justifies why the

complexity class P is contained within the complexity class NP. Problems in

NP might potentially belong to P, but efficient algorithms for solving them

have not yet been discovered. Over the years, the study of the relationship

between P and NP has focused on identifying the ”most difficult” problems

within the NP class. At this point, it becomes crucial to determine when a

problem X is easier to solve than another problem Y . In this regard, it is

initially necessary to define the concept of polynomial-time reductions.

Definition 4.10. (Polynomial-time reduction) Consider two decisional prob-

lems, X and Y. A polynomial-time reduction from X to Y encompasses the

following steps:

1. take an instance I of X ;

2. transform I into an instance I 1 of Y in polynomial-time;

3. assume that Y can be solved in the instance I 1 and its solution is s1;

4. transform s1 into a solution s for X in the instance I in polynomial time.

A fundamental prerequisite is that this transformation should not mix ”YES”

instances with ”NO” instances.

In this scenario (depicted in Figure 4.4), if we were capable of solving Y ,

we would also be able to solve X by simply transforming an instance and a

solution. Consequently, it can be inferred that Y presents at least a higher

level of complexity than problem X . The concept of polynomial-time reduction

enables us to delineate the class of problems that are of particular interest from

a post-quantum security perspective.

Definition 4.11. NP-hard denotes the class of decisional problems for which

there exists a polynomial-time reduction from every problem in NP.
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Problem X
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Problem Y
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Figure 4.4: Reduction from X to Y

According to the concept of polynomial-time reduction (Definition 4.10),

NP-hard problems are recognized as being at least as challenging as any prob-

lem in NP. Therefore, NP-hard problems are considered among the most dif-

ficult problems to solve and, for this reason, they are of particular interest

in cryptography. To establish that a problem, denoted as Z, is NP-hard, it

may seem necessary, according to the definition, to demonstrate that every

problem in NP is reducible in polynomial-time to Z. However, proving that Z

is NP-hard doesn’t require such an exhaustive approach. Instead, this proof

can be achieved by demonstrating that Z can be reduced in polynomial-time

to a problem already known to belong to the NP-hard class. For instance,

the integer factorization problem is in NP because given a proposed set of

prime factors for the composite integer, it is straightforward to verify whether

their product equals the original integer in polynomial time. However, despite

being a challenging problem, it is not known to be NP-hard, which means

there is no known polynomial-time reduction from an NP-hard problem to the

integer factorization problem. In this section, we have primarily focused on

decisional problems. It’s worth noting that an attacker attempting to breach

a cryptographic scheme must solve the problem in its computational version.

Intuitively, it’s clear that a problem in its computational version is at least

as difficult as its counterpart in the decisional version. Therefore, a decisional
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problem within NP-hard has its corresponding computational problem also

within NP-hard. This basic consideration is highly significant when consid-

ering these problems as foundational components of public key cryptographic

schemes. Indeed, NP-hard problems are believed to be quantum-resistant,

making them suitable as underlying problems for cryptographic schemes. A

problem that resides in NP-hard is obviously extremely challenging to solve,

nevertheless, in general, a problem of this nature is also complex to verify. In

other words, typically, when given a solution for an NP-hard problem, estab-

lishing the validity of the solution can be intricate. Therefore, to summarize, an

NP-hard problem does not necessarily fall within the previously defined com-

plexity class NP. The Halting Problem is a classic example of a problem that

is NP-Hard but not in NP. It involves determining whether a given computer

program will halt or run indefinitely for a given input. It’s undecidable [20],

indicating that there’s no universal algorithm to solve it for all program-input

combinations. It can’t be in NP because there’s no known polynomial-time

verification method, but it is NP-hard because it can be reduced to other well-

known NP-hard problems, such as SAT. Clearly, when considering a problem

as a mathematical foundation for a cryptographic scheme, there might be a

need for problems that possess a dual characteristic: they are exceptionally

hard to solve on one hand, but on the other hand, once a solution is pro-

vided, it is straightforward to verify its correctness. To address this need, an

additional class of problems is defined, known as NP-complete.

Definition 4.12. NP-complete is the class that results from the intersection

of NP-hard and NP classes.

Problems in the NP-complete class are extremely difficult because they are NP-

hard, and in addition, given a solution, it is easy to verify its validity as they are

in NP. This dual characteristic makes them ideal for cryptographic purposes.

Cook demonstrated the NP-completeness of SAT in [21]. Garey and Johnson

proofed the NP-completeness of VertexCover in [22] and Karp showed the
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Figure 4.5: Complexity Classes and associated problems.

NP-completeness of SetCover in [23]. Separately, Berlekamp, McEliece, and

Van Tilborg provided evidence for the NP-completeness of SDP for binary

linear codes using the Hamming metric (Definition 2.6), as documented in

[24]. Additionally, Barg extended this demonstration to finite fields of various

sizes, as outlined in [25]. These findings firmly establish SDP as a compelling

candidate for the underlying problem in a post-quantum cryptographic scheme.

A graphical representation of various complexity classes with some of the most

common problems is shown in Figure 4.5.

As previously stated, the security of HQC relies on Problem 6 and Problem

7 combined with Problem 8. However, even though the SDP problem has been

proven to be NP-complete for linear codes, there is no analogous proof for

quasi-cyclic codes. Nevertheless, what is stated in Assumption 1 holds true.
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Description of HQC

HQC (Hamming Quasi Cyclic) is based on an encryption scheme comprising

four polynomial-time algorithms (Setup, KeyGen, Encrypt, Decrypt):

• Setupp1λq: output the global parameters denoted as param of the scheme.

In this case λ is the security parameter;

• KeyGen(param): produces a pair of keys, specifically a public encryp-

tion key denoted as pk and a private decryption key denoted as sk. The

key pk is public, therefore known to everyone. The key sk is secret and

known only to the legitimate user, i.e. the user who legitimately receives

the message encrypted with the corresponding public key.

• Encryptppk,m, θq: yields a ciphertext denoted as c for the message m

using the encryption key pk and the randomness θ. For the sake of clarity,

we also employ the notation Encrypt(pk,m);

• Decryptpsk, cq: retrieves the plaintext m corresponding to the ciphertext

c or outputs K in case of decoding failure.

An encryption scheme must meet the stringent criteria of both Correctness

and Indistinguishability under a Chosen Plaintext Attack (IND-CPA) to be

deemed secure and reliable.
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Definition 5.1. (Correctness) An encryption scheme satisfies the Correctness

property when the probability that Decryptpsk,Encryptppk,m, θqq equals m is

1 ` neglpλq with λ representing the security parameter.

Correctness ensures that, for every chosen security parameter λ, every set

of parameters generated during the Setup process, and for each pair of keys

produced by the KeyGen algorithm, the encryption and decryption operations

must consistently deliver the desired outcome. In other words, for any given

message m encrypted with the public key pk and subsequently decrypted using

the private key sk, the result should be equal to the original message m.

A cryptosystem is deemed secure in terms of indistinguishability if no ad-

versary, when given an encryption of a message randomly selected from a

two-element message space determined by the adversary, can identify the mes-

sage choice with a significantly higher probability than random guessing. If

any adversary manages to distinguish the chosen ciphertext with a probability

significantly exceeding 1{2, it is considered to have an ”advantage” in distin-

guishing the ciphertext, and the scheme is not regarded as secure in terms

of indistinguishability. This definition implies that the adversary should ex-

tract no information from observing a ciphertext. As a result, the adversary

should not fare any better than random guessing when attempting to dis-

tinguish the message from the ciphertext. The concept of security based on

indistinguishability spans across various definitions, with the variations rooted

in the assumptions about the attacker’s capabilities. This multifaceted secu-

rity paradigm is often illustrated as a game, serving as a fundamental tool

to evaluate the robustness of cryptosystems. In essence, the cryptosystem is

deemed secure when no adversary can attain a substantially greater probability

of winning the game than an adversary who relies on random guessing.

IND-CPA security ensures that even when an adversary is aware that one

of two self-selected messages has been encrypted, he cannot efficiently discern

which one. This security is defined and assessed through the following game:
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IND-CPA game

1. The challenger creates a key pair using the KeyGen algorithm,

sharing the public key pk with the adversary while keeping the

secret key sk.

2. The adversary is allowed to carry out a limited number of encryp-

tions, constrained by a polynomial limit.

3. The adversary provides two different chosen plaintexts, M0 and

M1, to the challenger.

4. The challenger randomly selects a bit b “ t0, 1u and encrypts

the chosen plaintext Mb, resulting in the challenge ciphertext

c “ Encryptppk,Mbq, which is then sent to the adversary;

5. The adversary is free to engage in further computations or encryp-

tions;

6. Ultimately, the adversary makes a guess regarding the value of b.

Definition 5.2. (IND-CPA security) A cryptosystem is considered IND-CPA

secure when any probabilistic polynomial-time adversary has only a negligible

advantage over random guessing. This negligible advantage is defined as the

adversary winning the IND-CPA game with a probability of 1{2 ` neglpλq.

In addition to IND-CPA, it is necessary to define IND-CCA security, which

encompasses IND-CCA1 and IND-CCA2. These refer to Indistinguishability

under non-adaptive and adaptive Chosen Ciphertext Attack, respectively. In

IND-CCA1 and IND-CCA2, the adversary has access to decryption along-

side encryption. The non-adaptive version allows decryption queries until the

challenge ciphertext is received. In the adaptive version, decryption queries

continue but not for the challenge ciphertext to prevent trivial attacks. Games

are used to assess and formalize security in these contexts, much like IND-CPA.
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In this regard, the IND-CCA game is formalized below:

IND-CCA game

1. The challenger creates a key pair using the KeyGen algorithm,

sharing the public key pk with the adversary while keeping the

secret key sk;

2. The adversary may perform any number of calls to the encryptions

and decryption oracle;

3. The adversary provides two different chosen plaintexts, M0 and

M1, to the challenger;

4. The challenger randomly selects a bit b “ t0, 1u and encrypts

the chosen plaintext Mb, resulting in the challenge ciphertext

c “ Encryptppk,Mbq, which is then sent to the adversary;

5. The adversary is free to perform any number of additional encryp-

tions or decryptions:

• In the non-adaptive case (IND-CCA1), the adversary may not

make further calls to the decryption oracle.

• In the adaptive case (IND-CCA2), the adversary may make

further calls to the decryption oracle, but may not submit the

challenge ciphertext c.

6. Ultimately, the adversary makes a guess regarding the value of b.

Definition 5.3. (IND-CCA1 and IND-CCA2 security) A cryptosystem is con-

sidered IND-CCA1 (IND-CCA2) secure when any probabilistic polynomial-

time adversary has only a negligible advantage over random guessing. This

negligible advantage is defined as the adversary winning the IND-CCA1 (IND-

CCA2) game with a probability of 1{2 ` neglpλq.
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As discussed in Section 4.2, HQC has been proved IND-CPA secure. How-

ever, the standard (highest) security requirement for a public key cryptosys-

tem is IND-CCA2. In this regard, HQC’s authors used the Fujisaki-Okamoto

Transformation [26] to move from a secure IND-CPA Public Key Encryption

to a secure IND-CCA2 Key Encapsulation Mechanism.

5.1 HQC as a Public Key Encryption

We recall the key generation and encryption algorithms for HQC. Specifically,

G denotes the generator matrix of a [n,k] code C with decoding algorithm D.

HQC.PKE

Setupp1λq: generates the global parameters param “ pn, k, δ, w, wr, weq

Key Generation through the KeyGen(param) algorithm:

1. sample h
$

ÐÝ R;

2. sample x,y
$

ÐÝ Rpwq;

3. set sk :“ px,yq and pk :“ th, s “ x ` hyu.

Encryption through the Encryptppk,mq algorithm:

1. sample rp1q, rp2q $
ÐÝ Rpwrq, e

$
ÐÝ Rpweq;

2. set u “ rp1q ` hrp2q;

3. set v “ mG ` e ` srp2q;

4. the ciphertext is tu,vu.

Decryption through the Decryptpsk, pu,vqq algorithm:

1. set c “ v ` y ¨ u;

2. run Dpcq.
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Let’s consider c “ v ` y ¨ u. Substituting the definitions of u and v into

this expression, we arrive at:

c “ v ` y ¨ u “ mG ` e ` srp2q
` y ¨ rp1q

` y ¨ hrp2q (5.1)

Given that s “ x ` hy, we can deduce:

hy “ s ´ x “ s ` x (5.2)

By substituting equation (5.2) into (5.1), we get:

c “ mG ` e ` srp2q
` yrp1q

` rp2q
ps ` xq (5.3)

Simplifying further:

c “ mG ` e ` yrp1q
` xrp2q (5.4)

Let’s assume:

z “ e ` y ¨ rp1q
` x ¨ rp2q (5.5)

which leads us to:

c “ mG ` z (5.6)

The correctness of the encryption scheme is directly dependent on the decoding

capability of the code C. In particular, assuming that D accurately deciphers

c “ mG ` z, the following relationship holds:

Decryptpsk,Encryptppk,mqq “ m.

Specifically, decoding is successful when the Hamming weight of the resulting

error pattern z is less than the corrective power of the code, in symbols:

wtpzq “ wtpe ` y ¨ rp1q
` x ¨ rp2q

q ď δ
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Furthermore, it is important to emphasize that the term v represents a

codeword (mG) that has been affected by noise contamination. Specifically,

the sparse nature of the term e (with we ! n) implies that it contains relatively

few errors. In the absence of the term srp2q within v, retrieving m from the

codeword would be a relatively straightforward task, potentially compromising

the confidentiality of HQC as a Public Key Encryption (PKE) scheme. For

this reason, the polynomial s is crucial and takes on the meaning of syndrome.

Given that s plays the role of a syndrome, to maintain its indistinguishability

from a randomly generated syndrome, it must exhibit an average weight of

around 50%. This requirement results in srp2q introducing errors into roughly

half of the symbols. The introduction of srp2q in the expression of v carries

significant implications. First of all, decoding complexity underscores the key

factor that this process is only feasible when the secret key sk (trapdoor) is

known. Specifically, when sk is known, it becomes possible to compute z as

detailed in (5.5). In this context, decoding becomes straightforward due to the

sparsity of z. Notably, based on Theorems 4.2 and 4.3, we can deduce that the

maximum Hamming weight of z is w ¨wr `w ¨wr `we (neglecting hypothetical

cancellations). Since x,y, rp1q and rp2q are by hypothesis sparse, it follows that

w,wr, we ! n, therefore, z is sparse itself.

5.2 HQC as a Key Encapsulation Mechanism

Suppose we have an instance of HQC.PKE denoted as E . Additionally, let

G, H, and K represent hash functions, such as SHA-512 [27]. Briefly, a cryp-

tographic hash function is a surjective function that takes a message of any

length and returns a fixed-length message digest. To be considered a reliable

hash function, it must meet several key criteria. Firstly, it should be com-

putationally fast to calculate. Secondly, it must exhibit one-way resistance

(pre-image resistance), meaning it should be practically impossible to reverse
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the process and retrieve the original input from the digest. Additionally, it

should be weakly resistant to collisions (second pre-image resistance), which

means that given a fixed input, finding another input that produces the same

digest should be extremely challenging. Lastly, the hash function should also

be strongly collision-resistant, implying that finding two different inputs that

yield the same digest should be computationally infeasible.

The KEM-DEM version of HQC is defined as follows:

HQC.KEM

Setupp1λq: as for HQC.PKE, with the only difference being that k

represents the length of the symmetric key being exchanged;

Key Generation as for HQC.PKE;

Encapsulate with input the public key pk:

1. generate m P Fk
2 as a seed to derive the shared key K;

2. set the randomness θ “ Gpmq;

3. generate the ciphertext c “ E .Encryptppk,m, θq

4. the shared key is K “ Kpm, cq;

5. set d “ Hpmq and send pc,dq.

Decapsulate with input the secret key sk, c and d:

1. decrypt m1 “ E .Decryptpsk, cq

2. compute θ1 “ Gpm1q

3. re-encrypt m1 to get c1 “ E .Encryptppk,m1, θ1q

4. if c “ c1 and d “ Hpm1q, then obtain the shared key K “ Kpm, cq;

otherwise, abort.

5. once K is exchanged, it can be used to encrypt with a symmetric

cryptosystem in a hybrid encryption context.
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First, it is reasonable to question why we transmit d “ Hpmq instead

of directly employing θ “ Gpmq. If we were to employ θ “ Gpmq directly,

rather than d “ Hpmq, it would expose the randomness to the public. The

randomness θ plays a vital role during the encryption phase, as it dictates the

selection of the polynomials rp1q, rp2q $
ÐÝ Rpwrq and e

$
ÐÝ Rpweq. Considering

that, during encryption, v “ mG`srp2q `e becomes public, once rp1q, rp2q, and

e are known (since the randomness θ becomes public), given that s is known

since it’s part of the public key pk and since G is public, the only remaining

unknown in v expression is m, which can then be determined. Consequently,

the attacker can recover the seed for the shared key, enabling the computation

of K “ Kpm, cq and compromising the scheme’s confidentiality.

5.3 Settings and Parameters

We here recall the HQC versions ([28], [29], [30] and [31]) which have been

submitted to NIST competition, together with the recommended parameters.

5.3.1 1st round submission

In the first round of the NIST submission, the public code C has been chosen as

a tensor product code (defined in subsection 3.5.1), obtained from two binary

codes C1 Ď Fn1
2 and C2 Ď Fn2

2 . Namely, the authors of HQC chose C1 as a

BCHpn1, k, tBCHq code (section 3.2) and C2 as a repetition code (section 3.1)

of length n2 and dimension k2 “ 1. In the context of the Hamming metric

version of the cryptosystem, an initial message, denoted as m, drawn from

Fk
2, undergoes a two-step encoding procedure. First, it is transformed into

m1 P Fn1
2 through a generator for C1. Subsequently, every symbol within this

codeword undergoes encoding through the repetition code C2. In effect, each

symbol of m1 is replicated a total of n2 times, further enhancing the error-

correcting capabilities of the tensor product code. Therefore, a codeword of
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Code n k tBCH

BCH-1 1023 513 57
BCH-2 1023 483 60

BCH-S1 766 256 57
BCH-S2 796 256 60

Table 5.1: BCH codes in their original and shortened forms. The considered
BCH codes are initially of length 1023, then shortened to support 256 bits
dimension. It’s important to note that the error-correcting capability of the
code remains unaffected by the shortening operation.

the tensor product code C “ C1 b C2 has the following structure:

`

c
p0q

0 , c
p0q

1 , ¨ ¨ ¨ , c
p0q

n2´1

Length n2

, c
p1q

0 , c
p1q

1 , ¨ ¨ ¨ , c
p1q

n2´1

Length n2

, ¨ ¨ ¨ , c
pn1´1q

0 , c
pn1´1q

1 , ¨ ¨ ¨ , c
pn1´1q

n2´1

Length n2

˘

We adopt the notation n “ n1 ¨ n2 to denote the length of the tensor product

code. In practice, the chosen length is the smallest primitive prime greater

than n to enhance security against algebraic attacks (as described in section

4.2). Meanwhile, the dimension of the tensor product code is expressed as

k “ k1k2 “ k1. Additionally, it’s noteworthy that the minimum distance of

the tensor product code is equal to the product of the minimum distances of

its constituent codes.

Depending on the chosen parameters of the HQC scheme, shortened BCH

codes are utilized (detailed in subsection 2.2.3). Specifically, the shortening

process is applied to yield a BCH code with a dimension of 256. This operation

is carried out by taking a BCH code, denoted as BCH-1r1023, 513, tBCH “ 57s,

and transforming it into BCH-S1 by setting ℓ “ 257. Similarly, another BCH

code, originally labeled as BCH-2 r1023, 483, tBCH “ 60s, is transformed into

BCH-S2 with ℓ “ 227. Table 5.1 offers a comprehensive comparative analysis

between BCH-1 and BCH-2 and their corresponding shortened variants, de-

noted as BCH-S1 and BCH-S2. The recommended parameters for this specific

version of HQC are presented in Table 5.2.
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SL tBCH k n1 n2 n w wr we Pdecoding failure

128 60 256 796 31 24,677 67 77 77 ă 2´128

192 57 256 766 57 43,669 101 117 117 ă 2´128

192 57 256 766 61 46,747 101 117 117 ă 2´192

256 57 256 766 83 63,587 133 153 153 ă 2´128

256 60 256 796 85 67,699 133 153 153 ă 2´192

256 60 256 796 89 70,853 133 153 153 ă 2´256

Table 5.2: HQC parameters for the Round 1 submission. Only the parameters
to obtain DFR less than 2´128 are reported.

SL tBCH k n1 n2 n w wr we Pdecoding failure

128 57 256 766 31 23,869 67 77 77 2´128

192 57 256 766 59 45,197 101 117 117 2´192

256 60 256 796 87 69,259 133 153 153 2´256

Table 5.3: HQC parameters for the Round 2 submission assuming that the
public code can be expressed as C “ BCHpn1, k, tBCHqb1n2 , where 1n2 denotes
a repetition code of length n2.

5.3.2 2nd round submission

In the second round of the NIST submission, HQC’s authors introduced an

additional decoding algorithm rooted in the concatenation of Reed-Muller and

Reed-Solomon codes. Consequently, the second round encompasses two dis-

tinct approaches which provide two distinct sets of parameters targeting dif-

ferent level of Security Level (SL). The first approach doesn’t warrant further

exploration, as it mirrors the one employed in the first round of HQC. In this

scenario, parameter sets are reported in Table 5.3. Meanwhile, the second

approach, which incorporates Reed-Muller and Reed-Solomon codes, deserves

further exploration as it is the new addition compared to the round 1 submis-

sion. This approach was introduced with the specific goal of reducing the key

size. In this scenario, the public code C is assumed to be a concatenated code

(described in section 3.5). It is formed by combining a Reed-Solomon code,

discussed in subsection 3.3.1, as the outer code, and a first-order Reed-Muller

code, detailed in subsection 3.4.1, which serves as the inner code. Figure 5.1

provides a visual representation of the typical structure of a concatenated code.
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Reed-Solomon rne, kes encoder
f

Reed-Muller rni, kis encoder
f f

Reed-Solomon rne, kes decoder Reed-Muller rni, kis decoder

Channel

Figure 5.1: Reed-Solomon and Reed-Muller concatenated codes. f and f f

will serve to formalize the subjects at play in that specific section, specifically,
in equations (5.8) and (5.9)

We start with an information sequence m consisting of ke q-ary symbols:

m “
`

m
p0q

0 ¨ ¨ ¨m
p0q

ki´1, m
p1q

0 ¨ ¨ ¨m
p1q

ki´1 ¨ ¨ ¨m
pke´1q

0 ¨ ¨ ¨m
pke´1q

ki´1

˘

P Fke
q “ Fke

2ki
(5.7)

We have ke q-ary symbols, where q “ 2ki . As a result, each symbol can be

represented as a ki-tuple over F2, which means we have a total of keki binary

symbols. It’s important to note that the Reed-Solomon encoder operates on

q-ary symbols, as RS codes are not binary codes. Consequently, after the

RS encoding process, we transition from having ke q-ary symbols to ne q-ary

symbols, each of which can be represented using ki binary symbols. Therefore:

f : c1
“

`

c1p0q

0 ¨ ¨ ¨ c1p0q

ki´1, c
1p1q

0 ¨ ¨ ¨ c1p1q

ki´1 ¨ ¨ ¨ c1pne´1q

0 ¨ ¨ ¨ c1pne´1q

ki´1

˘

P Fne
q “ Fne

2ki
(5.8)

In contrast, the Reed-Muller encoding operates on binary symbols. Conse-

quently, we transition from blocks of ki binary symbols (representing a q-ary

symbol) to blocks of ni binary symbols. Therefore, following the RM encod-

ing, we have ne blocks, each consisting of ni binary symbols. Consequently,
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Code n k tRS

RS-1 255 207 24
RS-2 255 211 22
RS-3 255 209 23
RS-S1 80 32 24
RS-S2 76 32 22
RS-S3 78 32 23

Table 5.4: Original and Shortened RS codes. The shortened codes RS-S1,
RS-S2, and RS-S3 are obtained by assuming ℓ “ 175, ℓ “ 179, and ℓ “ 177 for
RS-1, RS-2, and RS-3, respectively.

the total number of binary symbols is given by n “ ne ¨ ni. Therefore:

f f : c2
“

`

c2p0q

0 ¨ ¨ ¨ c2p0q

ni´1, c
2p1q

0 ¨ ¨ ¨ c2p1q

ni´1 ¨ ¨ ¨ c2pne´1q

0 ¨ ¨ ¨ c2pne´1q

ni´1

˘

P Fneni
2 (5.9)

The outer code selected for this configuration is a Reed-Solomon code over

Fq with q “ 256 and dimension 32. On the other hand, the internal code is

a first-order Reed-Muller code Rp1,mq with m “ 7. Hence, the Reed-Muller

code is a [128,8,64] binary code (over F2). Specifically, the authors of HQC

chose to use shortened Reed-Solomon codes and duplicated Reed-Muller codes.

The shortening operation has been extensively covered and, therefore, does

not warrant further discussion in this context. Table 5.4 displays the original

Reed-Solomon codes along with their corresponding shortened versions.

On the other hand, regarding the duplication operation, it is essential to

highlight that it is equivalent to introducing an additional repetition encoder

downstream of the RM encoder with a length precisely matching the dupli-

cation factor. In particular, duplicating the RM code involves repeating each

symbol output from the RM encoder a number of times equal to the dupli-

cation factor. Therefore, to be more explicit, assuming d is the duplication

factor, equation (5.9) becomes:

c2
“

`

c2p0q

0,0...c
2p0q

0,d´1...c
2p0q

ni´1,0...c
2p0q

ni´1,d´1...c
2pne´1q

0,0 ...c2pne´1q

0,d´1 ...c2pne´1q

ni´1,0 ...c
2pne´1q

ni´1,d´1

˘

(5.10)
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SL Reed-Muller code Duplication Duplicated Reed-Muller Code

128 [128,8,64] 2 [256,8,128]
192 [128,8,64] 4 [512,8,256]
256 [128,8,64] 6 [768,8,384]

Table 5.5: Duplicated Reed-Muller codes.

SL n1 n2 n w wr we

128 80 256 20,533 67 77 77
192 76 512 38,923 101 117 117
256 78 768 59,957 133 153 153

Table 5.6: HQC Parameters for the Round 2 submission using concatenated
codes

Table 5.5 shows different parameter sets for duplicated Reed-Muller codes.

Table 5.6 shows the parameter sets for HQC assuming a concatenated code is

employed. Specifically, the concatenated code used consists of a [n2, 8, n2{2]

Reed-Muller code as inner code and a rn1, 32, n1 ´ k ` 1s Reed-Solomon code

as the outer code.

5.3.3 3rd and 4th round submission

In the context of the third and fourth NIST rounds, there are no distinctions in

the codes employed or the parameters. However, in the fourth NIST round, the

HQC authors made small adjustments to enhance security. Specifically, they

introduced a public salt to mitigate multi-ciphertext attacks and enhanced the

hardware implementation to protect against side-channel attacks based on the

evaluation of the execution time.

Notably, in the third and fourth round of the NIST submission, the HQC

authors made a strategic decision to employ a concatenated code structure.

This structure involves the utilization of an external code, specifically a Reed-

Solomon code over the finite field Fq with q set to 256. Explicitly, depending on

the different SL required, shortened versions were used. In particular, short-

ened Reed-Solomon codes denoted by RS-S1, RS-S2, and RS-S3 are obtained
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Code n k tRS

RS-1 255 225 15
RS-2 255 223 16
RS-3 255 197 29
RS-S1 46 16 15
RS-S2 56 24 16
RS-S3 90 32 29

Table 5.7: Original and Shortened RS codes

SL Reed-Muller code Duplication Duplicated Reed-Muller Code

128 [128,8,64] 3 [384,8,192]
192 [128,8,64] 5 [640,8,320]
256 [128,8,64] 5 [640,8,320]

Table 5.8: Duplicated Reed-Muller codes.

from RS-1, RS-2, and RS-3, respectively. To provide a comprehensive overview

of the parameters associated with both the original Reed-Solomon codes and

their resulting shortened versions, we turn to Table 5.7.

Conversely, the inner code was chosen to be a first-order Reed-Muller code,

specifically identified as Rp1,mq, with m set to 7. This Reed-Muller code,

operating in the binary domain, exhibits parameters r128, 8, 64s. To achieve the

desired code configurations, the Reed-Muller code will undergo a duplication

process, occurring either three or five times, resulting in the codes delineated

in Table 5.8.

The recommended parameters for this version of HQC are shown in Table

5.9. Specifically, n1 indicates the length of the Reed-Solomon code while n2

the length of the Reed-Muller code, therefore, n1n2 is the length of the con-

catenated code (the ambient space has lenght n, the smallest primitive prime

greater than n1n2 to avoid algebraic attacks).

SL n1 n2 n w wr we

128 46 384 17,669 66 75 75
192 56 640 35,851 100 114 114
256 90 640 57,637 131 149 149

Table 5.9: HQC Parameters for Round 3 and 4 submission
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The HQC version introduced in the second NIST round represents a tran-

sitional phase, marking a shift from using a tensor product code (BCH+REP)

to a concatenated code structure involving non-binary Reed-Solomon and bi-

nary Reed-Muller codes. This is why the first and third versions of HQC are

often referenced in subsequent discussions as they signify crucial stages of in-

novation. For the sake of maintaining generality and clarity throughout the

ongoing discourse in this thesis, we shall consistently employ the terms ”in-

ternal code” (alternatively referred to as ”inner code”) to represent the REP

or Reed-Muller code. In parallel, we will employ the terms ”external code”

(or ”outer code”) to denote the BCH or Reed-Solomon code. This standard-

ized terminology will facilitate a more comprehensive understanding of the

coding mechanisms employed within the context of HQC and its subsequent

description.

5.4 Representation of objects

Elements of Fn
2 , F

n1n2
2 and Fk

2 are represented as binary arrays. Furthermore,

with the goal of reducing the size of objects, a seed expander is utilized. This

seed expander is based on SHAKE256, a cryptographic hash function that be-

longs to the SHA-3 family. To clarify, seed expansion is the process of taking

a relatively short and random seed or initial value and transforming it into a

longer and more unpredictable sequence of bits. SHAKE256 is well-suited for

this purpose because it can generate an arbitrary amount of pseudorandom

data with variable length. In essence, this capability is achieved through the

sponge construction on which SHA-3 hash functions are built, enabling native

implementation of an Extendable-Output Function (XOF) to adjust the out-

put length as needed. To be more specific, SHAKE256 takes an initial seed as

input and generates a stream of bits that exhibit a high degree of randomness.

This feature makes it valuable for various applications, including key genera-
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pk sk ciphertext ss

size [bit] 320 + n 320 512 + 2n 512

size [byte] 40 +
P

n
8

T

40 64 +
P

n
4

T

64

Table 5.10: Resulting size for HQC using NIST seed expander initialized with
40 bytes long seeds.

tion, nonce generation, and the generation of random values for cryptographic

protocols. In this particular case, SHAKE256 is initialized with a 40-byte

string, which serves as the seed. The secret key sk “ px,yq is represented

as sk “ pseed1q where seed1 is used to generate x and y. The public key

pk “ ph, sq is represented as pk “ pseed2, sq where seed2 is used to generate

h. The ciphertext c is represented as pu, v, dq where d is generated using

SHAKE256-512. Therefore, the secret key has size 320 (in bits), the public

key has size 320 + n (in bits) and the ciphertext has size 2n + 512 (in bits).

The shared key, referred to as ss, has a size of 512 bits, corresponding to the

output size of SHA-512. To summarize, refer to Table 5.10.

5.5 Estimating the DFR for HQC

In this section we recall how the DFR analysis for HQC proceeds. We report,

with full details, an analysis which is analogous to the one in the HQC submis-

sion, but generalize it to the case in which the polynomials rp1q and rp2q have

different weights, which we indicate respectively by w
p1q
r and w

p2q
r . We do this

to make the thesis self contained and, more importantly, to prepare the stage

for our new decoder, which we introduce in the next chapter. Indeed, we antic-

ipate that our decoding strategy starts by guessing, with a correlation-based

approach, some of the set coefficients in the polynomials rp1q and rp2q. This al-

lows to reduce the noise term superimposed on mG by an entity that depends

on the number of coefficients we have correctly guessed for each polynomial.

As we detail in the next chapter, when the number of guessed coefficients for
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rp1q and rp2q is not the same, the DFR analysis is derived from the standard

analysis of HQC, with the only precaution that one must take into account

different weights for such polynomials. We start by considering the following

preliminary result:

Proposition 1. For two polynomials a P Rpwaq and b
$

ÐÝ Rpwbq, a coefficient

(say, the first one) in the product a ¨ b is set with probability

ρwa,wb
“

ÿ

ℓPr1;mintwa,wbus

ℓ odd

`

wa

ℓ

˘`

n´wa

wb´ℓ

˘

`

n
wb

˘ . (5.11)

Proof. According to the rules of polynomial multiplication, we have:

ck “
ÿ

i`j”k mod n

ai ¨ bj, for k P t0, 1, ¨ ¨ ¨n ´ 1u.

where ck “ 1 only when it constitutes the sum of an odd quantity of ’1s’.

Consequently, out of the
`

n
wa

˘`

n
wb

˘

potential combinations of a and b, we need

to focus on those where ai ¨bj “ 1 an odd number of times. Let Cℓ represent the

count of pairs pa,bq where ai ¨bj “ 1 exactly ℓ times. When ℓ ą minpwa, wbq, it

is evident that Cℓ “ 0. Indeed, we are evaluating the various ways in which ℓ

positions out of the total n can be chosen such that both vectors a and b have

corresponding elements set to 1. Since ℓ ą minpwa, wbq, there is no pair pa,bq

for which ai ¨bj “ 1 exactly ℓ times. On the other hand, when ℓ ď minpwa, wbq,

we are assessing the various ways in which ℓ positions out of the total n can

be selected so that the elements set to 1 in both a and b coincide in those

ℓ positions. Hence, we can start by choosing ℓ positions out of the total n,

resulting in
`

n
ℓ

˘

different possibilities. For each choice of the ℓ positions, we

must select wa ´ ℓ elements from a and wb ´ ℓ elements from b, avoiding any

’intersection’ with the first ℓ elements. There are
`

n´ℓ
wa´ℓ

˘

ways to select such

that elements from a and
`

n´wa

wb´ℓ

˘

ways to select such that elements from b.
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n bits

ℓ bits

“ a

“ b

1 1 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 1 1

pwa ´ ℓq bitsℓ bits

ℓ bits

1 1 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 1 1 1

pwb ´ ℓq bits

Figure 5.2: Graphical representation of a and b. The ones do not need to be
consecutive. This assumption was made only for mere graphical convenience.

Therefore, when ℓ ď minpwa, wbq it follows that:

Cℓ “

ˆ

n

ℓ

̇ˆ

n ´ ℓ

wa ´ ℓ

̇ˆ

n ´ wa

wb ´ ℓ

̇

. (5.12)

From a visual perspective, let’s refer to Figure 5.2. Hence:

P pck “ 1q fi ρwa,wb
“

1
`

n
wa

˘`

n
wb

˘

ÿ

1ďℓďminpwa,wbq

ℓ odd

Cℓ (5.13)

By substituting equation (5.12) in (5.13), we obtain:

ρwa,wb
“

1
`

n
wa

˘`

n
wb

˘

ÿ

1ďℓďminpwa,wbq

ℓ odd

ˆ

n

ℓ

̇ˆ

n ´ ℓ

wa ´ ℓ

̇ˆ

n ´ wa

wb ´ ℓ

̇

(5.14)

At this point, let’s focus our attention on the term:

`

n
ℓ

˘`

n´ℓ
wa´ℓ

˘

`

n
wa

˘ “

n!
ℓ!pn´ℓq!

¨
pn´ℓq!

pwa´ℓq!rn´ℓ´pwa´ℓqs!

n!
wa!pn´waq!

“
wa!

ℓ!pwa ´ ℓq!
“

ˆ

wa

ℓ

̇

(5.15)

Ultimately, upon substituting the outcomes derived from equation (5.15) into

equation (5.14), we successfully arrive at our intended proof.
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In our examination of the product’s total weight, we incorporate a foun-

dational assumption that is not only central to our study but also finds its

application in the official HQC specification that has been submitted.

Assumption 2. Let a P Rpwaq and b
$

ÐÝ Rpwbq. Then, we assume that

all the coefficients in their product are independent and uncorrelated random

variables, following a Bernoulli distribution with parameter ρwa,wb
as in (5.11).

Employing the above assumption, one has the following Proposition, which

establishes the weight distribution of the polynomial z.

Proposition 2. Let x,y P Rpwq, rp1q $
ÐÝ Rpw

p1q
r q, rp2q $

ÐÝ Rpw
p2q
r q, ρe “ we

n

and e „ B n,ρe. Under assumption 2, the polynomial z “ x ¨ rp2q ` y ¨ rp1q ` e

follows a Bernoulli distribution with parameter

ρz “ 4ρ
w,w

p1q
r
ρ
w,w

p2q
r
ρe`ρ

w,w
p1q
r

` ρ
w,w

p2q
r

` ρe ´ 2
´

ρ
w,w

p1q
r
ρ
w,w

p2q
r

` ρ
w,w

p1q
r
ρe ` ρ

w,w
p2q
r
ρe

¯

Proof. We consider that each product xp “ x ¨ rp2q, yp “ y ¨ rp1q is a Bernoulli

distributed vector with respective parameter ρ
w,w

p2q
r

and ρ
w,w

p1q
r
. Let us focus

on a single coefficient of z (say, the i-th one): it will be set with probability

P pxpi “ 1q ¨ P pypi “ 0q ¨ P pei “ 0q ` P pxpi “ 0q ¨ P pypi “ 1q ¨ P pei “ 0q

` P pxpi “ 0q ¨ P pypi “ 0q ¨ P pei “ 1q ` P pxpi “ 1q ¨ P pypi “ 1q ¨ P pei “ 1q.

Substituting the probabilities with the associated Bernoulli parameters we get:

ρz “ p1 ´ ρ
w,w

p1q
r

qp1 ´ ρ
w,w

p2q
r

qρe`p1 ´ ρ
w,w

p1q
r

qρ
w,w

p2q
r

p1 ´ ρeq

` ρ
w,w

p1q
r

p1 ´ ρ
w,w

p2q
r

qp1 ´ ρeq ` ρ
w,w

p1q
r
ρ
w,w

p2q
r
ρe

After some manipulations, we obtain the expression for ρz.

Notice that, to be formally correct, the parameter ρz should be deemed
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as a function of w
p1q
r and w

p2q
r ; yet, to avoid burdening the notation, we do

not explicitly indicate such a dependence. Now, we are ready to evaluate the

DFR of the HQC cryptosystem. In the analysis, another assumption is needed,

which we formalize as follows.

Assumption 3. Let x,y P Rpwq, rp1q $
ÐÝ Rpw

p1q
r q, rp2q $

ÐÝ Rpw
p2q
r q and e

$
ÐÝ

Rpweq. We assume that distribution of the weight of z “ x ¨rp2q `y ¨rp1q `e, for

what concerns the DFR of the algorithm D, is essentially the same we would

obtain when z „ B n,wz
n
.

Proposition 3. Under Assumptions 2 and 3, the DFR of HQC is effectively

approximated, independently of the specific NIST round being considered, by:

ϵpwp1q
r , wp2q

r q “

wpw
p1q
r `w

p2q
r q`we

ÿ

t“0

fn,ρzptq

P pz has weight tq

¨

˜

1 ´

touter
ÿ

i“0

fni,ρinnerptqpiq

¸

P pno. of inner errorsą touter | z has weight tq

Proof. From theorems (4.2) and (4.3), we get that the maximum Hamming

weight of z (neglecting hypothetical cancellations) is w ¨ pw
p1q
r ` w

p2q
r q ` we.

Precisely, z has weight t P

”

0; wpw
p1q
r ` w

p2q
r q ` we

ı

with probability given by:

fn,ρzptq “

ˆ

n

t

̇

ρ t
z p1 ´ ρzq

n´t

where ρz is defined in Proposition 2.

According to Assumption 3, we assume that z is distributed according to a

Bernoulli distribution with parameter t{n. We now focus on one codeword of

the inner code (REP or RM). The likelihood of inner decoding failure is equal

to the probability of z having a weight exceeding the error correction capacity

of the inner code, i.e., tinner “
P

di´1
2

T

, where di is the minimum distance of

the inner code. As a result, the probability of inner decoding failure when
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assuming wtpzq “ t can be expressed as follows:

ρinnerptq “

ni
ÿ

i“tinner`1

fni, ρzpiq.

External decoding fails when the remaining errors after internal decoding ex-

ceed the external code’s error correction capability (BCH or RS). This occurs

with probability:

1 ´

touter
ÿ

i“0

fni, ρinnerptqpiq.

Finally, by taking into account all possible weights for z, we obtain the DFR

of HQC, denoted by ϵpw
p1q
r , w

p2q
r q, as expressed in Proposition 3.
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New Decoder for HQC

6.1 Idea leading to the new HQC decoder

The consideration that leads us to the concept of the new HQC decoder is

closely tied to information theory. Specifically, there is information that is

not used in the decoding process, and by harnessing it, HQC decoding can be

made more efficient. Explicitly, in HQC the decoding algorithm D is applied

on input c “ v ` y ¨ u “ mG ` z, where z “ x ¨ rp2q ` y ¨ rp1q ` e is assumed

to be random-like. However, in reality, z is not entirely random because the

legitimate user knows the secret key sk “ px,yq. Therefore, this information

can be used to enhance HQC decoding. In this section, we delineate the

new decoding method we put forth for HQC. We present the corresponding

procedure, which takes as input c P R and an integer threshold β P r0;ws in

Figure 6.1.

Basically, the algorithm first decodes through the inner code and then re-

encodes through the inner code itself in order to get a first (rough) estimate

on the error vector z affecting the codeword mG. This estimate, denoted by

ep, is employed to guess the positions of set coefficients for the polynomials

rp1q and rp2q. To do this, the algorithm first computes the correlation between

the obtained estimate ep and shifted versions of the secret key polynomials.
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Decoder D pc P R, sk :“ px,yq P R2q:

1) for α “ 0, ¨ ¨ ¨ , ni ´ 1 do:

1.1) set
`

bα¨ki , ¨ ¨ ¨ , bpα`1q¨ki´1

˘

“ DecInner
`

cα¨ne , ¨ ¨ ¨ , cpα`1q¨ne´1

˘

;

1.2) set
`

aα¨ne , ¨ ¨ ¨ , apα`1q¨ne´1

˘

“ EncInner
`

bα¨ki , ¨ ¨ ¨ , bpα`1q¨ki´1

˘

;

1.3) set epα¨ne`j “ 1 for every j P r0;ne´1s such that cα¨ne`j ‰ aα¨ne`j

2) set sx “ Correlationpep,xq and sy “ Correlationpep,yq;

3) define polynomials rpp1q, rpp2q
P R, so that

rp
p1q

i “

#

1 if syi ě β,

0 otherwise,

rp
p2q

i “

#

1 if sxi ě β,

0 otherwise;

4) set zp “ x ¨ rpp2q
` y ¨ rpp1q;

5) set ∆c “ c ` zp;

6) decode ∆c

Figure 6.1: New decoding algorithm for HQC. In this figure ne represents the
external code’s length (which depends on the HQC version, either BCH or
Reed Solomon code), while ni stands for the inner code’s length (which varies
with the HQC version, either REP or Reed Muller code).

Namely, focusing on x, we have that the i-th entry of sx is obtained as

sxi “
ÿ

jPtℓ`i mod n|ℓPsupppxqu

Lpepjq,

where L denotes the lifting operation from F2 to N. It is easy to see that

sxi takes values in r0;ws and is expected to have large values when r
p2q

i “ 1.

Indeed, let us assume for the moment that ep “ z. Let r
p2q

i “ 1 and rrp2q be the

polynomial obtained from rp2q by setting the i-th coefficient to 0. Then, the

103



Chapter 6 - New Decoder for HQC

following holds

sxi “
ÿ

jPsupppxq

L

ˆ

1 `

´

x ¨ rrp2q
` y ¨ rp1q

` e
¯

j`i mod n

̇

. (6.1)

Since all the involved polynomials are sparse, we expect that all the coefficients
´

x ¨ rrp2q
` y ¨ rp1q ` e

¯

j`i mod n
are equal to 0 with large probability (say, sig-

nificantly larger than 1{2). The correlation is obtained by summing w variables

that are set to 1 with large probability, hence it is expected to be large (say,

higher than w{2). When, instead, r
p2q

i “ 0, we have

sxi “
ÿ

jPsupppxq

L
´

`

x ¨ rp2q
` y ¨ rp1q

` e
˘

j`i mod n

¯

. (6.2)

For analogous reasons (i.e., summing coefficients of a sparse polynomial), in

this case we expect to have a correlation value which is rather low (say, lower

than w{2). Clearly, the decoder operates without full knowledge of the exact

error vector z; instead, it relies on a preliminary estimate acquired through

the initial decoding and re-encoding steps performed in accordance with the

inner code. So, it becomes necessary to adapt the expressions in (6.1) by

considering the coefficients of ep. However, in cases where the inner code is

performing efficiently, successfully decoding a substantial number of errors, it

is reasonable to anticipate that ep and z will share a considerable number of

identical coefficients. This observation reinforces the validity of the previous

explanation. An analogous reasoning holds for the coefficients of rp1q.

In the end, when the value of β is properly chosen, we expect rpp1q and rpp2q

to be good approximations of rp1q and rp2q, respectively. In other words, we

expect the polynomials ∆rpiq “ rpiq ` rppiq, for i P t1, 2u, to have a weight which

is lower than wr. These new polynomials can be used to remove some of the

noise affecting the codeword. Indeed, it is easy to see that

∆c “ mG ` ∆z,
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mG ` z mG ` ∆z
Noise Filtering HQC decoder

New HQC decoder

Figure 6.2: Link between the classic HQC decoder and the new proposal. It’s
worth noticing that the difference lies in the initial noise filtering step.

with

∆z “ x ¨ ∆rp2q
` y ¨ ∆rp1q

` e.

Since we expect wtp∆rpiqq ă wr, it holds that, with very high probability,

wtp∆zq ă wtpzq. Decoding of ∆c should fail at a lower probability. Essentially,

our proposed decoder can be thought of as the classical HQC decoder, with

an additional filtering stage in which the noise entity is reduced as illustrated

in Figure 6.2.

6.2 Complexity of the new Decoder

In the preceding section, we observed that our decoder can be viewed as the

conventional HQC decoder complemented by an extra denoising phase. One

noteworthy characteristic of this added step is its notably low computational

complexity. In this regard, we present the following Proposition:

Proposition 4. The running time of the proposed decoder is

O pTInner ` TOuter ` n ` nw ` wwrq .

Proof. First, we need to distinguish between two specific scenarios according

to the HQC version being considered. The first scenario involves the use of a

repetition code as the internal code, while the second scenario pertains to the
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external code being a first-order Reed-Muller code. In the former case, both

the encoding and decoding costs are characterized by Opnq. However, in the

latter case, when we employ the Fast Walsh-Hadamard Transform (FWHT) for

both encoding and decoding, it results in a computational cost of Opn log2 nq.

To provide further clarity and maintain a general perspective, we designate

TInner as the cost associated with encoding or decoding the internal code and

TOuter as the cost related to decoding the external code. After this necessary

clarification, we can proceed with the evaluation of the computational cost of

the new decoder. We first decode through the inner code, with cost TInner and

then re-encode through the inner code itself with cost TInner in order to get a

rough estimate of z.Then we set the polynomial ep with cost Opnq. Computing

the correlation for a polynomial and a position i comes with cost Opwq, since

we just need to sum w coefficients. Then, the overall correlation computation

takes time Opnwq for both x and y. When the value of the threshold β is

properly chosen, we can safely consider that the weights of the polynomial rppiq

is never larger than wr, so that to compute zp we can exploit the sparse nature

of the involved polynomials and hence have a cost of Opwwrq. Analogously,

we can compute ∆z with cost Opwwrq. We finally apply the classical HQC

decoding procedure, with cost TInner ` TOuter.

Remark 1. The increase in the complexity of the decryption phase is rather

limited. For instance, in HQC with a repetition code, we have TInner “ Opnq.

Hence, roughly, the overall increase corresponds to 3n ` 2nw ` 2wwr, which

is linear in n. On the other hand, in HQC with a first-order Reed-Muller

code, we have TInner “ Opn log2 nq. Therefore, in this case, the overall increase

corresponds to n ` 2 log2 n ` 2nw ` 2wwr, which is linear in n.

Clearly, given the limited increase in complexity associated with the in-

troduction of the initial noise filtering step, it is also possible to introduce an

iterative decoding such that instead of a single filtering step there are multiple

steps.
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6.3 DFR of the new Decoder

In this section, we will discuss the analysis of the DFR for the new decoder.

To begin, our initial focus is on assessing the weight distribution of ∆rp1q and

∆rp2q. Specifically, for i P t1, 2u, let w
piq
r “ wtp∆rpiqq. According to the law of

total probability, the probability of having a decoding failure (an event which

we denote with K) can be written as

ϵpn1, n2q “
ÿ

w
p1q
r ,w

p2q
r

P
`

K | wp1q
r , wp2q

r

˘

¨ P
`

wp1q
r , wp2q

r

˘

,

where P
´

K | w
p1q
r , w

p2q
r

¯

is the probability to have a decoding failure given that

∆rp1q and ∆rp2q have weights w
p1q
r and w

p2q
r , respectively, while P

´

w
p1q
r , w

p2q
r

¯

is

the probability that these two polynomials assume such weights. To simplify

the analysis, we assume independence of the weights of ∆rp1q and ∆rp2q, i.e.,

P
`

wp1q
r , wp2q

r

˘

« P
`

wp1q
r

˘

¨ P
`

wp2q
r

˘

.

Notice that ∆r1 and ∆r2 follow the same probability distribution, so we can

focus only on one of them, say, ∆rp2q. Its weight distribution is derived in the

following propositions.

Proposition 5. Probability to wrongly guess a 1-coefficient

Let j such that r
piq
j “ 1. Then, the probability that rp

piq
j “ 0 is defined as

τ1Ñ0 “

β´1
ÿ

ℓ“0

ˆ

w

ℓ

̇

ρp ℓ
p1 ´ ρpq

w´ℓ,

where

ρp “ p1 ´ ρrq

t´1
ÿ

ℓ“0

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ

` ρr
ni´1
ÿ

ℓ“t

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ,

with di, ni and t “ tdi´1
2

u denoting the minimum distance, the length and the
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error correcting capability of the inner code, respectively, and

ρr “ ρrw,wr´1

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wrq
we

n

¯

` p1 ´ ρrw,wr´1q

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wrq
we

n

¯

,

ρrw,wr´1 “
ÿ

ℓPr1;mintw,wr´1us

ℓ odd

`

w
ℓ

˘`

n´w
wr´1´ℓ

˘

`

n
wr´1

˘ .

Proof. We consider an index i P suppprp2qq, and derive the probability distri-

bution of the correlation value. Let rrp2q be the polynomial whose coefficients

are defined as follows

rr
p2q

ℓ “

$

’

’

&

’

’

%

0 if ℓ “ i,

r
p2q

ℓ otherwise.

Observe that wtprrp2q
q “ wr ´ 1 due to r

p2q

i “ 1. The correlation is obtained

by summing the coefficients of the estimated error vector ep in the positions

indexed by j P supppxq` i “ tℓ` i mod n | ℓ P supppxqu. Let us first consider

the corresponding coefficient in z; notice that

zj “ 1 ` px ¨ rrp2q
qj ` py ¨ rp1q

` eqj “ 1 ` zrj,

where zr “ x ¨ rrp2q
` y ¨ rp1q ` e. With arguments analogous to those in Propo-

sition 2, it is straightforward to see that py ¨ rp1q ` eqj is Bernoulli distributed

with parameter

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wrq
we

n
.

Moreover, also px ¨ rrp2q
qj is Bernoulli distributed, with parameter

ρrw,wr´1 “
ÿ

ℓPr1;mintw,wr´1us

ℓ odd

`

w´1
ℓ

˘`

n´w
wr´1´ℓ

˘

`

n
wr´1

˘ .
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Hence, zrj is equal to 1 with probability

ρr “ ρrw,wr´1

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wrq
we

n

¯

` p1 ´ ρrw,wr´1q

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wrq
we

n

¯

Let KInnerpjq indicate the event that the inner code codeword in which the j-th

coordinate is contained is wrongly decoded. The complementary event (i.e., a

decoding success) is indicated as Ks Innerpjq. Then, we have

P pepj “ 1q “ P
`

Ks Innerpjq | zrj “ 0
˘

¨P pzrj “ 0q `P pKInnerpjq | zrj “ 1qP pzrj “ 1q.

(6.3)

Let suppinnerpjq denote the set of indices which correspond to the same inner

codeword as position j. Then, epj “ 1 “ zj “ 1 if and only if the remain-

ing ni positions allow correct decoding of position j, despite position j being

erroneous. For a generic inner code with minimum distance di, it is straight-

forward to conclude that this happens whenever the number of set coefficients

in supp innerpjqztju is not larger than t ´ 1 “ tdi´1
2

u ´ 1. The analysis given

by standard HQC implies that it is justified to assume that the positions in

suppinnerpjqztju are independently Bernoulli distributed with parameter ρz as

in Proposition 2. Hence, the required probabilities can be calculated as

P
`

Ks Innerpjq | zrj “ 0
˘

“

t´1
ÿ

ℓ“0

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ.

With analogous reasoning, we obtain

P pKInnerpjq | zrj “ 1q “

ni´1
ÿ

ℓ“t

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ.

Then, indicating ρp “ P pepj “ 1q, we can rewrite (6.3) as

ρp “ p1´ρrq

t´1
ÿ

ℓ“0

ˆ

ni ´ 1

ℓ

̇

ρℓzp1´ρzq
ni´1´ℓ

`ρr
ni´1
ÿ

ℓ“t

ˆ

ni ´ 1

ℓ

̇

ρℓzp1´ρzq
ni´1´ℓ (6.4)
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We model
ř

suppx`i epj as a sum of independent random variables. Then,
ř

suppx`i epj follows the binomial distribution with w trials and success proba-

bility ρp. Consequently, we obtain

τ1Ñ0 “

β´1
ÿ

ℓ“0

ˆ

w

ℓ

̇

ρp ℓ
p1 ´ ρpq

w´ℓ.

Proposition 6. Probability to wrongly guess a 0-coefficient

Let j such that r
piq
j “ 0. Then, the probability that rp

piq
j “ 1 is defined as

τ0Ñ1 “

w
ÿ

ℓ“β

ˆ

w

ℓ

̇

ρp ℓ
p1 ´ ρpq

w´ℓ,

where

ρp “ p1 ´ ρrq

t´1
ÿ

ℓ“0

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ

` ρr
ni´1
ÿ

ℓ“t

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ,

with di, ni and t “ tdi´1
2

u denoting the minimum distance, the length and the

error correcting capability of the inner code, respectively, and

ρr “ ρrw,wr`1

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wrq
we

n

¯

` p1 ´ ρrw,wr`1q

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wrq
we

n

¯

,

ρrw,wr`1 “
ÿ

ℓPr1;mintw,wr`1us

ℓ odd

`

w
ℓ

˘`

n´w
wr`1´ℓ

˘

`

n
wr`1

˘ .

Proof. The case r
p2q

i “ 0 is dealt analogously to that of a 1-coefficient. Firstly,

according to Proposition 1, we can define:

ρrw,wr`1 “
ÿ

ℓPr1;mintw,wr`1us

ℓ odd

`

w
ℓ

˘`

n´w
wr`1´ℓ

˘

`

n
wr`1

˘ .
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Then, we have that zrj is equal to 1 with probability:

ρr “ ρrw,wr`1

´

1 ´ ρw,wr

´

1 ´
we

n

¯

´ p1 ´ ρw,wrq
we

n

¯

` p1 ´ ρrw,wr`1q

´

ρw,wr

´

1 ´
we

n

¯

` p1 ´ ρw,wrq
we

n

¯

,

Repeating the previous reasoning we obtain:

P pepj “ 1q “ P pKInnerpjq | zj “ 0q ¨P pzrj “ 0q `P
`

Ks Innerpjq | zj “ 1
˘

P pzrj “ 1q.

(6.5)

Then, indicating ρp “ P pepj “ 1q, by going over the same thought process again,

we can express (6.5) as:

ρp “ p1 ´ ρ̃q

ni´1
ÿ

ℓ“t

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ

` ρ̃
t´1
ÿ

ℓ“0

ˆ

ni ´ 1

ℓ

̇

ρℓzp1 ´ ρzq
ni´1´ℓ,

and finally

τ0Ñ1 “

w
ÿ

ℓ“β

ˆ

w

ℓ

̇

ρp ℓ
p1 ´ ρpq

w´ℓ.

Using the above results, we are ready to derive the weight distribution for

each polynomial ∆rpiq.

Proposition 7. Weight distribution of ∆rpiq

The probability that ∆rpiq has weight w
piq
r is

P
`

wtp∆rpiq
q “ wpiq

r

˘

“

mintwr,w
piq
r u

ÿ

j“0

P pN1 “ jqP
`

N0 “ wpiq
r ´ j

˘

,

where

P pN0 “ jq “

ˆ

n ´ wr

j

̇

pτ0Ñ1q
j
p1 ´ τ0Ñ1q

n´wr´j,

P pN1 “ jq “

ˆ

wr

j

̇

pτ1Ñ0q
j
p1 ´ τ1Ñ0q

wr´j.
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Proof. Whenever a one-coefficient of rp2q is guessed correctly, the weight of

∆rp2q decreases by 1, while a wrong estimate does not change the weight of

∆rp2q in comparison with rp2q. Analogously, guessing a zero-coefficient correctly

does not change the weight, while a wrong guess increases the weight by 1.

Let N0 denote the number of wrongly guessed 0-coefficients, and N1 that of

wrongly guessed 1-coefficients. Then, the weight of ∆rp2q is N0 ` N1, and

P
`

wtp∆rpiq
q “ wpiq

r

˘

“

mintwr,w
piq
r u

ÿ

j“0

P
`

N1 “ j,N0 “ wpiq
r ´ j

˘

.

To conclude the proof, it is enough to assume that coefficients are guessed

independently, so that both N0 and N1 are the sum of Bernoulli variables with

respective parameters τ0Ñ1 and τ1Ñ0.

To thoroughly validate the aforementioned propositions, consult Figure 6.3

and Figure 6.4. In these figures we juxtapose theoretical predictions with re-

sults obtained from numerical simulations. These simulations were performed

using the HQC Round-I parameters recommended to achieve a 128-bit security

level (as detailed in subsection 5.3.1).

As the figures clearly highlight, the proposed decoder seems to be very

promising in reducing the DFR. We can select threshold values to keep the

probabilities of incorrect guesses, represented by τ1Ñ0 and τ0Ñ1, very low. For

example, an excellent choice is β P r30, 40s. Also, we see that the reduction

in the overall noise affecting the codeword can become very important. For

instance, setting β “ 40, we have a very large probability that ∆rpiq has null

weight: with large probability, all coefficients have been correctly guessed.

These results suggest that, considering our approach, the DFR of HQC can be

strongly reduced. The obtained results are entirely general, and it is legitimate

to assume that the same reasoning applies to the subsequent rounds of HQC

in the NIST competition. In the next chapter, this will be shown, even when

considering the HQC version with Reed-Solomon and Reed-Muller codes.

112



Chapter 6 - New Decoder for HQC

10 20 30 40 50 60

10´10

10´8

10´6

10´4

10´2

100

Correlation Threshold β

F
re
q
u
en
cy

of
o
cc
u
rr
en
ce

Simulation, τ1Ñ0

Theoretical, τ1Ñ0

Simulation, τ0Ñ1

Theoretical, τ0Ñ1

Figure 6.3: Values of τ1Ñ0 and τ0Ñ1, comparison between theoretical estimates
and results of numerical simulations. For this experiment, we have considered
the HQC parameters for the 128 bits of security (i.e., n1 “ 796, n2 “ 31,
w “ 67, wr “ we “ 77. The empirical estimates have been obtained averaging
over 103 trials.
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Figure 6.4: Weight distribution of ∆rpiq, comparison between theoretical es-
timates and results of numerical simulations. For this experiment, we have
considered the HQC parameters for the 128 bits of security (i.e., n1 “ 796,
n2 “ 31, w “ 67, wr “ we “ 77. The empirical estimates have been obtained
averaging over 102 trials.
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Figure 6.5: Probability to have a decoding error for a codeword of the repeti-
tion code. The considered parameters are n1 “ 100, w “ 17, wr “ we “ 20,
β “ 12, as a function of the weights of ∆rp1q and ∆rp2q.
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Figure 6.6: Probability distribution for the number of repetition code decoding
errors. The considered parameters are n1 “ 100, w “ 17, wr “ we “ 20,
β “ 12, as a function of the weights of ∆rp1q and ∆rp2q.
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An in-depth analysis of Figure 6.5 underscores a notable trend: the like-

lihood of encountering a decoding error for a codeword within the repetition

code diminishes significantly as the weight of ∆rpiq decreases. Moreover, as the

weight of ∆rpiq escalates, it inevitably leads to a proportionately heightened

probability of experiencing a decoding error for a codeword associated with

the repetition code. Turning our attention to Figure 6.6, this graph offers

valuable insights into the probability distribution concerning the number of

repetition code decoding errors. Notably, it illustrates that as the weight of

∆rpiq increases, the likelihood of encountering multiple repetition code failures

becomes more pronounced. This observation highlights the sensitivity of the

repetition code to variations in the weight of ∆rpiq.

To study the DFR of our proposed decoder, we consider the following

proposition. As we have seen, when the standard HQC decoder fails to decode

∆z we have a decoding failure for our decoder. In Proposition 7, we explained

how to determine the statistical distribution for the weights of ∆rp1q and ∆rp2q.

This approach should also help us establish the weight distribution of ∆z.

Proposition 8. DFR of the new decoder

The DFR of the new decoder is

ϵ “
ÿ

w
p1q
r

ÿ

w
p2q
r

ϵ
`

wp1q
r , wp2q

r

˘

¨ P
`

wtp∆rp1q
q “ wp1q

r

˘

¨ P
`

wtp∆rp2q
q “ wp2q

r

˘

.

Proof. Recalling Proposition 3, the DFR of the new decoder can be derived

from the standard analysis of HQC considering ∆rpiq instead of rpiq. Hence:

ϵ “
ÿ

w
p1q
r

ÿ

w
p2q
r

ϵ
`

wp1q
r , wp2q

r

˘

¨ P
`

wtp∆rp1q
q “ wp1q

r

˘

¨ P
`

wtp∆rp2q
q “ wp2q

r

˘

.
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Empirical results

In this chapter, we present the results of simulations conducted with the new

decoder under various configurations. The simulations for the new decoder

meticulously replicate the settings and parameters of HQC as observed during

different rounds of the NIST competition. To elucidate, we scrutinize two

distinct cases: the first entails the use of BCH and REP codes, mirroring

the approach in subsection 5.3.1, while the second adopts Reed Solomon and

Reed-Muller codes, echoing the methods in subsection 5.3.3. Moreover, we will

provide simulations that consider the introduction of a new configuration. In

this new setup, we employ a Reed-Solomon code as the outer code and replace

the Reed-Muller code with a repetition code as the inner code. Additionally,

we explore scenarios with soft Reed-Muller code decoding and an iterative

approach with multiple noise-filtering stages.

7.1 BCH+REP

In Figure 7.1, we show the DFR values for the new decoder as we vary the

threshold T while also varying the REP length n2. Notably, the figure shows

that the optimal threshold value for this HQC setup is T “ 38, given that

other parameters being equal it allows to obtain lower DFR.

116



Chapter 7 - Empirical Results

10 12 14 16 18 20 22 24
10´6

10´5

10´4

10´3

10´2

10´1

100

n2

D
F
R

T“ 35
T“ 37
T“ 38
T“ 40

Figure 7.1: DFR for the proposed decoder with parameters n1 “ 766 (BCH
length), w “ 67, wr “ we “ 77 and tBCH “ 57.

Furthermore, it is of great significance to conduct a detailed comparison of

the DFR values acquired in this particular configuration with those achieved

using the original HQC decoder under identical parameters and conditions.

This comparative analysis serves to unequivocally highlight the distinct ad-

vantages our decoder offers in contrast to the original decoder. The graphical

representation of this comparison can be seen in Figure 7.2
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Original decoder

Figure 7.2: DFR for the proposed decoder with parameters n1 “ 766 (BCH
length), w “ 67, wr “ we “ 77, tBCH “ 57 and T“ 38 and for the original
HQC decoder with same parameters (HQC round 1 with SL=128)
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A B

pkA

choose m
c “ Epm, pkAq

m “ Dpc, skAq

ss “ hpmq ss “ hpmq

Start using a symmetric
cryptosystem with secret key ss

Figure 7.3: Classic hybrid encryption scheme. Specifically, a public key cryp-
tosystem is used solely for key exchange, after which the actual encryption
(bulk encryption) is performed through symmetric encryption.

In a practical context, HQC in its KEM version (section 5.2) can be used as

a public key cryptosystem in hybrid encryption (Figure 7.3). In cryptographic

protocols, a Key Encapsulation Mechanism serves the purpose of safeguarding

symmetric key material for transmission through the utilization of public-key

algorithms. This approach is commonly employed within hybrid cryptosys-

tems. In practical applications, public key systems are not particularly efficient

when it comes to transmitting lengthy messages. Instead, they are typically

employed for the exchange of relatively short symmetric keys. The symmetric

key is subsequently utilized to encrypt the longer message. The conventional

method for transmitting a symmetric key within public key systems involves

the initial generation of a random symmetric key, which is then encrypted

using the chosen public key algorithm. The recipient can then decrypt the

public key message to retrieve the symmetric key. Specifically, let’s consider

two parties, referred to as A and B. Initially, A sends his public key to B (we

will overlook the secure distribution of public keys in this context). Once B

receives A’s public key, he chooses a message, denoted as m which he encrypts

using A’s public key. The message, encrypted with A’s public key, can only

be decrypted by A, as he is the only one in possession of the corresponding

secret key. At this point, A decrypts the message and retrieves the original m.

From this moment on, A and B agree to treat hpmq as their shared secret key,
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Figure 7.4: Comparison of the DFR of the new HQC decoder with T=38 and
the original decoder as the repetition code length (n2) varies. The parameters
are the same as in Figure 7.2, with the only difference being the x-axis. Specif-
ically, the x-axis represents the size in bits of the ciphertext plus the size in
bits of the public key.

where hp¨q represents a generic hash function. Once the shared secret key is

indeed known to both A and B, they can begin encrypting using a symmetric

cryptosystem, such as AES (Advanced Encryption Standard) [32].

In the broadest context, this discussion can certainly be customized to

the particular case of HQC. Consequently, it becomes evident that in this

specific scenario, the data size transferred over the public channel corresponds

to the combination of the public key size and the ciphertext size. In light of

this, within several of the graphs provided below, when considering this precise

context, the x-axis is employed to depict the dimensions of both the public key

and the ciphertext. Both of these dimensions are evidently linked to n which

is assumed to be the length of the public code employed. As a consequence,

it becomes clear that decreasing the value of n while upholding a consistent

DFR naturally leads to a reduction in the size of the data conveyed via the

public channel. In this context, Figure 7.4 undeniably emphasizes the benefits

we achieve in terms of reducing both the dimensions of the ciphertext and the

public key when contrasted with the original HQC decoder.
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In Table 5.10, we provide a detailed specification of the sizes for the ci-

phertext and the public key. Clearly, in this scenario, with the assumption

that n1 “ 766, we can deduce that n « 766 ˚ n2. Therefore, the combined

size of the ciphertext and public key amounts to approximately 3n « 2298 ¨n2

(neglecting constant terms). To put it differently, Figure 7.4 can be regarded

as nothing more than a duplicate of figure 7.2, with a suitable adjustment of

the x-axis scale. Certainly, by setting the DFR value to a threshold of interest,

it’s possible to significantly reduce the value of n and, consequently, the size

of the data transmitted over the public channel. For example, let’s imagine a

hypothetical situation where we assume a DFR of 10´3. When transitioning

from the original decoder to the new decoder, we can reduce the number of

bits from approximately 56,000 to 45,000. This means that there is a reduc-

tion of approximately 1375 bytes concerning the data that travels on a public

channel, explicitly, in percentage terms, the reduction is about 20%. The same

line of reasoning can be extended to the HQC parameters aimed at achieving

security levels of 192 and 256 (refer to Table 5.2). Undoubtedly, in these spe-

cific scenarios, it remains feasible to establish a direct correlation between the

decrease in the variable n2 and the consequent reduction in the size of the data

transmitted over the public channel.

7.2 RS+RM

Now, we aim to revisit the insights presented in the preceding section, focus-

ing on scenarios involving Reed-Solomon and Reed-Muller codes. Formally,

all the considerations discussed so far remain applicable, as they are entirely

code-agnostic. What remains to be addressed is quantifying the improve-

ment provided by the proposed decoder in comparison to the original decoder

when Reed-Solomon and Reed-Muller codes were employed, as in the third

and fourth rounds of the NIST competition.
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Figure 7.5: DFR for the proposed decoder with parameters nRM “ 128 (orig-
inal length RM code), mult “ 3 (multiplication factor RM code), w “ 66,
wr “ we “ 75 (HQC parameters for round 3 and 4 achieving SL=128)

In Figure 7.5, we present a visual representation of the DFR values for

the newly developed decoder. Our primary objective is to scrutinize the fluc-

tuations in these DFR values as we fine-tune two critical parameters: the

threshold value T and the Reed-Solomon length nRS. What makes this graph-

ical representation particularly noteworthy is its capacity to vividly showcase

that, when the parameters are held constant, the most favorable choice for the

threshold value is T = 39. This specific threshold value consistently results in

a lower DFR, thereby underscoring its pivotal role in enhancing overall per-

formance. This finding offers valuable insights into the optimization of these

parameters and their impact on the efficiency of the decoder.

Furthermore, conducting a comprehensive comparison between the DFR

values achieved in this particular configuration and those obtained when em-

ploying the original HQC decoder under the same parameters and conditions

is of significant importance. This comparative evaluation plays a crucial role

in clearly illustrating the distinct advantages that our decoder offers in com-

parison to the original decoder. The visual representation of this comparative

analysis can be found in Figure 7.6.
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Figure 7.6: DFR for the proposed decoder with parameters nRM “ 128 (orig-
inal length RM code), mult “ 3 (multiplication factor RM code), w “ 66,
wr “ we “ 75 and T“ 39 and for the original HQC decoder with same param-
eters (HQC round 3 and 4 with SL=128)

Figure 7.7 shows the advantages we gain in terms of reducing both cipher-

text and public key sizes when compared to the original HQC decoder. In

this scenario, assuming nRM “ 128 and mult “ 3, we can deduce that n is

approximately 384 ¨ nRS. Consequently, the combined size of the ciphertext

and public key approximates to 3n « 1152 ¨ nRS. As described in the previ-

ous section, by selecting a DFR threshold of interest, it becomes possible to

reduce the value of n, and consequently, the volume of data transmitted over

the public channel. For instance, consider a hypothetical scenario where we

assume a DFR of 10´3. When switching from the original decoder to the new

decoder, we can reduce the number of bits from around 39,000 to 37,500. This

translates to a reduction of approximately 188 bytes in the data transmitted

over the public channel, equivalent to a roughly 4% decrease. Furthermore,

this line of reasoning extends itself seamlessly when we contemplate HQC pa-

rameters aimed at achieving security levels of 192 and 256. In these scenarios

as well, we can discern a direct correlation between the decrease in nRS and

the concurrent reduction in the size of the public data.
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Figure 7.7: Comparison of the DFR of the new HQC decoder with T=39 and
the original decoder as the RS code length (nRS) varies. The parameters are
the same as in Figure 7.6, with the only difference being the x-axis. Specifically,
the x-axis represents the size in bits of the ciphertext plus the size in bits of
the public key.

7.3 RS+REP

In addition to the previously discussed configurations, we have explored a sce-

nario where we replaced the Reed-Muller code with a repetition code. This in-

volved utilizing a concatenated code as the public code, with the outer code be-

ing the traditional Reed-Solomon code, similar to the third and fourth rounds

of the NIST competition, while the inner Reed-Muller code was replaced with

a repetition code. Each RS code symbol is initially transformed into an 8-bit

binary string, and then these bits are duplicated according to the repetition

code. To align with the Reed-Solomon and Reed-Muller setup, we chose a

repetition code with a length of nREP “ 48. This choice allows us to repli-

cate each of the 8 bits associated with a single Reed-Solomon code symbol 48

times, resulting in a codeword length that aligns with what would be achieved

if the Reed-Muller code were employed as the inner code instead of a repeti-

tion code. Moreover, it is important to emphasize that the repetition code is

decoded using the standard majority decoding method.
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Figure 7.8: DFR for the proposed decoder in case of using Reed-Solomon as
outer code and a repetition code as inner code. This simulation is conducted
with the following parameters: nrep “ 48, w “ 66 and wr “ we “ 75

In Figure 7.8, we present the DFR values for the new decoder. Specifically,

our objective is to observe how these values vary as we make adjustments to

the threshold value. It’s important to note that the graph is plotted while

varying the length of the Reed-Solomon code and adjusting the threshold.

The primary goal is to determine the optimal threshold value. Notably, in this

particular scenario, the optimal threshold choice is T=39. It is evident that we

have a keen interest in assessing the performance achieved in this particular

scenario as compared to that attainable with the standard HQC approach. The

conventional HQC approach, inclusive of BCH and repetition codes, alongside

Reed-Solomon and Reed-Muller codes, serves as a comprehensive reference

point. In Figure 7.9, we have depicted this comparison.

From Figure 7.9 , it is clear that the best performance is achieved in the

HQC version with Reed-Solomon and Reed-Muller codes using our proposed

decoder with the optimal threshold of T=39, as shown in Figure 7.5. The

performance when using a repetition code in place of the RM code is lower

but still better than what can be achieved using BCH and repetition codes as

in the first version of HQC.
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Figure 7.9: In this figure, we’re examining the DFR across three distinct sce-
narios. The first scenario involves the use of BCH and repetition codes, with
parameters n1 “ 766 (BCH length), w “ 67, wr “ we “ 77, tBCH “ 57, and
T=38. This configuration corresponds to HQC round 1 with a security level of
128 (SL=128). The second scenario features Reed-Solomon and Reed-Muller
codes, with parameters nRM “ 128 (original RM code length), mult “ 3 (RM
code multiplication factor), w “ 66, wr “ we “ 75, and T“ 39. These set-
tings are representative of HQC rounds 3 and 4 with a security level of 128
(SL=128). The third and final scenario employs Reed-Solomon and repetition
codes, with parameters nrep “ 48, w “ 66, wr “ we “ 75, and T“ 39.
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Furthermore, Figure 7.9 highlights the advantage gained by opting for

Reed-Solomon and Reed-Muller codes instead of BCH and repetition codes.

In particular, it is worth reiterating that the best performance is achieved

by considering HQC in its latest version presented in the NIST competition,

especially with the inclusion of our proposed decoder.

7.4 More than one filtering stage

Considering the computational cost associated with the new decoder (described

in detail in section 6.2), which exhibits a relatively modest increase, specifically,

it scales linearly with n, it is clear that introducing an iterative decoder that

encompasses multiple noise filtering steps is feasible possible. As depicted in

Figure 6.2, our proposed decoder can be readily seen as the conventional HQC

decoder with a noise filtering stage applied as a pre-processing step. Naturally,

there is no restriction on the number of iterations of this noise filtering step,

but it’s evident that this will inevitably lead to an increment in computational

cost. In the following discussion, we aim to emphasize this specific scenario,

demonstrating that such an iterative approach yields performance improve-

ments that, while present, are not substantially significant. Consequently, as

will be illustrated in this section, introducing iterative decoding may not be

warranted. In other words, the enhancement in performance may not justify

the corresponding increase in complexity to a significant extent.

In Figure 7.10, we present a simulation that mirrors the parameters utilized

in Figure 7.5, while introducing the concept of employing multiple noise filter-

ing stages. The aim is to delve into the impact of successive noise filtering on

the performance, thereby assessing the effectiveness of this iterative approach

within the same parameter framework as previously analyzed.
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Figure 7.10: DFR comparison for the proposed decoder with parameters
nRM “ 128, mult “ 3, w “ 66, wr “ we “ 75 and T “ 39 when employ-
ing one versus three filtering stages.

As we anticipated, the data presented in Figure 7.10 underscores that the

benefits gained from employing multiple filtering stages are quite marginal.

Upon closer examination, it becomes apparent that the initial filtering step

significantly reduces the error’s weight and establishes a robust correlation

with the initial error pattern. This intrinsic correlation between the residual

error and the initial error pattern makes any subsequent filtering steps less

effective in enhancing overall performance. It’s analogous to the idea that

what the first filtering step is unable to correct, subsequent steps also struggle

to rectify. This observation highlights the fact that the overall improvement

achieved through multiple iterations of the initial filtering is remarkably min-

imal. This marginal gain is insufficient to practically justify the added com-

plexity and computational overhead that comes with implementing multiple

filtering stages. In essence, it signifies that the benefits of this approach do

not reach a level that would make it a viable and efficient strategy in practice.
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Applications of the New

Decoder

In our previous discussion, we derived the theoretical DFR for the new decoder

(refer to section 6.3). Furthermore, we conducted extensive simulations in both

C and Python to evaluate the relationship between the theoretical and the

simulated DFR curve. Figure 8.1 illustrates that the theoretical curve serves

as a highly accurate approximation of the simulated one. However, it is evident

that the theoretical curve exhibits a slightly more optimistic outlook compared

to the simulated curve. Consequently, we have not been able to identify a

mathematical upper bound for the DFR, making it currently impossible to

formally demonstrate the IND-CCA property. These same observations apply

to various versions of HQC with different parameter sets.

While the theoretical curve remains a valuable metric, enriching our under-

standing of the decoder’s performance, a critical and rather technical necessity

arises in the quest to establish an upper bound for the DFR, particularly for

proving the IND-CCA (and by extension IND-CCA2) property. Indeed, to

formally prove that IND-CCA holds, one needs a provable upper bound on the

success probability: without such a bound, the proof cannot be produced and

IN-CCA cannot be claimed.
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Figure 8.1: DFR for HQC with parameters n1 “ 100, w “ 17, wr “ we “ 20,
β “ 12.

Nonetheless, it is of paramount importance to underscore that specific ap-

plications exclusively require adherence to the IND-CPA property. The recog-

nition of these particular contexts serves to highlight the practical significance

of our findings. This recognition implies that, although the demonstration

of the IND-CCA property may pose certain challenges, the fulfillment of the

IND-CPA property might be adequate for targeted application scenarios. This

acknowledgment not only solidifies the foundation of our research but also lays

the groundwork for a meticulous and comprehensive exploration of how our

results support practical implications in real-world situations.

8.1 Use of Ephemeral Keys

Although the formal demonstration of an upper bound for the DFR remains

pending, the outcomes derived from this thesis underscore the practical sig-

nificance of our new decoder. Beyond being a mere mathematical exercise,

the implications of this decoder are notable, particularly in scenarios where

the IND-CPA property proves sufficient such as those involving the use of

ephemeral keys. The utility of our decoder extends beyond theoretical con-
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siderations, pointing towards its practical relevance in real-world applications.

An ephemeral key is defined as one generated for each execution of a key-

establishment process, meeting additional requirements of the key type, such

as uniqueness for each message or session [33].

To illustrate this, let us consider a practical situation where an asymmetric

cryptosystem facilitates the exchange of a session key, subsequently employed

for symmetric encryption. Imagine communicators A and B attempting to

agree on a key using an asymmetric cryptosystem. In this case, A, for instance,

shares his public key with B. Then, B encrypts a secret key of his choice with

A’s public key and transmits the ciphertext to A. B is aware that only A can

decipher the hidden message, i.e. the key, since only A possesses the secret

key corresponding to the public key used by B for encryption.

In this scenario, it can be proved that a decryption failure discloses in-

formation about the key used during decryption. In other words, an attacker

observing when decryption produces failures might gain significant insights into

the key used for decryption, i.e., A’s secret key. Decryption failures, in essence,

act as inadvertent indicators that reveal details about the cryptographic op-

erations at play. An adversary, monitoring these failures, could leverage the

patterns and anomalies associated with unsuccessful decryptions to infer criti-

cal aspects of the cryptographic system. In this context, the vulnerability lies

in the fact that the decryption failure itself can inadvertently disclose informa-

tion about the key, allowing an attacker to piece together essential components

of A’s secret key. Ensuring a sufficiently low DFR is paramount, and our ulti-

mate goal is to establish an upper bound, denoted as DFRu.b., satisfying the

condition DFR ă DFRu.b. ď 2´λ, with λ being the chosen security parameter.

This emphasis on determining the upper bound is particularly critical in sce-

narios susceptible to a Chosen Ciphertext Attack (CCA). In such instances, an

adversary can inundate A with ciphertexts, strategically leveraging decryption

failures to extract substantial information about A’s secret key. Consequently,
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the quest for the upper bound for the DFR plays a vital role in achieving In-

distinguishability under Chosen Ciphertext Attack (IND-CCA) and its more

robust version, IND-CCA2.

Given the preceding discussion, the adoption of ephemeral keys emerges

as a crucial practice in certain applications. This approach entails user A de-

crypting messages with a secret key subject to systematic changes, primarily

involving continuous key rotation. The implications of this key rotation, par-

ticularly in the context of decryption failures, are noteworthy. In the event

of such failures, an attacker’s access would be limited to information about a

key that is no longer actively in use, rendering the obtained data essentially

obsolete. This security measure aligns seamlessly with the concept of Perfect

Forward Secrecy (PFS). Perfect Forward Secrecy (PFS) guarantees that even

if an adversary captures and scrutinizes past ciphertexts, the acquired infor-

mation corresponds to a key that has been replaced. The transient nature

of ephemeral keys serves to increase security by restricting the exposure of

sensitive information. Essentially, the dynamic changes in keys under PFS

not only protect ongoing communications but also support the resilience of

the cryptographic system against potential threats over time. This proactive

key management approach plays a significant role in enhancing overall security

robustness, making PFS a valuable feature in scenarios where continuous key

renewal is of paramount importance.

Within this specific context, the immediate need doesn’t necessitate estab-

lishing an upper limit for the DFR. Instead, the central focus is on ensuring

that the DFR remains at a sufficiently low level. This strategic approach is

designed to prevent any undue hindrance in the key exchange process, thereby

safeguarding the efficiency and timely execution of cryptographic operations.

The priority here is to strike a balance that optimally maintains the security

protocols without introducing unnecessary delays in the cryptographic proce-

dures.
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Here, without assuming exhaustive coverage, we outline several scenarios

where the application of ephemeral keys is envisioned. Consequently, in these

contexts, the decoder proposed in this thesis can undoubtedly be considered

an efficient solution.

8.1.1 TLS (Transport Layer Security)

Transport Layer Security (TLS), serves as a cryptographic protocol ensuring

secure communication across computer networks. Throughout the Internet’s

existence, the persistent presence of security threats has prompted continual

evolution in security protocols. Notably, Secure Sockets Layer (SSL), intro-

duced by Netscape in 1995, played a pivotal role in this evolution. However,

SSL’s susceptibility to significant security vulnerabilities led to its restriction

by the U.S. government in 2014 [34]. Consequently, the mandate shifted to-

wards the adoption of the next-generation security protocol, Transport Layer

Security. While TLS effectively mitigated the vulnerabilities present in SSL,

the preceding versions of TLS, specifically those before version 1.3, encountered

challenges related to performance issues linked to the extended handshake.

Under TLS 1.2, the handshake protocol required two request-response ex-

change to authenticate a client to the server. This version found widespread

use on the web, securing all HTTPS websites and enabling secure communi-

cation for various protocols such as SMTPS for emails and FTPS for secure

file transfers. The advent of TLS 1.3 allowed for the reduction of the key cre-

ation handshake to a single request and response round trip. This simplified

procedure enables both the client and server to share the same encryption key,

generated independently and simultaneously through the Ephemeral Diffie-

Hellman (EDH) key exchange technique, among other possible methods. The

term ”ephemeral” underscores the temporary and dynamic nature of these

keys, contributing to the robustness of the cryptographic process in TLS 1.3.

As previously mentioned, TLS 1.3 employs a method of encrypting data
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that enables both the client and the server to encrypt data using a shared

private key. Notably, this private key is never transmitted over the internet.

The mechanism operates by having both the server and the client generate

their unique secret key values, respectively denoted as x and y. Each party

possesses its distinct secret key value. These individual secret key values, along

with a public key known to both the client and server, are utilized to create

the ephemeral symmetric key. In accordance with the classical Diffie-Hellman

protocol, the public key is composed of a very large prime number p and a

primitive root g. In the intricate TLS 1.3 handshake protocol, our focus in

this section is specifically on the generation of the symmetric key. While the

complete TLS handshake process is complex, we aim to provide insights into

the crucial aspect of symmetric key generation without presuming to cover all

details comprehensively.

In the TLS 1.3 handshake protocol, the server initiates the process by

sharing its public key certificate and the signed key material with the client.

This key material, denoted as gx mod p calculated using Diffie-Hellman, is

signed to prevent potential Man-in-the-Middle (MITM) attacks. If the client

also possesses a certificate, it replays by sending its certificate to the server

along with the signed key material computed as gy mod p. Following this,

both parties calculate gpx¨yq mod p as the session key and begin encrypting

data within that session using a shared key in a symmetric cipher. This key is

temporary, changing with each session and initiating a fresh key exchange for

each session. This process ensures Perfect Forward Secrecy (PFS), meaning

that if the secret x (or y) is compromised, the impact is limited to the recovery

of the symmetric key exchanged in that specific session, without affecting other

past or future sessions. A similar process occurs in the TLS tunnel version,

where the client, without a certificate, generates a key randomly. This key

is then sent to the server, encrypted with the server’s public key. Then, the

server decrypt using his secret key in order to recover the symmetric session
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Client Server
Public key pk :
prime number p
primitive root g

Client’s secret: y

Calculates a key A to
send to server using pk
and the client secret y.

Server’s secret: x

Calculates a key B to
send to client using pk
and the server secret x.

A “ gy mod p

B “ gx mod p

Calculates the session
shared key S:
S “ By mod p.

Calculates the session
shared key S:
S “ Ax mod p.

Key renewal occurs
each session.

Figure 8.2: Key Exchange protocol (part of the Handshake protocol) using
Ephemeral Diffie Hellman (EDH) in TLS 1.3

key. Even in this case, the relevant key undergoes modification with each

session, upholding the principles of PFS. To visually comprehend what has

been discussed so far, refer to Figure 8.2.
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8.1.2 VPN (Virtual Private Network)

Virtual Private Networks (VPNs) are crucial for ensuring secure communica-

tion over networks, establishing a private and encrypted connection between

users and remote servers. A VPN is a virtual network built on top of existing

physical networks that provides a secure communications mechanism for data

and control information transmitted between computers or networks [35]. In

this subsection, we aim to delve deeper into the utilization of ephemeral keys

within the framework of VPNs, expanding on the principles previously dis-

cussed in the context of Transport Layer Security (TLS) (refer to subsection

8.1.1). Our primary focus is to highlight their dynamic nature and their con-

tributions to the overall security framework.

In a VPN, ephemeral keys enhance the security of data transmission by in-

troducing temporary cryptographic keys with a limited lifespan. By employing

keys that are short-lived and unique to each session, the VPN system ensures

that the compromise of a single key does not jeopardize the security of past

or future communications. In other words, the use of ephemeral keys in VPNs

contributes to achieving Perfect Forward Secrecy (PFS).

VPN tunnel encryption is a method designed to safeguard data transmitted

between two endpoints within a virtual private network, shielding it from unau-

thorized interception, modification, or theft. While VPN tunnel encryption is

a robust security measure, it is not infallible. In the unfortunate event that

an adversary successfully compromises the encryption key, the consequences

are far-reaching, allowing him unauthorized access not only to the ongoing

data exchange within the virtual private network but also to both historical

and forthcoming data. This scenario underscores the imperative role assumed

by Perfect Forward Secrecy. Specifically, PFS can be seen as a feature that

enhances the security of VPN tunnel encryption by ensuring that each session

possesses a unique and ephemeral key that cannot be deduced from prior or

subsequent keys.
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Various protocols for Virtual Private Networks (VPNs), such as OpenVPN

and IKEv2/IPsec, incorporate advanced mechanisms for exchanging ephemeral

keys within their frameworks. These mechanisms play a crucial role as foun-

dational elements when initiating a VPN session, making a substantial con-

tribution to the creation of resilient and secure communication channels. As

the VPN session initiates, the ephemeral keys come into play by serving as

the foundation for data encryption. These keys, dynamically generated for

the specific session, are utilized to encrypt the data flow traversing the VPN

tunnel. In the tunnel mode, the entire IP packet is encrypted and authenti-

cated. It is then encapsulated in a new IP packet with a new IP header [36].

The tunnel mode is used to create virtual private networks for communication

from one network to another (VPN), from a host to a network (remote access),

and between two hosts (e.g., private chat). This encryption process adds an

additional layer of protection to the transmitted information, ensuring that

even if intercepted, the data remains unintelligible to unauthorized entities.
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Conclusion and future work

In conclusion, the central aim of this thesis has been to introduce an alternative

decoding algorithm for HQC, driven by the general objective of enhancing its

cryptographic performance. Through the course of this research, we have

made significant progress in developing a decoder that demonstrates notable

advancements over the capabilities of the original algorithm. This progress

is not only supported by rigorous mathematical analysis but also confirmed

through extensive simulations, emphasizing the strength and reliability of the

proposed solution.

The key advantage of the newly proposed decoder is its ability to maintain

a low Decoding Failure Rate (DFR) while enabling the use of shorter code

lengths. In other words, the new decoder allows us to achieve the same DFR

performance as the original decoder, demonstrating that it is just as reliable in

error correction, while also enabling the use of shorter codes. The advantage

of employing shorter codes, however, extends well beyond the confines of error

correction. It provides a tangible and practical benefit by leading to a sub-

stantial reduction in the dimensions of both the public key and the ciphertext.

This reduction in code length serves to enhance the overall efficiency and econ-

omy of cryptographic systems without compromising the security of the data

they protect. Consequently, the capacity to reduce the size of cryptographic
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keys and ciphertext while sustaining the same DFR performance represents a

significant stride in the field of post-quantum cryptography. These findings

hold substantial implications for the practical application of HQC in real-

world cryptographic scenarios, where maintaining a delicate balance between

efficiency and security is of paramount importance. Delving deeper into our

proposal, the newly suggested decoder for HQC stands out as a notably more

efficient solution, particularly in contexts where ephemeral keys come into play.

This is especially relevant in security protocols like TLS or VPNs, where the

utilization of ephemeral keys is a common practice. On top of that, it is worth

emphasizing that our solution extends its efficiency to a spectrum of contexts

beyond these instances.

In drawing conclusions from this thesis, it is evident that numerous avenues

for future research and development in the domain of HQC decoding and post-

quantum cryptography have been unveiled. While our proposed alternative

decoder marks a significant advancement, there are promising directions to

explore further.

One immediate avenue for future work is the standardization and opti-

mization of the code used for simulations. To ensure maximum efficiency,

it would be beneficial to unify the code into a single language, such as the

highly-optimized C language. This consolidation would streamline the simula-

tion process and allow for more precise performance measurements, enabling

a better understanding of the proposed decoder’s practicality and scalability.

Exploring potential future developments in the context of decoding sys-

tems, it’s worth considering a more comprehensive analysis of the DFR for the

new decoder. This analysis may involve efforts to establish a mathematical

upper bound for the DFR. This in-depth examination could lead to a better

grasp of the decoder’s robustness and reliability, potentially paving the way for

further improvements in its design and application. Such attempts could sig-

nificantly enhance the performance and applicability of the decoder in various
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domains, including practical scenarios in which IND-CCA2 is required.

As we progress toward practical applications of HQC and post-quantum

cryptography, an important avenue for future research is the integration of

the proposed decoder into real-world cryptographic systems. Investigating

the feasibility and security of such integration, and exploring potential use

cases, would be a valuable step towards making post-quantum cryptographic

solutions more accessible and effective.

In conclusion, while this thesis has made a contribution to the field of post-

quantum cryptography by proposing an improved HQC decoder, it’s important

to recognize that there are still opportunities for further research, refinement,

and practical implementation. These potential future works hold the promise

of contributing to the ongoing efforts to enhance cryptographic security in the

face of evolving threats and emerging quantum technologies.
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garantito con tanti sacrifici.

Desidero esprimere la mia gratitudine ai miei nonni Ivo e Onorina. Inoltre,

vorrei ringraziare anche i miei nonni Fosca e Marcello, che purtroppo non
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