
Università Politecnica delle Marche

Facoltà di Ingegneria
Corso di Laurea in Ingegneria Informatica e dell’Automazione

Design of a Virtual Attractive Repulsive
Potentials-based control method on Riemannian

Manifolds and Lie Groups

Progettazione di un metodo di controllo basato sulla teoria dei
Potenziali Virtuali Attrattivi e Repulsivi sviluppata su Manifold

Riemanniani e Gruppi di Lie

Relatore:
Chiar.mo Prof. Simone Fiori

Correlatore:
Prof. Toshihisa Tanaka

Candidato:
Federico Polenta

Anno Accademico 2019/2020



Design of a Virtual Attractive Repulsive
Potentials-based control method on Riemannian

Manifolds and Lie Groups
Federico Polenta

Abstract

The aim of this document is to design a control law based on VARP (Virtual
Attractive Repulsive Potentials) control theory developed on two manifolds.
VARP Theory, initially designed for the control of a dynamic system whose
state space is R2, will be applied on a generic second-order dynamic system
whose state equations are formulated on the tangent complex of S2. After-
wards, the control method will be tailored for the control of a quadcopter
whose state equations are formulated on the SO(3) Lie group. Combining an
instance of VARP method for the control of the drone’s attitude (SO3-VARP)
and an instance of VARP method for the drone’s space-position control (R3-
VARP) it will arise the Double VARP (D-VARP) which aims to make the
drone move autonomously in the space.
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Progettazione di un metodo di controllo basato sulla
teoria dei Potenziali Virtuali Attrattivi e Repulsivi
sviluppata su Manifold Riemanniani e Gruppi di Lie

Federico Polenta

Sommario

Lo scopo di questo documento è presentare e testare numericamente la teoria
di controllo VARP (Virtual Attractive Repulsive Potentials) sviluppata su
due manifold. Nella prima parte del documento, il metodo di controllo verrà
applicato su un generico sistema dinamico del secondo ordine le cui equazioni
di stato sono formulate sul complesso tangente associato ad un manifold S2.
Nella seconda parte del documento, il metodo di controllo verrà applicato su
un drone a quattro eliche le cui equazioni sono formulate sul gruppo di Lie
SO(3). Combinando un’istanza del metodo VARP per il controllo dell’assetto
del drone (SO3-VARP) e un’istanza del metodo VARP per il controllo della
sua posizione (R3-VARP) nascerà il Doppio VARP (D-VARP) che avrà lo
scopo di far muovere il drone autonomamente nello spazio.

Supervisori: Chiar.mo Prof. Simone Fiori e Dr. Toshihisa Tanaka
Università Politecnica delle Marche
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Chapter 1
Introduction

Most of the control problems faced nowadays are based on positioning, on path-planning
and obstacles-avoidance. Virtual potentials can be very useful and effective to solve several
control problems as they are very versatile and easily applicable. In order to control a
particular dynamic system, it is necessary to build a virtual potential field using one of
many possible mathematical frameworks. The artificial potential field could be constructed
with the use of harmonic functions and Laplace’s equations [2, 3], artificial gyroscopic forces
[4] and stream functions from fluid dynamics [5].

The aim of this report is to design an artificial field in connection to a control theory
known as VARP (Virtual Attractive-Repulsive Potentials). The versatility of this theory
makes it straightforward to be used in several different fields, such as biology [6] or vehicle
coordination [7]. As shown in this document, the VARP method will be applied in order
to control different dynamical systems whose state-space equations belong to different
mathematical groups. The high versatility of this theory can be seen in the last part of
this document: in order to control a quadcopter, we used the VARP method twice for two
different purposes, regulating attitude and the position of a quadcopter drone.

Quadcopters are an important class of UAVs (Unmanned Aerial Vehicles) which are air-
crafts piloted by remote control or onboard computers. In particular, quadcopters are
aerial robots whose control is based on the variation of the speed of their four propellers
through the use of an appropriate algorithm, which manages to keep the drone as stable
and independent from any external factor as possible. Nowadays, quadcopters are widely
used for professional purposes such as photography, filming or rescue operation. Since they
are easy to build and inexpensive, quacopters can be found on the market also for non-
professional or semi-professional purposes. As quadcopters are used more and more for a
wide variety of purposes, much research has been carried out in order to find a method to
adequately control their attitude and position.

From the main solutions developed, we recall a trajectory planning method which exploits
the differential flatness of the vehicle dynamics considering a six degree of freedom (6DoF)
model of the quadrotor [8], a coordinated motion which uses mathematical programming
techniques, in particular a combination of linear and integer programming (MILP) [9, 10],
randomized algorithms for path planning [11], techniques that use graph searching and
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1. Introduction

surface covering [12], convex safe regions generations with IRIS and mixed-integer convex
optimization [13] and also Fuzzy-based controllers [14, 15] have been developed.

This document is organized as follows: Chapter 2 describes the VARP method as it was
introduced in [6] and [1], detailing the peculiarities and the notations used in the following
chapters.

Chapter 3 introduces the Kelly, a robot whose state equations live in R2, used by the Cal-
tech University for testing the VARP Principle and explains how it is possible to discretize
this control method in order to simulate his effectiveness on Kelly. We will report the tests
made on Kelly by varying the VARP parameters, in order to understand their dynamics
and behavior. The simulations will be carried out using two different discretizing methods,
namely, fEul and eRK4.

Chapter 4 recalls some generalities on Riemannian manifolds and considers a generic
second-order dynamic system whose state equations are formulated on the tangent bundle
of a manifold M. This chapter illustrates how the VARP method can be extended in order
to control a dynamical system whose state equation lives in a S2 manifold M-VARP. This
control problem will be discretized using a fEul based on Riemannian manifolds, which will
permit us to carry out simulations in a S2 manifold.

Chapter 5 recalls some notations about Lie groups and their properties. Then, it is ex-
plained how the VARP can be extended to a Lie group, the SO(3) manifold, in order to
control a quadcopter whose state equations live in SO(3) and its algebra. The quadcopter
equations and parameters are taken from [16]. Thus, it is explained the technique used to
design the control field, based on dynamic replacement and error feedback. All the steps
required to obtain the VARP-based control law for a quadcopter drone are reported, taking
into account the physical realizability of this control method. A particular attention will
be dedicated to the control effort and rotors speed analysis. Also this control law will
be discretized using a fEul based on Lie groups in order to accomplish simulations in the
SO(3) manifold.

Chapter 6 details a control theory based on using the VARP control theory twice and
concurrently. In particular, we will introduce two instances of VARP. An instance VARP1

will serve to stabilize the attitude of a drone during flight. This instance is very important
in order to maintain the drone in a proper attitude and not allow it to tip over. An instance
VARP2 will fix the drone attitude in such a way that it is steered toward a pre-defined
target in the space. It is also defined an evolution law to control the vertical positioning of
the drone during target approaching. At the end of this chapter some tests will be carried
out to prove the efficiency of the Double VARP.

Chapter 7 completes this document, focusing on conclusion and future works.
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Chapter 2
VARP Control Theory

The Virtual Attractive-Repulsive Potential (VARP) control theory is based on the con-
struction of a virtual potential field made of virtual points to which will be assigned both
an attractive and a repulsive potential. The points on the virtual field could represent
obstacles, target points or even any other object in the considered state-space. In this doc-
ument we will demonstrate that it is possible to use the VARP control theory for the control
of different dynamic systems with different state space. Therefore, the virtual points in
the virtual potential field will not necessarily represent 3D space points but could also rep-
resent whatever belongs to the particular state-space considered. Such virtual potentials
arise in swarming models in biology [6] and from these biological applications the VARP
theory get ideas for the coordination and motion planning of a large group of vehicles. We
will first introduce the biological model [6] from which the VARP theory arise, then the
latter will be reported and explained as it was designed in [1].

2.1 Virtual Potentials for swarming models in biology

Virtual potentials provide a convenient framework for autonomous vehicle control and path
planning. Such potentials arise in swarming models in biology, like the discrete particle
model proposed by the Levine-Rappel-Cohen group [6] that will be now recalled.

Given N particles labelled i = 1, . . . , N , the equations of the model proposed in [6] that
control the motion of each particle are:

mi
d~vi
dt

= αf̂i − β~vi − ~gradV, (2.1)

d~xi
dt

= ~vi, (2.2)

where mi is the mass of each particle, xi and vi its position and velocity, respectively.
Each particle experiences a self propelling force ~fi with fixed magnitude α. To prevent the
particles from reaching large speeds, a friction force with coefficient β was introduced. In
addition, each particle is subjected to an attractive force (it depends only on the distance
from one particle to the others) which is characterized by an interaction range `a. This force
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2.2. VARP Control Theory

is responsible for the aggregation of the particles. To prevent a collapse of the aggregate,
a shorter-range repulsive force was introduced with interaction range `r. The authors of
[6] checked that qualitative results are independent of the explicit form of the interaction
potential, hence they have chosen an exponentially decaying interaction:

V :=
∑
j, j 6=i

Ca exp
(
−‖~xi − ~xj‖

`a

)
−
∑
j, j 6=i

Cr exp
(
−‖~xi − ~xj‖

`r

)
, (2.3)

where Ca, Cr determine the strength of the attractive and repulsive force, respectively.
Note that Levine’s model is based on only one pair of parameters (Ca and Cr) while in
future works we will see that it could be convenient to define a value of Ca and Cr for each
of the obstacles and targets.

From this model, designed for collective motion in biology, arises the VARP theory for the
control and coordination of a large group of vehicles.

2.2 VARP Control Theory

After a brief recall in the previous section of the Levine-Rappel-Cohen model applied in
biology, we can introduce the VARP control theory.

Given an i-th vehicle and N agents labeled j = 1, . . . , N , consider the following general
coupled equations of motion:

d~zi
dt = ~wi,

mi
d ~wi
dt = αξ̂i − β ~wi − ~grad~zi

N∑
j, j 6=i

[
V r
j (d(~zi, ~qj))− V a

j (d(~zi, ~qj))
]
,

(2.4)

where:

• ξ̂ and ζ̂ are unit vectors referred to a reference frame attached to each i-th vehicle
rotated with respect to the inertial reference frame x̂− ŷ by an angle θ (see Figure
2.1);

• ~zi = (zxi , zyi) denotes the position of the i-th vehicle;

• ~wi is the velocity of the i-th vehicle;

• mi is the mass of the i-th vehicle;

• d(~zi, ~qj) = ‖~zi − ~qj‖ is the distance between the i-th vehicle and the j-th element
which is at the position ~qj = (qxj , qyj ), which could be an obstacle, a target point or
another vehicle. In the case of multiple vehicle control, each vehicle other than the
i-th, will be considered as an obstacle for the i-th vehicle, therefore the position of
the i-th vehicle will be denoted as ~zi while the position of the j-th obstacle will be
denoted as ~qj ;

• α is the magnitude of the self propulsion force;

• β is the friction coefficient;
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2.2. VARP Control Theory

• V a
j e V r

j are, respectively, the attractive and repulsive potential functions, defined
as:

V a
j (φ) := Ca

j e
−φ/`a

j , V r
j (φ) := Cr

je
−φ/`r

j , (2.5)

where Ca
j , Cr

j denote the “magnitude of the potentials”, `aj , `rj their “characteristic
lenghts” and φ is a real positive variable.

Figure 2.1: Coordinate system to describe position and velocity of the vehicles.

In the biology model proposed in [6], potentials serve to organize a group of self-propelled
particles into a mill-like formation. In the VARP theory model attractive potentials have
been used to direct vehicles towards way points and attractive/repulsive potentials to keep
vehicles avoiding each other and stationary obstacles, namely a point to point controller
will arise from this theory.

5



Chapter 3

VARP Control Theory on R2

In this chapter, we will describe how the VARP control theory previously introduced could
be used in order to control the Kelly robot, a second-order dynamical system whose state
space lives in R2. Firstly, we will introduce the Kelly and how VARP has been applied
to it. Later, we will describe the numerical schemes used for the simulations, which are
reported at the end of the chapter.

3.1 Kelly robot

Figure 3.1: Kelly vehicle at the Caltech University. Adapted from [1].

In Figure 3.1 it is possible to see the Kelly, which is the robot used at the Caltech Univer-
sity for testing the VARP principle. It is characterized by a plexiglass structure in which
are mounted: an onboard micro-controller (that implements the algorithm for the move-
ment control), some onboard sensors and an 802.11b wireless Ethernet card with which
robots could interface to each other. Other interesting characteristics are the low-friction
omnidirectional casters (which allow the Kelly to move) and two high-performance ducted
fans each capable of producing up to 4.5 N of continuous thrust. Caltech tests have been
conducted at the MVWT (Caltech Multi-Vehicle Wireless Testbed) which is a platform
designed for validating theoretical advances in multiple-vehicle coordination and cooper-
ative control. The MVWT consists of Kelly vehicles with the ability to communicate over
a wireless network, an arena for multi-vehicle operations, a lab positioning system using

6



3.1. Kelly robot

overhead cameras, and an offboard computer network. The smooth floor where the vehicles
maneuver has dimensions of approximately 6.5 m × 7.0 m. The vehicles are marked with
binary symbols on their hats, which the vision system uses to identify each vehicle’s position
and orientation.

Another interesting characteristic of the Kelly is that it is a nonlinear system whose evol-
ution is described by the following second-order equations:

m
du

dt
= −µu+ (FR + FL) cos θ, (3.1)

m
dv

dt
= −µv + (FR + FL) sin θ, (3.2)

J
dΩ
dt

= −ψΩ + (FR − FL)rf , (3.3)

where:

• FR and FL are the magnitudes of the forces generated by, respectively, the right and
left ducted fans, which are separated by a distance of 2rf as shown in the Figure
3.2;

• m is the mass of the vehicle, in the specific case of the Kelly it is 5.05 kg;

• µ is the linear friction coefficient, in the case of the MVWT platform it is 4.5 kg/s;

• ψ is the angular friction coefficient, in the case of the MVWT it is 0.064 kgm2/s;

• u = dzx
dt and v = dzy

dt are the components of the linear velocity of the vehicle, where
zx and zy are the position coordinates of the vehicle, respectively;

• Ω = dθ
dt is the angular velocity with respect to the x̂− ŷ reference frame and θ is the

orientation of the vehicle (with respect to the same x̂− ŷ reference frame).

Figure 3.2: Kelly’s forces and geometry scheme.
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3.2. VARP Control Theory applied to the Kelly robot

3.2 VARP Control Theory applied to the Kelly robot

Given Kelly’s equations of motion (3.1)–(3.3) and the equations which describes the VARP
theory (2.4), it is possible to combine them and, after some mathematical steps, to obtain
a direct definition of the right and left fan forces.

Writing the second equation of (2.4) with the explicit potential functions we have:

fi = m
d ~wi
dt

= m
d2~zi
dt2

= αξ̂i − β ~wi − ~grad~zi
N∑

j, j 6=i

[
− Ca

j e
−
d(~zi,~qj)
`a
j + Cr

je
−
d(~zi,~qj)
`r
j

]
. (3.4)

Applying the gradient to the sum we obtain:

fi = m
d ~wi
dt

= m
d2~zi
dt2

= αξ̂i − β ~wi+

−
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(zxi − qxj )x̂+ (zyi − qyj )ŷ

d(~zi, ~qj)

]
.

(3.5)

The ξ̂ − ζ̂ system is obtained rotating the x̂− ŷ system by an angle θ, and they have the
following relationship:

x̂ = cos θiξ̂i − sin θiζ̂i (3.6)

ŷ = sin θiξ̂i + cos θiζ̂i (3.7)

Replacing equations (3.6) and (3.7) in (3.5) we obtain:

fi = αξ̂i − β ~wi+

−
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(zxi − qxj ) cos θi + (zyi − qyj ) sin θi

d(~zi, ~qj)
ξ̂i+

+
(
Ca
j

Ca
j

e
−
d(~zi,~qj)
Ca
j −

Cr
j

`rj
e
−
d(~zi,~qj)
Cr
j

)
−(zxi − qxj ) sin θi + (zyi − qyj ) cos θi

d(~zi, ~qj)
ζ̂i

]
,

(3.8)

therefore the equation (3.8) can be decomposed in its components along the ξ̂i and ζ̂i axes.

From the scalar product between (3.8) and the unit vector ξ̂i we obtain:

f
‖
i = αξ̂i − β ~wi+

−
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(zxi − qxj ) cos θi + (zyi − qyj ) sin θi

d(~zi, ~qj)

]
ξ̂i .

(3.9)

The equation (3.9), whose right-hand side is the component of the force along the ξ̂i

direction, can be decomposed in two components, the first along the x̂ direction (3.10),
and the second along the ŷ direction (3.11):

f
‖
i,x = α cos θi − βui −

N∑
j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(

(zxi − qxj ) cos2 θi + (zyi − qyj ) cos θi sin θi
d(~zi, ~qj)

)]
,

(3.10)

8



3.2. VARP Control Theory applied to the Kelly robot

f
‖
i,y = α sin θi − βvi −

N∑
j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(

(zxi − qxj ) cos θi sin θi + (zyi − qyj ) sin2 θi

d(~zi, ~qj)

)]
.

(3.11)

From the scalar product between (3.8) and the unit vector ζ̂i we obtain:

f⊥i = −
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(3.12)

(
−(zxi − qxj ) sin θi + (zyi − qyj ) cos θi

d(~zi, ~qj)

)]
ζ̂i (3.13)

which is the component of the force along the ζ̂i direction.

Equation (3.12) denotes the force which is responsible for the change of the angular mo-
mentum. Therefore, we can write:

−rff⊥i = −rf
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(
−(zxi − qxj ) sin θi + (zyi − qyj ) cos θi

d(~zi, ~qj)

)]
.

(3.14)

The right-hand side member of equation (3.14) is the magnitude of the mechanical torque,
which could be calculated as the product between the position vector of the force rf and
the component (3.12) of the force which is perpendicular to Kelly’s direction.

However, the equation (3.14) is not directly physically interpretable. In fact, from the
Figure 3.2 it is possible to note that the velocity ~w is directed along the ξ̂ direction and
it is null along ζ̂. Nevertheless, the perpendicular component d~w

dt

∣∣
⊥ (projected along ζ̂) of

the robot acceleration is related to its rotation; that is why it could be convenient to define
a virtual representation of our problem, based on an interpretation of the physical model,
since rf , as in [1], is not defined as a vector, but as a distance. We can define a distance rf ,
with a direction consistent to the fact that d~w

dt

∣∣
⊥ is directed along ζ̂. In fact, if we multiply

d~w
dt

∣∣
⊥ with the mass, we will obtain a force along the ζ̂ direction, which is responsible for

the Kelly’s rotation. We could think to decompose this force along the ζ̂ direction in two
components, both of them with a magnitude equal to the half of the magnitude of the force.
Consequently the two virtual forces, with a moment arm rf , establish a torque which cause
the rotation of the system.

Comparing the last equations with Kelly’s equations of motion, we obtain the relationship
between VARP theory and Kelly’s parameters. Particularly, by matching (3.1) and (3.10),
we obtain:

−µui + (FR,i + FL,i) cos θi = α cos θi − βui+

−
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(

(zxi − qxj ) cos2 θi + (zyi − qyj ) cos θi sin θi
d(~zi, ~qj)

)]
.

(3.15)
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3.2. VARP Control Theory applied to the Kelly robot

The parameter β could be chosen arbitrarily, hence we will impose β = µ. Furthermore,
simplifying cos θi both in the left and the right side of the equation, we obtain:

FR,i + FL,i = α−
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(

(zxi − qxj ) cos θi + (zyi − qyj ) sin θi
d(~zi, ~qj)

)]
.

(3.16)

Then, comparing (3.3) with (3.14) and taking ψ = 0 (this condition will not affect on the
results) we obtain:

FR,i − FL,i = −
N∑

j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(
−(zxi − qxj ) sin θi + (zyi − qyj ) cos θi

d(~zi, ~qj)

)]
.

(3.17)

From (3.16) and (3.17) we have:

FR,i = α

2 −
1
2

N∑
j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
( (zxi − qxj )(cos θi − sin θi) + (zyi − qyj )(sin θi + cos θi)

d(~zi, ~qj)

)]
,

(3.18)

FL,i = α

2 −
1
2

N∑
j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
( (zxi − qxj )(cos θi + sin θi) + (zyi − qyj )(sin θi − cos θi)

d(~zi, ~qj)

)]
.

(3.19)

Collecting the equal terms in the equations (3.18) and (3.19) we can define:

F1,i = −1
2

N∑
j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(zxi − qxj )
d(~zi, ~qj)

]
, (3.20)

F2,i = −1
2

N∑
j, j 6=i

[(
Ca
j

`aj
e
−
d(~zi,~qj)
`a
j −

Cr
j

`rj
e
−
d(~zi,~qj)
`r
j

)
(zyi − qyj )
d(~zi, ~qj)

]
. (3.21)

In the end, we obtain two equations for the right and the left forces of the fans.

FR,i = α

2 + (cos θi − sin θi)F1,i + (sin θi + cos θi)F2,i, (3.22)

FL,i = α

2 + (cos θi + sin θi)F1,i + (sin θi − cos θi)F2,i. (3.23)

These equations could be numerically implemented in order to simulate Kelly’s dynamic
evolution.

10



3.3. Numerical schemes for the simulation of a dynamic system’s evolution

3.3 Numerical schemes for the simulation of a
dynamic system’s evolution

The aim of this section is to apply two numerical schemes, namely the forward Euler
method and the explicit Runge-Kutta method of the fourth order to approximately solve
the differential equations that govern the motion of the Kelly robot.

3.3.1 Forward Euler Method (fEul)

The forward Euler method (hereafter denoted as fEul) is a numerical integration method
used to approximate the solutions of an ordinary differential equation starting from an
initial value, namely an initial value problem (IVP). This method is based on two key ideas,
namely the uniform time-discretization of the state variable and the approximation of its
first derivative by means of the right-side incremental ratio. Uniform time-discretization
is a procedure that affords switching from a continuous time function to a discrete one. In
other words, since we are unable to evaluate the value of a function x(t) at any time, we
define a uniform succession of time-steps, separated by a reasonably short interval h > 0
termed stepsize, which are denoted by t0 = 0, t1 = t0 + h, t2 = t1 + h, and so forth, at
which we will try to approximate the values of the function.

Recalling a generic IVP: ẋ(t) = f
(
t, x(t)

)
, t ≥ t0,

x(t0) = x0,
(3.24)

we can write from the definition of first-order derivative

ẋ(t) = lim
h→0

x(t+ h)− x(t)
h

. (3.25)

According to the fEul, for reasonably small values of h, the first-order derivative ẋ can be
approximated as the incremental ratio

ẋ(t) ≈ x(t+ h)− x(t)
h

. (3.26)

Since we have discretized the time variable, we can denote with xn the value of the function
x(tn) at the n-th step, and with xn+1 the value at the following step. With this notation
we can write the equation (3.26) for a generic tn as:

f(tn, xn) ≈ xn+1 − xn
h

. (3.27)

From the equation above, we can write the iterative equation which is crucial in the fEul
method:

xn+1 = xn + hf(tn, xn). (3.28)

We will apply the fEul method to approximate the solutions to equations (3.1), (3.2) and
(3.3) which will be discretized and then used for the numerical simulations. In the following
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3.3.2. Explicit Fourth Order Runge-Kutta Method (eRK4)

mathematical steps, we will only apply the method to the function (3.1), because for the
(3.2) and (3.3) the procedure is the same.

For the sake of notation conciseness, hereafter we shall assume the presence of a single
Kelly robot, so as to drop the index “i”. Starting from un and xn, we will apply fEul to
the Kelly’s differential equation (3.1) in order to calculate un+1 and xn+1. The differential
equation is a second order equation in the variable x, thus, with u = ẋ, we have:

mẍ = −µẋ+ (FR + FL) cos θ. (3.29)

At t = 0, the Kelly has a position x0 and a velocity u0 along x. The sampling step is
denoted as h. We have two IVPs:

IVP1 =

u̇ = − µ
mu+ (FR+FL) cos θ

m ,

u(t0) = u0.
IVP2 =

ẋ = u,

x(t0) = x0.
(3.30)

From the second IVP, applying fEul, we have:

xn+1 = xn + hun. (3.31)

From the first IVP, applying fEul, we have:

un+1 = un + h

[
− µ

m
un + (FR,n + FL,n) cos θn

m

]
. (3.32)

For the equation (3.2) we have:

vn+1 = vn + h

[
− µ

m
vn + (FR,n + FL,n) sin θn

m

]
. (3.33)

For the equation (3.3) we have:
θn+1 = θn + hΩn, (3.34)

Ωn+1 = Ωn + h

[
− ψ

J
Ωn + (FR,n − FL,n)rf

J

]
. (3.35)

Using fEul iteratively, we can approximate the values of the functions calculating them on
each sampling step: the more the sampling step is small, the more the approximation will
be accurate.

3.3.2 Explicit Fourth Order Runge-Kutta Method (eRK4)

Runge-Kutta is a class of methods used for the numerical integration of initial value prob-
lems. Differently from the fEul, the Runge-Kutta scheme is a fourth-order method, hence
it aims to make the increment as accurate as possible. From the equation (3.28) we can
notice that with the fEul method the value of the x variable at the successive step is cal-
culated adding to the currrent one an increment of hf(tn, xn). The eRK4 scheme is based
on four partial increments that are:

k1,n = hf(tn, xn), (3.36)

k2,n = hf(tn + 1
2h, xn + 1

2k1,n), (3.37)

k3,n = hf(tn + 1
2h, xn + 1

2k2,n), (3.38)

k4,n = hf(tn + h, xn + k3,n). (3.39)

12
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Each increment will be “weighted” with a coefficient defined by the method and, adding
all of them together, they lead to a complete step, that is:

xn+1 = xn + 1
6

[
k1,n + 2k2,n + 2k3,n + k4,n

]
. (3.40)

Applying the eRK4 method to Kelly’s equations of motion (in particular, we consider
(3.1)), we obtain the increments:

k1,n = h

[
− µ

m
un + (FR,n + FL,n) cos θn

m

]
, (3.41)

k2,n = h

[
− µ

m

(
un + k1,n

2
)

+ (FR,n + FL,n) cos θn
m

]
, (3.42)

k3,n = h

[
− µ

m

(
un + k2,n

2
)

+ (FR,n + FL,n) cos θn
m

]
, (3.43)

k4,n = h

[
− µ

m

(
un + k3,n

)
+ (FR,n + FL,n) cos θn

m

]
, (3.44)

and the resolving equation (complete step) will be:

un+1 = un + 1
6

[
k1,n + 2k2,n + 2k3,n + k4,n

]
. (3.45)

Applying the equations (3.36)–(3.40) to the remaining Kelly’s equations of motion, (3.2)
and (3.3), the components of the velocity along ŷ and the angular velocity could be calcu-
lated.
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3.4 Simulations and results of VARP Method

In this section we will introduce five different tests in order to check if the VARP theory
applied to the Kelly works properly. The tests carried out in this section, in addition
to verifying that the VARP theory works correctly, will focus on how VARP parameters
affect Kelly’s behavior. Furthermore, the potentials have been positioned in such a way
as to form corridors, barriers and cages, in order to direct the Kelly in a definite path.
Therefore, for each test, the parameters and the potentials with the relative positions and
characteristics will be provided.

For each test three figures will be provided: the first represents the path taken by the
Kelly on the x - y plane. The path is represented by a blue circle, which are printed in
the image every sampling instant t = 0.12s. The more the circles are spaced, the more the
Kelly is moving fast. The black crosses represent the obstacles, the green cross indicates
the starting point, the blue cross represents the target while the red cross indicates the
arrival point which is the position of the Kelly in the last instant of simulation. Moreover,
the first figure shows a 3D representation that helps us to understand the shape of the
potential field. In this 3D graph the Kelly’s path will be projected in order to understand
how the robot moves in the potential field. In this representation, the target corresponds to
a well in the potential field, while the obstacles correspond to bulges. The sharpness of this
budges and wells depends, respectively, on how the obstacles and targets parameters are
defined. In particular, the greater the parameters La and Lr, the broader wells and bulges
are. The greater the parameters Ca and Cr, and the larger wells and bulges are respectively
in depth and in height. The second figure shows in detail the target approaching of the
Kelly. Kelly’s path is represented by a blue line, the arrival point by a black cross, while
the target by a black diamond. In the third figure there are four panels that will be useful
to understand how the Kelly behaves while it completes its path. These four panels show
the trend of the fans forces, the orientation of the Kelly, and the distance from the target
as the time changes.
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3.4.1. First Test

3.4.1 First Test

In this test, we used the following potentials:

Potentials
Potentials names X Y `a `r Ca Cr Note
P01 8.5 11 1 2 0.6 3 Repulsive
P02 10 6 1 3 0.5 1.5 Repulsive
P03 1 4 1 1 0.5 0.5 Neutral
P04 4 2 1 1 0.4 1 Repulsive
P05 6 4 1 1 0.5 0.8 Repulsive
P06 5 8 1 1 0.5 0.7 Repulsive
P07 8 7 1 2 0.9 1.5 Repulsive
P08 7 10 1 1 1 0.3 Attractive
P09 3 7 1 1 0.7 2 Repulsive
P10 10 10 5 1 10 0 Attractive, Target

Table 3.1: Potentials for the first VARP test.

The remaining parameters are defined as follows:

VARP Parameters
Parameter Value Unit
α 0.2 N
µ 4.5 Kg

s
ψ 0.064 Kg m2

s
β 4.5 Kg

s
ω1 0 rad

s
θ1 π/6 rad

Table 3.2: Parameters for the first VARP test.

In this test we used a low value for α in order to allow Kelly to follow an almost-optimal
path. Indeed, as we will see from the next tests, as the α increases the Kelly will be more
and more independent from the action of the potentials and influenced to follow its own
motion. As the Figure 3.3 shows, the obstacles are placed in such a way to form a corridor
towards the target, and we can notice that the Kelly is able to avoid them in a proper way.
The target has a moderated value of Ca, and it is possible to see that the closer Kelly is
to the target, the faster it is. This can be noticed by the fact that the blue dots are more
distant from each other in the area next to the target and also from the trend of the curve
that represent the distance to the target, in Figure 3.5. Although the Kelly comes very
close to the target, it never stops on it because there is a self-propelling coefficient α which
is not equal to zero. Nevertheless the behaviour of the Kelly is satisfying and we can say
that the VARP is working properly. In Figure 3.3 we can see a graphic representation of
how the potential field is made. The Figure 3.4 shows how the Kelly is unable to approach
the target and remain in its proximity for the whole the time. This is due to the action of
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3.4.1. First Test

its α parameter, which, as previously mentioned, corresponds to a term of self-propulsion
which causes the Kelly to move continuously, despite having reached the target. Figure
3.5 shows the forces of the Kelly’s fans, its orientation and the distance from the target
over time. It is possible to see that the forces exerted by the fans are greater when the
Kelly is in proximity to the target: as seen in Figure 3.4, Kelly tends to wander around the
target once it has been reached and this implies a great force required from the fans. The
Kelly orientation panel also points out how the robot wanders around the target. From
the distance panel, we can see how initially the Kelly approaches the target in a linear way,
and then its trend changes becoming steeper. Also in this graph we can see that the Kelly
does not stop and does not position itself at a certain distance from the target once the
latter is reached but, on the contrary, it moves continuously.

Figure 3.3: First test - Path and potential field.
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Figure 3.4: First test - Target approaching.
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Figure 3.5: First test - Fans forces, orientation and distance over time.
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3.4.2 Second Test

For this test, we used the same potentials shown in Table 3.1. The other parameters are:

VARP parameters
Parameter Value Unit
α 1.5 N
µ 4.5 Kg

s
ψ 0.064 Kg m2

s
β 4.5 Kg

s
ω1 0 rad

s
θ1 π/6 rad

Table 3.3: Parameters for the second VARP test.

As shown in Table 3.3, we used an higher value for α. Figure 3.6 displays how the Kelly
is more subjected to an higher self-propelling coefficient. As previously said, the higher α
is, the less Kelly’s motion is affected by the presence of attractive and repulsive potentials.
In this particular test, the Kelly doesn’t follow the best path because firstly it turns due
to repulsive potentials and secondly it tends to go straight due to the self-propelling term.
Therefore, it does not maintain the right orientation towards the target. Moreover, we can
see that Kelly passes very close to the potential "P08" because in that point there is an high
attraction to the target as well as a strong self-propelling term. This could be a problem if
the repulsive potential "P08" represents a physical obstacle, but it could be easily avoided
changing the value of his Cr. Figure 3.7 shows also that an higher value of α means more
oscillation around the target once the Kelly is close to it. We can note from the Figure
3.8 how the Kelly manages to reach the target in a time equal to 25% with respect to the
previous one.

Figure 3.6: Second test - Path and potential field.
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Figure 3.7: Second test - Target approaching.
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Figure 3.8: Second test - Fans forces, orientation and distance over time.

19



3.4.3. Third Test

3.4.3 Third Test

In this test, we used the following potentials:

Potentials
Potentials names X Y `a `r Ca Cr Note
P01 6 6 0.1 0.5 0.1 10 Repulsive
P02 6 10 0.1 0.5 0.1 10 Repulsive
P03 5 8 0.1 0.5 0.1 10 Repulsive
P04 7 8 0.1 0.5 0.1 10 Repulsive
P05 7 4 0.1 0.5 0.1 10 Repulsive
P06 8 6 0.1 0.5 0.1 10 Repulsive
P07 5 5 0.1 6 0.1 10 Repulsive
P08 9 4 0.1 0.5 0.1 10 Repulsive
P09 5 12 0.1 0.5 0.1 10 Repulsive
P10 12 12 10 1 30 0 Attractive, Target

Table 3.4: Potentials for the third VARP test.

The remaining parameters are defined as follows:

VARP parameters
Parameter Value Unit
α 0.2 N
µ 4.5 Kg

s
ψ 0.064 Kg m2

s
β 4.5 Kg

s
ω1 0 rad

s
θ1 π/6 rad

Table 3.5: Parameters for the third VARP test.

In this test we created a barrier between the Kelly’s starting position and the target so as
to see if the robot manages to avoid it. Figure 3.9 shows that the Kelly is able to avoid the
barrier, which is composed by several repulsive potentials with a low value of `r. We chose
a low value because otherwise the Kelly would be affected too much by the barrier. Indeed,
by choosing a low value for `r, the repulsive potentials have influence only in their close
proximity. The only repulsive potential that has an higher value of `r is "P07", which is
located in the front tip of the pseudo-triangular barrier. We chose an higher value because
it allows the Kelly to stay far enough from the barrier. Thus, by appropriately adjusting
the position and magnitude of the positive and repulsive potentials, we can not only avoid
or approach a single point, but also a barrier or a wall. This is very meaningful because
this feature permits to solve several real problems. For example, this particular version
of VARP, developed in R2, can be easily applied to a robot vacuum cleaner, which needs
to avoid artificial barriers such as walls, steps, tables, furniture and to reach target points
as charging stations, dirty areas and parking spots. Figure 3.9 also shows us that the
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3.4.3. Third Test

field of potentials is more complex than the previous ones. In fact, the potential barrier is
represented by a mountain range in the 3D graph. It is interesting to note from Figure 3.11
that Kelly initially remains at a considerable distance from the target, this is because it is
held back by the potential barrier, which partially counteracts the attraction of the target.
Despite this, given the strong attraction, the Kelly manages to approach the target slowly
and then, once the barrier is crossed, it continues towards it with greater speed. This
also suggests that this VARP feature could also be used in the opposite way of what was
mentioned above. We may request that the Kelly never reach the target, as its achievement
could seriously jeopardize its functioning. Indeed, taking the robot vacuum cleaner as an
example, we could prevent it from reaching a dirty area if this action involves crossing
steps or a jump that could damage it.

Figure 3.9: Third test - Path and potential field.
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Figure 3.10: Third Test - Target approaching.
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3.4.3. Third Test
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Figure 3.11: Third test - Fans forces, orientation and distance over time.
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3.4.4. Fourth Test

3.4.4 Fourth Test

In this test, we used the same potentials shown in Table 3.4, in order to build an identical
barrier.

The remaining parameters are defined as follows:

VARP parameters
Parameter Value Unit
α 2.2 N
µ 4.5 Kg

s
ψ 0.064 Kg m2

s
β 4.5 Kg

s
ω1 0 rad

s
θ1 π/6 rad

Table 3.6: Parameters for the fourth VARP test.

As shown in Table 3.6, the value α has been increased compared with the previous test.
This test shows very clearly how the α parameter is fundamental in determining Kelly’s
behavior. In fact, by increasing the α value compared to the third test, we can see how the
Kelly gets closer to the barrier, after which it is repelled. This continuous effect of repulsion
and thrust involves a non-linear trend of the Kelly, which feels subject to stronger forces
than in the previous test. Despite the less linear trend, the Kelly manages to reach the goal
in half the time compared to the previous test. In conclusion, we can say that increasing
the α parameter allows the Kelly to reach the goal in a shorter time, but also implies a
possible collision with obstacles and also a possible oscillation and a consequent non-linear
trend. This oscillation can also be seen from the graph which shows the distance from the
target as time changes, in Figure 3.14.

Figure 3.12: Fourth test - Path and potential field.
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3.4.4. Fourth Test
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Figure 3.13: Fourth test - Target approaching.
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Figure 3.14: Fourth test - Fans forces, orientation and distance over time.
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3.4.5. Fifth Test

3.4.5 Fifth Test

In this test, we used the following potentials:

Potentials
Potentials names X Y `a `r Ca Cr Note
P01 4 8 0.1 0.9 0.1 17 Repulsive
P02 4 0 0.1 0.9 0.1 17 Repulsive
P03 8 4 0.1 0.9 0.1 17 Repulsive
P04 0 4 0.1 0.9 0.1 17 Repulsive
P05 6 6 0.1 0.9 0.1 17 Repulsive
P06 2 6 0.1 0.9 0.1 17 Repulsive
P07 2 2 0.1 0.9 0.1 17 Repulsive
P08 7 5 0.1 0.9 0.1 17 Repulsive
P09 5 7 0.1 0.9 0.1 17 Repulsive
P10 3 7 0.1 0.9 0.1 17 Repulsive
P11 1 5 0.1 0.9 0.1 17 Repulsive
P12 1 3 0.1 0.9 0.1 17 Repulsive
P13 3 1 0.1 0.9 0.1 17 Repulsive
P14 12 12 70 1 30 0 Attractive, Target

Table 3.7: Potentials for the fifth VARP test.

The remaining parameters are defined as follows:

VARP parameters
Parameter Value Unit
α 0.2 N
µ 4.5 Kg

s
ψ 0.064 Kg m2

s
β 4.5 Kg

s
ω1 0 rad

s
θ1 π/6 rad

Table 3.8: Parameters for the fifth VARP test.

In this test we designed a diamond-shaped cage in order to study if Kelly is able to escape
through an opening. The Kelly’s starting position is located in the cage center and the gap
is located on one side of the rhombus. Figure 3.15 shows that Kelly is able to escape from
the cage. Also this feature is very important in real situations because there are several
control problems concerning the escape through a gap, such as exiting a parking lot or
leaving a room through a door. This is a further evidence that VARP can be used for a
wide variety of purposes. Figure 3.15 is interesting because it shows how the potential cage
could be represented using a 3D graph. Also in this case, the panel relating to the distance
from the target in Figure 3.17 shows how the Kelly does not initially approach the target
as the cage of repulsive potentials tends to make the robot remain in position.
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3.4.5. Fifth Test

Figure 3.15: Fifth test - Path and potential field.
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Figure 3.16: Fifth test - Target approaching.
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3.4.5. Fifth Test
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Figure 3.17: Fifth test - Fans forces, orientation and distance over time.
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Chapter 4
VARP Control Theory on the

Riemannian Manifold S2

The aim of this chapter is to design the VARP principle to control second-order dynamic
systems whose state space is a Riemannian manifold. This method will be called M-VARP
as it represents an extension of the original VARP control method to a generic Riemannian
manifold. Successively, the VARP principle will be extended, implemented and simulated
for the control of a system whose state space is the Riemannian manifold S2 (we will denote
this method as S2-VARP). As in the previous case, we will consider the presence of a single
agent, therefore the control could not be considered “cooperative”.

4.1 Generalities on Riemannian Manifolds

Let M denote a Riemannian manifold. At a point x ∈ M, the tangent space to the
manifold M is denoted as TxM. The symbol TM denotes the tangent bundle defined as
TM := {(x, v) | x ∈M, v ∈ TxM}.

A Riemannian manifold M is endowed with a bilinear, positive-definite form 〈·, ·〉x : TxM×
TxM → R. A local metric 〈·, ·〉x also defines a local norm ‖v‖x :=

√
〈v, v〉x, for v ∈ TxM.

The Riemannian gradient of a function ψ : R→M evaluated at the point x ∈M is denotes
as gradx ψ. The Riemannian gradient is associated to a specific metric.

A manifold exponential map exp : TM → M applies as y = expx(v); it maps a pair
(x, v) ∈ TxM to a point y on the manifold. The exponential map “shifts” a point x along
the geodesic curve in the direction of v to get to the point y.

Its inverse ‘log’ is defined only locally and is termed manifold logarithm. Given points
x, y ∈ M, a manifold logarithm computes a tangent vector v = logx(y) ∈ TxM such that
expx(v) = y.

Given two points x, y ∈ M connectable by a geodesic arc, their Riemannian distance is
denoted by d(x, y). On a Riemannian manifold, the distance between two nearby points
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4.2. Extension of the VARP Principle to Riemannian Manifolds

may be evaluated by:
d(x, y) = ‖ logx(y)‖x. (4.1)

A fundamental result of the calculus on manifolds states that the Riemannian gradient of
a squared distance function reads:

gradx d2(x, y) = −2 logx(y), (4.2)

wherever the logarithm is defined.

The covariant derivative of a vector field wx ∈ TxM in the direction of a vector v ∈ TxM
is denoted as ∇vw. We assume M to be endowed with a metric connection (namely, that
the covariant derivative of the metric tensor is identically zero).

The parallel transport operator P : TM2 → TM maps a tangent vector v ∈ TxM at a given
point x ∈M into a tangent vector w ∈ TyM at another given point y ∈M and it is denoted
as w = Px→y(v). The parallel transport moves the tangent vector v from TxM to TyM
along the geodesic curve that connects the point x to the point y keeping the tangency.
Parallel transport and covariant derivation are closely related to one another, in particular,
covariant derivation may be expressed in terms of parallel transport as follows:

∇vw = lim
h→0

Pγ(h)→x[wγ(h)]− wx
h

, (4.3)

where γ denotes any smooth curve such that γ(0) = x ∈ M and γ̇(0) = v ∈ TxM. Such
relationship leads to a numerical approximation of the covariant derivative at a point x.

4.2 Extension of the VARP Principle to Riemannian
Manifolds

The first element to consider is a generic second-order dynamic system whose state equa-
tions are formulated on the tangent bundle of a manifold M:ẋ(t) = v(t),

∇v(t)v(t) = −µ v(t) + u(t),
(4.4)

where the following notation has been used:

• x(t) ∈ M denotes the state of the dynamic system (it could be thought of as the
position of a point mass on the manifold surface at the time t);

• v(t) ∈ Tx(t)M denotes the tangent vector to the trajectory x(t) at the time t (it could
be thought of as the velocity of the point mass on the manifold surface);

• ∇vv represents the covariant derivative of the vector field v with respect to itself (it
could be thought of as the acceleration of the point mass on the manifold surface); if
∇vv = 0 the acceleration is zero, thus the point mass will follow a uniform geodetic
trajectory;
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4.2. Extension of the VARP Principle to Riemannian Manifolds

• µ > 0 is the friction coefficient (therefore, the term −µ v could be thought of as a
friction force which brakes the motion of the point mass);

• u(t) is the control signal at the time t (it could be thought of as a force whose purpose
is to move the point mass on the manifold); the control signal is a vector field which
is tangent to the manifold at the state x(t).

Now, extending the VARP principle to manifolds, we have:
ẋ(t) = v(t),

∇v(t)v(t) = −µ v(t) + α v̂(t)− gradx(t) V,

V (x) =
N∑
j=1

(
V r
j (d2(x, qj))− V a

j (d2(x, qj))
)
,

(4.5)

where:

• αv̂, with α > 0, represents the self-propelling term from [1], where v̂ := v/‖v‖ if
v 6= 0 otherwise v̂ = 0;

• V (x) is the total potential which depends on the state x; V r
j and V a

j denotes respect-
ively the repulsive and attractive component of the potential, as they were already
defined on the VARP principle for Euclidean spaces in the Section 2.2; note that the
components are indexed with j: this indexing does not appear explicitly in [1]. In
the present case, each obstacle and target has his own coefficient;

• qj terms, which are N , represent obstacles and targets positions on the manifold M;

• the function d(·, ·) denotes the Riemannian distance (or geodesic distance) between
two points on the manifold; on the equations it will appear as d2 because this,
generally, simplifies the calculation of the derivative;

Combining together the equations (4.4) and (4.5), the control field has been designed as

u := α v̂(t)− gradx
N∑
j=1

(
V r
j (d2(x, qj))− V a

j (d2(x, qj))
)

= (4.6)

= α v̂(t)−
N∑
j=1

(
V̇ r
j (d2(x, qj))− V̇ a

j (d2(x, qj))
)

gradx d2(x, qj). (4.7)

Recalling the notable relation (4.2) for Riemannian manifolds, we have:

u = α v̂(t)− 2
N∑
j=1

(
V̇ a
j (d2(x, qj))− V̇ r

j (d2(x, qj))
)

logx(qj). (4.8)

Coherently with what was expected, it results that u ∈ TxM.

As for the VARP principle for smooth spaces (see (2.5)), exponential attractive and re-
pulsive potential functions have been chosen:

V a
j (φ) := Ca

j e
−
√
φ/`a

j , V r
j (φ) := Cr

je
−
√
φ/`r

j , (4.9)
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4.3. Euler scheme for the simulation of the M-VARP Control Method

where Ca
j and Cr

j denote the “magnitude of the potentials”, `aj and `rj their “characteristic
lenghts” and φ is a real positive variable (as in the previous case). Their derivative with
respect to φ could be written, respectively, as:

dV a
j (φ)
dφ

= −
Ca
j

2`aj
√
φ
e−
√
φ/`a

j ,
dV r

j (φ)
dφ

= −
Cr
j

2`rj
√
φ
e−
√
φ/`r

j , (4.10)

therefore the control signal (4.8) is:

u(t) = α v̂(t)−
N∑
j=1

(
Cr
j

`rj

e−d(x(t),qj)/`r
j

d(x(t), qj)
−
Ca
j

`aj

e−d(x(t),qj)/`a
j

d(x(t), qj)

)
logx(t)(qj). (4.11)

The system to simulate numerically will be:
ẋ(t) = v(t),

∇v(t)v(t) = −µ v(t) + α v̂(t)−
N∑
j=1

(
Cr
j

`r
j

e
−d(x(t),qj)/`r

j

d(x(t),qj) − Ca
j

`a
j

e
−d(x(t),qj)/`a

j

d(x(t),qj)

)
logx(t)(qj).

(4.12)

4.3 Euler scheme for the simulation of the M-VARP
Control Method

It pays to explain how it was possible to use the Euler method on the manifold to simulate
the evolution of a controlled system.

Recalling the system (4.12) that has to be controlled, and writing it in a compact form as:
ẋ(t) = v(t),

∇v(t)v(t) = σ(x(t), v(t), u(t)),

x(0) = x0, v(0) = v0 (Initial Conditions),

(4.13)

where σ : TM2 → TM is the function on the right-hand side of the second equation in
(4.12) that maps a point x and two tangent vectors v, u ∈ TxM into a tangent vector in
TxM.

To solve numerically the system of differential equations (4.13), namely to simulate the
controlled system (4.12), we introduce three discrete sequences that arise from the time
discretization with a step size h > 0, that are:

• The sequence xk ∈M, with k = 0, 1, 2, 3, . . ., represent the discretized version of the
state x(t), namely xk denotes a numerical approximation of x(kh).

• The sequence vk ∈M, with k = 0, 1, 2, 3, . . ., represent the discretized version of the
velocity v(t), namely vk denotes a numerical approximation of v(kh).

• The sequence uk ∈M, with k = 0, 1, 2, 3, . . ., represent the discretized version of the
control signal u(t), namely uk denotes a numerical approximation of u(kh), that is:

uk := α v̂k −
N∑
j=1

(
Cr
j

`rj

e−d(xk,qj)/`r
j

d(xk, qj)
−
Ca
j

`aj

e−d(xk,qj)/`a
j

d(xk, qj)

)
logxk(qj). (4.14)
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4.3. Euler scheme for the simulation of the M-VARP Control Method

Note that the time index has been placed in the high position (k) to avoid confusing it with
the obstacle/target index which is in the lower position (j). Once a time discretization of
the variables has been made, we can proceed applying the forward Euler method (fEul). To
express the fEul method, the exponential map and the parallel transport operators recalled
in Section 4.1 will be applied.

It is important to remind that the parallel transport operator is fundamental in the cal-
culation of the covariant derivative. Let us denote with ux a vector field on TM (in each
point x of the manifold, ux defines a tangent vector at the x point itself) of which we want
to calculate the covariant derivative and vx another vector field along which we want to
calculate the covariant derivative. Then it turns out that:

∇vxux = lim
h→0

uexpx(hvx) − Px→expx(hvx)(ux)
h

. (4.15)

Indeed, the covariant derivative ∇vxux represents the velocity with which the vector field
u changes, moving from x in the direction of v. Let us consider the numerical solution of
the first equation in (4.13) that is:

dx(t)
dt

= v(t), (4.16)

which is an IVP on the tangent bundle TM. The algorithm that implements the numeric
solution with the fEul method could be written as:

xk+1 = expxk(h vk), k = 0, 1, 2, 3, 4, . . . , (4.17)

with x0 and v0 known from the initial conditions.

Let’s consider now the numeric solution of the second equation of (4.13), that is:

∇v(t)v(t) = σ(x(t), v(t), u(t)), (4.18)

which is a different kind of IVP on the tangent bundle TM. The relation (4.15), applied
to the vector field v with respect to itself, could be numerically approximate as

∇vv ≈
vk+1 − Pxk→xk+1(vk)

h
. (4.19)

Therefore, the algorithm that implements the numeric solution by means of the fEul method
is:

vk+1 = Px
k→xk+1

(vk + hσ(xk, vk, uk)), k = 0, 1, 2, 3, 4, . . . , (4.20)

with x0 and v0 known from the initial conditions. Therefore, the numerical method that
will be used is:

xk+1 = expxk(h vk),

uk = α v̂k −
∑N
j=1

(
Cr
j

`r
j

e
−d(xk,qj)/`r

j

d(xk,qj) − Ca
j

`a
j

e
−d(xk,qj)/`a

j

d(xk,qj)

)
logxk(qj),

σk = −µvk + uk,

vk+1 = Pxk→xk+1(vk + hσk),

k = 0, 1, 2, 3, 4, . . . ,

(4.21)
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4.3. Euler scheme for the simulation of the M-VARP Control Method

with x0 and v0 known from the initial conditions. Equivalently, the numerical algorithm
may be written as:

xk+1 = expxk(h vk),

uk = α v̂k −
∑N
j=1

(
Cr
j

`r
j

e
−d(xk,qj)/`r

j

d(xk,qj) − Ca
j

`a
j

e
−d(xk,qj)/`a

j

d(xk,qj)

)
logxk(qj),

vk+1 = Pxk→xk+1 ((1− hµ)vk + huk
)
,

k = 0, 1, 2, 3, 4, . . . ,

(4.22)

with the hypothesis that vk 6= 0. Let us recall that, in the case of hyper-sphere (M :=
Sn−1), the canonical operators and the Riemannian distance required for the numerical
implementation have the following expressions:

expx(v) =

x cos(‖v‖) + v‖v‖−1 sin(‖v‖), if v 6= 0,

x, otherwise,

d(x, y) = | arccos(x>y)|,

logx y = d(x,y)
sin d(x,y) (In − xx>)y,

Px→y(v) =
[
In − (y+x)y>

1+x>y

]
v.

(4.23)

In this specific case the space state is the hyper-sphere S2, therefore in the expressions
(4.23), we will consider n = 3.
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4.4. Simulations and results of S2-VARP Method

4.4 Simulations and results of S2-VARP Method

In this section we will introduce five different tests in order to check how the S2-VARP
control method works on the unitary sphere S2. For each test, we will provide the S2-
VARP parameters that have been used and a 3D representation of the S2 manifold. In
this representation, the red line represents the path of the dynamical system, the black
star indicates the starting point, the green crosses represent the obstacles and the black
diamond indicates the target.

4.4.1 First Test

In this test we built a corridor made up of obstacles, in order to guide the system along a
predefined path. This type of problem, known as path planning, is a typical control issue
in many real situations. As you we can see from the Figure 4.1, the system is able to reach
the target without any problem. The parameters used in this test are shown in Table 4.1.

S2-VARP parameters
Parameter Value Parameter Value
α 0.2 Lr,o 0.1
µ 5.05 Ca,t 5
Ca,o 0 Cr,t 0
Cr,o 0.1 La,t 0.5
La,o 0.1 Lr,t 0.1

Table 4.1: Parameters for the first S2-VARP test.

Figure 4.1: First test - Path planning using a corridor, α = 0.2.
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4.4.2. Second Test

4.4.2 Second Test

In this test we have increased the α parameter, so as to show how even in the case of
M-VARP the increase of this parameter implies a greater oscillation around the target or
a possible collision with one of the obstacles, as shown in Figure 4.2. The parameters used
in test are as follows:

S2-VARP parameters
Parameter Value Parameter Value
α 4 Lr,o 0.1
µ 5.05 Ca,t 5
Ca,o 0 Cr,t 0
Cr,o 0.1 La,t 0.5
La,o 0.1 Lr,t 0.1

Table 4.2: Parameters for the second S2-VARP test.

Figure 4.2: Second test - Path planning using a corridor, α = 4.
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4.4.3. Third Test

4.4.3 Third Test

In this test we built a barrier, composed of obstacles, along the geodesic between the
starting point and the target. It can be seen from the Figure 4.3 how the system is able
to bypass the barrier along a wider path. The parameters are reported in Table 4.3.

S2-VARP parameters
Parameter Value Parameter Value
α 0.2 Lr,o 0.1
µ 5.05 Ca,t 5
Ca,o 0 Cr,t 0
Cr,o 0.5 La,t 0.5
La,o 0.1 Lr,t 0.1

Table 4.3: Parameters for the third S2-VARP test.

Figure 4.3: Third test - Barrier bypassing.
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4.4.4. Fourth Test

4.4.4 Fourth Test

Similar to what we did in the previous test, we placed a single obstacle exactly along the
geodesic between the starting point and the target. Also in this case the system bypasses
the obstacle and manages to reach the target, as in the Figure 4.4. Table 4.4 shows the
parameters of this test.

S2-VARP parameters
Parameter Value Parameter Value
α 0.2 Lr,o 0.07
µ 5.05 Ca,t 5
Ca,o 0 Cr,t 0
Cr,o 2 La,t 0.5
La,o 0.5 Lr,t 0.1

Table 4.4: Parameters for the fourth S2-VARP test.

Figure 4.4: Fourth test - Obstacle avoidance.
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4.4.5. Fifth Test

4.4.5 Fifth Test

In this test we built a barrier that partially contains the target. Figure 4.5 shows that the
system is able to reach the target through the side without any obstacles. The parameters
used in this test are shown in Table 4.5.

S2-VARP parameters
Parameter Value Parameter Value
α 0.2 Lr,o 0.3
µ 5.05 Ca,t 30
Ca,o 0 Cr,t 0
Cr,o 0.4 La,t 10
La,o 0.5 Lr,t 0.1

Table 4.5: Parameters for the fifth S2-VARP test.

Figure 4.5: Fifth test - Barrier bypassing and target approaching.
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Chapter 5
VARP Control Theory on SO(3)

Manifold

In this chapter we aim to apply the VARP Principle for the control of dynamic systems
whose state space is the Manifold SO(3). The Manifold SO(3) has been chosen because
its elements, known as special orthogonal matrices, could represent quadcopters attitude.
Thus the final target of our work is to perform a quadcopter attitude control with the VARP
Principle which was initially designed for the control of vehicles which could maneuver in
a smooth surface.

5.1 Lie Groups and Algebras definitions and
properties

Let us recapitulate the following definitions and properties:

Matrix Lie group: A smooth matrix manifold M that is also an algebraic group is termed
a matrix Lie group. A matrix group is a matrix set endowed with:

1. an associative binary operation, termed group multiplication which, for any two
elements g, h ∈M, is denoted by gh and endowed with the property of closure,

2. an identity element with respect to the multiplication, denoted by e, such that
eg = ge = g for any g ∈M,

3. an inversion operation, denoted by g−1, with respect to multiplication, such that
g−1g = gg−1 = e for any g ∈M.

A left translation L : M×M→M is defined as Lg(h) := g−1h.

An instance of matrix Lie group is SO(3) := {R ∈ R3×3 | R>R = RR> = I3, det(R) =
+1}, where the symbol > denotes matrix transposition and the quantity I3 represents a
3× 3 identity matrix.
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5.1. Lie Groups and Algebras definitions and properties

Tangent bundle and its metrization: Given a point g ∈ M, the tangent space to M
at g will be denoted as TgM. The tangent bundle associated with a manifold-group M is
denoted by TM and plays the role of phase-space for a dynamical system whose state-space
is M. The inner product of two tangent vectors ξ, η ∈ TgM is denoted by 〈ξ, η〉g. A smooth
function F : M→M induces a linear map dFg : TgM→ TF (g)M termed pushforward map.
For a matrix Lie group, the pushforward map d(Lg)h : ThM → Tg−1hM associated to a
left translation is d(Lg)h(η) := g−1η, with η ∈ ThM. The symbol d : M2 → R+ denotes a
Riemannian distance over the manifold M associated to the inner product 〈·, ·〉· : (TM)2 →
R.

Lie algebra: The tangent space g := TeM to a Lie group at the identity is termed Lie
algebra. The Lie algebra is endowed with Lie brackets, denoted as [·, ·] : g × g → g, and
an adjoint endomorphism adξη := [ξ, η]. The Lie algebra associated to the group SO(3) is
so(3) := {ξ ∈ R3×3 | ξ + ξ> = 0}. On a matrix Lie algebra, the Lie brackets coincide with
matrix commutator, namely [ξ, η] := ξη − ηξ. The matrix commutator in so(3) is an anti-
symmetric bilinear form, namely [ξ, η] + [η, ξ] = 0. A pushforward map d(Lg)g : TgM→ g

is denoted as dLg for brevity.

It is convenient to define a basis of so(3) = span(χx, χy, χz) as follows:

χx :=

0 0 0
0 0 −1
0 1 0

 , χy :=

 0 0 1
0 0 0
−1 0 0

 , χz :=

0 −1 0
1 0 0
0 0 0

 . (5.1)

Also, it pays to define the operator J·K : R3 → so(3) as:

x :=

x1

x2

x3

 7→ JxK :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (5.2)

We briefly recall the definition of the canonical operators and the Riemannian distance for
the Manifold SO(3) endowed with the inner product 〈U, V 〉X := tr(U>V ):

Exponential map : expX(V ) := XExp(X>V ),

Logarithmic map : logX Y := XLog(X>Y ),

Riemannian distance : d(X,Y ) := ‖Log(X>Y )‖F,

Orthogonal projection to TRSO(3) : ΠR(V ) := 1
2R(R>V − V >R),

Left translation : LR(V ) := R>V,

(5.3)

where ‘Exp’ denotes matrix exponential and ‘Log’ denotes principal matrix logarithm.
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5.2. Manifold SO(3) and his Lie Algebra so(3)

5.2 Manifold SO(3) and his Lie Algebra so(3)

As previously said, the SO(3) manifold is an instance of Lie group and it is known as
the Special Orthogonal Matrices Group in 3 dimensions (hence the name SO(3)). It is
the group of all rotations in the three-dimensional Euclidean space R3 which models the
spatial arena in which physical objects evolve. By definition, a rotation about the origin is
a transformation that preserves the origin, the Euclidean distance (hence it is an isometry),
and orientation (i.e. handedness of space). Rotations are not commutative, that is, the
order in which rotations are composed makes a difference. For example, an R rotation of
90◦ in the x− y plane followed by an S rotation of 90◦ in the y − z plane is not the same
as the rotation S followed by R. Therefore, the manifold SO(3) is a non-Abelian group.

Any spatial rotation could be described either with a set of three angles (namely Euler
angles), or with the axis–angle representation. The axis–angle representation will be con-
sidered since it parametrizes a rotation in a three-dimensional Euclidean space by two
quantities: a unit vector n̂ (sometimes called the Euler axis) which indicates the axis of
rotation, and an angle ϕ describing the magnitude of the rotation about the chosen axis.
Note that only two parameters (not three) are needed to define the direction of a unit
vector n̂ rooted at the origin, because its magnitude is constrained (it must be equal to
1). By Rodrigues’ rotation formula, with a desired angle ϕ and a desired rotation axis

n̂ =
[
n1 n2 n3

]>
(which must be a unit vector) it is possible to determine a rotation

matrix as:
Rn̂(ϕ) = n̂n̂> + cosϕ (I3 − n̂n̂>)− sinϕ Jn̂K. (5.4)

The Rodrigues’ rotation formula compute a rotation matrix Rn̂(ϕ) which has all the prop-
erties required by the Lie group SO(3). Each element in SO(3) is a 3×3 orthogonal matrix,
namely a square matrix whose columns and rows are orthogonal unit vectors and whose
transpose matrix is equal to its inverse so that R> = R−1 and whose determinant is equal
to 1.

Our aim is to use SO(3) matrices to represent quadcopter attitudes because, recalling the
model designed in [16], we can notice that the dynamic evolution of the quadcopter is
described by equations which involve a rotation matrix R.
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5.3 VARP extension to the SO(3) Manifold

The system of equations (4.5) could be written for the SO(3) Manifold as:Ṙ = Rχ,

∇ṘṘ = αRχ̂− µṘ− gradR V,
(5.5)

but ∇ṘṘ = Rχ̇ (the proof follows) and Ṙ = Rχ, therefore the second equation reads:

Rχ̇ = αRχ̂− µRχ− gradR V. (5.6)

Applying the left translation to both sides allows one to write explicitly an equation for
the angular acceleration, namely:

χ̇ = αχ̂− µχ− LR(gradR V ), (5.7)

therefore the system (5.5) will be:Ṙ(t) = R(t)χ(t),

χ̇(t) = αχ̂(t)− µχ(t)− LR(t)
(

gradR(t) V (R(t))
)
,

(5.8)

where:

• R(t) ∈ SO(3) denotes a rotation matrix;

• Ṙ(t) ∈ TR(t)SO(3) denotes the derivative of the matrix R with respect to time, hence
velocity;

• χ ∈ so(3) is the angular velocity; here so(3) denotes the Lie algebra associated to the
Lie group SO(3), which is supposed to be endowed with the canonical inner product
〈χ, ψ〉 := tr(χ>ψ), with associated norm

√
〈χ, χ〉 =: ‖χ‖F;

• χ̇ ∈ so(3) is the rate at which the angular velocity χ changes, therefore it represents
angular acceleration;

• µχ(t) ∈ so(3) represents the friction term that opposes to the change of angular
velocity. µ denotes the friction coefficient;

• αχ̂(t) ∈ so(3) denotes the self-propelling term. As in the equations (4.5) it has the
same direction of χ, hence the self-propelling coefficient α is multiplied with the
norm of the matrix χ taking only its direction. Frobenius norm will be used as it
is the associated norm to the canonical inner product of the Lie algebra so(3). If
χ 6= 0 it will be χ̂ := χ/‖χ‖F, otherwise χ̂ = 0. The self-propelling term must be
handled with care because it might cause severe oscillations around the attraction
point, since it forces the system to move away from it causing the controller to
counter its action. Notice that, in the absence of any potentials (namely V = 0), the
self-propelling term causes a velocity drift χ̇ of amplitude ‖χdrift‖F = α

µ ;

• LR(t)
(

gradR(t) V (R(t))
)
∈ so(3) denotes the gradient of the potential function trans-

lated to the algebra.
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As in Section 4.2, we can write:

LR

(
gradR V (R)

)
= LR

[
gradR

N∑
j=1

(
V r
j (d2(R,Rj))− V a

j (d2(R,Rj))
) ]

=

= LR

[
N∑
j=1

(
V̇ r
j (d2(R,Rj))− V̇ a

j (d2(R,Rj))
)

gradx d2(R,Rj)
]
,

(5.9)

where Rj ∈ SO(3) is the attractive or repulsive element, which could be a desired or
undesired attitude. Note that each element exhibits both characteristics despite it could
actually be an attractive or repulsive point: if it is attractive, the attractive characteristic
will be predominant with respect to the repulsive one.

A purely repulsive point with index j is characterized by a coefficient Ca
j = 0, while a

purely attractive point with index j is characterized by a coefficient Cr
j = 0. In the article

by Bertozzi et al. [1], it is set Cr
j = 0 if the point is a target while the obstacles usually

has Cr
j � Ca

j . An explanation could lie in the fact that by setting obstacles it is possible
to build a path for the system, hence they must attract the system but at the same time
the system must avoid them. In the case of a target, it is possible to set Cr

j 6= 0 if we want
the system to avoid the target, namely, it must stay near it but not over it. For example,
in the case of Kelly robot, we would like the Kelly to reach a tree but it cannot be in the
same position of it, namely we have to set Ca

j � Cr
j 6= 0. On the other hand, in the case

of a drone, we can consider to set Cr
j = 0 since the desired attitude does not represent a

physical object. From the property (4.2), we can write:

LR

(
gradR V (R)

)
= LR

[
2
N∑
j=1

(
V̇ a
j (d2(R,Rj))− V̇ r

j (d2(R,Rj))
)

logR(Rj)
]
. (5.10)

The attractive and repulsive potentials and their derivatives have the expressions (4.9)–
(4.10), respectively, hence we can write:

LR

(
gradR V (R)

)
= LR

[
N∑
j=1

(
Cr
j

`rj

e−d(R,Rj)/`r
j

d(R,Rj)
−
Ca
j

`aj

e−d(R,Rj)/`a
j

d(R,Rj)

)
logR(Rj)

]
. (5.11)

Recalling the definition in (5.3) for the Riemannian distance between two points in the
manifold SO(3), the equation (5.11) becomes:

LR

(
gradR V (R)

)
= LR

[
N∑
j=1

Cr
j

`rj

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−
Ca
j

`aj

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R>Rj)‖F

 logR(Rj)
]
.

(5.12)
The left translation operator (defined in (5.3)) was used to transport the potential term in
the Lie algebra so(3):

LR

(
gradR V (R)

)
=

N∑
j=1

Cr
j

`rj

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−
Ca
j

`aj

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R>Rj)‖F

R> logR(Rj).

(5.13)

43
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Applying the definition of the logarithmic map for the manifold SO(3) (see (5.3)), we have:

R> logR(Rj) = R>RLog(R>Rj) = Log(R>Rj), (5.14)

where “Log” denotes the principal matrix logarithm. Finally, we have:

LR

(
gradR V (R)

)
=

N∑
j=1

Cr
j

`rj

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−
Ca
j

`aj

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R>Rj)‖F

Log(R>Rj).

(5.15)

Let us prove how to get equation (5.6) from equation (5.5). Starting from one of the
properties of the SO(3) manifold, namely R>R = I3, the derivative of its two members
with respect to time is:

Ṙ>R+R>Ṙ = 0, (5.16)

which gives χ> + χ = 0 with Ṙ = Rχ. Deriving again the equation (5.16) with respect to
time yields:

R̈>R+ Ṙ>Ṙ+ Ṙ>Ṙ+R>R̈ = 0,

namely:
R̈>R+ 2Ṙ>Ṙ+R>R̈ = 0, (5.17)

where it results that:
2Ṙ>Ṙ = −2χ2. (5.18)

Now, since it is possible to calculate the covariant derivative as the projection on the
tangent space TRSO(3) of the naive∗ derivative R̈, we can write:

∇ṘṘ = R

2 (R>R̈− R̈>R) (5.19)

where it was used the projector operator defined in (5.3).

Matching the equations (5.16)–(5.17) as R̈>R = −R>R̈− 2Ṙ>Ṙ we have:

∇ṘṘ = R

2 (R>R̈− 2χ2 +R>R̈) = −Rχ2 + R̈, (5.20)

therefore, it results:
∇ṘṘ = R̈−Rχ2. (5.21)

Recalling that R̈ = Rχ̇+ Ṙχ = R(χ2 + χ̇) we have:

∇ṘṘ = R(χ2 + χ̇− χ2) = Rχ̇ ⇒ ∇ṘṘ = Rχ̇ (5.22)

and applying the left translation to the above result, we finally have:

χ̇ = LR(∇ṘṘ) (5.23)

as it was written above.
∗R̈ is denoted as naive derivative since it is calculated as the difference between two vectors:

the result will not belong to the tangent space at R. It has two components: one normal to the
tangent space and the other parallel to the tangent space. Through the projector operator defined
in (5.3) it is possible to keep the parallel component and it results that this component is equal
to the covariant derivative.
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5.4 Quadcopter model

We recall a quadcopter drone model from [16]:

Ṙ = Rχ,

χ̇ = D−1([Ĵq, χ
2] + [β, χ]− β̇ + τ)D−1,

β := (−ω1 + ω2 − ω3 + ω4)JRχz,
τ := br(ω2

4 − ω2
2)χx + br(ω2

3 − ω2
1)χy + γ(−ω2

1 + ω2
2 − ω2

3 + ω2
4)χz,

q̇ = v,

v̇ = 1
2
b
Mq

(ω2
1 + ω2

2 + ω2
3 + ω2

4)Rez − ḡez − 1
Mq

Γv,

(5.24)

where R denotes the attitude of the drone with respect to an inertial reference frame, χ
denotes its angular velocity, the ωi, i = 1, 2, 3, 4, denote the angular velocities of the
four propellers, q denotes the position of the center of mass of the drone, ez denotes the
unit vector ez := [0 0 1]>, τ denotes the mechanical torque exerted by the propellers on
the drone’s body and several constants represent the physical features of the drone, such
as mass, inertial coefficients and propeller efficiency parameters.

In order to perform numerical simulations, an OS4-Mini-VTOL quadrotor has been taken
as reference model, as reported in [17], therefore the parameters shown in Table 5.1 were
made use of.

Parameter Symbol Value
Overall quadrotor mass Mq 650 g

Inertia on x axis Jx 7.5× 10−3 kg ·m2

Inertia on y axis Jy 7.5× 10−3 kg ·m2

Inertia on z axis Jz 1.3× 10−2 kg ·m2

Thrust coefficient b 3.13× 10−5 N · s2

Drag coefficient γ 7.5× 10−7 N ·m · s2

Rotor inertia JR 6× 10−5 kg ·m2

Arm length r 0.23 m
Gravitational acceleration ḡ 9.81 m · s−2

Table 5.1: Summary table of the OS4 Mini-VTOL quadcopter parameters.

The drone model consists of a series of differential equations that need to be solved numer-
ically on a computing platform. Again a Euler method, tailored to the SO(3) case, will be
made use of.
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Figure 5.1: Quadcopter. Generated by Yihang Zhang’s Matlab script.

5.5 Control field design by dynamics replacement
and error feedback

In this section, we explain how to design a control field by dynamics replacement and error
feedback control through a direct transposition of VARP theory.

A second-order physical system on a Lie group G may be formulated asṘs = Rsχs,

χ̇s = σs(χs) + u,
(5.25)

where σs : g→ g denotes a state-transition function and u ∈ g a Lie-algebra control field.
The initial conditions of this system are Rs(0) = Rs,0 and χs(0) = χs,0. The aim of control
is to make the dynamics of the (5.25) conform to the desired dynamics of the model-systemṘm = Rmχm,

χ̇m = σm(χm),
(5.26)

where σm : g→ g denotes a state-transition function. The initial conditions of this system
are Rm(0) = Rm,0 and χm(0) = χm,0. The initial state of the model-system (5.26) would
likely differ from the initial state of the system (5.25). A way to achieve such result is to
set the control field as

u := σm(χm)− σs(χs) + κLRs(logRs Rm), (5.27)

where κ > 0 is a control parameter. The term σm(χm)−σs(χs) implements the principle of
dynamics replacement, namely, it has the purpose to cancel the dynamics of the real-world
system and replace it with those of the model system. The term logRs Rm represents a
feedback error on the Lie-group variables and has the purpose to align such states to one
another. In fact, notice that dynamics substitution aligns the angular velocities, which per
se, does not align the states. In addition, this term compensates for possible mismatches
in the drone model.
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5.6 Design of a VARP-based control law for a
quadcopter drone

The above general-purpose control-design theory may be tailored to the case of interest in
the present research work as follows.

In the present setting, the second-order physical system (5.25) represents a quadcopter
drone, namely:

σs(χs) := D−1([Ĵq, χ2
s ] + [β, χs]− β̇)D−1, (5.28)

while the system model (5.26) represents the dynamic prescribed by the VARP theory,
namely:

σm(χm) := α χ̂m − µχm − LRm(∇RmV ). (5.29)

The only term that can be acted upon to control a drone is the external mechanical torque
τ ∈ so(3), hence, in the present setting, the control field u introduced in (5.25) reads

u := D−1τD−1 ∈ so(3). (5.30)

According to the control design theory introduced at the beginning of this chapter, we shall
set the control field to

u = α χ̂m − µχm − LRm(∇RmV )−D−1[Ĵq, χ2
s ]D−1 −D−1[β, χs]D−1+

+D−1β̇D−1 + κLRs(logRs Rm).
(5.31)

Therefore, the VARP control method yields a particular value of the mechanical torque

τVARP := DuD = αDχ̂mD − µDχmD −DLRm(∇RmV )D − [Ĵq, χ2
s ]− [β, χs]+

+ β̇ + κDLRs(logRs Rm)D,
(5.32)

which needs to be generated by the propellers in order to drive the quadcopter drone along
a desired trajectory. Ultimately, the final system of equations that described a VARP-
controlled drone is:

Ṙm(t) = Rm(t)χm(t),

χ̇m(t) = α χ̂m(t)− µχm(t)− LRm(t)(∇RmV ),

LR(∇RV ) =
N∑
j=1

Cr
j

`rj

e

−‖Log(R>Rj)‖F
`r
j

‖Log(R>Rj)‖F
−
Ca
j

`aj

e

−‖Log(R>Rj)‖F
`a
j

‖Log(R(t)>Rj)‖F

Log(R>Rj),

Ṙs(t) = Rs(t)χs(t),

χ̇s(t) = D−1([Ĵq, χ2
s (t)] + [β, χs(t)]− β̇(t) + τVARP(t))D−1,

τVARP = αDχ̂mD − µDχmD −DLRm(∇RmV )D − [Ĵq, χ2
s ]− [β, χs]+

+ β̇ + κDLog(R>s Rm)D.

(5.33)

A simplified control scheme would arise from the following two hypotheses:

• It is not necessary to synchronize the attitudes of the two systems perfectly, which
implies that the constant κ may be set to zero. In addition, since the master is a
purely algorithmic system, it may be initialized to the initial conditions of the slave
(drone) system.
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• The rotational speeds of the two systems are quite close to each other, namely
χm ≈ χs, hence their values may be taken as equal to a common value χ.

Under the above hypotheses, the control scheme would simplify to
Ṙ = Rχ,

χ̇ = D−1([Ĵq, χ2] + [β, χ]− β̇ + τVARP)D−1,

τVARP := αDχ̂D − µDχD −DLR(∇RV )D − [Ĵq, χ2]− [β, χ] + β̇,

(5.34)

where the footers dropped since all quantities pertain to the quadcopter drone.
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5.7 Physical realizability and control effort analysis

It is necessary to make sure that the control field prescribed by the VARP theory will be
consistent with the mechanical torque generated by the four propellers, namely:

• the velocity of rotation χ cannot be too high and its component along z must be
almost zero;

• the mechanical torque τ is generated by the fans, which can rotate up to a maximum
limit of velocity (the propellers are small DC-brushless electrical motors, hence they
cannot generate a large thrust). Moreover, the velocities ω1, ω2, ω3, ω4 are bound
to not differ excessively from the hovering velocity, which is denoted as ωss in [16]
and satisfies

ω2
ss = Mqḡ

2b . (5.35)

In order to check whether the designed control strategy fulfills the physical realizability
of the control action, we shall analyze the value of the three components Ωx := 〈χ, χx〉,
Ωy := 〈χ, χy〉 and Ωz := 〈χ, χz〉 of the angular velocity of the drone as well as the three
components of the control torque field τVARP, namely τV

x := 〈τVARP, χx〉, τV
y := 〈τVARP, χy〉

and τV
z := 〈τVARP, χz〉. The components of the control torque are bound to the values

generated by the four fans, as described in (5.24), namely
τx := br(ω2

4 − ω2
2),

τy := br(ω2
3 − ω2

1),

τz := γ(ω2
2 − ω2

1 + ω2
4 − ω2

3).

(5.36)

We further recall the hovering condition b(ω2
1 + ω2

2 + ω2
3 + ω2

4) = 2Mqḡ. In addition, it is
worth surveying the value of the control effort

ε := 1
2

√
〈u, u〉, (5.37)

that quantifies the effort required to the actuators to achieve a desired control action.

A fundamental step in the analysis of the physical realizability of the VARP control action
is the computation of the propellers speed corresponding to the control field. In order to
compute the rotors angular velocities corresponding to the control field τVARP, it is possible
to derive three conditions from the equations (5.36):

br(ω2
4 − ω2

2) = τV
x ,

br(ω2
3 − ω2

1) = τV
y ,

γ(−ω2
1 + ω2

2 − ω2
3 + ω2

4) = τV
z .

(5.38)

The system (5.38) is under-determined, since it totals three equations in four unknowns,
therefore a fourth constraint needs to be added by considering the drone in a hovering
condition. The added constraint is:

b
2 (ω2

1 + ω2
2 + ω2

3 + ω2
4) = Mqḡ (5.39)
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and the system (5.38) can be updated as

ω2
4 − ω2

2 = 1
br τ

V
x ,

ω2
3 − ω2

1 = 1
br τ

V
y ,

−ω2
1 + ω2

2 − ω2
3 + ω2

4 = 1
γ τ

V
z ,

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 2Mqḡ
b .

(5.40)

The above system of equations is linear in the unknowns ω2
1 , ω2

2 , ω2
3 and ω2

4 and admits
solutions 

ω2
1 = −2γτV

y −brτ
V
z +2rγMqḡ

4brγ ,

ω2
2 = brτV

z −2γτV
x +2rγMqḡ

4brγ ,

ω2
3 = 2γτV

y −brτ
V
z +2rγMqḡ

4brγ ,

ω2
4 = 2γτV

x +brτV
z +2rγMqḡ

4brγ .

(5.41)

The solutions (5.41) are real-valued, hence physically realizable, in principle, whenever
the values taken by the components of the control field do not differ too largely from one
another and are absolutely bounded. Furthermore, the more massive the drone, the lighter
the effect of the control field components on the propellers velocities. Introducing the
expression (5.35), the above solutions may be rewritten as

ω2
1 = ω2

ss − 1
2br τ

V
y − 1

4γ τ
V
z ,

ω2
2 = ω2

ss − 1
2br τ

V
x + 1

4γ τ
V
z ,

ω2
3 = ω2

ss + 1
2br τ

V
y − 1

4γ τ
V
z ,

ω2
4 = ω2

ss + 1
2br τ

V
x + 1

4γ τ
V
z .

(5.42)

From the above expressions it is apparent how the control actions cause a deviation of the
rotors velocities from the hovering velocity. Such deviations need to be small in order to
guarantee the physical realizability of a control action. It is worth noticing how the τV

z

component of the control torque field influences all rotors velocities, as it is responsible for
the yawing of the quadcopter drone, while the τV

x component only affects the rotors along
the y-axis and the τV

y component only affects the rotors along the x-axis.

A further observation of interest is that the hovering condition (5.39) is valid only when
a quadcopter is almost horizontal with respect to the inertial reference frame: whenever
a drone is tilted, the normal component of the thrust decreases, hence, to balance the
gravitational pull, it is necessary to increase slightly the speed of the rotors. For a tilted
quadcopter (namely R 6= I3), the hovering condition generalizes to:

b
2 (ω2

1 + ω2
2 + ω2

3 + ω2
4)Rez = Mqḡez. (5.43)

This is a vector equation with only a scalar unknown ω2
1 + ω2

2 + ω2
3 + ω2

4 , hence it may be
solved by pre-multiplying both sizes by e>z , which leads to

b
2 (ω2

1 + ω2
2 + ω2

3 + ω2
4) = Mqḡ

e>z Rez
. (5.44)
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Notice that |R(3,3)| = |e>z Rez| ≤ 1, hence the right-hand side of the condition (5.44) is
larger than (or equal to) Mqḡ. In the case of R 6= I3 the system (5.38) can be updated as:

ω2
4 − ω2

2 = 1
br τ

V
x ,

ω2
3 − ω2

1 = 1
br τ

V
y ,

−ω2
1 + ω2

2 − ω2
3 + ω2

4 = 1
γ τ

V
z ,

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 2Mqḡ
be>z Rez

.

(5.45)

The above system of equations is linear in the unknowns ω2
1 , ω2

2 , ω2
3 and ω2

4 and admits
solutions 

ω2
1 = Mqḡ

2bR(3,3)
− τV

y

2br −
τV
z

4γ ,

ω2
2 = Mqḡ

2bR(3,3)
− τV

x

2br + τV
z

4γ ,

ω2
3 = Mqḡ

2bR(3,3)
+ τV

y

2br −
τV
z

4γ ,

ω2
4 = Mqḡ

2bR(3,3)
+ τV

x

2br + τV
z

4γ ;

(5.46)

introducing the (5.35) the system could be rewritten as

ω2
1 = ω2

ss
R(3,3)

− τV
y

2br −
τV
z

4γ ,

ω2
2 = ω2

ss
R(3,3)

− τV
x

2br + τV
z

4γ ,

ω2
3 = ω2

ss
R(3,3)

+ τV
y

2br −
τV
z

4γ ,

ω2
4 = ω2

ss
R(3,3)

+ τV
x

2br + τV
z

4γ .

(5.47)

The steady-state velocity of the OS4-Mini-VTOL quadcopter is ωss =
√

Mqḡ
2b ≈ 319 rad/s.

The constants that appear in the expressions (5.42) take values 2br ≈ 1.44×10−5 [N][m][s2]
and 4γ = 3× 10−6 [N][m][s2].

5.8 Case-Study: Single attractive/repulsive point

As a case-study, let us consider a VARP-controlled drone with a single attraction point.
The equations of motion may be summarized as follows:

Ṙ = Rχ,

χ̇ = α χ̂− µχ−
[
Cr

`r exp
(
−‖Log(R>Ra)‖F

`r

)
− Ca

`a exp
(
−‖Log(R>Ra)‖F

`a

)]
Log(R>Ra)
‖Log(R>Ra)‖F

,

q̇ = v,

v̇ = b
2Mq

(∑4
i=1 ω

2
i

)
Rez − ḡez − 1

Mq
Γv,

(5.48)
where Ra ∈ SO(3) denotes a desired/undesired attitude. It is important to emphasize that
the translational component of motion depends on the attitude R as well as on the sum
of squared velocities of the propellers, which is an independent variable, as discussed in
Section 5.7. For example, one may well set

4∑
i=1

ω2
i = η

2Mqḡ

b e>z Rez
, (5.49)
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where the coefficient η has the meaning of ‘throttle’, namely η < 1 causes a drone to
descend, η > 1 causes vertical ascent, while η = 1 corresponds to hovering in midair. The
value assigned to the coefficient η must be compatible with the physics of the drone.

In this case, the equations of motion may be rewritten as:



Ṙ = Rχ,

χ̇ =
(

α

‖χ‖F
− µ

)
χ−

[
Cr

`r
exp

(
−‖Log(R>Ra)‖F

`r

)
+

− Ca

`a
exp

(
−‖Log(R>Ra)‖F

`a

)]
Log(R>Ra)
‖Log(R>Ra)‖F

,

q̇ = v,

v̇ = ḡ

(
η R

e>z Rez
− I3

)
ez −

1
Mq

Γv,

(5.50)

where the term ḡMq

(
η R

e>z Rez
− I3

)
ez denotes the net mechanical force that the propellers

are able to exert on the (center of mass of the) drone. Notice that when R = I3, such net
force equals (η − 1)Mqḡez, which further clarifies the role of the coefficient η.

5.9 Numerical integration of the Initial Value
Problem

In order to simulate numerically the above control scheme, we will apply the most widely
used method for the numerical integration of first order dynamical system equations, the
forward Euler method.

Writing again the controlled system in (5.33) in a more compact way we have:
Ṙ(t) = R(t)χ(t),

χ̇(t) = σ(χ(t), R(t)),

ξ(0) = χ0, R(0) = R0,

(5.51)

where σ : so(3)×SO(3)→ so(3) is the right-hand side of the second equation in (5.33) and
it takes a matrix R ∈ SO(3), a matrix ξ ∈ so(3) and all the other constant coefficients of
the VARP control method.

According to the fEul method, the value of the first-order derivative can be approximated
by means of the right-side incremental ratio:

χ̇(t) = χ(t+ h)− χ(t)
h

+ ε(t). (5.52)

Ignoring the error term ε(t) and applying a uniform time discretization, we obtain:

χk+1 − χk
h

= σ(χk, Rk), k = 1, 2, 3, . . . , (5.53)
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which gives rise to the iteration:

χk+1 = χk + hσ(χk, Rk), k = 1, 2, 3, . . . . (5.54)

All the previous terms live in the same space, namely so(3). We have:

σ(χk, Rk) = αχ̂k − µχk − LRk
(
∇RkV (Rk)

)
. (5.55)

Then we can consider the numerical integration of the first equation of (5.51) which is

Ṙ(t) = R(t)χ(t) := ν(R(t), χ(t)). (5.56)

Note that R ∈ SO(3), Ṙ ∈ TRSO(3) and χ ∈ so(3). The solution of (5.56) could be
approximated by fEul and discretized as

Ṙ(t) = ν(R(t), χ(t)) = R(t+ h)−R(t)
h

+ ε(t) ⇒ Rk+1 = Rk + hν(Rk, χk) (5.57)

but it is not legitimate to make the sum operation on the right-hand side of the arrow
because Rk ∈ SO(3) and ν(Rk, χk) ∈ TRkSO(3). Since they live in different spaces we can
use the exponential map, which is an operator that maps a pair (R, V ) ∈ TSO(3) into a
point in the SO(3) manifold. Ultimately, the equation (5.57) should be written as:

Rk+1 = expRk(hν(Rk, χk)) ⇒ Rk+1 = RkExp(hR>k ν(Rk, χk)). (5.58)

The equations that we have to implement numerically are:
Rk+1 = RkExp(hR>k ν(Rk, χk)),

χk+1 = χk + hσ(χk, Rk),

k = 0, 1, 2, 3, . . . ,

(5.59)

where: ν(Rk, ξk) = Rkχk,

σ(χk, Rk) = αχ̂k − µχk − LRk
(
∇RkV (Rk)

)
,

(5.60)

therefore the complete equations are:

Rk+1 = RkExp(hR>k Rkχk) ⇒ Rk+1 = RkExp(hχk),

χk+1 = χk + αhχ̂k − µhχk − hLRk
(
∇RkV (Rk)

)
,

LR
(
∇RV (R)

)
=

N∑
j=1

[(Cr
j

`rj

exp
(
−‖Log(R>Rj)‖F

`r
j

)
‖Log(R>Rj)‖F

)
+

−
Ca
j

`aj

exp
(
−‖Log(R>Rj)‖F

`a
j

)]
‖Log(R>Rj)‖F

)
Log(R>Rj),

k = 0, 1, 2, 3, . . . .

(5.61)
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Chapter 6
Double VARP Control for

Quadcopter Motion in the Space

The SO3-VARP has been designed in the previous chapter for the control of the quad-
copter’s attitude: given a desired attitude, the VARP principle will provide the torque
τVARP that the propellers must produce in order to steer the drone into the desired atti-
tude.

Recalling the quadcopter model (5.24) it is possible to notice that the SO3-VARP will affect
only the dynamic evolution of the attitude R and the angular velocity χ of the quadcopter.

Since the quadcopter is a physical system which could maneuver in the 3D space, we must
deal also with the last two equations, namely q̇ and v̇, which respectively represent the
quadcopter speed and acceleration in the 3D space.

Implementing the equations of speed and position it is possible to notice that with only
the SO3-VARP, the drone will be wandering in the space. We aim to direct the quadcopter
towards a defined target in space. In this section it will be explained how to exploit the
notion of VARP regulation to achieve position control applied to quadcopter guidance.

6.1 Double VARP Control Theory

Recalling the equations (5.24), the main idea is to use two instances of the VARP regulation
theory. Namely, two controllers will work concurrently to achieve two goals:

• An instance (VARP1) will serve to stabilize the attitude of a drone during flight.
The purpose of this instance of VARP controller will be to make sure the tilt of the
drone keeps limited, namely that the x− y plane of the drone will always stay in an
almost-horizontal orientation, hence stabilizing its flight mode;

• An instance (VARP2) will regulate the tilting of the drone in such a way that it
is steered toward a pre-defined target point in space, in spite of its initial position,
tilting and rotation speed.
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6.1. Double VARP Control Theory

To what concern positional regulation, from the last equation in the quadcopter model
(5.24), it is possible to notice that the thrust of the drone will be always normal to its
x − y plane, therefore, in order to steer the quadcopter toward a desired direction, the
thrust must be directed toward the target and, consequently, the drone’s body must be
tilted (i.e., rolled and pitched) along an appropriate direction. Particularly the z axis of
the drone must be aligned to a desired direction.

A VARP controller is used to calculate a desired attitude at every instant, and a mechanical
torque is calculated that tends to align the z axis of the drone to the steering direction. The
mechanical torque is, in fact, computed by a cross product between the steering direction
provided by the controller and the direction of the z axis of the drone. In addition, special
attention should be given to fill up the vertical gap between the drone’s actual position
and the target, which may be achieved independently by setting the throttle coefficient
proportional to such gap.

The equations of motion may be summarized as follows:

Ṙ = Rχ,

χ̇ = −µχ+ τV
1 + τV

2 ,

q̇ = v,

v̇ = ḡ

(
η R

e>z Rez
− I3

)
ez −

1
Mq

Γv,

(6.1)

where the self-propelling term has been eliminated as it was deemed to be detrimental
(namely, we set α = 0), and τV

1 ∈ so(3) and τV
2 ∈ so(3) denote the mechanical torques

corresponding to the two concurring VARP controllers. In order to complete the equations,
we need to specify the laws to compute iteratively the quantities η, τV

1 , τV
2 .

In the following, we shall denote as qt ∈ R3 the set point. The displacement ε ∈ R3 between
the current location of the (center of mass of the) drone and the set point is defined as

ε := qt − q. (6.2)

The z component of the displacement will be denoted as εz := ε>ez.

Vertical positioning: In order to achieve vertical positioning, it is necessary to establish
an evolution law for the coefficient η. The following law was exploited:

η = exp(Cη εz), (6.3)

where Cη > 0 is a coefficient that controls the sensitivity of the vertical control action to
the vertical displacement. When εz > 0, the drone is under the set point, hence it must
ascend, therefore η > 1; when εz < 0, the drone is over the set point, hence it must descend,
therefore η < 1.

Attitude stabilization (VARP1): The controller VARP1 must output a control torque
τV
1 that tends to keep the drone as horizontal as possible. Therefore, it may be set up as a

SO(3)-VARP without repulsion points and with an attraction point set to the identity I3.
Since a stabilization control action needs not be excessively stringent at target attitude, it
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6.1. Double VARP Control Theory

is not necessary to choose a sharp potential as in Bertozzi et al. [1], hence we relaxed the
potential function to a Gaussian one, namely, we have defined

V1(R) := 1
2C1`1 exp

(
−d2(R, I3)

`1

)
, (6.4)

where d : SO(3)2 → R denotes a Riemannian distance. Notice that the coefficients have
been written in a slightly different way, which facilitates the implementation of the control
action. We thus have:

τV
1 := LR (gradR V1) = −C1 exp

(
−‖Log(R)‖2F

`1

)
Log(R), (6.5)

where we have used the fact that Log(R>) = −Log(R).

Positional control (VARP2): The main idea carried out in this section consists in
defining a mechanical torque to steer a drone toward a set point. The controller VARP2

must output a control torque. Therefore, it may be set up as a R3-VARP without repulsion
points and with an attraction point set to the desired location qt. Again, we relaxed the
sharp Laplacian potential function to a rounder Gaussian one, namely, we defined

V2(ε) := 1
2C2`2 exp

(
−‖ε‖2

`2

)
. (6.6)

The corresponding mechanical torque is defined as

τV
2 := J(R ez) ∧ (− gradε V2)K = C2 exp

(
−‖ε‖2

`2

)
J(R ez) ∧ εK, (6.7)

where ∧ denotes cross vector product. The analytical form of the mechanical torque
J(R ez) ∧ (− gradε V2)K has the effect to orientate the z axis of the drone toward the posi-
tional displacement ε.

The complete set of equation describing the controlled drone read:

Ṙ = Rχ,

χ̇ = −µχ− C1 exp
(
−‖Log(R)‖2F

`1

)
Log(R)+

+ C2 exp
(
−‖qt − q‖2

`2

)
J(R ez) ∧ (qt − q)K,

q̇ = v,

v̇ = ḡ

(
eCη (qt−q)>ez

e>z Rez
R− I3

)
ez −

1
Mq

Γv,

(6.8)

which may be implemented by a numerical method (see Section 5.9) once initial conditions
R(0) = R0, χ(0) = χ0, q(0) = q0 and v(0) = v0 and a target position qt are provided.
Notice that the initial conditions may be arbitrarily given as long as they are compatible
with the physics of the drone (for instance, the axis R0ez may not be excessively tilted
away from vertical, and the initial rotational speed χ0 may not exceed the drone’s maximal
acceptable rotation speed).
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6.2. Rotors’ speed

6.2 Rotors’ speed

As it was discussed in the Section 5.7, it is important to make sure that the control field
resulting from the VARP theory is consistent with the mechanical torque generated by the
four propellers.

First of all we must define the control law that will be used in the system (5.34), namely
we must define the τVARP law. The control law could be designed as follow:

τVARP := −µDχD +DτV
1 D +DτV

2 D − [Ĵq, χ2]− [β, χ] + β̇. (6.9)

Placing the control law in (5.34), we obtain the equations showed in (6.1).

It is also important to calculate the rotors’ speed. In order to do this we can take again
the system (5.38) which is under-determined. This time we must use as last condition the
equation (5.49). The final system to compute the speed of rotors will be:

br(ω2
4 − ω2

2) = τV
x ,

br(ω2
3 − ω2

1) = τV
y ,

γ(−ω2
1 + ω2

2 − ω2
3 + ω2

4) = τV
z ,

ω2
1 + ω2

2 + ω2
3 + ω2

4 = η
2Mqḡ
b e>z Rez .

(6.10)

The above system of equations is linear in the unknowns ω2
1 , ω2

2 , ω2
3 and ω2

4 and admits
the same solutions of the system (5.46). Rooting the square values of the rotors’ speed
from (5.46) it is possible to calculate rotors’ angular speeds to make the drone follow
the trajectory computed by the Double VARP control method. The rotors’ speeds just
obtained are expressed in radians but, in the field of quadcopters, it is common to express
them in RPM (revolutions per minute). In order to convert radians to RPM we will use:

ωRPM = 30
π
ωrad, (6.11)

where ωRPM is the value of angular speed in RPM and ωrad is the value in radians computed
by means the control method.
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6.3 Simulations and results of D-VARP Method

In this section we will test how D-VARP can be effective in controlling attitude and position
of the drone introduced in Section 5.4.

As already explained above, the two instances of D-VARP act simultaneously and must be
balanced in such a way that one does not prevail over the other. To do this it is necessary
that the parameters of the two instances are well balanced. As a matter of fact, in the
event that the VARP1 instance prevails over the VARP2 instance, the drone would tend to
maintain an attitude too close to the identity matrix I3. This would cause a predominantly
vertical flight and the drone would struggle to reach the target in an acceptable time. On
the contrary, in the event that the VARP2 instance prevails over the VARP1 instance, the
drone would tend to assume risky positions, which could also lead to overturning. Indeed,
in the event that the drone is required to reach a target placed horizontally with respect to
its starting position, the drone would have no control over the attitude’s safety and could
reach an attitude such that it overturns.

Furthermore, also the Cη coefficient relative to vertical positioning is fundamental to obtain
a flight similar to the ideal one. Indeed, a not balanced Cη parameter could cause a too early
or too late vertical positioning. In the event that the vertical positioning is anticipated, the
drone will reach the target altitude in the first moments of its flight and then assume the
correct attitude that will allow it to move horizontally. This imbalance between coefficients
would therefore lead to a flight path very different from the optimal one, as the drone would
move first vertically, then horizontally but not simultaneously. Similarly, if the vertical
positioning is delayed, the drone would move first horizontally, then vertically. Thus, in
this section, contrary to what was done in previous tests, we won’t modify the parameters
of the two D-VARP instances, because we managed to find a set of universal parameters
that are almost optimal for each test. Indeed, after several tests, we have noticed that this
set of parameters is efficient in almost all cases; this is an evident feature given that many
sets of parameters work for a small variety of situations. Instead of focusing on evaluating
sets of parameters, we will focus mainly on the quadcopter’s ability to reach the target and
remain in balance under several conditions. Indeed, we will see how the drone will behave
under ideal and not ideal initial conditions, under disturbing circumstances, such as gusts
of wind, and in the case in which the path is composed of intermediate targets. Editing
D-VARP parameters involves, as we can imagine, the precision of the drone in following
the minimum path and the speed with which it reaches the target. The set of parameters
found, as snown in Table 6.1, guarantees satisfactory speed and precision.

As mentioned earlier, two scenarios for the departure of the drone can be distinguished:
optimal and non-optimal conditions. By optimal conditions we mean the situation in which
the drone is at the initial instant with a translational and rotational speed equal to zero
and with an initial attitude almost equal to the I3 matrix: this means that the drone is
motionless and upright. These are defined as optimal because it is uncommon that the
drone is in these conditions when it is assigned a target to reach. Furthermore, these
conditions mean that the drone is as facilitated as possible to reach a certain attitude,
necessary to reach the target. By non-optimal conditions, however, we mean situations
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D-VARP Parameters
Parameter Value
C1 2
`1 500
C2 2.6 ·10−3

`2 6 ·103

Cη 7.5 ·10−4

Table 6.1: Parameters for D-VARP tests.

very close to the real ones, in which the drone is at a non-negligible speed and with a
different attitude from the identity matrix I3. Non-optimal conditions often imply a more
difficult control of the drone, especially in the initial instants, as the latter is forced to
make a greater effort to find the right attitude which allows to reach the target. However,
in the most fortunate cases, there are non-optimal conditions that can benefit the drone, as
they facilitate the achievement of the target. We will illustrate the behavior of the drone
during its flight using trough the following figures:

• Target approaching: through the use of two 3D graphs, the drone path will be
reported from two different points of view. The black dashed line connects the
starting point with the target. It represents the shortest path which the drone can
travel (henceforth we will call it as minimum path). The solid blue line represents
the path taken by the drone. The starting point is represented with a green dot, the
target with a green square, and the quadcopter’s arrival point with a blue diamond.
More details about this figure will be provided in the related tests;

• Distance to target: this panel indicates the remaining distance from the target,
as the time t changes. If this distance d := ‖qt − q‖ reaches zero, it means that the
drone is located in the target position;

• Inclination to vertical: in order to understand how much the drone tilts during
its flight, this panel indicates its inclination with respect to the vertical axis. This
inclination will be represented with: θ := arccos[e>z Rez];

• Torque components: this panel reports the torque that the rotors must exert in
order to allow the drone to tilt in the right way and reach the target. These torque
components are provided by the D-VARP control method;

• Control effort: this graph report the effort required to the rotors by the control
law;

• Rotors’ speed: by using this graph, the rotors’ speed are reported as time t changes.
We expect that the rotor speeds tend to hovering value as the drone approaches the
target. The rotors’ speed will be indicated with four lines of different colors. For the
first test a more detailed overview of these speeds will be provided. In particular,
this detail will be used to understand the speed trend in the first moments of flight;

• η coefficient: this graph shows the trend of the η coefficient over time. According
to Equation (6.3), we expect this coefficient to have an exponential trend.
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6.3.1 First Test

In this test, we set the target to a lower altitude with respect to the starting position.
This test was carried out considering ideal initial conditions. As we can see from Figure
6.1, the drone follows a path that is very close to the minimum one, which means that the
parameters used for this simulation are effective. Choosing a worse set of parameters would
cause a slow flight or a path very different from the minimum one, which is represented
by the dashed line. From Figure 6.1 we can see that already from the starting instant the
drone follows a different path from the optimal one, this is due to the transient time during
which the drone settles itself into the correct attitude that allows it to reach the target.

In Figure 6.2 we can see the panels which give us an idea of how the drone behaves during
its flight. As we could also imagine from the previous figure, the distance panel shows us
that the drone is able to get closer to the target gradually. By focusing on the drone’s
inclination, we can see that the latter is more tilted in the initial moments of its flight. This
happens because in the initial instants the drone tilts until it reaches a desired attitude,
which allows to reach the target. Once the target is reached, the inclination of the drone
is zero; this means that the drone is upright with respect to the ground. As shown by
the panel, the drone’s attitude gets closer to the I 3 matrix as the quadcopter approaches
the target. The torque values, as shown by the relative graph, tend to zero very quickly,
particularly in the first moments of flight. Furthermore, the quantities assumed by these
values are very small. The same considerations also apply to the control effort panel: the
control effort values remain very small and tend to zero quickly. These last values are larger
in the first moments of flight because the drone has to change attitude quickly. We can
also notice, as we could have imagined, that the η coefficient increases with an exponential
trend, in accordance with the Equation (6.3). From the rotors’ speed panel we can notice
how the velocities increase until the hovering value (RPMss) is reached. Once the hovering
value has been reached, the drone is in balance and in proximity to the target. In Figure 6.3
we can see the trend of rotors’ speed in the first instants of simulation. We can note that
in these instants rotors’ speed values are slightly different from each other: this difference
between the values involves the inclination of the drone. In the next tests this graph will
not be reported for redundancy reasons, however the behavior of the drone remains similar
to that shown in this test.
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Figure 6.1: First test - Target approaching from two different perspectives.
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Figure 6.2: First test - Quadcopter’s flight overview.
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Figure 6.3: First test - Rotors’ speed in the first instants.
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6.3.2 Second Test

This test was carried out considering the initial conditions as optimal. In this case, the
drone is at a lower altitude than the target’s one. The results obtained are very similar to
those of the previous test, with the exception of the η coefficient which in this case has a
decreasing trend. Furthermore, the rotor speeds must be greater than the hovering speed
while the quadcopter is approaching the target: this is because the starting point has a
lower altitude with respect to the target, so it must overcome the altitudinal gap increasing
the speed of the rotors above the hovering value. Figures 6.4 and 6.5 show the results of
this test.
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Figure 6.4: Second test - Target approaching from two different perspectives.
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Figure 6.5: Second test - Quadcopter’s flight overview.
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6.3.3 Third Test

In this test we positioned the target exactly below the starting position, in such a way as to
make the quadcopter follow a vertical path. As we can see from Figure 6.6, the quadcopter
follows a path that can be considered completely vertical, since the movement along the
x̂ and ŷ directions is of the order of millimeters. Figure 6.7 shows an overview about
the drone’s flight. It is interesting to notice from the "Inclination to vertical" panel how
the drone maintains itself in a vertical position throughout its flight, since the maximum
inclination is in the order of hundredths of a degree. Furthermore, we can also notice that
the control effort and the torque values are two orders of magnitude smaller than in the
previous tests; this was predictable since, as previously mentioned, these two values depend
on how different the desired attitude is from the identity matrix I3.
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Figure 6.6: Third test - Target approaching from two different perspectives.
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Figure 6.7: Third test - Quadcopter’s flight overview.
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6.3.4 Fourth Test

Similarly to what was done in the previous test, in this simulation we positioned the target
exactly above the starting position, in such a way as to make the quadcopter follow a
vertical path. Also in this case, as Figure 6.8 shows, the drone follows a vertical path,
with only small movements along the x̂ and ŷ directions of the order of millimeters. The
considerations made regarding Figure 6.7 are also valid for Figure 6.9. This test was carried
out considering optimal initial conditions.

51.7 51.7005 51.701 51.7015 51.702

110

100

90

80

70

60

50

40

30

-34.8992 -34.8996 -34.951.7

120

110

100

90

80

70

60

50

40

30

Figure 6.8: Fourth test - Target approaching from two different perspectives.
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Figure 6.9: Fourth test - Quadcopter’s flight overview.
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6.3.5 Fifth Test

In this test we positioned the target at the same altitude as the starting point, in order
to make the drone perform a horizontal flight. This test was carried out considering
optimal initial conditions. Figure 6.10 shows the path traveled by the drone, which can
be considered horizontal, given that the altitude variation is in the order of tenths of a
millimeter. Particularly worthy of note is the fact that, as shown in Figure 6.11, the rotors
of the drone assume a speed value almost equal to the hovering one: RPMss ≈ 3048.
Furthermore, as we might have expected, the value of η is approximately equal to 1.
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Figure 6.11: Fifth test - Quadcopter’s flight overview.
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6.3.6 Sixth Test

This test was done considering non-optimal initial conditions. Indeed, the drone has a
starting speed and inclination not favorable to reaching the target. It can be seen from
Figure 6.12 how the drone is initially moving along a direction which does not coincide with
the one connecting the target with the initial position. From Figure 6.13 it is interesting
to notice how the drone is initially tilted by approximately 20 degrees with respect to the
attitude corresponding to the identity matrix I3. This also causes increased control effort
and torque. Despite the unfavorable initial conditions, the drone manages to reach the
target.
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Figure 6.12: Sixth test - Target approaching from two different perspectives.
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Figure 6.13: Sixth test - Quadcopter’s flight overview.
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6.3.7 Seventh Test

In this test we will study what happens if the quadcopter is hit by impulsive forces, namely,
recalling the acceleration equation from the quadcopter model (5.24), we have considered:

v̇ = 1
2
b

Mq
(ω2

1 + ω2
2 + ω2

3 + ω2
4)Rez − ḡez −

1
Mq

Γv + Fimp

Mq
, (6.12)

where Fimp is a three-dimensional vector that represents the impulsive force acting on
the drone. Denoting as U(t) the unit-step function, an impulsive disturbance may be
represented as

Fimp(t) :=

fxfy
fz

 (U(t− Thit)− U(t− Thit −∆Thit)), (6.13)

where fx, fy and fz denote three force components randomly drawn from the interval
[−3.25, 3.25] (N), Thit denotes the inception of a disturbance and ∆Thit denotes its dur-
ation. Notice that the values of the force components are chosen so that the entries of
Fimp
Mq

range approximately in [−5, 5] (m/s2), which is approximately half of gravitational
acceleration.

This test is useful to simulate the presence of a gust of wind during the flight of the drone.
This type of disturbance is predictable in a real situation, as drones in general perform their
tasks outdoors. In this case we tried to simulate a mild gust of wind with this property:
fx = fy = fz = 0.5 N, Thit = 75s, ∆Thit = 1.5s. The choice of Thit was made in such a way
that the gust of wind occurs just before the drone reaches the target, as we can see from
the Figure 6.14. Despite the disturbance, the drone manages to reach the target thanks
to the fact that D-VARP is effective even in unfavorable situations, as seen in previous
tests in which the initial conditions were not optimal. The effect of this disturb can also
be seen from the panels in Figure 6.15: the distance to the target slightly increases, the
inclination of the drone and the speed of its rotors change as soon as the disturb occurs.
It is interesting to notice that the drone, due to the disturbance, switch from a lower to
a higher altitude with respect to the target. This can also be seen from the rotor’s speed
and η panels.

As we can imagine, we can also subject the drone to repetitive gusts of wind: depending on
how unfavorable the external conditions are, the drone will be able to reach the target in
times that will be longer than those seen with favorable conditions. Subjecting the drone
to external forces also means requiring the rotors to make a considerable effort: it may
therefore happen that the rotors do not have the necessary power to overcome external
forces, making it impossible to control the drone.
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Figure 6.14: Seventh test - Target approaching from two different perspectives.
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6.3.8 Eighth Test

In this test we have positioned three targets which must be reached by the quadcopter in
the proper order. As we can see from Figure 6.16, the drone follows a path that is very
similar to the minimum one. This feature of the drone of following an almost minimal path
can be very useful for many purposes. For example, if we want to pass the drone inside a
curved tunnel, we could locate intermediate targets between the entrance and the exit so
that the drone does not hit the walls of the tunnel. From the Figure 6.17 we can see an
overview about the drone’s flight: it is important to note that the control effort suddenly
increases in correspondence with the target change.
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Figure 6.16: Eighth test - Target approaching from two different perspectives.

Figure 6.17: Eighth test - Quadcopter’s flight overview.
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6.3.9 Ninth Test

Similarly to what we did in the previous test, we placed four intermediate targets between
the final target and the initial position. The results, shown in Figures 6.18 and 6.19, are
consistent with the previous ones, as we might have expected. This technique of locating
intermediate targets can also be used for obstacles-avoidance: in the event that there is
an obstacle between the position of the quadcopter and the target, the drone can reach
intermediate targets in order to circumvent the obstacle.
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Figure 6.19: Ninth test - Quadcopter’s flight overview.
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Chapter 7
Conclusions and Future Works

In this work we have extended the VARP theory developed in [1] into several state spaces
in order to control different dynamic systems. In the first part of the document we were
concerned with verifying whether the VARP theory could be useful for the control of a
vehicle. This control method has proved effective in the control of a simple robot, the
Kelly, and also of a generic dynamical system developed in a S2 manifold. Given the
effectiveness of this method, we proceeded to extend this theory to a Lie group, namely
SO(3), in such a way as to control a drone whose equations belong to the same state space.
From the tests carried out in Section 6.3 we have proven the effectiveness of the Double
VARP, which is a control method that uses two instances of the VARP developed in SO(3)
to control the quadcopter.

The test results point out good insights for possible applications and future works. Regard-
ing VARP method, we have seen how it can be easily applied to commonly used robots,
such as robot vacuum cleaners. VARP theory is naturally very suitable for these types of
applications. It is also possible to think, for these types of usage, to define dynamic poten-
tials that mutate position and characteristics as time changes. This development can be
interesting as robots usually fulfill their tasks in dynamic environments, thus it is evident
the usefulness of employ dynamic potentials in order to control the robot even in the case
of unexpected events that occur during the completion of the their duties.

The fact that the VARP theory can also be extended to the sphere, as we have seen in
Chapter 4 makes it very interesting in those purposes where control in a spherical surface
is required. As an example, we can think of possible applications in the medical field, such
as in the field of robot assisted surgery. The use of S2-VARP could be useful for example in
the control of a robot that deals with performing delicate surgical operations on the brain.
Indeed we can think of the cranial surface or other parts of the human body as spherical
or pseudo-spherical surfaces. Works has already been done on the computational anatomy,
which aims to map the organs of the human body using mathematical frameworks [18, 19].
Based on what emerged from the tests in Section 6.3, we can think of applying this control
method to a drone in order to confirm the simulations. The application of this control
method could be carried out through the use of position and gyroscopic sensors, in order
to track the attitude of the drone and its position. As already mentioned in Subsection
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7. Conclusions and Future Works

6.3.9, Double VARP can be used, after an improvement, for purposes such as obstacle
avoidance. Indeed, we think of circumnavigating a large obstacle, such as a mountain or
a building, using intermediate targets that outline the perimeter of the obstacle. Another
possible improvement that can be implemented to the Double VARP could be to make the
method cooperative, in such a way as to control multiple drones, making them move in the
same space avoiding collisions.

In general, VARP technique can potentially be used for many purposes. Given a state
space in which the control problem lives, we can think of assigning attractive potentials to
the desired states, and repulsive potentials to each state that is dangerous for the control
that is set. For example, we could think of applying the VARP technique to control the
flow regulated by a valve, where an attractive potential is assigned to the desired flow rate,
while a repulsive potential is assigned to the quantity of flow capable of breaking the valve
itself.
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