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ABSTRACT

Iden}fying the level of human ac}vi}es is fundamental to take metabolic rate into account 

when assessing comfort in indoor environments. This master thesis studies the feasibility of 

employing mul}-ultrasonic sensors integrated with environmental sensors on a mul}domain 

monitoring plavorm to inves}gate model for personalized comfort assessment. 

For the experiment was considered a living environment for o昀케ce use and 10 healthy 

volunteer subjects were monitored. The test includes 5 typical o昀케ce ac}vi}es (wri}ng on 

paper, typing on PC, talking in the phone, standing and walking within the room) alternated by 

res}ng phases and surveys that deals with perceived comfort in di昀昀erent domains.

A昀琀er data acquisi}on and storage, a data calibra}on and 昀椀ltering processes were performed 

to extract meaningful temporal features, to detect o昀케ce ac}vi}es using temporal markers, 

such as the Root Mean Square (RMS), the Crest Factor (CF) and the Shape Factor (FF). 

Subsequently the markers were processed into }me series, leading to the construc}on of a 

dataset used to train di昀昀erent Machine Learning (ML) algorithms selected according to the 

literature. These algorithms include tradi}onal techniques like Random Forest (RF), Support 

Vector Machine (SVM) and k-Nearest Neighbours (k-NN), used to dis}nguish between ac}vity 

and non-ac}vity phases. Then were applied more advanced techniques such as Convolu}onal 

Neural Network (CNN) and Long Short-Term Memory Network (LSTM) to di昀昀eren}ate the 

di昀昀erent ac}vi}es. Results con昀椀rm the feasibility of integra}ng ultrasonic sensors in a 

monitoring plavorm to capture meaningful movement pa琀琀erns to discern various o昀케ce 

ac}vi}es. The di昀昀erent ML methods, also used in combina}on, have reached discrete 

accuracies in predic}ng the ac}vi}es that go from 64 to 87%. In addi}on, results show that 

from each ac}vity it9s possible to calculate di昀昀erent Predic}ve Mean Vote (PMV) values. 

Findings also reveals that ac}vity discrimina}on has an impact of 213% on the es}mated PMV 

values. This informa}on can be integrated in personal comfort models (PCMs) to op}mize the 

occupants9 well-being as well as thermoregula}on of the built environment and, hence, the 

building energy consump}on. 
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1. INTRODUCTION

1.1 Indoor Comfort Environment

In developed countries majority of people spend more than 90% of their }me indoors. Indoor 

condi}ons have therefore far-reaching implica}ons for their health, general well-being and 

performance.

These condi}ons are profoundly a昀昀ected by their geographical loca}on, season and age, and 

especially by job requirement, which results to be the primary parameters since the o昀케ce 

workers spend at least 40 h a week in their workplace. Thus, an e昀케cient and conducive 

working environment include proper}es of o昀케ce spaces layout such as interior design, size of 

personal workspace, worksta}on equipment and furniture ergonomics: all these factors 

determine how comfortable employees feel in the o昀케ce because it9s a vital and fundamental 

requirement for occupants to work e昀케ciently and produc}vely [1], [2].

However, over the last decades, research has shown that, in addi}on to the physical 

environment of o昀케ce spaces, indoor environmental quality (IEQ) has a signi昀椀cant e昀昀ect on the 

comfort, health and produc}vity of occupants. IEQ has become a cri}cal considera}on as it 

signi昀椀cantly impacts occupant the well-being, health, comfort and produc}vity of workers in 

o昀케ce buildings. IEQ includes a combina}on of elements such as thermal, acous}c and visual 

condi}ons and indoor air quality. 

These four domains are interconnected, and their combined e昀昀ect contribute to the overall 

indoor environment. In order to sa}sfy acceptable ranges of these parameters, codes and 

standards for each of these factors have been established and technologies and systems are 

being engineered in an e昀케cient energy manner. Even though the requirements of these 

standards are met, not all building occupants are sa}s昀椀ed with the indoor environment also 

depending more speci昀椀cally on their loca}on and rou}nes. In addi}on, the same indoor 

condi}ons may lead to contras}ng subjec}ve responses. One obvious reason is that human 

requirements are di昀昀erent and therefore not all are sa}s昀椀ed by the same condi}ons [3], [4].
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Thermal comfort can be defined as <that condition of mind that expresses satisfaction with 

the thermal environment= and so describe the occupant's subjective perception of 

Thermal equilibrium is obtained when an occupant9s 

1.2.1 Thermal Comfort Models

The evalua}on of thermal comfort can be carried out using Fanger9s indices: predicted mean 

vote (PMV) and predicted percentage dissa}s昀椀ed (PPD)

 

These approaches are recognized according  evalua}ng 

indoor environments [7]

- personal factors, that are individual-speci昀椀c characteris}cs of the occupant, including 

the metabolic rate and the clothing insula}on; 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermal-environment
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- environmental factors, that encompass condi}ons of the thermal environment which 

include air temperature, mean radiant temperature, air velocity and rela}ve humidity; 

- physiological factors, parameters that re昀氀ects the human body response, the sweat 

rate and the heart rate [8], [9].

Figure 1. Intuitive representation of how PMV model works. Given the parameters shown on the left, the 

PMV calculation can compute a number which represent the occupant's thermal sensation.
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Visual comfort is a subjec}ve response to the quan}ty and quality of light within a space. It 

characterizes the connec}on between the human needs and the light environment.  

[1], [4]

Acous}c comfort in the living environment is an increasingly important topic for improving 

produc}vity and reducing anxiety for regular users in indoor environments. 

necessary to minimize the noise and support the sa}sfac}on of the 

inhabitants, sleep disturbance, irritability and also 

long-term health e昀昀ects Older people are more vulnerable to noise because they are more 

sensi}ve to disturbance. 

[4], [10], [11]

Introduced more recently 

when there are no speci昀椀c pollutants in harmful 
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concentra}ons, according to the criteria established by the competent authori}es at 

least 80% of the occupants 

[12], [13]
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In the last decades, signi昀椀cant work has been done in this area to iden}fy di昀昀erent set of 

ac}vi}es in HAR and a wide range of sensors have been used. Mainly there exist two di昀昀erent 

sensing approaches. 

The 昀椀rst approach used is based on wearable sensors. Wearable sensors refer to sensors that 

are posi}oned or directly a琀琀ached to the body resul}ng at a certain extent intrusive. The 

sensors used in this case include mobile sensors, accelerometer, gyroscope, proximity sensors 

etc. Though wearable sensors have a certain ease of use, given their easy deployment and data 

acquisi}on method, they s}ll have some limita}ons. In fact, these solu}ons reduce the 

applicability of the smart space to only those that own wearable devices, and to }mes when 

the users wear those devices. Moreover, in residen}al smart spaces, wearable devices can 

cause discomfort, also because they are usually not seen as a part of the regular residen}al 

life. Wearables are also limited in terms of measurement accuracy and suscep}bility to mo}on 

ar}facts. 

The other kind of approach considers using environment placed sensors, such as cameras, 

pyro-electric (PIR), acous}c sensor, ultrasound sensors and thermal sensors, etc. In this 

approach, the sensors are embedded in the environment, which makes it more suitable to 

create intelligent applica}ons such as a smart environment. An advantage of using 

environment over wearable sensors is that they are not directly applied to the individuals.
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In this study, the use of ultrasound technology is employed to detect the occupant ac}vi}es 

within an indoor living environment with the 昀椀nal aim of evalua}ng their impact on 

personalized comfort through a mul}domain monitoring plavorm. Ac}vity levels can be 

assigned to di昀昀erent o昀케ce ac}vi}es enabling an accurate es}ma}on of metabolic rate, that 

contributes to PMV model.

By discriminating among different tasks, it9s possible to better assess personal comfort through 

the authors9
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it9s assigned a metabolic rate to each one and 

it9s calculated the PMV to obtain a personalized model.

This study is within the framework of the WEPOP project. The WEPOP project (Prot. 

2022RKLB3J) <WEarable Plavorm for OptImised Personal comfort= is co-funded by the Italian 

Ministry of Research within the PRIN 2022 program. 

WEPOP adopts an innova}ve approach that contributes to enhance the personalized well-

being measurement considering the human ac}vity in昀氀uences on comfort. This approach 

provides useful informa}on also for the thermo-hygrometric control with a view of energy 

e昀케ciency in living environments. 

The main objec}ve of WEPOP is to develop a fully integrated mul} sensing plavorm which 

includes wearable sensors, environmental sensors and AI algorithms for real-}me personal 

comfort measurement and control. The project exploits the experience created in the 

NEXT.COM project [20] in the 昀椀eld of mul}domain comfort measurement and modelling. The 

focus is on designing and op}mizing the environmental sensor network to acquire parameters 

related to thermal, acous}c, visual and IAQ domains.
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2. STATE OF ART

2.1 Human Ac}vity Recogni}on (HAR) 

Human ac}vity recogni}on (HAR) is the process of automated recogni}on and understanding 

human ac}ons, that can be individual or group ac}vi}es. It has become a popular topic in the 

last decade due to its importance in many real-world applica}ons areas, including health care, 

assis}ng living technologies and safety applica}ons. HAR is also emerging as a powerful tool 

in monitoring systems for general purposes such as monitor physical, func}onal, and cogni}ve 

health of older adults at home. Indeed, essen}ally, HAR involves iden}fying and interpre}ng 

human ac}ons and interac}ons with the environment, especially movements of the whole 

body and limbs. Understanding these ac}ons is crucial for predic}ng their e昀昀ects or outcomes, 

as well as inferring the performer9s inten}on, goal, and mental status. 

HAR is the key to build human-centred applica}ons and enables natural interac}on between 

users and smart environments. These environments are instrumented room or space 

equipped with appropriate sensors and actuators, available in di昀昀erent types, to perceive the 

physical state or human ac}vi}es within this space. 

HAR aims to recognize human ac}vi}es in both controlled and uncontrolled se琀�ngs. HAR 

algorithms face many challenges such as complexity and variety of daily ac}vi}es, intra-subject 

and inter-subject variability, the trade-o昀昀 between performance and privacy, computa}onal 

e昀케ciency in portable devices and di昀케culty of data annota}on [18], [21].

There are various sensing approaches able to provide di昀昀erent and complementary 

informa}on about human ac}ons. Visual modali}es, such as RGB videos, skeleton data, depth 

data, infrared sequences and point clouds, are more intui}ve for represen}ng human ac}ons 

because they are more similar to the human visual system9s func}oning. In contrast, non-visual 

modali}es, such as accelerometer, gyroscope, magnetometer, radar, and Wi-Fi can be used for 

privacy-sensi}ve scenarios or when visual data are insu昀케cient or unavailable. Data fusion 

techniques improve recogni}on models by integra}ng informa}on from mul}ple modali}es, 

enhancing understanding of human ac}ons, and addressing individual modali}es9 limita}ons. 
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Data fusion can be implemented at the feature, decision, or model levels, increasing the 

accuracy of HAR models. Further aspects relevant to HAR include the ac}on predic}on, which 

aims to an}cipate future ac}ons based on observed ac}ons, and narra}ve understanding, 

which focuses on iden}fying the agent9s iden}ty or social role in the context of an ac}on. 

Addi}onally, transfer learning and co-learning across di昀昀erent modali}es can improve the 

robustness and generalizability of HAR models, allowing them to adapt to new scenarios and 

handle diverse data sources e昀昀ec}vely [18].

Data for training and tes}ng HAR algorithms is typically obtained from two main sources: 

ambient sensors and embedded sensors. Ambient sensors include environmental devices such 

as temperature, humidity sensors or video cameras placed at speci昀椀c loca}ons in the 

environment. Embedded sensors, on the other hand are integrated into personal devices such 

as smartphones and smartwatches or are integrated into clothes or other specialized medical 

equipment. Cameras have been widely used in the HAR applica}ons, however collec}ng video 

data presents many issues regarding privacy limita}on and computa}onal requirements. 

While video cameras produce rich contextual informa}on, these privacy issues limita}ons 

have led many researchers to work with other ambient and embedded sensors, including 

depth images as a privacy-preserving alterna}ve. Many approaches to HAR mostly consider 

recognizing the ac}vi}es of individuals. There are a limited number of studies that have 

intended to recognize group ac}vity primarily rely on image-based features. 

HAR systems operate by taking large dataset of the measured features from the acquisi}on 

devices.

, that generally include

By applying computa}onal algorithms, HAR are able to predict the ac}vi}es performed by the 

users. This involves the crea}on of a feature vector from the raw sensor data, which is then 

used to train machine learning algorithms to recognize and classify the ac}vi}es [19], [22].
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Recently, sensor-based HAR gained popularity as a research topic, with lots of studies exploring 

di昀昀erent sensing technologies and some methods have been proposed for modelling and 

recognizing human ac}vi}es. Research mainly implemented tradi}onal ML processes for HAR 

tasks, including sensor-based movement data collec}on, preprocessing, ac}on segmenta}on, 

extrac}on of features, and ac}vity classi昀椀ca}on. Classical s  ML techniques such as 

Naïve Bayes (NB), Decision Tree (DT), Random Forests (RF), Support Vector Machine (SVM) and 

k-Nearest Neighbours (k-NN), have showed excellent e昀昀ec}veness in the classi昀椀ca}on of 

ac}vi}es based on data collected from sensors [23], [24].

is an extension of the tradi}onal algorithm, maximum likelihood es}ma}on theory (MLE) 

that allows the classi昀椀ca}on of tes}ng data based on the previously labelled data. NB 

probabilistic classifiers based on applying Bayes9 theorem with the assumption of strong 

NB classi昀椀er is able to develop a probability-based 

mechanism on input and previous data for classi昀椀ca}on and predic}on [25].

are hierarchical data structures that 

[26]

RF consists of a combina}on of mul}ple decision trees that improves the classi昀椀ca}on 

performance of a single tree classi昀椀er. It achieves this by combining the bootstrap aggrega}ng 

(bagging) method and randomiza}on in selec}ng data par}}ons at each node during the 

construc}on of decision tree. A RF classi昀椀er integrates a set of independent DT classi昀椀ers each 

trained on a di昀昀erent subset of data. The 昀椀nal classi昀椀ca}on decision is made by aggrega}ng 
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the predic}ons from all individual trees, using a majority vo}ng mechanism, which helps 

improve accuracy and robustness and reduce the risk of over昀椀琀�ng [27].

-NN 

[28]

classification as well as regression, but it9s mostly used for classification. SVM can execute 

[28]

However, all these classical ML techniques face limita}ons mainly due to dependence on 

manual feature extrac}on. In fact, manually extrac}ng features is a laborious and }me-

consuming process that relies on user experience and exper}se to iden}fy relevant sta}s}cal 

and frequency domain features. Furthermore, the characteris}cs are able to characterize 

certain basic human ac}ons rather than complex ones, making it di昀케cult for simple ML 

methods to adapt to novel, complex HAR scenarios [24], [28].
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DL 

approach to HAR in a way that seeks to reduce on the e昀昀orts needed for feature engineering 

which requires domain knowledge [24].

 

[24], [29], [30]

Nowadays, the use of CNN is an inevitable tool of the process of recogni}on, 

especially in the image processing research community and it9s frequently applied to solve the 

problems of DL and pa琀琀ern recogni}on. These systems are prevalent in detec}ng human 

ac}vity and in recognizing di昀昀erent classes of body movement and ac}ons. CNNs are inspired 

by biological processes and their layers have neurons that are grouped by dimension. Each 

neuron in a layer connects to a small region of the previous layer. 
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outputs the input directly if it is posi}ve, otherwise, it outputs zero. Relu is generally 

[28], [30]

Di昀昀erently from CNN, RNN is speci昀椀cally known for its ability to label sequences or }me series 

data. RNN has the dis}nguishing feature of keeping the memory from previous input 

sequence, which is then used to in昀氀uence the current output sequence. By using RNNs the 

network is trained via backpropaga}on through }me, taking advantage of the temporal 

rela}onship between sensor readings. Although RNN can capture chronological informa}on 

from sequen}al data, it has an issue known as the problem of gradient vanishing. This problem 

hinders the ability of the network to model between raw sensor data and human ac}vi}es in 

a long context window, causing an exploding gradient problem. This happens when large error 

gradients start accumula}ng, resul}ng in signi昀椀cant changes to the neural network model 

during training, which in e昀昀ect prevents a model from training with the available data, and 

causes the trained model to be unstable [30], [31].

LSTM, which is a variety of RNN, has been designed to overcome these issues that arise in RNN 

architectures. LSTM and RNNs are very similar, with the di昀昀erence being that hidden layers in 

LSTMs contain memory blocks with cells instead of non-linear units, which can store 

informa}on over long }mespans. Each cell remembers values of arbitrary }me intervals, while 

the gates regulate the informa}on 昀氀ow both from and to the cells. These networks are ideal 

for classi昀椀ca}on, processing and predic}ng }me-series based data. LSTM has great advantages 
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in feature extrac}on of sequence data and is proven to excel in learning, processing and 

classifying such types of data [29], [30], [31]  

2.4 Ultrasonic Sensors in HAR

Indoor ac}vi}es, especially ac}vi}es of daily living, such as standing, si琀�ng and falling are the 

most popular use-cases for using US sensors. Speci昀椀cally, for recognizing simple indoor 

ac}vi}es, pulsed ultrasonic sensors are frequently used to measure distance to the objects 

involved in the ac}vity, aiding in the accurate detec}on and recogni}on of these movements 

[29].

Ghosh et al. [32] used an heterogeneous ultrasonic sensor grid with two kinds of ultrasonic 

sensors: 4 HC-SR04 ultrasonic sensors mounted on a grid panel of 70 x 70 cm on the ceiling 

and a LV-MaxSonar-EZO range 昀椀nder in the middle to reduce the dead zone. Ac}vi}es to be 

predicted include standing, si琀�ng and falling as well as the direc}on of movement of a single 

person under the panel. They collected 100 samples from each of the 昀椀ve par}cipants that 

were asked to perform all those ac}vi}es in a controlled laboratory environment with uniform 

spaces. This system has extensive applica}on possibili}es beyond the laboratory for 

monitoring of human ac}vity in hospital, workplace, and home environments.  Relying on the 

distance pro昀椀le, they performed a classi昀椀ca}on analysis using mul}ple machine learning 

algorithms: SVM, K-NN and DT techniques to classify the targeted ac}vi}es. Their experimental 

results show 81% to 90% correct detec}on of di昀昀erent ac}vi}es with DT that gave the best 

results.

They later extended their previous work to recognize these events for a group of mul}ple 

people [16], [33]. These experiments were conducted in a supervised laboratory setup 

collec}ng test data from mul}ple occupants. The algorithm employed was Hidden Markov 

Model (HMM). HMM is a mul}-layer probabilis}c model that consists of hidden and 

observable states. It considers a sequence of inputs to predict 昀椀nal observa}ons by 

cons}tu}ng hidden states. To iden}fy the 昀椀nal ac}vi}es the transi}on probabili}es between 



17

the states are calculated, combining spa}al and temporal aspects of the ac}vi}es and 

integra}ng them for obtain an overall ac}vity pro昀椀ling. The experimental results have shown 

that HMM can detect di昀昀erent ac}vi}es with accuracy more than 90% in laboratory se琀�ng 

and also improve overall iden}昀椀ca}on accuracy compared to exis}ng works. This developed 

system can be further evolved into ready-to-deploy smart sensing panels which can be 

e昀昀ec}ve for human ac}vity monitoring in an indoor environment.

Refrigerator, Used Refrigerator, Appeared near burner, and Using burner. It9s applied a fusion 

Activities and activity transitions are modeled using 

a Finite State Machine (FSM) representation in which there are

This system deploys a FSM-

based activity detection, achieving 96% accuracy in real-time. Afterwards, several ML methods 

are used to create an effective activity prediction framework. By implementing multiple ML 

algorithms, including logistic regression, SVM and Neural Network, and apply these methods 

on a dataset with around 20000 data points collected over three months, it can be achieve up 

to 98.5% activity prediction accuracy with 4 ms delay. This makes it a perfect real-time system 

example. This smart and pervasive space implementation doesn9t use any intrusive sensor or 

data acquisition unit such as wearables or camera, so the user is not dependent to it and has 

no security and privacy issues. Consequently, this non-intrusive smart space implementation 

can provide highly accurate activity detection and prediction with low computation 

requirements.

In [34] it9s proposed the Echoloca}on based Ac}vity Detector, that involves a contactless 

sensor array of four HRLV-Max Sonar 42 kHz pulsed ultrasound sensors, which compute the 

separa}on distance to the most proximal re昀氀ector with mm resolu}on. The research 

demonstrates the capacity of the sensor to dis}nguish between four common ac}vi}es like 

sedentary si琀�ng, typing, wri}ng, and standing performed at a worksta}on within an o昀케ce 
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environment with various classical items to serve as representa}ve background re昀氀ectors and 

facilitate ac}vity performance. To simulate the natural variability with which an individual may 

perform such ac}vi}es over the course of a workday, various ac}vity subclasses were 

performed. Cubic support vector machine (CSVM) classi昀椀ers are developed using dispersion-

related features computed from the }me-series array outputs. Sedentary ac}vi}es typically 

performed in an o昀케ce environment (si琀�ng, typing, wri}ng) were dis}nguished from standing 

with 85.7% accuracy. Moreover, an average classi昀椀ca}on accuracy of 80.2% was observed for 

dis}nguishing between the en}re set of ac}vi}es.

Ali et al. [35] suggested an approach for classi昀椀ca}on detec}ng mo}on pa琀琀erns with NB and 

CNN algorithm using an array of 昀椀ve US sensors with PIR sensor. The features are extracted 

from detected mo}on according to spa}o-temporal parameters that are re昀氀ected over the 

blueprint design of the building. The NB algorithm is used to classify the detected mo}on 

pa琀琀ern to be normal or abnormal mo}on depending on the collected training data. In the 昀椀nal 

stage, the CNN approach is also used for classi昀椀ca}on purposes combined with NB for a be琀琀er 

accuracy and detec}on rate, CNN is applied over walking path pa琀琀ers inside the living room.  

Combining ML algorithms such as NB with CNN is very e昀昀ec}ve. It allows to have a hybrid 

algorithm that enhances the accuracy of the detec}on rate by having another check of the 

mo}on subset, which also increases the number of features to be琀琀er describe the complete 

or par}al mo}on pa琀琀erns.

In [36] it9s proposed a framework to recognize human ac}ons by ultrasound ac}ve sensing. 

The system employs a tweeter to emit ultrasound and a micro electro-mechanical systems 

(MEMS) microphone as the receiver. Data collec}on took place in three di昀昀erent spaces: 

anechoic chamber, room without furniture and room with furniture. The study included eight 

fundamental ac}on classes: hand-waving, throwing, kicking, picking-up, walking, lying-down, 

si琀�ng, and standing. The work focused on valida}ng the poten}al of two types of features: 

}me-series re昀氀ected waves and }me-series envelopes of re昀氀ected waves. By analyzing the 

temporal varia}on of the amplitude of ultrasound re昀氀ected waves, feature values were 

calculated. Classi昀椀ca}on was then performed using a SVM and a typical deep CNN design with 

numerous layers called Visual Geometry Group (VGG). The method achieved an accuracy of 
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97.9% when trained and evaluated on the same person in the same environment and 89.5% 

accuracy when trained and evaluated on di昀昀erent people.

Venkatesh et al. [37] tested a system composed of 12 HRLV-MaxSonar EZO ultrasonic sensors 

on a 4 x 4 m room furnished with a kitchen bench. The sensors are placed equally distant on 

the ceiling in an array of 4 x 3 x 2,5 m to cover the regions under inves}ga}on. This type of 

sensors are considered to be high resolu}on, high precision and low voltage, with a range that 

can reach 4,5 m without deteriora}on in the quality of the signal. The covering area can reach 

60 cm in radius for a distance of 3 m. Each sensor outputs its distance from the top of an object 

or person obtaining the room height when there is nothing between the sensor and the 昀氀oor. 

The ac}vi}es to be predicted are: ea}ng, laying down on the sofa, cooking, si琀�ng on the sofa 

and walking. An ac}vity is predicted based on the feature9s values at that }mestamp, allowing 

for robust real-}me ac}vity recogni}on. They asked three par}cipants to perform their usual 

daily ac}vi}es in the room for 6 hours. To inves}gate the e昀昀ec}veness of the US sensors9 

distance values, dura}on and on/o昀昀 state in recognizing a person9s various ac}vi}es, they 

trained a ML classi昀椀er to predict ac}vi}es based on each of those features. In this experiment, 

was used NB as the classi昀椀er and compared accuracy results of the model trained with only 

the sensor9s distance readings (R), the dura}on of being on at any given }me (D), the on/o昀昀 

state (O), or any possible combina}ons of those three features (DO, RD, RO and ROD) as input 

a琀琀ributes. US sensors' readings, dura}on and on/o昀昀 states can accurately predict (86%) of the 

other resident's ac}vi}es, even when the ac}vi}es are interleaved with each other. 

In [38] it9s developed a DL based device free ac}vity recogni}on framework, named EI, able to 

remove the environment and subject speci昀椀c informa}on from the ac}vity data and extract 

environment subject-independent features shared by the data collected on di昀昀erent subjects 

under di昀昀erent environments on US signal. The transmi琀琀er is an iPad on which an ultrasound 

generator app is installed, and it can emit an ultrasound signal of nearly 19 KHz, while receiver 

is a smartphone and with a recorder app to collect the sound waves. 12 subjects were 

employed to perform 6 di昀昀erent ac}vi}es (wiping the whiteboard, walking, moving a suitcase, 

rota}ng the chair, si琀�ng, as well as standing up and si琀�ng down) in six di昀昀erent rooms. 

Subjects repeat these six ac}vi}es in each room for 5 rounds. The proposed EI framework can 

achieve be琀琀er performance compared to more classical algorithm like RF. For RF, though was 
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used Mel-frequency Cepstral Coe昀케cients (MFCCs), a feature commonly used for audible 

sound-based recogni}on tasks, as its input data, its accuracy is s}ll lower than that of the deep 

learning models. 

3. MATERIALS AND METHODS

The aim of this work is to develop a non-invasive acquisi}on system through a speci昀椀c 

measurement sensors network, in the perspec}ve of the future integra}on in a unique 

mul}domain monitoring plavorm, with focusing on ultrasonic sensors to detect ac}vi}es and 

perform HAR in o昀케ce indoor environment. Machine learning (ML) algorithms has been 

chosen, according to literature, as the most suitable approach for the predic}on of occupants9 

ac}vity. Hence, in this sec}on, it is possible to 昀椀nd the explana}on of the phases that have 

been implemented during the prac}cal part of this thesis with the aim of providing a proper 

amount of informa}on to improve the proposed work.

The sensors that made up the system capable of acquiring the parameters necessary for this 

purpose are listed in Table 1. 

The whole system operates through a code developed in Python language that controls every 

procedure, from signals acquisi}on to their processing.

The subject's comfort percep}on was registered through the use of a ques}onnaire, 

administered periodically by using a Google Forms web page.

The acquisi}on of the environmental parameters was instead carried out using three di昀昀erent 

sensors capable of measuring mul}ple parameters inside the room which include 

temperature, rela}ve humidity, noise level, CO2 concentra}on, vola}le organic compound, 

par}culate ma琀琀er with di昀昀erent diameters and ambient light. The signals acquired from US 

sensors were transmi琀琀ed to a Raspberry Pi 4 which was used as the data processing unit. 

Raspberry is a 昀氀exible device, chosen due to the possibility in suppor}ng di昀昀erent 

programming languages, including Python, which was used in the development of the code, 

being able to interface with our ultrasound9s plavorm.
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An o昀케ce experimental setup with a speci昀椀c test protocol was developed to conduct tests, 

involving human par}cipants.

Once all signals have been recorded during the tests, they were processed and signi昀椀cant 

features were extracted to obtain consistent results. This is done to verify whether the 

collected parameters and the applied algorithm can accurately predict the o昀케ce ac}vity. The 

data analysis step is divided into three phases:

Phase 1: Quan}ta}ve analysis. In this phase the mean and the standard devia}on of the mean 

of the op}mal temporal features were computed, in order to evaluate the di昀昀erences between 

the diverse o昀케ce ac}vi}es.

Phase 2: ML/AI analysis. In this phase the collected data was processed into }me series, 

leading to the construc}on of a dataset used to train di昀昀erent ML algorithms selected 

according to the literature. The aim of these ML techniques was to predict correctly the 

ac}vity; the ability of classi昀椀ers was evaluated with confusion matrix and various performance 

metrics.

Phase 3: PMV calcula}on. To observe how the o昀케ce ac}vi}es impact on the subjects9 comfort 

percep}on, the PMV model was computed, by using all necessary factors that include 

environmental parameters and di昀昀erent metabolic rates, associated to each ac}vity.
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Table 1. List of sensors and technical speci昀椀cations

Sensor

Technical speci昀椀ca琀椀ons

Measured 

quan琀椀ty

Measurement 

range
Precision

Netatmo

(sampling interval: 

5 min)

T 0-50 °C ±0.3 °C

RH 0-100 % ±3 %

CO2 0-5000 ppm

Noise level 35-120 dB

Sensibo Element

T 0-55 °C ±0.5 °C

RH 5-95 % ±5 %

PM - -

VOC - -

EtOH - -

HibouAir

(sampling interval: 

15 min)

T 0-50 °C ±1 °C

RH 0-100 % ±3 %

VOC
400-10000 

ppm
±30 ppm

P 300-110 hPa ±0.6 hPa

PM 0.3 µg/m3 ±15%

Ambient 

light
110 mLux

EV_MOD_ICU-

30201-01
Distance 5-9 m ±0.2 mm
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3.1 Ultrasonic Sensors

The ultrasonic sensor 30201-01 (TDK, Tokyo, Japan), was the main component employed in 

this work. ICU-30201 is a miniature, ultra-low power, ultra-long-range ultrasonic Time-of-Flight 

(ToF) transceiver. Based on TDK9s patented MEMS technology, the ICU-30201 is a system-in-

package that integrates a nominally 50kHz PMUT (Piezoelectric Micromachined Ultrasonic 

Transducer) together with a 2nd genera}on ultra-low power SoC (System on Chip) in a 

miniature, re昀氀owable package. The small and thin package with bo琀琀om port con昀椀gura}on 

allows an easy integra}on. The ICU-30201 provides accurate range measurements to targets 

at distances up to 9 m. Based on ultrasonic pulse-echo measurements, the sensor works in any 

ligh}ng condi}on, including full sunlight, and provides millimeter-accurate range 

measurements independent of the target9s color and op}cal transparency. The sensor9s Field 

of View (FoV) can be customized up to 180° and enables simultaneous range measurements 

to mul}ple objects in the FoV [39], [40]. In this work the US sensor with a FoV at 55° was 

selected as shown in Figure 2.

Figure 2. ICU-30201 ultrasonic transceiver without horn and with 55° FoV horn

In this work a commercial kit was used, which includes the DK-x0201, a development plavorm 

for ICU family of miniature US transceivers. 

The following hardware is needed to the establish connec}on and set the plavorm in order to 

evaluate the sensor. 

i) The development/host board - DK-x0201 

ii) The daughter/evalua}on board - PN100-06351 

iii) ICU-20201 module(s) - EV_MOD_ICU-20201-00-0x 

iv) Flat Flex Cable(s) 
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v) USB Cable 

The image below (Figure 3) shows the physical connec}ons to run the ICU-20201 EVK. Up to 4 

sensors can be a琀琀ached to the connector on the daughterboard using the 昀氀at 昀氀ex cable (FFC). 

Figure 3. Evaluation platform hardware setup

3.1.1 Ultrasonic sensors: working principle 

Ultrasonic sensors are ac}ve sensors, which ac}vely transmit and receive signal to remotely 

perceive its environment. They are a powerful tool in performing distance measurements 

without making physical contact from the viewpoint of performance and cost. 

Ultrasonic spectrum starts from 20 kHz to 200 MHz, that is just above the human audible 

range.

Depending on the 昀椀eld of applica}on, di昀昀erent kinds of measuring systems and sensors have 

been used, but the problems related to echo detec}on are quite the same in every case: 

a琀琀enua}on and beam spreading, presence of noise and interference, sensi}vity to 

temperature and humidity and poor resolu}on.
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The US sensor is a piezoelectric transducer, which is able to convert an electrical signal into 

mechanical vibra}ons, and mechanical vibra}ons into an electrical signal.

In many ultrasonic distance measurements, the opera}ng principle is based on the calcula}on 

of ToF, es}mated once the echo is registered by the US receiver, as shown in Fig. 4. The 

transducer generates and emits an US pulse which propagates through the medium and is 

re昀氀ected back towards the sensor by an object. The object distance d is correlated to ToF and 

can be es}mated indirectly by the formula showed (Eq. 1), where v represents the propaga}on 

velocity of the US wave in the medium (through the air is 343.4 m/s at a temperature of 20 °C) 

and the 2 is the round-trip of the echo signal [41], [42].

d =  Ā ∗ ÿĀ�2 (1)

Figure 4. Ultrasonic Time-of-Flight Measurement

Ultrasonic level measurement techniques employ two categories of ultrasonic sensing device: 

those based on cavity-resonance technique, and those based on sonic-path method. 

The 昀椀rst ones derive indirectly the level es}ma}on from the cavity volume; the la琀琀er measures 

directly the 昀氀uid level by conver}ng the ToF between pulse emission and echo detec}on. 

As regards the la琀琀er strategy, two kinds of sensing are possible, i.e. the con}nuous wave 

method and the pulse-echo method, as shown in Fig. 5. 



26

Figure 5.Continuous and pulsed wave methods

The con}nuous wave method uses two separate transmi琀�ng and receiving elements and 

evaluate the level through a phase shi昀琀 es}ma}on. This method obtains good performance, 

but requires a more complex hardware system. 

The pulse-echo method, on the other hand, uses only one transducer that operates alternately 

in transmi琀�ng and receiving mode. The pulse-echo method has the advantage that o昀昀ers a 

simple and low-cost solu}on, even if it has poorer results due to the lower }me delay 

measurement accuracy, but they can be improved with so昀琀ware signal processing. 

The velocity of an air coupled US echo is in昀氀uenced by external environmental parameters, 

such as temperature, humidity, and in-band ambient noise. The sensing range decreases as 

temperature increases. Although the sensing rate also decreases as humidity increases, this 

can o昀琀en be neglected, as the e昀昀ects are minimal. The rate of a琀琀enua}on across temperature 

and humidity is non-linear [41], [42], [43].

3.1.2 Ultrasonic sensors: Integra}on

US sensors and their plavorm are interfaced to a Raspberry Pi 4 (Figure 6) for real-}me data 

acquisi}on and storage.
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Figure 6. Raspberry Pi 4 model B

 

Raspberry Pi is a versa}le single-board computer (SBC) widely used to develop programming 

skills and to build hardware projects due to its interface easy to manage. It has a 1.5 GHz 64-

bit quad core ARM Cortex-A72 processor and there are available on the market di昀昀erent 

versions and models of the board. Indeed, the Raspberry Pi model can go from 1 to 5 and its 

versions can be A, B, or B+. Raspberry is equipped with four USB 2.0 ports that can connect 

several peripherals like mouse, keyboard, Wi-Fi adapters and all kinds of monitors thanks also 

to the HDMI ports. Using all these peripherals Raspberry becomes a fully func}onal computer. 

Addi}onally, the board presents an Ethernet port for network connec}vity and 40 general-

purpose input/output (GPIO) pins for interfacing with electronic components such as physical 

sensors and other devices (LEDs, modules, boards). 

Based on the func}onali}es and the e昀케ciency that characterize this SBC, Raspberry Pi 4 Model 

B has been chosen in this work as the board for a correct and reliable integra}on procedure 

with the ultrasonic sensors kit.

3.2 Environmental Sensors

Environmental sensors are used to assess the environmental comfort in the following domains: 

thermal, acous}c, visual and indoor air quality.

It9s important to op}mize environmental condi}ons in the o昀케ce to improve well-being of 

occupants to and increment work e昀케ciency. There is the need to obtain accurate data on the 
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quality of the working environment and the ac}vity of people in the o昀케ce in order to adapt 

working environments to user needs.

For this reason, in this study mul}-parametric sensors for the measurement of environmental 

parameters in indoor scenario were used. The parameters of interest were: temperature (T), 

rela}ve humidity (rh), noise, CO2, vola}le organic compound (VOC), par}culate ma琀琀er (PM) 

with di昀昀erent diameters and brightness. A昀琀er a market analysis, 3 types of available low-cost 

environmental sensors of di昀昀erent brands were selected:

• Netatmo (Boulogne-Billancourt, France), able to measure T, rh, CO2 concentra}on, and 

noise level; it9s shown in Figure 7.

• Sensibo (Redwood City, CA, United States), able to measure T, rh, CO2 concentra}on, 

ethanol (EtOH), VOC and PM with a diameter of 2.5 microns (PM2.5); it9s shown in 

Figure 8.

• HibouAir (Sollentuna, Sweden), able to measure T, pressure (P), PM with di昀昀erent 

diameters (PM2.5 and PM10), VOC, and ambient light; it9s shown in Figure 9.

The measurements of environmental parameters were taken at regular intervals during the 

tests as shown in Table 1. Acquisi}ons saved the data in an internal database.

Figure 7. Netatmo NWS01
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Figure 8. Sensibo Elements

Figure 9. HibouAir Particle Sensor AQI Monitor

3.3 Experimental Set Up

The test popula}on consisted in 10 healthy volunteer subjects, in par}cular 6 females and 4 

male subjects aged 27.4 ± 2.57 (expressed as mean ± standard devia}on). All the par}cipants 

were not subjected to a clothing regime: they were simply asked to wear their everyday 

clothing to re昀氀ect realis}c thermal sensa}ons, ensuring the subjec}vity of the tests.

To ensure privacy and con昀椀den}ality, all data were anonymized and handled in strict 

accordance with GDPR regula}ons. Prior to par}cipa}on, each volunteer provided informed 

consent by signing a consent form. All the experimental tests were carried out in compliance 

with the WMA Declara}on of Helsinki [44] and the research design was set in accordance with 
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the ethical standards of the Ethical Commi琀琀ee of Università Politecnica delle Marche 

(UNIVPM), Ancona, Italy.

Before star}ng the tests, the full protocol was explained in detail to the par}cipants, with a 

focus on comfort and well-being related aspects. The tests took place in two days, i.e., 

February 27th, 2024 and March 4th, 2024 in the room 014 of the Department of Industrial 

Engineering and Mathema}cal Sciences (DIISM) of Università Politecnica delle Marche 

(UNIVPM). The room (Fig. 10) has dimensions of (513×296×300) cm and inside there are 

posi}oned two o昀케ce desks ((180×80×72) cm and (120×80×72) cm, respec}vely). As the tests 

involved a single user, only one worksta}on was used. The environmental sensors (one per 

type) were strategically located on the subject9s desk, precisely at a distance of 85 cm and 132 

cm from the southwest corner of the room. Three ultrasonic sensors (US1, US2, US3) were 

a琀琀ached side by side to the Netatmo sensor (Fig. 10, 11, 12).

Figure 10. Test room plant. At the bottom of the 昀椀gure the sensors station used during the test is reported. 

The environmental sensors are located on one workstation. The US sensors are arranged in a circular 

con昀椀guration on the Netatmo sensor.
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Figure 11. Test room arranged for the experiments

Figure 12. Sensors network strategically positioned over the desk

As the US sensors present a FoV of 55°, their arrangement was considered in order that the 

US2 looked straight to the user, while US1 and US3 pointed outside the worksta}on. An 

addi}onal US sensor (US4) was placed on the ceiling above the user9s worksta}on, housed in 

a customized enclosure.
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The o昀케ce scenario ac}vi}es included a list of 昀椀ve ac}vi}es that are: wri}ng on paper, typing 

on PC, talking in the phone, standing, and walking within the room as shown in 昀椀gure 13. An 

ini}al setup phase preceded the start of each session, during which the par}cipant was 

instructed to sit for 10 s and then stand for other 10 s. Subsequently, the actual test started. 

Each sequence of ac}vi}es was repeated three }mes, with an approximate en}re test dura}on 

of 25 min.

Figure 13. Sequence of activities performed by participants. The grey box indicates the rest period, the 

yellow box indicates the time in which the questionnaire was administrated to the participants.

The par}cipants executed the following ac}vi}es sequence: 

• Wri}ng on paper. The form was iden}cal for all the par}cipants and it was de昀椀ned 

during the design of the test protocol; 

• Typing on a provided virtual worksheet; 

• Phone conversa}on reading given sentences to simulate a phone call; 

• Standing;

• Walking within the room. 

The sequence of ac}vi}es was shown to the par}cipants by means a web page on a PC located 

on the desk, an example of which can be seen in Fig. 14. The session began and ended with 

30-s rest in si琀�ng posi}on and this item was repeated also between two consecu}ve ac}vi}es 

for displacement signal calibra}on purposes.
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Figure 14. Screenshot of the web page used by subjects during the test. On the bottom right corner there is 
the time left to perform the showed activity.

 During the test, a survey dealing with perceived comfort in di昀昀erent domains (i.e., thermal, 

acous}c, visual, and air quality) was administered at the beginning of the session and at the 

end of each sequence. The surveys were administered through a dedicated Google Forms and 

they lasted 30 s. In par}cular, the ques}onnaire consisted of two closed-ended ques}ons, as 

shown in 昀椀gure 15, with the following structure:

Q1: <Are you currently experiencing a state of comfort?=  Response op}ons included: <Yes= 

(A1(a)) or <No= (A1(b)).

Q2: <If not, which aspect of comfort would you like to improve?=.  Response op}ons included: 

<Thermal= (A2(a)), <Acous琀椀c= (A2(b)), <Visual= (A2(c)), <Air quality= (A2(d)).

Figure 15. Surveys’ layout dealing with perceived comfort in di昀昀erent domains.
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3.4 Data Processing

The block scheme of the methodology employed to carry out the en}re work is shown in 昀椀gure 

16. In the following subchapters, the various blocks are described. Once all the necessary 

signals have been acquired through the sensor setup, the amount of data was stored and 

processed in Python environment in real-}me, following a well-determined procedure which 

is subsequently explained step by step. Since this study focuses on the feasibility of detec}ng 

o昀케ce ac}vi}es using a mul}domain monitoring plavorm, the data processing methodology 

mainly involved the US sensor that looked straight to the user, installed on the worksta}on. 

Figure 16. Block scheme of the methodology employed to predict the activities

3.4.1 Calibra}on Process

Ini}ally, a calibra}on process was conducted on the ultrasonic signals to eliminate measured 

distances from furniture, walls, and the user9s res}ng posi}on. Speci昀椀cally, for the 昀椀rst 

repe}}on of the sequence of ac}vi}es, the average distance value recorded during the 30 s of 

the res}ng phase before the user started wri}ng on paper were removed from the US distance 

data by subtrac}on. For subsequent repe}}ons, the rest phase a昀琀er the user9s movement 

within the room was considered for removal from the US distance data. This calibra}on 

process resulted in a US signal where was considered only the user9s displacement. This 
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resulted signal is nega}ve when the tes}ng subject moves towards the US sensors and posi}ve 

when the subject moves away from the US sensors.

3.4.2 5-second Windowing Approach

A昀琀er the calibra}on, a }me domain 昀椀ltering procedure was applied to extract signi昀椀cant 

features from the US displacement data. Speci昀椀cally, a 5-second windowing technique was 

performed. This method created non overlapping windows every 5 seconds, so during the 60 

s of an ac}vity are obtained 12 epochs. For each epoch three di昀昀erent temporal markers were 

calculated: Root Mean Square (RMS), crest factor (CF), and form factor (FF). 

3.4.3 Temporal Markers Extrac}on

The RMS was computed by doing the square root of the mean value of the squares of n points 

of the signal (xi) inside each window (Eq. 2).

               ý�þ = √ 1ÿ  ∑ ý�2 (2)

The CF, also called Peak Factor, was computed as the ra}o between the maximum of the 

absolute value and the RMS of each window (Eq. 3).

               �� = ���ý ��þÿ�ýýþ ��þÿ�  (3)

 Instead, the FF was computed as the ra}o between the RMS value and the absolute mean 

value of each window (Eq. 4). 

               �� = ýýþ ��þÿ��Ā�ÿ��� ��þÿ�                                                                        (4)
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3.4.4 ML/AI Analysis

In the subsequent analysis, that involves ML techniques, were selected all the three temporal 

markers obtained from the 5-s window approach of the displacement signal. Since they were 

calculated for each epoch, these features were analyzed in }me series, crea}ng a discrete 

dataset composed of thousands of samples.

The dataset was composed of 10 subjects, with 5 ac}vi}es per subject and 3 repe}}ons. Once 

extracted the 3 temporal markers the dataset consisted in a total of 5400 samples in }me 

series. The }me series were given in input to ML models, that gave as output the label of the 

predicted ac}vity.

The training and tes}ng of the algorithms were done using the LOSO (Leave One Subject Out) 

technique where the dataset is split by subjects. This procedure consists in carrying out the 

training phase from the data of 9 of the 10 subjects itera}vely and tes}ng on the remaining 

subject. The models are fed with input-output pairs (}me series-labels) from the dataset.  The 

process was repeated by changing the subject used for the test each }me to evaluate the 

capabili}es of the algorithms on di昀昀erent individuals.

More in detail, supervised ML algorithms have been used to obtain the predicted ac}vity 

star}ng from the data that have been acquired in the previous steps. Speci昀椀cally, the ML 

algorithm that have been chosen accordingly to literature, were RF, SVM, K-NN. These 

tradi}onal techniques, widely used in many researches [24], [28], were applied to compute a 

昀椀rst classi昀椀ca}on. The aim of this procedure was to di昀昀eren}ate the detected pa琀琀erns 

between ac}vi}es present in the protocol and the non-ac}vity phases, which coincides with 

res}ng. In this manner, an early binary classi昀椀ca}on is performed. ML performance metrics 

such as accuracy, precision, recall and f1 Score are used to analyze the performance of 

classi昀椀ers. 

Subsequently were applied more advanced AI technique, such as CNN and LSTM, with the goal 

of dis}nguish between the di昀昀erent ac}vi}es performed by the subject during the test that 

are wri}ng on paper, typing on pc, phone conversa}on and standing. These DL techniques 

were applied in cascade to the precedent classical classi昀椀ers, crea}ng a sort of hybrid 

algorithm possibly able to provide enhancements in recogni}on accuracy. In literature, as 
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described before by Ali et al. [35], is applied a similar approach that combines Naive Bayes 

with CNN. These hybrid algorithms were compared also with the single NN to see possible 

di昀昀erences in accuracy. 

3.4.5 Ac}vity Recogni}on Evalua}on

The ability of ML classi昀椀ers is commonly evaluated using the confusion matrix. The confusion 

matrix, also known as the error or con}ngency matrix, able to provide a speci昀椀c layout for 

assessing classi昀椀er performance. The measures included are true posi}ves (TP), true nega}ves 

(TN), false posi}ves (FP), and false nega}ves (FN), where:

TP = True Posi}ve: correctly predicted posi}ve cases.

TN = True Nega}ve: correctly predicted nega}ve cases.

FP = False Posi}ve: incorrectly predicted posi}ve cases.

FN = False Nega}ve: incorrectly predicted nega}ve cases.

These measures help determine the accuracy of the classi昀椀er9s predic}ons. The most 

commonly ML performance metrics used to analyze the performance of classi昀椀ers for model 

evalua}on, are Accuracy (Eq. 5), Precision (Eq. 6), Recall (Eq. 7), and F1 Score (Eq. 8). 

Accuracy: it measures the overall correctness of the classi昀椀er.���Ăÿ��þ = ÿ�+ÿþÿ�+ÿþ+��+�þ (5)

Precision: it measures the accuracy of the posi}ve predic}ons.�ÿÿ�ÿĀÿĀÿ = ÿ�ÿ�+�� (6)

Recall: also known as sensi}vity, it measures the ability of the classi昀椀er to iden}fy all posi}ve 

cases. ýÿ���� = ÿ�ÿ�+�þ (7)

F1 score: it9s the harmonic mean of precision and recall, providing a balance between the two. 

The highest possible value of an F1 score is 1, indica}ng perfect precision and recall, while the 

lowest possible value is 0, if either the precision or the recall is zero.�1 þ�Āÿÿ = 2 ∗ �ÿ���Ā�Āÿ∗ý���þþ�ÿ���Ā�Āÿ+ý���þþ (8)
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3.4.6 PMV Calcula}on

In addi}on, to observe how the o昀케ce ac}vi}es, and thus the metabolic rate, impact on the 

subjects9 comfort percep}on, the mathema}cal expression of PMV model proposed by Fanger 

(Eq. 9), was computed as: 

��� =  Ā (ā�, ÿ/, ă�, āÿ, �, ���)                          (9)

where ta (°C) is the indoor mean air temperature, rh (%) is the rela}ve humidity, va (m/s) is the 

air velocity, tr (°C) is the mean radiant temperature, M (met) is the metabolic rate, Icl (clo) is 

the clothing insula}on level. 

To this aim, in Eq. 9 the Ta is 22.5 °C and the rh is 48%. These are the mean values of 

temperature and humidity extracted from the Netatmo sensor among the tes}ng scenarios of 

all the subjects in the two days of experiment. The va was set to 0.15 m/s [45], the tr was set 

to a  mean value of 22.5 °C [46] and the Icl was set to 1 [47] which is a reference value for 

winter clothing. Four di昀昀erent M values were taken from literature [48] as those typical for 

o昀케ce ac}vi}es. In par}cular were selected M values for the res}ng ac}vity (1 Met), the phone 

conversa}on ac}vity (1.2 Met), wri}ng or typing ac}vi}es (1.5 Met) and standing s}ll (1.6 

Met).

4. RESULTS

4.1 Displacement Graphs 

In this sec}on it9s possible to see the results following the calibra}on process (sec}on 3.4.1). 

Speci昀椀cally, there are the results concerning the intra-subject displacement signals of the 
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subject 1 and subject 4. For each ac}vity are shown the three repe}}ons performed by the 

subject during the test.

Regarding the subject 1, the ac}vi}es displayed are res}ng (Fig. 17), wri}ng on a paper (Fig. 

18), typing on pc (Fig. 19) and phone conversa}on (Fig. 20).

Figure 17. Intra-subject #1 displacement of the resting activity.

Figure 18. Intra-subject #1 displacement of the writing on paper activity.
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Figure 19. Intra-subject #1 displacement of the typing on pc activity.

Figure 20. Intra-subject #1 displacement of the phone conversation activity.

Regarding the subject 4, the ac}vi}es displayed are res}ng (Fig. 21), wri}ng on a paper (Fig. 

22), typing on pc (Fig. 23) and phone conversa}on (Fig. 24). 
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Figure 21. Intra-subject #4 displacement of the resting activity.

Figure 22. Intra-subject #4 displacement of the writing on paper activity.



42

Figure 23. Intra-subject #4 displacement of the typing on pc activity.

Figure 24. Intra-subject #4 displacement of the phone conversation activity.
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4.2 Temporal Markers Computa}on

In this sec}on it9s possible to see the results of the temporal markers extrac}on (sec}on 3.4.3). 

Speci昀椀cally, are shown the results concerning the temporal descriptors values of the calculated 

using the 5-s windows approach.

Regarding the values of the subject 1 in the following 昀椀gures are shown: RMS (Fig. 25), FF (Fig. 

26), CF (Fig. 27) of four di昀昀erent ac}vi}es that are res}ng, wri}ng on a paper, typing on pc and 

phone conversa}on.

Figure 25. Intra-subject #1 RMS values calculated using the 5-s windows approach

Figure 26. Intra-subject #1 FF values calculated using the 5-s windows approach



44

Figure 27. Intra-subject #1 CF values calculated using the 5-s windows approach

Regarding the values of the subject 4 in the following 昀椀gures are shown: RMS (Fig. 28), FF (Fig. 

29), CF (Fig. 30) of four di昀昀erent ac}vi}es that are res}ng, wri}ng on a paper, typing on pc and 

phone conversa}on.

Figure 28. Intra-subject #4 RMS values calculated using the 5-s windows approach
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Figure 29. Intra-subject #4 FF values calculated using the 5-s windows approach

Figure 30. Intra-subject #4 CF values calculated using the 5-s windows approach
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4.3 Inter-subject RMS Values

RMS resulted the most performant temporal marker, so its poten}al in discrimina}ng between 

the di昀昀erent ac}vi}es across all subjects is shown in Fig.31, where the mean and the standard 

devia}on of the mean of the selected temporal marker were computed.

Figure 31. Inter-subject RMS values of the four activities selected (standing, writing on a paper, typing on 

pc, phone conversation) compared to the resting period.

4.4 ML/AI Classi昀椀ca}on

In this sec}on are shown the results following the ML/AI analysis (sec}on 3.4.4).

4.4.1 ML Binary Classi昀椀ca}on

In Table 2 are shown the results of the ac}vity/non-ac}vity classi昀椀ca}on: performance metrics 

such as accuracy, precision, recall and F1-score of di昀昀erent ML techniques like RF, SVM and K-
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NN were computed. Then are shown the relevant confusion matrices: RF (Fig. 32), SVM (Fig. 

33) and K-NN (Fig. 34).

Table 2. Binary Classi昀椀cation Results using traditional ML techniques

ML Accuracy Precision Recall F1 Score

RF 0,73 0,57 0,58 0,57

SVM 0,87 0,79 0,77 0,77

K-NN 0,85 0,74 0,70 0,70

Figure 32. Confusion matrix of binary classi昀椀cation using RF
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Figure 33. Confusion matrix of binary classi昀椀cation using SVM

Figure 34. Confusion matrix of binary classi昀椀cation using K-NN

4.4.2 AI Ac}vity Classi昀椀ca}on

In Table 3 are shown the results of the ac}vi}es classi昀椀ca}on: performance metrics such as 

accuracy, precision, recall and F1-score were computed using CNN techniques. Then are shown 
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the relevant confusion matrices of mul}class classi昀椀ca}on of the 4 ac}vi}es (excluding res}ng) 

with CNN technique:

- CNN on all the data considering the 4 ac}vi}es (Fig. 35).

- CNN on data predicted by RF as ac}vity in cascade (Fig. 36).

- CNN on data predicted by SVM as ac}vity in cascade (Fig. 37).

- CNN on data predicted by K-NN as ac}vity in cascade (Fig. 38).

  
Table 3. Activity Classi昀椀cation Results using CNN

Model Accuracy Precision Recall F1 Score

CNN 0,78 0,78 0,78 0,77

RF+CNN 0,82 0,82 0,83 0,80

SVM+CNN 0,79 0,80 0,79 0,78

K-NN+CNN 0,82 0,84 0,82 0,81

Figure 35. Confusion matrix of activities classi昀椀cation using CNN
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Figure 36. Confusion matrix of activities classi昀椀cation using RF+CNN

Figure 37. Confusion matrix of activities classi昀椀cation using SVM+CNN
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Figure 38. Confusion matrix of activities classi昀椀cation using K-NN+CNN

In Table 4 are shown the results of the ac}vi}es classi昀椀ca}on: performance metrics such as 

accuracy, precision, recall and F1-score were computed using LSTM techniques. Then are 

shown the relevant confusion matrices of mul}class classi昀椀ca}on of the 4 ac}vi}es (excluding 

res}ng) with LSTM technique:

- LSTM on all the data considering the 4 ac}vi}es (Fig. 39).

- LSTM on data predicted by RF as ac}vity in cascade (Fig.40).

- LSTM on data predicted by SVM as ac}vity in cascade (Fig. 41).

- LSTM on data predicted by K-NN as ac}vity in cascade (Fig. 42).

Table 4. Activity Classi昀椀cation Results using LSTM

Model Accuracy Precision Recall F1 Score

LSTM 0,64 0,68 0,64 0,64

RF+LSTM 0,67 0,70 0,68 0,65

SVM+LSTM 0,66 0,67 0,65 0,63

K-NN+LSTM 0,67 0,70 0,66 0,64
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Figure 39. Confusion matrix of activities classi昀椀cation using LSTM

Figure 40. Confusion matrix of activities classi昀椀cation using RF+LSTM
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Figure 41. Confusion matrix of activities classi昀椀cation using SVM+LSTM

Figure 42. Confusion matrix of activities classi昀椀cation using K-NN+LSTM
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4.4.3 PMV Calcula}on

In Table 5 are shown the results of the PMV calcula}on, according to Eq. 9 in sec}on 3.4.6, 

based on the four di昀昀erent M values and considering the parameters taken from Netatmo 

sensor and from the literature. Each row of the table represents the values of a speci昀椀c ac}vity, 

speci昀椀cally from the top to the bo琀琀om: res}ng ac}vity, phone conversa}on ac}vity, wri}ng or 

typing ac}vi}es and standing ac}vity. 

Table 5.  PMV results based on the four di昀昀erent M values

Ta

[° C]

rh

[%]

va

[m/s]

tr 

[%]

M

[Met]

Icl

[clo]

PMV

1. 22.5 48 0.15 22.5 1.0 1 -0.38

2. 22.5 48 0.15 22.5 1.2 1 0.09

3. 22.5 48 0.15 22.5 1.5 1 0.50

4. 22.5 48 0.15 22.5 1.6 1 0.61

5. DISCUSSION 

In this sec}on the main points that emerged from the results of this thesis are presented. 

One of the main 昀椀ndings of this work is that di昀昀erent ac}vi}es can be associated with di昀昀erent 

pa琀琀erns. The displacement signal related to a certain ac}vity has a characteris}c pa琀琀ern with 

signi昀椀cantly high similarity in some ac}vi}es, proving to be compa}ble in both intra- and inter-

subject comparisons, as could be seen from Figure 17 to 24. Speci昀椀cally, it9s possible to see the 

signals of the telephone conversa}on ac}vity carried out during the tests by the two subjects 

shown in Fig. 20 and 24: the displacement at the beginning of the test repe}}ons coincides 
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with the moment in which the subjects pick up the phone from the worksta}on, moving 

towards the US sensors. 

To evaluate intra- and inter-subject variability in di昀昀erent ac}vi}es, the temporal markers, 

RMS, CF and FF were computed using the 5-s windowing approach, obtaining 12 samples of 

each one per ac}vity as shown in sec}on 4.2.

The CF and FF temporal markers show limited discriminatory power between the two wri}ng 

ac}vi}es, exhibi}ng similar trends as shown in Fig. 26, 27, 29 and 30.  

The RMS temporal descriptor emerged as the most suitable temporal marker among the 

computed ones. The poten}al of the RMS in di昀昀eren}ate between ac}vi}es across all subjects 

is shown in Fig. 31, where it enables the discrimina}on between res}ng periods, telephone 

conversa}on ac}vi}es, and wri}ng, although it was unable to dis}nguish between the two 

di昀昀erent wri}ng ac}vi}es. The importance of discrimina}ng o昀케ce ac}vi}es becomes evident 

when considering the PMV results based on di昀昀erent  M values associated to the ac}vi}es as 

shown in Table 5.

Ac}vi}es such as res}ng and phone conversa}on have dis}nct RMS values, sugges}ng these 

can be easily discriminated. In par}cular the res}ng phase is clearly di昀昀erent from other 

ac}vi}es, having signi昀椀cantly lower RMS values in the order of 35 mm, that re昀氀ect the minimal 

movement of the subjects. The same can be said for the phone conversa}on phases, that 

exhibit independent RMS values higher than 100 mm. Ac}vi}es with overlapping mean +/- 

standard devia}on, such as standing, wri}ng on paper, and typing on PC, indicate a 

comparability among them, therefore with a poor discrimina}on ability considering the very 

similar RMS values of about 60 mm, as shown in Fig. 31. So, this approach is not su昀케cient to 

dis}nguish between ac}vi}es that can have subtle di昀昀erences. Addi}onal features or methods 

may be needed for more accurate discrimina}on for these cases.

Based on these results, ML/AI algorithms are developed for HAR based on displacement signals 

obtained with US sensors, in par}cular considering these synthe}c features that can be 

extracted through the signal processing.

Tradi}onal ML techniques were applied (RF, SVM, K-NN) to compute a binary classi昀椀ca}on with 

the 2 classes ac}vity and non-ac}vity (res}ng). ML performance metrics of sec}on 3.4.5 are 

used to analyze the performance of classi昀椀ers.
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Results from binary classi昀椀ca}on in Table 2 show that K-NN and, in par}cular, SVM achieve a 

high ability to dis}nguish between ac}vity and non-ac}vity, reaching considerable accuracies 

of 85 and 87%. At this point it9s applied a mul}class classi昀椀ca}on of the 4 ac}vi}es (excluding 

res}ng) with CNN and LSTM techniques:

- CNN/LSTM on all the data considering the 4 ac}vi}es (CNN/LSTM).

- CNN/LSTM on data predicted by SVM as ac}vity in cascade (SVM+CNN/LSTM).

- CNN/LSTM on data predicted by K-NN as ac}vity in cascade (K-NN+CNN/LSTM).

CNN in cascade tradi}onal ML has slightly be琀琀er performance in predic}ng ac}vi}es through 

di昀昀erent classes respect than CNN applied directly on the ac}vi}es. In fact, there is an increase 

of accuracies values from 78 to 82%, like shown in Table 3. It9s possible to say the same thing 

by observing values on results that regards LSTM in Table 4, with accuracies that pass from 

64%, of the only LSTM, to 67%, of LSTM in cascade to a classic ML technique. 

Even if major part of ac}vi}es is corrected predicted some common misclassi昀椀ca}ons can be 

observed, especially concerning two similar ac}vi}es such as wri}ng on a paper and typing on 

pc, whose predic}ons can be exchanged. It9s possible to see these wrong classi昀椀ca}ons in the 

confusion matrices from Fig. 35 to Fig. 42.

It's useful to assign ac}vity levels to the di昀昀erent o昀케ce ac}vi}es, because their contribu}on 

took part in the assessment of personal comfort through a precise es}ma}on of metabolic 

rate. In fact, the importance of di昀昀eren}ate o昀케ce ac}vi}es becomes visible when considering 

the PMV results based on various M values (Table 5). The 昀椀ndings reveal the es}ma}on of 

di昀昀erent PMV values according to each type of o昀케ce ac}vity, even if the metabolic rates were 

rela}vely low and similar. In fact, PMV index, on a scale from -3 to +3, vary from -0.38 to 0.61, 

remaining almost on neutral levels. These results re昀氀ect the ac}vi}es, generally of low 

intensity, performed in an o昀케ce environment, with a low metabolic impact. Therefore, a 

posi}ve thermal sensa}on of the occupant is perceived recommending a general comfort 

state. 

By considering a unique PMV de昀椀ned by the average of PMVs for the four o昀케ce ac}vi}es, the 

昀椀ndings reveal a 213% increase in PMV when the metabolic rate is adjusted for o昀케ce ac}vi}es 

compared to a metabolic rate de昀椀ned for res}ng condi}ons.
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For this reason, by using US sensors to monitor the human ac}vi}es it9s possible to have an 

op}miza}on on the PMV calcula}on.

6. CONCLUSIONS

This work provides preliminary valuable insights towards the assessment of personal comfort, 

with the focus on the use of ultrasonic sensors to predict human ac}vi}es. In par}cular using 

the AI, speci昀椀cally the SVM for the binary classi昀椀ca}on and the CNN for the ac}vity predic}on, 

it9s possible to reach an accuracy respec}vely of 87 and 79%. This is a result comparable to 

those obtained from literature, but with the advantage that our system is non-invasive and it9s 

the 昀椀rst one that involves the integra}on of HARs in a mul}domain service.

The main limita}ons are that the tests were performed on a small homogenous popula}on, 

considering only single occupant in an o昀케ce scenario. Future studies will involve a wide 

heterogeneous popula}on, expanding the dataset size and capturing physiological variability. 

This will help in developing PCMs that are more inclusive and representa}ve of di昀昀erent 

demographic groups.

To be琀琀er re昀氀ect real-world applica}ons will be considered mul}-resident scenarios, exploring 

the analysis of interpersonal interac}ons in shared spaces.

Beyond the o昀케ce environment others use cases, such as home and classroom scenarios, will 

be explored. This expansion will help in developing robust solu}ons for PCMs, able to ensure 

a wider applicability and e昀昀ec}veness. 

Results from US sensors, considered preliminary for the future extended experimental 

campaign within the framework of the WEPOP project, will be fused with data coming from 

diverse domain sensors, such as physiological and environmental ones. This integra}on will 

widely depict the well-being state of dwellers in their living environment; hence, the 

informa}on can be exploited for op}mizing thermoregula}on of the environment and the 

related energy consump}on.
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