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ABSTRACT

Identifying the level of human activities is fundamental to take metabolic rate into account
when assessing comfort in indoor environments. This master thesis studies the feasibility of
employing multi-ultrasonic sensors integrated with environmental sensors on a multidomain
monitoring platform to investigate model for personalized comfort assessment.

For the experiment was considered a living environment for office use and 10 healthy
volunteer subjects were monitored. The test includes 5 typical office activities (writing on
paper, typing on PC, talking in the phone, standing and walking within the room) alternated by
resting phases and surveys that deals with perceived comfort in different domains.

After data acquisition and storage, a data calibration and filtering processes were performed
to extract meaningful temporal features, to detect office activities using temporal markers,
such as the Root Mean Square (RMS), the Crest Factor (CF) and the Shape Factor (FF).
Subsequently the markers were processed into time series, leading to the construction of a
dataset used to train different Machine Learning (ML) algorithms selected according to the
literature. These algorithms include traditional techniques like Random Forest (RF), Support
Vector Machine (SVM) and k-Nearest Neighbours (k-NN), used to distinguish between activity
and non-activity phases. Then were applied more advanced techniques such as Convolutional
Neural Network (CNN) and Long Short-Term Memory Network (LSTM) to differentiate the
different activities. Results confirm the feasibility of integrating ultrasonic sensors in a
monitoring platform to capture meaningful movement patterns to discern various office
activities. The different ML methods, also used in combination, have reached discrete
accuracies in predicting the activities that go from 64 to 87%. In addition, results show that
from each activity it’s possible to calculate different Predictive Mean Vote (PMV) values.
Findings also reveals that activity discrimination has an impact of 213% on the estimated PMV
values. This information can be integrated in personal comfort models (PCMs) to optimize the
occupants’ well-being as well as thermoregulation of the built environment and, hence, the

building energy consumption.



1. INTRODUCTION

1.1 Indoor Comfort Environment

In developed countries majority of people spend more than 90% of their time indoors. Indoor
conditions have therefore far-reaching implications for their health, general well-being and
performance.

These conditions are profoundly affected by their geographical location, season and age, and
especially by job requirement, which results to be the primary parameters since the office
workers spend at least 40 h a week in their workplace. Thus, an efficient and conducive
working environment include properties of office spaces layout such as interior design, size of
personal workspace, workstation equipment and furniture ergonomics: all these factors
determine how comfortable employees feel in the office because it’s a vital and fundamental
requirement for occupants to work efficiently and productively [1], [2].

However, over the last decades, research has shown that, in addition to the physical
environment of office spaces, indoor environmental quality (IEQ) has a significant effect on the
comfort, health and productivity of occupants. IEQ has become a critical consideration as it
significantly impacts occupant the well-being, health, comfort and productivity of workers in
office buildings. IEQ includes a combination of elements such as thermal, acoustic and visual
conditions and indoor air quality.

These four domains are interconnected, and their combined effect contribute to the overall
indoor environment. In order to satisfy acceptable ranges of these parameters, codes and
standards for each of these factors have been established and technologies and systems are
being engineered in an efficient energy manner. Even though the requirements of these
standards are met, not all building occupants are satisfied with the indoor environment also
depending more specifically on their location and routines. In addition, the same indoor
conditions may lead to contrasting subjective responses. One obvious reason is that human

requirements are different and therefore not all are satisfied by the same conditions [3], [4].



1.2 Thermal Comfort

Thermal comfort can be defined as “that condition of mind that expresses satisfaction with
the thermal environment” and so describe the occupant's subjective perception of
the thermal environment. The definition applies to the thermal comfort of an individual.
When thermally comfortable, a building user will wish to feel neither warmer nor cooler, if
asked about thermal state and preference. In buildings, however, a person usually shares the
built environment with other occupants. Thermal equilibrium is obtained when an occupant’s
internal heat production is the same as its heat loss. The heat balance of an individual can be
influenced by levels of physical activity, clothing insulation, as well as the parameters of the
thermal environment. For example, thermal sensation is generally perceived as better when
occupants of a space have control over indoor temperature, as it helps to alleviate high

occupant thermal expectations on a mechanical ventilation system [4], [5], [6].

1.2.1 Thermal Comfort Models

The evaluation of thermal comfort can be carried out using Fanger’s indices: predicted mean
vote (PMV) and predicted percentage dissatisfied (PPD) which make it possible to predict the
mean thermal sensation and mean satisfaction with thermal conditions of a group of people.
These approaches are recognized according ASHRAE 55 and ISO 7730 standards evaluating

indoor environments [7].

PMV model was firstly introduced by Ole Fanger in the 1960s and is based on heat-balance
equations and empirical studies related to skin temperature.

PMV is an index that aims to predict the mean value of votes of a group of occupants on a
seven-point thermal sensation scale. In fact the thermal comfort can be influenced by a

combination of factors that can be grouped in three categories:

- personal factors, that are individual-specific characteristics of the occupant, including

the metabolic rate and the clothing insulation;


https://www.sciencedirect.com/topics/earth-and-planetary-sciences/thermal-environment

- environmental factors, that encompass conditions of the thermal environment which
include air temperature, mean radiant temperature, air velocity and relative humidity;
- physiological factors, parameters that reflects the human body response, the sweat

rate and the heart rate [8], [9].

PMV calculation is based on a combination of physical and personal parameters. Within the
PMV index, +3 translates as too hot, while -3 translates as too cold, as depicted below in Figure

1.

Hot
Air temperature
Warm
Mean radiant temperature|

Air velocity Slightly warm

Relative humidity Neutral

Activity level
R —

Clothing insulation

Slightly cool

> Cool

2 Cold

Figure 1. Intuitive representation of how PMV model works. Given the parameters shown on the left, the

PMV calculation can compute a number which represent the occupant's thermal sensation.

The adaptive comfort model was developed by De Dear & Brager through extensive empirical
and experimental investigations. This model is based on hypothesis predicting that contextual
factors and past thermal history modify building occupants' thermal expectations and
preferences. The model is intended to compute the comfortable air temperature in primarily
naturally ventilated buildings by considering thermal adaptations, including behavioural and

psychological adaptations [8], [9].



1.3 Visual Comfort

Visual comfort is a subjective response to the quantity and quality of light within a space. It
characterizes the connection between the human needs and the light environment. A number
of physical properties of the visual environment are defined and used to evaluate its quality
in an objective way. Visual conditions are characterized by such parameters as luminance
distribution, illuminance and its uniformity, glare, colour of light, colour rendering, flicker rate
and amount of daylight. Visual comfort is considered an essential factor for the safety of older

people in living environments [1], [4].

1.4 Acoustic Comfort

Acoustic comfort in the living environment is an increasingly important topic for improving
productivity and reducing anxiety for regular users in indoor environments. Providing a good
acoustic environment is necessary to minimize the noise and support the satisfaction of the
inhabitants, preventing the occurrence of annoyance, sleep disturbance, irritability and also
long-term health effects. Older people are more vulnerable to noise because they are more
sensitive to disturbance. The quality of the sound environment is linked to numerous physical
parameters, which include both the physical properties of sound itself and of a room. Sound
is characterized by the sound pressure level in a short-term and long-term period and by
sound frequency. The acoustic environment is influenced by such physical room properties as

sound insulation, absorption and reverberation time [4], [10], [11].

1.5 Indoor Air Quality Comfort

Introduced more recently the term comfort is not commonly used in relation to indoor air
quality (IAQ), and it is mainly linked with the lack of discomfort due to odour and sensory

irritation. Acceptable air quality is when there are no specific pollutants in harmful



concentrations, according to the criteria established by the competent authorities and with at
least 80% of the occupants exposed do not express dissatisfaction. Consequently, most of the
standards providing the requirements for IAQ define the conditions by providing the minimum
percentage of persons dissatisfied with air quality. They are mainly based on the discomfort
and annoyance caused for visitors to indoor spaces. Recently, some standards also deal with

the requirements for occupants [12], [13].

1.6 Personal Comfort Model (PCM)

Both PMV and adaptive comfort models are designed to compute the average thermal
comfort for a group of occupants rather than considering individual differences and dynamics
in environmental perceptions. In fact, many studies have demonstrated the limitations of
these traditional comfort models that discriminate personal differences, such as personal
preferences, gender, age and thermal history. Furthermore, thermal comfort in transient
scenarios, like coming indoors from a hot outdoor environment, is not accounted in the PMV
and adaptive comfort models, which are only observable in the measurement of occupant's
physiological signals, such as skin temperature, metabolic rate and body postures.

To face these points, researchers aim to capture occupant comfort via personal comfort
models (PCM) addressing the diversity of occupant environmental preferences. PCM employs
a data-driven approach using various modelling algorithms and it focuses on capturing the
unique comfort characteristics of each occupant rather than predicting the average comfort
for a large population.

Indeed, even under the same thermal conditions, individuals may have a different perception
of thermal comfort due to physiological factors, which are influenced by human activities, as
well as by the personal thermal history. Therefore, the integration of systems for human
activities recognition (HAR) becomes critical in the development of PCMs, since HAR

contributes to define the metabolic rate. In this context both sensing and digital technologies



play relevant roles since the non-intrusiveness of the adopted sensors can enhance their
acceptability by diverse types of users and their accuracy clearly impacts on the result. This is
important to considered even when employing Artificial Intelligence (Al) and Machine
Learning (ML) algorithms for classification purposes, since the input uncertainty contributions
propagate through the entire measurement process, determining a certain confidence

interval of the output [1], [9], [14].

1.7 Ultrasound for Activity Recognition

In the last decades, significant work has been done in this area to identify different set of
activities in HAR and a wide range of sensors have been used. Mainly there exist two different
sensing approaches.

The first approach used is based on wearable sensors. Wearable sensors refer to sensors that
are positioned or directly attached to the body resulting at a certain extent intrusive. The
sensors used in this case include mobile sensors, accelerometer, gyroscope, proximity sensors
etc. Though wearable sensors have a certain ease of use, given their easy deployment and data
acquisition method, they still have some limitations. In fact, these solutions reduce the
applicability of the smart space to only those that own wearable devices, and to times when
the users wear those devices. Moreover, in residential smart spaces, wearable devices can
cause discomfort, also because they are usually not seen as a part of the regular residential
life. Wearables are also limited in terms of measurement accuracy and susceptibility to motion
artifacts.

The other kind of approach considers using environment placed sensors, such as cameras,
pyro-electric (PIR), acoustic sensor, ultrasound sensors and thermal sensors, etc. In this
approach, the sensors are embedded in the environment, which makes it more suitable to
create intelligent applications such as a smart environment. An advantage of using

environment over wearable sensors is that they are not directly applied to the individuals.



Anyway, the combination of both the types of sensors offers significant advantages, being able
to provide a comprehensive view of the entire ecosystem, including subjects and environment
and, hence, considering both environmental and physiological domains [15], [16], [17].
Considering sensors integrated into the environment, it can be noticed that several studies
perform HAR mainly based on image features. However, video processing is highly complex o
as well as computational expensive. Moreover, there is a concern that individuals may be
uncomfortable with being constantly followed and monitored by an intrusive system, fearing
the disclosure of sensitive information and potential privacy loss.

There are few studies that utilize ultrasonic (US) sensors to detect and recognize human
activities.

In this study, the use of ultrasound technology is employed to detect the occupant activities
within an indoor living environment with the final aim of evaluating their impact on
personalized comfort through a multidomain monitoring platform. Activity levels can be
assigned to different office activities enabling an accurate estimation of metabolic rate, that
contributes to PMV model.

By discriminating among different tasks, it’s possible to better assess personal comfort through
these estimations.

This data can be combined with data coming from physiological and environmental sensors, to
widely depict the well-being state of an individual in the living environment; consequently, this
information can be exploited for optimizing thermoregulation of the environment and, hence,
the related energy consumption. The innovational aspect of this research lies in the application
of US sensors for HAR in a sensors network.

To the best of the authors’ knowledge, there is no existing literature studies that employ US
for HAR integrating the system in a multidomain monitoring platform focused on the

personalized comfort assessment [15], [18], [19].



1.8 Aim Of The Study

Therefore, this study main contributions is the innovative use of US sensors for HAR in the
broader context of personalized comfort assessment, with the goal to develop a
comprehensive monitoring platform, that integrates environmental monitoring stations and a
network of US sensors strategically positioned to detect activities and perform HAR.
Moreover, a data calibration and filtering methodology aimed at extracting features (temporal
markers) to detect office activities is proposed in order to consider physiological variability and
specific patterns.

Then is proposed a methodology that recognize the activity through the implementation of ML
algorithms. The performance metrics of the employed ML algorithms are computed to verify
which is the most reliable for activities recognition.

Finally, once the activities have been classified, it’'s assigned a metabolic rate to each one and

it’s calculated the PMV to obtain a personalized model.

This study is within the framework of the WEPOP project. The WEPOP project (Prot.
2022RKLB3J) “WEarable Platform for Optimised Personal comfort” is co-funded by the Italian
Ministry of Research within the PRIN 2022 program.

WEPOP adopts an innovative approach that contributes to enhance the personalized well-
being measurement considering the human activity influences on comfort. This approach
provides useful information also for the thermo-hygrometric control with a view of energy
efficiency in living environments.

The main objective of WEPOP is to develop a fully integrated multi sensing platform which
includes wearable sensors, environmental sensors and Al algorithms for real-time personal
comfort measurement and control. The project exploits the experience created in the
NEXT.COM project [20] in the field of multidomain comfort measurement and modelling. The
focus is on designing and optimizing the environmental sensor network to acquire parameters

related to thermal, acoustic, visual and IAQ domains.



2. STATE OF ART

2.1 Human Activity Recognition (HAR)

Human activity recognition (HAR) is the process of automated recognition and understanding
human actions, that can be individual or group activities. It has become a popular topic in the
last decade due to its importance in many real-world applications areas, including health care,
assisting living technologies and safety applications. HAR is also emerging as a powerful tool
in monitoring systems for general purposes such as monitor physical, functional, and cognitive
health of older adults at home. Indeed, essentially, HAR involves identifying and interpreting
human actions and interactions with the environment, especially movements of the whole
body and limbs. Understanding these actions is crucial for predicting their effects or outcomes,
as well as inferring the performer’s intention, goal, and mental status.

HAR is the key to build human-centred applications and enables natural interaction between
users and smart environments. These environments are instrumented room or space
equipped with appropriate sensors and actuators, available in different types, to perceive the
physical state or human activities within this space.

HAR aims to recognize human activities in both controlled and uncontrolled settings. HAR
algorithms face many challenges such as complexity and variety of daily activities, intra-subject
and inter-subject variability, the trade-off between performance and privacy, computational
efficiency in portable devices and difficulty of data annotation [18], [21].

There are various sensing approaches able to provide different and complementary
information about human actions. Visual modalities, such as RGB videos, skeleton data, depth
data, infrared sequences and point clouds, are more intuitive for representing human actions
because they are more similar to the human visual system’s functioning. In contrast, non-visual
modalities, such as accelerometer, gyroscope, magnetometer, radar, and Wi-Fi can be used for
privacy-sensitive scenarios or when visual data are insufficient or unavailable. Data fusion
techniques improve recognition models by integrating information from multiple modalities,

enhancing understanding of human actions, and addressing individual modalities’ limitations.
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Data fusion can be implemented at the feature, decision, or model levels, increasing the
accuracy of HAR models. Further aspects relevant to HAR include the action prediction, which
aims to anticipate future actions based on observed actions, and narrative understanding,
which focuses on identifying the agent’s identity or social role in the context of an action.
Additionally, transfer learning and co-learning across different modalities can improve the
robustness and generalizability of HAR models, allowing them to adapt to new scenarios and
handle diverse data sources effectively [18].

Data for training and testing HAR algorithms is typically obtained from two main sources:
ambient sensors and embedded sensors. Ambient sensors include environmental devices such
as temperature, humidity sensors or video cameras placed at specific locations in the
environment. Embedded sensors, on the other hand are integrated into personal devices such
as smartphones and smartwatches or are integrated into clothes or other specialized medical
equipment. Cameras have been widely used in the HAR applications, however collecting video
data presents many issues regarding privacy limitation and computational requirements.
While video cameras produce rich contextual information, these privacy issues limitations
have led many researchers to work with other ambient and embedded sensors, including
depth images as a privacy-preserving alternative. Many approaches to HAR mostly consider
recognizing the activities of individuals. There are a limited number of studies that have
intended to recognize group activity primarily rely on image-based features.

HAR systems operate by taking large dataset of the measured features from the acquisition
devices. The first step of any HAR system is the selection of appropriate sensors and the
attributes to be measured. Then, the data coming from the sensors are manipulated and
processed in different stages, that generally include the pre-processing, the segmentation, the
feature extraction, the dimensionality reduction and, by the end, the classification.

By applying computational algorithms, HAR are able to predict the activities performed by the
users. This involves the creation of a feature vector from the raw sensor data, which is then

used to train machine learning algorithms to recognize and classify the activities [19], [22].
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2.2 Machine Learning (ML) for HAR

Machine Learning (ML) is a branch of Artificial Intelligence (Al) that aims to develop algorithms
able to identify and infer patterns from a dataset. These algorithms are primarily categorized
in two major classes: supervised and unsupervised learning. Supervised learning has the aim
to create a mathematical model based on the relationship between input and output data
enabling the prediction of future unseen data points. On the other hand, unsupervised
learning focuses on identify patterns in input data without any knowledge of the output.
Recently, sensor-based HAR gained popularity as a research topic, with lots of studies exploring
different sensing technologies and some methods have been proposed for modelling and
recognizing human activities. Research mainly implemented traditional ML processes for HAR
tasks, including sensor-based movement data collection, preprocessing, action segmentation,
extraction of features, and activity classification. Classical supervised ML techniques such as
Naive Bayes (NB), Decision Tree (DT), Random Forests (RF), Support Vector Machine (SVM) and
k-Nearest Neighbours (k-NN), have showed excellent effectiveness in the classification of
activities based on data collected from sensors [23], [24].

NB is an extension of the traditional algorithm, maximum likelihood estimation theory (MLE)
that allows the classification of testing data based on the previously labelled data. NB is a
probabilistic classifiers based on applying Bayes’ theorem with the assumption of strong
independence between the features. NB classifier is able to develop a probability-based
mechanism on input and previous data for classification and prediction [25].

DT are hierarchical data structures that classify data by sorting based on the features values.
DT is characterized of nodes and branches: a node represents a feature to be classified, while
a branch represents a possible value that the node can assume [26].

RF consists of a combination of multiple decision trees that improves the classification
performance of a single tree classifier. It achieves this by combining the bootstrap aggregating
(bagging) method and randomization in selecting data partitions at each node during the
construction of decision tree. A RF classifier integrates a set of independent DT classifiers each

trained on a different subset of data. The final classification decision is made by aggregating
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the predictions from all individual trees, using a majority voting mechanism, which helps
improve accuracy and robustness and reduce the risk of overfitting [27].

K-NN is a ML algorithm that shows the characteristics of instance-based learning in which the
function is just calculated locally until grouping. K-NN is mostly used as a method of
classification, being one of the easiest, in which grouping of examples is depending on their
coordinates and distance from others on the feature space. In the k-NN classification, the
output for an item is a class from which this belongs. K-NN performs a mathematical
calculation based on similarity measures to find the distance between the data to makes its
classification. The steps of k-NN can be described as follows. After obtaining unclassified data
is calculated the distance from the new data to all classified data. Then is initialized the value
of k and the distances are sorted. After taking k nearest neighbors is assigned the class to new
data by the majority vote of its k nearest neighbors. To measure the distance between two
points there are many different ways like Euclidian, Manhattan, Minkowski or Weighted [28].
SVM is a supervised ML method that given labeled training data, outputs a hyperplane which
separates and categorizes the new data. SVM is able to perform an analysis of data for
classification as well as regression, but it’s mostly used for classification. SVM can execute
linear classification, but can also do a non-linear classification utilizing the different kernels,
by mapping their contributions to high-dimensional element spaces. Kernels characterize a
set of mathematical functions. The work of kernel is to require data as input and transform it
into the specified frame. There are different types of kernel functions like linear, nonlinear,
sigmoid, radial basis function (RBF) and polynomial. The kernel functions return the inner
product between two points in an appropriate feature space. Hence by characterizing an idea
of similarity, with small computational cost. Even though SVM is used for both supervising and
unsupervised, utilizing supervised SVM is normally quicker and has more accuracy [28].
However, all these classical ML techniques face limitations mainly due to dependence on
manual feature extraction. In fact, manually extracting features is a laborious and time-
consuming process that relies on user experience and expertise to identify relevant statistical
and frequency domain features. Furthermore, the characteristics are able to characterize
certain basic human actions rather than complex ones, making it difficult for simple ML

methods to adapt to novel, complex HAR scenarios [24], [28].

13



2.3 Deep Learning (DL) for HAR

In recent years, the advent of deep learning (DL) for HAR has led to significant enhancements
in recognition accuracy by overcoming many limitations encountered by traditional ML
methods and due to their superior performance. The strength of DL is based on the idea of
the data representation. DL relies in its ability to automatically extract optimal features from
raw input sensor data in a task dependent manner without any human intervention and
present the low-level original temporal features with high-level abstract sequences. DL
approach to HAR in a way that seeks to reduce on the efforts needed for feature engineering
which requires domain knowledge [24]. This ability enables the identification of unknown
patterns that otherwise would remain hidden or unknown. However, DL models also present
some limitation: they are black-box models, meaning that interpretation is difficult and
inherent and they require large datasets for training and have a high computational cost. Due
to these limitations, in some areas classical machine learning (CML) methods are preferred,
especially when the training dataset is small, or when is necessary a fast training. Some of the
most common DL algorithms are: Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Long Short-Term Memory Network (LSTM) [24], [29], [30].

CNN is DL technique that has the ability to consider the spatial structure of the input
information. Nowadays, the use of CNN is an inevitable tool of the process of recognition,
especially in the image processing research community and it’s frequently applied to solve the
problems of DL and pattern recognition. These systems are prevalent in detecting human
activity and in recognizing different classes of body movement and actions. CNNs are inspired
by biological processes and their layers have neurons that are grouped by dimension. Each
neuron in a layer connects to a small region of the previous layer. CNN is a regularized version
of the artificial neural network (ANN). Generally, ANN are completely connected network,
where every neuron in a layer is connected to all the neurons in the next layer. Due to the
large number of parameters these types of networks tend to overfit the data. To overcome
this problem, CNNs employ alternative regularization techniques to include a magnitude
estimation of weights to the loss function or to gather progressively complex patterns from

smaller and easier patterns. A CNN consists of an input layer, followed by hidden layers and
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an output layer at the end. The hidden layers are composed of sequences of convolutional
layers that perform convolutions with filters by means of multiplication or other dot product.
Convolutional operations reduce the number of training parameters with respect to standard
neural networks and this allows an efficient training of deep architectures. The activation
function is generally a Rectified Linear Unit (Relu) layer, used to introduce non-linearity, which
outputs the input directly if it is positive, otherwise, it outputs zero. Relu is generally trailed by
extra convolutions, for example, normalization layers, aimed to normalize the data within the
network to improve convergence during training. There are pooling layers that reduce the
dimensionality of the data by aggregating the outputs of neuron clusters in one layer
(generally max pooling operations). At the end of the network there are fully connected layers,
that associate every neuron in one layer to every neuron in another layer fully connected
layers are used to determine the class score [28], [30].

Differently from CNN, RNN is specifically known for its ability to label sequences or time series
data. RNN has the distinguishing feature of keeping the memory from previous input
sequence, which is then used to influence the current output sequence. By using RNNs the
network is trained via backpropagation through time, taking advantage of the temporal
relationship between sensor readings. Although RNN can capture chronological information
from sequential data, it has an issue known as the problem of gradient vanishing. This problem
hinders the ability of the network to model between raw sensor data and human activities in
a long context window, causing an exploding gradient problem. This happens when large error
gradients start accumulating, resulting in significant changes to the neural network model
during training, which in effect prevents a model from training with the available data, and
causes the trained model to be unstable [30], [31].

LSTM, which is a variety of RNN, has been designed to overcome these issues that arise in RNN
architectures. LSTM and RNNs are very similar, with the difference being that hidden layers in
LSTMs contain memory blocks with cells instead of non-linear units, which can store
information over long timespans. Each cell remembers values of arbitrary time intervals, while
the gates regulate the information flow both from and to the cells. These networks are ideal

for classification, processing and predicting time-series based data. LSTM has great advantages
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in feature extraction of sequence data and is proven to excel in learning, processing and

classifying such types of data [29], [30], [31].

2.4 Ultrasonic Sensors in HAR

Indoor activities, especially activities of daily living, such as standing, sitting and falling are the
most popular use-cases for using US sensors. Specifically, for recognizing simple indoor
activities, pulsed ultrasonic sensors are frequently used to measure distance to the objects
involved in the activity, aiding in the accurate detection and recognition of these movements
[29].

Ghosh et al. [32] used an heterogeneous ultrasonic sensor grid with two kinds of ultrasonic
sensors: 4 HC-SR04 ultrasonic sensors mounted on a grid panel of 70 x 70 cm on the ceiling
and a LV-MaxSonar-EZO range finder in the middle to reduce the dead zone. Activities to be
predicted include standing, sitting and falling as well as the direction of movement of a single
person under the panel. They collected 100 samples from each of the five participants that
were asked to perform all those activities in a controlled laboratory environment with uniform
spaces. This system has extensive application possibilities beyond the laboratory for
monitoring of human activity in hospital, workplace, and home environments. Relying on the
distance profile, they performed a classification analysis using multiple machine learning
algorithms: SVM, K-NN and DT techniques to classify the targeted activities. Their experimental
results show 81% to 90% correct detection of different activities with DT that gave the best
results.

They later extended their previous work to recognize these events for a group of multiple
people [16], [33]. These experiments were conducted in a supervised laboratory setup
collecting test data from multiple occupants. The algorithm employed was Hidden Markov
Model (HMM). HMM is a multi-layer probabilistic model that consists of hidden and
observable states. It considers a sequence of inputs to predict final observations by

constituting hidden states. To identify the final activities the transition probabilities between
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the states are calculated, combining spatial and temporal aspects of the activities and
integrating them for obtain an overall activity profiling. The experimental results have shown
that HMM can detect different activities with accuracy more than 90% in laboratory setting
and also improve overall identification accuracy compared to existing works. This developed
system can be further evolved into ready-to-deploy smart sensing panels which can be
effective for human activity monitoring in an indoor environment.

Patel [17] targeted at a complete new set of activities of daily living including Using
Refrigerator, Used Refrigerator, Appeared near burner, and Using burner. It’s applied a fusion
of sensor networks consisting of Infrared (IR) Breakbeam Sensor, Ultrasonic sensor (HC-SR04)
and Passive Infrared sensor (HC-SR501) interfaced with Arduino MKR1000 board. Then
Raspberry acts as the bridge between the software components and the lower-level hardware
components. The sensors are placed in activity-dense areas, that their location is based on
high probabilities of observing activities. Activities and activity transitions are modeled using
a Finite State Machine (FSM) representation in which there are states that represent distinct
activities and transitions that show the changes between activities. This system deploys a FSM-
based activity detection, achieving 96% accuracy in real-time. Afterwards, several ML methods
are used to create an effective activity prediction framework. By implementing multiple ML
algorithms, including logistic regression, SVM and Neural Network, and apply these methods
on a dataset with around 20000 data points collected over three months, it can be achieve up
to 98.5% activity prediction accuracy with 4 ms delay. This makes it a perfect real-time system
example. This smart and pervasive space implementation doesn’t use any intrusive sensor or
data acquisition unit such as wearables or camera, so the user is not dependent to it and has
no security and privacy issues. Consequently, this non-intrusive smart space implementation
can provide highly accurate activity detection and prediction with low computation
requirements.

In [34] it's proposed the Echolocation based Activity Detector, that involves a contactless
sensor array of four HRLV-Max Sonar 42 kHz pulsed ultrasound sensors, which compute the
separation distance to the most proximal reflector with mm resolution. The research
demonstrates the capacity of the sensor to distinguish between four common activities like

sedentary sitting, typing, writing, and standing performed at a workstation within an office
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environment with various classical items to serve as representative background reflectors and
facilitate activity performance. To simulate the natural variability with which an individual may
perform such activities over the course of a workday, various activity subclasses were
performed. Cubic support vector machine (CSVM) classifiers are developed using dispersion-
related features computed from the time-series array outputs. Sedentary activities typically
performed in an office environment (sitting, typing, writing) were distinguished from standing
with 85.7% accuracy. Moreover, an average classification accuracy of 80.2% was observed for
distinguishing between the entire set of activities.

Ali et al. [35] suggested an approach for classification detecting motion patterns with NB and
CNN algorithm using an array of five US sensors with PIR sensor. The features are extracted
from detected motion according to spatio-temporal parameters that are reflected over the
blueprint design of the building. The NB algorithm is used to classify the detected motion
pattern to be normal or abnormal motion depending on the collected training data. In the final
stage, the CNN approach is also used for classification purposes combined with NB for a better
accuracy and detection rate, CNN is applied over walking path patters inside the living room.
Combining ML algorithms such as NB with CNN is very effective. It allows to have a hybrid
algorithm that enhances the accuracy of the detection rate by having another check of the
motion subset, which also increases the number of features to better describe the complete
or partial motion patterns.

In [36] it’s proposed a framework to recognize human actions by ultrasound active sensing.
The system employs a tweeter to emit ultrasound and a micro electro-mechanical systems
(MEMS) microphone as the receiver. Data collection took place in three different spaces:
anechoic chamber, room without furniture and room with furniture. The study included eight
fundamental action classes: hand-waving, throwing, kicking, picking-up, walking, lying-down,
sitting, and standing. The work focused on validating the potential of two types of features:
time-series reflected waves and time-series envelopes of reflected waves. By analyzing the
temporal variation of the amplitude of ultrasound reflected waves, feature values were
calculated. Classification was then performed using a SVM and a typical deep CNN design with

numerous layers called Visual Geometry Group (VGG). The method achieved an accuracy of

18



97.9% when trained and evaluated on the same person in the same environment and 89.5%
accuracy when trained and evaluated on different people.

Venkatesh et al. [37] tested a system composed of 12 HRLV-MaxSonar EZO ultrasonic sensors
on a 4 x4 m room furnished with a kitchen bench. The sensors are placed equally distant on
the ceiling in an array of 4 x 3 x 2,5 m to cover the regions under investigation. This type of
sensors are considered to be high resolution, high precision and low voltage, with a range that
can reach 4,5 m without deterioration in the quality of the signal. The covering area can reach
60 cm in radius for a distance of 3 m. Each sensor outputs its distance from the top of an object
or person obtaining the room height when there is nothing between the sensor and the floor.
The activities to be predicted are: eating, laying down on the sofa, cooking, sitting on the sofa
and walking. An activity is predicted based on the feature’s values at that timestamp, allowing
for robust real-time activity recognition. They asked three participants to perform their usual
daily activities in the room for 6 hours. To investigate the effectiveness of the US sensors’
distance values, duration and on/off state in recognizing a person’s various activities, they
trained a ML classifier to predict activities based on each of those features. In this experiment,
was used NB as the classifier and compared accuracy results of the model trained with only
the sensor’s distance readings (R), the duration of being on at any given time (D), the on/off
state (O), or any possible combinations of those three features (DO, RD, RO and ROD) as input
attributes. US sensors' readings, duration and on/off states can accurately predict (86%) of the
other resident's activities, even when the activities are interleaved with each other.

In [38] it’s developed a DL based device free activity recognition framework, named El, able to
remove the environment and subject specific information from the activity data and extract
environment subject-independent features shared by the data collected on different subjects
under different environments on US signal. The transmitter is an iPad on which an ultrasound
generator app is installed, and it can emit an ultrasound signal of nearly 19 KHz, while receiver
is a smartphone and with a recorder app to collect the sound waves. 12 subjects were
employed to perform 6 different activities (wiping the whiteboard, walking, moving a suitcase,
rotating the chair, sitting, as well as standing up and sitting down) in six different rooms.
Subjects repeat these six activities in each room for 5 rounds. The proposed El framework can

achieve better performance compared to more classical algorithm like RF. For RF, though was
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used Mel-frequency Cepstral Coefficients (MFCCs), a feature commonly used for audible
sound-based recognition tasks, as its input data, its accuracy is still lower than that of the deep

learning models.

3. MATERIALS AND METHODS

The aim of this work is to develop a non-invasive acquisition system through a specific
measurement sensors network, in the perspective of the future integration in a unique
multidomain monitoring platform, with focusing on ultrasonic sensors to detect activities and
perform HAR in office indoor environment. Machine learning (ML) algorithms has been
chosen, according to literature, as the most suitable approach for the prediction of occupants’
activity. Hence, in this section, it is possible to find the explanation of the phases that have
been implemented during the practical part of this thesis with the aim of providing a proper
amount of information to improve the proposed work.

The sensors that made up the system capable of acquiring the parameters necessary for this
purpose are listed in Table 1.

The whole system operates through a code developed in Python language that controls every
procedure, from signals acquisition to their processing.

The subject's comfort perception was registered through the use of a questionnaire,
administered periodically by using a Google Forms web page.

The acquisition of the environmental parameters was instead carried out using three different
sensors capable of measuring multiple parameters inside the room which include
temperature, relative humidity, noise level, CO, concentration, volatile organic compound,
particulate matter with different diameters and ambient light. The signals acquired from US
sensors were transmitted to a Raspberry Pi 4 which was used as the data processing unit.
Raspberry is a flexible device, chosen due to the possibility in supporting different
programming languages, including Python, which was used in the development of the code,

being able to interface with our ultrasound’s platform.
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An office experimental setup with a specific test protocol was developed to conduct tests,
involving human participants.

Once all signals have been recorded during the tests, they were processed and significant
features were extracted to obtain consistent results. This is done to verify whether the
collected parameters and the applied algorithm can accurately predict the office activity. The
data analysis step is divided into three phases:

Phase 1: Quantitative analysis. In this phase the mean and the standard deviation of the mean
of the optimal temporal features were computed, in order to evaluate the differences between
the diverse office activities.

Phase 2: ML/AI analysis. In this phase the collected data was processed into time series,
leading to the construction of a dataset used to train different ML algorithms selected
according to the literature. The aim of these ML techniques was to predict correctly the
activity; the ability of classifiers was evaluated with confusion matrix and various performance
metrics.

Phase 3: PMV calculation. To observe how the office activities impact on the subjects’ comfort
perception, the PMV model was computed, by using all necessary factors that include

environmental parameters and different metabolic rates, associated to each activity.
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Table 1. List of sensors and technical specifications

Technical specifications

Sensor Measured Measurement
Precision
quantity range
T 0-50 °C +0.3°C
Netat
etatmo RH 0-100 % +3 %
(sampling interval:
co 0-5000
5 min) 2 ppm
Noise level 35-120 dB
T 0-55 °C +0.5°C
RH 5-95 % 5%
Sensibo Element PM - -
VOC - -
EtOH - -
T 0-50 °C +1°C
RH 0-100 % 3%
400-10000
HibouAir VoC 130 ppm
L ppm
(sampling interval:
. P 300-110 hPa +0.6 hPa
15 min)
PM 0.3 ug/m? +15%
Ambient
110 mLux
light
EV_MOD_ICU-
Distance 5-9m 0.2 mm
30201-01
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3.1 Ultrasonic Sensors

The ultrasonic sensor 30201-01 (TDK, Tokyo, Japan), was the main component employed in
this work. ICU-30201 is a miniature, ultra-low power, ultra-long-range ultrasonic Time-of-Flight
(ToF) transceiver. Based on TDK’s patented MEMS technology, the ICU-30201 is a system-in-
package that integrates a nominally 50kHz PMUT (Piezoelectric Micromachined Ultrasonic
Transducer) together with a 2" generation ultra-low power SoC (System on Chip) in a
miniature, reflowable package. The small and thin package with bottom port configuration
allows an easy integration. The ICU-30201 provides accurate range measurements to targets
at distances up to 9 m. Based on ultrasonic pulse-echo measurements, the sensor works in any
lighting condition, including full sunlight, and provides millimeter-accurate range
measurements independent of the target’s color and optical transparency. The sensor’s Field
of View (FoV) can be customized up to 180° and enables simultaneous range measurements
to multiple objects in the FoV [39], [40]. In this work the US sensor with a FoV at 55° was

selected as shown in Figure 2.

Figure 2. ICU-30201 ultrasonic transceiver without horn and with 55° FoV horn

In this work a commercial kit was used, which includes the DK-x0201, a development platform
for ICU family of miniature US transceivers.

The following hardware is needed to the establish connection and set the platform in order to
evaluate the sensor.

i) The development/host board - DK-x0201

ii) The daughter/evaluation board - PN100-06351

i) ICU-20201 module(s) - EV_MOD_ICU-20201-00-0x

iv) Flat Flex Cable(s)
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v) USB Cable

The image below (Figure 3) shows the physical connections to run the ICU-20201 EVK. Up to 4

sensors can be attached to the connector on the daughterboard using the flat flex cable (FFC).

f iv) FLAT FLEX CABLE

l. e ey e AWM PEG6ELBOC GOV VW -1

s BhEOA R RAN VWY AVNM. PORPAADCAAN VW -

iii) ICU-x0201 MODULE

Figure 3. Evaluation platform hardware setup

3.1.1 Ultrasonic sensors: working principle

Ultrasonic sensors are active sensors, which actively transmit and receive signal to remotely
perceive its environment. They are a powerful tool in performing distance measurements
without making physical contact from the viewpoint of performance and cost.

Ultrasonic spectrum starts from 20 kHz to 200 MHz, that is just above the human audible
range.

Depending on the field of application, different kinds of measuring systems and sensors have
been used, but the problems related to echo detection are quite the same in every case:
attenuation and beam spreading, presence of noise and interference, sensitivity to

temperature and humidity and poor resolution.
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The US sensor is a piezoelectric transducer, which is able to convert an electrical signal into
mechanical vibrations, and mechanical vibrations into an electrical signal.

In many ultrasonic distance measurements, the operating principle is based on the calculation
of ToF, estimated once the echo is registered by the US receiver, as shown in Fig. 4. The
transducer generates and emits an US pulse which propagates through the medium and is
reflected back towards the sensor by an object. The object distance d is correlated to ToF and
can be estimated indirectly by the formula showed (Eq. 1), where v represents the propagation
velocity of the US wave in the medium (through the air is 343.4 m/s at a temperature of 20 °C)

and the 2 is the round-trip of the echo signal [41], [42].

* TOF
d — v 20 (1)
Reflected wave
.'_ _______________
Ultrasonic Object
Sensor
Emitted wave

Figure 4. Ultrasonic Time-of-Flight Measurement

Ultrasonic level measurement techniques employ two categories of ultrasonic sensing device:
those based on cavity-resonance technique, and those based on sonic-path method.

The first ones derive indirectly the level estimation from the cavity volume; the latter measures
directly the fluid level by converting the ToF between pulse emission and echo detection.

As regards the latter strategy, two kinds of sensing are possible, i.e. the continuous wave

method and the pulse-echo method, as shown in Fig. 5.
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The continuous wave method uses two separate transmitting and receiving elements and
evaluate the level through a phase shift estimation. This method obtains good performance,
but requires a more complex hardware system.

The pulse-echo method, on the other hand, uses only one transducer that operates alternately
in transmitting and receiving mode. The pulse-echo method has the advantage that offers a
simple and low-cost solution, even if it has poorer results due to the lower time delay
measurement accuracy, but they can be improved with software signal processing.

The velocity of an air coupled US echo is influenced by external environmental parameters,
such as temperature, humidity, and in-band ambient noise. The sensing range decreases as
temperature increases. Although the sensing rate also decreases as humidity increases, this
can often be neglected, as the effects are minimal. The rate of attenuation across temperature

and humidity is non-linear [41], [42], [43].

3.1.2 Ultrasonic sensors: Integration

US sensors and their platform are interfaced to a Raspberry Pi 4 (Figure 6) for real-time data

acquisition and storage.
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Figure 6. Raspberry Pi4 model B

Raspberry Pi is a versatile single-board computer (SBC) widely used to develop programming
skills and to build hardware projects due to its interface easy to manage. It has a 1.5 GHz 64-
bit quad core ARM Cortex-A72 processor and there are available on the market different
versions and models of the board. Indeed, the Raspberry Pi model can go from 1 to 5 and its
versions can be A, B, or B+. Raspberry is equipped with four USB 2.0 ports that can connect
several peripherals like mouse, keyboard, Wi-Fi adapters and all kinds of monitors thanks also
to the HDMI ports. Using all these peripherals Raspberry becomes a fully functional computer.
Additionally, the board presents an Ethernet port for network connectivity and 40 general-
purpose input/output (GPIO) pins for interfacing with electronic components such as physical
sensors and other devices (LEDs, modules, boards).

Based on the functionalities and the efficiency that characterize this SBC, Raspberry Pi 4 Model
B has been chosen in this work as the board for a correct and reliable integration procedure

with the ultrasonic sensors kit.

3.2 Environmental Sensors

Environmental sensors are used to assess the environmental comfort in the following domains:
thermal, acoustic, visual and indoor air quality.
It’s important to optimize environmental conditions in the office to improve well-being of

occupants to and increment work efficiency. There is the need to obtain accurate data on the
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quality of the working environment and the activity of people in the office in order to adapt
working environments to user needs.

For this reason, in this study multi-parametric sensors for the measurement of environmental
parameters in indoor scenario were used. The parameters of interest were: temperature (T),
relative humidity (rh), noise, CO,, volatile organic compound (VOC), particulate matter (PM)
with different diameters and brightness. After a market analysis, 3 types of available low-cost
environmental sensors of different brands were selected:

e Netatmo (Boulogne-Billancourt, France), able to measure T, rh, CO, concentration, and
noise level; it’s shown in Figure 7.

e Sensibo (Redwood City, CA, United States), able to measure T, rh, CO, concentration,
ethanol (EtOH), VOC and PM with a diameter of 2.5 microns (PM2.5); it’s shown in
Figure 8.

e HibouAir (Sollentuna, Sweden), able to measure T, pressure (P), PM with different
diameters (PM2.5 and PM10), VOC, and ambient light; it’s shown in Figure 9.

The measurements of environmental parameters were taken at regular intervals during the

tests as shown in Table 1. Acquisitions saved the data in an internal database.

Figure 7. Netatmo NWSO01
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Figure 8. Sensibo Elements

Figure 9. HibouAir Particle Sensor AQI Monitor

3.3 Experimental Set Up

The test population consisted in 10 healthy volunteer subjects, in particular 6 females and 4
male subjects aged 27.4 + 2.57 (expressed as mean * standard deviation). All the participants
were not subjected to a clothing regime: they were simply asked to wear their everyday
clothing to reflect realistic thermal sensations, ensuring the subjectivity of the tests.

To ensure privacy and confidentiality, all data were anonymized and handled in strict
accordance with GDPR regulations. Prior to participation, each volunteer provided informed
consent by signing a consent form. All the experimental tests were carried out in compliance

with the WMA Declaration of Helsinki [44] and the research design was set in accordance with
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the ethical standards of the Ethical Committee of Universita Politecnica delle Marche
(UNIVPM), Ancona, Italy.

Before starting the tests, the full protocol was explained in detail to the participants, with a
focus on comfort and well-being related aspects. The tests took place in two days, i.e.,
February 27, 2024 and March 4™, 2024 in the room 014 of the Department of Industrial
Engineering and Mathematical Sciences (DIISM) of Universita Politecnica delle Marche
(UNIVPM). The room (Fig. 10) has dimensions of (513x296x300) cm and inside there are
positioned two office desks ((180x80x72) cm and (120x80x72) cm, respectively). As the tests
involved a single user, only one workstation was used. The environmental sensors (one per
type) were strategically located on the subject’s desk, precisely at a distance of 85 cm and 132
cm from the southwest corner of the room. Three ultrasonic sensors (US1, US,, US3) were

attached side by side to the Netatmo sensor (Fig. 10, 11, 12).

513cm

296 cm

Figure 10. Test room plant. At the bottom of the figure the sensors station used during the test is reported.
The environmental sensors are located on one workstation. The US sensors are arranged in a circular

configuration on the Netatmo sensor.
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Figure 11. Test room arranged for the experiments

Figure 12. Sensors network strategically positioned over the desk

As the US sensors present a FoV of 55°, their arrangement was considered in order that the
US; looked straight to the user, while US; and USs pointed outside the workstation. An

additional US sensor (US4) was placed on the ceiling above the user’s workstation, housed in

a customized enclosure.

31



The office scenario activities included a list of five activities that are: writing on paper, typing
on PC, talking in the phone, standing, and walking within the room as shown in figure 13. An
initial setup phase preceded the start of each session, during which the participant was
instructed to sit for 10 s and then stand for other 10 s. Subsequently, the actual test started.
Each sequence of activities was repeated three times, with an approximate entire test duration

of 25 min.

(c)

) -
=

Figure 13. Sequence of activities performed by participants. The grey box indicates the rest period, the

yellow box indicates the time in which the questionnaire was administrated to the participants.

The participants executed the following activities sequence:
e Writing on paper. The form was identical for all the participants and it was defined
during the design of the test protocol;
e Typing on a provided virtual worksheet;
e Phone conversation reading given sentences to simulate a phone call;
e Standing;

e Walking within the room.

The sequence of activities was shown to the participants by means a web page on a PC located
on the desk, an example of which can be seen in Fig. 14. The session began and ended with
30-s rest in sitting position and this item was repeated also between two consecutive activities

for displacement signal calibration purposes.
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Riscrivi nella box :"Diversi studi hanno
dimostrato che garantire un ambiente
confortevole al lavoro favorisce la
produttivita. Creare un luogo dove il
dipendente possa lavorare nella maniera
piu conforme ai suoi bisogni,
Scrivere a computer prolunghera anche I’attivita lavorativa.
C"¢ chi preferisce il piu classico sedia e
scrivania, chi lavorare sul divano, chi in
sala relax, chi all’aperto, chi immerso tra

la gente e chi rinchiuso in una stanza."
[

00:28

Figure 14. Screenshot of the web page used by subjects during the test. On the bottom right corner there is
the time left to perform the showed activity.

During the test, a survey dealing with perceived comfort in different domains (i.e., thermal,
acoustic, visual, and air quality) was administered at the beginning of the session and at the
end of each sequence. The surveys were administered through a dedicated Google Forms and
they lasted 30 s. In particular, the questionnaire consisted of two closed-ended questions, as
shown in figure 15, with the following structure:

Qu: “Are you currently experiencing a state of comfort?” Response options included: “Yes”
(A1(a)) or “No” (A1(b)).

Qa: “If not, which aspect of comfort would you like to improve?”. Response options included:

“Thermal” (Az(a)), “Acoustic” (Az(b)), “Visual” (Az(c)), “Air quality” (Az(d)).

Sei in uno stato di comfort?

Os
[ ne

Se hai risposto No alla domanda precedente, vorresti migliorara lo
stato di comfort

[ termico
[J acustico
] visivo

[) guslita deliaria

Questionario

Figure 15. Surveys’ layout dealing with perceived comfort in different domains.
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3.4 Data Processing

The block scheme of the methodology employed to carry out the entire work is shown in figure
16. In the following subchapters, the various blocks are described. Once all the necessary
signals have been acquired through the sensor setup, the amount of data was stored and
processed in Python environment in real-time, following a well-determined procedure which
is subsequently explained step by step. Since this study focuses on the feasibility of detecting
office activities using a multidomain monitoring platform, the data processing methodology

mainly involved the US sensor that looked straight to the user, installed on the workstation.

Optimal
i : 2 5-s Temporal markers
b Calimben windowing eij(traction' g o
senso‘rs‘ c.lata Procass > : marker
acquisition approach RMS, CF, FF evaluation

]:I Tmejseries

Environmental

sensors =11 ML/Al analysis
|

| Traditional ML

| techniques :
¥ RF, SVM, K-NN

PMV ACtI\IE‘t%’
. “ Recognition = +
calculation ;
evaluation )

DL techniques :

CNN, LSTM

Figure 16. Block scheme of the methodology employed to predict the activities

3.4.1 Calibration Process

Initially, a calibration process was conducted on the ultrasonic signals to eliminate measured
distances from furniture, walls, and the user’s resting position. Specifically, for the first
repetition of the sequence of activities, the average distance value recorded during the 30 s of
the resting phase before the user started writing on paper were removed from the US distance
data by subtraction. For subsequent repetitions, the rest phase after the user’s movement
within the room was considered for removal from the US distance data. This calibration

process resulted in a US signal where was considered only the user’s displacement. This
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resulted signal is negative when the testing subject moves towards the US sensors and positive

when the subject moves away from the US sensors.

3.4.2 5-second Windowing Approach

After the calibration, a time domain filtering procedure was applied to extract significant
features from the US displacement data. Specifically, a 5-second windowing technique was
performed. This method created non overlapping windows every 5 seconds, so during the 60
s of an activity are obtained 12 epochs. For each epoch three different temporal markers were

calculated: Root Mean Square (RMS), crest factor (CF), and form factor (FF).

3.4.3 Temporal Markers Extraction

The RMS was computed by doing the square root of the mean value of the squares of n points

of the signal (x;) inside each window (Eqg. 2).

RMS = / % Y x;2 (2)

The CF, also called Peak Factor, was computed as the ratio between the maximum of the

absolute value and the RMS of each window (Eq. 3).

CF = Peak Value (3)

RMS Value

Instead, the FF was computed as the ratio between the RMS value and the absolute mean

value of each window (Eq. 4).

FF = RMS Value (4)

Average Value
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3.4.4 ML/AI Analysis

In the subsequent analysis, that involves ML techniques, were selected all the three temporal
markers obtained from the 5-s window approach of the displacement signal. Since they were
calculated for each epoch, these features were analyzed in time series, creating a discrete
dataset composed of thousands of samples.

The dataset was composed of 10 subjects, with 5 activities per subject and 3 repetitions. Once
extracted the 3 temporal markers the dataset consisted in a total of 5400 samples in time
series. The time series were given in input to ML models, that gave as output the label of the
predicted activity.

The training and testing of the algorithms were done using the LOSO (Leave One Subject Out)
technique where the dataset is split by subjects. This procedure consists in carrying out the
training phase from the data of 9 of the 10 subjects iteratively and testing on the remaining
subject. The models are fed with input-output pairs (time series-labels) from the dataset. The
process was repeated by changing the subject used for the test each time to evaluate the
capabilities of the algorithms on different individuals.

More in detail, supervised ML algorithms have been used to obtain the predicted activity
starting from the data that have been acquired in the previous steps. Specifically, the ML
algorithm that have been chosen accordingly to literature, were RF, SVM, K-NN. These
traditional techniques, widely used in many researches [24], [28], were applied to compute a
first classification. The aim of this procedure was to differentiate the detected patterns
between activities present in the protocol and the non-activity phases, which coincides with
resting. In this manner, an early binary classification is performed. ML performance metrics
such as accuracy, precision, recall and f1 Score are used to analyze the performance of
classifiers.

Subsequently were applied more advanced Al technique, such as CNN and LSTM, with the goal
of distinguish between the different activities performed by the subject during the test that
are writing on paper, typing on pc, phone conversation and standing. These DL techniques
were applied in cascade to the precedent classical classifiers, creating a sort of hybrid

algorithm possibly able to provide enhancements in recognition accuracy. In literature, as
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described before by Ali et al. [35], is applied a similar approach that combines Naive Bayes
with CNN. These hybrid algorithms were compared also with the single NN to see possible

differences in accuracy.

3.4.5 Activity Recognition Evaluation

The ability of ML classifiers is commonly evaluated using the confusion matrix. The confusion
matrix, also known as the error or contingency matrix, able to provide a specific layout for
assessing classifier performance. The measures included are true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN), where:

TP = True Positive: correctly predicted positive cases.

TN = True Negative: correctly predicted negative cases.

FP = False Positive: incorrectly predicted positive cases.

FN = False Negative: incorrectly predicted negative cases.

These measures help determine the accuracy of the classifier’s predictions. The most
commonly ML performance metrics used to analyze the performance of classifiers for model
evaluation, are Accuracy (Eg. 5), Precision (Eq. 6), Recall (Eqg. 7), and F1 Score (Eq. 8).

Accuracy: it measures the overall correctness of the classifier.

TP+TN

Accuracy = ——
y TP+TN+FP+FN

(5)

Precision: it measures the accuracy of the positive predictions.

TP
TP+FP

Precision =

(6)
Recall: also known as sensitivity, it measures the ability of the classifier to identify all positive

cases.

TP
TP+FN

Recall =

(7)
F1 score: it’s the harmonic mean of precision and recall, providing a balance between the two.
The highest possible value of an F1 score is 1, indicating perfect precision and recall, while the

lowest possible value is O, if either the precision or the recall is zero.

Precision*Recall
F1 Score =2 x —— (8)

Precision+Recall
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3.4.6 PMV Calculation

In addition, to observe how the office activities, and thus the metabolic rate, impact on the
subjects’ comfort perception, the mathematical expression of PMV model proposed by Fanger

(Eq. 9), was computed as:

PMV = f (ta,rh,va,tr,M,lIcl) (9)

where t; (°C) is the indoor mean air temperature, rh (%) is the relative humidity, va (m/s) is the
air velocity, tr (°C) is the mean radiant temperature, M (met) is the metabolic rate, I4 (clo) is
the clothing insulation level.

To this aim, in Eg. 9 the T, is 22.5 °C and the rh is 48%. These are the mean values of
temperature and humidity extracted from the Netatmo sensor among the testing scenarios of
all the subjects in the two days of experiment. The v, was set to 0.15 m/s [45], the tr was set
to a mean value of 22.5 °C [46] and the I was set to 1 [47] which is a reference value for
winter clothing. Four different M values were taken from literature [48] as those typical for
office activities. In particular were selected M values for the resting activity (1 Met), the phone
conversation activity (1.2 Met), writing or typing activities (1.5 Met) and standing still (1.6
Met).

4. RESULTS

4.1 Displacement Graphs

In this section it’s possible to see the results following the calibration process (section 3.4.1).

Specifically, there are the results concerning the intra-subject displacement signals of the
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subject 1 and subject 4. For each activity are shown the three repetitions performed by the
subject during the test.
Regarding the subject 1, the activities displayed are resting (Fig. 17), writing on a paper (Fig.

18), typing on pc (Fig. 19) and phone conversation (Fig. 20).

Resting - intrasubject
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Figure 17. Intra-subject #1 displacement of the resting activity.
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Figure 18. Intra-subject #1 displacement of the writing on paper activity.
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Typing on pc - intrasubject
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Figure 19. Intra-subject #1 displacement of the typing on pc activity.
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Figure 20. Intra-subject #1 displacement of the phone conversation activity.

Regarding the subject 4, the activities displayed are resting (Fig. 21), writing on a paper (Fig.

22), typing on pc (Fig. 23) and phone conversation (Fig. 24).
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Figure 21. Intra-subject #4 displacement of the resting activity.
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Figure 22. Intra-subject #4 displacement of the writing on paper activity.
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Typing on pc - intrasubject
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Figure 23. Intra-subject #4 displacement of the typing on pc activity.
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Figure 24. Intra-subject #4 displacement of the phone conversation activity.
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4.2 Temporal Markers Computation

In this section it’s possible to see the results of the temporal markers extraction (section 3.4.3).
Specifically, are shown the results concerning the temporal descriptors values of the calculated
using the 5-s windows approach.

Regarding the values of the subject 1 in the following figures are shown: RMS (Fig. 25), FF (Fig.
26), CF (Fig. 27) of four different activities that are resting, writing on a paper, typing on pc and

phone conversation.

RMS of activities
- Resting
Writing on paper
80 | — Typing on pc
—— Phone conversation
— H““H-n_.—/'f-'ﬁ“‘"m“-/-___—_'/
0 1 3 5 7 9 11

Epochs
Figure 25. Intra-subject #1 RMS values calculated using the 5-s windows approach

FF of activities

—— Resting

Writing on paper
— Typing on pc
—— Phone conversation

Epochs

Figure 26. Intra-subject #1 FF values calculated using the 5-s windows approach
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CF of activities

4.5 —— Resting
Writing on paper
4.0 —— Typing on pc

- Phone conversation

Epochs

Figure 27. Intra-subject #1 CF values calculated using the 5-s windows approach

Regarding the values of the subject 4 in the following figures are shown: RMS (Fig. 28), FF (Fig.

29), CF (Fig. 30) of four different activities that are resting, writing on a paper, typing on pc and

phone conversation.
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Figure 28. Intra-subject #4 RMS values calculated using the 5-s windows approach
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Figure 29. Intra-subject #4 FF values calculated using the 5-s windows approach
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Figure 30. Intra-subject #4 CF values calculated using the 5-s windows approach
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4.3 Inter-subject RMS Values

RMS resulted the most performant temporal marker, so its potential in discriminating between
the different activities across all subjects is shown in Fig.31, where the mean and the standard

deviation of the mean of the selected temporal marker were computed.

Bar Plot with Error Bars of Activities
120 - - -

100

80

60

RMS [mm]

40

20

Resting Standing ~ Writingon  Typing Phone
paper on pc conversation

Activities

Figure 31. Inter-subject RMS values of the four activities selected (standing, writing on a paper, typing on

pc, phone conversation) compared to the resting period.

4.4 ML/AI Classification

In this section are shown the results following the ML/AI analysis (section 3.4.4).

4.4.1 ML Binary Classification

In Table 2 are shown the results of the activity/non-activity classification: performance metrics

such as accuracy, precision, recall and F1-score of different ML techniques like RF, SVM and K-
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NN were computed. Then are shown the relevant confusion matrices: RF (Fig. 32), SVM (Fig.

33) and K-NN (Fig. 34).

Table 2. Binary Classification Results using traditional ML techniques

Predicted Label

Figure 32. Confusion matrix of binary classification using RF
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ML Accuracy Precision Recall F1 Score
RF 0,73 0,57 0,58 0,57
SVM 0,87 0,79 0,77 0,77
K-NN 0,85 0,74 0,70 0,70
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Figure 33. Confusion matrix of binary classification using SVM
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Figure 34. Confusion matrix of binary classification using K-NN

4.4.2 Al Activity Classification

In Table 3 are shown the results of the activities classification: performance metrics such as

accuracy, precision, recall and F1-score were computed using CNN techniques. Then are shown
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the relevant confusion matrices of multiclass classification of the 4 activities (excluding resting)

with CNN technique:

CNN on all the data considering the 4 activities (Fig. 35).

CNN on data predicted by RF as activity in cascade (Fig. 36).

CNN on data predicted by SVM as activity in cascade (Fig. 37).

CNN on data predicted by K-NN as activity in cascade (Fig. 38).

Table 3. Activity Classification Results using CNN

Model Accuracy Precision Recall F1 Score
CNN 0,78 0,78 0,78 0,77
RF+CNN 0,82 0,82 0,83 0,80
SVM+CNN 0,79 0,80 0,79 0,78
K-NN+CNN 0,82 0,84 0,82 0,81
CNN
24 3 1 2

B80.0% 10.0%
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on pc

Phone
conversation
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Writing Typing
on paper on pe

Predicted Label

Phone
conversation

Figure 35. Confusion matrix of activities classification using CNN
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Figure 36. Confusion matrix of activities classification using RF+CNN
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Figure 37. Confusion matrix of activities classification using SVM+CNN
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K-NN+CNN
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Figure 38. Confusion matrix of activities classification using K-NN+CNN

In Table 4 are shown the results of the activities classification: performance metrics such as
accuracy, precision, recall and Fl-score were computed using LSTM techniques. Then are
shown the relevant confusion matrices of multiclass classification of the 4 activities (excluding
resting) with LSTM technique:

- LSTM on all the data considering the 4 activities (Fig. 39).

- LSTM on data predicted by RF as activity in cascade (Fig.40).

- LSTM on data predicted by SVM as activity in cascade (Fig. 41).

- LSTM on data predicted by K-NN as activity in cascade (Fig. 42).

Table 4. Activity Classification Results using LSTM

Model Accuracy Precision Recall F1 Score
LSTM 0,64 0,68 0,64 0,64
RF+LSTM 0,67 0,70 0,68 0,65
SVM+LSTM 0,66 0,67 0,65 0,63
K-NN+LSTM 0,67 0,70 0,66 0,64
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Figure 39. Confusion matrix of activities classification using LSTM
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Figure 40. Confusion matrix of activities classification using RF+LSTM
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Figure 41. Confusion matrix of activities classification using SVM+LSTM
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Figure 42. Confusion matrix of activities classification using K-NN+LSTM
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4.4.3 PMV Calculation

In Table 5 are shown the results of the PMV calculation, according to Eq. 9 in section 3.4.6,
based on the four different M values and considering the parameters taken from Netatmo
sensor and from the literature. Each row of the table represents the values of a specific activity,
specifically from the top to the bottom: resting activity, phone conversation activity, writing or

typing activities and standing activity.

Table 5. PMV results based on the four different M values

Ta [th| va | &t | M la | PMV
[°Cl | [%] | [m/s] | [%] | [Met] | [clo]

1. 1225| 48 | 0.15 | 225 1.0 1 -0.38

2. 1225| 48 | 0.15 | 225| 1.2 1 0.09

3. 1225| 48 | 0.15 | 225| 15 1 0.50

4. 1225| 48 | 0.15 | 225| 1.6 1 0.61

5. DISCUSSION

In this section the main points that emerged from the results of this thesis are presented.

One of the main findings of this work is that different activities can be associated with different
patterns. The displacement signal related to a certain activity has a characteristic pattern with
significantly high similarity in some activities, proving to be compatible in both intra- and inter-
subject comparisons, as could be seen from Figure 17 to 24. Specifically, it’s possible to see the
signals of the telephone conversation activity carried out during the tests by the two subjects

shown in Fig. 20 and 24: the displacement at the beginning of the test repetitions coincides
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with the moment in which the subjects pick up the phone from the workstation, moving
towards the US sensors.

To evaluate intra- and inter-subject variability in different activities, the temporal markers,
RMS, CF and FF were computed using the 5-s windowing approach, obtaining 12 samples of
each one per activity as shown in section 4.2.

The CF and FF temporal markers show limited discriminatory power between the two writing
activities, exhibiting similar trends as shown in Fig. 26, 27, 29 and 30.

The RMS temporal descriptor emerged as the most suitable temporal marker among the
computed ones. The potential of the RMS in differentiate between activities across all subjects
is shown in Fig. 31, where it enables the discrimination between resting periods, telephone
conversation activities, and writing, although it was unable to distinguish between the two
different writing activities. The importance of discriminating office activities becomes evident
when considering the PMV results based on different M values associated to the activities as
shown in Table 5.

Activities such as resting and phone conversation have distinct RMS values, suggesting these
can be easily discriminated. In particular the resting phase is clearly different from other
activities, having significantly lower RMS values in the order of 35 mm, that reflect the minimal
movement of the subjects. The same can be said for the phone conversation phases, that
exhibit independent RMS values higher than 100 mm. Activities with overlapping mean +/-
standard deviation, such as standing, writing on paper, and typing on PC, indicate a
comparability among them, therefore with a poor discrimination ability considering the very
similar RMS values of about 60 mm, as shown in Fig. 31. So, this approach is not sufficient to
distinguish between activities that can have subtle differences. Additional features or methods
may be needed for more accurate discrimination for these cases.

Based on these results, ML/Al algorithms are developed for HAR based on displacement signals
obtained with US sensors, in particular considering these synthetic features that can be
extracted through the signal processing.

Traditional ML techniques were applied (RF, SVM, K-NN) to compute a binary classification with
the 2 classes activity and non-activity (resting). ML performance metrics of section 3.4.5 are

used to analyze the performance of classifiers.
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Results from binary classification in Table 2 show that K-NN and, in particular, SYM achieve a
high ability to distinguish between activity and non-activity, reaching considerable accuracies
of 85 and 87%. At this point it’s applied a multiclass classification of the 4 activities (excluding
resting) with CNN and LSTM techniques:

- CNN/LSTM on all the data considering the 4 activities (CNN/LSTM).

- CNN/LSTM on data predicted by SVM as activity in cascade (SVM+CNN/LSTM).

- CNN/LSTM on data predicted by K-NN as activity in cascade (K-NN+CNN/LSTM).
CNN in cascade traditional ML has slightly better performance in predicting activities through
different classes respect than CNN applied directly on the activities. In fact, there is an increase
of accuracies values from 78 to 82%, like shown in Table 3. It’s possible to say the same thing
by observing values on results that regards LSTM in Table 4, with accuracies that pass from
64%, of the only LSTM, to 67%, of LSTM in cascade to a classic ML technique.
Even if major part of activities is corrected predicted some common misclassifications can be
observed, especially concerning two similar activities such as writing on a paper and typing on
pc, whose predictions can be exchanged. It’s possible to see these wrong classifications in the
confusion matrices from Fig. 35 to Fig. 42.
It's useful to assign activity levels to the different office activities, because their contribution
took part in the assessment of personal comfort through a precise estimation of metabolic
rate. In fact, the importance of differentiate office activities becomes visible when considering
the PMV results based on various M values (Table 5). The findings reveal the estimation of
different PMV values according to each type of office activity, even if the metabolic rates were
relatively low and similar. In fact, PMV index, on a scale from -3 to +3, vary from -0.38 to 0.61,
remaining almost on neutral levels. These results reflect the activities, generally of low
intensity, performed in an office environment, with a low metabolic impact. Therefore, a
positive thermal sensation of the occupant is perceived recommending a general comfort
state.
By considering a unique PMV defined by the average of PMVs for the four office activities, the
findings reveal a 213% increase in PMV when the metabolic rate is adjusted for office activities

compared to a metabolic rate defined for resting conditions.
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For this reason, by using US sensors to monitor the human activities it’s possible to have an

optimization on the PMV calculation.

6. CONCLUSIONS

This work provides preliminary valuable insights towards the assessment of personal comfort,
with the focus on the use of ultrasonic sensors to predict human activities. In particular using
the Al, specifically the SVM for the binary classification and the CNN for the activity prediction,
it’s possible to reach an accuracy respectively of 87 and 79%. This is a result comparable to
those obtained from literature, but with the advantage that our system is non-invasive and it’s
the first one that involves the integration of HARs in a multidomain service.

The main limitations are that the tests were performed on a small homogenous population,
considering only single occupant in an office scenario. Future studies will involve a wide
heterogeneous population, expanding the dataset size and capturing physiological variability.
This will help in developing PCMs that are more inclusive and representative of different
demographic groups.

To better reflect real-world applications will be considered multi-resident scenarios, exploring
the analysis of interpersonal interactions in shared spaces.

Beyond the office environment others use cases, such as home and classroom scenarios, will
be explored. This expansion will help in developing robust solutions for PCMs, able to ensure
a wider applicability and effectiveness.

Results from US sensors, considered preliminary for the future extended experimental
campaign within the framework of the WEPOP project, will be fused with data coming from
diverse domain sensors, such as physiological and environmental ones. This integration will
widely depict the well-being state of dwellers in their living environment; hence, the
information can be exploited for optimizing thermoregulation of the environment and the

related energy consumption.
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