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Sommario

Questa tesi ha l’obiettivo di estendere su manifold gli algoritmi di machine-
learning classici e moderni basati sul gradiente, con lo scopo di consentire ad un
algoritmo adattativo di apprendere in maniera ottimale una configurazione inter-
na vincolata. La ragione che ha spinto alla stesura del seguente lavoro è stata
quella di migliorare le prestazioni di una tecnica di clustering “sparso”, di re-
cente introduzione, basata sulla rappresentazione su manifold Grassmanniano, col
fine di applicarla ad un dataset di immagini di grandi dimensioni. I risultati ot-
tenuti confermano che gli algoritmi di apprendimento proposti, basati sul calcolo
su manifold, risultano essere meno onerosi dal punto di vista della complessità
computazionale rispetto a quelli già esistenti, pur non andando a compromettere
l’efficienza del clustering.
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Abstract

The purpose of the present thesis is to extend classical and modern gradient-
based machine-learning algorithms to smooth manifolds in order to enable a ma-
chine to learn an optimal constrained internal configuration. The motivation of
the present endeavour was to improve the performances of a recently-introduced
sparse clustering technique based on Grassmann manifold representation to be
applied to large-size pictorial datasets. The obtained results confirm that the pro-
posed learning algorithms, based on manifold calculus, proved lighter in compu-
tational complexity than existing ones without detriment in clustering efficacy.
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Chapter 1

Introduction

Optimization occurs spontaneously in nature. The motion of a free body that falls to-

wards the surface of the earth is subject to at least two optimization principles: the

potential energy on the surface of the earth is minimal, hence the body seeks to opti-

mize its height according to the gravitational potential; in addition, the free body falls

along a straight line, which is the shortest path among all possible paths connecting the

initial location to the center of the earth, hence the body seeks to optimize the length of

its journey. Likewise, a metallic pellet constrained to slide over the surface of a sphere,

whose north pole be magnetized, will move toward the magnetized pole, in order to

optimize the magnetic potential, along the shortest path connecting the current location

to the north pole, that is an arc of the great circle passing through these points.

Gradient-based optimization methods stay at the very core of algorithms that afford

an artificial system to learn and improve its performances and are invoked whenever a

system’s performances are evaluated through a smooth criterion function. A criterion

function affords the evaluation of any given configuration of the parameters of an ar-

tificial learning system and the purpose of the optimization method is to seek for the

best configuration of parameters that minimizes the discrepancy between the current

system’s performances and the expected performances.

The behavior of a gradient-based optimization method depends on the shape of the

criterion surface as, for instance, how ‘deep’ is a local minimum or how far are local

minima from one another. Starting from the basic gradient-steepest descent method,

which seeks local extrema of a criterion function by pursuing the direction indicated

by the function’s gradient, a number of gradient-based methods were derived. Each

method in this category was developed to fix a specific issue arising in a specific situ-

ation. In the Chapter 2 of this paper, we are going to revise a number of classical and

modern gradient-based learning algorithm, such as the basic gradient descent algorithm

10



CHAPTER 1. Introduction

in Section 2.1, the stochastic gradient decent in Section 2.2, the mini-batch stochas-

tic gradient descent algorithm in Section 2.3, the gradient descent with momentum in

Section 2.4, the Nesterov accelerated gradient based algorithm in Section 2.5, the adap-

tive gradient method in Section 2.6, the AdaDelta algorithm in the Section 2.7 and the

adaptive moment estimation method in Section 2.8.

In several cases of interest, the parameters of a learning system are independent

from one another, therefore the search space is Rn, where the dimension n of the search

space might be large (this is the case, for example, of a multilayer perceptron endowed

with several layers and several neurons per layer). Over recent years, it occurred to

researchers in this area that the parameters of a learning system may be subjected to

mutual, non-linear (even very involved) constraints. If the constraints are smooth and

holonomic, the constraints themselves might be represented by a smooth manifold M⊂
Rn. In this event, the optimization methods at the core of systems’ learning procedures

need to be reformulated in terms of manifold language, namely, manifold calculus and

numerical analysis on manifolds.

The basic gradient steepest descent learning method on manifold is already avail-

able from the scientific literature and found widespread application in machine learning

(see, for example, [2, 6]). Since basic gradient descent suffers of known drawbacks,

we endeavoured to extend a number of classical and modern gradient-based learning

methods to a general smooth manifold, as illustrated in the Chapter 3. As a special case

of particular interest in the present work, we recalled some definitions and details about

the Grassmann manifold in the Section 3.8.

In several applications – such as machine learning, image processing and computer

vision – high dimensional data are widespread [13]. Grassmann manifolds are abstract

manifolds whose elements are subspaces. As such, Grassmann manifolds are natural

candidates for data reduction and sparse representation, a necessary step in classification

by high-dimensional data clustering.

Clustering is one of the most widely used data exploration tools. Its goal is to

partition data points into several groups such that points in the same group are similar

to one another, according to a pre-defined similarity measure, and points in different

groups are dissimilar from each other. To this aim, the main steps to take are creating

a similarity/affinity matrix for a given dataset, and performing clustering to categorize

data samples.

These two major steps determine the performance of spectral clustering methods.

The goal of Spectral (or Subspace) Clustering (SC) [9, 11], which is a simple extension

11



of traditional clustering, is to cluster data points that lie in a union of low-dimensional

subspaces, while the key idea of Sparse Spectral Clustering (SSC) is that, among the

infinitely many possible representations of a data point in terms of other points, a sparse

representation corresponds to selecting a few points from the same subspace. This

motivates solving a sparse optimization program whose solution is used in a spectral

clustering framework to infer the clustering of the data into subspaces. The objective

of SSC itself is to characterize how close the eigen-structure of a similarity/affinity

matrix is to a partition implied by the latent representation. Put in another way, instead

of explicitly inferring latent representation for eigen-structure, learning the subspace

structure should be desired. This proves that it is necessary and more reasonable to

implement the SSC optimization over subspaces, – such are the points on Grassmann

manifolds. GSC [15] algorithm introduces a straightforward way to optimize the sparse

clustering objective introduced in [9] by adopting Grassmann manifold optimization

strategy, in order to learn a better and efficient latent feature representation.

The primary contributions of this thesis are:

1. We follow the GSC algorithm proposed in [15] and we study a computationally

more efficient and faster way to compute (4.13);

2. We extend a number of classical and modern gradient-based learning methods to

a general smooth manifold;

3. We evaluate the performance of the GSC algorithm learnt by these gradient-based

learning methods via both the clustering on toy datasets and real-world databases.

This thesis is organized as follows. In Chapter 2, we summarize a number of classical

and modern gradient-based learning algorithm, while Chapter 3 focuses on the exten-

sion of optimization algorithms to smooth manifolds, after briefly recalling manifold

notation. The Chapter 4 of this paper contains a review of clustering in machine learn-

ing, with particular emphasis on the basic aspects of the SSC and the GSC algorithms.

In this chapter, the main steps of the two most important clustering methods – that are

k-means++ and NCut – are also recalled. In Chapter 5, the performance of the GSC

algorithm learnt by all the gradient-based learning methods is assessed via both the

clustering on synthetic and pictorial real-world datasets. Chapter 6 concludes the paper.

12



CHAPTER 2. Summary of optimization methods in Rn

Chapter 2

Summary of optimization methods
in Rn

The present chapter outlines a number of classical as well as modern learning schemes

based on parameter optimization known from the machine learning literature.

2.1 Gradient descent (GD)

Gradient descent is an optimization algorithm used to minimize a given convex function

(the so-called loss function J(θ), where θ is a parameter vector in Rn) to one of its local

minima by iteratively moving in the direction of steepest descent as defined by the

opposite direction of the gradient.

The very first thing to do is defining the initial parameters values θ0, and from there

on Gradient descent iteratively adjusts the values, using calculus, so that they minimize

the given cost-function. How big the steps are that GD takes into the direction of the

local minimum are determined by the learning rate η (usually η ∈ (0,1]): it determines

how fast or slow the movement towards the optimal weights will be. In formulas we

have:

θt+1 = θt −η ∇J(θt), (2.1)

where ∇J(θ) denotes the gradient of the criterion function J evaluated at a point θ and

t = 0, 1, 2, . . . denotes an iteration index.

In order for GD to reach the local minimum, the learning rate has to be set to an

appropriate value, which is neither too low nor too high. This is because if the steps are

too big, it maybe will not reach the local minimum because it just bounces back and

forth between the convex function of GD. If the learning rate is set instead to a very

small value, GD will eventually reach the local minimum but it will maybe take too
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2.2. Stochastic gradient descent (SGD)

much time. This is the reason why the learning rate should be neither too high nor too

low.

2.2 Stochastic gradient descent (SGD)

Stochastic Gradient Descent is an optimization algorithm which improves the efficiency

of the Gradient Descent algorithm. It performs a series of steps to minimize the given

cost function, but unlike GD, which is computationally expensive to run on large data

sets since the cost gradient’s computation is based on the complete training set, SGD

is able to take smaller steps - the smaller the step, the more frequent the update of the

parameters - to be more efficient while achieving the same result.

The Algorithm 1 shows how this optimization method works.

Algorithm 1 Stochastic Gradient Descent (SGD)
1: Randomly sample a point i.
2: Update the parameters by

θt+1 = θt −η ∇J(θt ;x(i);y(i)). (2.2)

3: Return to 1.

2.3 Mini-batch stochastic gradient descent

Mini-batch Stochastic Gradient Descent is a trade-off between Stochastic Gradient De-

scent and Gradient Descent. In Mini-batch Stochastic Gradient Descent, the cost func-

tion (and therefore gradient) is averaged over a small number of samples m� n (the

number of samples m is usually selected through a random permutation). This is op-

posed to the SGD batch size of 1 sample, and the GD size of all the training samples.

This way the algorithm is much faster, even if there are still some unsolved problems.

First of all the choice of the learning rate η , which should be neither too high nor too

low, in order to avoid the same problems we faced in the GD optimization. Another no-

table limitation is that Mini-batch Stochastic Gradient Descent algorithm tends to get

stuck in local minima.

2.4 Gradient descent with momentum

SGD has trouble navigating areas where the surface curves much more steeply in one

dimension than in another, which are common around local optima. The Momentum

14



CHAPTER 2. Summary of optimization methods in Rn

is a method that helps accelerate SGD along the relevant directions and softens the os-

cillations in the irrelevant directions [12]. It does this by simply adding a fraction γ

(usually γ ∈ (0,1]) of the direction of the previous step to a current step: this achieves

amplification of speed in the correct direction and mellows oscillation in wrong direc-

tions, so that the Gradient Descent step could be larger, compared to SGD’s constant

step. The momentum term increases for dimensions whose gradients point in the same

directions and reduces updates for dimensions whose gradients change directions. As a

result, faster convergence and reduced oscillation are gained. In formulas:{
vt = γ vt−1 +η ∇J(θt),

θt+1 = θt − vt .
(2.3)

However, one of the most troubling problem is that Momentum tends to miss or oscillate

around the minima.

2.5 Nesterov accelerated gradient (NAG)

Nesterov Accelerated Gradient is a simple change to normal momentum and it over-

comes its main problem by starting to slow down early [10]. For a recent review see,

e.g. [3].

In this algorithm indeed the gradient term is not computed from the current position

θt in parameter space, but instead from an approximated new “look-ahead” position

θ̂t = θt − γvt−1. This helps because while the gradient term always points in the right

direction, the momentum term may not. If the momentum term points in the wrong di-

rection or overshoots, the gradient can still “go back” and correct it in the same update

step. So, NAG basically exploits that knowledge, and instead of using the current po-

sition’s gradient, it uses the next approximated position’s gradient with the assumption

that it will give better information before taking the next step. The revised parameter

updating rule is: 
θ̂t := θt − γ vt−1

vt = γ vt−1 +η ∇J(θ̂t),

θt+1 = θt − vt .

(2.4)

2.6 Adaptive gradient (AdaGrad)

AdaGrad was invented trying to solve the problem with learning rate in GD, which is

that the learning rate is constant and affecting all the parameters [4]. In order to do

so, AdaGrad allows the learning rate to adapt based on parameters. It performs larger
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2.7. AdaDelta

updates for infrequent parameters and smaller updates for frequent ones. Because of

this, it is well suited for sparse data (Natural Language Processing (NLP) or Image

Recognition). Another advantage is that it basically eliminates the need to tune the

learning rate. Each parameter has its own learning rate and, due to the peculiarities

of the algorithm, the learning rate is monotonically decreasing. This causes however

the biggest problem: at some point of time the learning rate is so small that the system

stops learning.

What AdaGrad actually does is to accumulate the sum of squared of all the param-

eters’ gradient, and use that to normalize the learning rate η , so that now η could be

smaller or larger depending on how the past gradients behaved: parameters that up-

dated a lot will be slowed down while parameters that received little updates will be

have bigger learning rate to accelerate the learning process.

The revised parameter update rule for the AdaGrad algorithm is:

θt+1,i = θt,i−
η√

Gt,ii + ε
∇J(θt)i (2.5)

Gt ∈ Rd×d is a diagonal matrix where each element in the diagonal (i, i) is the sum of

squared gradient estimate over the course of training, up to the time-step t. In formulas:

Gt,ii =
t

∑
τ=1

(∇J(θτ)i)
2. (2.6)

Note that the parameters update is point-wise operation, hence the learning rate is adap-

tive per-parameter. Furthermore, the ε is useful to avoid the division by zero, so that the

optimization becomes numerically stable: that’s why it’s usually set with considerably

small value, like 10−8.

2.7 AdaDelta

AdaDelta resolves the continually decaying learning rate in AdaGrad by using a limited

sliding window (which allows the sum to decrease), instead of summing all past square

roots, although the actual accumulation process is implemented using a concept from

Momentum [16].

The highlights of AdaDelta algorithm are summarized in the Algorithm 2.

The AdaDelta learning algorithm attempts to alleviate the task of choosing a learn-

ing rate by introducing a new dynamic learning rate that is computed on a per-dimension

basis using only first order information.
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CHAPTER 2. Summary of optimization methods in Rn

Algorithm 2 AdaDelta

1: Compute gradient ∇J(θ) at the current time t
2: Accumulate gradient

E[∇J(θ)2
i ]t = γE[∇J(θ)2

i ]t−1 +(1− γ)∇J(θt)
2
i . (2.7)

3: Compute update

(∆θt)i =−

√
E[(∆θ)2

i ]t−1 + ε√
E[∇J(θ)2

i ]t + ε

·∇J(θt)i. (2.8)

4: Accumulate updates

E[(∆θ)2
i ]t = γE[(∆θ)2

i ]t−1 +(1− γ)(∆θt)
2
i , (2.9)

where γ is a decay constant similar to that used in the Momentum method.
5: Apply update

(θt+1)i = (θt)i +(∆θt)i. (2.10)

2.8 Adaptive Moment Estimation (AdaM)

Similar to AdaDelta, AdaM is an algorithm computationally efficient, little-memory de-

manding and also appropriate for non-stationary objectives [8]. This method computes

individual adaptive learning rates for different parameters from estimates of first and

second moments of the gradients. The algorithm updates exponential moving averages

of the gradient mt and the squared gradient vt where the hyper-parameters β1,β2 ∈ [0,1)
control the exponential decay rates of these moving averages. The moving averages

themselves are estimates of the first moment (the mean) and the second raw moment

(the uncentered variance) of the gradient. However, these moving averages are ini-

tialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero,

especially during the initial timesteps, and especially when the decay rates are small.

The good news is that this initialization bias can be easily counteracted, resulting in

bias-corrected estimates m̂t and v̂t .

Hence, the main steps of this method are shown in the Algorithm 3.

The authors of the algorithm proposed default values of 0.9 for β1, 0.999 for β2,

and 10−8 for ε . They show empirically that AdaM algorithm works well in practice and

compares favorably to other adaptive learning-method algorithms.
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2.8. Adaptive Moment Estimation (AdaM)

Algorithm 3 Adaptive Moment Estimation (AdaM)

1: Compute gradient ∇J(θ) at the current time t
2: Update biased first moment estimate

mt = β1mt−1 +(1−β1)∇J(θt). (2.11)

3: Update biased second raw moment estimate

vt,i = β2vt−1,i +(1−β2)(∇J(θt)i)
2. (2.12)

4: Compute bias-corrected first moment estimate

m̂t =
mt

1−β t
1
. (2.13)

5: Compute bias-corrected second raw moment estimate

v̂t =
vt

1−β t
2
. (2.14)

6: Update parameters
θt+1 = θt −

η√
v̂t + ε

m̂t . (2.15)

18
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Chapter 3

Extension of optimization
algorithms to smooth manifolds

The present chapter aims at extending the optimization algorithms recalled in the previ-

ous section to Riemannian manifolds. The reader should keep in mind that extending an

optimization algorithm from a flat space like Rn to a Riemannian manifold M is neither

straightforward nor univocal.

3.1 Manifold notation

Once we have understood and verified the functioning of these algorithms on Rn, we

want to use them to optimize functions on a manifold M.

“The general notion of manifold M is quite difficult to define precisely. A surface

gives the idea of a two-dimensional manifold. If we take for instance a sphere or a torus,

we can decompose this surface into a finite number of parts such that each of them can

be bijectively mapped into a simply-connected region of the Euclidean plane”. This is

the beginning of the third chapter of Leçons sur la Géométrie des espaces de Riemann

by Elie Cartan. He explains that these parts are that we call open sets, and he also

describes that if the domains of definition of two such maps (which are now called

charts) overlap, one of them is gotten from the other by composition with a smooth map

of the Euclidean space. This is just the formal definition of a differential (or smooth)

manifold.

A n-dimensional manifold can be however informally defined as a set M covered

with a suitable collection of coordinate patches, or charts, that identify certain subsets

of M with open subsets of Rn. Such a collection of coordinate charts can be thought of

as the basic structure required to do differential calculus on M.

In order to be able to use these optimization algorithms on Manifold, we have to
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3.2. Gradient descent (GD) on M

introduce some basic concepts first. Let M be a real differentiable manifold of dimen-

sion n. At a point U ∈M, the tangent space to the manifold M is denoted TUM. The

symbol TM denotes the tangent bundle defined as TM= {(U,V ) |U ∈M,V ∈ TUM}.
Knowing that, it is obvious that each point of M has its own tangent bundle that is dif-

ferent from one point to another. Hence, in Manifold geometry, we can recognize only

two things: points belonging to the Manifold and vectors belonging to a tangent space.

Once this point was resolved, we can introduce two basic operators: the exponential

map and the parallel translation.

The exponential map is a map from a subset of a tangent space TUM of a manifold

M to M itself. Given a point U ∈M and a vector V ∈ TUM, there is a unique geodesic1

γV satisfying γv(0) =U with initial tangent vector γ ′V (0) =V . The corresponding expo-

nential map is defined by expU(V ) = γV (1).

The second operator that we need to define is the parallel translation. It takes a

point U,V ∈ TM and a vector W ∈ TUM as input and transports the vector W along a

geodesic arc departing from U along the direction V for a unit time. We will use the

notation PU,V (W ). In the design of a numerical algorithm in Subsection 3.2, we shall

invoke a version of parallel transport denoted by PU,V (V ), namely, the transport of a

tangent vector along the geodesic line directed along itself. This concept exploits the

well-known, defining property of a geodesic line to self-transport its own tangents.

Parallel translation is also an isometry, which means that the parallel transport

changes the direction of a transported vector to make it conform to the geometry of

the underlying manifold, without altering the length of the transported tangent vector2.

In addition, we shall make us of the operator ΠU [·], which denotes an orthogonal

projection over the tangent space TUM.

3.2 Gradient descent (GD) on M

As mentioned earlier on Rn , this method imposes to add to the variable that should

be optimized a small fraction of the anti-gradient, so as to follow the right path. But

unlike Rn where both addends were vectors, on Manifold a point on M has to be added

to a vector of the respective tangent space. However this operation cannot be conducted

directly, since it is not possible to add them without using the exponential map.

1A geodesic is a curve representing the shortest path between two points in a manifold.
2Each vector space on M has its own norm; therefore the norm has to be defined for each of them.
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CHAPTER 3. Extension of optimization algorithms to smooth manifolds

Hence, the update parameters operation follows this formula:

Ut+1 = expUt
(−η∇Ut J), (3.1)

where Ut ∈M, η ∈ R+ and ∇Ut J ∈ TUtM, since it represents the Riemannian gradient

of the cost function J calculated in the point Ut . To start the iteration, it is necessary to

choose an initial guess U0. The iteration step runs over t = 0, 2, 3, . . . , K, where K

denotes a pre-defined number of iterations.

This algorithm, as well as all the following ones, has been implemented in such a

way that the iteration loop ends once a predetermined number of iterations is reached,

number which depends on the complexity of the initial data and on the algorithm itself.

3.3 Gradient descent with momentum on M

Faithful to the original idea, instead of using only the gradient of the current step to

guide the search, Momentum also accumulates the gradient of the past steps to determine

the direction to go. Since gradients are calculated at different points, they belong to

different tangent bundles: ∇Ut−1J ∈ TUt−1M whereas ∇Ut J ∈ TUtM, therefore it is not

possible to add these terms directly. Parallel translation has to be used to transport

∇Ut−1J from TUt−1M to TUtM, as as it can be added to ∇Ut J, since they now both belong

to the same tangent space. The parameters are then updated through the exponential

map.

The formulas below show the essential steps of this extended learning algorithm:{
Vt = γ PUt−1,Vt−1(Vt−1)+η ∇Ut J,
Ut+1 = expUt

(−Vt)
(3.2)

where Ut ∈M, η > 0 denotes a learning stepsize, γ > 0 is a momentum coefficient,

and ∇Ut J,Vt ∈ TUtM. The iteration step runs over t = 1, 2, 3, . . . , K, where K denotes

a pre-defined number of iterations. The initial point U0 is chosen in M and the initial

velocity V0 may be either randomly picked in TU0M, or set to ∇U0J, or set to zero.

3.4 Nesterov accelerated gradient (NAG) on M

The idea behind NAG is that instead of calculating the gradient at the current position,

it calculates the gradient at the position where the momentum is about to arrive, called

as “look-ahead” position, and by that time a fraction of this gradient is added to the

previous ones. Since gradients are calculated at different points, they belong to different
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3.5. Adaptive gradient (AdaGrad) on M

tangent spaces here too, therefore they must be taken back to the same tangent space

through the projection operator before updating the parameters. In formulas, this is

written as: 
Ût = expUt

(−γ ΠUt (Vt−1)) ,

Vt = ΠUt

(
γ Vt−1 +η ∇Ût

J
)
,

Ut+1 = expUt
(−Vt),

(3.3)

where Ut ∈M, η > 0 denotes a learning stepsize, γ > 0 denotes a forgetting factor and

∇Ût
J,Vt ∈ TUtM. The iteration step runs over t = 1, 2, 3, . . . , K, where K denotes a

pre-defined number of iterations. The initial point U0 is chosen in M and the initial

velocity V0 may be either randomly picked in TU0M, or set to ∇U0J, or set to zero.

3.5 Adaptive gradient (AdaGrad) on M

A direct extension of the original AdaGrad method would need a decomposition of

the Riemannian gradient of the criterion function into components in order to weight

any component according to the square root of the accumulated component squares.

In formulas, if we denoted by {∂1,∂2, . . . ,∂d} the canonical basis of the tangent space

TUtM, the Riemannian gradient ∇Ut J may be decomposed as ∇Ut J = ∑
d
i=1(∇Ut J)i∂i,

where each (∇Ut J)i ∈ R denotes one of the components of the gradient with respect to

the canonical basis. The accumulated squared component may be updated as

Gt+1,ii = Gt,ii +(∇Ut J)
2
i , (3.4)

and a normalized gradient may be defined as follows:

∇̃Ut J :=
d

∑
i=1

(∇Ut J)i√
Gt,ii + ε

∂i. (3.5)

Although ∇̃Ut J does no longer represent a Riemannian gradient of the criterion function

J, it is still a tangent vector in TUtM, therefore it is mathematically sound to update the

current point Ut to the next point by

Ut+1 = expUt
(−η∇̃Ut J). (3.6)

The set of equations (3.4) and (3.5) are faithful to the original concept but are quite

impractical due to the need of getting back and forth to the component representation

and due to the need of calculating the canonical basis of each tangent space encountered

during the optimization process.

22



CHAPTER 3. Extension of optimization algorithms to smooth manifolds

Assuming that the manifold M is a matrix manifold (or that its elements may be

represented as matrices), a possible workaround consists in weighting every single en-

try of the gradient by a weight that is inversely proportional to the square root of the

accumulated square of the same entry across time. In formulas, a possible workaround

may be expressed as follows:
Gt = Gt−1 +∇Ut J�∇Ut J,

Ĝt = ΠUt

[
η

◦√Gt+ε
�∇Ut J

]
,

Ut+1 = expUt
(−Ĝt),

(3.7)

where � denotes the Hadamard (component-wise) matrix product and ◦√ denotes a

component-wise square root. here, η > 0 denotes a learning stepsize and ε is a small-

valued constant that prevents division by zero. Notice that both summation of a matrix

by a constant and division between two matrices are intended component-wise. The

iteration step runs over t = 1, 2, 3, . . . , K, where K denotes a pre-defined number of

iterations. The necessity of the projection operator is quite apparent since the result

of the Hadamard product η
◦√Gt+ε

�∇Ut J between a weighting matrix and a Riemannian

gradient apparently is not a tangent vector any longer.

3.6 AdaDelta on M

Similarly to the AdaGrad method, the original AdaDelta algorithm may be extended to

a Riemannian manifold (and, indeed, even to non-Riemannian smooth manifolds) in a

number of ways. In the following, a mathematically sound version is proposed:
St = γ St−1 +(1− γ) · (∇Ut J�∇Ut J),

Ĝt = ΠUt

[
◦
√

∆t−1+ε

St+ε
� (γ ∇Ut J)

]
,

∆t = γ ∆t−1 +(1− γ) · (Ĝt � Ĝt),

Ut+1 = expUt
(−Ĝt).

(3.8)

The first two equations are meant to provide the accumulated gradients and the accu-

mulated updates as expected in the original AdaDelta method.

Notice that the two matrix-sequences ∆t and St do not show any particular structure.

Also, it is worth underlining that, in the equation that defines values of Ĝ, the summation

by a scalar as well as the division between matrices are meant to be effected component

wise and that the Riemannian gradient was further scaled by γ to improve the numerical

stability of the learning algorithm. To start the iteration, it is necessary to choose an

initial guess U0. Moreover, we set S0 := 0 and ∆0 := 0. The iteration step runs over

t = 1, 2, 3, . . . , K, where K denotes a pre-defined number of iterations.
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3.7. Adaptive gradient with momentum (AdaM) on M

3.7 Adaptive gradient with momentum (AdaM) on M

The AdaM algorithm outlined in the Section 2.8 may be extended to a smooth manifold

by an appropriate reformulation of its constituting equations. The proposed extension

goes as follows: 

mt = β1 ΠUt (mt−1)+(1−β1) ·∇Ut J,
vt = β2 vt−1 +(1−β2) · (∇Ut J�∇Ut J),
m̂t =

mt
1−β t

1
,

v̂t =
vt

1−β t
2
,

Ĝt = ΠUt

[
η

◦√v̂t+ε
� m̂t

]
,

Ut+1 = expUt
(−Ĝt),

(3.9)

where the notations β t
1 and β t

2 denote t-th powers.

Notice that the two matrix-sequences mt and vt do not show any particular structure.

Also, it is worth underlining that, in the equation that defines values of Ĝ, the summation

by a scalar as well as the division between matrices are meant to be effected component

wise. To start the iteration, it is necessary to choose an initial guess U0. Moreover,

we set m0 := 0 and v0 := 0. The iteration step runs over t = 1, 2, 3, . . . , K, where K

denotes a pre-defined number of iterations.

3.8 Grassmann Manifold Gr(n, p)

The aim of this section is to recall some basic concepts about the Grassmann manifold.

As a further reference, readers might consult [7]. Let n be a positive integer and let p be

a positive integer, not greater than n. The set of p-dimensional linear subspaces of Rn is

called Grassmann manifold, denoted by Gr(n, p). An element on a Grassmann manifold

is generally represented by an arbitrarily chosen n× p full-rank matrix U , whose column

spans the corresponding subspace. Given the large arbitrariness in the choice of a basis

to represent a subspace, a sensible choice is to restrict oneself to a orthonormal (Stiefel)

matrix. The Grassmann manifold can be represented by a collection of such generator

matrices. Mathematically, this may be written as:

Gr(n, p) = {span(U) |U ∈ Rn×p,U>U = Ip}.

This allows to represent the generic element of Grassmann Manifold as U := {UR |R∈
O(p)}, where O(p) denotes the orthogonal group (the set of p× p orthogonal matrices).

An implication of this observation is that each element of Gr(n, p) is an equivalence set.
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CHAPTER 3. Extension of optimization algorithms to smooth manifolds

This allows the Grassmann Manifold to be treated as a quotient space of the larger

Stiefel Manifold St(n, p), which is the set of matrices of size n× p with orthonormal

columns. Specifically, the Grassmann Manifold has the quotient manifold structure

Gr(n, p) := St(n, p)/O(p). (3.10)

Hence, while optimization is conceptually on the Grassmann Manifold Gr(n, p), it nu-

merically allows to implement operations with concrete matrices – that are elements of

St(n, p).

Besides, given two points on Grassmann Manifold U,Û and a tangent vector V ∈
TU Gr(n, p) the Grassmann geodesic can be written as

γ(t) = [UB A]
[

cos(Σt)
sin(Σt)

]
B>, (3.11)

where AΣB> is the compact SVD of V . Then the exponential map, denoted as expU(V ) :

TU Gr(n, p)→ Gr(n, p), can be defined as the computation of Û = γ(1) using the origin

U and the tangent vector V .

Given V and W tangent vectors to the Grassmann Manifold at U , a formula for

parallel translation of W along geodesic in the direction V can instead be described as

follows:

PV (W, t) =
[
[UB A]

[
−sin(Σt)
cos(Σt)

]
A>+(I−AA>)

]
W. (3.12)

Moreover, when the elements of a Grassmann manifolds are represented through

Stiefel matrices, the projection operator over tangent spaces takes the expression ΠU [A] :=

(I−UU>)A, with A being any matrix of consistent size. As it is immediate to verify,

computation-wise the projection over a tangent space is much more economical than

parallel transport.

With that sorted, it is now possible to extend the above gradient-based learning

methods to the manifold Gr(n, p) as needed.
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Chapter 4

Sparse spectral clustering by
Grassmann manifold optimization

The aim of this chapter is to summarize the main concepts about the Grassmann Man-

ifold Optimization Assisted Spectral Clustering (GSC) algorithm, which is a clustering

method based on the Sparse Spectral Clustering (SSC) algorithm, used to cluster a col-

lection of multi-subspace data using sparse representation techniques.

4.1 Review of clustering in machine learning

Before going on, we start with an introduction of clustering to briefly explain why it is

so important to introduce sparse representation with high-dimensional data.

Clustering is one of the most widely used data exploration tools. Its goal is to divide

the data points into several groups such that points in the same group are similar and

points in different groups are dissimilar to each other. In order to do this, the main steps

are two: (1) creating a similarity/affinity matrix for the given data sample set, and (2)

performing general clustering methods to categorize data samples – such as k-means or

NCut.

In many applications – such as machine learning, image processing and computer

vision – high dimensional data are widespread. This has unpleasant affects on the com-

putation time and memory requirements of algorithms that want to extract informa-

tion. However, it has been shown that high dimensional data often lie close to low-

dimensional structures corresponding to several classes or categories to which the data

belong. The goal of Spectral (or Subspace) Clustering (SC) [11, 9], which is a sim-

ple extension of traditional clustering, is to cluster data points that lie in a union of

low-dimensional subspaces.

Sparse Spectral Clustering (SSC) [5] actually went even further. The key idea of
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CHAPTER 4. Sparse spectral clustering by Grassmann manifold optimization

this algorithm is that, among the infinitely many possible representations of a data point

in terms of other points, a sparse representation corresponds to selecting a few points

from the same subspace. This motivates solving a sparse optimization program whose

solution is used in a spectral clustering framework to infer the clustering of the data

into subspaces. The underlying idea behind the algorithm is what the authors call the

self-expressiveness property of the data, which states that each data point in a union

of subspaces can be efficiently represented as a linear or affine combination of other

points.

Sparse spectral clustering specifies a sparsity-induced penalty to learn more clusters

favored latent representation. Indeed, the objective of SSC is to characterize how close

the eigen-structure of a similarity/affinity matrix is to a partition implied by the latent

representation. In other words, instead of explicitly inferring latent representation for

eigen-structure, learning the subspace structure should be desired. This proves that it is

necessary and more reasonable to implement the SSC optimization over subspaces, –

such are the points on Grassmann manifolds.

4.2 Spectral Clustering

Assume we are given

X = [x1, . . . ,xN ] ∈ RP×N , (4.1)

where X is a set of N data-points to be clustered and P is the dimension of data. The

purpose of clustering is to partition the dataset X into k clusters according to certain

similarity criteria.

Spectral Clustering partitions these N points into k clusters as specified in the Algo-

rithm 4.

The elements of UU> represents the similarity (or affinity) between the latent rep-

resentation of the original data. In the ideal scenarios, UU> can be permuted to block

diagonal structure, which is privileged as it improves clustering performance. The idea

of inducing or enforcing sparsity is the basis of Sparse Spectral Clustering. The SSC

tries to obtain a better representation U by solving the following sparsity-induced opti-

mization:

min
U∈RN×p

(〈
UU>,L

〉
+β‖UU>‖1

)
s.t. U>U = I, (4.5)

where β represents a weight whose value promotes or demotes the sparsity of the solu-

tion U . The elements in UUT corresponding to the weak inter-cluster connections tends

to be zero, while the ones corresponding to the strong intra-cluster connections will be
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4.2. Spectral Clustering

Algorithm 4 Spectral Clustering (SC)
1: Compute the N×N affinity matrix W defined by

Wi j =

{
e−‖xi−x j‖2

2σ2 if i 6= j,
0 otherwise,

(4.2)

where σ controls size of neighborhood.
2: Compute the normalized graph Laplacian

L := I−D−1/2WD−1/2, (4.3)

where D is the diagonal matrix with each diagonal element dii := ∑
N
j=1 wi j.

3: Compute U ∈ RN×p by solving the following constrained problem:

min
U∈RN×p

〈
UU>,L

〉
s.t. U>U = I. (4.4)

4: Form Û ∈ RN×k by normalizing each row of U to have unit Euclidean length
5: Treat each row of Û as a point in Rk, and cluster them into k groups by k-means or

any other algorithm.

kept. But the solution U of the problem (4.5) may not be the best one. hat’s why GSC

algorithm has been proposed in [15].

We could sum it up as follows. Consider problem (4.5). Denote the objective func-

tion by

f (U) =
〈

UU>,L
〉
+β‖UU>‖1, (4.6)

where L is the normal Laplacian graph. The constraint condition in problem (4.5) de-

fines the Stiefel Manifold which consists, as we said before, of all the orthogonal col-

umn matrices:

St(n, p) = {U ∈ RN×p |U>U = I}. (4.7)

As a consequence, problem (4.5) is an unconstrained manifold optimization problem

on the Stiefel manifold St(n, p). Due to the definition of the Grassmann Manifold as the

quotient space of the Stiefel Manifold Stiefel manifold St(n, p), it is possible to re-form

the problem on the Grassmann Manifold as follows:

min
U∈St(n,p)

(〈
UU>,L

〉
+β‖UU>‖1

)
, (4.8)

where equation (4.8) is an unconstrained Grassmann Manifold optimization problem.

The objective function (4.6) of the new optimization problem (4.8) is not differentiable

at the location where elements of UU> are zero. However in this case the authors of

[15] assumed using the sub-differential.
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Before going on, it is better to introduce several notations. For a matrix A of

size m× n, vec(A) is a mn-dimensional vector by stacking columns of A one by one,

and ivec(vec(A)) = A the inverse operation of vec. A⊗ B is the Kronecker prod-

uct of matrices A and B. The transform Tm,n is a matrix of size mn×mn such that

vec(A) = Tm,nvec(A>).

For the first term in the objective function (4.6), it is possible to write that:〈
UU>,L

〉
= trace(UU>L) = trace(U>LU) (4.9)

Therefore

∇

〈
UU>,L

〉
= LU +L>U = 2LU (4.10)

because L is symmetric.

Consider the second term of the objective function:

vec
(
‖UU>‖1

∂U

)>
= vec(sign(UU>))>

∂UU>

∂U
(4.11)

where
∂UU>

∂U
= (IN2 +TN2×N2)(U⊗ IN). (4.12)

Describe the column vector M as

M =

(
∂UU>

∂U

)>
vec(sign(UU>)), (4.13)

hence, the Euclidean derivative of the objective function (4.6) is:

∇ f (U) = 2LU +β ivec(M). (4.14)

We believe that ivec(M) could be computed in a easier and even more efficient way,

especially in those cases where the involved matrices are large.

Knowing that

‖UU>‖1 := ∑
i

∑
j
|(UU>)i j| (4.15)

and that (
UU>

)
= ∑

k
Uik(U>)k j = ∑

k
UikU jk, (4.16)

we are able to write [
∂‖UU>‖1

∂U

]
ab
=

∂

∂Uab
∑

i
∑

j

∣∣∣∣∣∑k
UikU jk

∣∣∣∣∣ . (4.17)
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We can now distinguish three cases:
i = a, k = b or
j = a, k = b or
i = j = a, k = b

Hence [
∂‖UU>‖1

∂U

]
ab
=

∂

∂Uab

[
∑

j
|Uab|

∣∣U jb
∣∣+∑

i
|Uib| |Uab|

]

= 2∑
i
|Uib|sign

[
∑
k
|Uik| |Uak|

]
.

(4.18)

So whatever way you choose to calculate ivec(M), at the representative U of a Grass-

mann point U , the Riemannian gradient can be simply computed as:

gradU f = (I−UU>)∇ f (U). (4.19)

At this stage, it is possible to use any suitable optimization algorithm on the Grassmann

manifold to solve the optimization problem (4.8) to get a solution U .

Given the data matrix X = [x1, . . . ,xN ], the number of the latent dimension p and the

trade-off parameter β , GSC algorithm consists of the steps described in Algorithm 5.

4.3 Clustering methods

We will now briefly summarize the basic concepts about k-means++ and Ncut, two of

the major clustering methods, leaving to the reader the opportunity to decide between

the two of them the one he prefers. We used an NNut method as it reaches better

performances.

4.3.1 k-means++

The k-means++ algorithm uses an heuristic to find centroid seeds for the k-means clus-

tering. According to Arthur and Vassilvitskii [1], k-means++ improves the running

time of Lloyd’s algorithm (k-means) and the quality of final solution. Its goal is to min-

imize the average squared distance between points in the same cluster. The k-means++

algorithm chooses seeds as shown in the Algorithm 6, assuming the number of cluster

is k. The authors of [1] demonstrate that k-means++ consistently outperforms k-means,

both by achieving a lower potential value and also by completing faster.
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Algorithm 5 Grassmann Manifold Optimization Assisted Spectral Clustering (GSC)
1: Construct a N×N affinity matrix W where each element wi j measures the similarity

between xi and x j.
2: Defining k the number of clusters, compute the initial latent representation U (0) of

size N×k by taking the first k eigenvectors corresponding to the largest k eigenval-
ues of the matrix W .

3: Compute the Laplacian normalized matrix L.
4: With the initial U (0) call any appropriate optimization algorithm on the Grassmann

manifold to minimize the following function:

f (U) =
〈

UU>,L
〉
+β‖UU>‖1.

5: With the sparse latent representation U in output, form the new affinity matrix Ŵ =
UU>

6: Using the Ŵ matrix, compute the pair-wise Euclidean distance

∆i j =
√

Pi j,

where, upon defining 1 as the 1× k all-one vector, the matrix P is computed as
follows: 

H := Ŵ>Ŵ , (size k× k)
Q := diag(H), (size k×1)
P := Q1+1

>Q>−2H, (size k× k)
Each negative entry of the matrix P is set to zero.

7: Take the new pair-wise data affinity matrix W ∗ as W ∗i j := exp(−∆i j/σ), where
σ = 0.1, as input for the Normalized Cut (NCut) method (or any other clustering
algorithms) to separate the data into clusters.
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Algorithm 6 k-means++

1: Let X ⊂ Rd×n be a set of n data points. Select an observation uniformly at random
from the dataset X : the chosen point is the first center and is denoted c1.

2: Compute distances from each data point to c1. Denote the distance between c j and
the data point m as D(xm,c j).

3: Select the next center c2 at random from X with probability

D2(xm,c1)

∑
n
j=1 D2(x j,c1)

4: To choose center j:

1. Compute the distances from each data point to each center, and assign each
data point to its closest center.

2. For m = 1, . . . ,n and p = 1, . . . , j− 1 select center j at random from X with
probability

D2(xm,cp)

∑(h:xh∈Cp) D2(xh,cp)

where Cp is the set of all the data points closest to center cp and xm belongs to
Cp.

5: Repeat the previous step until k centers are chosen.

4.3.2 Normalized Cut (NCut)

The set of points in an arbitrary feature space is represented as a weighted undirected

graph G = (V ,E ), where the nodes of the graph are the points in the characteristic

space, and an edge is built between every pair of nodes. The weight on each edge

w(i, j) is a function of the similarity between nodes i and j. In grouping, the set of

vertices is partitioned into disjoint sets V1,V2, . . . ,Vm, where the similarity among the

vertices in a set Vi is high and across different sets Vi,V j is low.

A graph G =(V ,E ) can be partitioned into two disjoint sets A ,B with A ∪B =V

and A ∩B = /0, by simply removing edges connecting the two parts. The degree of

dissimilarity between these two pieces can be computed as total weight of the edges

that have been removed. In a graph-theoretic language, it is called the cut:

cut(A ,B) := ∑
u∈A ,v∈B

w(u,v).

The optimal bipartitioning of a graph is the one that minimizes this cut value. Even

though there are a lot of such partitions, finding the minimum cut of a graph is a well-

studied problem and there exist efficient algorithms for solving it.

The NCut method [14] measures both the total dissimilarity between the different
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Algorithm 7 Normalized Cut (NCut)

1: Given an image or image sequence, set up a weighted graph G = (V ,E ) and set the
weight on the edge connecting two nodes to be a measure of the similarity between
the two nodes.

2: Summarize the information into matrices W and D.
3: For eigenvectors with the smallest eigenvalues, solve

(D−W )x = λDx

otherwise – that is the same

D−1/2(D−W )D−1/2z = λ z

where z = D−1/2x.
4: Use the eigenvector with the second smallest eigenvalue to bipartition the graph by

finding the splitting point such that the NCut value is minimized.
5: Decide if the current partition should be subdivided by checking the stability of the

cut, and make sure that the NCut value is below the pre-specified value.
6: Recursively re-partition the segmented parts if necessary.

groups as well as the total similarity within the groups: it computes the cut cost as a

fraction of the total edge connections to all the nodes in the graph, instead of looking at

the value of total edge weight connecting the two partitions:

NCut(A ,B) :=
cut(A ,B)

assoc(A ,V )
+

cut(A ,B)

assoc(B,V )

where assoc(A ,V ) := ∑u∈A ,t∈V w(u, t) is the total connection from nodes in A to all

nodes in the graph and assoc(A ,V ) is similarly defined. With this definition of the

disassociation between the groups, the cut that partitions out small isolated points will

no longer have small NCut value, since the cut value will almost certainly be a large

percentage of the total connection from that small set to all other nodes.

Coming to the point, the NCut algorithm consists of the steps specified in the Al-

gorithm 7. The authors of the [14] algorithm make it clear that they have developed

a grouping algorithm based on the view that perceptual grouping should be a process

that aspires to extract global impressions of a scene, and that provides a hierarchical de-

scription of it. By treating the grouping problem as a graph partitioning problem, they

proposed a method which is an unbiased measure of disassociation between subgroups

of a graph, and it has the nice property that minimizing normalized cut leads directly

to maximizing the normalized association, which is – again – an unbiased measure for

total association within the sub-groups.

Unlike k-means which is ideal for discovering globular clusters, where all mem-
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bers of each cluster are in close proximity to each other (in the Euclidean sense), NCut

doesn’t cluster data points directly in their native data space but instead forms a similar-

ity matrix where the (i, j)-th entry is some similarity distance it defines between the i-th

and j-th data points in the dataset. So, in a certain sense, the NCut algorithm is more

general (and powerful) because whenever k-means is appropriate for use then so too is

NCut (just use a simple Euclidean distance as the similarity measure). The converse is

not true though.
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Chapter 5

Experimental results

The present chapter summarizes results of numerical experiments performed on two

categories of datasets, namely, synthetic 2-dimensional datasets used for testing pur-

poses, and real-world datasets used to validate and compare the performances of the

discussed gradient-based learning algorithms.

5.1 Clustering results on synthetic datasets

The synthetic datasets used in this section are drawn from [15], namely:

• Two-moon data: The data are randomly generated from two sine-shape curves

with the noise percentage set to 0.09, and each cluster – in this specific case –

contains 100 samples.

• Three-Gaussian data: Each cluster follows a Gaussian distribution with a vari-

ance of 0.05. Again, in our experiment each cluster has 100 samples.

• Three-ring data: The data are distributed on circles, with the noise percentage

set to 0.15. There are respectively 100, 100 and 150 samples in each cluster.

• Two disjoint quadratic para-curves data: The data are spread throughout two

disjoint parabolic-shape curves without overlapping, altered with Gaussian noise

of 0 mean and variance 0.05. In our experiment each cluster contains 200 sam-

ples.

The datasets used in this experiment are shown in the Figure 5.1, with the clusters

colored. The numerical experiments were performed on a PC with a dual-core Intel

Core i5 processor, clock frequency 2.7GHz and 8GB RAMs by MATLAB R2017b

scripts.
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5.1. Clustering results on synthetic datasets

(a) Two-Moon dataset. (b) Three-Gaussian dataset.

(c) Three-Ring dataset (d) Two disjoint quadratic para-curves dataset

Figure 5.1: Synthetic datasets used to test clustering algorithms.

Before discussing and comparing the efficiency of the various algorithms on each

dataset, the NCut limitations deserve a closer look: its accuracy is not high in any of the

dataset presented, as the Figure 5.2 shows.

Once the importance of these optimization algorithms has been clarified, we pro-

ceed in comparing them. Each of the following tables refers to one of the methods

listed above, and it shows both the number of iterations and the running time that the

considered algorithm needs to get the 100% clustering accuracy for each dataset.

First, we compare TrustRegions ManOpt tool, using both matrix M of the paper [15]

(4.13), whose performances are summarized in the Table 5.1, and then our improvement

(4.18), whose performances are summarized in the Table 5.2.
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(a) NCut with Two-moon dataset. (b) NCut with Three-Gaussian dataset.

(c) NCut with Three-ring dataset. (d) NCut with Two disjoint para-curves dataset.

Figure 5.2: Clustering results obtained by the NCut algorithm without learning any
affinity matrix.

Dataset # iterations Running time (sec)
Two-Moon 17 60.75

Three-Gaussian 8 162.87
Three-Ring 11 304.10

Two Disjoint Para-Curves 33 1047.79

Table 5.1: Comparison of the performance indices of the TrustRegions (ManOpt tool)
using (4.13).
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Dataset # iterations Running time (sec)
Two-Moon 12 4.59

Three-Gaussian 5 2.59
Three-Ring 10 3.42

Two Disjoint Para-Curves 11 4.39

Table 5.2: Comparison of the performance indices of the TrustRegions with our im-
provement in computation of M (4.18).

As we can see, our improvement in the way to compute M (4.18) makes the algo-

rithm much faster.

Notice that the number of iterations is not so meaningful, as the running time of

the algorithm is. The more complex the toy dataset is, the more time the algorithm

requires to converge perfectly, regardless of whether the number of iterations is slightly

or significantly higher than that used in other datasets. We shall now move on to the

gradient-based learning methods. The following results were obtained by choosing, as

calculation method for the matrix M, the expression (4.18).

The performances of the ‘Gradient descent’ learning algorithm on the four synthetic

datasets are summarized in the Table 5.3. In this table, as well as in the following ones,

the # iterations refers to a pre-fixed number of learning cycles which guarantees the

complete convergence. It is clear that the convergence of this algorithm is very slow.

Dataset # iterations Running time (sec)
Two-Moon 200,000 567.05

Three-Gaussian 500,000 1,463.19
Three-Ring 750,000 9,617.48

Two Disjoint Para-Curves 500,000 5,277.69

Table 5.3: Comparison of the performance indices of the GD-based learning algorithm
on four synthetic datasets.

The performances of the ‘Momentum’ learning algorithm on the four toy datasets

are summarized in the Table 5.4. ‘Momentum’ is much faster than ‘GD’, but it is still

not moving fast.
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Dataset # iterations Running time (sec)
Two-Moon 3,500 12.42

Three-Gaussian 1,500 18.28
Three-Ring 250,000 3,023.19

Two Disjoint Para-Curves 300,000 3,675.03

Table 5.4: Comparison of the performance indices of the Momentum-based learning
algorithm on four synthetic datasets.

The performances of the ‘Nesterov accelerated gradient’ learning algorithm on the

four toy datasets are summarized in the Table 5.5. As expected, ‘Nesterov accelerated

gradient’ is similar to ‘Momentum’ in terms of performance, although it appears to be

slightly faster as the complexity of the input data increases.

Dataset # iterations Running time (sec)
Two-Moon 6,500 21.86

Three-Gaussian 1,000 13.04
Three-Ring 10,000 156.30

Two Disjoint Para-Curves 10,000 173.70

Table 5.5: Comparison of the performance indices of the NAG-based learning algorithm
on four synthetic datasets.

The performances of the ‘Adaptive gradient’ learning algorithm on the four toy

datasets are summarized in the Table 5.6. Adaptive methods turn out to be much faster,

as it is possible to notice by observing the performance of the ‘AdaGrad’, which is

however the slowest of them.

Dataset # iterations Running time (sec)
Two-Moon 2,000 19.58

Three-Gaussian 200 8.92
Three-Ring 300 15.34

Two Disjoint Para-Curves 5,000 77.59

Table 5.6: Comparison of the performance indices of the AdaGrad-based learning algo-
rithm on four synthetic datasets.

The performances of the ‘AdaDelta’ learning algorithm on the four toy datasets are

summarized in the Table 5.7. ‘AdaDelta’ still improves ‘AdaGrad’ performances and

turns out to be faster.
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Dataset # iterations Running time (sec)
Two-Moon 1,000 5.91

Three-Gaussian 100 2.41
Three-Ring 400 7.08

Two Disjoint Para-Curves 3,500 32.83

Table 5.7: Comparison of the performance indices of the Adadelta-based learning algo-
rithm on four synthetic datasets.

The performances of the ‘AdaM’ learning algorithm on the four toy datasets are

summarized in the Table 5.8. ‘AdaM’appears to be the fastest method, whatever the

complexity of the input data is.

Dataset # iterations Running time (sec)
Two-Moon 350 3.74

Three-Gaussian 100 4.34
Three-Ring 100 6.06

Two Disjoint Para-Curves 500 14.55

Table 5.8: Comparison of the performance indices of the AdaM-based learning algo-
rithm on four synthetic datasets.

Apparently, the adaptive methods are much faster than the non-adaptive gradient-

based methods. In particular, the AdaM learning algorithm seems to be the one which

converges the fastest, whereas the GD – as well as Momentum and NAG in the case of

the Three-ring dataset – appear to be inappropriate because of their slowness.

The Figure 5.3 shows a comparison of learning curves of six learning algorithms on

a Two-moon dataset. The number of iterations is limited to 350, which corresponds to

the number of iterations needed by the AdaM algorithm to converge to a sparse matrix

U that guarantees 100% clustering accuracy.
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Figure 5.3: Complete view of the learning curves.

The clustering accuracy of the classical NCut algorithm on two-moon, three-Gaussian,

three-ring datasets is 56.50%, 60.10%, and 86.00%, respectively. We compare the influ-

ence of β on the performance of GSC learnt by different adaptive methods: AdaGrad,

AdaDelta and AdaM. We use for each of the presented optimization method the number

of iteration they require to get the perfect accuracy with β = 0.00001. Tables 5.9, 5.10,

5.11 and 5.12 show the clustering performance versus parameter β on the toy datasets.

Each of the considered case states that GSC learnt by AdaM performance is much more

robust than others against the parameter β .

β AdaGrad AdaDelta AdaM
β = 0.00001 100% 100% 100%
β = 0.00005 92.75% 96.50% 96.50%
β = 0.0001 75.75% 96.50% 86.41%
β = 0.0005 62.41% 66.71% 78.50%
β = 0.001 53.50% 54.25% 61.41%
β = 0.005 53.50% 52.75% 57.25%
β = 0.01 48.41% 49.71% 51.73%

Table 5.9: Clustering accuracy of GSC - learnt, respectively, by AdaGrad, AdaDelta
and AdaM - against different β on Two-Moon data set.
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β AdaGrad AdaDelta AdaM
β = 0.00001 100% 100% 100%
β = 0.00005 100% 100% 100%
β = 0.0001 100% 99.75% 100%
β = 0.0005 84.33% 89.50% 95.70%
β = 0.001 60.33% 74.41% 89.71%
β = 0.005 47.25% 74.41% 88.50%
β = 0.01 42.75% 61.71% 84.33%

Table 5.10: Clustering accuracy of GSC - learnt, respectively, by AdaGrad, AdaDelta
and AdaM - against different β on Three-Gaussian data set.

β AdaGrad AdaDelta AdaM
β = 0.00001 100% 100% 100%
β = 0.00005 100% 100% 100%
β = 0.0001 100% 100% 100%
β = 0.0005 79.71% 77.14% 88.50%
β = 0.001 69.71% 64.41% 88.50%
β = 0.005 58.43% 55.33% 83.41%
β = 0.01 58.43% 53.65% 83.41%

Table 5.11: Clustering accuracy of GSC - learnt, respectively, by AdaGrad, AdaDelta
and AdaM - against different β on Three-Ring data set.

For the two disjoint para-curve dataset, the clustering accuracy of NCut method is

54.50%. The best result for GSC method is 100% when β = 0.000001.

β AdaGrad AdaDelta AdaM
β = 0.000001 100% 100% 100%
β = 0.000005 100% 100% 100%
β = 0.00001 95.75% 96.25% 97.75%
β = 0.00005 65.41% 68.71% 79.50%
β = 0.0001 56.75% 56.75% 71.40%
β = 0.0005 54.50% 55.33% 61.71%
β = 0.001 31.43% 34.66% 46.75%

Table 5.12: Clustering accuracy of GSC - learnt, respectively, by AdaGrad, AdaDelta
and AdaM - against different β on Two Disjoint Para-Curves data set.

In order to examine the underlying low-dimensional structure within data, we sup-

ply here a visual comparison of affinity matrix of all the synthetic datasets used. Figures

5.4 and 5.5 show the affinity matrix W as computed by the NCut algorithm and by the

GSC clustering algorithm (learnt by an AdaM algorithm), respectively. Note that the
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affinity matrix obtained using AdaM is the same one we could get employing each one

of the other optimization methods. The affinity matrix obtained by GSC effectively re-

veals the cluster structure of data.

(a) NCut with Two-Moon dataset. (b) GSC with Two-Moon dataset.

(c) NCut with Three-Gaussian dataset. (d) GSC with Three-Gaussian dataset.

Figure 5.4: Comparison of the affinity matrix W computed on Two-Moon and Three-
Gaussian Dataset: (a), (c) were obtained using NCut; (b), (d) were obtained using GSC
learnt by AdaM.

From all the results listed above, it is possible to observe that:

1. Due to our adjustments (equation 3.4), GSC algorithm appears to be clearly

faster: looking at tables 5.1, 5.2, it is clear that the running time of the algorithm

is considerably lower.

2. The clustering results from GSC are better that from the NCut algorithm, for each

toy dataset and each optimization algorithm considered.

3. AdaM seems to be the fastest optimization method: especially for the complicated

three-Gaussian, three-ring and two disjoint para-curves datasets it outperforms

all the others, and it is also much more robust versus the sparse regularization
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5.2. Clustering results on pictorial datasets

(a) NCut with Three-Ring dataset. (b) GSC with Three-Ring dataset.

(c) NCut with Two-ParaCurves
dataset.

(d) GSC with Two-ParaCurves
dataset.

Figure 5.5: Comparison of the affinity matrix W computed on Three-Ring and Two
Disjoint Para-Curves Dataset: (a), (c) were obtained using NCut; (b), (d) were obtained
using GSC learnt by AdaM.

parameter β .

5.2 Clustering results on pictorial datasets

In this section, we perform some experiments on public databases to evaluate the per-

formances of the proposed optimization methods on real-world dataset. All of the ex-

periments are conducted on the following three public available datasets:

1. The YaleB face database (http://vision.ucsd.edu/~leekc/ExtYaleDatabase/

ExtYaleB.html)

2. The ORL face database (https://www.cl.cam.ac.uk/research/dtg/attarchive/

facedatabase.html)

3. The MNIST database (http://yann.lecun.com/exdb/mnist/)
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(a) Examples of Extended Yale B
Dataset.

(b) Examples of ORL faces Dataset.

(c) Examples of MNIST handwritten
digits.

Figure 5.6: Examples of the Extended YaleB, ORL Faces and MNIST datasets, respec-
tively.

The Extended Yale B Face Database consists of 192× 168 pixel cropped face images of

n= 38 individuals, where there are Ni = 64 frontal face images for each subject acquired

under various lighting conditions. Some sample face images are shown in Figure 5.6(a).

To reduce the computational cost and the memory requirements of all algorithms, we

downsample the images to 32 × 32 pixels and treat each 1,032-dimensional vectorized

image as a data point, hence, D = 1,032.

The ORL Database is composed of 400 images of size 112 × 92, and some sam-

ples are shown in Figure 5.6(b). There are 10 different images of 40 distinct subjects.

For some of the subjects, the images were taken at different times, varying lighting

slightly, facial expressions (open/closed eyes, smiling/non-smiling) and facial details

(glasses/no-glasses). All the images are taken against a dark homogeneous background

and the subjects are in up-right, frontal position (with tolerance for some side move-

ment). All the data is collected in a matrix of shape 10304(pixels) × 400(faces). To
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avoid large values, the data matrix is divided by 100.

We follow the settings in [5] to construct the affinity matrix by l1-graph and apply

GSC learnt by ManOpt-Trustregions and AdaM on the constructed affinity matrix for

these two face data sets. Six subsets are constructed which consist of all the images of

the randomly selected subjects with the number of clusters, i.e., K ranging from 5 to

18. We set the same β = 0.00001, and n = 1500 the number of iterations for the AdaM

algorithm.

Method Trustregions AdaM
K = 5 96.50% 97.15%
K = 8 91.65% 91.65%
K = 10 85.24% 86.33%
K = 12 81.31% 81.71%
K = 15 77.82% 76.91%
K = 18 74.61% 74.51%

Table 5.13: Clustering results in terms of accuracy of GSC learnt by Trustregions and
by AdaM on YaleB dataset.

Method Trustregions AdaM
K = 5 97.60% 97.60%
K = 8 93.50% 94.25%
K = 10 82.77% 82.67%
K = 12 81.80% 81.95%
K = 15 79.67% 79.67%
K = 18 78.86% 77.95%

Table 5.14: Clustering results in terms of accuracy of GSC learnt by Trustregions and
by AdaM on ORL dataset.

The result are summarized in Tables 5.13 and 5.14. They show how close is the

accuracy reached by GSC learnt both by Trustregions and AdaM, although AdaM seems

to reach a better accuracy with relatively low K whereas Trustregions is better with

higher K.

The subset of handwritten digits images in Figure 5.6(c) is selected from MNIST

database, which contains 60,000 training digital images and 10,000 testing digital im-

ages, with 600 images of each digit. All images are normalized to fit into a 28x28 pixel

bounding box and anti-aliased, which introduced grayscale levels. We compared the

performance of GSC learnt by ManOpt-TrustRegions and adaptive methods. We set the

same β = 0.00001, whereas the number of clusters K is set 5, 8 and 10. Each of the K
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datasets was build-up so as to contain a total of 400 images randomly selected to belong

to the same cluster.

Method Trustregions AdaGrad AdaDelta AdaM
K = 5 96.57% 93.71% 94.15% 97.50%
K = 8 89.41% 85.69% 87.61% 89.61%
K = 10 79.24% 73.21% 75.86% 79.24%

Table 5.15: Clustering results in terms of accuracy of GSC learnt by Trustregions and
by adaptive-methods on MNIST dataset.

As Table 5.15 demonstrates, GSC algorithm learnt by AdaM outperforms GSC al-

gorithm learnt by all the other methods, even the TrustRegions, showing that AdaM is

the best choice, not only with toy datasets but also with pictorial ones.
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Conclusion

This thesis studied and extended a number of classical and modern gradient-based learn-

ing methods to a general smooth manifold. After a quick overview of the spectral clus-

tering’s world, we also examined the GSC model which adopts Grassmann manifold

optimization strategy to optimize the sparse spectral clustering objective in a straight-

forward way, and found out a way to make it converge faster. Extensive experiments

conducted on both toy datasets and several real-world databases demonstrated the effec-

tiveness of adaptive methods, in particular of AdaM, which seems to represent a valid

and efficient alternative – in terms of accuracy and fast convergence – to ManOpt tools

such as Trustregions.
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