

UNIVERSITA' POLITECNICA DELLE MARCHE

FACOLTA' DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Meccanica

ANALISI DELLA RISPOSTA A CREEP DEL TITANIO PURO FRA 550 E 600 °C DOPO SALDATURA FSW

ANALYSIS OF THE CREEP RESPONSE OF FSW WELDED PURE TITANIUM BETWEEN 550 AND 600 °C

Relatore:

Chiar.mo Prof. Stefano Spigarelli

Tesi di Laurea di:

Antonio Leccese

A.A. 2022 / 2023

Ringraziamenti

Desidero ringraziare il Professor Stefano Spigarelli, relatore di questa tesi, per la disponibilità dimostrata durante il periodo di stesura dell'elaborato ed il precedente percorso di tirocinio curriculare.

Ringrazio il Dottor Alberto Santoni e Daniele Ciccarelli per avermi aiutato nelle attività laboratoriali, permettendomi di raggiungere un ottimo livello qualitativo nelle procedure sperimentali.

La serietà, l'abnegazione e la preparazione mostrata da tutti i soggetti coinvolti nel supporto alla stesura del presente elaborato è stata per me un esempio non solo professionale, ma anche di vita, da cui trarre ispirazione per il futuro.

Ringrazio i miei genitori e tutta la mia famiglia per essermi stati sempre vicini, aver gioito con me nei momenti felici e avermi supportato in quelli più negativi.

Ringrazio infine i miei amici, quelli storici e quelli che ho avuto la fortuna di trovare durante il mio percorso universitario; se sono riuscito a raggiungere questo traguardo il merito è anche vostro, dei consigli, delle risate e delle esperienze che abbiamo vissuto insieme e che mi hanno reso la persona che sono oggi.

Ancona, febbraio 2024

Antonio Leccese

Sommario

Con il termine "creep" si intende una deformazione permanente e che aumenta nel tempo quando un materiale è sottoposto a carico costante in condizioni di elevata temperatura. Il comportamento di un materiale sottoposto a creep è quindi caratterizzato dalla combinazione di fattori derivanti da sollecitazioni meccaniche e termiche.

Questo tipo di condizione genera fenomeni diffusivi all'interno del reticolo cristallino del materiale sottoposto alla prova, ragion per cui risulta di grande interesse scientifico e industriale determinare le prestazioni a creep di diversi materiali, con storie di lavorazioni e trattamenti termici diverse.

La seguente trattazione riguarda l'analisi della risposta a creep su base scientifica, e quindi condotta per tempi relativamente brevi, di provini di titanio commercialmente puro grado 2 (Ti-CP 2) ricavati da lembi di materiale saldati mediante la tecnica del Friction Stir Welding (FSW).

Indice

1	Int	roduzione11				
2	Il t	titanio13				
	2.1	Stor	ria del titanio	13		
2.2 Caratteristiche e proprietà			atteristiche e proprietà	13		
	2.3	.3 Titanio puro e leghe di titanio		14		
	2.3	2.3.1 Titanio puro		14		
	2.3	8.2	Leghe di titanio	15		
	2.4	Proc	duzione	17		
	2.5	App	plicazioni e mercato	20		
3	II c	creep	······	21		
	3.1	Asp	etti generali	21		
	3.2	Tipo	ologie di prove di creep	22		
	3.3	Mac	cchina di prova	24		
	3.4	Cur	va di creep	27		
	3.4.1 Velocità di deformazione nello stadio secondario		Velocità di deformazione nello stadio secondario	29		
	3.4	1.2	Il tempo di rottura	31		
	3.4	1.3	Approcci parametrici per la determinazione del tempo di rottura	32		
4	Fri	iction	Stir Welding	35		
	4.1	Gen	eralità	35		
	4.2	Le z	zone di saldatura	37		
	4.3	Effe	etti microstrutturali	38		
	4.3	3.1	Fenomeni statici	38		
	4.3	3.2	Fenomeni dinamici	44		
	4.4	FSV	V del titanio	45		
5	Procedure sperimentali		ıre sperimentali	47		
	5.1 Materiali		47			
	5.2 Prove di creep		49			
	5.3	Curve di creep		51		
	5.4	4 Calcolo delle equazioni costitutive		52		
	5.5	Calo	colo del parametro di Larson-Miller	53		
	5.6	Ana	ilisi dello spessore dei provini FSW	53		
	5.7	Ana	ilisi metallografica	55		
	5.8	Calo	colo delle microdurezze	58		

6 Risultati e discussione				
6	.1	Prove di creep	61	
6	.2	Curve di creep	66	
6	.3	Calcolo delle equazioni costitutive	73	
6	.4	Calcolo del parametro di Larson-Miller	80	
6	.5	Analisi dello spessore dei provini FSW	81	
6	.6	Analisi metallografica	89	
6	.7	Calcolo delle microdurezze	95	
7	7 Conclusioni			

1 Introduzione

Il titanio è un materiale di crescente utilizzo della pratica industriale attuale, soprattutto in settori quali aeronautico, militare, energetico, biomedicale.

La sua produzione, tuttavia, risulta tutt'oggi complessa, sebbene grandi passi in avanti siano stati fatti negli ultimi tempi; ciò trova spiegazione nel fatto che la sua scoperta, e soprattutto i suoi metodi produttivi, siano da considerarsi relativamente recenti. Questo spiega l'onerosità di questo materiale, e quindi la riluttanza che alcuni settori industriali conservano verso il suo impiego.

Il titanio è comunque uno dei metalli presenti in maggior quantità nella crosta terrestre quindi l'evoluzione delle tecnologie produttive andrà sicuramente ad incentivarne l'utilizzo, anche in relazione ad un prevedibile abbassamento dei prezzi.

Le proprietà del titanio ben si sposano con le tecniche di saldatura come quella del Friction Stir Welding (FSW); tuttavia, nel corso della seguente trattazione, si farà luce sulle particolarità e le eventuali problematiche che un metodo di saldatura del genere mostra quando applicato su questo materiale.

La tecnica FSW conferisce al metallo saldato proprietà meccaniche elevate, che possono essere riscontrate mediante prove; nella seguente trattazione si porrà l'accento sul comportamento di provini di titanio commercialmente puro grado 2 (Ti-CP 2) ricavati da lembi saldati FSW, sottoposti a creep.

Dalle analisi svolte nei laboratori del dipartimento DIISM dell'Università Politecnica delle Marche, sono state ricavate le equazioni costitutive che raccontano il comportamento dei provini analizzati nelle suddette condizioni; per farlo, sono stati raccolti dati dalle prove di creep svolte sui campioni, e sono stati applicati metodi teorici per ricavare i parametri fondamentali per carpire il comportamento dei vari pezzi.

Parallelamente, sono state svolte attività di lappatura, lucidatura e attacco chimico dei provini in modo da poter produrre micrografie degli stessi, utili per poter apprezzare in maniera precisa e approfondita la conformazione della microstruttura, ma anche ottenere un efficace confronto fra le dimensioni dei vari pezzi dopo le rispettive deformazioni. Inoltre, è stata eseguita un'analisi metallografica per completare il lavoro e darne maggiore valenza scientifica.

2 Il titanio

2.1 Storia del titanio

Il titanio (dal latino *Titanus*, Titano, nome del dodicesimo figlio di Gea e Urano) fu scoperto nel 1791 dal reverendo e mineralogista britannico William Gregor nella Valle di Manaccan, nel sud della Cornovaglia. Egli rinvenne sabbie scure contenenti in prevalenza $FeTiO_3$ (ilmenite), dalle quali individuò, senza però poterlo isolare, il suddetto metallo, che chiamò "menacanite" in onore del territorio della scoperta.

L'attuale denominazione deriva da una seconda scoperta, ad opera del chimico tedesco Martin Heinrich Klaproth, che individuò il metallo in campioni di sabbia provenienti dall'Ungheria contenenti TiO_2 (rutilio) [1, 2, 3].

2.2 Caratteristiche e proprietà

Le principali caratteristiche del titanio sono l'elevata temperatura di fusione, la bassa densità, l'elevata resistenza alla corrosione e allo scorrimento viscoso e l'elevata reattività con l'ossigeno. Si presenta come un metallo di colore molto chiaro e lucido e le sue leghe sono note per l'elevata resistenza meccanica.

Principali caratteristiche e proprietà	Ti	Fe	Ni	AI
Temperatura di fusione, °C	1670	1538	1455	660
Modulo elastico, GPa	115	210	200	72
Livello della tensione di Snervamento, MPa	1000	1000	1000	500
Densità, g/cm3	4,5	7,9	8,9	2,7
Resistenza alla corrosione, comparazione	Altissima	Bassa	Media	Alta
Reattività con l'ossigeno, comparazione	Altissima	Bassa	Bassa	Alta
Espansione termica lineare, 10-6m K-1	8,4	11,8	13,4	23,1
Conduttività termica, W m-1 K-1	20	80	90	237

Figura 1. Principali caratteristiche e proprietà del titanio, confrontate con quelle di altri metalli di uso comune [1]

Il titanio è un elemento allotropico, quindi è presente in natura secondo diverse forme. In particolare, la sua struttura stabile risulta essere a reticolo esagonale compatto (EC), detta anche "fase α ", quando si trova a temperatura inferiore a 882 °C, e a reticolo cubico a corpo centrato (CCC), "fase β ", al di sopra di tale temperatura. La temperatura in corrispondenza della quale avviene la trasformazione da una fase all'altra viene chiamata " β -transus".

Il tipo di struttura influenza molto la deformabilità del metallo; infatti, la fase α consta di minor deformabilità in quanto provvista di un minor numero di sistemi di scorrimento.

Inoltre, la struttura monocristallina α presenta una cospicua anisotropia del comportamento meccanico, che comporta una variazione consistente del modulo di Young a seconda della direzione di applicazione del carico. Basti pensare che il modulo di Young è pari a 145 GPa in

caso di carico perpendicolare al piano basale della struttura, mentre scende a 100 GPa per un carico parallelo allo stesso piano.

Anche la diffusione è marcatamente correlata alla fase. Il coefficiente di diffusione per α è nettamente inferiore a quello relativo a β . Anche in questo caso, la motivazione è da ricercarsi nel maggior impacchettamento della prima fase.

Il comportamento meccanico delle due fasi risulta quindi influenzato dalla microstruttura, al punto da determinare significative differenze nella risposta a creep, la lavorabilità a caldo e la superplasticità [4].

Figura 2. Strutture cristalline delle fasi $\alpha \in \beta$ per il titanio commercialmente puro [4]

2.3 Titanio puro e leghe di titanio

Come precedentemente illustrato, il titanio puro è presente in due fasi distinte, ed è possibile ottenere l'una o l'altra variandone la temperatura.

Tuttavia, l'aggiunta di elementi alliganti può permettere la trasformazione anche a temperature di β -transus diverse, nonché la coesistenza di entrambe le fasi stabili. In questo caso il materiale non è più un titanio puro, ma una lega di titanio.

2.3.1 Titanio puro

Esiste una precisa classificazione del titanio, ad opera dell'ente di normazione statunitense ASTM International, che riconosce circa 40 gradi di titanio, di cui i primi quattro relativi al titanio puro:

- Grado 1: presenta un bassissimo contenuto di ossigeno e si distingue per essere il più dolce e formabile. Ha una bassa resistenza meccanica ma eccellente resistenza alla corrosione e saldabilità;
- Grado 2: presenta un contenuto di ossigeno leggermente superiore al precedente. Presenta una resistenza meccanica leggermente più alta, unita a una soddisfacente duttilità. Risulta inoltre molto resistente alla corrosione ed ha un'ottima saldabilità.
- **Grado 3**: contiene più ossigeno dei precedenti ed ha una buona resistenza meccanica a discapito delle altre caratteristiche che risultano inferiori ai precedenti.

• **Grado 4**: ha un alto contenuto di ossigeno e un'ottima resistenza meccanica, ma pecca nelle altre caratteristiche, ad eccezione della formabilità che resta comunque soddisfacente.

I gradi successivi sono riferiti alle varie leghe di titanio.

2.3.2 Leghe di titanio

Per quanto riguarda le leghe, esiste una classificazione anche in base al tipo di elementi alliganti, ovvero come influiscono sul valore della temperatura β -transus, che in questo caso è intesa come la minima temperatura per la quale si ha unicamente fase β [1]. Essi infatti possono essere:

α-stabilizzanti;

- β-stabilizzanti;
- neutri;

Gli elementi α -stabilizzanti estendono il campo di esistenza della fase α , andando ad alzare il valore di β -transus. Inoltre, determinano la presenza di una zona di coesistenza delle due fasi.

Gli elementi facenti parte questo gruppo sono l'alluminio, primo per importanza per via della sua grande solubilità in entrambe le fasi e delle proprietà superplastiche che conferisce come alligante del titanio in presenza di grani ultrafini, e le terre rare. Sono da considerarsi α -stabilizzanti anche ossigeno, carbonio e azoto anche se, soprattutto il primo, non sono propriamente degli alliganti in quanto solitamente indesiderati.

Gli elementi β -stabilizzanti, che invece diminuiscono il valore di β -transus, sono suddivisi a loro volta in due categorie:

- β-stabilizzanti isomorfi;
- β-stabilizzanti eutettoidici;

I primi sono molibdeno, vanadio, tantalio e niobio, altamente solubili nel titanio.

I secondi sono ferro, manganese, cromo, cobalto, nichel, rame, silicio e idrogeno, che possono formare composti intermetallici.

Gli elementi neutri, come zirconio, stagno e afnio, non hanno effetto sulla temperatura, ma contribuiscono ad aumentare le proprietà meccaniche, prevalentemente per la fase α [1,4].

Figura 3. Effetto degli elementi di lega sui diagrammi di fase delle leghe di titanio [4]

Le leghe di titanio vengono classificate in base alla percentuale di fase β presente a temperatura ambiente, generando la seguente divisione:

- leghe α (stabili);
- leghe near-α;
- leghe $\alpha + \beta$;
- leghe β metastabili;
- leghe β (stabili);

Tali tipologie sono ben schematizzate in un grafico tridimensionale ottenuto dall'unione di due diagrammi di fase, uno per un elemento α -stabilizzante e un altro per un β -stabilizzante:

Figura 4. Diagramma di stato tridimensionale per la classificazione delle leghe di titanio [4]

Dal diagramma si evince come:

- le leghe α (stabili) comprendono soltanto il titanio commercialmente puro e quelle leghe che abbiano come alliganti elementi α -stabilizzanti o neutri. Sono leghe che non rispondono ai trattamenti termici ma possiedono ottima saldabilità;
- le leghe near-α sono ottenute quando tra gli alliganti c'è anche una piccola percentuale di elementi β-stabilizzanti;
- le leghe $\alpha+\beta$ sono ottenute quando tra gli alliganti c'è anche una percentuale di elementi β -stabilizzanti compresa fra il 5 e il 40%. Sono leghe adatte ai trattamenti termici e possono subire trasformazioni martensitiche. Sono le più usate in ambito industriale;
- le leghe β metastabili sono ottenute quando tra gli alliganti c'è una percentuale di elementi β-stabilizzanti maggiore delle precedenti, tale da superare la condizione nella quale una tempra veloce comporterebbe una trasformazione martensitica della fase β. Ci si trova ancora in campo bifasico;

 le leghe β (stabili) sono infine ottenute per percentuali di β superiori alle precedenti e rientrano nel campo monofasico. Sia queste che le metastabili sono adatte ai trattamenti termici e stanno prendendo sempre più piede in ambito industriale [1,4];

Leghe	Temperatura di β-transus. °C	
Ti commercialmente puro, 0.25 02 max	<mark>910</mark>	
Ti commercialmente puro, 0.40 02 max	945	
Leghe α e near α		
Ti-5Al-2.5Sn	1050	
Ti-8AI-1Mo-1V	1040	
Ti-2.5Cu (IMI 230)	895	
Ti-6Al-2Sn-4Zr-2Mo	<u>995</u>	
Ti-6AI-5Zr-0.5Mo-0.2Si (IMI685)	1020	
Ti-5.5Al-3.5Sn-3Zr-1Nb-0.3Mo-0.3Si (IMI 829)	1015	
Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.3Si (IMI 834)	1045	
Ti-6Al-2Cb-1Ta-0.8Mo	1015	
Ti-O.3Mo-O.8Ni (Ti code 12)	880	
Leghe α + β		
Ti-6AI-4V	1000	
Ti-6AI-7Nb (IMI 367)	1010	
Ti-6Al-6V-2Sn (Cu + Fe)	945	
Ti-3AI-2.5V	935	
Ti-6Al-2Sn-4Zr-6Mo	940	
Ti-4Al-4Mo-2Sn-0.5Si (IMI 550)	975	
Ti-4Al-4Mo-4Sn-0.5Si (IMI 551)	1050	
Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17)	900	
Ti-7Al-4Mo	1000	
Ti-6Al-2Sn-2Zr-2Mo-2Cr-0. 25Si	970	
Ti-8Mn	800	
Leghe α e near β		
Ti-13V-11Cr-3AI	720	
Ti-11.5Mo-6Zr-4.5Sn (Beta III)	760	
Ti-3Al-8V-6Cr-4Zr-4Mo (Beta C)	795	
Ti-10V-2Fe-3AI	805	
Ti-15V-3AI-3Cr-3Sn	760 /	

Figura 5. Temperature 6-transus per le più comuni leghe di titanio [1]

2.4 Produzione

Al momento della scoperta del titanio, si era subito resa nota una problematica: isolare il metallo nella sua purezza.

L'impossibilità di isolamento del titanio era da ricercarsi nell'elevata tendenza dei suoi composti a reagire con l'ossigeno, problematica non risolvibile con le tecnologie siderurgiche del tempo [1].

Un primo risultato rilevante si ottenne soltanto nel 1887, ad opera dei chimici svedesi Lars Fredrik Nilson e Otto Pettersson, che riuscirono ad ottenere un titanio puro al 95% tramite riduzione del $TiCl_4$ (tetracloruro di titanio) con sodio in un cilindro di acciaio inox a tenuta d'aria. Nel 1895 il chimico francese e premio Nobel per la chimica Henri Moissan ottenne una purezza del 98% tramite riduzione di TiO_2 con carbone in una fornace elettrica [5].

Soltanto nel 1910 fu possibile ottenere per la prima volta un titanio di purezza pari al 99,9% grazie all'ingegnere neozelandese Matthew Albert Hunter che, riprendendo quanto già fatto da Nilson e Pettersson, ridusse il $TiCl_4$ (scelto di elevata purezza) con sodio in una bomba ermetica in acciaio inox alla temperatura di 700-800 °C. Questo procedimento prese il nome di "Processo Hunter". L'utilizzo di sodio elementare e la natura esplosiva della reazione rendevano tuttavia il processo altamente pericoloso e quindi non adatto alla produzione industriale su larga scala [6].

Figura 6. Processo Hunter

Il primo processo adatto alla produzione industriale realizzato per ottenere titanio puro fu il "Metodo van Arkel-de Boer", ideato nel 1925 dai chimici olandesi Anton Eduard van Arkel e Jan Hendrik de Boer. Il titanio viene riscaldato in un recipiente a tenuta stagna fino alla temperatura di 800 °C in presenza di iodio in modo da ottenere TiI_4 (tetraioduro di titanio) il quale, essendo volatile ($T_{fusione} = 150 \,^{\circ}C$, $T_{ebollizione} = 377 \,^{\circ}C$ (a) p_{atm}), si separa dalle impurezze rimaste allo stato solido. Il tetraioduro di titanio gassoso viene quindi estratto e decomposto, a bassa pressione, a contatto con un filamento di tungsteno a 1400 °C riscaldato tramite passaggio di corrente elettrica. L'accumulo di titanio sul filo ne determina un aumento della conduttività, inizialmente bassa per via delle caratteristiche del tungsteno. Per questo motivo, si rende necessario un aumento della corrente per mantenere costante la temperatura del filamento.

Questo tipo di processo è utilizzabile per produrre piccole quantità di titanio ad alta purezza [7,8].

Figura 7. Barra di titanio puro ottenuta tramite il processo van Arkel-de Boer

Per quanto riguarda produzioni di quantitativi più grandi, e quindi di maggior interesse industriale, la soluzione di maggior importanza è il "processo Kroll", sviluppato dall'ingegnere e metallurgista lussemburghese William Justin Kroll nel 1940.

Esso consta di una riduzione del $TiCl_4$ con magnesio o sodio liquidi in un reattore in acciaio inossidabile, ad una temperatura di circa 800°C, sotto un'atmosfera inerte di elio o argon [8]. Tale metodo porta alla produzione di titanio puro altamente poroso (spugna di titanio), che viene ulteriormente trattato tramite distillazione sottovuoto al fine di eliminare le inclusioni di magnesio e garantirne l'uniformità [9]. La spugna viene infine estratta dal reattore e tagliata in pezzature di alcuni decimi di centimetro, così che queste possano essere legate ai vari alliganti. Il tutto viene poi rifuso per produrre lingotti. La rifusione può essere ripetuta due volte per assicurare la mancanza di inclusioni [10].

Figura 8. Processo Kroll [11]

Il processo Kroll risulta altamente costoso, ragion per cui nuove metodologie produttive sono attualmente in fase di sviluppo, al fine di poter rendere il titanio un materiale meno raro e più economico, permettendone l'impiego non solo nell'industria aerospaziale, biomedicale e dei beni di lusso, ma anche in quei contesti dove ad oggi vengono utilizzati l'alluminio e gli acciai.

Figura 9. Processo Kroll [11]

2.5 Applicazioni e mercato

Il titanio, e in particolar modo le sue leghe, sono diventati più accessibili nel corso degli ultimi anni. Persino il titanio commercialmente puro, inizialmente molto oneroso, ha recentemente visto il proprio prezzo scendere di circa il 30%.

Le condizioni economiche più vantaggiose hanno fatto quindi da contorno alle già apprezzate qualità che questo metallo ha e che lo rendono di fondamentale importanza in diversi settori.

Le sue particolari caratteristiche fisiche (leggerezza, resistenza meccanica) e chimiche (resistenza alla corrosione, biocompatibilità) sono alla base del suo impiego per applicazioni sia civili che militari.

I settori principali in cui il titanio è ad oggi di largo utilizzo sono:

- energetico;
- trasporti;
- biomedicale;
- trattamento delle acque;
- trasporto di liquidi e gas corrosivi;
- aeronautico, aerospaziale, navale;

Se i metodi produttivi del titanio diventeranno in futuro meno onerosi, i campi di utilizzo cresceranno ulteriormente [12].

3 Il creep

3.1 Aspetti generali

Il termine "creep", che in italiano si traduce come "scorrimento viscoso", indica una deformazione permanente e che aumenta nel tempo quando un materiale è sottoposto a carico costante in condizioni di elevata temperatura. Infatti, questo fenomeno è tipico di tutti i metalli, a condizione che la loro temperatura si trovi ad un livello non inferiore al 30-50 % della temperatura assoluta di fusione T_F [13].

Di seguito, una panoramica della temperatura al di sotto della quale il fenomeno del creep risulta irrilevante, per diversi metalli.

Alluminio	$T < 0.54 T_{F}$
Titanio	$T < 0.30 T_{F}$
Acciai bassolegati	$T < 0.36 T_F$
Acciai inossidabili austenitici	$T < 0.49 T_F$
Superleghe	$T < 0.56 T_{F}$

Figura 10. Limite di temperatura per il creep di diversi metalli [13]

Quando si parla di prova a carico costante, è opportuno fare una precisazione: il campione è posto in trazione, e subisce un allungamento. Questo comporta una riduzione della sezione trasversale del provino, il che determina un aumento della tensione effettiva agente su di esso.

Figura 11. Provino sottoposto a trazione

Mentre il carico F resta costante, l'allungamento del provino ne determina un assottigliamento, con conseguente diminuzione della sezione trasversale A₀ e della relativa As. Dal momento che la tensione effettiva è $\sigma = \frac{F}{A}$, una diminuzione del valore della sezione comporta un aumento del sigma. Questa condizione non risulta problematica ai fini dell'esecuzione delle prove di creep, in quanto ciò che è di maggiore interesse nei casi pratici è proprio il carico, che viene mantenuto costante. I dati ottenuti da questo tipo di prova risultano utili e attendibili.

3.2 Tipologie di prove di creep

Le prove di creep sono generalmente condotte con carico uniassiale costante.

Una prima classificazione delle tipologie di prova è la seguente:

- prove di stress-rupture;
- prove di creep-rupture;
- prove di creep interrotte;

Vi è inoltre un'altra classificazione, che considera:

- il tipo di carico (trazione, più comune, o compressione);
- il modo di applicazione del carico (carico costante, più comune, o sollecitazione costante);

La prova di stress-rupture non prevede sistemi di misura dell'allungamento; quindi, gli unici dati a disposizione sono il carico applicato e la temperatura (ovvero le condizioni di prova), l'allungamento a rottura e il tempo a rottura.

La mancanza di informazioni sulla deformazione durante l'esecuzione della prova rende questa tipologia ormai obsoleta.

La prova di creep-rupture contempla invece un monitoraggio continuo dell'allungamento del provino; questo permette di ricavare la curva di creep, con informazioni sulla forma del primario e del terziario, nonché sul valore di velocità di deformazione del secondario.

Figura 12. Curva di creep con indicazione delle tre zone notevoli

Figura 13. Andamento della curva di creep al variare del carico

Le prove di creep interrotte sono quelle che vengono stoppate prima che il pezzo arrivi a rottura. Un tempo questa tipologia era utilizzata per misurare l'allungamento del provino a diversi stadi della prova; per fare ciò, il pezzo veniva raffreddato, scaricato, smontato, misurato, per poi venire rimontato, riscaldato e ricaricato, al fine di proseguire la prova fino ad un successivo punto di controllo.

Figura 14. Esempio di prova di creep interrotta

Risulta possibile classificare le prove di creep anche in base alla loro durata:

- prove a breve termine (es. 1000-5000 h);
- prove a medio termine (es. 10000-20000 h);
- prove a lungo termine (es. > 50000 h);

Le prove a lungo termine sono molto onerose, e vengono eseguite soltanto in casi specifici, mentre risultano di comune impiego scientifico quelle a medio e breve termine. Tuttavia, è bene specificare come questo tipo di classificazione vada rapportato alla tipologia di componente che si sta analizzando, in quanto la durata di esercizio prevista per alcuni di essi sia nettamente diversa da altri; alcuni pezzi sono ideati per avere una vita più breve di altri quindi quella che per un particolare componente può essere una breve durata, può risultare una durata lunghissima per un altro [14].

3.3 Macchina di prova

La macchina per le prove di creep deve avere determinate caratteristiche:

- possibilità di mantenere il carico applicato sul provino per tempi lunghissimi, nell'ordine delle centinaia di migliaia di ore;
- possedere un forno per il riscaldamento ed il mantenimento della temperatura del provino, in particolare del proprio tratto utile, durante l'intera durata della prova;
- consentire la misura dell'allungamento del provino;

Esistono macchine che prevedono applicazione del carico tramite pesi ed altre che sono attivate da un sistema idropneumatico. Generalmente, si tende a preferire le prime per evitare che un'eventuale improvvisa mancanza della corrente elettrica porti ad un'interruzione dell'applicazione del carico, condizione che rovinerebbe di fatto la prova. Quando il carico è applicato tramite pesi, esso non viene modificato da uno spegnimento della macchina; la prova viene congelata e può essere ripresa in un secondo momento.

Figura 15. Macchina di prova a carico costante [14]

Le macchine di creep possono essere singole o multiple a seconda del numero di campioni che possono essere caricati contemporaneamente. Tuttavia, per eseguire una prova di creep-rupture, è possibile caricare un solo campione.

Il riscaldamento durante l'esecuzione della prova è dato da un forno che può essere fisso sulla macchina e quindi apribile per potervi alloggiare il provino, oppure scorrevole sull'intelaiatura della macchina stessa, in modo da poter circondare il pezzo già montato.

Il sistema di riscaldamento è diviso in tre zone, ognuna con impostazioni di temperatura indipendenti dalle altre due.

Dal momento che alcuni metalli, se riscaldati, possono dare luogo a fenomeni di reazione con l'ossigeno, come nel caso del titanio, si prevede l'utilizzo di atmosfera inerte all'interno del forno; infatti, l'eventuale formazione di scaglie di ossido andrebbe a ridurre la sezione resistente del provino in maniera significativa, generando tensioni effettive estremamente elevate, che vanno assolutamente evitate ai fini della buona riuscita della prova.

Figura 16. Macchina di creep dei laboratori UNIVPM

Come precedentemente accennato, è altresì importante assicurare il mantenimento della temperatura di prova, ragion per cui è necessario l'utilizzo di sensori termici quali le termocoppie; esse vengono montate sul provino per misurare con continuità la temperatura dello stesso.

Figura 17. Termocoppie montate su un provino

Anche l'allungamento del provino viene misurato tramite un sensore.

Un LVDT (Linear Variable Differential Trasducer) viene collegato al provino; il segnale in uscita, sotto forma di differenza di potenziale elettrico (V) viene poi convertito in una misura di lunghezza, dalla quale si ricava il valore dell'allungamento.

I provini da creep, proprio in virtù dell'esigenza di sensori, presentano spesso incisioni o collarini necessari per permettere il fissaggio degli apparati di misura [14].

Figura 18. Tipica geometria di un provino da creep

Figura 19. Panoramica generale della macchina di creep e del suo sistema di misura [14]

3.4 Curva di creep

Il comportamento a creep di un materiale viene illustrato tramite la relativa curva, costruita su un grafico deformazione-tempo:

Figura 20. Curva di creep con indicazione delle tre zone notevoli e relativa curva della velocità di deformazione

Dopo una repentina deformazione istantanea ε_0 , la curva assume un andamento monotono crescente, fino alla rottura.

Inizialmente, cioè nello stadio primario, la pendenza della curva è consistente; ciò lascia intendere che il materiale, all'inizio della prova, si allunga molto velocemente. Questo comportamento è dovuto al ripristino che il metallo ha subito per via del riscaldamento; tale fenomeno consiste infatti nella riduzione della densità di dislocazioni presente nel metallo, la quale origina dal fenomeno del "climb".

Occorre fare un passo indietro per poter ricostruire completamente il fenomeno.

Per dislocazione si intende un difetto lineare dei reticoli cristallini, consistente nella presenza di atomi in posizioni non naturali per la struttura del metallo; un esempio può essere quello di immaginare la presenza di piani atomici extra in alcuni punti del reticolo.

Figura 21. Esempio di reticolo con dislocazione a spigolo

La diretta conseguenza di questo tipo di difetto è la formazione di zone ad alta densità atomica che risultano quindi compresse, e di zone a minor densità che risultano quindi sottoposte a trazione. In queste ultime zone si ha una vacanza, ovvero un difetto di punto del reticolo dovuto proprio alla mancanza di atomi. Ad alte temperature, la diffusività degli atomi, e quindi anche delle vacanze, è incentivata; siccome il materiale tende alla minore energia libera, le vacanze migreranno verso la zona compressa del reticolo. Questo porta le dislocazioni a spostarsi a loro volta, cambiando piano, generando quindi il fenomeno del climb. Sul nuovo piano, le dislocazioni possono trovarne altre, di segno opposto; in tal caso esse andrebbero ad annullarsi, generando quindi il ripristino.

A seguito di quest'ultimo fenomeno, la struttura risulta essere molto più ordinata; sono presenti dislocazioni in numero contenuto, condizione che rende il materiale altamente deformabile.

Figura 22. Illustrazione del fenomeno del climb

La deformazione del reticolo genera nuove dislocazioni, che crescono rapidamente in numero, causando l'incrudimento del materiale. L'incrudimento aumenta di pari passo alla densità di dislocazioni, rendendo la deformazione del materiale sempre più difficile; per questo motivo, la velocità di deformazione $\dot{\varepsilon} = \frac{\partial \varepsilon}{\partial t}$ tende progressivamente a diminuire.

Nello stadio secondario, i fenomeni dell'incrudimento e del ripristino si bilanciano, portando ad una condizione nella quale la velocità di deformazione è costante, almeno per un istante di tempo. Nell'ultimo stadio, la velocità di deformazione tende ad aumentare; il materiale si deformerà fino a rottura. Questo aumento è dovuto alla riduzione della sezione resistente del materiale; infatti, si innescano in questa fase meccanismi di assottigliamento del pezzo (strizione) e di nucleazione di cavità interne.

Una delle equazioni più utilizzate per descrivere la curva di creep è la seguente:

$$\varepsilon = \varepsilon_0 + \varepsilon_P (1 - \exp(-t/t_P)) + \dot{\varepsilon_{SS}t} + \varepsilon_T ((\exp(t/t_T) - 1))$$

dove ε_0 è la deformazione istantanea al momento dell'applicazione del carico, ε_P e t_P sono i parametri di durata ed entità della deformazione nello stadio primario, ε_T e t_T i corrispettivi del terziario, e ε_{SS} il termine della velocità di deformazione dello stadio secondario, ovvero la minima velocità relativa al pezzo oggetto della prova [13,14].

3.4.1 Velocità di deformazione nello stadio secondario

La determinazione della ε_{SS} è di fondamentale importanza in quanto da questo parametro è possibile ricavare informazioni sulla vita del componente in esame.

È bene innanzitutto ricordare come il secondario della curva di creep sia analogo allo stato stazionario di una curva tensione-deformazione relativa ad una prova eseguita a velocità di deformazione costante sullo stesso materiale; in entrambi i casi, per una data temperatura, si

ottengono valori costanti di sollecitazione che corrispondono a velocità di deformazione costanti. Risulta quindi chiaro come sia possibile calcolare il valore della velocità di deformazione partendo da dati sulla tensione costante o sul carico costante applicato al provino. Sono valide due equazioni in questo senso:

$$\varepsilon_{SS}^{\cdot} = B\sigma^n$$

dove B dipende dalla temperatura e n, per i metalli puri, è pari a 4-5;

$$\dot{\varepsilon_{SS}} = Cexp(-Q/RT)$$

dove C è una costante che dipende dal carico applicato, R è la costante dei gas e Q è l'energia di attivazione del creep.

Dalle due equazioni è possibile ricavare dei grafici:

dalla prima si ottiene un grafico bilogaritmico della velocità di deformazione del secondario in funzione della tensione di prova; vi sono rappresentate rette di pendenza n, una per ogni temperatura di prova;

dalla seconda si ottiene invece un grafico semilogaritmico che mette in relazione la velocità di deformazione con l'inverso della temperatura di prova espressa in Kelvin; in questo caso si ottengono rette di pendenza -Q/R, una per ogni tensione di prova.

Figura 23. Grafico bilogaritmico velocità di deformazione-tensione

Figura 24. Grafico semilogaritmico velocità di deformazione-inverso della temperatura

Le due relazioni possono essere combinate, ottenendo una nuova equazione che tiene conto di entrambe le condizioni:

$$\epsilon_{SS} = A\sigma^n exp(-Q/RT);$$

il termine A è un parametro del materiale. Tale relazione è di largo utilizzo, ma trova la massima efficacia nel caso di metalli puri, dove n è indipendente dalla temperatura, e Q dalla tensione di prova.

3.4.2 Il tempo di rottura

Una volta trovati i valori di n e Q, e calcolata quindi la velocità minima di deformazione a creep, è possibile determinare il parametro relativo alla vita del componente analizzato: il tempo a rottura tr. Esso è infatti correlato alla velocità minima dalla relazione:

$$\varepsilon_{SS}^{\cdot}t_R = C_R;$$

dove C_R è una costante. Si possono quindi combinare questa e la precedente equazione per ottenere:

$$t_R = A_R \sigma^{-n} exp(Q/RT);$$

dove AR è dato dal rapporto fra CR e A. Dall'elaborazione di quest'ultima relazione è possibile ottenere grafici di rette utilizzabili per la valutazione della vita di componenti per diverse condizioni di prova. Tuttavia, a causa di una scarsa affidabilità circa le temperature riportabili in essi, molto spesso diverse da quelle reali di esercizio, si preferisce utilizzare metodi più accurati come gli "approcci parametrici".

3.4.3 Approcci parametrici per la determinazione del tempo di rottura

La presenza di tre parametri (tempo, temperatura, tensione) rende il problema della determinazione di tr alquanto ostico. Sarebbe necessario, infatti, l'impiego di un grafico tridimensionale per poter correlare le tre grandezze contemporaneamente, il che renderebbe le procedure di calcolo eccessivamente complesse; per questo motivo, molto spesso si preferisce accorpare due delle tre grandezze, ovvero temperatura e tempo, all'interno del Parametro di Larson-Miller (LMP). Tale approccio permette l'utilizzo di un normale grafico bidimensionale, e viene adoperato assumendo che il tempo a rottura sia funzione della temperatura di prova e della tensione di prova, come espresso nella relazione:

$$t_R = B_0 exp[Q(\sigma)/RT];$$

dove B₀ è una costante mentre la dipendenza dalla tensione, ora inglobata nell'energia di attivazione, non è più costante.

Tale equazione, sebbene meno precisa, definisce in maniera sufficientemente accurata il tempo a rottura. Pertanto, operando il logaritmo di entrambi i membri si ottiene:

$$\log t_R = \log B_0 + \frac{Q(\sigma)}{RT} \log e;$$

trasformando l'equazione si ottiene:

$$\frac{Q(\sigma)}{R}\log e = T(\log t_R - \log B_0);$$

da cui:

$$LMP = \frac{Q(\sigma)}{2,3R} = T(\log t_R + C_{LM});$$

CLM è la costante di Larson-Miller, che per molti materiali viene assunta pari a 20.

L'utilizzo di questo approccio parametrico permette di ottenere dati sperimentali che portano alla costruzione di una singola curva, chiamata "master curve"; il grafico tensione-LMP ricavato consente quindi la stima della resistenza a creep, intesa come la tensione ammissibile per ottenere una determinata vita a rottura alla temperatura considerata [13].

Sebbene l'approccio di Larson-Miller sia senza dubbio il più utilizzato, esistono anche altri metodi altrettanto validi; un esempio è il Parametro Dorn-Orr-Sherby (DOSP), che viene espresso dalla relazione:

$$DOSP = \log t_R - \frac{Q}{2,3R};$$

Figura 25. Esempio di master curve [14]

4 Friction Stir Welding

4.1 Generalità

Il Friction Stir Welding (FSW) è una tipologia di saldatura ideata nel 1991 dal Welding Institute. Nel corso degli anni la sua rilevanza è cresciuta notevolmente, affermandosi come valida e a volte necessaria alternativa ai convenzionali metodi di saldatura per fusione. Infatti, essi hanno come possibili svantaggi stress e distorsioni residue, cricche da solidificazione, ingrossamento dei grani, formazione di fragili strutture dendritiche grossolane, porosità, inclusioni e formazione di ossidi [15,16,17]. La saldatura FSW permette l'affinamento localizzato dei grani nella zona di saldatura, condizione che ne aumenta la resistenza meccanica, ma può di contro comportare la formazione di microcricche.

La tecnica FSW viene normalmente adottata su leghe di alluminio, magnesio, rame, acciai al carbonio e acciai inossidabili; si è rivelata inoltre particolarmente efficace per la giunzione di metalli o leghe differenti tra loro per tipologia di materiale e composizione chimica, come nel caso di saldature di pezzi di alluminio e titanio [16,17].

La saldatura viene eseguita mettendo saldamente a contatto i due pezzi da saldare. Dopodiché, un utensile rotante viene inserito all'interfaccia fra i due pezzi da saldare; durante la sua rotazione, esso viene fatto traslare lungo la linea di saldatura. L'utensile è composto da un perno di saldatura e una spalla, normalmente realizzati in acciaio per utensili.

Figura 26. Utensile per la saldatura FSW [15]

L'azione combinata del perno che è stato inserito nel materiale e della spalla che genera pressione sulla superficie esterna producono due contributi, rispettivamente di rimescolamento del materiale e di attrito, che determinano un forte aumento della temperatura, la quale si mantiene comunque al di sotto del valore di fusione; il calore sprigionato, combinato con la deformazione impressa dallo strumento, comporta una saldatura allo stato solido, e quindi la coalescenza per agitazione delle piccole strutture interessate dalla combinazione dell'azione fisica e di quella termica [15].

Figura 27. Illustrazione del processo di saldatura FSW [15]

I parametri fondamentali della saldatura FSW possono essere divisi in:

- parametri di processo;
- proprietà del materiale base;

nella prima tipologia rientrano forza assiale, direzione e velocità di rotazione e velocità trasversale dell'utensile;

nella seconda tipologia sono invece inserite le peculiarità del metallo base, ovvero quello che deve essere saldato; si considerano proprietà meccaniche e fisiche, composizione chimica, microstruttura e spessore del pezzo.
4.2 Le zone di saldatura

La saldatura FSW produce zone con differenti proprietà all'interno dei pezzi saldati; in particolare, sono facilmente riconoscibili quattro aree fondamentali, ognuna formatasi a seguito di diverse condizioni termiche e di deformazione:

- zona di agitazione (SZ);
- zona termomeccanicamente alterata (TMAZ);
- zona termicamente alterata (HAZ);
- zona del metallo base (BM);

Figura 28. Tipica forma di un provino ricavato da lembi di materiale saldati FSW, con dettaglio della macrostruttura interna da vista trasversale

Figura 29. Sezione di un provino saldato FSW con indicazione delle zone di saldatura [15]

La zona di agitazione (SZ) è quella in cui si raggiunge la massima temperatura; infatti, il materiale non viene portato a fusione, ma viene raggiunta una temperatura compresa fra il 75 e il 90% della temperatura di fusione. La forma di SZ è a conca, solitamente non simmetrica rispetto alla linea di saldatura, cioè quella retta immaginaria tracciata dalla traiettoria del perno di saldatura.

Ai bordi di SZ si sviluppa la zona termomeccanicamente alterata (TMAZ), nella quale la temperatura raggiunge valori che si attestano sul 60-70% della temperatura di fusione. Tale zona si presenta di solito molto sottile, e funge da stadio di transizione; il gradiente di temperatura risulta infatti molto ripido, determinando una brusca diminuzione della temperatura allo spostarsi verso l'esterno della TMAZ.

Esternamente alla TMAZ si sviluppa, seguendo la forma della zona precedente, la zona termicamente alterata (HAZ), nella quale la temperatura si attesta su un valore iniziale pari a circa il 55% della temperatura di fusione, per poi scendere fino alla quota ambiente all'interfaccia con la zona del materiale base (BM).

È bene tener presente che un eventuale preriscaldamento del materiale prima di effettuare la saldatura determinerebbe un'espansione dei range di temperatura delle varie zone, in particolare della HAZ.

La differenziazione fra la TMAZ e la HAZ è relativa al diverso andamento del gradiente di deformazione rispetto a quello di temperatura; difatti, mentre il gradiente termico, che parte dalla SZ, tende ad annullarsi solo all'interfaccia HAZ/BM, il gradiente di deformazione tende a zero già all'interfaccia TMAZ/HAZ. Il secondo gradiente, che riguarda un fenomeno meccanico, è quindi più ripido; il suo annullamento spiega la differenza fra TMAZ e HAZ, cioè l'assenza nella seconda zona di sollecitazioni meccaniche che abbiano un effetto combinato con quelle termiche [15].

4.3 Effetti microstrutturali

La formazione di diverse zone nel pezzo saldato è indice di effetti importanti sulla microstruttura; essa varia infatti all'interno del materiale durante e dopo il processo FSW, determinando fenomeni dinamici e statici di diversa tipologia in base alla distanza dalla zona SZ.

4.3.1 Fenomeni statici

I fenomeni statici sono quelli che avvengono a saldatura conclusa; ne esistono di due tipologie:

- ripristino statico;
- ricristallizazione statica;

Il fenomeno del ripristino è quello già precedentemente descritto: la resistenza meccanica del materiale scende di molto, lasciando spazio ad una buona deformabilità; le dislocazioni, grazie ai meccanismi del climb e del "cross-slip", si muovono cambiando il loro piano nel reticolo, determinando una riduzione della densità delle stesse ed un conseguente riarrangiamento [15].

Figura 30. Fasi del meccanismo di ripristino:

a) materiale incrudito;

b) riduzione della densità di dislocazioni, con sopravvivenza di quelle di un solo segno;

c) riarrangiamento e impilaggio [14]

Durante questo processo, si verifica anche la crescita dei "sottograni"; essi sono infatti delle zone di uno stesso reticolo cristallino che sono caratterizzate ognuna da un'orientazione leggermente diversa. Il fenomeno origina dall'impilaggio delle dislocazioni di stesso segno successivo al riarrangiamento delle stesse; i semipiani formano infatti una superficie immaginaria all'interno del reticolo di un grano che separa zone caratterizzate da reticoli leggermente inclinati l'uno rispetto all'altro, nell'ordine di qualche grado o meno, con conseguenti differenze anche nella natura dei bordi di grano e nella disposizione delle dislocazioni. Essi si differenziano da strutture analoghe come le "celle", meno organizzate perché risultato di un impilaggio di dislocazioni a temperatura ambiente, condizione che ne limita la mobilità; la formazione dei sottograni è un fenomeno tipico dell'impilaggio ad alte temperature, e nel caso del FSW se ne osserva una importante crescita sia durante che dopo la saldatura [13,14].

Figura 31. Disorientazione dei reticoli a seguito dell'impilaggio di dislocazioni [13]

Figura 32. In alto, i meccanismi che avvengono a temperatura ambiente, in basso quelli ad alta temperatura [14]

La ricristallizzazione è, invece, il fenomeno che porta alla formazione di nuovi grani indeformati all'interno del materiale; la nucleazione è graduale, e progressivamente si estende a tutta la struttura. I nuovi grani formatisi vanno poi incontro ad un processo di crescita; la struttura del materiale viene così rinnovata, presentando grani grossolani equiassici in sostituzione dei precedenti grani allungati tipici del materiale deformato e incrudito. La conseguenza principale della ricristallizzazione è quindi un addolcimento del materiale [13,14].

Figura 33. Evoluzione della microstruttura da una condizione di alto incrudimento a una di avvenuta crescita dei nuovi grani
[13]

Ripristino e ricristallizzazione sono fenomeni competitivi tra loro, e la presenza di uno non comporta per forza quella dell'altro; alcuni materiali presentano soltanto il ripristino, in altri esso è seguito dalla ricristallizzazione, in altri ancora si ha la sola ricristallizzazione [15]. Il motivo alla base del verificarsi di questi fenomeni è da ricercarsi nell'energia associata ai difetti presenti nella struttura, in particolare a dislocazioni e bordi di sottograno; essi contribuiscono a circa l'80-90% dell'energia immagazzinata dal materiale. L'aumento di temperatura determina l'innesco di processi diffusivi degli atomi, che portano, come già descritto, alla riduzione e al riarrangiamento delle dislocazioni e quindi permettono al materiale di ridurre la propria energia interna; a tal proposito, concorre anche l'accrescimento dei sottograni, che diventando grossolani vedono ridursi il numero dei propri bordi. Un materiale che è arrivato alla fase di ricristallizzazione e accrescimento ha praticamente riacquisito le proprietà che aveva prima di subire le deformazioni che lo avevano portato allo stato di incrudimento pre-ripristino. Tuttavia, per alcuni materiali il ripristino, se molto efficiente, annulla quasi del tutto il numero di dislocazioni nel reticolo, rendendo improbabile l'innesco della ricristallizzazione. Esistono anche altri fattori che possono influenzare l'avvio dei processi di ripristino e ricristallizzazione; un esempio lampante è la tipologia di deformazione imposta al materiale in esame: alcune lavorazioni attivano un numero maggiore di sistemi di scorrimento (numero di piani di scorrimento nel reticolo moltiplicato per le direzioni consentite per ogni piano) rispetto ad altre, favorendo l'aumento della densità di dislocazioni nel reticolo, e quindi l'innesco della ricristallizzazione [13]. Anche la temperatura gioca un ruolo fondamentale nella determinazione delle condizioni necessarie affinché i due fenomeni si verifichino; in particolare, il ripristino tende a verificarsi per temperature non inferiori al 30% della temperatura di fusione del materiale in esame, mentre per la ricristallizzazione l'innesco è consentito per valori non inferiori al 40% [15]. Tuttavia, le stime su queste soglie termiche sono da considerarsi puramente indicative, in quanto possono variare considerevolmente in relazione alla storia termomeccanica del materiale e alla densità di dislocazioni nel reticolo.

Esiste un altro parametro che influenza in maniera importante i fenomeni del ripristino e della ricristallizzazione: l'energia del difetto di impilaggio. È necessario quindi introdurre innanzitutto la definizione di "difetto di impilaggio". Esso è generato dai movimenti delle dislocazioni del

reticolo di un materiale deformato; gli atomi dei vari piani reticolari si spostano, andando ad occupare nuove posizioni rispetto ai piani sottostanti. Tuttavia, tali posizioni potrebbero risultare non facilmente raggiungibili tramite uno spostamento diretto; l'energia necessaria per effettuare lo spostamento sarebbe troppo alta per farlo avvenire spontaneamente. Lo stesso discorso può essere fatto per le dislocazioni, che potrebbero incontrare un ostacolo dal punto di vista energetico; per tale motivo si introduce il concetto di energia associata alla dislocazione, che tende a diminuire se la stessa viene divisa in due dislocazioni parziali che agiscono in successione. Questo genera nel reticolo zone in cui gli atomi seguono una disposizione di un certo tipo rispetto a quelli del piano sottostante, e altre aree in cui la disposizione relativa è differente, generando un impilaggio di dislocazioni parziali di egual segno che tendono a respingersi per via della loro natura. Un esempio grafico è il seguente, in cui si può osservare lo spostamento degli atomi di un piano da una disposizione iniziale A verso quella finale B, che presuppone l'occupazione, da parte del piano superiore, di un certo gruppo di "valli" presenti tra gli atomi del piano sottostante. Le valli che vengono occupate dal piano in movimento sono sullo stesso livello di quelle precedentemente occupate, ma risultano difficilmente raggiungibili con un movimento unico e lineare; si rende quindi necessario un passaggio intermedio che permetta agli atomi in movimento di occupare prima un diverso gruppo di cavità, acquisendo una disposizione C, per poi stabilizzarsi su B, producendo un movimento a "zig-zag".

Figura 34. Il piano superiore (tratteggiato) nella posizione A, con illustrazione del vettore di dislocazione totale e dei due vettori delle dislocazioni parziali [13]

Figura 35. Spostamento di atomi della dislocazione parziale; a destra gli atomi del piano superiore hanno disposizione C, a sinistra hanno disposizione B [13]

Le dislocazioni parziali che si formano tendono, come detto, a respingersi; la forza di repulsione è descritta dalla formula:

$$F=\frac{Gb_1b_2}{2\pi D};$$

dove b1 e b2 sono i vettori delle due dislocazioni e D è la distanza tra esse.

La forza di repulsione diminuisce all'aumentare della distanza; tuttavia, le dislocazioni parziali delimitano un'area influenzata dal difetto di impilaggio, che aumenta l'energia libera nel materiale. Viene da sé che una grande distanza tra le due dislocazioni abbia un effetto sull'energia libera opposto a quello che si ottiene dalla parzializzazione delle stesse; esiste quindi un bilancio fra la repulsione delle dislocazioni parziali e l'energia del difetto di impilaggio che ne scaturisce. Si può quindi determinare la distanza fra le dislocazioni parziali in un reticolo sostituendo, nella formula precedente, F con γ_{SF} , ovvero l'energia del difetto di impilaggio, che ha un valore tabulato per ogni materiale; operando la formula inversa si ottiene:

$$D=\frac{Gb_1b_2}{2\pi\gamma_{SF}};$$

dalla relazione si evince quindi come materiali con γ_{SF} alta presentino dislocazioni parzializzate molto vicine tra loro, mentre in quelli con γ_{SF} basse esse siano lontane [13]. Il valore dell'energia del difetto di impilaggio risulta di fondamentale importanza per la comprensione delle condizioni di innesco dei fenomeni di ripristino e ricristallizzazione, in quanto:

- se γ_{SF} è alta, le dislocazioni parziali sono vicine e quindi possono riunirsi facilmente, condizione imprescindibile per permettere loro di superare ostacoli o cambiare piano all'interno del reticolo, e quindi consentire al materiale di deformarsi; in questo contesto, la densità di dislocazioni scende e il ripristino risulta nettamente favorito rispetto alla ricristallizzazione, che viene ritardata o addirittura annullata;
- Se γ_{SF} è bassa, le dislocazioni parziali sono invece più distanti, condizione che impedisce a molte di loro di riunirsi; la densità di dislocazioni resta quindi alta, rendendo il ripristino "pigro". Le dislocazioni parziali, a differenza di quelle riunite, non possono superare ostacoli o cambiare piano, quindi il materiale arriva, dopo un certo ammontare di deformazioni, ad un livello di incrudimento tale per cui è necessario l'innesco della ricristallizzazione per riportarlo ad una buona condizione di deformabilità; per questo motivo, la ricristallizzazione risulta avvantaggiata sul ripristino.

4.3.2 Fenomeni dinamici

I fenomeni dinamici sono quelli che avvengono durante il processo di saldatura, cioè mentre è in atto una deformazione. Anche i fenomeni dinamici che avvengono durante la saldatura FSW possono essere divisi in due tipologie:

- ripristino dinamico;
- ricristallizzazione dinamica;

Il ripristino dinamico è caratterizzato dalla coesistenza di fenomeni di addolcimento (come quelli già citati del climb, della riduzione e del riarrangiamento di dislocazioni) e di incrudimento (moltiplicazione di dislocazioni); i due fenomeni sono, per basse deformazioni, sbilanciati a favore dell'incrudimento, mentre si bilanciano per alti valori deformativi. La curva σ - ϵ relativa ad un materiale che subisce solo ripristino dinamico evidenzia questi aspetti, in quanto costituita da un tratto iniziale in cui la moltiplicazione delle dislocazioni determina una certa pendenza, a cui segue un tratto a tensione costante, cioè stazionario, in cui l'effetto dell'addolcimento bilancia l'incrudimento; nel primo tratto, si verifica crescita dei sottograni, che nel secondo tratto mantengono invariate le proprie dimensioni, cambiando però forma, passando a una più allungata. Come per il caso statico, è favorita in materiali con γ_{SF} alta [13].

Figura 36. Curva σ - ε per materiali che presentano solo ripristino dinamico [14]

La ricristallizzazione dinamica è invece un fenomeno nel quale la bassa γ_{SF} rende impossibile un addolcimento del materiale ad opera del solo ripristino, data la troppa distanza tra le dislocazioni parziali. Per tale motivazione, la curva σ - ε presenta nel primo tratto una vertiginosa crescita della tensione, sintomo di un forte incrudimento mal bilanciato dal solo ripristino. La curva poi si abbassa fino a raggiungere uno stato stazionario; l'addolcimento che rende possibile ciò è dovuto alla ricristallizzazione che prende piede poco prima del picco della curva. Al picco, la struttura del materiale è già ricristallizzata al 30%, e il processo si completa col raggiungimento della stazionarietà [13].

Figura 37. Curva σ - ε per materiali che presentano ricristallizzazione dinamica [14]

deformazione

Figura 38. Dettaglio dell'evoluzione della microstruttura di un materiale che ricristallizza dinamicamente [13]

4.4 FSW del titanio

La saldatura FSW risulta essere molto vantaggiosa in quanto capace di evitare una grande serie di problematiche come quelle precedentemente illustrate. Nel caso della saldatura di un materiale come il titanio, che ha un'alta temperatura di fusione (TF=1668 °C), il range termico ammissibile per la lavorazione è ampio, e quindi è agevole raggiungere una condizione per la quale sia possibile ottenere il legame metallico tra i lembi di materiale da unire senza incorrere nella fusione. Tuttavia, l'elevato valore di TF del titanio rende inadatti i convenzionali utensili rotanti che sono invece di largo impiego per molti altri materiali; sono quindi necessari perni e spalle realizzati con materiali maggiormente resistenti all'usura termica che una lavorazione su un metallo così altofondente provoca. Esempi di utensili con questo tipo di caratteristica sono quelli

realizzati in nitruro di boro cubico policristallino (pcBN), carburi di titanio (TiC), tungsteno (W), carburi di tungsteno (WC), e derivati di questi ultimi (WC-Co, W-La).

La tecnica FSW applicata al titanio, sebbene complicata dalle caratteristiche del metallo, risulta essere cruciale per ottenere pezzi saldati di ottima qualità. Una prima motivazione di ciò è da ricercarsi nell'effetto degli ossidi sulla struttura cristallina; infatti, processi di saldatura per fusione, che nel caso del titanio raggiungerebbero temperature elevatissime, favorirebbero reazioni con l'ossigeno circostante, che entrando nel materiale lo indebolirebbe considerevolmente. Risulta quindi vantaggioso evitare tecniche che prevedano fusione e successiva solidificazione del materiale. Una seconda motivazione, non meno importante, riguarda gli effetti microstrutturali a cui va incontro il titanio. Come evidenziato in un recente studio [16], la zona termomeccanicamente alterata (TMAZ) di provini di titanio commercialmente puro grado 2 (Ti-CP 2) risulta avere grani equiassici di piccole dimensioni, frutto di un processo di ricristallizzazione dinamica; le caratteristiche strutturali del titanio ad alte temperature, unite ai fenomeni che avvengono a livello microstrutturale durante un processo FSW, determinano la formazione, nelle zone di saldatura, di una struttura ad alta resistenza meccanica, che risulta più dura e meno deformabile delle zone adiacenti. La disomogeneità delle proprietà meccaniche di un provino ricavato da lembi saldati FSW risulta evidente quando vengono eseguite prove a creep come quelle che sono state oggetto dello studio di cui prima, nonché del tirocinio curriculare svolto dal sottoscritto; di seguito, si riporta una macrografia, prodotta nell'ambito del suddetto tirocinio, di un campione Ti-CP 2 sottoposto a creep a 550°C su tensioni di 18 e 105 MPa:

Figura 39. Macrografia provino Ti-CP 2 sottoposto a creep

Appare evidente la differenza di spessore del provino tra le aree interessate dalla saldatura, ovvero quelle centrali, e le zone dove il materiale è rimasto allo stato base; lì dove i grani hanno forma equiassica e sono più piccoli, ovvero nella zona di saldatura, la deformabilità è minore e quindi il provino ha subito un minore assottigliamento.

5 Procedure sperimentali

Lo scopo del presente elaborato è quello di valutare la risposta a creep, per temperature di 550-600°C, di provini di titanio commercialmente puro saldati mediante tecnica FSW. Di seguito sono quindi illustrate le procedure sperimentali adottate a tale scopo.

5.1 Materiali

Come già illustrato, le prove sono state eseguite su provini di titanio commercialmente puro grado 2 (Ti-CP 2); nello specifico, si è fatto ricorso a otto provini "dogbone" con la seguente geometria:

Figura 40. Geometria dei provini utilizzati con quote in mm [16]

I provini sono stati ricavati da una piastra ottenuta mediante saldatura FSW; essa è composta da due lembi di egual dimensione: quadrati, con lato di 200 mm e spessore di 3 mm.

La saldatura è stata eseguita con una macchina a controllo numerico M32, con utensile composto da una spalla in acciaio per utensili H-13 dal diametro di 22 mm e un perno di carburo di tungsteno (WC) con diametro di 6 mm e lunghezza di 2 mm. Le operazioni di saldatura sono state eseguite da esperti del settore nell'ambito di attività di ricerca scientifica che l'Università Politecnica delle Marche ha svolto in collaborazione con un'università estera [16].

La scelta dei parametri di saldatura è stata fatta partendo da un preriscaldamento dell'utensile, che è stato fatto ruotare per un minuto dal momento in cui il perno è stato inserito nel materiale e la spalla è stata messa in contatto con la superficie superiore dei lembi da saldare; l'utensile, a seguito di questo processo, ha acquisito un colore rosso intenso, sintomo di un aumento di temperatura fino a circa 750 °C. A questo punto, sono state prodotte diverse combinazioni di

valori per i parametri da considerare; la conseguente esecuzione di diverse saldature, una per ogni combinazione, ha permesso di valutare quale fosse quella più soddisfacente. I parametri scelti sono:

- velocità di rotazione dell'utensile: 700 rpm;
- velocità trasversale dell'utensile: 50 mm/min;

Figura 41. L'utensile di saldatura utilizzato

I provini sono stati ricavati dalla lamiera saldata in modo da presentare la zona di saldatura al centro del tratto utile; inoltre, l'asse longitudinale dei campioni risulta essere perpendicolare alla direzione di saldatura.

Figura 42. Vista superiore del provino, con indicazione delle tracce lasciate dall'utensile di saldatura e la linea che indica la sua traiettoria

5.2 Prove di creep

I provini ricavati dai lembi di titanio saldati con FSW sono stati sottoposti ad una prova di creep. Degli otto provini analizzati, sette sono stati sottoposti prove di carico costante, mentre un ottavo ha subito un carico variabile. Inoltre, quattro provini hanno subito un riscaldamento fino a 550°C, mentre gli altri sono arrivati a 600°C; di seguito vengono illustrate le sigle degli otto provini, con indicazione del carico e della temperatura applicati:

Provino	σ (MPa)	T (°C)
550_40	40	550
550_90	90	550
550_112	112	550
	18	FEO
550_18->105	105	550
600_15	15	600
600_30	30	600
600_50	50	600
600_111	111	600

Tabella 1. Sigle dei provini e relativi parametri basilari di prova a creep

Le prove sono state svolte mantenendo i provini alla temperatura di prova per circa mezz'ora prima di applicare il carico, che è stato poi mantenuto fino al termine dell'esperimento; per quanto riguarda la prova a carico variabile, il passaggio dal primo al secondo valore è stato effettuato al raggiungimento del minimo valore di velocità di deformazione per il provino, per le condizioni sperimentali di inizio prova.

Le temperature sono state misurate da quattro termocoppie di tipo K, tre delle quali deputate alla regolazione della temperatura del forno, e una alla vera e propria rilevazione sui provini; l'allungamento dei campioni è stato invece misurato grazie ad un LVDT.

Figura 43. Termocoppia di tipo K, resistente ad alte temperature ed ambienti ossidanti

Al fine di ottenere un confronto qualitativo che potesse integrare e migliorare la comprensione del comportamento a creep dei campioni studiati, sono state eseguite ulteriori prove di creep su dieci provini ricavati da lastre di titanio commercialmente puro non saldate, e quindi in condizione di metallo base; le modalità di esecuzione degli esperimenti sono state le medesime del caso precedente. Di seguito vengono illustrate le sigle dei provini, con indicazione del carico e della temperatura applicati:

Provino	σ (MPa)	T (°C)
550-60	60	550
550-100	100	550
550-40	40	550
550-20	20	550
550-30	30	550
	15	FEO
550-15-282	82	550
600-70	70	600
600-40	40	600
	10	
600-10->25->35	25	600
	35	
600 15 >44	15	600
000-15-244	44	000

Tabella 2. Sigle dei provini di titanio base e relativi parametri basilari di prova a creep

Le prove sono state svolte nei laboratori dell'Università Politecnica delle Marche da esperti del settore nell'ambito di un progetto di ricerca [17].

5.3 Curve di creep

L'esecuzione delle prove di creep ha permesso di determinare l'allungamento dei provini per diversi valori del tempo di prova. La conoscenza di tali dati e della lunghezza del tratto utile iniziale del provino, pari a 25 mm, ha permesso di determinare, per ognuno dei tempi considerati, il valore di deformazione calcolato come:

$$\varepsilon = \frac{\Delta L}{L_0}$$

dove ΔL è l'allungamento e $L_0 = 25 mm$.

Sono poi state calcolate anche le velocità di deformazione per ogni intervallo di tempo tra quelli considerati:

$$\dot{\varepsilon} = \frac{\Delta \varepsilon}{\Delta t}$$

dove Δt è l'intervallo di tempo considerato e $\Delta \varepsilon$ è l'incremento di deformazione in quell'intervallo.

Grazie alla determinazione di questi valori è stato possibile tracciare dei grafici che mettessero in relazione tempi di prova, deformazioni e relative velocità; sono quindi state prodotte tre tipologie di grafici:

- deformazione-tempo (ε-t);
- velocità di deformazione-tempo (έ-t);
- velocità di deformazione-deformazione $(\dot{\varepsilon} \varepsilon)$;

per chiarezza di esposizione, i grafici contenenti le velocità di deformazione sono stati presentati in scala semilogaritmica in modo da descrivere meglio l'andamento della $\dot{\varepsilon}$.

Inoltre, per i provini sottoposti a carico variabile, sono stati presentati grafici per ogni valore del carico applicato, nonché un grafico $\dot{\varepsilon}$ - ε riassuntivo di tutte le condizioni di carico assunte durante l'intera prova.

Per ogni calcolo delle velocità di deformazione, sono stati trovati i valori minimi; per le prove a singola condizione di carico, è stato trovato un solo valore minimo, mentre per le prove a carico variabile sono stati calcolati i valori minimi relativi ad ogni condizione di carico, evidenziando poi il valore minimo generale.

5.4 Calcolo delle equazioni costitutive

La determinazione delle velocità minime di deformazione trova utilità nella definizione delle equazioni costitutive che descrivono il comportamento dei provini a creep; la necessità di conoscere come i campioni reagiscono nasce dall'interesse nel capire gli effetti che la saldatura FSW produce su componenti sottoposti a carichi prolungati ad alta temperatura. Il confronto con le equazioni costitutive dei provini di metallo base è quindi di grande rilevanza.

Le equazioni costitutive sono nella forma:

$$\varepsilon_{SS}^{\cdot} = A\sigma^n \exp\left(-Q/RT\right);$$

i dati di partenza, noti dalle prove di creep, sono le velocità minime di deformazione ε_{SS} , il carico σ , la temperatura T, la costante R e il parametro A, tipico del materiale. Sono quindi da determinare i parametri n e Q.

A questo scopo, una prima procedura è quella che permette la costruzione di due rette isoterme su di un grafico $\dot{\varepsilon}$ - σ costruito su Excel; per ogni provino vengono prese le velocità minime di deformazione relative ai vari carichi applicati, poi vengono tracciate due rette, una per ogni temperatura alla quale sono sottoposti i campioni, che mettono in relazione i valori considerati. Per ogni retta viene calcolata la pendenza *n*, ottenibile come esponente nell'equazione fornita da Excel per il formato "linea di potenza". Viene infine fatta una media dei due valori ottenuti, in modo da poter considerare un valore unico, descrittivo di entrambi i set di dati, non troppo distanti l'uno dall'altro.

La seconda procedura adottata riguarda la determinazione del parametro Q, definito come energia di attivazione, ovvero quell'energia necessaria per attivare i meccanismi non conservativi che sono alla base della deformazione ad alte temperature. In questo caso, i set di dati utilizzati vengono catalogati in base al carico di prova; ne consegue che non vengano considerati i dati di tutti i provini, ma solo di quelli che presentano un carico di prova simile a quello di un altro provino, sottoposto a temperatura di prova differente. Vengono quindi costruite due rette isobare su di un grafico $\dot{\varepsilon}$ -1/*T*, ragion per cui i set di dati per ogni carico di prova, espresse in Kelvin. Anche in questo caso vengono calcolate le pendenze delle rette, rappresentate dall'esponente delle equazioni fornite da Excel, questa volta relative al formato "linea esponenziale"; i due valori trovati sono pari a -Q/R, ragion per cui è necessario moltiplicare i valori trovati per la costante dei gas, pari a $8,314 \frac{J}{mol \times K}$, e poi eventualmente dividere per 1000 in modo da ottenere il valore di Q in $\frac{KJ}{mol}$. Viene infine calcolata la media fra i due valori di Q trovati.

Viene a questo punto adottato un metodo di verifica dei valori di $n \in Q$ calcolati; partendo dai valori di temperatura di prova (espressa in Kelvin), di Q medio in $\frac{J}{mol}$ e delle velocità minime per ogni campione analizzato, è possibile calcolare i parametri di Zener-Hollomon, definiti come:

$$Z = \dot{\varepsilon} \exp\left(Q/RT\right);$$

a questo punto viene costruito un grafico Z- σ nel quale l'andamento dei punti relativi ai valori di Z trovati, messi in relazione al carico, viene approssimato mediante una linea di potenza. Come nelle precedenti procedure, viene trovato il valore di pendenza della retta tracciata; se il valore risulta simile al valore medio di *n* trovato nella prima procedura, allora quest'ultimo, così come il valore Q medio, risulta attendibile, e quindi è possibile completare la definizione delle equazioni costitutive cercate.

5.5 Calcolo del parametro di Larson-Miller

Per quanto riguarda i provini arrivati a rottura durante la prova di creep, è stato calcolato il tempo di rottura t_R in ore di ognuno ed è stata applicata la seguente formula per calcolare il relativo Parametro di Larson-Miller:

$$LMP = T(\log t_R + C_{LM});$$

dove T è la temperatura di prova espressa in Kelvin e C_{LM} è la costante di Larson-Miller, che viene assunta pari a 20.

In seguito, è stato costruito un grafico $\sigma - PLM$.

5.6 Analisi dello spessore dei provini FSW

Gli otto provini provenienti da materiale saldato FSW sono stati analizzati dal punto di vista della variazione di spessore successivo alla prova di creep, in modo da poter indagare sugli effetti che la saldatura e la successiva trazione ad alte temperature ha avuto sul materiale.

È stato quindi necessario effettuare misurazioni dello spessore dei provini a distanze regolari a partire dall'inizio del tratto utile. Al fine di poter effettuare una misura di elevata precisione, è stato adottato un metodo empirico che si è rivelato di grande utilità.

Un primo step è stato quello di effettuare una lappatura dei provini, in modo da preparare la superficie dei campioni ad un'ispezione mediante microscopio ottico e poter fare delle fotografie lungo l'intero tratto utile dei provini mediante il software QCapture. L'ingrandimento scelto al microscopio è il 2,5×0,8, necessario per garantire una sufficiente distinzione dei particolari osservabili; per questa ragione, non è stato possibile produrre un'unica foto del campione, ma è stato necessario scattarne diverse, facendo scorrere di volta in volta il provino per inquadrare nuove parti del tratto utile. Successivamente, grazie all'utilizzo del software Photoshop, è stato possibile unire le singole foto scattate, in modo da poter creare un'unica immagine panoramica che mostrasse il provino nella sua interezza; l'unione è stata eseguita mediante la funzione "photomerge".

Figura 44. Lappatrice Struers LaboPol-21, utilizzata per la lappatura dei provini tramite dischi abrasivi e getto d'acqua

Figura 45. Microscopio ottico Reichert-Jung utilizzato per l'osservazione dei provini

Figura 46. Esempio di panoramica del provino ottenuta mediante photomerge di più foto

Le panoramiche dei vari provini sono poi state caricate sul software Rhinoceros, in modo da poter applicare delle griglie di dimensioni variabili su di esse, scalate sulla base dei marker da 2000 µm inseriti su ogni immagine; l'utilizzo delle griglie è giustificato dal fatto che esse rendono molto facile il tracciamento di linee distanziate 1 mm l'una dall'altra e perpendicolari alla direzione di sviluppo del provino, partendo dall'inizio del tratto utile, generando di fatto i punti di misura dello spessore del campione. Le linee sono state poi modificate in modo da avere punti di inizio e fine coincidenti con i margini del provino; a questo punto, tramite il software è stato possibile trovare i valori di lunghezza delle linee di spessore, i quali sono stati poi trasformati, grazie al fattore di scala precedentemente adottato, in vere e proprie misure di spessore in mm.

5.7 Analisi metallografica

Le indagini sui provini sono proseguite con l'esecuzione di analisi metallografiche approfondite, condotte allo scopo di indagare a fondo sugli effetti che le lavorazioni e le prove effettuate hanno avuto sui campioni. Per permettere al microscopio ottico di cogliere i dettagli della microstruttura e produrre micrografie ben definite, è necessario eseguire un'eccellente lucidatura del campione, seguita da un attacco chimico che ne metta in risalto la morfologia grazie al conseguente contrasto che viene colto dal microscopio.

L'analisi metallografica è stata condotta su due provini: quello sottoposto a carico variabile a 550°C e quello sottoposto a 50 MPa a 600°C. Prima di lappare i campioni, essi sono stati inglobati con una resina a freddo nel caso del primo provino, e con resina fenolica rossa per inglobatura a caldo nel caso del secondo campione; il vantaggio di inglobare i provini sta nella maggiore facilità di manipolazione durante le operazioni di lappatura e lucidatura manuale, nonché nella possibilità di utilizzo di macchine lappatrici di alta precisione. L'inglobatura a caldo è stata eseguita con la macchina Struers LaboPress-1, che permette l'utilizzo di un forno e di acqua per il successivo raffreddamento della resina.

Figura 47. Macchina di inglobatura Struers LaboPress-1

Figura 48. Provino inglobato a caldo con resina fenolica rossa

Per il primo provino, la lappatura è stata eseguita manualmente con l'utilizzo della lappatrice Struers LaboPol-21 e di carte abrasive al SiC di granulometria crescente, partendo dalla 320 per poi passare a 640, 1200, 2400 e infine 4000; per quanto riguarda il secondo provino, oltre alla lappatura manuale, è stata eseguita quella automatica grazie all'utilizzo della macchina Struers Tegramin-20, progettata per poter alloggiare contemporaneamente più campioni ed assicurare un assottigliamento meccanico di alta qualità anche in condizioni difficili, in modo da poter bypassare problematiche dovute a fattori come la qualità della resina di inglobatura, talvolta causa di lappature non perfette. L'utilizzo della lappatrice automatica è stato di grande utilità in quanto il secondo provino è stato diviso in due parti in modo da poter alloggiare in maniera opportuna i pezzi nel vano di lavoro della macchina di inglobatura; la possibilità di lappare due campioni contemporaneamente, così come la qualità della lavorazione, si sono rivelate di estrema importanza.

Figura 49. Lappatrice automatica Struers Tegramin-20

Figura 50. Lappatura automatica dei campioni

I provini lappati sono stati poi lucidati "a specchio", in modo da rendere la loro superficie più uniforme possibile; l'operazione è stata eseguita mediante la macchina di lucidatura Struers Planopol-V, dotata di panno di lucidatura alloggiato su disco rotante. Per garantire una corretta lucidatura, il panno è stato imbevuto con una piccola quantità di pasta diamantata, ovvero una amalgama contenente particelle di diamante sintetico di piccola granulometria, e di una soluzione a base di etilene.

Figura 51. Macchina di lucidatura Struers Planopol-V

A questo punto è stato possibile eseguire l'attacco chimico dei campioni, in modo da poter evidenziare la morfologia della microstruttura in sede di analisi al microscopio ottico. A seguito di una consultazione della letteratura scientifica, la soluzione d'attacco scelta è stata quella relativa all'attacco Kroll, specifica per titanio puro: 95 ml di acqua, 3 ml di acido nitrico (HNO₃) e 2 ml di acido fluoridrico (HF). Al fine di ottenere un effetto soddisfacente, dopo diverse prove si è scelta la durata di attacco di dieci secondi.

I campioni sono poi stati analizzati al microscopio ottico e sono state prodotte micrografie per gli ingrandimenti $2,5 \times 0,8$ e 20×1 .

5.8 Calcolo delle microdurezze

L'ultima analisi condotta è stata quella riguardante le microdurezze; nello specifico, si è scelto di eseguire la misurazione della microdurezza Vickers per diversi punti di uno stesso campione. Il provino scelto per l'esecuzione delle prove è stato il "550-18 \rightarrow 105", ovvero quello sottoposto a carico variabile fra 18 e 105 MPa, alla temperatura di 550°C.

Le prove sono state eseguite con il microdurometro Remet HX-1000, dotato di penetratore di diamante a piramide retta, con base quadrata e angolo al vertice di 136°; per poter alloggiare il provino, precedentemente inglobato, nell'apposito vano della macchina, si è resa necessaria una troncatura per eliminare parte della resina.

Figura 52. Microdurometro Vickers Remet HX-1000

Le prove di microdurezza consistono nel misurare le dimensioni dell'area dei solchi lasciati sul provino dal penetratore, il quale imprimerà sulla superficie una determinata forza per un determinato intervallo di tempo; vengono eseguite diverse penetrazioni, a distanze regolari lungo lo sviluppo del provino, in modo da estrarre un andamento dei valori di durezza Vickers (HV), definita come:

$$HV = 1,854\frac{F}{A};$$

dove F è la forza impressa dal penetratore espressa in g_f (grammi forza, dove 1000 $g_f = 1 k g_f = 10 N$), e A è l'area del solco lasciato.

Al fine di ottenere una stima precisa della durezza, è quindi necessario misurare accuratamente la dimensione dei solchi; pertanto, la macchina di prova è dotata di microscopio ottico collegato ad una telecamera, che rendono possibile visualizzare su monitor la microstruttura del provino, opportunamente lucidato. Quando una prova viene eseguita, viene identificato e messo a fuoco il solco lasciato dal penetratore; dopodiché, la sua immagine viene importata sul software Image-Pro, dove vengono misurate le due diagonali e viene trovato il valor medio, riportato in millimetri.

Per le prove eseguite sul provino scelto, è stato utilizzato un carico di 200 gf mantenuto per una durata di 15 secondi; si è scelto di realizzare una prova per ogni millimetro di campione, avendo cura di posizionare il penetratore al centro dello stelo. Dopodiché, i valori trovati per le diagonali medie sono stati importati in un file Excel in cui sono state calcolate le relative microdurezze, applicando la formula precedentemente introdotta, alla quale è stato aggiunto un fattore di scala correttivo delle misure ottenute tramite il software.

6 Risultati e discussione

6.1 Prove di creep

Le prove di creep eseguite hanno fornito i seguenti dati circa il tempo di prova e l'allungamento ottenuto.

Per quanto riguarda i provini FSW sottoposti alla temperatura di 550 °C si ha:

550_18->105			550_40		550_90		550_112	
stress (MPa)	tempo(s)	deltaL (mm)						
18	0	0	0	0	0	0	0	0
18	12	0,014	24	0,044	2,04	0,040	4,02	0,161
18	48	0,022	56,04	0,068	4,02	0,072	12	0,314
18	180	0,029	150	0,092	8,04	0,122	19,98	0,442
18	3888	0,072	270	0,125	12	0,156	28,02	0,576
18	21588	0,163	450	0,155	16,02	0,182	36	0,684
18	45588	0,239	1410	0,267	40,02	0,312	43,98	0,806
18	141588	0,488	2372,04	0,350	70,02	0,438	52,02	0,909
18	285588	0,774	3212,04	0,411	100,02	0,583	60	1,037
18	483588	1,093	6212,04	0,636	132	0,720	67,98	1,139
18	663588	1,374	9212,04	0,858	188,04	0,899	79,98	1,299
18	855588	1,679	12212,04	1,073	240	1,090	91,98	1,484
18	1053588	2,051	15212,04	1,300	288	1,289	103,98	1,686
18	1335588	2,557	18212,04	1,528	336	1,501	115,98	1,880
18	1542356	2,908	21212,04	1,780	408	1,816	127,98	2,091
105	1542362	3,951	24212,04	2,040	468	2,085	139,98	2,325
105	1542366	5,231	27212,04	2,307	530,04	2,384	151,98	2,605
105	1542368	5,473	30212,04	2,600	590,04	2,682	163,98	3,080
105	1542374	5,904	33212,04	2,912	650,04	3,025	169,98	3,558
105	1542380	6,354	36212,04	3,254	710,04	3,417		
105	1542386	6,797	39212,04	3,616	770,04	3,885		
105	1542392	7,239	42212,04	4,033	830,04	4,519		
			45212,04	4,501	866,04	5,363		
			48212,04	5,048				
			51212,04	5,704				
			54212,04	6,551				
			57212,04	7,815				
			59612,04	10,413				

Tabella 3. Risultati delle prove di creep per i provini FSW a 550 °C

600_15		600_30		600 <u>50</u>		600_111	
tempo(s)	deltaL (mm)	tempo(s)	deltaL (mm)	tempo(s)	deltaL (mm)	tempo(s)	deltaL (mm)
0	0	0	0	0	0	0	0
12	0,020	4,02	0,005	7	0,017	0,5	0,100
150	0,030	16,02	0,0150	16,02	0,033	2	0,226
390	0,042	42	0,028	52,02	0,101	4,02	0,357
1428,54	0,076	184,02	0,071	84	0,153	8,04	0,623
4128,54	0,140	784,02	0,184	180	0,298	12	0,924
17928,54	0,370	3184,02	0,501	396	0,581	16,02	1,258
29928,54	0,510	5584,02	0,824	626,04	0,828	20,04	1,551
59928,54	0,800	7984,02	1,156	836,04	1,019	24	1,844
105528,5	1,077	10384,02	1,495	1076,04	1,280	28,02	2,142
153528,5	1,480	12784,02	1,841	1316,04	1,558	32,04	2,492
201528,5	1,788	15184,02	2,219	1556,04	1,848	36	2,823
249528,5	2,220	17584,02	2,608	1796,04	2,182	40,02	3,201
297528,5	2,570	19984,02	3,014	2036,04	2,543	44,04	3,798
339528,5	2,883	22384,02	3,490	2276,04	2,913	48	4,666
387528,5	3,206	24784,02	4,043	2516,04	3,369		
435528,5	3,693	27184,02	4,645	2756,04	3,913		
471528,5	4,020	29584,02	5,307	2996,04	4,519		
519528,6	4,422	31984,02	6,038	3236,04	5,293		
567528,6	4,906	34384,02	6,961	3476,04	6,073		
615528,6	5,460	36784,02	8,073	3716,04	7,085		
663528,6	5,967	39184,02	9,459	3836,04	7,804		
699528,6	6,413	41584,02	11,417	3956,04	8,772		
742516,5	7,057			4076,04	10,051		
771528,6	7,451			4138,02	11,251		
805902,5	8,072						
831528,6	8,586						
851604,5	8,962						

Per quanto riguarda i provini FSW sottoposti alla temperatura di 600 °C si ha:

 Tabella 4. Risultati delle prove di creep per i provini FSW a 600 °C

Di questi provini, il 550-18 \rightarrow 105 e il 600-15 non sono arrivati a rottura; per tutti gli altri provini il tempo di prova coincide col tempo di rottura tr.

Informazioni analoghe sono disponibili per i provini di metallo base.

550-60		550-100		550-40	
tempo(s)	delta L(mm)	tempo(s)	delta L(mm)	tempo(s)	delta L(mm)
0	0,000	0	0,000	0	0,000
30	0,075	4,02	0,154	12	0,019
78	0,116	7,98	0,206	24	0,031
162	0,171	16,02	0,290	116,04	0,082
402	0,294	31,98	0,443	194,04	0,106
763,98	0,486	55,98	0,641	374,04	0,139
1003,98	0,615	79,98	0,821	554,04	0,165
1246,02	0,745	103,98	1,015	1274,04	0,243
1498,02	0,887	127,98	1,204	2714,04	0,392
1738,02	1,018	151,98	1,407	4514,04	0,567
1978,02	1,161	175,98	1,594	6314,04	0,735
2218,02	1,313	199,98	1,798	9134,04	1,000
2458,02	1,464	223,98	2,017	12134,04	1,298
2698,02	1,618	247,98	2,226	15134,04	1,638
2938,02	1,780	271,98	2,510	18134,04	1,989
3178,02	1,953	295,98	2,785	21134,04	2,379
3418,02	2,145	319,98	3,075	24134,04	2,818
3658,02	2,351	343,98	3,381	27134,04	3,321
3898,02	2,556	367,98	3,733	30134,04	3,874
4138,02	2,771	391,98	4,127	33134,04	4,544
4378,02	2,994	415,98	4,667	36134,04	5,369
4618,02	3,226	427,98	5,061	39134,04	6,427
4858,02	3,501	436,02	5,348	42134,04	7,865
5098,02	3,806			45134,04	9,956
5338,02	4,120			47534,04	12,454
5578,02	4,460				
5818,02	4,811				

 Tabella 5. Risultati delle prove di creep per i provini di metallo base a 550 °C

550-20		550-30		550-15->82		
tempo(s)	delta L(mm)	tempo(s)	delta L(mm)	Stress (MPa)	tempo(s)	delta L(mm)
0	0,000	0	0,000	15	0	0,000
150	0,008	120	0,031	15	90	0,015
280	0,012	580,2	0,082	15	210	0,019
480	0,017	1870,2	0,125	15	1710	0,046
1770	0,038	4293,6	0,186	15	20910	0,095
7470	0,091	10653,6	0,314	15	184710	0,236
24270	0,167	20253,6	0,559	15	424710	0,396
48270	0,266	31653,6	0,948	15	664710,1	0,584
72270	0,365	43653,6	1,389	15	904710,1	0,789
120270	0,537	55653,6	1,861	15	1144710	0,967
168270	0,703	67653,6	2,409	15	1384710	1,143
228270	0,892	84755,58	3,319	15	1624710	1,306
276269,9	1,051	96755,58	4,116	15	1864710	1,442
324269,9	1,209	108755,6	5,154	15	2104710	1,589
362069,9	1,337	120755,6	6,555	15	2224710	1,654
410069,9	1,481	126755,6	7,538	82	2243020	1,672
458069,9	1,676	132755,6	8,898	82	2243020	1,759
506070	1,911	138575,6	10,695	82	2243024	1,923
554070	2,124	141755,6	12,014	82	2243072	2,042
590070	2,285			82	2243124	2,113
626070	2,439			82	2243184	2,195
662070	2,600			82	2243244	2,271
698070	2,760			82	2243420	2,487
734070	2,923			82	2243662	2,781
770070	3,106			82	2243962	3,151
806070	3,348			82	2244262	3,538
830070	3,508			82	2244562	4,014
866070	3,763			82	2244862	4,519
902070	4,000			82	2245162	5,085
938070	4,242			82	2245464	5,817
974070	4,483			82	2245766	6,650
1010070	4,801			82	2246066	7,783
1046070	5,144			82	2246210	8,407
1072006	5 206					

 Tabella 6. Risultati delle prove di creep per i provini di metallo base a 550 °C

600-70		600-40		600-10->25->35			600-15->44		
tempo(s)	delta L(mm)	tempo(s)	deltaL(mm)	stress (MPa)	tempo(s)	delta L(mm)	stress (MPa)	tempo(s)	delta L(mm)
0	0,000	0	0,000	10	0	0,000	15	0	0,000
1,5	0,050	3	0,010	10	12	0,004	15	15	0,004
3,96	0,095	20	0,045	10	312	0,013	15	60	0,013
12	0,236	61,98	0,098	10	1812	0,038	15	150	0,018
19,98	0,375	181,98	0,254	10	4212	0,049	15	630	0,030
27,96	0,501	301,98	0,410	10	7212	0,069	15	5730	0,113
36	0,657	421,98	0,561	10	13212	0,095	15	10530	0,165
51,96	0,863	541,98	0,710	10	43212	0,163	15	18330	0,242
72	1,125	661,98	0,853	10	85212	0,233	15	30330	0,342
91,98	1,394	781,98	0,994	10	133212	0,287	15	42330	0,445
111,96	1,661	901,98	1,130	10	232212	0,400	15	54330	0,544
132	1,933	1021,98	1,263	10	328212	0,503	15	66330	0,638
151,98	2,228	1141,98	1,395	10	424212	0,588	15	78330	0,722
171,96	2,536	1261,98	1,523	10	520212	0,669	15	90330	0,809
192	2,831	1381,98	1,653	10	616212	0,730	15	102330	0,881
207,96	3,116	1501,98	1,787	10	712212	0,787	15	114330	0,955
228	3,404	1621,98	1,925	10	808212	0,838	15	126330	1,031
247,98	3,726	1741,98	2,069	10	928212	0,899	15	138330	1,102
267,96	4,081	1861,98	2,218	10	1036212	0,950	15	150330	1,176
288	4,458	1981,98	2,367	10	1148570	0,994	15	159156	1,225
307,98	4,845	2101,98	2,516	10	1217810	1,024	44	159162	1,308
327,96	5,237	2221,98	2,664	10	1292810	1,055	44	159168	1,337
348	5,666	2341,98	2,812	10	1367813	1,088	44	159174	1,360
367,98	6,125	2461,98	2,957	10	1379381	1,096	44	159216	1,459
387,96	6,654	2581,98	3,101	25	1379411	1,125	44	159260	1,552
408	7,190	2701,98	3,253	25	1379447	1,136	44	159308	1,669
		2821,98	3,411	25	1379515	1,142	44	159356	1,777
		2941,98	3,575	25	1379595	1,151	44	159432	1,945
		3061,98	3,747	25	1379803	1,169	44	159506	2,106
		3181,98	3,928	25	1381165	1,271	44	159578	2,257
		3301,98	4,108	25	1382367	1,348	44	159650	2,408
		3421,98	4,271	25	1383567	1,431	44	159722	2,558
		3541,98	4,474	25	1384767	1,505	44	159794	2,710
		3601,98	4,562	25	1385967	1,594	44	159866	2,851
				25	1387167	1,690	44	159938	2,992
				25	1388367	1,784	44	160010	3,150
				25	1389567	1,882	44	160082	3,331
				25	1390769	1,973	44	160136	3,459
				25	1391969	2,059	44	160208	3,633
				25	1392969	2,126			
				35	1392975	2,162			
				35	1393017	2,190	1		
				35	1393105	2,245			
				35	1393159	2,268			
				35	1393279	2,329			
				35	1393401	2,385			
				35	1393641	2,494			
				35	1393855	2,589			
				35	1394093	2,693			
				35	1394333	2,798			
				35	1394585	2,907			
				35	1394813	3,015			
				35	1395053	3,146			
				35	1395299	3,270			
				35	1395551	3,400			
				35	1395773	3,519			
				35	1395809	3,531	l		

Tabella 7. Risultati delle prove di creep per i provini di metallo base a 600 °C

6.2 Curve di creep

Per ogni prova di creep sono stati elaborati i dati ottenuti in modo da calcolare i valori di deformazione e velocità di deformazione, successivamente graficati. Al fine di fornire un esempio pratico, sono di seguito riportati i casi dei provini FSW 550-18 \rightarrow 105 e 550-40 ed il provino di metallo base 550-40, rimandando all'appendice di questo elaborato i restanti risultati.

Per il campione 550-18 \rightarrow 105 si ha quindi:

550-18->105				
stress (MPa)	tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
18	0	0	0	0
18	12	0,014	0,0006	4,6667E-05
18	48	0,022	0,0009	8,8889E-06
18	180	0,029	0,0012	2,1212E-06
18	3888	0,072	0,0029	4,5854E-07
18	21588	0,163	0,0065	2,0676E-07
18	45588	0,239	0,0096	1,2667E-07
18	141588	0,488	0,0195	1,0375E-07
18	285588	0,774	0,0310	7,9444E-08
18	483588	1,093	0,0437	6,4444E-08
18	663588	1,374	0,0550	6,2428E-08
18	855588	1,679	0,0672	6,3552E-08
18	1053588	2,051	0,0820	7,5156E-08
18	1335588	2,557	0,1023	7,1773E-08
18	1542356	2,908	0,1163	6,7902E-08
105	1542362	3,951	0,1580	7,0236E-03
105	1542366	5,231	0,2092	1,2736E-02
105	1542368	5,473	0,2189	4,8889E-03
105	1542374	5,904	0,2362	2,8449E-03
105	1542380	6,354	0,2542	3,0000E-03
105	1542386	6,797	0,2719	2,9533E-03
105	1542392	7,239	0,2896	2,9764E-03

Tabella 8. Calcolo delle deformazioni e velocità di deformazione per il provino 550-18→105

dove la casella in verde indica la minima velocità di deformazione nella condizione di carico di 105 MPa, e quella in arancio l'analogo valore per la condizione di 18 MPa; quest'ultima è anche la minima velocità relativa all'intera prova.

Dai dati vengono ottenuti i seguenti grafici:

Essendo il provino sottoposto a due diversi carichi, sono stati presentati i grafici per entrambe le condizioni e per l'intera prova.

Per quanto riguarda il provino FSW 550-40, si ha invece:

550-40			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
24	0,044	0,0018	7,3333E-05
56,04	0,068	0,0027	2,9963E-05
150	0,092	0,0037	1,0217E-05
270	0,125	0,0050	1,1000E-05
450	0,155	0,0062	6,6667E-06
1410	0,267	0,0107	4,6667E-06
2372,04	0,35	0,0140	3,4510E-06
3212,04	0,411	0,0164	2,9048E-06
6212,04	0,636	0,0254	3,0000E-06
9212,04	0,858	0,0343	2,9600E-06
12212,04	1,073	0,0429	2,8667E-06
15212,04	1,3	0,0520	3,0267E-06
18212,04	1,528	0,0611	3,0400E-06
21212,04	1,78	0,0712	3,3600E-06
24212,04	2,04	0,0816	3,4667E-06
27212,04	2,307	0,0923	3,5600E-06
30212,04	2,6	0,1040	3,9067E-06
33212,04	2,912	0,1165	4,1600E-06
36212,04	3,254	0,1302	4,5600E-06
39212,04	3,616	0,1446	4,8267E-06
42212,04	4,033	0,1613	5,5600E-06
45212,04	4,501	0,1800	6,2400E-06
48212,04	5,048	0,2019	7,2933E-06
51212,04	5,704	0,2282	8,7467E-06
54212,04	6,551	0,2620	1,1293E-05
57212,04	7,815	0,3126	1,6853E-05
59612,04	10,413	0,4165	4,3300E-05

Tabella 9. Calcolo delle deformazioni e velocità di deformazione per il provino FSW 550-40

dove la casella in arancio indica la minima velocità di deformazione.

Si ottengono quindi i seguenti grafici:

Per il provino 550-40 di metallo base si ha invece:

550-40			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
12	0,019	0,00076	6,3333E-05
24	0,031	0,00124	4,0000E-05
116,04	0,082	0,00328	2,2164E-05
194,04	0,106	0,00424	1,2308E-05
374,04	0,139	0,005563	7,3492E-06
554,04	0,165	0,006587	5,6918E-06
1274,04	0,243	0,009708	4,3337E-06
2714,04	0,392	0,015694	4,1573E-06
4514,04	0,567	0,022665	3,8728E-06
6314,04	0,735	0,0294	3,7416E-06
9134,04	1,000	0,039995	3,7569E-06
12134,04	1,298	0,051928	3,9779E-06
15134,04	1,638	0,065516	4,5292E-06
18134,04	1,989	0,079576	4,6868E-06
21134,04	2,379	0,095173	5,1988E-06
24134,04	2,818	0,112738	5,8552E-06
27134,04	3,321	0,132824	6,6954E-06
30134,04	3,874	0,154959	7,3781E-06
33134,04	4,544	0,18178	8,9403E-06
36134,04	5,369	0,214745	1,0988E-05
39134,04	6,427	0,257083	1,4113E-05
42134,04	7,865	0,314585	1,9167E-05
45134,04	9,956	0,398238	2,7884E-05
47534,04	12,454	0,498158	4,1633E-05

Tabella 10. Calcolo delle deformazioni e velocità di deformazione per il provino di metallo base 550-40

Da notare i valori della minima velocità di deformazione e della deformazione finale, maggiori rispetto al provino precedente, sottoposto a stessa temperatura e stesso carico.

Si ottengono quindi i seguenti grafici:

Dai grafici tempo-deformazione e deformazione-velocità di deformazione sono riconoscibili i tipici andamenti delle curve di creep; nel primo caso si osserva l'andamento della curva secondo diverse pendenze che rappresentano i tre stadi (primario, secondario e terziario), mentre nel secondo caso si nota la forma "a conca" tipica delle curve relative alla velocità di deformazione, i cui valori scendono fino ad un valore minimo per poi risalire.

Si noti come nel caso del provino sottoposto a più carichi si riconoscano, nel grafico relativo all'intera prova, due diverse regioni di velocità di deformazione minima, ognuna relativa ad una delle due condizioni di carico applicato.

È altresì notevole la maggiore deformabilità del metallo base rispetto a quello saldato FSW, come dimostrato dal confronto tra i valori dei due provini 550-40.

6.3 Calcolo delle equazioni costitutive

Le equazioni costitutive che descrivono il comportamento di un materiale sottoposto a creep, e in particolare la dipendenza della minima velocità di deformazione dal carico, sono nella forma:

$$\dot{\varepsilon_{SS}} = A\sigma^n \exp\left(-Q/RT\right)$$

Dall'elaborazione delle curve di creep è stato possibile ricavare, per ogni provino, la minima velocità di deformazione; quest'informazione e la conoscenza dei dati di base dei provini, come carico e temperatura, e del materiale, come costante dei gas R e parametro A, permettono di eseguire stime circa i parametri mancanti $n \in Q$.

Il primo step del processo ha permesso di ottenere un valore di n a seguito della costruzione di rette isoterme dalle quali estrapolare i valori delle pendenze e farne una media.

Di seguito il procedimento eseguito per i provini FSW:

Provino	σ (MPa)	vel def (s^-1)	n	n medio
550_40	40	2,9E-06		
550_90	90	1,3E-04		
550_112	112	5,1E-04	4,86	
	18	6,2E-08		4 725
550_18-2105	105	2,8E-03		
NON A	NON ATTENDIBILE			4,725
600_15	15	2,4E-07		
600_30	30	5,3E-06	4 50	
600_50	50	3,6E-05	4,59	
600_111	111	2,6E-03		

 Tabella 10. Calcolo delle pendenze delle rette isoterme e del valor medio

Figura 53. Rette isoterme costruite a partire dai dati di carico e velocità di deformazione

Si noti come la costruzione delle rette sia stata effettuata trascurando i dati relativi al provino $550-18 \rightarrow 105$ in condizione di carico pari a 105 MPa in quanto i relativi dati di velocità di deformazione risultavano non attendibili e quindi non in linea con quelli degli altri provini sottoposti alla stessa temperatura.

Il secondo step ha permesso la stima dell'energia di attivazione Q; partendo dai dati relativi a temperatura e velocità di deformazione, sono state costruite due rette isobare mettendo in relazione, per ogni coppia di provini con stesso carico applicato, i valori di velocità e inverso della temperatura:

σ (MPa)	1/T (1/K)	vel def (s^-1)	Q (kJ/mol)	Q medio (kJ/mol)
15	1,15E-03	2,4E-07	162,51	
18	1,21E-03	6,2E-08	162,51	170.00
111	1,15E-03	2,6E-03	194,08	178,29
112	1,21E-03	5,1E-04	194,08	

Tabella 11. Calcolo dell'energia di attivazione

Figura 54. Rette isobare per la determinazione dell'energia di attivazione

Si noti che le coppie di provini presentano temperature molto vicine tra loro ma non esattamente uguali; tuttavia, questa è un'approssimazione accettabile.

Dalle pendenze delle rette sono stati calcolati i valori di Q, da cui è stato poi ricavato il valor medio.

Al fine di verificare i valori ottenuti per i due parametri, è stato costruito un terzo grafico a seguito del calcolo del parametro di Zener-Hollomon (Z) per tutti i campioni; mettendo in relazione i valori trovati con i rispettivi carichi, avendo cura di escludere, come prima, i valori relativi al provino $550-18 \rightarrow 105$ in condizione di carico pari a 105 MPa, sono stati graficati i relativi punti e da questi è stata costruita una retta.

Provino	σ (MPa)	vel def (s^-1)	Т (К)	Z (s^-1)	n medio
600_15	15	2,4E-07	873,15	1,1E+04	
600_30	30	5,3E-06	873,15	2,5E+05	
600_50	50	3,6E-05	873,15	1,7E+06	
600_111	111	2,6E-03	873,15	1,2E+08	
550_40	40	2,9E-06	823,15	5,9E+05	4,68
550_90	90	1,3E-04	823,15	2,6E+07	
550_112	112	5,1E-04	823,15	1,1E+08	
EE0 19 >10E	18	6,2E-08	823,15	1,3E+04	
550_18-2105	105	2,8E-03	823,15	5,9E+08	
	NON ATTENDIBILE				

Tabella 12. Calcolo del parametro di Zener-Hollomon

Figura 55. Andamento di Z rispetto al carico applicato

La pendenza della retta su cui giacciono in maniera approssimativamente perfetta i punti trovati ha pendenza n circa uguale al valore precedentemente trovato, ragion per cui i valori dei parametri calcolati precedentemente possono essere considerati affidabili.

Un procedimento analogo è stato eseguito per i provini di metallo base, con i seguenti risultati:

Provino	σ (MPa)	vel def (s^-1)	n	n medio
600-70	70	5,2E-04		
600-40	40	4,3E-05		
	10	1,6E-08		
600-10->25->35	25	2,5E-06	5,38	
	35	1,3E-05		
600 15 \14	15	2,2E-07		5 16
000-13->44	44	7,8E-05		
				5,10
550-60	60	2,1E-05		
550-100	100	3,0E-04		
550-40	40	3,7E-06	1 01	
550-20	20	1,2E-07	4,94	
550-30	30	8,1E-07		
	15	2,2E-08		
220-12-282	82	3,9E-08		
	NON ATT	ENDIBILE		

 Tabella 13. Calcolo delle pendenze delle rette isoterme e del valor medio

Figura 56. Rette isoterme costruite a partire dai dati di carico e velocità di deformazione

σ (MPa)	1/T (1/K)	vel def (s^-1)	Q (kJ/mol)	Q medio (kJ/mol)
15	1,15E-03	2,2E-07	278,07	
15	1,21E-03	2,2E-08	278,07	204 676
40	1,15E-03	4,3E-05	291,281	284,070
40	1,21E-03	3,7E-06	291,281	

Tabella 14.	Calcolo	dell'e	nergia	di	attivazione
-------------	---------	--------	--------	----	-------------

Figura 57. Rette isobare per la determinazione dell'energia di attivazione

Provino	σ (MPa)	vel def (s^-1)	Т (К)	Z (s^-1)	n medio
600-70	70	5,2E-04	873,15	5,5E+13	
600-40	40	4,3E-05	873,15	4,6E+12	
	10	1,6E-08	873,15	1,7E+09	
600-10->25->35	25	2,5E-06	873,15	2,6E+11	
	35	1,3E-05	873,15	1,4E+12	
600 1E >44	15	2,2E-07	873,15	2,4E+10	
000-15-244	44	7,8E-05	873,15	8,4E+12	E 10
550-60	60	2,1E-05	823,15	2,4E+13	5,19
550-100	100	3,0E-04	823,15	3,5E+14	
550-40	40	3,7E-06	823,15	4,3E+12	
550-20	20	1,2E-07	823,15	1,4E+11	
550-30	30	8,1E-07	823,15	9,4E+11	
	15	2,2E-08	823,15	2,5E+10	
220-12-282	82	3,4E-08	823,15	4,0E+10	
	NON ATTENDIBILE				

Tabella 15. Calcolo del parametro di Zener-Hollomon

Figura 58. Andamento di Z rispetto al carico applicato

Dal confronto tra i valori ottenuti per i due set di provini, si evince come ci sia una certa vicinanza nei valori di n, mentre Q sia più alta nei campioni di metallo base, a causa dei complessi fenomeni agenti sulla microstruttura del materiale sia in condizione tal-quale che processato tramite FSW precedentemente.

6.4 Calcolo del parametro di Larson-Miller

Per i provini FSW arrivati a rottura è stato calcolato il tempo di rottura in ore; i valori ottenuti sono stati inseriti nella formula per il calcolo del parametro di Larson-Miller ottenendo i seguenti risultati:

Provino	tr (h)	Т (К)	С	PLM	σ (MPa)
600_30	11,551	873,15	20	18391	30
600_50	1,149	873,15		17516	50
600_111	0,013	873,15		15826	111
550_40	16,559	823,15	20	17466	40
550_90	0,241	823,15		15954	90
550_112	0,047	823,15		15372	112

Tabella 16. Calcolo del parametro di Larson-Miller

Figura 59. Andamento del PLM rispetto al carico

6.5 Analisi dello spessore dei provini FSW

Di seguito vengono presentati i valori di spessore degli otto campioni FSW per ogni millimetro di distanza dall'inizio del tratto utile; dal momento che quasi tutti i provini si sono rotti a fine prova, le misurazioni sono state condotte soltanto su 14 punti, ad eccezione di un provino, il 600-15, che non è andato incontro a rottura e presenta un interessante andamento.

		PROVINO
		550-18->105
	1	2,660
	2	2,392
	3	2,195
	4	2,196
	5	2,423
DISTANZA DA	6	2,614
INIZIO DEL	7	2,631
TRATTO UTILE (mm)	8	2,542
	9	2,611
	10	2,760
	11	2,810
	12	2,817
	13	2,822
	14	2,817

Tabella 17. Spessori del provino 550-18->105

Figura 60. Spessori del provino 550-18->105

Figura 61. Metodologia di calcolo dello spessore

		PROVINO
		600-50
	1	2,628
	2	2,355
	3	2,279
	4	2,400
DISTANZA DA INIZIO DEL TRATTO UTILE (mm)	5	2,626
	6	2,678
	7	2,577
	8	2,675
	9	2,853
	10	2,909
	11	2,885
	12	2,846
	13	2,861
	14	2,903

Tabella 18. Spessori del provino 600-50

Figura 62. Spessori del provino 600-50

		PROVINO
		550-112
	1	2,622
	2	2,285
	3	2,275
	4	2,457
DISTANZA	5	2,576
DA INIZIO	6	2,702
DEL TRATTO UTILE (mm)	7	2,775
	8	2,830
	9	2,838
	10	2,863
	11	2,896
	12	2,904
	13	2,898
	14	2.919

Tabella 19. Spessori del provino 550-112

Figura 63. Spessori del provino 550-112

		PROVINO
		550-90
	1	2,898
	2	2,804
	3	2,766
	4	2,807
DISTANZA	5	2,880
DA INIZIO	6	2,892
DEL	7	2,870
TRATTO UTILE (mm)	8	2,920
	9	3,011
	10	3,074
	11	3,106
	12	3,112
	13	3,116
	14	3,092

Tabella 20. Spessori del provino 550-90

Figura 64. Spessori del provino 550-90

		PROVINO
		600-30
	1	3,860
	2	3,577
	3	3,403
	4	3,249
DISTANZA	5	3,208
DA INIZIO DEL TRATTO UTILE (mm)	6	3,281
	7	3,343
	8	3,354
	9	3,328
	10	3,303
	11	3,243
	12	3,213
	13	3,276
	14	3,372

Tabella 21. Spessori del provino 600-30

Figura 65. Spessori del provino 600-30

		PROVINO
		600-111
	1	2,782
	2	2,707
	3	2,698
	4	2,702
DISTANZA	5	2,709
DA INIZIO DEL TRATTO UTILE (mm)	6	2,740
	7	2,799
	8	2,872
	9	2,897
	10	2,905
	11	2,899
	12	2,912
	13	2,927
	14	2,935

Tabella 22. Spessori del provino 600-111

Figura 66. Spessori del provino 600-111

		PROVINO
		550-40
	1	2,722
	2	2,670
	3	2,823
	4	2,951
DISTANZA	5	2,945
DA INIZIO DEL TRATTO UTILE (mm)	6	2,879
	7	2,789
	8	2,775
	9	2,731
	10	2,734
	11	2,775
	12	2,823
	13	2,849
	14	2.871

Tabella 23. Spessori del provino 550-40

Figura 67. Spessori del provino 550-40

		PROVINO
		600-15
	1	2,906
	2	2,861
	3	2,868
	4	2,830
	5	2,786
	6	2,742
	7	2,707
	8	2,645
	9	2,582
	10	2,520
	11	2,444
	12	2,371
	13	2,325
	14	2,289
DISTANZA	15	2,288
DA INIZIO	16	2,301
	17	2,334
	18	2,332
(mm)	19	2,384
	20	2,390
	21	2,411
	22	2,445
	23	2,475
	24	2,504
	25	2,535
	26	2,577
	27	2,611
	28	2,632
	29	2,656
	30	2,676
	31	2,691
	32	2,743
	33	2,860

Tabella 24. Spessori del provino 600-15

Figura 68. Spessori del provino 600-15

6.6 Analisi metallografica

I provini 550-18 \rightarrow 105 e 600-50 sono stati analizzati dal punto di vista microstrutturale; per ognuno sono state prodotte micrografie con due diversi ingrandimenti, al fine di poter cogliere i dettagli della microstruttura ma anche le differenze nella natura dei grani lungo il campione.

Gli ingrandimenti scelti sono il $2,5 \times 0,8$ e il 20×1 ; è bene precisare che il microscopio ottico attua a sua volta un ingrandimento di default pari a 10 volte, che va ad aggiungersi a quelli citati.

Di seguito le micrografie ottenute per il provino $550-18 \rightarrow 105$:

Figura 69. Macrografia del provino ottenuta tramite photomerge di micrografie ad ingrandimento 2,5×0,8

Figura 70. Micrografia 2,5×0,8 del provino ad una estremità del tratto utile

Figura 71. Micrografia 2,5×0,8 del provino ad una estremità del tratto utile

Figura 72. Micrografia 2,5×0,8 della zona centrale del tratto utile, ovvero la zona di saldatura

Figura 73. Micrografia 20×1

Le micrografie mostrano chiaramente la presenza di una sola fase (α), in quanto il metallo è puro. La presenza di grani di colorazione più scura è dovuta esclusivamente all'attacco chimico, che può risultare più aggressivo in alcune parti della superficie.

Dalle immagini si nota come la dimensione dei grani lungo l'intero provino sia sostanzialmente costante, una differenza sostanziale dal quanto si osserva dopo la saldatura; nella zona centrale, meno deformata, i grani sono prevalentemente equiassici, mentre nella zona più deformata del campione, illustrata nella figura 71, i grani risultano allungati nella direzione di carico, ma le dimensioni restano invariate. Questa condizione sembra suggerire come nella zona di saldatura, dove a seguito del FSW i grani dovrebbero essere piccolissimi ed equiassici, l'effetto della temperatura durante la prova di creep abbia comportato un aumento delle dimensioni del grano, rendendolo della stessa grandezza di quello delle zone di metallo base non alterate. Inoltre, l'accentuata riduzione di spessore in queste ultime zone suggerisce una maggiore concentrazione della deformazione, e quindi anche un'alta densità di dislocazioni, il che del resto è testimoniato l'allungamento dei grani.

Si noti inoltre lo strato chiaro sul bordo superiore del tratto utile del provino; esso è denominato α -case ed è un sottile strato di fase α ricco di ossigeno. La formazione dell' α -case è un fenomeno sgradito, generato da un'elevata velocità di ossidazione; esso risulta essere più fragile del resto del materiale e quindi può generare problematiche in caso di lavorazioni meccaniche. Per questo motivo, se non risulta possibile evitarne la formazione durante i trattamenti termici, è bene rimuoverlo meccanicamente prima delle successive lavorazioni.

Il provino 600-50, per ragioni di inglobatura, è stato diviso in due parti. È bene precisare che si tratta di un campione portato a rottura quindi si è analizzata soltanto la parte di maggior lunghezza, che però è stata divisa in due pezzi in modo da poter eseguire un'inglobatura a caldo.

L'analisi microstrutturale per il provino 600-50 è stata quindi condotta su due diversi campioni, uno relativo alla parte non influenzata dagli effetti di saldatura, ovvero quella in prossimità della testa, e un altro relativo alla parte influenzata dal FSW e con frattura all'estremità.

Per quanto riguarda il campione lato testa:

Figura 74. Micrografia 2,5×0,8 del campione in prossimità della testa

Figura 75. Micrografia 2,5×0,8 del campione lato testa in prossimità dell'estremità opposta

Figura 76. Micrografia 20×1 del campione lato testa

Mentre per il campione lato frattura:

Figura 77. Micrografia 2,5×0,8 del campione lato frattura in prossimità dell'estremità di troncatura

Figura 78. Micrografia 2,5×0,8 del campione lato frattura in prossimità dell'estremità di frattura

Figura 79. Micrografia 20×1 del campione lato frattura

Dal confronto tra le micrografie si evince come, in prossimità della zona alterata dalla saldatura, presente soprattutto nel campione lato frattura, la dimensione dei grani sia leggermente inferiore a quella riscontrata nella zona in prossimità della testa del provino, non alterata dal FSW; questa condizione può essere spiegata dal fatto che il provino 600-50 abbia subito un'esposizione alle alte temperature durante la prova di creep per un tempo sensibilmente inferiore al provino 550-18 \rightarrow 105, come si evince dai risultati delle prove di creep. Infatti, la breve esposizione alle alte temperature (1,15 ore) potrebbe aver determinato una minor crescita dei piccoli grani della zona termomeccanicamente alterata (TMAZ) rispetto al caso dell'altro provino (428,44 ore).

6.7 Calcolo delle microdurezze

Dalle prove eseguite tramite il microdurometro, sono stati trovati, per ogni millimetro, i seguenti valori di microdurezza Vickers:

CALCOLO MICRODUREZZA		
200		
Diagonale (mm)	HV	
172	201	
184	175	
178	187	
182	179	
179	185	
178	187	
175	194	
191	163	
186	171	
187	170	
186	171	
199	150	
185	173	
190	164	
193	159	
189	166	
177	189	
175	194	
179	185	
171	203	
174	196	
175	194	
176	192	
180	183	
169	208	
176	192	
171	203	
175	194	
183	177	

Tabella 25. Calcolo delle microdurezze del provino 550-18->105

Figura 80. Andamento delle microdurezze del provino 550-18->105

Dai valori ottenuti si evince come, in prossimità della zona di saldatura, la microdurezza sia generalmente inferiore rispetto al resto del provino, dove il metallo è sostanzialmente non influenzato dal FSW. Questo risultato può trovare spiegazione nel fatto che il provino risulta molto più deformato nelle zone esterne, lontano dalla zona di saldatura, che invece per sue stesse proprietà risulta essere meno deformabile; nelle zone maggiormente strizionate la densità di dislocazioni è sicuramente maggiore che nelle altre aree, e questo comporta l'incrudimento del materiale e di conseguenza anche l'indurimento. Va comunque tenuto presente che i dati di microdurezza sono assai irregolari e, con l'utilizzo di strumentazioni più performanti, potrebbero mostrare minor varianza.

Figura 81. Provino 550-18->105

7 Conclusioni

Nel presente elaborato di tesi è stato presentato il comportamento di provini di titanio commercialmente puro grado 2 (Ti-CP 2) sottoposti a creep a temperature comprese tra i 550 e i 600°C.

Al giorno d'oggi il titanio è un materiale di grande importanza nella pratica industriale, e l'evoluzione delle tecnologie di produzione di questo metallo stanno determinando una crescita della varietà di utilizzi per esso possibili. Le sue proprietà meccaniche sono eccellenti, e il fatto di essere un metallo a bassa densità, resistente alla corrosione e altofondente lo rende un perfetto competitor di altri materiali di utilizzo speciale, come gli acciai inossidabili.

Tuttavia, il titanio presenta anche un'elevata tendenza a reagire con l'ossigeno, ragion per cui i convenzionali metodi di saldatura per fusione potrebbero rivelarsi problematici; infatti, essendo un metallo altofondente (la sua temperatura di fusione è pari a 1668 °C), queste tipologie di saldatura possono comportare, a causa delle altissime temperature raggiunte, la formazione di ossidi e di fragili strutture nella microstruttura, nonché la crescita incontrollata dei grani.

Per questi motivi, una tipologia di saldatura particolarmente adatta è il Friction Stir Welding (FSW), che permette la giunzione di lembi di metallo mediante un'azione termomeccanica di rimescolamento e di riscaldamento per attrito che non comporta il raggiungimento di valori di temperatura tali da determinare fusione del materiale. Il FSW permette l'ottenimento, nelle zone di saldatura, di strutture a grani fini, dure e con alta resistenza meccanica.

Sulla base di queste premesse, è interessante scoprire come dei provini di titanio puro ottenuti da lembi di materiale saldato FSW reagiscano a prove di creep; è di particolare rilevanza capire quali siano gli effetti dell'esposizione prolungata ad alta temperatura su una microstruttura così complessa e peculiare come quella di un materiale monofasico e con le caratteristiche precedentemente elencate, al quale è stata precedentemente imposta una lavorazione unica nel suo genere, in quanto a proprietà conferite a livello microscopico.

I dati ottenuti dalle prove di creep e i risultati delle procedure sperimentali successivamente adoperate hanno sostanzialmente confermato quanto sopra: il titanio saldato FSW risulta essere più resistente, e quindi meno deformabile, del suo corrispettivo non saldato. Il confronto dei risultati delle prove di creep dei provini di titanio FSW con quelli di altri provini, ricavati da metallo base, ha fornito indicazioni di questo genere. Per entrambi i set di campioni sono state costruite le equazioni costitutive che ne descrivono il comportamento a creep ed in particolare la dipendenza della minima velocità di deformazione dal carico applicato; ne sono risultate informazioni che hanno dato ulteriore conferma di quanto detto.

La successiva osservazione delle modalità con cui i provini FSW si sono deformati, a livello macroscopico e microscopico, e delle caratteristiche dimensionali e morfologiche dei grani della microstruttura ha ulteriormente confermato la tesi iniziale, e fornito indicazioni circa i processi di maggiore rilevanza che l'esposizione prolungata alle alte temperatura può comportare; in particolare, è stata di grande rilevanza la scoperta di come l'applicazione di carichi inferiori, che di conseguenza permette l'esecuzione di prove di creep più lunghe, determini un livellamento delle dimensioni del grano tra la zona di saldatura e quella non alterata dello stesso provino, mentre prove condotte con carichi maggiori, e quindi più brevi, preservino meglio la differenza

di conformazione microstrutturale tra le due zone. Inoltre, è risultata evidente la differenza di deformazione tra le zone saldate dei provini e quelle alle estremità degli stessi, dove il metallo resta in condizioni base.

Infine, l'esecuzione delle prove di microdurezza Vickers ha permesso di indagare più nel dettaglio gli aspetti microstrutturali dei provini FSW; la distribuzione dei valori di microdurezza, che risultano essere inferiori nella zona di saldatura rispetto al resto del provino analizzato, è spiegata dal fatto che le zone esterne, costituite da metallo allo stato base, hanno subito una maggiore deformazione, circostanza che ha aumentato la densità di dislocazioni e di conseguenza la durezza.

Appendice

Di seguito sono presentate le tabelle relative ai calcoli di deformazioni e velocità di deformazione e ai relativi grafici per i provini FSW e base sottoposti a prove di creep che non sono stati presentati nel relativo capitolo.

PROVINI FSW

Provino 550-90

550_90			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
2,04	0,040	0,0016	7,8431E-04
4,02	0,072	0,0029	6,4646E-04
8,04	0,122	0,0049	4,9751E-04
12	0,156	0,0062	3,4343E-04
16,02	0,182	0,0073	2,5871E-04
40,02	0,312	0,0125	2,1667E-04
70,02	0,438	0,0175	1,6800E-04
100,02	0,583	0,0233	1,9333E-04
132	0,720	0,0288	1,7136E-04
188,04	0,899	0,0360	1,2777E-04
240	1,090	0,0436	1,4704E-04
288	1,289	0,0516	1,6583E-04
336	1,501	0,0600	1,7667E-04
408	1,816	0,0726	1,7500E-04
468	2,085	0,0834	1,7933E-04
530,04	2,384	0,0954	1,9278E-04
590,04	2,682	0,1073	1,9867E-04
650,04	3,025	0,1210	2,2867E-04
710,04	3,417	0,1367	2,6133E-04
770,04	3,885	0,1554	3,1200E-04
830,04	4,519	0,1808	4,2267E-04
866,04	5,363	0,2145	9,3778E-04

Provino 550-112

550_112			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
4,02	0,161	0,0064	1,6020E-03
12	0,314	0,0126	7,6692E-04
19,98	0,442	0,0177	6,4160E-04
28,02	0,576	0,0230	6,6667E-04
36	0,684	0,0274	5,4135E-04
43,98	0,806	0,0322	6,1153E-04
52,02	0,909	0,0364	5,1244E-04
60	1,037	0,0415	6,4160E-04
67,98	1,139	0,0456	5,1128E-04
79,98	1,299	0,0520	5,3333E-04
91,98	1,484	0,0594	6,1667E-04
103,98	1,686	0,0674	6,7333E-04
115,98	1,880	0,0752	6,4667E-04
127,98	2,091	0,0836	7,0333E-04
139,98	2,325	0,0930	7,8000E-04
151,98	2,605	0,1042	9,3333E-04
163,98	3,080	0,1232	1,5833E-03
169.98	3.558	0.1423	3.1867E-03

Provino 600-15

600_15			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
12	0,020	0,0008	6,6667E-05
150	0,030	0,0012	2,8986E-06
390	0,042	0,0017	2,0000E-06
1428,54	0,076	0,0030	1,3095E-06
4128,54	0,140	0,0056	9,4815E-07
17928,54	0,370	0,0148	6,6711E-07
29928,54	0,510	0,0204	4,6705E-07
59928,54	0,800	0,0320	3,8574E-07
105528,5	1,077	0,0431	2,4317E-07
153528,5	1,480	0,0592	3,3621E-07
201528,5	1,788	0,0715	2,5632E-07
249528,5	2,197	0,0879	3,4091E-07
297528,5	2,570	0,1028	3,1130E-07
339528,5	2,883	0,1153	2,9777E-07
387528,5	3,206	0,1282	2,6900E-07
435528,5	3,693	0,1477	4,0605E-07
471528,5	4,020	0,1608	3,6318E-07
519528,6	4,422	0,1769	3,3499E-07
567528,6	4,906	0,1962	4,0351E-07
615528,6	5,460	0,2184	4,6188E-07
663528,6	5,967	0,2387	4,2212E-07
699528,6	6,413	0,2565	4,9515E-07
742516,5	7,057	0,2823	5,9979E-07
771528,6	7,451	0,2980	5,4303E-07
805902,5	8,072	0,3229	7,2293E-07
831528,6	8,586	0,3434	8,0176E-07
851604,5	8,962	0,3585	7,4834E-07

Provino 600-30

600_30			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
4,02	0,005	0,0002	4,9751E-05
16,02	0,015	0,0006	3,3348E-05
42	0,028	0,0011	2,0008E-05
184,02	0,071	0,0028	1,2111E-05
784,02	0,184	0,0074	7,5333E-06
3184,02	0,501	0,0200	5,2833E-06
5584,02	0,824	0,0330	5,3833E-06
7984,02	1,156	0,0462	5,5333E-06
10384,02	1,495	0,0598	5,6500E-06
12784,02	1,841	0,0736	5,7667E-06
15184,02	2,219	0,0888	6,3000E-06
17584,02	2,608	0,1043	6,4833E-06
19984,02	3,014	0,1206	6,7667E-06
22384,02	3,490	0,1396	7,9333E-06
24784,02	4,043	0,1617	9,2167E-06
27184,02	4,645	0,1858	1,0033E-05
29584,02	5,307	0,2123	1,1033E-05
31984,02	6,038	0,2415	1,2183E-05
34384,02	6,961	0,2784	1,5383E-05
36784,02	8,073	0,3229	1,8533E-05
39184,02	9,459	0,3784	2,3100E-05
41584,02	11,417	0,4567	3,2633E-05

Provino 600-50

600_50			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
7	0,017	0,0007	9,7143E-05
16,02	0,033	0,0013	7,0953E-05
52,02	0,101	0,0040	7,5556E-05
84	0,153	0,0061	6,5041E-05
180	0,298	0,0119	6,0417E-05
396	0,581	0,0232	5,2407E-05
626,04	0,828	0,0331	4,2949E-05
836,04	1,019	0,0408	3,6381E-05
1076,04	1,280	0,0512	4,3500E-05
1316,04	1,558	0,0623	4,6333E-05
1556,04	1,848	0,0739	4,8333E-05
1796,04	2,182	0,0873	5,5667E-05
2036,04	2,543	0,1017	6,0167E-05
2276,04	2,913	0,1165	6,1667E-05
2516,04	3,369	0,1348	7,6000E-05
2756,04	3,913	0,1565	9,0667E-05
2996,04	4,519	0,1808	1,0100E-04
3236,04	5,293	0,2117	1,2900E-04
3476,04	6,073	0,2429	1,3000E-04
3716,04	7,085	0,2834	1,6867E-04
3836,04	7,804	0,3122	2,3967E-04
3956,04	8,772	0,3509	3,2267E-04
4076,04	10,051	0,4020	4,2633E-04
4138.02	11.251	0.4500	7.7444E-04

Provino 600-111

600_111			
tempo(s)	deltaL (mm)	epsilon	vel def (s^-1)
0	0	0	0
0,5	0,100	0,0040	8,0160E-03
2	0,226	0,0090	3,3551E-03
4,02	0,357	0,0143	2,5938E-03
8,04	0,623	0,0249	2,6461E-03
12	0,924	0,0370	3,0398E-03
16,02	1,258	0,0503	3,3207E-03
20,04	1,551	0,0620	2,9198E-03
24	1,844	0,0737	2,9562E-03
28,02	2,142	0,0857	2,9639E-03
32,04	2,492	0,0997	3,4877E-03
36	2,823	0,1129	3,3431E-03
40,02	3,201	0,1280	3,7564E-03
44,04	3,798	0,1519	5,9436E-03
48	4,666	0,1866	8,7685E-03

PROVINI BASE

Provino 600-70

600-70			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
1,5	0,050	0,002002	1,3347E-03
3,96	0,095	0,0038	7,3089E-04
12	0,236	0,00944	7,0149E-04
19,98	0,375	0,015004	6,9718E-04
27,96	0,501	0,020059	6,3358E-04
36	0,657	0,026291	7,7506E-04
51,96	0,863	0,034526	5,1598E-04
72	1,125	0,044988	5,2205E-04
91,98	1,394	0,055765	5,3938E-04
111,96	1,661	0,066445	5,3455E-04
132	1,933	0,077321	5,4273E-04
151,98	2,228	0,089101	5,8956E-04
171,96	2,536	0,101444	6,1777E-04
192	2,831	0,113229	5,8809E-04
207,96	3,116	0,124645	7,1528E-04
228	3,404	0,136142	5,7368E-04
247,98	3,726	0,149054	6,4628E-04
267,96	4,081	0,163243	7,1015E-04
288	4,458	0,178331	7,5288E-04
307,98	4,845	0,193788	7,7363E-04
327,96	5,237	0,209478	7,8529E-04
348	5,666	0,226656	8,5718E-04
367,98	6,125	0,244981	9,1715E-04
387,96	6,654	0,266158	1,0599E-03
408	7,190	0,287602	1,0700E-03

Provino 600-40

600-40			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
3	0,010	0,0004	0,0001333
20	0,045	0,001802	8,2448E-05
61,98	0,098	0,00392	5,0462E-05
181,98	0,254	0,01016	5,1999E-05
301,98	0,410	0,016413	5,2112E-05
421,98	0,561	0,022436	5,0186E-05
541,98	0,710	0,028392	4,9633E-05
661,98	0,853	0,034129	4,7814E-05
781,98	0,994	0,039763	4,6945E-05
901,98	1,130	0,04522	4,5475E-05
1021,98	1,263	0,050533	4,4279E-05
1141,98	1,395	0,055799	4,3882E-05
1261,98	1,523	0,060936	4,2809E-05
1381,98	1,653	0,066135	4,3323E-05
1501,98	1,787	0,071468	4,4446E-05
1621,98	1,925	0,077018	4,6245E-05
1741,98	2,069	0,082768	4,7914E-05
1861,98	2,218	0,088735	4,9727E-05
1981,98	2,367	0,094679	4,9537E-05
2101,98	2,516	0,10064	4,9673E-05
2221,98	2,664	0,106561	4,9342E-05
2341,98	2,812	0,112473	4,9268E-05
2461,98	2,957	0,118273	4,8336E-05
2581,98	3,101	0,124058	4,8209E-05
2701,98	3,253	0,13012	5,0512E-05
2821,98	3,411	0,136444	5,2699E-05
2941,98	3,575	0,143006	5,4688E-05
3061,98	3,747	0,149891	5,7372E-05
3181,98	3,928	0,157107	6,0137E-05
3301,98	4,108	0,164339	6,0263E-05
3421,98	4,271	0,170859	5,4335E-05
3541,98	4,474	0,17896	6,7507E-05
3601,98	4,562	0,18248	5,8667E-05

Provino 600-10→25→35

600-10->25->35				
stress (MPa)	tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
10	0	0,000	0	0
10	12	0,004	0,00016	1,3333E-05
10	312	0,013	0,00052	1,2000E-06
10	1812	0,038	0,00152	6,6667E-07
10	4212	0,049	0,00196	1,8333E-07
10	7212	0,069	0,00276	2,6667E-07
10	13212	0,095	0,0038	1,7333E-07
10	43212	0,163	0,006502	9,0064E-08
10	85212	0,233	0,009303	6,6687E-08
10	133212	0,287	0,011463	4,5014E-08
10	232212	0,400	0,015985	4,5670E-08
10	328212	0,503	0,020106	4,2930E-08
10	424212	0,588	0,023507	3,5427E-08
10	520212	0,669	0,026748	3,3760E-08
10	616212	0,730	0,029189	2,5424E-08
10	712212	0,787	0,031469	2,3757E-08
10	808212	0,838	0,03351	2,1256E-08
10	928212	0,899	0,035951	2,0339E-08
10	1036212	0,950	0,037991	1,8895E-08
10	1148570	0,994	0,039752	1,5669E-08
10	1217810	1,024	0,040952	1,7336E-08
10	1292810	1,055	0,042193	1,6538E-08
10	1367813	1,088	0,043513	1,7605E-08
10	1379381	1,096	0,043833	2,7671E-08
25	1379411	1,125	0,044993	3,8678E-05
25	1379447	1,136	0,045434	1,2246E-05
25	1379515	1,142	0,045674	3,5315E-06
25	1379595	1,151	0,046034	4,4991E-06
25	1379803	1,169	0,046754	3,4622E-06
25	1381165	1,271	0,050835	2,9966E-06
25	1382367	1,348	0,053916	2,5632E-06
25	1383567	1,431	0,057237	2,7675E-06
25	1384767	1,505	0,060198	2,4674E-06
25	1385967	1,594	0,06375	2,9596E-06
25	1387167	1,690	0,0676	3,2089E-06
25	1388367	1,784	0,071361	3,1343E-06
25	1389567	1,882	0,075283	3,2676E-06
25	1390769	1,973	0,078924	3,0292E-06
25	1391969	2,059	0,082365	2,8675E-06
25	1392969	2,126	0,085045	2,6806E-06
35	1392975	2,162	0,086486	2,4007E-04
35	1393017	2,190	0,087606	2,6637E-05
35	1393105	2,245	0,089807	2,5036E-05
35	1393159	2,268	0,090727	1,7042E-05
35	1393279	2,329	0,093168	2,0339E-05

35	1393401	2,385	0,095409	1,8360E-05
35	1393641	2,494	0,09977	1,8172E-05
35	1393855	2,589	0,103571	1,7766E-05
35	1394093	2,693	0,107732	1,7483E-05
35	1394333	2,798	0,111934	1,7505E-05
35	1394585	2,907	0,116278	1,7236E-05
35	1394813	3,015	0,120616	1,9032E-05
35	1395053	3,146	0,125858	2,1840E-05
35	1395299	3,270	0,130819	2,0174E-05
35	1395551	3,400	0,135981	2,0473E-05
35	1395773	3,519	0,140742	2,1454E-05
35	1395809	3,531	0,141222	1,3360E-05

Provino 600-15→44

600-15->44				
stress	tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
15	0	0,000	0	0
15	15	0,004	0,00016	1,0667E-05
15	60	0,013	0,00052	8,0000E-06
15	150	0,018	0,00072	2,2222E-06
15	630	0,030	0,0012	1,0000E-06
15	5730	0,113	0,00452	6,5098E-07
15	10530	0,165	0,0066	4,3333E-07
15	18330	0,242	0,00968	3,9487E-07
15	30330	0,342	0,01368	3,3333E-07
15	42330	0,445	0,0178	3,4333E-07
15	54330	0,544	0,02176	3,3000E-07
15	66330	0,638	0,02552	3,1333E-07
15	78330	0,722	0,02888	2,8000E-07
15	90330	0,809	0,03236	2,9000E-07
15	102330	0,881	0,03524	2,4000E-07
15	114330	0,955	0,0382	2,4667E-07
15	126330	1,031	0,04124	2,5333E-07
15	138330	1,102	0,04408	2,3667E-07
15	150330	1,176	0,04704	2,4667E-07
15	159156	1,225	0,049	2,2207E-07
44	159162	1,308	0,05232	5,5333E-04
44	159168	1,337	0,05348	1,9333E-04
44	159174	1,360	0,0544	1,5333E-04
44	159216	1,459	0,05836	9,4286E-05
44	159260	1,552	0,06208	8,4469E-05
44	159308	1,669	0,06676	9,7500E-05
44	159356	1,777	0,07108	9,0113E-05
44	159432	1,945	0,0778	8,8398E-05
44	159506	2,106	0,08424	8,7051E-05
44	159578	2,257	0,09028	8,3819E-05
44	159650	2,408	0,09632	8,3889E-05
44	159722	2,558	0,10232	8,3403E-05
44	159794	2,710	0,1084	8,4444E-05
44	159866	2,851	0,11404	7,8333E-05
44	159938	2,992	0,11968	7,8268E-05
44	160010	3,150	0,126	8,7778E-05
44	160082	3,331	0,13324	1,0064E-04
44	160136	3,459	0,13836	9,4815E-05
44	160208	3,633	0,14532	9,6586E-05

550-60			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
30	0,075	0,003005	1,0015E-04
78	0,116	0,00464	3,4073E-05
162	0,171	0,00684	2,6190E-05
402	0,294	0,01176	2,0500E-05
763,98	0,486	0,01944	2,1217E-05
1003,98	0,615	0,0246	2,1500E-05
1246,02	0,745	0,0298	2,1484E-05
1498,02	0,887	0,03548	2,2540E-05
1738,02	1,018	0,04072	2,1833E-05
1978,02	1,161	0,04644	2,3833E-05
2218,02	1,313	0,05252	2,5333E-05
2458,02	1,464	0,05856	2,5167E-05
2698,02	1,618	0,06472	2,5667E-05
2938,02	1,780	0,0712	2,7000E-05
3178,02	1,953	0,07812	2,8833E-05
3418,02	2,145	0,0858	3,2000E-05
3658,02	2,351	0,09404	3,4333E-05
3898,02	2,556	0,10224	3,4167E-05
4138,02	2,771	0,11084	3,5833E-05
4378,02	2,994	0,11976	3,7167E-05
4618,02	3,226	0,12904	3,8667E-05
4858,02	3,501	0,14004	4,5833E-05
5098,02	3,806	0,15224	5,0833E-05
5338,02	4,120	0,1648	5,2333E-05
5578,02	4,460	0,1784	5,6667E-05
5818,02	4,811	0,19244	5,8500E-05

550-100			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
4,02	0,154	0,00616	1,5323E-03
7,98	0,206	0,00824	5,2525E-04
16,02	0,290	0,0116	4,1791E-04
31,98	0,443	0,01772	3,8346E-04
55,98	0,641	0,02564	3,3000E-04
79,98	0,821	0,03284	3,0000E-04
103,98	1,015	0,0406	3,2333E-04
127,98	1,204	0,04816	3,1500E-04
151,98	1,407	0,05628	3,3833E-04
175,98	1,594	0,06376	3,1167E-04
199,98	1,798	0,07192	3,4000E-04
223,98	2,017	0,08068	3,6500E-04
247,98	2,226	0,08904	3,4833E-04
271,98	2,510	0,1004	4,7333E-04
295,98	2,785	0,1114	4,5833E-04
319,98	3,075	0,123	4,8333E-04
343,98	3,381	0,13524	5,1000E-04
367,98	3,733	0,14932	5,8667E-04
391,98	4,127	0,16508	6,5667E-04
415,98	4,667	0,18668	9,0000E-04
427,98	5,061	0,20244	1,3133E-03
436.02	5 348	0 21392	1 4279F-03

550-20			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
150	0,008	0,00032	2,1333E-06
280	0,012	0,00048	1,2308E-06
480	0,017	0,00068	1,0000E-06
1770	0,038	0,00152	6,5116E-07
7470	0,091	0,00364	3,7193E-07
24270	0,167	0,00668	1,8095E-07
48270	0,266	0,01064	1,6500E-07
72270	0,365	0,0146	1,6500E-07
120270	0,537	0,02148	1,4333E-07
168270	0,703	0,02812	1,3833E-07
228270	0,892	0,03568	1,2600E-07
276269,9	1,051	0,04204	1,3250E-07
324269,9	1,209	0,04836	1,3167E-07
362069,9	1,337	0,05348	1,3545E-07
410069,9	1,481	0,05924	1,2000E-07
458069,9	1,676	0,06704	1,6250E-07
506070	1,911	0,07644	1,9583E-07
554070	2,124	0,08496	1,7750E-07
590070	2,285	0,0914	1,7889E-07
626070	2,439	0,09756	1,7111E-07
662070	2,600	0,104	1,7889E-07
698070	2,760	0,1104	1,7778E-07
734070	2,923	0,11692	1,8111E-07
770070	3,106	0,12424	2,0333E-07
806070	3,348	0,13392	2,6889E-07
830070	3,508	0,14032	2,6667E-07
866070	3,763	0,15052	2,8333E-07
902070	4,000	0,16	2,6333E-07
938070	4,242	0,16968	2,6889E-07
974070	4,483	0,17932	2,6778E-07
1010070	4,801	0,19204	3,5333E-07
1046070	5,144	0,20576	3,8111E-07
1073906	5,396	0,21584	3,6212E-07

550-30			
tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
0	0,000	0	0
120	0,031	0,00124	1,0333E-05
580,2	0,082	0,00328	4,4329E-06
1870,2	0,125	0,005013	1,3430E-06
4293,6	0,186	0,007427	9,9650E-07
10653,6	0,314	0,012578	8,0991E-07
20253,6	0,559	0,022365	1,0195E-06
31653,6	0,948	0,037908	1,3634E-06
43653,6	1,389	0,055544	1,4697E-06
55653,6	1,861	0,074428	1,5737E-06
67653,6	2,409	0,096372	1,8287E-06
84755,58	3,319	0,132772	2,1284E-06
96755,58	4,116	0,164658	2,6572E-06
108755,6	5,154	0,206172	3,4595E-06
120755,6	6,555	0,262196	4,6687E-06
126755,6	7,538	0,301534	6,5563E-06
132755,6	8,898	0,355906	9,0619E-06
138575,6	10,695	0,42781	1,2355E-05
141755,6	12,014	0,48057	1,6591E-05

Provino 550-15→82

550-15->82				
stress (MPa)	tempo(s)	delta L(mm)	epsilon	vel def (s^-1)
15	0	0,000	0	0
15	90	0,015	0,0006	6,6667E-06
15	210	0,019	0,00076	1,3333E-06
15	1710	0,046	0,00184	7,2000E-07
15	20910	0,095	0,0038	1,0208E-07
15	184710	0,236	0,00944	3,4432E-08
15	424710	0,396	0,015824	2,6600E-08
15	664710,1	0,584	0,02336	3,1400E-08
15	904710,1	0,789	0,031556	3,4149E-08
15	1144710	0,967	0,038679	2,9682E-08
15	1384710	1,143	0,045723	2,9348E-08
15	1624710	1,306	0,052246	2,7180E-08
15	1864710	1,442	0,057689	2,2678E-08
15	2104710	1,589	0,063572	2,4512E-08
15	2224710	1,654	0,066173	2,1678E-08
82	2243020	1,672	0,066893	3,9342E-08
82	2243020	1,759	0,070375	1,7409E-01
82	2243024	1,923	0,076938	1,6574E-03
82	2243072	2,042	0,081661	9,8260E-05
82	2243124	2,113	0,084502	5,4622E-05
82	2243184	2,195	0,087784	5,4694E-05
82	2243244	2,271	0,090825	5,0692E-05
82	2243420	2,487	0,09947	4,9104E-05
82	2243662	2,781	0,111235	4,8647E-05
82	2243962	3,151	0,126043	4,9358E-05
82	2244262	3,538	0,141531	5,1626E-05
82	2244562	4,014	0,16054	6,3365E-05
82	2244862	4,519	0,18075	6,7367E-05
82	2245162	5,085	0,203402	7,5504E-05
82	2245464	5,817	0,232696	9,6970E-05
82	2245766	6,650	0,265993	1,1030E-04
82	2246066	7,783	0,311336	1,5114E-04
82	2246210	8,407	0,336268	1,7293E-04

Bibliografia

- Morri, A. Trattamenti termici delle leghe di Titanio α+β, correlazioni fra microstruttura e comportamento meccanico, La Metallurgia Italiana, 2008
- [2] https://pubchem.ncbi.nlm.nih.gov/element/Titanium#section=History
- [3] https://it.wikipedia.org/wiki/Titanio
- [4] Leyens, C., Peters, M. Titanium and Titanium Alloys, 2003
- [5] Hunter, M.A. Metallic Titanium, J. Am. Chem. Soc., vol. 32, n. 3, 1910, pp. 330-336
- [6] Takeda, O., Uda, T., Okabe, T.H. Rare Earth, Titanium Group Metals, and Reactive Metals Production, Treatise on Process Metallurgy, Vol. 3, 2014
- [7] van Arkel, A.E., de Boer, J.H. Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall, Zeitschrift f
 ür anorganische und allgemeine Chemie, vol. 148, n. 1, 1925, pp. 345–350
- [8] Patnaik, P. Handbook of Inorganic Chemicals, 2003
- [9] Enghag, P. Encyclopedia of the Elements, Weinheim, Wiley-VCH, 2004
- [10] Cabibbo, M. Leghe e Metalli Non Ferrosi, Esculapio, 2018
- [11] Santecchia, E. Slides del corso di Leghe per Impieghi Innovativi e per la Manifattura Additiva, UNIVPM, 2023
- [12] El Khalloufi, M., Drevelle, O., Soucy, G. Titanium: An Overview of Resources and Production Methods, MDPI, Minerals, 2021
- [13] Spigarelli, S. Metallurgia Meccanica, Esculapio, 2018
- [14] Spigarelli, S. Slides del corso di Metallurgia Meccanica, UNIVPM, 2023
- [15] Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam, G., Simar, A., Gerlich, A., Khodabakhshi, F., Mostafaei, A., Field, D.P., Robson, J.D., Deschamps, A., Withers, P.J. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Elsevier, 2020
- [16] Regev, M., Almoznino, B., Spigarelli, S. A Study of the Metallurgical and Mechanical Properties of Friction-Stir-Welded Pure Titanium, MDPI, Metals, 2023
- [17] Spigarelli, S., Regev, M., Santoni, A., Cabibbo, M., Santecchia, E. Effect of Friction Stir Welding on Short-Term Creep Response of Pure Titanium, MDPI, Metals, 2023