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Abstract

Coronary artery disease (CAD) is the most common type of heart condition and a major

cause of mortality worldwide. It involves the presence of stenosis, the constriction of

at least one of the large coronary arteries responsible for supplying oxygenated blood

to the heart muscle leading to the poor oxygen supply and subsequently resulting in

an imbalance state between oxygen demand and supply.

In symptomatic patients, the assessment of CAD presence and its severity is critical

for determining appropriate clinical management, and diagnosis is generally made or

confirmed with some form of medical imaging. Due to its ability to assess coronary

stenoses and its potential for immediate quality control of the performed revasculariza-

tion, invasive coronary angiography (ICA) is currently regarded as the gold standard

for coronary artery stenosis detection.

The introduction of a tool to automatically detect stenosis from images could pro-

vide a huge support to the clinicians, reducing bias and subjective interpretations while

allowing to effectively measure the severity of the stenosis in a more reliable way.

In recent years, machine learning (ML) methods have demonstrated highly accurate

and reliable performance across a variety of computer-vision related tasks, including

image classification, object detection, and semantic segmentation. Consequently, deep

learning (DL) may have the potential to replace or reduce manual burden in detection

and quantification of coronary stenosis.

The CNN for object detection, pretrained on natural images, chosen to be performed
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on the provided dataset to obtain stenosis detection from ICA images is the second

version of the YOLO (You Only Look Once) family, the one that better performed on

the dataset provided for this work.
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Chapter 1

INTRODUCTION

1.1 Coronary Artery Disease

Coronary artery disease (CAD), among the group of disorders related to the heart and

blood circulation refer to as cardiovascular disease, is the most common type of heart

condition and a major cause of mortality worldwide [1]. It involves the presence of

stenosis, the constriction of at least one of the large coronary arteries responsible for

supplying oxygenated blood to the heart muscle leading to the poor oxygen supply and

subsequently resulting in an imbalance state between oxygen demand and supply [2].

Two main arteries branch off the aorta namely Left Main Coronary Artery (LCA)

and Right Coronary Artery (RCA) which supply blood to left and right parts of the

heart respectively. These two main arteries then divide into a network of smaller

coronary arteries which wrap themselves around the heart [3]. The stenosis often

manifests in various positions along the artery, with those near major arterial junctions

being most critical [4]. An example of stenosis can be seen in Figure 1.1.

The narrowing or blockage of these coronary arteries is due to the buildup of choles-

terol and fatty deposits called plaque on the inner lining of the arterial wall [6]. The

damaged arteries may become completely blocked, or become prone to clotting, so,

over time, the heart has to work harder, possibly causing heart failure when the heart

cannot pump efficiently or arrhythmia when the heart beats irregularly or too quickly.

Indeed, if CAD occurs, the affected arteries can’t supply enough oxygen-rich blood
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Chapter 1. INTRODUCTION

Figure 1.1: Example of significant stenosis of the left anterior descending coronary artery from

focal non calcific atherosclerosis with coronary computed tomographic angiography(A) and invasive

coronary angiography (B). Figure adapted from [5].

to the heart — especially when it’s beating hard, such as during exercise. At first,

the decreased blood flow may not cause any symptoms. As plaque continues to build

up in the coronary arteries it can lead to a develop of the following CAD signs and

symptoms:

• Chest pain (angina). Pressure or tightness in the chest occur. This pain,

called angina, usually occurs on the middle or left side of the chest. Angina is

generally triggered by physical or emotional stress. The pain usually goes away

within minutes after stopping the stressful activity. In some people, especially

women, the pain may be brief or sharp and felt in the neck, arm or back.

• Shortness of breath. If the heart can’t pump enough blood to meet body’s

needs, it may develop shortness of breath or extreme fatigue with activity.

• Abnormal heart rhythm (arrhythmia). Inadequate blood supply to the

heart or damage to heart tissue can interfere with the heart’s electrical impulses,

causing abnormal heart rhythms.

• Heart attack. A completely blocked coronary artery will cause a heart attack.

The classic signs and symptoms of a heart attack include crushing pressure in

Stenosis Detection in Coronarography Images via Deep Learning 2



Chapter 1. INTRODUCTION

the chest and pain in the shoulder or arm, sometimes with shortness of breath

and sweating.

• Heart failure. If some areas of the heart are chronically deprived of oxygen and

nutrients because of reduced blood flow, or if the heart has been damaged by

a heart attack, it may become too weak to pump enough blood to meet body’s

needs. This condition is known as heart failure.

The risk factors of CAD can be both environmental and genetic, and they can

distinguish in modifiable, including smocking, obesity, hypertension and sedentary life

style, or non-modifiable, for example age and gender (women have generally less typical

signs and symptoms of heart attack than men). According to the data presented

by World Health Organization (WHO), CAD is the most prevalent disease in the

developing nations where it is a major threat and leading cause of mortality. The

global burden of CAD in 2002 was 7.1 million which was predicted to be raised to 11.1

million by 2020 [2].

In symptomatic patients, the assessment of CAD presence and its severity is critical

for determining appropriate clinical management, and diagnosis is generally made or

confirmed with some form of medical imaging. Medical images take a significant part in

patient diagnostics at different levels, including regular screening, diagnosis verification,

preoperative planning, and follow-up. Accordingly, great efforts are invested into this

field to improve the quality of images and facilitate accurate scan interpretation and

avoid medical errors. At present, the CAD evaluation mainly depends on coronary

computed tomographic angiography and invasive coronary angiography described in

the following section [7].

CAD can be stabilized and treated through healthy living and the use of medica-

tions to control risk factors and symptoms. In some patients, the coronary arteries

become more severely blocked and require a revascularization procedure. The two pro-

cedures to manage a blocked coronary artery are to implant a stent in the area of the

blockage (angioplasty) as illustrated in Figure 1.2 or to entirely bypass the blocked

segment of artery surgically (bypass surgery) [8].

Stenosis Detection in Coronarography Images via Deep Learning 3



Chapter 1. INTRODUCTION

Figure 1.2: Procedure of Percutaneous coronary intervention. Figure adapted from [9].

Percutaneous coronary intervention (PCI; angioplasty) is a minimally inva-

sive procedure in which a tube with an associated balloon is introduced via a peripheral

artery (either the femoral artery in the groin or the radial artery at the wrist), avoiding

the need for surgery and general anesthesia. The balloon is inflated in the area of the

blocked artery to stretch it open. In most patients, a coronary stent is then placed.

This spring-like looking device helps to keep the artery open and reduces the chance of

recurrent narrowing. Approximately 15% to 20% of patients will develop renarrowing

of the artery requiring a repeat angioplasty procedure within 6 to 12 months. Stents

may be coated with medication that reduces the risk of renarrowing. To prevent clots

developing in the stent, 2 medications that inhibit blood platelets are needed for up to

1 year after the procedure (usually aspirin plus an additional blood thinner).

Coronary artery bypass graft (CABG) surgery is a major surgical procedure

requiring general anesthesia. In most patients, the procedure is performed after opening

the chest through an incision with the breastbone. Veins taken from the leg and an

artery taken from within the chest are used to bypass the coronary artery blockages.

The bypass grafts have a high chance of remaining open in the first 5 to 8 years after the

operation. However, by 10 years after the operation, about half of vein bypass grafts

are either blocked or have developed a severe narrowing. In contrast, arterial bypass

grafts are more likely to remain open. Although repeat bypass surgery is possible,

many patients with a blocked vein graft can be treated medically and do not need

Stenosis Detection in Coronarography Images via Deep Learning 4



Chapter 1. INTRODUCTION

another operation.

Nevertheless, for decision making in the interventional catheterization laboratory

with respect to revascularization, it is of paramount importance to determine whether

a stenosis is functionally significant inducing reversible ischemia [10].

1.2 Medical images

The most used medical imaging techniques for the CAD assessment are the coronary

computed tomographic angiography (CCTA) and invasive coronary angiography (ICA)

[7].

1.2.1 Coronary computed tomographic angiography (CCTA)

A CCTA, shown in Figure 1.3, is a noninvasive imaging technique that combines ad-

vanced CT technology with an intravenous injection of contrast material to produce

pictures images of the heart and its blood vessels. During CCTA, x-rays pass through

the body and are picked up by detectors in the scanner, that produce cross-sectional

images of the target on a computer screen.

In recent years, with the advent of improved hardware, CCTA has become feasible

and practical having the potential to enable a comprehensive evaluation of coronary

anatomy and myocardial perfusion in patients with known or suspected to have CAD

in a noninvasive manner [12].

CCTA is increasingly used to assess CAD, providing high resolution three-dimensional

images of the coronary arteries. Moreover, it can also provide additional information

regarding the type of plaque (calcified, mixed or soft) [13].

Despite remarkable technical developments and even though it has the advantage of

being noninvasive, CCTA acquisitions expose the patient to a higher dosage of radiation

[3]. Other limitations are the calcification blooming artefacts, the limited spatial and

temporal resolution, the unpredictability of hemodynamic significance of intermediate

coronary lesions, the radiation exposure and the difficulties to acquire motion-free,

high-quality images in patients with arrhythmias.

Coronary calcifications cause blooming artefacts of coronary calcific lesions which
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Chapter 1. INTRODUCTION

Figure 1.3: Anterior descending coronary artery lesion with 64-layer CCTA. A patient with an

anomaly of origin of the circumflex coronary artery (right coronary sinus and retro-aortic course) and

significant stenosis on CT at the proximal tract of the anterior descendant (a; b, arrowhead). The

lesion shows peculiar characteristics to the CT, i.e. absence of evident calcifications and presence

of positive vascular remodeling (b, box; c). The conventional coronarography performed later (d)

confirmed the presence and extent of the lesion that was treated by angioplasty and stenting (e).

Figure adapted from [11].

either obscure adequate evaluation of the underlying coronary lumen or induce an

overestimation of the severity of a coronary obstruction. Both problems result in

limitations in the diagnostic performance of CCTA and even the introduction of newly

developed CT technology with improved spatial resolution or use of dual-energy CT

may not fully reduce this problem [14].

1.2.2 Invasive coronary angiography (ICA)

ICA is a medical imaging technique that involves continuous X-ray (i.e. fluoroscopy)

with simultaneous injection of radiopaque contrast into the coronary arteries [15]. Dur-

ing the procedure a long, thin, flexible tube called catheter is inserted into a blood vessel

in the patient arm. Using X-ray images as a guide, the tip of the catheter is passed

up to the heart and coronary arteries. A special type of dye called contrast medium

is injected through the catheter and X-ray images, named angiograms, are taken. The

contrast medium is visible on the angiograms, showing the blood vessels and the fluid

travels through. In this way, any blood vessel narrowed or blocked can be more clearly

Stenosis Detection in Coronarography Images via Deep Learning 6



Chapter 1. INTRODUCTION

Figure 1.4: Coronary angiography revealing a subtotal stenosis in the proximal left anterior descend-

ing artery. Figure adapted from [16].

highlighted, as shown in Figure 1.4.

Due to its ability to assess coronary stenoses and its potential for immediate qual-

ity control of the performed revascularization, ICA is currently regarded as the gold

standard for coronary artery stenosis detection. It can offer anatomical information of

even very small vessels and enable cardiologists to observe dynamically from different

projection angles. Cardiologists can then identify and locate each stenosis with a visual

assessment [17].

The fundamental task required for the interpretation of coronary angiography is

identification and quantification of the severity of stenosis within the coronary circu-

lation [18].

Often, spurious dye and imaging artifacts can give a false appearance of stenosis in

these sequences. To resolve such cases, clinicians watch the angiograms in cine loops

exploiting the fact that areal stenosis will persist in each image frame through time.

The surface representation of 2D Xray angiography sequences gives a much clearer

indication of stenosis than conventional single frame analysis [4].

Stenosis Detection in Coronarography Images via Deep Learning 7



Chapter 1. INTRODUCTION

1.3 Disclosure

The actual imaging techniques used in clinical practice to diagnose CAD are still char-

acterized by several limitations: they mainly rely on the experience of the clinician

and his ability in the visual identification of the stenosis. Thus, the introduction of

a tool to automatically detect stenosis from images could provide a huge support to

the clinicians, reducing bias and subjective interpretations while allowing to effectively

measure the severity of the stenosis more reliable.

In order to develop this diagnostic tool as a support in clinical practice, in this work

the emerging Deep Learning (DL) techniques have been chosen to develop a system for

stenosis detection from ICA images. This work was carried out in collaboration with

the Cardiology Department of Ospedali Riuniti in Ancona: all the experiments and

considerations done in this work were conducted on ICA images collected, annotated

and provided in DICOM (Digital Imaging and Communications in Medicine) format

with associated metadata by the doctors of this department.

Stenosis Detection in Coronarography Images via Deep Learning 8



Chapter 2

STATE OF THE ART

Lesion detection in medical images has taken a significant diagnostic role in many

aspects and the development of automatic techniques to perform detection increases

strongly the efficiency of medical imaging interpretation tasks.

In this Chapter a literature review about the conventional methods for stenosis

detection is presented. Starting from the explanation of ICA images visual inspection

for stenosis detection, an overview of the computer-based methods for the detection is

provided, including semi-automated and fully automated software reaching finally the

application of DL techniques in the field of medical imaging. At last, the limitations

in the state of art are highlighted and thus, the thesis objective is presented.

2.1 Conventional stenosis detection in clinical prac-

tice

2.1.1 Visual assessment

Much of the clinical care of patients with ischemic heart disease is based on research

that has relied heavily on visual interpretation of the coronary angiogram [19].

Coronary angiography is performed to determine the presence and severity of coro-

nary stenosis, thus guiding the treatment for patients with CAD. Physician visual

assessment (PVA) of stenosis severity remains the standard method for guiding revas-

9



Chapter 2. STATE OF THE ART

cularization [20].

However, several studies employing different techniques have seriously questioned

the notion that visual interpretation of the coronary angiogram permits an accurate

assessment of the physiologic significance of a coronary obstruction. Although there

is no problem with assuming that normal caliber coronary vessels with minimal irreg-

ularities are not significantly obstructed and that nearly totally occluded vessels are

significantly obstructed, assessing the physiologic significance of narrowings of inter-

mediate severely is much more uncertain. Nonetheless, almost all patient management

decisions and the vast majority of clinical studies rely on visual assessment of the

coronary angiogram, using percent narrowing to define the severity of coronary disease

[19].

Strictures are usually defined in terms of the percentage reduction from normal

diameter; various values, ranging from 50% to 80% have been suggested to represent a

haemodynamically significant stricture, but such precise percentages give the mislead-

ing impression that strictures can be assessed by eye with an accuracy of better than

5%Ṫhe accuracy of angiography is critically dependent on the density of opacification

of the artery, and the technique is least accurate in the middle range of narrowing,

where there is a systematic underestimation of lesion severity.

There are two different methods to evaluate visually stricture anatomy in ICA

images. The most common depends on assumptions about the geometry of the stricture

and the vessels, which must be opacified to high density and displayed parallel to the

intensifier plane, without overlap. This method needs to be capable of very accurate

measurement because, in the critical range, small changes produce large alterations of

flow. Another method is the densitometric measurements of coronary strictures and its

accuracy is not restricted by the shape of the cross-section of the artery or its stricture.

For a given concentration of contrast medium in an artery, the X-ray transmission

through it will depend on the depth of vessel traversed, and can reflect the relative

depth of normal and strictured channels without assumptions about geometry [21].

However, manual detection of stenosis is subjective and time-consuming, requiring

rich clinical experience and expert knowledge. In addition, it is also challenging due

to complex vessel structures, poor contrast between vessels and surrounding tissues,

Stenosis Detection in Coronarography Images via Deep Learning 10
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nonuniform illumination, and overlap of background structures with inhomogeneous

intensities [17].

The implication of variation in interpretation of angiograms is serious: if readings

are erroneous, some patients will undergo revascularization procedures unnecessarily

and others will be denied an essential treatment [22].

Consequently, even though PVA is considered a clinical standard, it has known

limitations, such as significant intra- and inter-rater variability, as well as high positive

prediction bias, implicitly leading to over-utilization of clinical services [20].

2.1.2 Computer-based image analysis

Quantitative coronary angiography (QCA) has been introduced exploiting automated

or semi-automated edge detection to provide more precise quantitative estimates of

bidimensional data obtained with ICA when compared with more subjective measures

like PVA. QCA provides more precise quantitative data in comparison to visual assess-

ment. In fact, the visual interpretation of the severity of a coronary stenosis is usually

expressed in intervals of percentage of stenosis. Conversely, QCA produces a single

specific measure for stenosis diameter, improving the accuracy and reproducibility of

the severity assessment.

It is a technique directly based on contrast coronary angiography that obtains

parameters that quantify objectively and with interval measures the significance of a

coronary stenosis, and also helps to estimate the immediate- and long-term results of

PCI [23].

QCA is based on the use of a specific and dedicated software that allows the de-

termination of some specific measures of coronary lumen in an operator-independent

way. Whereas QCA has the inherent drawback of focusing only on the contrast-filled

lumen of the vessel, it continues to provide important insights for clinical practice and,

most commonly, clinical research.

When used in clinical practice, QCA is performed on-line immediately after ICA

providing objective and independent parameter for the assessment of stenosis severity

helpful to decide the type of intervention and to choose the suitable devices and their

sizes, such as the device length and diameter, and also maximum balloon inflation

Stenosis Detection in Coronarography Images via Deep Learning 11
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pressure. Thus, it challenges qualitative estimation (i.e. PVA) of coronary stenoses

[23]. On-line QCA is widely available in most modern angiographic services allowing

the quantification of vessel size and lesion length. Usually, QCA software utilizes

measurement calibration by comparing it with an object of known dimension [24].

When employed in clinical research, QCA is performed off-line after finishing ICA

procedure or intervention, based on data storage and transfer, and conducted by angio-

graphic core laboratory experts, providing a visual annotation of the diseased coronary

arterial segments and the area surrounding each stenosis to determine the percent di-

ameter stenosis. Thus, providing a purely numerical evaluation of coronary stenoses

and interventional procedures.

Standard workflow for QCA consists of a multi-step analytical pipeline. As QCA

is based on coronary angiography, the first step in order to perform a QCA analysis

is to acquire high-quality ICA images focused on the target coronary artery segment

of choice obtaining a two-dimensional luminogram of a three dimensional structure.

Then, a single-frame images that best demonstrate the stenosis are selected by the

analyst, knowing that the greater is the contrast between the radiopaque contrast-filled

coronary artery and the radiotransparent background, the greater are the accuracy

of QCA analysis and reliability of the algorithm for the automated detection and

reconstruction of the lumen edges. In addition, also a second frame where the coronary

catheter appears completely filled by contrast medium must be selected for calibration

purposes. Subsequently, the two frames are analyzed by using dedicated softwares

that works more or less in the same way: first a calibration is performed in which the

catheter dimension is measured in order to be then recognized automatically in the

digital images, after having acquired the digital image the automatic reconstruction of

the hypothetically normal coronary lumen is made. This technique is essentially based

on the calculation of a mean value of the diameters of the lumen in the segments of

reference located upstream and downstream to the lesion [23].

QCA measurement process currently offers the most accurate and reproducible mea-

surements of anatomical coronary stenosis severity and thus is considered the clinical

gold standard for measuring coronary stenosis. However, despite the improvements

over PVA, calculating stenosis severity by QCA still requires satisfactory image ac-
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quisition and minimal user input to identify imaging frames for analysis, which may

introduce variability as well [25].

Although QCA provides morphological information of coronary arteries with ob-

jective quantitative measures, considerable training is required to identify the target

vessels and understand the tree structure of coronary arteries. Even thought the use

of computer-aided tools, manual correction is necessary for accurate segmentation of

coronary vessels [26].

Limitations related to QCA include dependency on ICA image quality and chal-

lenges in assessing complex lesions, such as those with thrombus or calcification [20].

In addition, QCA makes evaluations considering two dimensions, which is not suited

for three-dimensional structures such as coronary vessels and atherosclerotic lesions.

Therefore, it is necessary to develop systems for image acquisition and analysis that

are automated and able to integrate more two-dimensional quantitative analyses in a

single three-dimensional model, as the acquisition of three or more angles may improve

three-dimensional reconstruction by averaging [23].

In order to improve the detection and quantification of coronary stenosis in clinical

practice, a variety of semi-automated computerized algorithms have been proposed.

For example, one introduces the use of Hessian based vessel enhancement filter applied

to the angiographic frame to be segmented for enhancement of vessel structures, then

image fusion using wavelet transform is used to make an image on the selected frame

as a threshold for detecting the vessels [27]. Finally, alternative method aimed to

providing a tool to accurately quantify vascular lesion and limit the variability of

measurement due to subjective interpretation developing a coronary extraction and

stenosis quantification method in ICA using a deformable spline algorithm and a string-

matching technique [28].

However, all the above-mentioned methods are defined semi-automated software be-

cause they are computer-based image analysis tools developed to support identification

procedure and required human interaction [18].

Stenosis Detection in Coronarography Images via Deep Learning 13
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2.2 Advanced stenosis detection via Deep Learning

technique

The automatic algorithms are mainly classified as semi-automated and fully automated

software. Semi-automated tools, indicated in the previous section, speed up the anal-

ysis procedure, but typically they require the interaction of an expert across different

stages to manually set several parameters. Instead, fully automated software employs

Computer Vision and/or Machine Learning (ML) techniques, avoiding user dependency

and thus providing standardized and reproducible measurements [29].

Low productivity, inter-operator variability, and reliance on specialized expertise

constitute serious limitations. These clinical challenges introduced with the semi-

automated tools motivate the development of improved software for rapidly, accurately

and reliably analyzing coronary stenoses. In recent years, convolutional neural network

(CNN) methods have demonstrated highly accurate and reliable performance across a

variety of computer-vision related tasks, including image classification, object detec-

tion, and semantic segmentation [15].

The recent advances in ML, and especially in DL and deep CNNs have potential to

replace or reduce manual burden in detection and quantification of coronary stenosis

[30].

2.2.1 DL for stenosis detection

DL techniques have recently revolutionized many fields, from computer vision and

natural image classification until reaching a profound influence on medical imaging.

Because of the large number of cardiac images that are routinely acquired with a wide

range of modalities, there has been a rise in publications applying DL in the cardiac

domain [31].

Advances in high-performance computing and the increasing accessibility of ML

algorithms capable of performing complex tasks have improved clinical interest in ap-

plying these techniques in research and clinical care [32].

CNN is an end-to-end method with a strong feature extraction ability, generating

detection results for every single frame quickly and directly. However, due to vessel
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motion and contrast agent flow, stenosis-like structures such as bent vessels or instanta-

neous contrast agent inhomogeneity appear in some of the frames, which might mislead

the network to generate false positive detections [17].

The increasing huge amount of data in this field opens the realm of possibilities to

apply DL methodologies to completely automatize the overall approach while discov-

ering unseen discriminative patterns in stenoses.

In literature, among the most recent researches on stenosis detection performed on

ICA, the works conducted by Chao Cong et al. [33], Wei Wu et al. [17] and Benjamin

et al. [15] result to be particularly interesting in relation with the object of the thesis.

2.2.1.1 Chao Cong et al.

In this study, an automated method for stenosis detection in ICA images is proposed

by using a CNN based workflow for image-level stenosis classification, without the need

for a priori vessel segmentation.

Firstly, image preparation is performed through an automatic detection of the ideal

candidate frames and the redundant frames, defined as the ones in a coronarography

video with best image quality, full contrast-agent penetration, clearly contrasted vessel

borders, and anatomical significance of stenosis (if stenosis is present). Then, a recog-

nition of the ideal candidate frames and the redundancy frames is made by training a

CNN architecture from the Inception family (i.e. inception-v3) and a recurrent neural

network (RNN) - that differs from CNN in its ability to process temporal information

or data that comes in sequences - called directional long-short-term memory (LSTM),

having as output a 0 for redundant frame and 1 for candidate frame. Frames that did

not meet the selection criteria for candidate frames were manually removed from the

augmented training dataset (for classification training). Finally, after stenosis classi-

fication training, a class of activation maps is employed to identify the discriminative

regions. Figure 2.1 illustrates an abstraction of the algorithmic workflow.

The dataset consists on a sequence of frames of ICA of 194 patients saved in DICOM

format with resolution of 512*512 or 1024*1024, 15 frames per second, 60-120 frames.

The stenosis location and their severity were previously analyzed with QCA in order

to categorized them into three clinically relevant groups based on stenosis severity -
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Figure 2.1: Abstraction of the proposed end-to-end stenosis detection workflow. The input of

our method is CAG dataset, and 4 main steps were described briefly in dash-line boxes from data

preparation to stenosis detection. There are 3 types of outputs as Output 1: diagnosis result for

an image-level stenosis classification; Output 2: stenosis activation map and Output 3: stenosis

localization information. Figure adapted from [33].

Category 0: <25 % stenosis, Category 1: 25 to 99 % stenosis, and Category 2: total

occlusion. Thus, the main training setup is based on this three-category setup (named

3-CAT). However, also a binary setup is used with a distinction of two groups of stenosis

severity - <25% vs. >25% - named 2-CAT. In addition, in 3-CAT total occlusion were

separated from other stenosis, because total occlusions is seen to require a different

and more urgent treatment strategy from stenosis lesions.

The Experimental results showed the potential of this method in stenosis detection

in 2-CAT (<85% accuracy) and 3-CAT (<80% accuracy) in ICA images. However,

training/validation overfitting was the most important issue to be handled [33].

A limitation of this study is that it was implemented at an image-level method,

although it has demonstrated its ability in videos.
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2.2.1.2 Wei Wu et al.

Another DL approach to coronary artery stenosis detection was proposed by Wei Wu

et al in 2020, which developed an object detection network with temporal constraints

on the ICA sequence to achieve automatic coronary artery stenosis detection.

The flow diagram of this method, shown in Figure 2.2, involves three main parts.

Firstly an automatic selection of the most contrast-filled frame from a coronarography

sequence, considered the most appropriate for stenosis detection since they show com-

plete coronary artery structures, is performed by using a CNN called U-Net. However,

a single frame is not enough. Therefore, N frames before and after the most contrast-

filled frame are selected. The selection of multiple frames can be regarded as a special

data augmentation approach, which introduces the variance within the XCA sequence

(e.g., motion and brightness variation) into the training set. Then, the Deconvolutional

Single-Shot multibox Detector (DSSD) [34] was used to provide rough results for each

selected frame. The backbone model of the applied DSSD is a CNN that requires a

raw XCA frame as input and outputs the detected stenosis. The deconvolutional layers

doubling the resolution of the high-level feature map with the learned deconvolutional

layer and further combines feature maps from two different levels by elementwise sum-

mation. This step merges semantic information and location information, generating

feature maps with richer contents.

Although the DSSD has high sensitivity, it is still influenced by a certain number

of false positives. Due to this phenomenon, the potential temporal information of an

ICA sequence was used to remove false positives by selecting the stenosis that most

frequently appears in the sequence, thus filtering out remaining random false positives.

The dataset consists on ICA sequence data of 63 patient with resolution of 512*512

and a sequence length varying from 3 to 5 s at 14 frames per second.

Even though the proposed method has to face problem related to small dataset, it

achieves sensitivity of 87.2% and positive predictive value of 79.5% [17].

2.2.1.3 Benjamin et al.

In the Benjamin et al. study, three separate CNN models are proposed to solve the

problems of localization, segmentation and classification, then integrated developing an
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Figure 2.2: Framework of the proposed method. The whole algorithm works as follows: first, the

contrast-filled frames of an input XCA sequence are selected based on the U-Net segmentation results

(shown in chronological order from top to bottom). Then, the DSSD provides rough results for each

selected frame (yellow arrows for true positives and aqua arrows for false positives). Finally, the

seq-fps module summarizes the rough results and removes false positives, generating the final results.

Figure adapted from [17].

end-to-end deep learning pipeline for characterizing stenosis in right coronary artery

ICA images.

For the localization task, a CNN inspired YOLONet [35] is used to obtain a bound-

ing box prediction around the stenosis. In particular, ICA images are given as input

to the CNN generating a non-overlapping grid then used to obtain an image with a

bounding box and stenosis coordinates overlaid. For the segmentation task, a CNN

based on U-net is used to generate high-fidelity segmentation of the lesion of interest

given a pre-localized ICA image input. For the classification task it is used a small

CNN in order to to determine whether image inputs meet the clinical criterion for

revascularization, i.e. ≥70% stenosis, provided pre-localized ICA images and segmen-

tation annotation. Finally, a combination of the individual tasks is performed to form

an end-to-end deep learning pipeline, classifying stenosis based exclusively on the frame

ICA image input.

The dataset used is composed by single-frame image extracted from ICA of 1024

study participants. The data for each participant consists of the de-identification single-

frame image extracted from ICA, the lesion segmentation annotations corresponding to

each image, the coordinate location of stenosis, the QCA stenosis measurement and the

normalized lesion silhouette annotation. In order to standardize data components, it

was performed a preprocessing on the dataset consisting in the exclusion of the images

containing more than one annotated stenosis lesion or no annotated stenosis lesion and
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Figure 2.3: Overview of Experimental Method. Module 1: Localize a bounding box around the

stenosis lesion in the input image. Module 2: Segment the diseased lesion in the localized image.

Module 3: Classify the combined image and segmentation input binarily via 70% stenosis threshold.

Figure adapted from [15]

the contrast standardization of angiography images and segmentation annotations, i.e.

minimum and maximum pixel range were set to 0 and 1, respectively. Image sizes were

standardized to 512*512 pixels. Data augmentation techniques are applied during the

training phase of each CNN, including random shift, random rotation, random shear.

An overview of the proposed method is shown in Figure 2.3.

This method, even if based on still-frame images, achieved a performance of 72.7%

localization accuracy and relative to the current clinical standard for real-time RCA

stenosis analysis, it showed a statistically significant improvement of 36.1% in false dis-

covery rate at the 70% stenosis threshold. Thus, this proposed methodology obtained

several benefits relevant in clinical setting, such as provide real-time inference and zero

intra-rater variance, allowing for more reliable stenosis estimation.

2.3 Limitation in the state of the art

Considering that developing a tool to identify and quantify stenosis in a more accurate

and rapid way should be an opportunity to actually improve clinical care, this thesis
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aims to investigate the possibility to obtain stenosis detection on ICA images through

the use of one of the most common object detection network.

However, although the use of DL has improved the analysis of biomedical images

compared to manual inspection, these algorithms are not an universal remedy and also

have limitations. The success of their application depends on the number of obser-

vations, number of features, selection and parameterization of features and algorithm

chosen for the model [32].

The detection/classification tasks still present several challenges for fully automated

strategy mainly due to the quality of the images, the variety in position of the stenoses

and the difficulty to classify multi-level of damage. As a consequence of these limi-

tations, these approaches employ hand-crafted features and the overall method is not

at all fully automated and, for example, the experimental procedure and the features

extraction stage is driven by the supervision of an expert operator [29].

Because DL requires very specific and precise labeling of the data for successful

training, medical experts have to reexamine and annotate huge amounts of medical

data to make them suitable for deep learning. As it is a time consuming and costly

task, this has been one of the major hurdles for the application of deep learning in

wider fields of medicine [36].

Although DL has shown incredible results across many fields, it remains a tricky

technique to master. Given the same dataset, different researchers can obtain widely

varying results. The main cause is that many decisions have to be made when training

CNNs: how to pre-process the data; which network architecture to select; and how to

optimize the coefficients of the network [31].

All the studies that obtain good performance when applying DL algorithms often

differentiate themselves in aspects outside of the deep network, like data preprocessing

or augmentation techniques. For example, by adding a stain normalization preprocess-

ing step to improve generalization without changing the CNN, or by focusing on data

augmentation strategies to make networks more robust, and they report that these

strategies are essential to obtain good performance.
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2.4 Aim of the thesis

Motivated by the opportunity to improve clinical care by offering a more accurate and

rapid way to quantify coronary stenoses, this work aims to provide a tool based on

object detection, one of the most important and challenging areas of computer vision,

for the stenosis detection on images taken by ICA technique, due to the importance of

the automatic detection of lesions in medical images to improve the clinical care.

An important part of the work is focused on the organization of the dataset con-

taining the annotations made by clinician and images relative to the patients involved

in the work, considered to be the main obstacle in the objective detection: a extensive

job has been devoted to this task.

Then, a CNN for object detection, pretrained on natural images, has been chosen

in accordance with the literature to be performed on the provided dataset to obtain

stenosis detection from ICA images. The CNN model used for this purpose is the

second version of the YOLO family, the one that better performed on the dataset

provided for this work.
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In this chapter, a background of ML and DL and one of the fundamental task re-

quired when using them are reported respectively in Section 3.1 and 3.2. The YOLO

architecture, a specific CNN based object detection model considered the most accu-

rate real-time object detector, is presented in Section 3.2.1, while in Section 3.2.2 an

explanation of the transfer learning strategy is described.

3.1 ML and DL overview

For a long time, engineers have been solving many problems using conventional pro-

gramming, writing a set of commands that a computer needed to execute. Although

it is very helpful and proven to be effective to execute repetitive tasks, it fails to im-

plement tasks that are natural to humans. Tasks like vision, understanding natural

language or learning are extremely difficult for a computer to master. For these kinds

of problems, new sets of algorithms and techniques are needed. Techniques that will

enable computers to mimic and replicate learning. These algorithms are called ML

algorithms.

ML is the set of techniques, part of the artificial intelligence (AI), aimed at study-

ing computer algorithms to perform unscheduled activities that improve automatically

through experience. It is an evolving branch of computational algorithms that are

designed to process input data to achieve a desired task without being literally pro-
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grammed to produce a particular outcome and able to emulate human intelligence by

learning from the surrounding environment.

The process of adaptation is called training, in which samples of input data are

provided along with desired outcomes. The algorithm then optimally configures itself

so that it can not only produce the desired outcome when presented with the training

inputs, but can generalize to produce the desired outcome from new, previously unseen

data [37]

Machine learning can be divided according to the nature of the data labeling into

supervised, unsupervised, and semi-supervised as shown in Figure 3.1

• Supervised learning is used to estimate an unknown (input, output) mapping from

known (input, output) samples, where the output is labeled (e.g., classification

and regression). It allows the learner to deal with similarities and differences

when the objects to be classified have many variable properties within their own

classes but still have fundamental qualities that identify them. Most importantly,

the successful learner should be able to recognize an apple or an orange that it

has never seen before.

• In unsupervised learning, only input samples are given to the learning system

rather than try to exactly program the kinematics a priori. This is unsupervised

in the sense that the training doesn’t associate a particular kinematic input con-

figuration with a particular outcome. The algorithm finds its own way from the

training input data.

• Semi-supervised learning is a combination of both supervised and unsupervised,

where part of the data is labeled and other parts are unlabeled. In such a scenario,

the labeled part can be used to aid the learning of the unlabeled portion. This

kind of scenario lends itself to most processes in nature and more closely emulates

how humans develop their skills.

Techniques based on ML have been applied successfully in diverse fields ranging

from pattern recognition, computer vision, spacecraft engineering, finance, entertain-

ment, and computational biology to biomedical and medical applications.
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Figure 3.1: Categories of machine learning algorithms according to training data nature. Figure

adapted from [37]

There are two particularly important advantages to a successful algorithm. First, it

can substitute for laborious and repetitive human effort. Second, and more significantly,

it can potentially learn more complicated and subtle patterns in the input data than

the average human observer is able to do. Both of these advantages are very important

to medical application [37].

A subset of ML is the DL that works at the same but with different skills; in fact,

a DL model tries to simulate the human mind by correcting itself in case of errors.

The term ”Deep” comes from the fact that neural networks are equipped with multiple

hidden levels of neurons, making them, in fact, deep and similar to structure of the

human brain.

Various are the strong points of DL, such as its universality, robustness and gener-

alization. Indeed, The DL approach is sometimes called universal learning because it

can be applied to almost any application domain. Then, DL approaches do not require

the precisely designed feature because optimal features are automatically learned for

the task at handw obtaining a robustness to natural variations of the input data. In

addition, the same DL approach can be used in different applications or with different

data types and this is helpful where the problem does not have sufficient available data.
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DL is about learning representations, i.e, learning intermediate concept or features

which are important to capture dependencies from input variables to output variables

in supervised learning, or between subsets of variables in unsupervised learning. Both

supervised and unsupervised machine learning approaches are widely applied in medical

image analysis [38].

3.2 Object detection

Although it is very helpful to know what class image belongs to, sometimes users also

need to know the exact position of an object on a picture. The problem of localizing

an object in an image is known as object detection.

Object detection is a fundamental problem in computer vision, and there have been

many attempts to solve of this problem. The techniques used range from matching

three-dimensional geometric models of object with images, to using two-dimensional

view-based representations.

The detection of objects of interest or lesions in images is a key part of diagnosis

and is one of the most labor-intensive for clinicians. Typically, the tasks consist of

the localization and identification of small lesions in the full image space. There has

been a long research tradition in computer-aided detection systems that are designed

to automatically detect lesions, improving the detection accuracy or decreasing the

reading time of human experts [39].

3.2.1 Model for object detection - YOLO

After years of development, the state-of-the-art object detection systems have been

integrated with a large number of techniques. Most of the early object detection

algorithms were built based on handcrafted features. Due to the lack of effective

image representation at that time, people have no choice but to design sophisticated

feature representations, and a variety of speed up skills to exhaust the usage of limited

computing resources [40].

More recent approaches like Region-Based Convolutional Networks (R-CNNs) [41,

42, 43] use region proposal methods to first generate potential bounding boxes in an
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image and then run a classifier on these proposed boxes, for this reason called two-

stages detector. After classification, post-processing is used to refine the bounding

boxes, eliminate duplicate detections, and rescore the boxes based on other objects

in the scene. Those complex pipelines are slow and hard to optimize because each

individual must be trained separately [35].

YOLO (You Only Look Once) is a state-of-the-art object detection algorithm that

is incredibly fast and accurate. It is an end-to-end deep learning-based detection model

that determines the bounding boxes of the objects present in the image and classifies

them in a single pass. It does not involve any region proposal phase conversely to

two-stage detectors.

The YOLO family of models are a series of end-to-end deep learning models designed

for fast object detection, developed by Joseph Redmon et al. and first described in the

2015 paper titled “You Only Look Once: Unified, Real-Time Object Detection.” [35].

There are three main variations of the approach: YOLOv1, YOLO9000 (also know

as YOLOv2) [44] and YOLOv3 [45]. The first version proposed the general architec-

ture, whereas the second version refined the design and made use of predefined anchor

boxes to improve bounding box proposal, and version three further refined the model

architecture and training process. Although the accuracy of the models is close but

not good as R-CNNs, they are popular for object detection because of their detection

speed, often demonstrated in real-time on video or camera feed input.

In general, YOLO network involves a single deep CNN that first splits the input

image into a grid of S x S non-overlapping cells. For each cell directly predicts a

bounding box and object classification. The result is a large number of candidates

bounding boxes that are consolidated into a final prediction by a post-processing step.

As illustrated in Figure 3.2, for each cell, the network predicts B bounding boxes.

Each of them contains five parameters (x, y, w, h, sc), where sc is the objectness

confidence score of the box. Subsequently, the network calculates the probabilities of

the classes for each cell [46].

The architecture used in this work is the YOLO v2 [44]. It improves the previous

version in several ways, including some techniques that YOLO didn’t use, such as

Batch-Normalization and the use of anchor boxes to predict bounding boxes. Batch-
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Figure 3.2: Overview of the state-of-the-art You Only Look Once (YOLO) family for one-stage

object detection. (a) In YOLOv1, the output is a tensor of dimension (S, S, B x 5 + C) with (S, S)

the size of the grid, B the number of predicted boxes for each cell and C the number of classes. (b)

In YOLOv2, the output is a tensor of dimension (S, S, B x (5 + C)). The difference is that the class

probabilities are calculated for each anchor box. (c) In YOLOv3, the output consists of 3 tensors of

dimension (S, S, B x (5 + C)), (2S, 2S, B x (5 + C)) and (4S, 4S, B x (5+C)) which correspond to

the 3 detection levels (scales). Figure adapted from [46].
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Figure 3.3: The architecture of YOLOv2. Figure adapted from [47].

Normalization is used to normalize the outputs of hidden layers, making the learning

phase much faster. Anchor-Boxes is assumed by the shapes of the bounding boxes of

the object that the network has to detect, making prediction much faster. The general

YOLOv2 network structure is shown in Figure 3.3.

YOLO v2 uses anchor boxes to predict all the B boxes. The box is represented

using different values. The prediction values:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
t
w

bh = phe
t
h

σ(t0) = Pr(object)

(3.1)

Where Pr(object) is the probability that the box contains an object. The σ() (sig-

moid) function is used to constrain values between [0, 1]. The box center is expressed

as an offset with respect to the top left corner of the grid cell (cx, cy) and width and

height are expressed relative to the anchor box dimensions (pw is the anchor box width,

ph the height). The value σ(t0) gives an idea of how good is a box, it is the box confi-

dence score. If this value is below a certain threshold (typically 0.3) the corresponding

box is discarded. Figure 3.4 shows the values of a predicted box. The dashed box is

the anchor box while the blue box is the prediction. The blue dot is the predicted box

center, it is expressed as an offset with respect to the top left corner of the cell in which
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Figure 3.4: Bounding boxes with dimension priors and location prediction. Figure adapted from

[44].

it is contained plus the coordinates of that corner.

YOLOv2 is state-of-the-art and faster than other detection systems across a variety

of detection datasets. Furthermore, it can be run at a variety of image sizes to provide

a smooth trade-off between speed and accuracy.

The employed pre-trained network and the relative weight are optimized on the

created dataset. Thus, after loading the weights pre-trained on COCO dataset, the

train was executed using the Adam optimizer with a learning rate set at 0.5∗ 10−4 and

performing 100 epochs.

3.2.2 Transfer learning

The field of DL has been widely and successfully used in many applications where

patterns from past information (training data) can be extracted in order to predict

future outcomes. Traditional ML is characterized by training data and testing data

having the same input feature space and the same data distribution. When there is a

difference in data distribution between the training data and test data, the results of

a predictive learner can be degraded.

In certain scenarios, obtaining training data that matches the feature space and pre-

dicted data distribution characteristics of the test data can be difficult and expensive.

Therefore, there is a need to create a high-performance learner for a target domain

trained from a related source domain. This is the motivation for transfer learning. Ba-
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sically, transfer learning is used to improve a learner from one domain by transferring

information from a related domain [48].

In DL, transfer learning is a technique whereby a neural network model is first

trained on a problem similar to the problem that is being solved. Transfer learning is

essentially the use of pre-trained networks (typically on natural images) to try to work

around the (perceived) requirement of large data sets for deep network training.

The general idea, illustrated in Figure 3.5, is to use the knowledge a model has

learned from a task with a lot of available labeled training data in a new task that

doesn’t have much data. Instead of starting the learning process from scratch, we start

with patterns learned from solving a related task.

Figure 3.5: Illustration of the transfer learning approach.

Usually, a lot of data is needed to train a neural network from scratch but access to

that data isn’t always available, this is where transfer learning comes in handy. With

transfer learning a solid machine learning model can be built with comparatively little

training data because the model is already pre-trained.

There are two strategies when repurposing a pre-trained model by using transfer

learning, which are fine-tuning the entire network and fine-tuning some layers with

the others unchanged. Among them, the first strategy, fine-tuning the entire model

refers to using the pre-trained network and modifying all the weights based on the

custom dataset, leading to high computational cost and high demand for data amount.

Consequently, this strategy is applied when we have a large dataset and different from

the data in pre-trained data.
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However, in the field of computer vision, the lower layers of the network are always

similar to each other regardless the problem domain, whereas the higher layers of the

network are updated to adapt to specific problems. So in the second strategy, only the

higher layers are the parts that need to be optimized and fine-tuned during training,

leaving the other lower layers frozen with the pre-trained weights. By reusing the

parameters in the lower layers, the number of weights needs to be updated is largely

reduced, which will rarely lead to overfitting. Both strategies are popular and have

been widely applied.

Transfer learning has several benefits, but the main advantages are saving training

time, better performance of neural networks (in most cases), and not needing a lot of

data. With the technique, we can easily start a model from the pre-trained condition

that have been trained with the other tasks.

Fine-tuning deep learning algorithms will help to improve the accuracy of a new

neural network model by integrating data from an existing neural network and using

it as an initialization point to make the training process time and resource-efficient.

In this work, the data is quite dissimilar to the one in ImageNet and is relatively

large. Hence, the first strategy is applied to this task which is fine tuning the whole

model with the initialization of the pre-trained model.
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4.1 Dataset

The collection of the data used in this work has been provided by the Cardiology

Department of Ancona’s Ospedali Riuniti. The dataset was created from the collection

of ICA images in DICOM format, the standard for the communication and management

of medical imaging information and related data [49]. It consists on 1373 ICA images

of 207 patients - with 5 patients having a double count due to the ICA acquisition

made in different session. From the image acquisitions, a series of 512 × 512 pixel

grayscale images with different gray levels (0–255) are generated.

Together with the images the dataset contains also annotations on the images made

by visual inspection by clinician, listing the depicted stenosis and their positions in the

image. The position information comes in the form of bounding boxes either squared

or rectangular.

4.1.1 Data preparation

Training data consists of ICA images and annotation, in DICOM and .csv format

respectively. In order to have format compatible with the CNN used, both files were

converted into an unified format that the network can understand. In particular, ICA

images were converted in .jpeg format while the annotation for each of the image into
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.xml format. Pascal VOC (Visual Object classification) provides standardized image

datasets for object detection.

After the conversion, the splitting of the dataset was performed. Data splitting

technique is a crucial point: the dataset is divided into three part, to avoid overfitting

and model selection bias, called training set, cross-validation set and testing set.

In particular, the training set consists in the sample of data used to fit the model,

that is the actual subset of the dataset that is used to train the model (estimating

the weights and biases). The model observes and learns from this data and optimize

its parameters. Successively, the fitted model is used to predict the responses for the

observations in a second dataset called the cross-validation set by minimizing the error.

Finally, the testing set is used to provide an unbiased evaluation of a final model fit

on the training dataset.It is only used once the model is completely trained using the

training and validation sets.

In order to keep images associated with same patient in the same session (train,

validation or testing phase) the dataset was organized obtaining a folder for each patient

containing the annotations and associated images. Then, divided into train, validation

and test folder performing a spitting by patient using a dataset split ratio of 80:10:10

for train,validation, and test sets respectively.

4.2 Training setting

By using the technique of transfer learning, the weights were randomly initialized in

the head of the detector and also the rest of the network with pre-trained weights was

initialized. After setting these as the starting point, the entire network was trained by

updating all the weights to adapt to the custom dataset.

Network training aims to find the model parameters by minimizing a cost function

(J(y, ŷ)), where ŷ denotes the output of the model (i.e. the prediction) and y the

desired output (i.e. the label associated to the input x).
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Figure 4.1: Loss function used in YOLO v2. Figure adapted from [35].

4.2.1 Loss

An important component for network training is the Loss Function, which defines the

method with which the loss (i.e. the prediction error) is calculated. In other word, in

the context of an optimization algorithm, the function used to evaluate a candidate

solution (i.e. a set of weights) is referred to as the objective function. The goal is

to maximize or minimize the objective function, meaning that it is searching for a

candidate solution that has the highest or lowest score respectively. Typically, with

neural networks, the aim is to minimize the error. As such, the objective function is

often referred to as a cost function or a loss function and the value calculated by the

loss function is referred to as simply “loss”.

The Yolo v2 loss function is the one shown in the Figure 4.1.

Where:

• The 3 λ terms are constants to take into account more one aspect of the loss

function.

• The prediction of YOLO is a S x S x (B x 5 + C) vector. The 5 bounding box

outputs of the box j of the cell i are coordinates of the center of the bounding
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box xij, yij, height hij, width wij and a confidence index Cij.

• 1obji denotes if object appears in cell i. It is equal to 1 when there is an object

and 0 elsewhere

• 1objij denotes that the j th bounding box predictor in cell i is “responsible” for that

prediction. It is equal to 1 if there is an object in cell i and confidence of the j th

predictors of this cell is the highest among all the predictors of this cell.

• 1noobjij is almost the same except it values 1 when there are NO objects in cell i

More general explanation of each term of the sum:

1. this term penalizes bad localization of center of cells

2. this term penalizes the bounding box with inaccurate height and width. The

square root is present so that errors in small bounding boxes are more penalizing

than errors in big bounding boxes.

3. this term tries to make the confidence score equal to the IOU between the object

and the prediction when there is one object

4. Tries to make confidence score close to 0 when there are no object in the cell

5. This is a simple classification loss

4.2.2 Adaptive Moment Estimation (Adam) Optimization

Adam is an adaptive moment estimation of first-order and second-order moments.

Since it adapts the learning rate η to the parameters, performing larger updates for

infrequent and smaller updates for frequent parameters [50], it is considered well suited

for problems that are large in terms of data/parameters.

To be short, considering gt,i as the gradient of J, generic cost function, with respect

to the parameter θi after t batches. Using the Adam optimizer, every parameter after

each batch is computed in this way:

θt+1,t = θt,i −
η√︁

vt̂(gt,i) + ϵ
·mtˆ (gt,i) (4.1)
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where epsilon is an hyperparameter characterized by very small values and useful

to prevent a null denominator, while mtˆ is the first moment (the mean) estimate of the

gradient and vt̂ is the second moment estimate (uncentered variance) of (gt,i).

The first and the second moment estimates are calculated in this way:

mt = β1 ·mt−1 + (1− β1) · (gt,i) (4.2)

vt = β2 · vt−1 + (1− β2) · (gt,i)2 (4.3)

where the hyperparameters β1, β2 ∈ [0, 1) control the exponential decay rates of

moving average of the gradient (mt) and the squared gradient (vt) respectively.

The other very important parameter related to the gradient descent is the learning

rate, η: if η is too small leads to slow convergence, while if η is too large can hinder

convergence and cause the loss function to fluctuate around the minimum or even to

diverge.

4.3 Metrics for the evaluation

When evaluating the performance of a network aimed at object detection, precise met-

rics are used, very different from those of the networks aimed at classification, because

the variables are not Boolean, but pixels.

Intersection over Union (IoU)

Intersection over Union (Iou) can be considered as the basic metric for the evaluation

of a network aimed at object detection; Iou measures the accuracy of the detector on

a particular test set. It requires only two elements for each image to be evaluated:

- The ground-thruth box, that is the identifier box generated by the programmer

at the moment in which the dataset is generated and represents the minimum

size of the box enclosing the object.

- The predicted box, that is the model’s ouput.

Mathematically, the parameter IoU is:

IoU =
Area of Overlap

Area of Union
(4.4)
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IoU is used mainly because it is impossible that the coordinates (x,y) of the pre-

dicted box are identical to those of the ground-truth box because of the multitude of

parameters that are considered in the Object Detection.

Average Precision (AP)

Average precision (AP) is a popular metric in measuring the accuracy of object

detectors. However, some concepts must be introduced before giving a definition.

- Confidence is the probability that a box contains the object;

- True Positive (TP) is an identification that meets three conditions: the confidence

value greater than a certain threshold, the class corresponds to the correct one,

the value of IoU is greater than a certain threshold. Consequently, false positive

(FP) is an identification that violates one of the last two conditions

- False Negative (FN) is an identification that should be corrected but has a value

of confidence inferior to the threshold

- Precision is given by the following equation:

precision =
TP

TP + FP
(4.5)

- Recall is given by:

recall =
TP

TP + FN
(4.6)

Setting multiple confidence threshold values results in different precision and recall

pairs. Representing the two metrics on a Cartesian diagram we obtain the precision-

recall curve. The average accuracy, which is based on this curve, is the average accuracy

between all recall levels. To reduce the impact of the wave pattern on the AP value,

the curve is first interpolated. Interpolated precision at a certain level r is defined as

the highest precision found for each level r′ > r:

pinterp(r) = max p(r′) with r′ > r (4.7)
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Finally, the average precision can be defined as the area below the interpolated

precision-recall curve which can be calculated with the following formula:

AP =
n−1∑︂
i=1

(ri+1 − ri) pinterp (ri+1) (4.8)

Where r1, ... , rn are the recall levels where accuracy has been interpolated.

Mean Average Precision (mAP)

The AP covers a single class; as for all K classes present, we define the Mean

Average Precision (mAP) as:

mAP =

∑︁K
i=1APi

K
(4.9)

4.4 Exclusion criteria

Since the major challenge in the state of the art is to have a good dataset, different

session train of the model were made with different dataset used. The first attempt

was made with all the ICA images, the other two with a reduced dataset obtain by

performing some exclusion of the ICA images based on different criteria:

- Images with low contrast between coronary artery and background

- Images in which are present stenosis with a total occlusion

- Images with poor visibility of stenosis

- Images in which stenosis have unusual pattern and there is the presence of dis-

traction such as pacemaker

- Images with wrong annotation, i.e. boxes placed in wrong position of the images

or stenosis not completely included in it.

A representation of the rejected images is shown in Figure 4.2 and Figure 4.3.

Based on this criteria, a manual elimination of this images was performed reducing the

dataset in a heavily manner.
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Figure 4.2: Example of rejected images. Low contrast (A), total occlusion (B) and poor visibility of

the stenosis (C).

Figure 4.3: Example of rejected images. Unusual pattern (A), distraction (B) and wrong annotation

(C).
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4.5 Experiment

In Table 4.1 are shown the setting values used for the hyperparamethers used in all the

three evaluation configuration. In summary, the first evaluation is made by using the

entire dataset, the second one by performing a reduction of the original dataset based

on some exclusion criteria shown in the following section. Finally, in the last evaluation

it is performed a further reduction of the dataset and an offline augmentation of the

data, in particular by operate resize and both horizontal and vertical flip of the images.

Table 4.1: Hyperparameters settings used in all the trials.

Trial Batch size Momentum Start learning rate Optimazer Epochs

1 16 0.9 0.5 ∗ 10−4 Adam 500

2 16 0.9 0.5 ∗ 10−4 Adam 100

3 16 0.9 1 ∗ 10−4 Adam 200

To increase the efficiency during the training procedure, a specific callback, named

”ReduceLROnPlateau” has been applied. This function monitors the validation loss

and perform a reduction of the learning rate by a factor equal to 0.1 if no improvement

of the loss value is seen after 2 epochs.
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RESULTS

This section summarizes the results based on experimental protocol described in Chap-

ter 4. In particular, results of the statistical tests performed and the specific dataset

used in each session will be shown in Section 5.1, while results relative to the prediction

of the detection on the ICA images in Section 5.2.

5.1 Evaluation

To obtain an overall view of the results for the evaluation and understanding of the

capability of the proposed object detection, the trends of the loss function are presented

for each evaluation session. In addition, a table containing the dataset characteristics

is reported. To summarize:

• First trial: complete dataset formed by 1373 ICA images of 207 patients;

• Second trial: reduced dataset formed by 740 ICA images of 154 patients;

• Third trial: further reduction of the dataset obtaining 164 ICA images of 54

patients. Then an augmentation of the train dataset was performed obtaining

378 ICA images.
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5.1.1 First evaluation

Table 5.1: Dataset design of the first trial.

Number of patient Number of images

Train 141 814

Validation 25 240

Test 41 319

Figure 5.1: Trend of the loss values for the first attempt (Complete dataset).
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5.1.2 Second evaluation

Table 5.2: Dataset design of the second trial.

Number of patient Number of images

Train 119 533

Validation 25 133

Test 10 74

Figure 5.2: Trend of the loss values for the second attempt (Reduced dataset).
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5.1.3 Third evaluation

Table 5.3: Dataset design of the third trial.

Number of patient Number of ICA images

Train 33 288

Validation 5 50

Test 16 40

Figure 5.3: Trend of the loss values for the third attempt (Reduced dataset plus augmentation).
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5.2 Prediction

In this section are shown all the prediction made after the training of the model on the

dataset used in the three different evaluation session. The prediction of the last trial

is not reported.

5.2.1 First evaluation

Figure 5.4: Prediction first trial.

Figure 5.5: Real annotation first trial.
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5.2.2 Second evaluation

Figure 5.6: Prediction second trial.

Figure 5.7: Real annotation second trial.
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However, in few images the model was able to perform a right detection of the

stenosis as shown in the Figure 5.8.

Figure 5.8: Prediction second trial with the right detection.

Figure 5.9: Real annotation second trial with the right detection.
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DISCUSSION

In this Section results presented in Chapter 5 are discussed.

The variability of the resutlts obtained highlights the difficul task this thesis tries

to face, due to the high variability of the target object to detect and the quality of the

images. In fact, despite the different settings and the dataset selection in the different

trials, the training of the network presented always an overfitting model, as shown

by the trend of the loss in each trial, thus not generalizing correctly to unseen data.

Moreover, the mAP calculated for each trial remains near the 1% thus showing a low

accuracy in stenosis detection.

The bounding boxes, that define the position of the stenosis, are predicted in dif-

ferent location along the arteries in comparison with the ground truth, the manual

annoteted position. The second trial results to be the only one to partially achieve

correct predictions. Indeed, this can be this can be explained by the fact that using

a more consistent dataset could be useful for the detection problem but, at the same

time, the smaller dataset doesn’t allow the model to predict well in all the images with

the exception of image that shows clear analogies with the images used to the feed the

network during the training session.

Moreover, the removal of frames from the dataset based on the criteria showed in

the Chapter 4 retains the 45% of the original dataset in the second evaluation, and

this greatly has affected the outcome of the training performed by using a pretrained

network. For this precise reason, in the third trial, in which the greatest dataset
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reduction has been applied, no prediction could be observed.

Several aspects of ICA, moreover, contribute to make this task challenging: ICA

images contain significant image noise, at time including non-anatomical artifacts such

defibrillator wires, and have limited image contrast. Furthermore, diseased lesions

in ICA images represent a fraction of the overall image, adding a non-trivial search

component to the image analysis problem.

Since, this network pretrained on natural images has been chosen for its ability to

detect very well on other object detection tasks, the behaviour of the results suggests

that the availability of a large and clean dataset has a fundamental role. In medical

field, a very high number of images are acquired and stored everyday, but most of the

time their quality is not sufficient to treat them as with natural images. Thus, even

the most reliable detection network results to be ineffective on images with highly vari-

ability in patterns as targets and without considering an image enhancement through

post-processing procedures.
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CONCLUSIONS

With rapid development of DL, vascular extraction and stenosis detection technology-

based AI is emerging as a fast and efficient diagnostic tool to detect CAD. However, all

object detection applications in this particular medical field result to be effective only

through a strong preprocessing of the images, enhancing the visibility of the target and

quality of the images, thus reaching good results from a computational point of view,

but unrealistically effective in clinical.

This thesis investigates the possibility for a common and reliable object detection

network, like YOLOv2, to predict stenosis location based on raw images, as they are

actually inspected by physicians with ICA.

Indeed, the largest part of DL methods presented in literature is applied on a

single frame selected from an ICA frame-sequence to keep the image with the best

resolution, and then, to obtain a contrast standardization of the ICA images, an intense

preprocessing is performed before feeding them into the network.

In this work the YOLO v2 object detector model was trained on ICA images without

performing a preprocessing altering their original characteristics and moving away from

the real context in which the stenosis detection is significant.

Furthermore, the results show that dataset still remains the main problem when

training a model on new data, especially in relation with particular medical contexts.

Even though the storage and diffusion of digital biomedical images is rapidly increased,

the detection task still presents several challenges for automated strategy mainly due
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to the quality of the images and the variety of patterns that can characterize the same

biological structure, like the stenosis in this case.

Despite all the advancements that DL technologies achieve everyday in many fields,

the results of this work highlight that the medical images require a different process-

ing, due to the meaning that they carry with them, and at least for this application

we are still far to get a support tool that could be actually used in clinical practice.

However, exploring this complex field with the latest technologies, experimenting differ-

ent architectures over larger dataset and considering different frame-sequence or video

strategies, can be a good starting point to obtain a support tool for physicians that

could actually be deployed during ICA procedures.
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drovandi, C. Reverberi, C. Manca, and et al., “Predictive value of computed tomography

coronary angiography for the evaluation of acute chest pain: single center preliminary

experience,” 2011.

[6] A. K. Malakar, D. Choudhury, B. Halder, P. Paul, A. Uddin, and S. Chakraborty, “A

review on coronary artery disease, its risk factors, and therapeutics,” J Cell Physiol,

p. 1–12, Jan 2019.

58



Bibliography

[7] M. Chen, X. Wang, G. Hao, X. Cheng, C. Ma, N. Guo, S. Hu, Q. Tao, F. Yao, C. Hu,

and et al., “Diagnostic performance of deep learning-based vascular extraction and steno-

sis detection technique for coronary artery disease,” The British Journal of Radiology,

vol. 93, no. 1113, p. 20191028, 2020.

[8] D. H. Fitchett, M. Gupta, M. E. Farkouh, and S. Verma, “Coronary artery revascular-

ization in patients with diabetes mellitus,” Circulation, vol. 130, no. 12, 2014.

[9] S. F. Afrin, M. H. Rahman, M. A. Millat, M. S. Quarashi, A. Begum, and M. Begum,

“Minor myocardial injury: An early post intervention complication,” Delta Medical Col-

lege Journal, vol. 5, no. 2, p. 94–98, 2017.

[10] N. H. Pijls and J.-W. E. Sels, “Functional measurement of coronary stenosis,” Journal

of the American College of Cardiology, vol. 59, no. 12, p. 1045–1057, 2012.

[11] F. Cademartiri, E. Maffei, F. Notarangelo, F. Ugo, A. Palumbo, D. Lina, A. Aldrovandi,

E. Solinas, C. Reverberi, A. Menozzi, L. Vignali, R. Malagò, M. Midiri, N. Mollet,
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