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ABSTRACT 

The diagnosis of Parkinson's disease dementia (PDD) still follows the one-year rule, which may 

be too late for the optimal treatment. Since up to 83% of Parkinson’s disease (PD) patients 

eventually develop dementia later in the disease progression, early identification would allow 

for timely administration of the appropriate treatment, potentially leading to an increased life 

expectancy. Additionally, as there is an exponential growth of the aging population in the world 

the number of people suffering from PD and consequently of PDD is increasing. However, until 

now no therapeutic method has been discovered for completely treat the subjects affecting 

by this type of neurodegenerative disease. Therefore, the early detection could be the only 

way to increase the life expectancy. 

This thesis provided a systematic literature review on PDD identification through Machine 

Learning (ML) algorithms and a novel methodology for the identification of PDD subjects from 

MRI scans.  

A particular 3D CNN, called C3DKeras, pre-trained on large video-clips on sports, was used as 

core part of the proposed pipeline, whereas the entire methodology was conducted under the 

structure of ablation studies. Specifically, four ablation experiments were performed, in which 

a new part was added to the previous one in the pipeline as follows: Experiment 0, no 

modification from the original C3DKeras; Experiment 1, addition of weighting class; 

Experiment 2, addition of unfrozen layers; and Experiment 3, addition of rigorous 

hyperparameter tuning. All the experiments were conducted by taking into account two 

datasets downloaded from Parkinson’s Progression Markers Initiative (PPMI), namely PDD and 

prodromal PD. 

Experiment 3, with an AUC of 86%, SE of 100%, ACC of 73%, and F1-score of 73% for the PDD 

class; achieved the highest performance among the four experiments and among the literature 

research results. 

Therefore, as the entire methodology was conducted under the structure of ablation studies, 

it was evident how each fine-tuning step significantly improve the overall performance. Hence, 

this study provides an innovative approach for the identification and classification of PDD 

subjects as well as those with PD using the particular CNN called C3DKeras. 
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I. Introduction  

The second most common neurological disorder that prevails among the aging population in 

the world is considered to be Parkinson’s Disease (PD). PD is based on the formation of the so-

called Lewy bodies in the substantia nigra of the brainstem. As the disease progresses over 

time, it could result in Parkinson's disease dementia (PDD). PDD affects the cortex with 

devastating effects on complex sensory association cortex regions and prefrontal and temporal 

areas involved in executive brain functions, learning and memory.   

The diagnosis of PDD is currently based on the 1-year rule, being in some cases too late for the 

correct treatment. As up to 83% of patients with PD eventually develop dementia later in the 

disease course, faster the identification, sooner could be provided the correct treatment, 

giving the possibility to increase the life expectance. 

For the detection of PDD the most widely used diagnostic is the analysis of Magnetic 

Resonance Imaging (MRI) scans of the brain. The MRI is a non-invasive technique that provide 

anatomical details about the structure of the brain. However, as the MRI is a 3D structure, it is 

really difficult for the human eye to analyse the details that distinguished PDD subject’s brain 

from PD.  

The advancement of intelligent technologies has made computer-aided detection systems 

very effective at performing diagnosis of different diseases. In particular, Convolutional 

Neuronal Network (CNN) excels in tasks like image recognition, object detection, and image 

classification. Especially pre-trained models, like C3DKeras, are often used for transfer 

learning. Pre-trained models on large datasets are used to facilitate the learning tasks with 

limited data. 

In scientific literature, only two studies that classify PDD subjects with Machine Learning (ML) 

applications were found. This is due to the complexity of differentiating PDD from PD subjects. 

In both studies Positron Emission Tomography (PET) was used as a method for the acquisition 

of the data. Both PET and MRI are non-invasive techniques, however, PET involves the 

exposure to ionizing radiation that could be harmful for the patient.  

This study aimed to establish an innovative and effective approach for accurately detecting 

and distinguishing individuals affected by PDD based on structural information derived from 
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3D MRI data. This innovative methodology sought to contribute to the medical field by 

providing a more sophisticated approach for the identification and classification of PDD 

subjects using advanced neural network architectures as C3DKeras. 
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1. Anatomy and Physiology of the Nervous System 

The Nervous System is a highly complex piece of biological machinery that coordinates actions 

and sensory information by transmitting signals to and from different parts of the body.   

1.1.  The Cellular Components of the Nervous System  

In the early nineteenth century, the cell was recognized as the fundamental unit of all living 

organisms. However, it was not until the twentieth century, that neuroscientists agreed that 

nervous tissue, like all other organs, is made up of these fundamental units[1].  

The histological studies of Cajal, Golgi, and several successors led to the further accord that 

the cells of the nervous system can be divided into two broad categories: nerve cells (or 

neurons), and supporting cells called neuroglia (or simply glia).  

1.1.1. Neurons 

The neurons are electrically excitable cells, capable of responding to physical and chemical 

stimuli by modifying the concentration of ions on the faces of their membrane, producing 

signals in the form of changes in electrical potential, propagating or conducting signals from 

the point of initialization to other parts of the cell and transmit signals to other cells through 

synapses[2].  

Despite the neurons diversity based on functions performed in different parts of the nervous 

system, shape, and other characteristics, all of them are composed by a cell body or soma, one 

or more dendrites, an axon, and the presynaptic terminations (Figure 1). The cell body contains 

the nucleus and most of the major organelles, the dendrites are instead cellular extensions 

with many branches and is where the majority of input to the neuron occurs via the dendritic 

spine while the axon (cable-like projection) carries signals away from the soma and carries 

information back to it (the part of the axon where it emerges from the soma is called the axon 

hillock). Each axon is commonly subdivided at its distal end into several preterminal branches 

of lower calibre and each of these forms a variable number of synaptic boutons that is the site 

where synapses with other neurons occurs. 

Neuronal cell bodies are often grouped together in clusters. The axons of neurons are usually 

grouped together in bundles. In addition, widespread regions of nervous tissue are grouped 

together as either grey matter or white matter [3]. 
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Figure 1.Structure of a multipolar neuron. A multipolar neuron has a cell body, several short 

dendrites, and a single long axon. Arrows indicate the direction of information flow: dendrites 

→ cell body → axon → axon terminals [3] 

There are many different types of neurons in the Nervous System, and they could be classified 

by several criteria. In accordance with the number of processes possessed by a neuron, the 

classification of these cells can be as follows:  

• Unipolar neurons. They have a single, short axon that emerges from the cell body and 

then branches into two processes that extend in opposite directions. The process that 

extends peripherally is known as the peripheral process and is associated with sensory 

reception.  
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• Bipolar neurons have two processes, which extend from each end of the cell body, 

opposite to each other; one is the axon and one the dendrite. They are found in the 

retina of the eye, the inner ear, and the olfactory area [3]. Particular bipolar neurons 

are pseudounipolar neurons or T-neurons, whose cellular body is provided with a 

single extension that at a relatively large distance from the soma is divided into a T [2].  

• Multipolar neurons usually have several dendrites and one axon. Most neurons in the 

brain and spinal cord are of this type, as well as all motor neurons. 

In addition to the structural classification, some neurons are named for the histologist who 

first described them or for an aspect of their shape or appearance; examples include Purkinje 

cells in the cerebellum and pyramidal cells, found in the cerebral cortex of the brain, which 

have pyramid-shaped cell bodies [3]. 

Another type of classification of neurons may be made based on their functions: 

• Sensory neurons or afferent neurons either contain sensory receptors at their distal 

ends (dendrites) or are located just after sensory receptors. Once an appropriate 

stimulus activates a sensory receptor, the sensory neuron forms an action potential in 

its axon and the action potential is sent into the Central Nervous System (CNS) through 

cranial or spinal nerves. Most sensory neurons are unipolar in structure. 

• Motor neurons or efferent neurons deliver action potentials away from the CNS to 

effectors (muscles and glands) in the Peripheral Nervous System (PNS) through cranial 

or spinal nerves. Motor neurons are multipolar in structure. 

• Interneurons or association neurons are mainly located within the CNS between 

sensory and motor neurons. Interneurons integrate incoming sensory information 

from sensory neurons and then produce a motor response by activating the 

appropriate motor neurons. Most interneurons are multipolar in structure [3]. 

The neurons communicate via a combination of electrical and chemical signals. Within the 

neuron, electrical signals driven by charged particles allow rapid conduction from one end of 

the cell to the other. In particular, the dendrites are the part of the neuron that receives 

incoming signals. Based on the strength of this incoming stimuli the neurons must decide 

whether to pass the signal along or not. If this stimulation is strong enough the signal is 

transmitted along the entire length of the axon in a phenomenon called action potential. 
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Transmission of neuronal signal is entirely dependent on the movement of the ions. Various 

ions including sodium (Na+), calcium (Ca2+) and potassium (K+) are unequally distributed 

between the inside and the outside of the cell. When a neuron is not sending a signal, it is 

considered to be at rest. In a typical neuron in its resting state the concentration of Na+ is 

higher outside the cell than inside, while the concentration of K+ is the opposite. This 

separation creates a chemical gradient across the membrane. Furthermore, at rest, there are 

more positively charged ions outside the cell relative to the inside; this create a difference on 

charge across the membrane which is called an electrical gradient. The chemical gradient 

together with the electrical gradient form the electrochemical gradient. 

An action potential is a sequence of rapidly occurring events that decrease and reverse the 

membrane potential and then eventually restore it to the resting state. Membrane potential 

is defined as the difference between the total charge inside and outside of the cell. At rest, 

when no signals are being transmitted, neuronal membrane has a resting potential of 

approximately -70mV.  

The action potential has two main phases: a depolarizing phase and a repolarizing phase. Once 

the cell membrane reaches a certain level termed the threshold (about −55 mV in many 

neurons) the Na+ channels changes to an open position and Na+ reaches into the cell caused 

by the electrochemical gradient. During the depolarizing phase, the negative membrane 

potential becomes less negative, reaches zero, and then becomes positive. As the membrane 

potential becomes positive, the Na+ channels become inactive, and this stops the flow of Na+ 

into the cell. The change of the membrane potential causes the opening of the voltage-gated 

K+ channels and the K+ flow out of the cell. This process is called repolarization. During the 

repolarizing phase, the membrane potential is restored to the resting state of −70 mV.  

The period of time during which a second action potential can be initiated, but only by a larger-

than normal stimulus is called the relative refractory period. It coincides with the period when 

the voltage-gated K+ channels are still open after inactivated Na+ channels have returned to 

their resting state. 

There are two types of propagation of the signal along the axon: continuous conduction and 

saltatory conduction. In continuous conduction, ions flow through their voltage-gated 

channels in each adjacent segment of the membrane. Continuous conduction occurs in 
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unmyelinated (“the myelin sheath is a greatly extended and modified plasma membrane 

wrapped around the nerve axon in a spiral fashion” [4]) axons and in muscle fibers. Action 

potentials propagate more rapidly along myelinated axons than along unmyelinated axons. 

The saltatory conduction is a special mode of action potential propagation that occurs along 

myelinated axons, it occurs because of the uneven distribution of voltage-gated channels. 

When an action potential propagates along a myelinated axon, an electric current flow pass 

through the extracellular fluid surrounding the myelin sheath. The action potential at the first 

node generates ionic currents in and extracellular fluid that depolarize the membrane to 

threshold, opening voltage-gated Na+ channels at the second node. The resulting ionic flow 

through the opened channels constitutes an action potential at the second node. Then, the 

action potential at the second node generates an ionic current that opens voltage-gated Na+ 

channels at the third node, and so on. Each node repolarizes after it depolarizes [3]. 

As describe before the region where communication occurs between two neurons or between 

a neuron and an effector cell is called synapse. The cell that sends the nerve impulse is named 

the presynaptic cell and the cell that receives the nerve impulse is called the postsynaptic cell. 

Synapses are important since some diseases and neurological disorders result from disruptions 

of synaptic communication.   

Structurally, two types of synapses are found in neurons:  

1) Electrical synapses: it has a direct physical contact. Electrical transmission is mediated 

by clusters of intercellular channels called gap junctions that connect the interior of 

two adjacent cells, and thereby directly enable the bidirectional (axon-axon) passage 

of electrical currents carried by ions. Since action potentials conduct directly through 

gap junctions, electrical synapses are faster than chemical synapses; as in the first one 

the action potential passes directly from the presynaptic cell to the postsynaptic cell. 

They are usually found in the heart and the gastrointestinal tract [3]. 

2) Chemical synapses: are the most common type of synapses. To transmit information 

from one neuron to another or a target organ, a chemical substance termed 

transmitter is used. Depending on the released transmitter, chemical synapses can 

have either an excitatory or inhibitory effect downstream cells. Transmitter are 

synthesized in the soma of the neuron and transported along the axon to the 

presynaptic terminal. When an action potential reaches the presynaptic membrane, 
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depolarization occurs. As a result, the voltage-gated calcium channels at the 

presynaptic terminal open, leading to the influx of calcium cations into the cell. An 

increase in the concentration of Ca2+ inside the presynaptic neuron serves as a signal 

that triggers exocytosis of the synaptic vesicles. As vesicle membranes merge with the 

plasma membrane, neurotransmitter molecules within the vesicles are released into 

the synaptic cleft (or bouton). Each synaptic vesicle contains several thousand 

molecules of neurotransmitter. The neurotransmitter molecules diffuse across the 

synaptic cleft and bind to neurotransmitter receptors in the postsynaptic neuron’s 

plasma membrane. Binding of neurotransmitter molecules to their receptors on ligand-

gated channels opens the channels and allows particular ions to flow across the 

membrane. As ions flow through the opened channels, the voltage across the 

membrane changes. This change in membrane voltage is a postsynaptic potential. A 

neurotransmitter causes either an excitatory or an inhibitory graded potential. A 

depolarizing postsynaptic potential is called an excitatory postsynaptic potential 

(EPSP). A hyperpolarizing postsynaptic potential is termed an inhibitory postsynaptic 

potential (IPSP) [3].  

One of the transmitters involved in the chemical synapses is the dopamine (Figure 2.). In 

Parkinson’s disease (PD), the dopaminergic neurons of the substantia nigra degenerate, 

leading to a characteristic motor dysfunction. 

In addition, the one that regulates the synaptic vesicle trafficking and subsequently 

neurotransmitter release is the alpha-synuclein (aSyn). In PD, Parkinson’s Disease with 

Dementia (PDD) and in Dementia with Lewy Body (DLB), insoluble forms of aSyn accumulate 

as inclusions in Lewy bodies. 

“A typical neuron in the CNS receives input from 1000 to 10,000 synapses” [3]. Integration of 

these inputs involves summation of the postsynaptic potentials that form in the postsynaptic 

neuron. The greater the summation of EPSPs, the greater the chance that threshold will be 

reached. There are two types of summation: spatial summation and temporal summation. 

Spatial summation is summation of postsynaptic potentials in response to stimuli that occur 

at different locations in the membrane of a postsynaptic cell at the same time. Temporal 

summation is summation of postsynaptic potentials in response to stimuli that occur at the 

same location in the membrane of the postsynaptic cell but at different times. 
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Figure 2. Chemical synapses that use dopamine as a transmitter. 

1.1.2. Glia 

Glial cells are considered to be supporting cells, and many functions are directed at helping 

neurons complete their function for communication. Generally, neuroglia are smaller than 

neurons, and they are 5 to 25 times more numerous. In contrast to neurons, glia do not 

generate or propagate action potentials. There are six types of glial cells; four of them are 

found in the CNS (Figure 3.) and two are found in the PNS. 

Neuroglia of the CNS can be classified on the basis of size, cytoplasmic processes, and 

intracellular organization into: 

1) ASTROCYTES: star-shaped cells that have many processes and are the largest and most 

numerous of the neuroglia. The processes of astrocytes make contact with blood 

capillaries, neurons, and the pia mater (a thin membrane around the brain and spinal 

cord). Astrocytes contain microfilaments that give them considerable strength, which 

enables them to support neurons. Processes of astrocytes wrapped around blood 

capillaries isolate neurons of the CNS from various potentially harmful substances in  
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Figure 3. Neuroglia of the central nervous system 

blood. Astrocytes help to maintain the appropriate chemical environment for the 

generation of nerve impulses. For example, they regulate the concentration of 

important ions such as K+; take up excess neurotransmitters; and serve as a channel 

for the passage of nutrients and other substances between blood capillaries and 

neurons. Astrocytes may also play a role in learning and memory by influencing the 

formation of neural synapses. 

2) OLIGODENDROCYTES: they resemble astrocytes but are smaller and contain fewer 

processes. Processes of oligodendrocytes are responsible for forming and maintaining 

the myelin sheath around CNS axons. As explained before the myelin sheath is a 

multilayered lipid and protein covering around some axons that insulates them and 

increases the speed of nerve impulse conduction; such axons are said to be myelinated.  

3) MICROGLIAL CELLS OR MICROGLIA: are small cells with slender processes that give off 

numerous spinelike projections. Microglial cells function as phagocytes. Like tissue 

macrophages, they remove cellular fragments formed during normal development of 

the nervous system and phagocytize microbes and damaged nervous tissue. 

4) EPENDYMAL CELLS: are cuboidal to columnar cells arranged in a single layer that 

possess microvilli and cilia. These cells line the ventricles of the brain and central canal 

of the spinal cord (spaces filled with cerebrospinal fluid, which protects and nourishes 

the brain and spinal cord). Functionally, ependymal cells produce, possibly monitor, 
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and assist in the circulation of cerebrospinal fluid. They also form the blood–

cerebrospinal fluid barrier [3]. 

Neuroglia of the PNS completely surround axons and cell bodies. The two types of glial cells in 

the PNS are: 

1) SCHWANN CELLS: like oligodendrocytes, they form the myelin sheath around axons. A 

single oligodendrocyte myelinates several axons, but each Schwann cell myelinates a 

single axon.  

2) SATELLITE CELLS: flat cells that surround the cell bodies of neurons of PNS ganglia. 

Besides providing structural support, satellite cells regulate the exchanges of materials 

between neuronal cell bodies and interstitial fluid. 

White matter is composed primarily of myelinated axons. The white colour of myelin gives 

white matter its name. The grey matter of the nervous system contains neuronal cell bodies, 

dendrites, unmyelinated axons, axon terminals, and neuroglia. 

1.2. Overall Organization of the Nervous System 

A first general functional distinction divides the Nervous System in:  

• Sensory Systems: the system that acquire and process information from the 

environment (the visual system or the auditory system); 

• Motor Systems: that responds to the information form the Sensory System by 

generating movement and other actions. 

In addition to this functional distinction, neuroscientists and neurologists have conventionally 

divided the vertebrate nervous system anatomically into central and peripheral components 

(Figure 4.). 

1.2.1. Central Nervous System 

The CNS consist of the brain and the spinal cord. Specially the adult brain consists of four major 

parts: brainstem, cerebellum, diencephalon, and cerebrum (Figure 5.). The brainstem is 

continuous with the spinal cord and consists of the medulla oblongata, pons, and midbrain. 

Posterior to the brainstem is the cerebellum while superior to the brainstem is the 

diencephalon, which consists of the thalamus, hypothalamus, and epithalamus. Supported on 

the diencephalon and brainstem is the cerebrum, the largest part of the brain.   
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Figure 4. The major components of the nervous system and their functional relationships. (A) 

The CNS (brain and spinal cord) and PNS (spinal and cranial nerves). (B) Diagram of the major 

components of the central and peripheral nervous systems and their function relationships 

[1]. 

The medulla oblongata, or more simply the medulla, is continuous with the superior part of 

the spinal cord.  

The medulla’s white matter contains all sensory (ascending) tracts and motor (descending) 

tracts that extend between the spinal cord and other parts of the brain. Some of the white 

matter forms protuberances on the anterior aspect of the medulla. These extensions, called 

the pyramids are formed by the large corticospinal tracts that pass from the cerebrum to the 

spinal cord. The corticospinal tracts control voluntary movements of the limbs and trunk. Just 

superior to the junction of the medulla with the spinal cord, 90% of the axons in the left  
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Figure 5. The four principal parts of the brain are the brainstem, cerebellum, diencephalon, 

and cerebrum [3]. 

pyramid cross to the right side, and 90% of the axons in the right pyramid cross to the left side. 

This crossing is called the decussation of pyramids and explains why each side of the brain 

controls voluntary movements on the opposite side of the body [3]. 

The pons lies directly superior to the medulla and anterior to the cerebellum. It provides a 

connection between the cortex of a cerebral hemisphere and that of the opposite hemisphere 

of the cerebellum. This complex circuitry plays an essential role in coordinating and maximizing 

the efficiency of voluntary motor output throughout the body. It also contains ascending and 

descending tracts along with the nuclei of cranial nerves.  

The midbrain or mesencephalon extends from the pons to the diencephalon. Like the medulla 

and the pons, the midbrain contains both nuclei and tracts. Some of the nuclei presented in 

the midbrain formed the left and right substantia nigra (Figure 6). In particular, neurons that 

release dopamine, extending from the substantia nigra to the basal nuclei (also called basal 

ganglia), help control subconscious muscle activities. Loss of these neurons is associated with 

PD. Furthermore, in the midbrain there are also present the left and right red nuclei, which 

look reddish due to their rich blood supply in their neuronal cell bodies. Axons from the 

cerebellum and cerebral cortex form synapses in the red nuclei, which help control muscular 

movements.  
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Figure 6. Anterior, transversal section of the midbrain. On the left column there are evidenced 

the principal parts of the midbrain [3]. 

The cerebellum is the second in size after the cerebrum and as the last one has a highly folded 

surface that greatly increases the surface area of its outer grey matter cortex, allowing for a 

greater number of neurons. The cerebellum contains nearly half of the neurons in the brain. It 

is posterior to the medulla and pons and inferior to the posterior portion of the cerebrum and 

it is divided in lobes: the anterior lobe and posterior lobe govern subconscious aspects of 

skeletal muscle movements; the flocculonodular lobe on the inferior surface contributes to 

equilibrium and balance. 

Three paired cerebellar peduncles attach the cerebellum to the brainstem. The superior 

cerebellar peduncles contain axons that extend from the cerebellum to the red nuclei of the 

midbrain and to several nuclei of the thalamus.  

The primary function of the cerebellum is to evaluate how well movements initiated by motor 

areas in the cerebrum are actually being carried out. When movements initiated by the 

cerebral motor areas are not being carried out correctly, the cerebellum detects the 

differences, it sends feedback signals to motor areas of the cerebral cortex. The feedback 

signals help correct the errors, smooth the movements, and coordinate complex sequences of 

skeletal muscle contractions. Aside from this coordination of movements, the cerebellum is 

the main brain region that regulates posture and balance. The presence of reciprocal 

connections between the cerebellum and association areas of the cerebral cortex suggests 

that the cerebellum may also have nonmotor functions such as cognition and language 

processing.  



 

13 
 

Damage to the cerebellum can result in a loss of ability to coordinate muscular movements, a 

condition called ataxia. Ataxia can also occur as a result of degenerative diseases like PD [3]. 

The first component of the diencephalon is the thalamus which is the major relay station for 

most sensory impulses that reach the primary sensory areas of the cerebral cortex from the 

spinal cord and brainstem. In addition, the thalamus contributes to motor functions by 

transmitting information from the cerebellum and basal nuclei to the primary motor area of 

the cerebral cortex. The thalamus also relays nerve impulses between different areas of the 

cerebrum and plays a role in the maintenance of consciousness. 

The second part of the diencephalon is hypothalamus which is located inferior to the thalamus 

and controls many body activities and is one of the major regulators of homeostasis. The 

hypothalamus controls and integrates activities of the autonomic nervous system, which 

regulates contraction of smooth muscle and cardiac muscle and the secretions of many glands. 

The epithalamus is a small region superior and posterior to the thalamus, consists of the pineal 

gland and habenular nuclei.  

The cerebrum consists of an outer cerebral cortex, an internal region of cerebral white matter, 

and grey matter nuclei deep within the white matter. In particular, the cerebral cortex is a 

region of grey matter that forms the outer border of the cerebrum. Each cerebral hemisphere 

can be further subdivided into several lobes. The lobes are named after the bones that cover 

them: frontal, parietal, temporal, and occipital lobes. Specific types of sensory, motor, and 

integrative signals are processed in certain regions of the cerebral cortex as showed in Figure 

7. 
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Figure 7. Functional areas of the cerebrum. The numbers, still used today, are from K. 

Brodmann’s map of the cerebral cortex, first published in 1909 [3]. 

Deep within each cerebral hemisphere are three nuclei (masses of grey matter), that are 

collectively termed the basal nuclei. Two of the basal nuclei lie beside each other, lateral to 

the thalamus. They are the globus and the putamen. Together, the globus pallidus and 

putamen are referred to as the lentiform nucleus. The third of the basal nuclei is the caudate 

nucleus. Together, the lentiform and caudate nuclei are known as the corpus striatum. Nearby 

structures that are functionally linked to the basal nuclei are the substantia nigra of the 

midbrain and the subthalamic nuclei of the diencephalon. Axons from the substantia nigra 

terminate in the caudate nucleus and putamen. 

A major function of the basal nuclei is to help regulate initiation and termination of 

movements. Activity of neurons in the putamen precedes or anticipates body movements. In 

addition to influencing motor functions, the basal nuclei have other roles. They help initiate 

and terminate some cognitive processes, attention, memory, and planning, and may act with 

the limbic system to regulate emotional behaviours. Disorders such as PD is supposed to 

involve dysfunction of circuits between the basal nuclei and the limbic system [3].  

The basal nuclei suppress unwanted movements and prepare motor neuron circuits for the 

initiation of movements.  
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One important functional area is the primary motor area (area 4) that contain a “map” of the 

entire body. Each region within the area controls voluntary contractions of specific muscles or 

groups of muscles. Different muscles are represented unequally in the primary motor area. 

More cortical area is devoted to those muscles involved in skilled, complex, or delicate 

movement. For instance, the cortical region devoted to muscles that move the fingers is much 

larger than the region for muscles that move the toes. This distorted muscle map of the body 

is called the motor homunculus.  

Another important functional area that is concerned with the motor association is the 

premotor area (area 6) that is immediately anterior to the primary motor area. Neurons in this 

area communicate with the primary motor cortex, the basal nuclei, and the thalamus. The 

premotor area deals with learned motor activities of a complex and sequential nature, and it 

also serves as a memory bank for such movements [3]. 

1.2.2. Peripheral Nervous System 

The motor portion of the peripheral nervous system consists of two components. The motor 

axons that connect the brain and spinal cord to skeletal muscles make up the somatic motor 

division of the peripheral nervous system, where the cells and axons that innervate smooth 

muscles, cardiac muscle, and glands make up the visceral or autonomic motor division (Figure 

4.). 

The PNS can be divided in: 

1) Somatic Nervous System (SNS) conveys output from the CNS to skeletal muscles only. 

Because its motor responses can be consciously controlled, the action of this part of 

the PNS is voluntary; 

2) Autonomic Nervous System (ANS) conveys output from the CNS to smooth muscle, 

cardiac muscle, and glands. Because its motor responses are not normally under 

conscious control, the action of the ANS is involuntary. The ANS is comprised of two 

main branches, the sympathetic nervous system and the parasympathetic nervous 

system. With a few exceptions, effectors receive innervation from both of these 

branches, and usually the two branches have opposing actions. 

Neural circuits in the brain and spinal cord orchestrate all voluntary movements. Ultimately, 

all excitatory and inhibitory signals that control movement converge on the motor neurons 
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that extend out of the brainstem and spinal cord to innervate skeletal muscles in the body. 

These neurons are known as lower motor neurons (LMNs) because they have their cell bodies 

in the lower parts of the CNS (brainstem and spinal cord). From the brainstem, axons of LMNs 

extend through cranial nerves to innervate skeletal muscles of the face and head. From the 

spinal cord, axons of LMNs extend through spinal nerves to innervate skeletal muscles of the 

limbs and trunk. Only LMNs provide output from the CNS to skeletal muscle fibres. For this 

reason, they are also called the final common pathway. Neurons in four distinct but highly 

interactive neural circuits participate in control of movement by providing input to lower 

motor neurons (Figure 8.). 

The axons of upper motor neurons extend from the brain to lower motor neurons via two 

types of pathways—direct and indirect. Direct motor pathways provide input to lower motor 

neurons via axons that extend directly from the cerebral cortex. Indirect motor pathways 

provide input to lower motor neurons from motor centres in the brainstem. Direct and indirect 

pathways both govern generation of action potentials in the lower motor neurons, the neurons 

that stimulate contraction of skeletal muscles. 

 

Figure 8. Neural circuits that regulate lower motor neurons. Lower motor neurons receive 

input directly from 1 local circuit neurons (purple arrow) and 2 upper motor neurons in the 

cerebral cortex and brainstem (green arrows). Neural circuits involving 3 basal nuclei neurons 

and 4 cerebellar neurons regulate activity of upper motor neurons (red arrows). 
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2. Lewy bodies in neurodegenerative diseases 

Neurological disorders are the leading cause of physical and cognitive disability across the 

globe, affecting approximately 15% of the worldwide population[5]. In particular, according to 

the World Health Organization (WHO) disability and death due to PD are increasing faster than 

for any other neurological disorder. Globally, the prevalence of PD has doubled in the past 25 

years with global estimates in 2019 showing over 8.5 million individuals living with PD. Current 

estimates suggest that, in 2019, PD resulted in 5.8 million disability-adjusted life years, an 

increase of 81% since 2000, and caused 329,000 deaths, an increase of over 100% since 2000. 

Even though PD has a long and rich history, the first complete clinical description of the disease 

was provided by James Parkinson in 1817 [6]. The most consistent pathological lesion of PD 

was identified as severe nerve cell loss in the pigmented pars compacta (part of the brainstem) 

of the substantia nigra with the presence there and in other brainstem regions of what 

Konstantin Tretiakoff called “corps de Lewy” or Lewy bodies (Figure 9.) [5]. 

As explained in the first chapter the one that regulates the synaptic vesicle trafficking and 

subsequently neurotransmitter release in order to guarantee the communication in the 

neurons is the alpha-synuclein (aSyn). In PD, insoluble forms of aSyn accumulate as inclusions  

 

Figure 9. Lewy body in a substantia nigra neuron. 
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in Lewy bodies. α-Synuclein is a neuronal protein, predominantly located in the presynaptic 

terminal [7]. Although the process of Lewy body formation is not fully understood a 

hypothetical scheme can be observed in Figure 10.   

As a means of better understanding the progression of the Lewy Bodies pathology, in 2003 the 

Braak staging system was proposed (Figure 11.). According to this labelling, the lesions begin 

in the lower brainstem and involve the intermediate reticular zone, anterior olfactory nucleus, 

and nucleus basalis membrane (NBM), with midbrain regions being preserved (stage 1). It 

continues progressing into the caudal raphe nuclei (nuclei found in brainstem) and in the 

gigantocellular reticular nucleus of the medulla oblongata (stage 2). This stage is considered 

asymptomatic or pre-symptomatic and may explain early non-motor (autonomic and 

olfactory) symptoms in PD and DLB, preceding much of the motor and sensory dysfunctions. 

During stage 3 the disease entered in the substantia nigra and Lewy body lesions begin to form 

in the pars compacta. Finally, stage 4 is characterized by the further damage to the neocortex 

 

 

Figure 10. Hypothetical scheme of Lewy body formation in neurons. α-Synuclein exists in 

equilibrium between monomers and tetramers. Under pathologic conditions, the tetramer-

monomer ratio decreases. α-synuclein tend to oligomerize, and toxic oligomers can disrupt 

membranes. Disrupted membranes, organelles, α-synuclein oligomers and fibrils are involved 

in the Lewy body formation [8]. 
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Figure 11. Braak stages for Parkinson’s Disease (a) and the different stages for Dementia with 
Lewy bodies (b). 

and can be correlated with the symptomatic stages of PD. Once the abnormal protein 

inclusions reach stages 5 and 6, it is spread through the cortex with devastating effects on 

complex sensory association cortex regions and prefrontal and temporal areas (e.g. 

hippocampus) involved in executive brain functions, and learning and memory[9]. 

Lewy body disease falls into three major clinicopathologic subtypes: PD, PDD and DLB. 

Although there are differences between studies, up to 83% of patients with PD eventually 

develop dementia later in the disease course.  

2.1. Parkinson’s Disease 

Parkinson’s disease was first described by Dr. James Parkinson in 1817 as a “shaking palsy.” The 

disease consists of a chronic, progressive neurodegenerative process characterized by both 

motor and nonmotor symptoms. The term parkinsonism is a symptom complex used to 

describe the motor features of PD, which include resting tremor, bradykinesia, and muscular 

rigidity. PD is the most common cause of parkinsonism, although a number of secondary 

causes also exist, including diseases that mimic PD and drug-induced causes  [10]. 

In Parkinson disease, pigmented neurons of the substantia nigra (Figure 12.) and other 

brainstem dopaminergic cell groups degenerate. Loss of substantia nigra neurons results in 

reduction of dopamine in the dorsal aspect of the putamen (part of the basal nuclei) and 

causes many of the motor manifestations of Parkinson disease. Parkinson may have a genetic 

correlation as about 10% of patients have a family history of this disease [11]. 
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Predominant brainstem Lewy pathology is seen in PD, whereas more diffuse Lewy pathology 

involving the brainstem, limbic and neocortical regions is typical of DLB and PDD. 

The muscular stiffness that occurs in PD is due to degeneration of neurons that release 

dopamine. Involuntary skeletal muscle contractions often interfere with voluntary movement. 

As example, the muscles of the upper limb may alternately contract and relax, causing the 

hand to shake. This shaking, called tremor, is the most common symptom of PD. Also, muscle 

tone may increase greatly, causing rigidity of the involved body part [3]. 

Parkinson’s disease is the result of neurons in the substantia nigra pars compacta dying. These 

neurons release dopamine into the corpus striatum. Without that modulatory influence, the 

basal nuclei are stuck in the indirect pathway, without the direct pathway being activated. The 

direct pathway is responsible for increasing cortical movement commands. The increased 

activity of the indirect pathway results in the hypokinetic disorder of PD. 

In summary, PD affects many areas of the nervous system and different types of neurons. 

However, much focus has been put on neurons in a region of the midbrain called the substantia 

nigra pars compacta. This region forms part of a major pathway in the brain that's critical for 

facilitating movements. As explained before in PD, dopaminergic neurons in the substantia 

nigra gradually die, leading to the malfunction of this pathway and the characteristic motor 

problems. As dopamine neurons are lost microglia, is thought to take up the resulting cellular 

debris, triggering an immune response. Once activated they release inflammatory cytokines  

 

Figure 12. Principal hallmarks of Parkinson's disease[12] 
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which activate neighbouring microglia and astrocytes. Chemicals released by activated 

microglia and astrocytes have been shown to injure neurons. With time, more areas of the 

nervous system develop the pathology. In particular is thought that the Lewy bodies pass from 

one neuron to another. 

2.2.  Dementia with Lewy Body 

Dementia with Lewy bodies is a heterogeneous neurodegenerative disease in which alpha-

synuclein (the precursors of the Lewy Bodies) is the main pathological trait. However, 

concomitant Alzheimer’s disease (AD) and cerebrovascular disease are common in DLB, 

contributing to disease heterogeneity [13]. 

In the clinical setting, essential for a diagnosis of DLB is dementia, defined as a progressive 

cognitive decline of sufficient magnitude to interfere with normal social or occupational 

functions, or with usual daily activities. Prominent or persistent memory impairment may not 

necessarily occur in the early stages but is usually evident with progression. Deficits on tests 

of attention, executive function, and visuo-perceptual (visuospatial) ability may be especially 

prominent and occur early. Hallucinations in DLB may occur spontaneously, independent of 

visuospatial and perception impairment, and possibly related to Lewy Bodies in the temporal 

lobe[14]. However, this disease is often misdiagnosed and consequently, patients are prone to 

non-beneficial or even harmful cures [15]. 

Research suggests that median survival after DLB diagnosis is 3-4 years, but there are rapidly 

and slowly progressive forms. Most individuals with DLB die of complications of the disease. 

Comparing the rates of detection of DLB in autopsy studies to those diagnosed while in clinical 

care indicates that as many as one in three diagnoses of DLB may be missed  [16]. The extent 

of Lewy body neuronal damage is a key determinant of dementia in the Lewy body disorders. 

In contrast to AD, in which the hippocampus is among the first brain structures affected, 

and episodic memory loss is typically the earliest symptom, memory impairment occurs later 

in DLB (Figure 13.). 
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Figure 13. The medial temporal lobe volume is relatively preserved in DLB, which is similar to 

normal controls (NC), whereas atrophy is obvious in AD [17] . 

2.3. Parkinson’s Disease Dementia  

The condition in which PD patients without dementia have cognitive deficits is called mild 

cognitive impairment (PD-MCI) and usually the patients affected by it are developing 

dementia. Early cognitive deficits PD may represent the earliest manifestation of dementia, 

providing an optimum intervention period to slow or even prevent the manifestation of 

dementia. 

PDD subjects are those identified as patients having motor symptoms for a 12-month period 

or more prior to the development of features of DLB.  

Patients with dementia demonstrate impaired attention, quantified by cognitive reaction time 

and vigilance, and accompanied by fluctuations in attention.  

In DLB, cognitive decline either antedates or occurs simultaneously with parkinsonism, 

whereas in PDD it follows the constellation of parkinsonism.  

In particular PDD may be considered as the last two stages of Braak, and it affects the cortex 

with devastating effects on complex sensory association cortex regions and prefrontal and 

temporal areas involved in executive brain functions and learning and memory. The subjects 

affected by PDD have an expected life from 5 to 7 years, although this can vary from patient 

to patient. 

2.4. Parkinson’s Disease and Lewy Body Disease Spectrum 

Currently, the neurological community is facing a classification problem in the group of 

intraneuronal synucleinopathies, which covers the proper clinical and differential diagnosis 

among PD, PDD, and DLB. 
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Lewy body disease (LBD) is a spectrum of disorders characterized pathologically by alpha-

synuclein inclusions in the brainstem, subcortical nuclei, limbic and neocortical areas, and 

clinically by attentional disturbance, Parkinsonism, dementia, and visual hallucinations. Two 

clinical diagnoses within the LBD spectrum are DLB and PDD. Since the two syndromes present 

considerable clinical overlap, it has been argued that DLB and PDD may represent the same 

disease entity [18]. 

The pathological delineation of PD compared to PDD/DLB lies in the stage of progression of 

pathology through the brain; PD patients have inclusions restricted to the brainstem and limbic 

regions, whilst in PDD and DLB patients Lewy body pathology extends to the neocortex. While 

a significant difference between the DLB and PDD is the location of the Lewy bodies in the 

brain. In Parkinson’s they are found mainly in the substantia nigra which is in the midbrain, 

whereas in DLB they are more widely distributed throughout the cerebral cortex. Clinically DLB 

closely resembles PDD. If the physical symptoms precede the cognitive symptoms by one year, 

a diagnosis of PDD will be made; if the onset of cognitive symptoms precedes or starts at the 

same time the physical symptoms start it is considered to be DLB. 

Parkinson's disease dementia would be the diagnosis when PD is well established before the 

dementia occurs (one-year rule). 

In some cases, PDD exhibited bilateral loss of grey matter in the occipital lobe compared to PD. 

The different propagation of Lewy bodies in PD and PDD can be observed in Figure 14. 
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Figure 14. Propagation of Lewy Bodies in PD and PDD. The age represented on the axe is just 

an illustration of the majority of cases, there are many younger subjects affected by these 

diseases. 
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3. Magnetic Resonance Imaging 

Humans are multicellular organisms with high complexity. The structure and function of the 

human body have been a matter of great interest for millennia and over the last few centuries, 

considerable progress has been made in the understanding of these aspects. It is partly due to 

several new techniques that have made possible the increase of the knowledge concerning 

the human body. One technique that has improved considerable the understanding of the 

human being is the Magnetic Resonance Imaging (MRI), a non-invasive imaging method that 

has recently been widely used in medical imaging. 

Comparing MRI to other useful imaging modalities such as planar x-ray, x-ray computed 

tomography (CT), positron emission tomography (PET) and single photon emission computed 

tomography (SPECT), MRI does not use ionizing radiation to form an image. Magnetic 

Resonance Imaging uses the magnetic properties of water (over 60% of the human body) to 

form an image. The properties associated with water are influenced by the environment and 

change sensitively with degeneration and pathology; and in many cases, MRI can be used to 

detect these alterations. 

Structural brain imaging of PD subjects via magnetic MRI may provide a robust in vivo method 

to identify macroscopic cerebral atrophy. As the contribution to cognitive decline in PD 

includes alpha-synuclein (as explained above: precursor of the Lewy Bodies) accumulation, 

which can be associated with structural brain changes. 

3.1. Basic Physic  

Medical Magnetic Resonance imaging uses the signal from the nuclei of hydrogen atoms (H) 

(from the water molecules) for image generation. A hydrogen atom consists of a nucleus 

containing a single proton and a single electron. Apart from its positive charge, the proton 

possesses spin (Figure 15.), an intrinsic property of nearly all elementary particles making the 

proton to rotate around its axis.  

As a rotating mass (m), the proton has a magnetic moment (B) (that makes it behaves like a 

small magnet) and an angular momentum. The net resulting magnetization (M) is the sum of 

all the elementary moments.  
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Figure 15. The spin of a Hydrogen atom. 

From a macroscopic point of view, no resulting field can be observed directly since each spin 

has its own, independent, random orientation. However, when placed in a powerful external 

magnetic field (B0), the spin directions will line up parallel or anti-parallel to the primary 

magnetic field with a small majority aligning with the direction of the primary magnetic field. 

More precisely, each spin rotates within a cone around B0 (spin precession). The frequency of 

rotation, called the Larmor frequency, is related to the magnetic field B0 through the 

gyromagnetic ratio γ unique to each element, by the Larmor equation (1), where ω₀ is the 

angular precession frequency. 

ω₀ = ỿ B₀                                 (1)                                                                

With the protons aligned with the main magnetic field they can be influenced by using 

externally applied radio frequency (RF) or RF pulses: when this take place, the protons are 

putted down into an alternate plane and also precessed together in phase. The angle depends 

on the strength and duration of the RF pulse. Putting the protons down into another plane 

makes a change in their longitudinal magnetization. Normally the majority of protons are going 

with the flow and following the direction of the external magnetic field but applying an extra 

energy called excitation, protons have the ability to go against the current and instead orient 

themselves in the opposite direction against that of the magnetic field: this is called anti-

parallel.  The protons will also process together in phase and this synchronization is called the 

transverse magnetization of the protons.  

The net magnetization M can be decomposed into two components (Figure 16.): a longitudinal 

component (Mz), parallel to B0 and a transverse component (Mxy), orthogonal to B0. At  
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Figure 16. The net magnetization vector M, decomposed into a longitudinal component Mz 

and a transverse component Mxy. 

equilibrium, after a sufficient exposure time to B0, the transverse component Mxy vanishes. 

All the individual spins are indeed precessing, but they are all out of phase with each other. 

It is possible to perturb the difference in the number of atoms between the two energy states 

by applying an oscillating electromagnetic (RF) pulse toward the area of the body to be 

examined. This method involves applying a much weaker field than B0 at the Larmor frequency 

of the target nuclei and to apply it through a rotating reference frame orthogonal to B0. This 

causes the particles in that area to spin in a different direction and move from a lower (parallel 

direction) to a higher (antiparallel direction) energy state as a result of absorbing energy. After 

the excitation the energy source is removed, and some protons will return to the low energy 

state (parallel direction) releasing RF energy at the same frequency. This emitted energy is 

detected by highly sensitive antennas to capture the MR signal. 

Application of RF excitation pulse (B1) synchronized to the precessional frequency of the 

protons causes absorption of energy and displacement of the sample magnetic moment from 

equilibrium conditions. The resonance frequency corresponds to the energy separation 

between the protons in the parallel and antiparallel directions. Protons oriented parallel and 

antiparallel to the external magnetic field are separated by an energy gap ∆E. These protons 

will go from the low to the high energy level only when the RF pulse is equal to the precessional 

frequency, so Mz changes from the maximal positive value at equilibrium, through zero, to the 
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maximal negative value. The degree of Mz rotation by the B1 field as it is applied along the x-

axis or along the y-axis perpendicular to Mz is also called the flip angle. A torque is applied on 

Mz, rotating it from the longitudinal direction into the transverse plane. The rate of rotation 

occurs at an angular frequency equal to:  

ω₁= ỿ B1                                       (2)                                                                       

 as for the Larmor equation. When a RF pulse (B1 field) is applied over a time t, the 

magnetization vector displacement angle ϑ is determined as:  

          ϑ = ω₁ t = ỿ B1 t                            (3)                                                             

and the product of the pulse time and B1 amplitude determines the displacement of Mz. So 

flip angles describe the rotation of Mz away from the z-axis, small flip angles (less than 45 

degrees) produce small transverse magnetization and large flip angles (75 to 90 degrees) 

produce large transverse magnetization.  

The flip angle induced by an RF pulse depends on the strength and duration of the pulse and 

as explained above, the vector flipped is the net magnetization vector. At the beginning of a 

standard spin echo sequence usually there is the application of a 90-degree pulse: this means 

that after the RF pulse has been applied the net magnetization vector is perpendicular to its 

original orientation, this orientation is achieved by eliminating longitudinal magnetization and 

generating a transverse magnetization vector by synchronizing proton precession. During 

recovery longitudinal magnetization increases and transverse magnetization decreases the 

protons diphase: this looks like a spiralling of the net magnetic vector along the z axis (Figure 

17.). This spiralling of the net magnetization vector induces an electrical signal by a process 

called free induction decay. The recovery of the longitudinal magnetization of a proton occurs 

exponentially the point at which 63 percent of the longitudinal magnetization has been 

recovered is called the T1 time; the time at which 63 percent of the transverse magnetization 

has been lost is called the T2 time. The T1 and T2 time is unique to each tissue type and with 

this the MRI sequences can be adjusted to highlight the differences (weighting).  

Careful manipulation of magnetic field gradients and radiofrequency pulses make it possible 

to construct extraordinarily detailed images of the brain at any location and orientation with 

good resolution. The strong magnetic field and radiofrequency pulses used in MRI scanning  
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Figure 17. Excitation phase: the energy given by the RF pulse flips the net magnetization 

vector M of an angle α (here α = 90◦). 

are harmless, making this technique completely non-invasive. Interesting aspect is the fact 

that by changing the scanning parameters, images based on a wide variety of different contrast 

mechanisms can be generated. For example, conventional MR images take advantage of the 

fact that hydrogen in different types of tissue (e.g., gray matter, white matter, cerebrospinal 

fluid) have slightly different realignment rates, meaning that soft tissue contrast can be 

manipulated simply by adjusting when the realigning hydrogen signal is measured. Different 

parameter settings can also be used to generate images in which gray and white matter are 

invisible but in which the brain vasculature stands out in sharp detail [1]. 

3.1.1. T1: Spin-lattice interaction 

The spin lattice relaxation is based on the energy exchange between protons and surrounding 

molecules. This energy dissipation is characterized by the restoration of the longitudinal 

component to its equilibrium value. This recovery process is modelled by an exponential 

function characterized by a time constant T1 (Figure 18.).  

For solid and slowly moving structures, the hydration layer permits only low-frequency 

molecular tumbling frequencies so there is almost no spectral overlap with the Larmor 

frequency. For unstructured tissues and fluids in bulk water, there is only a small spectral 

overlap with the tumbling frequencies. In each of these situations, release of energy is 

constrained and T1 relaxation time is long. For moderately sized proteins and fatty tissues,  
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Figure 18. Spin lattice relaxation describes the longitudinal component recovery as a function 

of time and is characterized by the T1 constant. 

molecular tumbling frequencies are most conducive to spin-lattice relaxation because of a 

larger overlap with the Larmor frequency and result in a relatively short T1 relaxation time. 

The T1 time is strongly dependent on the physical characteristics of the tissues and their 

associated hydration layers with values in the range of 0.1 to 1 s for soft tissues, and 1 to 4 s 

in aqueous tissues. When there is an increase of the main magnetic field strength, there is also 

an increase in the Larmor precessional frequency which causes a decrease in the overlap with 

the molecular tumbling frequencies and a longer T1 recovery time[19]. 

T1-weighted image is one of the basic pulse sequences in MRI and demonstrates differences 

in the T1 relaxation times of tissues. A T1-weighted image relies upon the longitudinal 

relaxation of a tissue's net magnetization vector. Basically, not all tissues get back to 

equilibrium equally quickly, and a tissue's T1 reflects the amount of time its protons spins 

realign with the B0. Fat quickly realigns its longitudinal magnetization with the B0, and it 

therefore appears bright on a T1-weighted image. Conversely, water has much slower 

longitudinal magnetization realignment after an RF pulse, and therefore has less transverse 

magnetization after a RF pulse. Thus, water has low signal and appears dark. If T1-weighted 

images didn't have short time of repetition (TR), then all the protons would recover their 

alignment with the main magnetic field and the image would be uniformly intense. Selecting 
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a TR shorter than the tissue’s recovery time allows one to differentiate them, such as with 

tissue contrast. 

3.1.2. T2: Spin-spin interaction 

Spin-spin relaxation refers to the loss of net magnetization in the transverse plane related to 

protons dephasing. Spins do not only give up their energy to surrounding molecules but also 

to other neighbouring nonexcited spins. This process is also modelled by an exponential 

function characterized by a time constant T2. 

T2-weighted scans differentiate anatomical structures mainly on the basis of T2 values, for 

example the scanning parameters are set (long TR/long time of echo (TE)) to minimize T1 

relaxation effects. 

This dephasing is actually further increased by local magnetic field inhomogeneities, since the 

Larmor frequency will also be nonuniform throughout the region. A time constant slightly 

different to T2, T2*, is therefore used. The transverse component induces a current in a coil, 

known as Free Induction Decay (FID). The T2* constant can be evaluated through the convex 

envelop of the FID curve. 

3.1.3. Data acquisition 

The image obtained with MRI is built thanks to a repetition of a series of events that allow to 

sample the volume of interest. For this process there is the need of the: TR that is the period 

between B1 excitation pulses. During the TR interval, T2 decay and T1 recovery occur in the 

tissues. Then there is the TE, that is the time between the excitation pulse with the B1 RF pulse 

and the appearance of the peak amplitude of an induced echo, which is determined by 

applying a 180-degree RF inversion pulse or gradient polarity reversal at a time equal to TE/2; 

the time of inversion (TI), that is the time between an initial inversion/excitation (180 degrees) 

RF pulse that produces maximum tissue saturation, and a 90-degree pulse. During the TI, Mz 

recovery occurs. The record pulse converts the recovered Mz into Mxy, which is then measured 

with the formation of an echo at time TE. 

Saturation is a state of tissue magnetization. At equilibrium, the protons in a material are 

unsaturated with full Mz amplitude. The first excitation (B1) pulse in the sequence produces 

the largest transverse magnetization and recovery of the longitudinal magnetization occurs at 

the T1 time constant over the TR interval. Because the TR is less than at least five times the T1 
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of the sample, Mz recovery is incomplete and consequently less Mxy amplitude is generated 

in the second excitation pulse. The steady state equilibrium is reached after the third pulse. In 

the steady state equilibrium, the amount of Mz recovery and Mxy signal amplitude are 

constant, and the tissues achieve a state of partial saturation. Tissues with long T1 experience 

a greater partial saturation than do tissues with short T1. 

It is possible to acquire data with different pulse sequences. The principal sequences are three: 

gradient echo (GE), inversion recovery (IR), spin echo (SE). The combination of one sequence 

with a spatial localization method provides “contrast-weighted” images. 

The relaxation of both longitudinal and transverse magnetization in different tissues provides 

the basic contrast for image formation in MRI. The FID contains this information, but it is never 

measured directly. Instead “echoes” are produced using a combination of RF pulses and 

magnetic field gradients. Spin echoes (produced by RF pulses) and gradient echoes (produced 

by magnetic field gradients) both rephase spins that have lost phase coherence. When spins 

are refocused and come into phase with each other, an echo is produced. This echo signal is 

recorded and used for image reconstruction.  

In the MRI the data acquired during the scanning are data points that fill the k-space and will 

form the final image with specific mathematical tool. The acquisition of the data is done filling 

up the k-space. The k-space is a matrix of numbers representing spatial frequencies signals (a 

measure of how often sinusoidal components, determined by the Fourier transform, repeated 

themselves per unit of distance) acquired during the MRI scanning, during the evolution and 

decay of the echo. The k-space represents what is acquired with the MRI, without any 

mathematical process: it is only with the use of the inverse Fourier transformation that is 

possible to reconstruct the image. Overall, it is possible to see the cells, which make up the 

matrix, putted on a rectangular grid with principal axes kx (along the rows) and ky (along the 

columns). Each axis is symmetric in the centre of k-space, ranging from -f to +f along the rows 

and the columns. The individual points (kx, ky) contain information about spatial frequency 

and phase information of every pixel in the final image, so they do not correspond one-to-one 

with the individual pixels. When k-space is full (at the end of the scan) the data are 

mathematically processed with the inverse Fourier transformation to produce a final image. 
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Field of View (FOV) and k-space are strictly connected, and both define the resolution of the 

image. FOV is the distance in mm or cm in which the image is displayed, and it is divided into 

hundreds of elements called pixels. Both FOV and pixels width determine the number of 

digitized samples in the k-space that must be obtained to reconstruct an image with the 

desired resolution. FOV is inverse proportional to the spaces between the samples in k-space. 

The greyscale image is obtained performing the inverse two-dimensional Fourier 

transformation, by sequentially applying the one-dimensional transforms for each row, and 

then for each column. The time to acquire an image is determined by the data needed to fill 

the fraction of k-space that allows the image to be reconstructed.  

Most of the MRI scans involve the construction of a three-dimensional image from a set of 

two-dimensional slices with specific thickness, a three-dimensional image acquisition is 

performed, in which the anatomical structures are split into a number of volume elements, 

the voxels. It is possible to regulate the thickness of each slices: an increment of the slice 

thickness will cause the collection of more different tissues in the 2D slice, this will cause 

blurring which will decrease the spatial resolution in the image. In the end, there are no more 

pixels that compose the k-space (pixels have a 2D dimensions), but 3D elements, called voxels. 

Three-dimensional image acquisition requires the use of a “slab-selective” RF pulse to excite a 

large volume of protons simultaneously; then two-phase gradients are applied in the slice 

encode and phase encode directions. 

An inverse three-dimensional Fourier transformation is applied for each column, row, and 

depth axis in the image matrix. Volumes that are obtained can be either isotropic, voxels have 

the same size in all three directions, or anisotropic where at least one dimension is different 

in size.  

3.1.4. MRI components 

A tube-like structure, the bore, holds the components of the MRI machine:  

• a magnet, which produces a uniform and STATIC magnetic field 𝐵0;  

• gradient coils that produce a gradient of the static magnetic field; 

• RF coils that transmit and receive signal from the body. 
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Spatial localization is essential for creating MR images and determining the location of discrete 

sample volumes for MR spectroscopy. This is achieved by superimposing linear magnetic field 

variations on the main magnetic (B0) field to generate corresponding position-dependent 

variations in precessional frequency of the protons. Inside the magnet bore, three sets of 

gradients reside along the logical coordinate axes (x, y, and z) and produce a magnetic field 

variation determined by the magnitude of the applied current in each coil set (Figure 19.). 

3.2. The role of MRI in dementia 

Neuroimaging techniques aimed at studying structural changes of the brain may provide useful 

information for the diagnosis and the clinical management of patients with dementia[20].  

The role of neuroimaging in dementia nowadays extends beyond its traditional role of 

excluding neurosurgical lesions. Radiological findings may support the diagnosis of specific 

neurodegenerative disorders and sometimes radiological findings are necessary to confirm the 

diagnosis. As a matter of fact, the MRI technique was widely put in application to investigate 

patterns of gray matter (GM) atrophy. [14] 

Nowadays, the majority of the researcher utilising MRI focus their attention on Alzheimer’s 

disease or confronting this last one with other types of diseases. With nearly as high number 

 

Figure 19. MRI scanner with 3 gradient coils: X (red), Y (yellow) and Z (turquois) 

 direction, to select the slice, column and row of the patient’s anatomy. 



 

35 
 

as the studies on the AD there is also an increase of the application of this technique of interest 

on the patients with PD and PDD (Figure 20.).  

 

Figure 20. Transaxial MRI fluid-attenuated inversion recovery image showing global atrophy 

and enlarged ventricles in a Parkinson’s disease with dementia subject[21]. 
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4. Machine Learning  

Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on the development 

of algorithms and statistical models that enable computers to learn and make predictions. 

Machine learning plays a significant and increasingly important role in the field of medicine: it 

can be used by medical professionals to develop better diagnostic tools to analyse medical 

images. This type of machine learning algorithm could potentially help doctors make quicker, 

more accurate diagnoses leading to improved patient outcomes. 

Machine Learning models are based on training a machine by providing it large quantities of 

data. The machine will follow a set of rules, known as an algorithm, to analyse and draw 

conclusion from the data. The more data the machine analyses, the more accurate it becomes 

in carrying out tasks such as make classification, making future predictions and helping in 

decision making.  

Over the past years, the ML subfield, the Deep Learning (DL) has gained remarkable popularity, 

as it has superior results in analysing unstructured data such as medical images, text data, and 

audio data  [22]. The relationship between AI, ML and DL can be observed in Figure 21.  

 

Figure 21. Hierarchy of Artificial Intelligence. On the left side of the figure there are three lists 

representing typical algorithms for each category [22]. 
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4.1. Classifiers in Machine Learning 

A classifier in machine learning is an algorithm that automatically orders or categorizes data 

into one or more of a set of classes. 

A classifier is a function that takes the values of various features (independent variables or 

predictors, in regression) in an example (the set of independent variable values) and predicts 

the class that the specific example belongs to (the dependent variable). In a neuroimaging 

setting, the features are the voxels, and the class could be the type of stimulus (for an fMRI 

session); at example, the subject was looking at when the voxel values were recorded  [23]. A 

classifier has several parameters that have to be learned from training data (a set of examples 

used to fit the parameters of the model). The learned classifier is essentially a model of the 

relationship between the features and the class label in the training set.  

Depending on the process that have to be followed and the data to be analysed, there are 

different types of classification algorithms as: 

• Decision Tree 

• Naїve Bayes Classifier 

• K-Nearest Neighbors (kNN)  

• Support Vector Machines (SVM) 

• Artificial Neural Networks (ANN) 

• Logistic Regression (LR) 

The decision tree classifier creates the classification model by building a decision tree. Each 

node in the tree specifies a test on an attribute, each branch descending from that node 

corresponds to one of the possible values for that attribute. Each leaf represents a class labels. 

Instances in the training set are classified by navigating them from the root of the tree down 

to a leaf, according to the outcome of the tests along the path [24]. One particular type of 

decision trees is Gradient-Boosted Decision Trees (GBTs). 

A Naive Bayes classifier is a probabilistic machine learning model that’s used for classification 

task. The core of the classifier is based on the Bayes theorem. It assumes that the presence of 

a particular feature in a class is unrelated to the presence of any other feature. 

https://monkeylearn.com/blog/what-is-a-classifier/#decision-tree
https://monkeylearn.com/blog/what-is-a-classifier/#naive-bayes
https://monkeylearn.com/blog/what-is-a-classifier/#knn
https://monkeylearn.com/blog/what-is-a-classifier/#svm
https://monkeylearn.com/blog/what-is-a-classifier/#ann
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The simplest classification procedure is called Nearest Neighbour (kNN), and it doesn’t even 

involve explicitly learning a classification function. Classification of a test example is done by 

finding the training set example that is most similar to it by some measure and assigning the 

label of this nearest neighbour to the test example. Nearest Neighbour classification can work 

very well if there is a small number of features, it tends to fare worse in situations where there 

are many features and only a few are informative. In the typical MRI study, generally there are 

many more features than examples. The effect of this is that it will generally be possible to find 

a function that can classify the examples in the training set well, without this necessarily 

meaning that it will do well in the test set: this phenomenon is called overfitting. 

The objective of the support vector machine algorithm is to find a hyperplane in an N-

dimensional space (where N is the number of features) that distinctly classifies the data points. 

To separate the classes of data points, there are many possible hyperplanes that could be 

chosen. Hyperplanes are decision boundaries that help classify the data points. Data points 

falling on either side of the hyperplane can be attributed to different classes. Furthermore, the 

dimension of the hyperplane depends upon the number of features. The objective is to find a 

plane that has the maximum distance between data points of both classes. Maximizing the 

margin distance provides some reinforcement in order for the future data points to be 

classified with more confidence. The SVM is one of the most utilise classifier in the clinical 

field.  

Logistic Regression is used when the dependent variable (target) is categorical and is based on 

the application of a sigmoid function in order to return the probability of a label. 

4.2. Artificial Neuronal Network  

Artificial Neuronal Network (ANN) are virtual network structures that are designed, in their 

topology and behaviour, in ways that resemble an extremely simplified model of neuron cells 

and their connections in the biological brain (Figure 22.). A biological neuron contains 

dendrites that receive signals from other neurons and a cell body that sums those signals. As 

explained in the first chapter once sufficient input is received, the cell fires and transmits a 

signal through its axon to other cells. The artificial neuron models the parts of the biological 

neurons as input (𝑋𝑖), weight (𝑊𝑖), bias (B), summation function (∑), activation function (f) and 

corresponding output signal (y).  
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Figure 22. Comparation between a biological neuron and an artificial neuron. 

The ANN consists of nodes: artificial neurons, organized into layers, with weighted connections 

between neurons in the layers immediately preceding and following them. The neurons in 

input layers receive the raw data, and the output layers produce the resulting outcome. In 

between there are typically a series of hidden layers that process the data. They are activated 

to different degrees based on the data features that the previous layer observed and 

propagated further. As a result, the output layer can provide some estimated output. The 

output layer in general uses a different activation function from the hidden layers. 

Typically, a network with more than tree hidden layers is considered to be a deep neural 

network.  

Artificial Neuronal Network also utilize more advanced techniques to improve their 

performance, such as the backpropagation algorithm which retroactively adjusts the weights 

between neurons by comparing the output of labelled data with the initial input in an attempt 

to minimize errors and improve the performance of the neural network. 

The backpropagation algorithm primarily purpose is updating network weights with the 

objective of reducing the cost function (network error). One of the most used backpropagation 

algorithms is the gradient descent method, by which network parameters are incrementally 

adjusted to reduce a cost function. The approach involves multivariate calculus, since the cost 

function to be minimized is a combination of weights, biases, and tasks. 
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Similar to the classical machine learning classifier, the ANN learn form a training dataset, 

validate the first results by applying the algorithm on a validation dataset in order to prevent 

overfitting, and at the end it is applied on the testing dataset. 

Being able to perform well on previously unobserved inputs is called generalization. A model 

is said to underfit the data when it can neither model the training data nor generalize to new 

data, which means there are not enough neurons or epochs (a single pass through all of the 

training data). Alternately, a model might be able to fit a training set but not do a good job at 

fitting test sets. A model that fits training but not test data is said to overfit the data, meaning 

that there are too many neurons or epochs. 

4.3. Deep Learning   

Deep learning is a subset of machine learning that uses artificial neural networks to mimic the 

learning process of the human brain.  

Deep learning distinguishes itself from classical machine learning by the type of data that it 

works with and the methods in which it learns. It eliminates some of data pre-processing that 

is typically involved with machine learning. These algorithms can ingest and process 

unstructured data, like text and images, and it automates feature extraction, removing some 

of the dependency on humans. 

Machine learning and deep learning models are capable of different types of learning as well 

such as: supervised learning, unsupervised learning, and reinforcement learning. Supervised 

learning uses labelled datasets to categorize or make predictions requiring some human 

intervention to label input data correctly. In contrast, unsupervised learning does not require 

labelled datasets, and instead, it detects patterns in the data, clustering them by any 

distinguishing characteristics. Reinforcement learning is a process in which a model learns to 

become more accurate for performing an action in an environment based on feedback in order 

to maximize the reward. 

Deep neural networks consist of multiple layers of interconnected nodes, each building upon 

the previous layer to refine and optimize the prediction or categorization. This progression of 

computations through the network is called forward propagation. The input and output layers 

of a deep neural network are called visible layers. The input layer is where the deep learning 

model ingests the data for processing, and the output layer is where the final prediction or 
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classification is made. Deep learning algorithms are complex and there are different types of 

neural networks to address specific problems or datasets.  

Two types of ANNs used in deep learning, are convolutional neural networks (CNN) and 

recurrent neural networks (RNN).  

• Convolutional neural network: These neural networks are composed of many layers, 

each layer breaking down the input data into simple information, such as points. Then, 

through the different intermediate convolutional levels, information is aggregated to 

identify structured information such as edges or borders. Gradually the information is 

composed and recognized as structured objects. These neural networks are used to 

analyse images and extract information such as the presence or absence of specific 

objects; 

•  Recurrent neural network: It can store certain pieces of information and consider the 

time dimension during the learning phase. They are employed to keep track of the 

intrinsic knowledge contained within a sequence or time series. 

4.4.  Convolutional Neuronal Network   

CNN is a feed-forward neural network (forward direction of the flow of information, through 

the hidden nodes (if any) and to the output nodes, without any cycles or loops) that learns by 

itself via kernel (grid-structured) optimization.  

Convolutional neural networks led to major improvements in image recognition tasks, 

especially between 2011 and 2015 as the top-5 error-rate decreased from over 25% to around 

4% in the ImageNet challenge[25]. This good result is given by the fact that for each neuron in 

the fully-connected layer 10,000 weights would be required for processing an image sized 100 

× 100 pixels. However, applying cascaded convolution (or cross-correlation) kernels, only 25 

neurons are required to process 5x5-sized tiles.  

“Convolutional neural networks are designed to work with grid-structured inputs, which have 

strong spatial dependencies in local regions of the grid” [25]. The most obvious example of 

grid-structured data is a 2-dimensional image. This type of data also exhibits spatial 

dependencies because adjacent spatial locations in an image often have similar colour values 

of the individual pixels. An additional dimension captures the different colours, which creates 

a 3-dimensional input volume. Therefore, the features in a convolutional neural network have 

https://en.wikipedia.org/wiki/Feed-forward_neural_network
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dependencies among one another based on spatial distances. The vast majority of applications 

of convolutional neural networks focus on image data, although one can also use these 

networks for all types of temporal, spatial, and spatiotemporal data. 

In its basic form convolution means that many inputs are provided and transformed into one 

output via two functions. Mathematically there is a function providing a smoothed estimate 

of the input x at time point t (Eq. 4)[26]. The dimension of the input space to a convolutional 

layer can be defined as nq × nq × dq for the qth  layer. The kernel, also called filter, in the qth 

layer always has the same depth dq as the input space. The width and height of the input space 

are usually the same, so that the input space, also called spatial input field, is a square. This is 

also common for the kernel where the dimension can be defined as Fq × Fq × dq . Common 

values for F are three or five [25]. 

       s(t) = (x ∙ w)(t)                                   (4) 

The kernel is applied to every possible position of the input space. Therefore, the number of 

possible positions defines the width and height of the output space which is the next hidden 

layer. The width and height of the next layer are defined as can be seen in Eq. 5. 

       nq + 1 = nq − Fq + 1        (5) 

One result of the convolution operation is that the width and height of the next hidden layer 

are dependent on the number of possible positions of the filter which means that the 

dimension of the next layer depends mainly on the dimension of the filter. There are two 

possible parameters that can be set to change the dimension of the next hidden layer. These 

are stride and padding. 

Stride is defined as the jump of the kernel from the current to the next pixel centre. This means 

that the location of the kernel centre changes by S in both dimensions for an image [25]. The 

higher the stride is the smaller the resulting feature map will be. In Figure 23. a convolution 

operation is shown with a 3×3 kernel and a stride of 2. The convolution operation would 

usually result in a feature map of dimension 3 × 3. The effect of a stride of 2 not 1 is that the 

dimension of the feature map is reduced to 2 × 2. 

Padding is used when it is not beneficial to reduce the dimension of the feature map because 

this means a loss of information along the borders of the input space. To increase the 
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dimension of the feature map pixels are added around the input space. Under the assumption 

that the dimension of the input space and the next hidden layer should be the same, the 

number of pixels that are added around the input space is defined by (Fq −1)/2. This increases 

the width and height by Fq − 1 and is exactly the loss of dimension due to the convolution 

operation. The values of the pixels is 0 which is called zero padding. In Figure 24. the dimension 

of the feature map increases to 5 × 5 if zero padding and a stride of 1 is used. 

Another typical part of convolutional networks are pooling layers. The pooling function 

summarises a neighbourhood of the dimension n × n into one value. It is supposed to make 

outputs invariant to translations in the input space, so that smaller changes in the input space 

do not change the output [26]. 

 

Figure 23. Example of a convolution operation using a 3x3 kernel and a stride of 2 with. The 

numbers are randomly selected. The kernel centres are coloured to the depending feature 

map output. 

The goal is also to cancel out less crucial information. For that a filter with n × n dimension is 

defined and a stride similar to the stride used in the convolution operation. Possible pooling 

methods are maximum, average and global pooling. Max-pooling is used most of the times 

and takes the maximum value of a n × n region. Pooling is commonly used with a stride larger 

than 1 so that the dimension of each activation map is reduced. Max-pooling is defined in Eq. 

6. where ai are the pixel values and µ(n, n) defines the window function with the dimension n 

× n. 
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Figure 24. Example of a convolution operation using a 3x3 kernel with padding zero padding 

and a stride of 1. 

𝑎𝑗 =  max
𝑁 × 𝑁

(𝑎𝑖
𝑛 × 𝑛𝜇(𝑛, 𝑛))                                      (6) 

CNNs are particularly useful because they provide highly accurate results, especially when a 

lot of data is involved as it is in the case of MRI.  An example of CNN and the process it follows 

can be observed in Figure 25.  

A particular CNN is the 3D Convolutional Neural Network (3D CNN) that is a type of neural 

network architecture designed to handle three-dimensional data, such as volumetric images 

or video data. Unlike 2D CNN (the classical type of CNN with the characteristics explained 

above) that operates on 2D images (height x width), 3D CNN handles three-dimensional data 

(height x width x depth). This can include volumetric medical images (es. MRI), video 

sequences, or any data with spatiotemporal properties. Figure 26 depicts the 3D CNN's basic 

design. 
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Figure 25.Example of an entire process of an CNN. 

 

Figure 26. Simple 3D CNN Architecture [27]. 
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5. Literature review 

Two systematic literature searches were performed in order to have an overview of the newest 

as well as the oldest aspects of the three pathologies explained above. These searches were 

also conducted as a mean to understand how machine learning was used to classify the 

pathologies and which classifier emerged as the most effective. The main focus on both 

searches was the Lewy bodies, being this the aspect in common of all of three diseases, as can 

be observed from Figure 27.  

The first search focussed on the difference between DLB and PDD/PD. Due to the lack of 

databases access for DLB, it made it necessary to perform the second search that identify the 

Lewy bodies in PD and PDD/DLB.   

 

Figure 27. Main differences and similarity between PD, PDD and DLB. 
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5.1. Literature Search Strategy 

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

framework[28] was used to guide this literature search process. Four electronic databased 

were consulted, namely: SCOPUS, PubMed, Sage Journals and ScienceDirect.  

5.1.1. DLB and PDD/PD 

The search was structured into 4 main concepts described by the roots  “Dementia”, related 

to the general terminology of all the disease that have in commune the decline in cognitive 

abilities,  “ Lewy bodies”, “Lewy body”, “LB” , “DLB”, linked to the first disease of interest, 

“Parkinson”, “PDD”, related for the second one and “Machine learning” ,“ML” for the tool 

utilized for the classification of the two diseases. The Boolean operators “OR” and “AND” were 

used to combine the terms within and between the 4 concepts, while “Title/Abstract” was 

used as a search filed limit. Initially, no time constrains, or open access restrictions were 

applied. The last research was performed on the 1st of September 2023. 

5.1.2. PDD and PD 

The search was structured into 4 main concepts described by the roots  “Lewy bodies” and 

“Lewy body”, related to the abnormal aggregations of protein that develop inside nerve 

cells affected by PD, PDD and DLB, "Parkinson" and "PD", linked to the first disease of 

interest,  "Parkinson's disease dementia" and "PDD", related for the second one and 

“Classification” in order to difference the two disease. The Boolean operators “OR” and “AND” 

were used to combine the terms within and between the 4 concepts, while “Title/Abstract” 

was used as a search filed limit. Initially, no time constrains, or open access restrictions were 

applied. The last research was performed on the 3rd of October 2023. 

5.2. Selection process, data analysis and study quality 

In order to remove duplicates and closed access articles, the database search results were 

exported to Zotero reference management software. 

5.2.1. DLB and PDD/PD 

The following inclusion criteria for title, abstract and full-text analysis were considered: 

➢ Studies that examined a population composed exclusively of alive humans; 

https://en.wikipedia.org/wiki/Protein_aggregation
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Nerve_cell
https://en.wikipedia.org/wiki/Nerve_cell
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➢ Studies that considered the “ML” abbreviation as “Machine learning” and not 

“millilitre”; 

➢ Studies that explored the differences between DLB and PDD(or PD) with or without 

considering differences between other diseases and not both DLB/PDD (considered as 

a unique disease) compared to other diseases; 

➢ Studies that not considered only the pharmacological aspect between the two 

diseases; 

➢ Studies that examined both pathologies in the classification results. 

A table in Microsoft Excel was created to collate the data. The records were organized based 

on study design, participants characteristics (number of subjects, age, sex), data collection 

technique, algorithm, strength point, weak point. The age data was reported as mean ± 

standard deviation (SD). The sex was indicated as a count. Quality of appraisal was performed 

according to Joanna Briggs Institute Critical Appraisal tools checklist [29]. 

5.2.2. PDD and PD 

The following inclusion criteria for title, abstract and full-text analysis were considered: 

➢ Studies that examined a population composed exclusively of alive humans; 

➢ Studies that make a classification using Machine Learning Classifiers;  

➢ Studies that explored the differences between PDD and PD with or without considering 

differences between other diseases and not both PD/PDD compared to other diseases; 

➢ Studies that not considered only the pharmacological aspect between the two 

diseases; 

5.3. Literature Search Results 

5.3.1. DLB and PDD/PD 

As shown in Figure 28., 84 studies were collected through database search. After the removal 

of 10 duplicates and 32 closed access articles, just 42 studies were eligible for title screening. 

Subsequently, 6 articles were excluded for title and 25 were removed by abstract, leaving 10 

studies for the full-text examination. Lastly, only 4 studies were included in literature review 

for the quality of appraisal.  
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Table 1. reports a description of the 4 selected studies. Overall, 691 subjects were examined, 

out of which 377 (55%) were males and 314 (45%) females. Two studies had approximately 

the same number of males and females ([30],[31]), the other two considered nearly the double 

of males than females.  

The age variability was between 58.4±11.6 ([32]) and 75±8 ([30]). [31] and [32] used FDG-PET 

as data collection technique, while [30] used SPECT. Only [32] did not perform the data 

collection using nuclear medicine imagining modalities. There were different machine learning 

algorithms performed in all 4 studies.  

As can be observed in Figure 29 and Figure 30. there were a variety of different diseases among 

the subjects. Only 12% of the total number of subjects suffered of DLB, from which [33] had 

the higher number. 18% of the total number of subjects suffered of PD, while only 11% had 

PDD, among this [30] and [32] didn’t contain any subject suffering of PDD. Also subjects 

suffering of Alzheimer or Alzheimer disease had a valuable percentage (13%). Only [30] didn’t 

contain health control subjects and the percentage of the total number of subjects was 15%. 

The higher percentage was given by other disease and/or unknown disease (31%), the majority  

 

Figure 28. Flowchart of the literature search for DLB and PDD/PD. 
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Table 1. Summary of the eligible studies. The records are organized based on study design, 

participants characteristics (number of subjects, age, sex), method for data collection, Machine 

Learning algorithm, strength point, weak point. Continuous feature (age) is reported as mean 

± Standard Deviation (SD). Categorical variable (sex) is indicated as counts. 

Ref. Study 

design 

Number 

of 

subjects 

Age (years) Sex  

M/F 

Method 

for Data 

collection 

Machine 

Learning 

algorithm 

Strength Point Weak Point 

[30] Cohort 239 75±8       

67±15 

107/132 SPECT GBTs       

LR       

KNNs 

Specificity of 

abnormalities 

The total 

amount of 

information 

used for ML 

training is a 

limitation 

[32] Cohort 189 58.4±11.6 

72.1±7.6 

114/76 FDG-PET SSM/PCA 

+ GMLVQ 

Good 

interpretability 

PD and DLB 

were often 

confused 

[33] Cohort 98 - 74/24 EEG KNNs     

LR      

SVM  

Classification 

between DLB 

and PDD (not 

DLB and PD) 

Focused 

more on the 

AD-DLB than 

PD-DLB 

[31] Case-

control 

165 59.72±6.89 

73.78±5.83 

82/83 FDG-PET SVM Prediction of 

PDD  

No specific 

distinction 

between DLB 

and PDD but 

just an end 

test to 

understand if 

the classifier 

is also 

sensitive to 

DLB. 
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being contained in [30].   

 

Figure 29. Percentage of subjects according to type of disease 

 

Figure 30. Column diagram of diseases with counts and cumulative frequencies for each 

study and for the cumulative population. 
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5.3.2. PDD and PD 

As shown in Figure 31., 64 studies were collected through database search. After the removal 

of 14 duplicates and 28 closed access articles, just 22 studies were eligible for title screening. 

Subsequently, 4 articles were excluded for title and 12 were removed by abstract, leaving 6 

studies for the full-text examination. Lastly, only 2 studies were included in literature review 

for the quality of appraisal. Table 2. reports a description of the 2 selected studies. Overall, 

832 subjects were examined, out of which 465 (55,89%) were males and 367 (44,11%) females. 

One study had approximately the same number of males and females ([31]), the other one 

considered more males than females.  

The age variability was between 46 ([34]) and 73.78±5.83 ([31]). Both studies used FDG-PET 

as method for data collection. There were different machine learning algorithms performed in 

all 4 studies. Both of the studies used SVM as Machine Learning algorithm for classification, 

while [34] used more than one classifier.  

 

Figure 31. Flowchart of the literature search. 
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Table 2. Summary of the eligible studies. The records are organized based on study design, 

participants characteristics (number of subjects, age, sex), method for data collection, Machine 

Learning algorithm, strength point, weak point. Continuous feature (age) is reported as a range 

is not normally distributed and as mean ± Standard Deviation (SD) in the other cases. 

Categorical variable (sex) is indicated as counts. 

Ref. Study 

design 

Number 

of 

subjects 

Age 

(years) 

Sex  

M/F 

Method 

for data 

collectio

n 

Machine 

Learning 

algorith

m 

Strength 

Point 

Weak Point 

[34] Cross-

sectional 

667 46-83 383/

284 

FDG-PET GLM 

SSM/PC

A 

SVM 

SVM 

predicted 

PDD from 

PD 

Focus on AD 

[31] Case-

control  

165 59.72 

±6.89 

73.78 

±5.83 

82/ 

83 

FDG-PET SVM Prediction 

of PDD 

Small sample 

size used for 

SVM training, 

may have 

resulted in 

overfitting 

 

As can be observed in Figure 32. and Figure 33. there were a variety of different diseases 

among the subjects. Only 8% of the total number of subjects suffered of PD, from which [34] 

had the higher number. 15% of the total number of subjects suffered of PD/DLB. Also subjects 

suffering of AD had a valuable percentage (23%), while [31] didn’t contain any patient suffering 

of AD. 18 % of the total were health controls. The higher percentage was given by other disease 

and/or unknown disease (36%), the majority being contained in [34].   
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Figure 32. Percentage of subjects according to type of disease 

 

Figure 33. Column diagram of diseases with counts and cumulative frequencies for each 

study and for the cumulative population. 
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5.4. Discussion  

From both searches emerged that researchers are more focused on Alzheimer than other 

types of dementia as can be observed in Figure, Figure, Figure and Figure.  

Even though the terms utilised for the searches were not the same, [31] was considered in the 

results of DLB and PDD/PD and, also in the results of PD and PDD. 

As the two searches were concentrated on distinct pathologies there was the necessity to 

consider different weak point and inclusion criteria.   

It emerged that despite the pathologies analysed the most exploited classifier was SVM, being 

more effective in high dimensional spaces. 

5.4.1. DLB and PDD/PD 

This literature review chapter, systematically investigate the scientific data relative to DLB and 

PDD (or PD) classified by different Machine learning algorithms. Overall, 4 studies were 

included. Initially, no time constrains, or open access restrictions were applied. This was done 

in order to understand how many articles were published regarding this subject of interest. 

Even though, no time restriction was imposed, all of the 4 records considered at the end were 

published in 2022, highlighting the fact that the classification of different neurological disease 

using Machine Learning tools has just recently gain interest. The typically constrain regarding 

English language (being English the language mostly used in science) was not applied as just 

one article was written in another language (study that was eliminated in Zotero as it was a 

closed access article).  

The alive human criterion was considered as the intention of this study is to classify and offer 

faster the treatments to subjects affected by dementia in a clinical environment even though 

most of the data collection regarding DLB are performed post-mortem.   

In order to explore the differences between PDD (or PD) and DLB, and since some studies 

considered DLB and PDD as a unique disease (LBD), only studies that examined the two 

diseases separately were considered.  

Additionally, many studies focused their attention on finding new treatments for dementia. 

However, these articles were not taken into account as this study aimed to find (and maybe 

create) an improved classification before focusing on the pharmacological aspect. 
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Data form 691 subjects, with almost uniformly distribution among males (55%) and females 

(45%), were analysed (Table 1, Figure 29., Figure 30.). Only [31] and [32] had subjects suffering 

of PDD. In particular [30] had an accuracy of 0.61 ± 0.16. Three of these articles considered 

had a cohort study design demonstrate that an accurate diagnostic needs a long period of 

follow up of the patients just one used retrospective chart review study (case-control).  

The data collected from nuclear medicine imagining modalities are more easily interpretable 

even for the machine learning algorithms, in fact only [32] did not perform the data collection 

using this type of data collection technique.  

Another interesting aspect that emerged from this literature review was the fact that two of 

the study ([30],[31]) were done in Asia, from which one was done in collaboration with Canada 

and the other two([31],[32]), were performed in Europe. Figure 34. shows the map that 

evidence the places where the studies were conducted.  

 

Figure 34. Map of the different places where the studies were performed. The lighter blue 

represent the study [30], followed by [31],[32],[33]. 
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5.4.2. PDD and PD 

This literature review chapter, systematically investigate the scientific data relative to PD and 

PDD/DLB classified by different Machine learning algorithms. Overall, 2 studies were included. 

Exactly as the first search, no time constrains, or open access restrictions were applied. This 

was done in order to understand how many articles were published regarding this subject of 

interest. Even though, no time restriction was imposed, one of the articles was published in 

2022 ([31]), and the other was published in 2018 ([34]) highlighting the fact that the 

classification of different neurological disease using Machine Learning tools has just recently 

gain interest. The typically constrain regarding English language (being English the language 

mostly used in science) was not applied as just one article was written in another language 

(study that was eliminated by title).  

The alive human criterion was considered as the intention of this study is to classify and offer 

faster the treatments to subjects affected by dementia in a clinical environment. 

In order to explore the differences between PD and PDD, only studies that examined the two 

diseases separately were considered.  

Additionally, many studies focused their attention on finding new treatments for dementia. 

However, these articles were not taken into account as this study aimed to find (and maybe 

create) an improved classification before focusing on the pharmacological aspect. 

Data form 832 subjects, with almost uniformly distribution among males (55,98%) and females 

(45,11%), were analysed (Table 2., Figure 32., Figure 33.).  

The data collected from nuclear medicine imagining modalities are more easily interpretable 

even for the machine learning algorithms, in fact both studies analysed had collected the data 

with FDG-PET. 

The following part shows the most relevant aspects of the four studies analysed.  

The first article found from the literature search is the one written by K. Nakajima et all. The 

authors concentrated their attention on building “a multivariable model incorporating 

machine learning (ML) that could accurately differentiate abnormal profiles on 123I-ioflupane 

images and diagnose Parkinson syndrome or disease and dementia with Lewy bodies 

(PS/PD/DLB)” [30].  
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The type of study design applied in this article was a retrospective one, considering 123I-

ioflupane single-photon emission computed tomography images acquired from 239 patients 

at two hospitals. Patients with suspected neurodegenerative diseases and dementia including 

PD, PS and DLB were classified as having Parkinson syndrome or disease and DLB.  

The machine learning algorithms used in this article are GBTs, LR, and KNNs, for the 

classification of 123I-ioflupane images. The articles also highlights the importance of combining 

age with image features for improved diagnosis. 

The article focuses on the identification of image features related to abnormality and the 

explainable results obtained from four contributing variables. The diagnostic accuracy for a 

diagnosis of PS/PD/DLB was 0.86 ± 0.04 for SE.  

The second study that was considered in this chapter of the literature review is the one done 

by Rick van Veen et all. The aim of this study was to apply a Generalized Matrix Learning Vector 

Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB 

in order to discriminate between these neurodegenerative conditions. Rick van Veen et all. 

determined the diagnostic performance by performing ten times repeated ten fold cross-

validation and then analysed the validity of the classification system by inspecting the GMLVQ 

space[32].  

The results of this study are shown in Figure 35.  

The third study to be examined is the one done by Jennings et all. Different form the previous 

two, this study extracted spectral properties from EEG signals. Their aim was to create an 

accurate diagnostic approaches for clinical use capable of differentiation of Lewy body 

dementia from other common dementia [33]. 

80 dementia patients were recruited for the study; this included 32 AD patients (22 male, 10 

female), 26 DLB patients (21 male, 5 female) and 22 PDD patients (20 male, 2 female). Along 

with these dementia patients, 18 age-matched healthy controls (11 male, 7 female) were also 

recruited for between-group comparisons. 
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Figure 35. Average testing confusion matrix of the differential diagnostics problem between 

(AD, DLB, HC and PD). Averages and standard deviations are extracted from the cross-

validation procedure[31]. 

“For this study, participants underwent in-depth neurological and neuropsychiatric testing. 

The Cambridge Cognition Examination (CAMCOG) and Mini-Mental state exam (MMSE) were 

used to assess cognitive function in patients, with both tests being commonly used for 

assessing the extent of a participant’s dementia symptoms. Additionally, the Neuropsychiatric 

inventory test was performed to assess the severity and frequency of hallucinations for 

participants (NPI hal).”[32]  

“In total, 150 s of resting state EEG was acquired using a 128 sintered Ag/AgCl electrode 

Waveguard cap (ANT Neuro, The Netherlands) placed in a 10-5 positioning system for each 

participant. Channels were recorded at a sample rate of 1024 Hz with an electrode impedance 

of no more than 5kΩ. Before the analysis of qEEG features, all EEG pre-processing and cleaning 

was carried out blinded to group membership using EEGLAB MATLAB functions (R2012; 

MathWorks, Natick Massachusetts) for both EC and EO recordings.”[32] 

From the original 98 subjects, 65 were used for analysis, including 15 HC, 12 AD, 21 DLB and 

17 PDD subjects. The other 33 patients (2 HC, 13 AD, 4 DLB, 4 PDD) were removed from the 

dataset due to participants not having at least 20 s of combined resting state eyes closed or 
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eyes open EEG after cleaning. EEG segments were analysed over 5 cortical regions: frontal (F), 

central (C), temporal (T), parietal (P) and occipital (O). 

Several supervised machine learning methods were evaluated using the k-fold cross-validation 

method in MATLAB and WEKA for the classification. Feature selection was also performed in 

these two programming language using neighbourhood component analysis Selected features 

were used to train machine learning classifiers utilising 10-fold cross-validation. Table n+7 

summarized the classification results between AD and DLB patients using the k-nearest 

neighbour algorithm, logistic regression, and a quadratic support vector machine. 

Jennings et all. also investigated the capability of a multiclass classification approach to 

differentiate HCs from non-healthy participants and then differentiate each dementia type 

from other participants determined to be non-healthy. They were also analysing the 

differences between diseases; in particular the accuracy for DLB-PDD was of 0.61±0.16.  

The fourth study that has been selected in the literature review process is the one written by 

Booth S. et all. Their aim was to develop a metabolic pattern that predicts future dementia 

development in patients with PD-MCI, given the fact that approximately 90% of patients with 

PD-MCI progress to PDD. The data used was from FDG-PET of 165 patients with PD-MCI, DLB 

or other diseases, who were followed for a period of up to 8 years.  The FDG-PET method was 

used as “brain imaging techniques have the potential to show changes in brain function that 

occur in patients in the early stages of PDD and can thus be used as a predictive 

biomarker”[31]. All FDG-PET image preprocessing was carried out using the standard 

procedure implemented in Statistical Parametric Mapping 12 (SPM) software [31]. 

Booth S. et all. used the SVM to build a classifier that predicts whether patients will maintain 

stable MCI or progress to PDD based on FDG-PET scans at baseline. The classifier achieved 

good sensitivity (86.96%) and specificity (85.00%) with k-fold cross-validation. 

The last article considered in this chapter is the one by Katako et all. where general linear 

model, scaled subprofle modeling and SVM were examined. Among the tested classification 

methods, SVM with Iterative Single Data Algorithm produced the best performance, with a 

sensitivity of 0.84 and a specificity of 0.95. Theye have applied the same classification 

algorithm to four different datasets from ADNI, Health Science Centre (Winnipeg, Canada), 

Dong-A University Hospital (Busan, S. Korea) and Asan Medical Centre (Seoul, S. Korea). The 
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data analysed confirmed that the SVM showed the best performance in prediction of future 

development of AD from the prodromal stage (mild cognitive impairment), and that it was also 

sensitive to other types of dementia such as Parkinson’s Disease Dementia and Dementia with 

Lewy Bodies [34].  

The main weak point of this article was the fact that it focused on the AD not on the differences 

between PD and PDD/DLB.  
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6. Materials and methodology 

6.1.   Data Collection and Preprocessing 

6.1.1. Data Collection 

In this study, two datasets from the Parkinson’s Progression Markers Initiative (PPMI) [35] 

database were collected. PPMI database for neuroimages is considered to be a landmark, 

international, and multicenter study to research the biomarkers that are responsible for 

Parkinson’s Disease progression[36]. PPMI aims to provide to the broad research community 

a comprehensive, standardized, longitudinal data set and biosample library to speed 

breakthroughs and enable validation toward clinical application of new findings.  

Data collected by PPMI are derived from a wide range of imaging modalities and formats, such 

as MRI and Digital Imaging and Communications in Medicine (DICOM) format. According to 

the standards committee, DICOM is the international standard for transmitting, storing, 

retrieving, printing, processing, and displaying medical imaging information [37]. A DICOM file 

contains a header and image data sets combined into one file. The header consists of tags such 

as patient demographics, including the patient’s name, date of birth, age, gender, and it can 

contain study parameters such as image dimensions, acquisition parameters, pixel intensity, 

and matrix size. 

The MRI scans selected for the study were based on particular imaging protocols described in 

Table 3.  

The first dataset collected contains 29 subjects affected by prodromal PD, while the second 

one includes 30 subjects with PDD. The prodromal PD refers to the stage at which individuals 

do not fulfill diagnostic criteria for PD (bradykinesia and at least 1 other motor sign) but do 

exhibit signs and symptoms that indicate a higher than average risk of developing motor 

symptoms and a diagnosis of PD in the future. Some participants in the prodromal cohort 

received a diagnosis of PD at the baseline visit. 

Out of 59 subjects, 32 (54,24%) were males and 27 (45,75%) were females. In Figure 36. it can 

be observed the percentage of sex of the total number of subjects, while in Figure 37. is 

showed the percentage of sex based on the two classes.   

https://www.dicomstandard.org/
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Table 3. Imaging protocol for the scans of the two datasets. 

Imaging Protocol Values 

Modality MRI 

Research Group PD and PDD 

Visit Baseline-Month12-Month24 

Acquisition Plane AXIAL 

Acquisition Type 3D 

Field Strength 1.5-3.0 Tesla 

Flip Angle 1-8-9-15-20-30 Degree 

Scanner Manufacturer Philips-Siemens-GEMedicalSystems 

Pixel Spacing 0.5-1.0 mm (X & Y) 

Slice Thickness 0.9-2.0 mm 

Weighting T1 

 

 

Figure 36. Percentage of sex based on males and females. 

54%

46%

Sex Percentage (N=59)

Males Females
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Figure 37. Sex percentage for the two classes. 

The age variability was between 45,06 years and 77,02 years for Prodromal PD subjects, and 

between 33,5 years and 80,6 years for PDD subjects.  

In this study, the oldest image considered was acquired on 06/01/2011 on a PDD subject, while 

the most recent image was acquired on 08/09/2023 on a subject with prodromal PD.  

6.1.2. Data Preprocessing  

After data selection, all the MRI images were pre-processed in Colab short for Colaboratory, a 

product from Google Research. More technically, Colab is a hosted Jupyter notebook service 

that requires no setup to use, while providing free access to computing resources including 

GPUs. Colab allows anybody to write and execute arbitrary python code through the browser, 

and is especially well suited to ML, data analysis and education. Its main advantage is the on-

cloud nature.  

The first step, after uploading the data from the source folder, was to convert the DICOM files 

in Neuroimaging Informatics Technology Initiative (NIfTI) files. NIfTI is sponsored by the US 

National Institute of Mental Health and the National Institute of Neurological Disorders and 

Stroke and defines a file format for neuroimaging data that is meant to meet the needs of the 

MRI research community. In particular, NIfTI was developed to support inter-operability of 

tools and software through a common file format. Out of the initial 63 DICOM files (some 

0,4828
0,6

0,5172
0,4

PD PDD

Percentage of SEX FOR THE TWO CLASSES (N(PD) = 30) 
(N(PDD) = 29) 

Males Females

https://nifti.nimh.nih.gov/
https://nifti.nimh.nih.gov/
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subjects had more MRI scans), only 55 were correctly converted to NIfTI files as some DICOM 

files may not contain the necessary image data or metadata required for a meaningful 

conversion. From this two scans were discarded for the inhomogeneity with the atlas used for 

the registration.  

As explained above, PPMI is a multicenter study, therefore, the imaging scans acquired in the 

study contained temporal and spatial differences. In order to maintain a constant modality 

between all the scans it was required that all the scans needed to be in the same space such 

as Montreal Neurological Institute (MNI) or individual brain atlases using statistical parametric 

mapping (IBASPM)[38]. Therefore, to transform the PPMI MRI data that has been collected 

from multiple centers across the globe to a fixed coordinate system, an image registration 

procedure was performed. Image registration is a process where a traversal is performed on a 

fixed image (atlas) to find the alignment parameters and coordinated so that an unknown or 

an unseen image can be aligned similarly to fixed one. The MRI scans obtained from the PPMI 

database were considered as the moving image while the MNIPD25-T1MPRAGE-1 mm atlas 

[39] was considered as the fixed image. The MNI-PD25 was obtained from NeuroImaging and 

Surgical Technologies Lab (NIST). In the NIST lab there is the development of computer vision 

image processing algorithms for analysis of medical images that are focused on registration 

and segmentation. These techniques are applied to different research projects that include: 

image guided neurosurgery, disease diagnosis, and prognosis and quantification for diseases 

such as multiple sclerosis, epilepsy, schizophrenia and degenerative diseases such as 

Alzheimer’s dementia and Parkinson [40].  

The MNI-PD25 is a collection of 6 multi-contrast brain MRI atlases, accompanied by the 

associated probabilistic maps for three main brain tissue types, segmented labels for 8 

subcortical nuclei, and a co-registered histology-based atlas. Derived from 3T MRI scans of a 

cohort of 25 Parkinson’s disease patients, the atlases were obtained by nonlinearly co-

registering each patient’s anatomy to a common space. The atlases are in MNI PCBM152 

stereotactic space, with 3 image resolutions available: 1 × 1 × 1 mm3, 0.5 × 0.5 × 0.5 mm3 

and 0.3 × 0.3 × 0.3 mm3. The one applied in this study was 1 × 1 × 1 mm3 (MNIPD25-

T1MPRAGE-1 mm atlas). The specifications of the MNIPD25-T1MPRAGE-1 mm atlas are 

described in Table 4.  

https://nifti.nimh.nih.gov/
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Table 4. Specification of MNIPD25-T1MPRAGE-1 mm atlas 

Image Parameters Values 

Dimensions  193 × 229 × 193 pixels 

Interslice Gap 0.0 mm 

Slice Thickness 1.0 mm 

Spacing 1 × 1 × 1 mm3 

Plane Sagittal  

Before the registration, the MNIPD25-T1MPRAGE-1 mm was reoriented from Left-to-right, 

Posterior-to-Anterior, Inferior-to-Superior (LPI) to Right-to-Left, Anterior-to-Posterior, Inferior-

to-Superior (RAI) in order to have the same orientation as PPMI detests.  

The registration as well as the orientation of the MRI scans was performed using one of the 

most effective normalization tools known as advanced normalization tools Python (ANTsPy) 

[41]. ANTsPy is used particularly in the field of imaging research for extracting important 

information from complex imaging datasets to perform preprocessing on MRI. The registration 

of the acquired MRI scans with the MNIPD25-T1MPRAGE-1 mm atlas was performed using 

translation normalization. 

The second step was to normalize the scan. Normalize the data refers to the process of 

standardizing the intensity values of the image to a common scale or range. This is done to 

make the data more comparable across different subjects, imaging sessions, or scanners. The 

method applied in this study was Z-Score Normalization, also known as standardization, a 

method that scales the intensity values to have a mean of 0 and a standard deviation of 1. 

The last step of the preprocessing was the bias field correction that refers to the process of 

removing intensity variations caused by non-uniformities in the image acquisition process. The 

bias field, known as the shading or inhomogeneity field, can result from factors such as 

variations in radiofrequency (RF) coil sensitivity, magnetic field inhomogeneities, or other 

imperfections in the imaging system. The presence of a bias field can affect the accuracy of 

quantitative analyses and image interpretation. Bias field correction aims to restore the 

original intensity distribution of the tissue by compensating for these non-uniformities. The 

bias field correction process involves iteratively estimating and correcting the bias field. This 

can be computationally intensive, especially for high-resolution images. To speed up the 
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process shrink factor of 4 was applied. Figure 38. shows the pipeline followed to perform the 

dataset pre-processing with the scans with before and after each step.  

6.2.   Materials and Methods 

The main premise of the study focusses on the classification of MRI scans in PDD and PD using 

C3D Model for Keras (C3DKeras) [42]. The methodology was primarily divided into four stages: 

MRI scan acquisition from the PPMI database; data preprocessing; C3DKeras and finally the 

results and performance evaluation of the C3D Model for Keras architecture based on 

classification matrices.  

6.2.1. C3DKeras 

C3DKeras, as the name suggests, is an adaptation of a convolutional 3D neural network origi-

nally developed for Caffe in the paper by Du et al. [42] in order to make it compatible with 

Keras. This model is in turn a modification of the BVLC Caffe model, which was trained on the 

Sports-1M dataset which contains video clips of various sports in order to recognize the type 

of sport contained in each video clip. 

C3DKeras is an effective approach for spatiotemporal feature learning. 3D ConvNets are more 

suitable for spatiotemporal feature learning compared to 2D ConvNets. In particular, a 

homogeneous architecture with small 3 × 3 × 3 convolution kernels in all layers is among the 

best performing architectures for 3D ConvNets. Compared to 2D ConvNet, 3D ConvNet has the 

ability to model temporal information better owing to 3D convolution and 3D pooling 

operations. In 3D ConvNets, convolution and pooling operations are performed spatio-

temporally while in 2D ConvNets they are done only spatially.  

The first request of C3DKeras was to have 112 × 112 images, in order to do so the MRI scans 

where cropped considered the measured requested.  

As explained above the C3DKeras was pre-trained on sports video clips that were split into 

non-overlapped 16-frame clips which were then used as input to the networks. In order to 

maintain the characteristics of C3DKeras, the MRI scans considered in this study were also split 

in blocks of 16 slices. For those scans that could not be divided in groups of 16 slices the zero 

padding was applied. For zero padding is intended that process in which there are added black  

 

https://gist.github.com/albertomontesg/d8b21a179c1e6cca0480ebdf292c34d2#c3d-model-for-keras
https://gist.github.com/albertomontesg/d8b21a179c1e6cca0480ebdf292c34d2#c3d-model-for-keras
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Figure 38. Pipeline of preprocessing the MRI data. 
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slices in order to fulfil the requirement of the number for each block. The black and white 

images were after, converted in coloured images.        

The networks have 5 convolution layers and 5 pooling layers (each convolution layer is 

immediately followed by a pooling layer), one flatten layer, 2 fully-connected layers and a 

softmax loss layer to predict action labels. The summary of the CD3Keras architecture can be 

observed in Table 5. 

Table 5. Summary of C3DKeras model showing layer names, output shapes and parameters. 

Layer Type Output Shape Parameters 

conv1 Convolutional 3D (None, 16, 112, 112, 64) 5248 

pool1 Max Pooling 3D (None, 16, 56, 56, 64) 0 

conv2 Convolutional 3D (None, 16, 56, 56, 128) 221312 

pool2 Max Pooling 3D (None, 8, 28, 28, 128) 0 

conv3a Convolutional 3D (None, 8, 28, 28, 256) 884992 

conv3b Convolutional 3D (None, 8, 28, 28, 256) 1769728 

pool3 Max Pooling 3D (None, 4, 14, 14, 256) 0 

conv4a Convolutional 3D (None, 4, 14, 14, 512) 3539456 

conv4b Convolutional 3D (None, 4, 14, 14, 512) 7078400 

pool4 Max Pooling 3D (None, 2, 7, 7, 512) 0 

conv5a Convolutional 3D (None, 2, 7, 7, 512) 7078400 

conv5b Convolutional 3D (None, 2, 7, 7, 512) 7078400 

zeropad5 Zero Padding 3D (None, 2, 8, 8, 512) 0 

pool5 Max Pooling 3D (None, 1, 4, 4, 512) 0 

flatten_2 Flatten (None, 8192) 0 

fc6 Dense (None, 4096) 33558528 

dropout 6 Dropout (None, 4096) 0 

fc7 Dense (None, 4096) 16781312 

dropout 7 Dropout (None, 4096) 0 

fc8 Dense (None, 487) 1995239 
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6.2.2. Training strategy  

Once pre-processed, the entire dataset (100%) was split into 80% of data for training and 20% 

for testing. Subsequently, from the training dataset 20% was reserved for the internal 

validation useful for monitoring the training in order to evaluate the necessity or not of tuning 

the hyperparameters.  

The optimization algorithm used for training of C3DKeras and modify the model parameters 

to minimize loss is Adam (short for Adaptive Moment Estimation), described in the paper of 

Kingma  [43] in 2015. Adam is an adaptive learning rate algorithm designed to improve training 

speeds in DL and reach convergence quickly. It customizes each parameter’s learning rate 

based on its gradient history, and this adjustment helps the neural network learn efficiently as 

a whole [43]. 

6.2.3. Statistics  

Once trained, the classifier can be used to determine whether the features used contain 

information about the class of the example. If the classifier is correctly implemented, it ought 

to be able to predict the classes of examples it hasn’t seen before (test dataset). The typical 

assumption for classifier learning algorithms is that the training (and testing) examples are 

independently drawn from an example distribution. An evaluation of a classifier is based upon 

its performance on any test set from the same distribution as shown in Figure 39. The 

performance of a classifier is given by some evaluation functions like Sensitivity (Eq. 7), 

Accuracy (Eq. 8), F1-score (Eq. 9) where: True Positive (TP) is when the ML predicted a person 

disease when is actually suffering form that disease, True Negative (TN) is when the classifier 

predicted as healthy a person who is actually healthy; the False Negative (FN) is when the 

classifier has found absence of a disease when the disease is present; the False Positive (FP) is 

when ML predicted the presence of a disease when the disease is absent.  

For the purpose of providing a visual representation of the performance of the classifier, the 

AUC (Area Under the Curve) ROC (Receiver Operating Characteristics) curve can be used. AUC 

- ROC curve is a performance measurement for the classification problems at various threshold 

settings. ROC is a probability curve and AUC represents the degree or measure of separability; 

it tells how much the model is capable of distinguishing between classes. Higher the AUC, the 

better the model is at distinguishing between patients with the disease and no disease. The  
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Figure 39. “A classifier is learned from the training set, examples whose labels it can see, and 

used to predict labels for a test set, examples whose labels it cannot see. The predicted labels 

are then compared to the true labels and the accuracy of the classifier – the fraction of 

examples where the prediction was correct – can be computed.” [23] 

SE =
TP

TP+FN
         (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                     (8) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 ∙ 

𝑇𝑃 

𝑇𝑃+𝐹𝑃
∙

𝑇𝑃

𝑇𝑃+𝐹𝑁
𝑇𝑃

𝑇𝑃+𝐹𝑃
+ 

𝑇𝑃

𝑇𝑃+𝐹𝑁

                                           (9) 

ROC curve is plotted with True Positive Rate (TPR) against the False Positive Rate (FPR) where 

TPR is equal to the sensitivity and FPR equal to one minus the Specificity. 

6.3.   Ablation Study  

The original meaning of “Ablation” is the surgical removal of body tissue. The term “Ablation 

Study” has its roots in the field of experimental neuropsychology of the 1960s and 1970s, 

where parts of animal’s brains were removed to study the effect that this had on their 

behaviour. 

In the context of ML and DL, “Ablation Study” has been adopted to describe a procedure where 

certain parts of the network are removed (or changed or inserted), in order to gain a better 

understanding of the importance of each step.  

With the aim of improving the accuracy, the sensitivity, and the area under the curve of the 

C3DKeras, 4 main experiments were conducted as can be observed in Figure 40.  

https://www.dictionary.com/browse/ablation
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Figure 40. The workflow of improving the performance of the identification of PDD subjects: 

four experiments were conducted; in the experiment 0 neither class weighting nor 

hyperparameters were performed; in the experiment 1 class weights were add; in the 

experiment 2 some layers were unfrozen and in the experiment 4 the hyperparameters tuning 

was executed. 

6.3.1.   Experiment 0: Pre-trained C3DKeras 

The first experiment also called the “Experiment 0” is intended as the one in which neither 

class weighting nor hyperparameters were performed. This experiment was executed in order 

to understand if this type of pretrained -on video clips on sports- CNN, could provide effective 

results in the case of medical images and if not, where should the attention be directed in 

order to improve the classification process.  

6.3.2.   Experiment 1: Addition of class weighting  

Since the original dataset was imbalanced, for “Experiment 1”, weights associated with each 

class were calculated and taken into account in both training and testing phase. Class 

imbalance is an important topic in ML since the learning algorithms tend to exhibit bias 

towards the majority class and in extreme cases might pay no attention to the minority class 

altogether.  
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The weights were calculated considering the total number of scans divided by the product of 

the number of classes by the number of scans for each class. This formula aims to make the 

class weight inversely proportional to the respective class frequency. The idea is to assign 

higher weight to less frequent class, compensating for the class imbalance. 

During the training process, these weights were applied in order to assist the algorithm in 

learning from less frequent class as well as was doing from the more frequent one.  

6.3.3.   Experiment 2: Unfreeze layers 

In the “Experiment 0” as well as in “Experiment 1” the layers were frozen, meaning that the 

weights and biases were blocked from being updated during the training process. The frozen 

layers retained the knowledge it has been gained from the pre-trained process without 

accessing to the data of this study. In order to make the C3DKeras to learn from the actual 

data, the last two layers were unfrozen, giving to the model the possibility to improve the 

accuracy as in this way it has information on the real problem.  

6.3.4. Experiment 3: Addition of hyperparameter tuning 

The study most important contribution is indeed the application of C3DKeras. However, the 

components that need to be considered carefully for creating the learning algorithm is 

choosing the right set of hyperparameters for optimizing the accuracy of the classification.  

In this study, the primary aspect that lies in the optimization algorithm is to minimize the 

testing error of the model. In order to do so, different hyperparameters may be applied.  

There are three hyperparameters that usually influence the model performance: learning rate, 

dropout rate, and batch size. 

The learning rate hyperparameter controls the rate or speed at which the model learns. It 

represents the step size taken by the optimization algorithm during the weight update process. 

A higher learning rate may lead to faster convergence but risks overshooting the optimal 

solution, while a lower rate may improve stability but prolong training. In the Adam optimizer, 

there is no need to manually set a global learning rate as it would be in traditional gradient 

descent. Instead, could be needed to tune hyperparameters specific to Adam, such as: 

• Learning Rate: Although Adam adapts the learning rates for each parameter, it might 

be possible to change the initial learning rate. The default is set to 0.001. 
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• Beta1 (β1) and Beta2 (β1): The hyper-parameters β1 and β2 of Adam are initial decay 

rates used when estimating the first and second moments of the gradient, which are 

multiplied by themselves (exponentially) at the end of each training step (batch) [43]. 

Decreasing β1 and β2 will make the learning slower. The default values are often set 

to 0.9 and 0.999.  

• Epsilon (epsilon): A small constant added to improve numerical stability. The default is 

1e-7. 

In this study, using the Adam optimizer, only the learning rate was tuned, considering the 

following values: [0.001,0.0005,0.0001,0.00005,0.00001]. 

The second global hyperparameter that can be changed is the dropout. The main idea behind 

dropout is that at each training step, every node is either "dropped" (ignored) with a 

probability p or "kept" with a probability 1 – p. In the case of drop both the node and its 

connecting edges are temporarily removed from the model and the training occurs on the 

remaining neurons. This is done in order to prevent overfitting; with dropout rate small the 

accuracy will gradually increase, and the loss will gradually decrease. The initial value of the 

dropout was 0.5; the following values were used in the dropout tuning: [0.5,0.4,0.3,0.2]. 

The batch size is the hyperparameter that defines the number of training examples used at 

one time during training to work through before updating the internal model parameters. The 

choice of batch size is a crucial consideration that affects both computational efficiency and 

memory usage. Smaller batch sizes result in more frequent weight updates during training 

iterations, but this can increase the number of epochs required for convergence. On the other 

hand, larger batch sizes can accelerate the training process but may compromise the model’s 

ability to generalize effectively. Choosing the batch size needs a balance between the level of 

detail in weight updates and the overall efficiency of the training process. After the initial 

employing of 10 batch size the number applied in this study has been decreased as follow: [10, 

8, 6, 4, 2, 1]. 
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7. Results 

7.1.   Experiment 0: Pre-trained C3DKeras 

The Experiment 0 provides an accuracy of 0.55 (Figure 40.), however a high misdiagnosis of 

the prodromal PD subjects also emerged. The overall ACC and SE, F1-Score and AUC for PDD 

class reported in percentage are found in Table 6. 

 

Figure 41. ROC – AUC of Experiment 0. 

Table 6. Performance for the identification PDD class in Experiment 0. 

ACC (%) SE (%) F1-score (%) AUC (%) 

55% 100% 71% 37% 

 

7.2.   Experiment 1: Addition of class weighting 

The second experiment concerning the addition of weighting for the class imbalance gives an 

overall ACC of 64% and an AUC of 50% (Figure 42.). The SE, F1-Score and AUC for PDD class, as 

well as the overall ACC for Experiment 1 are found in Table 7. 
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Figure 42. ROC – AUC of Experiment 1. 

Table 7. Performance for the identification of the PDD class in Experiment 1. 

ACC (%) SE (%) F1-score (%) AUC (%) 

64% 100% 78% 50% 

 

7.3.   Experiment 2: Unfreeze layers 

In the Experiment 2, concerning the addition of the capacity of C3DKeras to learn from the 

actual data, gives an overall ACC of 45% and an AUC related to the identification of PDD of 63% 

(Figure 43.). The performances related to this experiment are found in Table 8.   
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Figure 43. ROC – AUC of Experiment 2. 

Table 8. Performance for the identification of the PDD class in Experiment 1. 

ACC (%) SE (%) F1-score (%) AUC (%) 

45% 100% 62% 63% 

 

7.4.  Experiment 3: Addition of hyperparameter tuning 

After the addition of the weighting class and the unfrozen layers some experiments for the 

hyper-parameter tuning were performed.  

The best-performing combination for PDD identification turned out to be the following:  

• Best dropout rate value: 0.2;  

• Best learning rate value: 0.00001;  

• Best batch size value: 4. 

The overall ACC and the SE, F1-score and AUC for the above hyper-parameters can be observed 

in Table 9, while the ROC-AUC is shown in Figure 44. 
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Figure 44. ROC – AUC of Experiment 3. 

Table 9. Performance for the identification of the PDD class in Experiment 3. 

ACC (%) SE (%) F1-score (%) AUC (%) 

73% 100% 73% 86% 

 

7.5.  Overall results  

In Table 10. are shown the performance of all the experiments. As it can be observed the best 

performance is given by the Experiment 3, having an overall performance accuracy of 73%, a 

sensibility of PDD class of 100% and an area under the curve of 86%.  

In Table 11., it can be observed the differences of performances between the experiment 3 of 

this study with the ones found in literature.  

Since Experiment 3 was the one with the higher performances, the Confusion matrix of this 

experiment is also reported in Figure 45.  
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Table 10. Performance for the identification of the PDD class in all 4 experiments. 

Experiment  ACC (%) SE (%) F1-score (%) AUC (%) 

0 55% 100% 71% 37% 

1 64% 100% 78% 50% 

2 45% 100% 62% 63% 

3 73% 100% 73% 86% 

Table 11. Performance for the identification of the PDD class from literature and from 

Experiment 3. 

Study ACC (%) SE (%) F1-score (%) AUC (%) 

[34] - 50% - 50% 

[31] 73.7% 67% - 73% 

Experiment 3 73% 100% 73% 86% 
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8. Discussion 

8.1.  Materials, methodology and results 

The study concerns the application of C3DKeras a 3D convolutional neural network 

architecture for the detection of PDD from MRI scans.  

After the acquisition, the initial step was to convert the DICOM files to NIfTI files. Out of the 

total number of files, only 55 were suitably converted, as some of the DICOM files did not 

comprise pertinent image data for useful conversion. Additionally, two files had to be excluded 

to ensure homogeneity between scans as the registration process could not be applied to 

them. Consequently, only 53 MRI scans were utilized in the last phases of the preprocessing 

pipeline. Out of the 53 scans, 28 were of individuals with PDD and 25 were of those with 

prodromal PD, resulting in an imbalance between the two groups. 

As previously mentioned, the PPMI is a multicenter study, hence, the acquired MRI scans had 

spatial and temporal differences. In order to bring all the MRI scans to the same space, an 

image registration process was performed over all the MRI scans. The registration of images 

was performed using MNIPD25-T1MPRAGE-1 mm atlas. Since the MRI scans had a different 

orientation from the MNIPD25-T1MPRAGE-1 mm atlas, on this last one was performed a 

change in orientation from LPI to RAI. Thus, the translation for the moving images (the MRI 

scans) to the static one (MNIPD25-T1MPRAGE-1 mm atlas) could correctly be performed as 

both were on the same plane, hence the process of registration could be performed properly.  

The second step of the preprocessing was to normalize the data in order to have a common 

scale across different subjects and imaging session.  

Lastly, as a way to facilitate the process of identification PDD subjects, the bias field correction 

was applied in the preprocessing pipeline.  

After preprocessing the MRI scans were insert in the C3DKeras. As explained above, the 

C3DKeras is an adoption of a 3D CNN. A 3D CNN is designed to handle three-dimensional data, 

such as volumetric images as the MRI scans or video data, as the ones on which was firstly 

applied C3DKeras. The architecture of the C3DKeras consists of eight convolutional layers, five 

pooling layers, and three fully connected layers. C3DKeras was trained using labeled video 

datasets for tasks such as action recognition. The training involved optimizing the parameters 
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to discriminative spatiotemporal features for accurate classification [42]. The pre-trained 

C3DKeras was applied on the MRI scans for the identification of PDD subjects. This is the first 

study that applied a 3D CNN on identification of PDD subjects from MRI scans. 

This study was conducted as an Ablation study. Ablation studies are particularly important in 

machine learning, precisely, in evaluating how the removal of certain components affects 

performance. Four experiments were performed, with the aim of improving the overall 

accuracy, the sensitivity and the area under the curve.  

In Experiment 0, no class weighting or hyper-parameter adjustments were made. This 

experiment was performed as a way to evaluate the different steps of the ablation study. The 

results in Table 6 show that both the overall ACC and AUC were low, which is why the other 

three experiments were conducted. C3DKeras is a pre-trained CNN and in order to have good 

performances for the actual task, alterations are necessary. 

In Experiment 1 the class weighting was added, as C3DKeras displayed bias towards the PDD 

class. The outcome of this trial showed an improvement of nearly 20% in AUC, indicating the 

significance of class weighting for imbalanced datasets. 

In Experiment 2, unfrozen layers were added. Specifically, in this study the last two 

convolutional layers were unfrozen, giving the possibility of the network to study directly from 

the actual data. Unfreezing layers is helpful when the distribution of the new dataset differs 

from that of the pre-training dataset, allowing the model to adjust its parameters more 

effectively to the actual task. This step unfortunately, lower the ACC of the previous 

experiment. However, it increases the AUC of 10%. A higher AUC score indicates that the test 

has good discriminatory power, assisting doctors in making informed decisions about patient 

care. 

In the last experiment, more than 50 combination of parameter tuning were performed. The 

best combination was given by a dropout rate value of 0.2, a learning rate value of 0.00001 

and a batch size value of 4. As a consequence of applying these parameters, the AUC has 

increased by over 20% and the ACC has increased by nearly 10%, which confirms the 

significance of the tuning step. 



 

82 
 

The ablation study conducted validates the significance of each step in applying a pre-trained 

CNN. Table 10 highlights the effect of each step, demonstrating an improvement in the overall 

performance of PDD identification. 

As it can be observed in Table 11. the results from this study are similar to the one found in 

literature. Specifically, the performances of Experiment 3 can be compared to [31], as this last 

one was the only article explicitly focused on the identification of PDD subjects. On the other 

hand, the focus of [34] was on identifying Alzheimer's subjects, with only a secondary test 

attempting to examine the performance of different pathologies such as PDD and PD. The 

outcome of the secondary test was however low, pointing out the importance of providing 

more study that concentrate only on the Parkinson related dementia. 

8.2. Advantages 

Based on the literature search, it emerged that no study used MRI data or applied a CNN to 

identify PDD subjects. However, MRI is a non-invasive technique, providing a high level of 

information about brain structure while ensuring the safety of the subjects. Furthermore, the 

CNN demonstrated high performance in different fields as well as the medical one. In fact, one 

of the advantages of the CNN is that it automatically learns features from data without the 

need for manual feature extraction. This is particularly useful in tasks where extracting relevant 

features is challenging, as the one of identification of PDD subjects. This study merges the 

benefits from the acquisition technique as well as the excellent performance of the CNN, in 

particular of the C3DKeras (a pre-trained 3D CNN), for classification.  

This is the first study that use 3D CNN for the identification of PDD subjects from MRI scans, 

that unlike 2D CNN that process slices independently, it considers the entire three-dimensional 

structure of the MRI volume. This helps in preserving spatial relationships and capturing 

intricate details that may be crucial for accurate disease classification. 

The diagnose of PDD is still done with the 1-year rule, being in some cases too late for the 

correct treatment. As up to 83% of patients with PD eventually develop dementia later in the 

disease course, faster the identification, sooner could be provided the correct treatment, 

giving the possibility to increase the life expectance.  
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This is the first study with high AUC, ACC and high SE for both classes. In fact, differently from 

[31], that has an SE of the PD class around 12%, in this study the SE of the PD class arrive at 

around 57%, providing great prospect in inserted this kind of medical tool in the clinical field.  

A total of four ablation experiments were performed to determine the step that most 

impacted the classification performance. It emerged that the Experiment 3 not only had the 

best performance but was also the one with the highest increase in performance among the 

other three experiments. It turned out that the step of hyperparameter tuning is essential to 

archive optimal model performance.  

8.3. Limits 

The major limitation was the dramatic scarcity of open-access data due to the serious 

challenge of distinguish between prodromal PD and PDD subjects, as the two pathologies are 

deeply correlated; this was reflected in the results as well.  

As the literature research chapter shows, just a few studies focused on the classification of the 

Parkinson related dementia. As this type of disease is less studied, it emerged that there are 

also few data sets available, increasing again the complexity of the task. In fact, for a better 

identification of PDD, it would be required a higher dataset than the one used in this study.  

Even though the 3D CNN could give out better performance than the 2D CNN, it also requires 

a high computational effort. Improving the length of the dataset could also require a higher 

period for the correct identification of the diseases.  

8.4. Future perspectives 

In order to improve the overall performance of C3DKeras in identifying PDD subjects, future 

studies should use a larger dataset. Additionally, as in the medical field is essential to have an 

interpretation of the results, the future studies should, also focus on the development of a 3D 

class activation map (3D CAM) that could help to determine whether the model is selecting 

the appropriate areas or regions for PDD detection
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II. Conclusion  

In the proposed study, a 3D MRI analysis was performed for the detection of PDD using 

C3DKeras. The MRI data used in this study was collected from Parkinson’s Progression Markers 

Initiative (PPMI).  

PPMI is an international and multicenter study, therefore some pre-processing steps were 

performed. All the pre-processing steps as well as the application of the C3DKeras were 

performed on Colab. The pre-processing steps were as follows: orientation of the template, 

registration, normalization and bias field correction. 

The entire methodology has been carried out within the structure of an ablation study. In Deep 

Learning (DL) the terms “ablation study” has been adopted to describe a procedure where 

certain parts of the network are removed (or changed or inserted), in order to determine 

which parameter improves the overall performance. Four ablation experiments were 

performed: Experiment 0, Experiment 1, Experiment 2 and Experiment 3. In Experiment 0 also 

called Pre-Trained C3DKeras, no class weighting nor hyperparameter tuning were performed. 

This gave out a low overall performance. In Experiment 1 weighing associated with each class 

were added, improving considerately the performance. Experiment 2 focused on unfreezing 

the last two convolutional layers, while Experiment 3 focused on the hyperparameter tuning. 

At the end the best performance was obtained by the Experiment 3, having an AUC of 86% 

and SE of 100% for the PDD class. 

Confronting the results with those found in literature research it emerged that, with one of 

the studies the comparison could not be completely performed as it concentrated on 

Alzheimer identification, making only a secondary test on the identification of PDD. Therefore, 

only one study could be fully confronted with the one presented in this research. Differently 

from the study found in literature this is the only study with high performances for both PD 

and PDD classes.  

This study provides an excellent medical tool for identification the subjects affecting by PDD 

from the PD subjects. In particular, as it was realized as an ablation study, it could be clearly 

observed how the essential fine-tuning steps could highly improve the overall performance.  
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To conclude, the outcome of the proposed study is very motivating. However, it would be 

required an interpretation tool in order to provide insights into whether the model accurately 

selected the relevant region of interest within the MRI data. The inclusion of such an 

interpretation tool enables clinicians and researchers to understand and validate the decisions 

made by the model, thereby improving the overall reliability and clinical utility of the 

developed methodology for PDD diagnosis. 
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