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Abstract 
 
The thesis investigates the dynamics generated by monochromatic and infragravity 

waves (IG). Over the past decade, there has been growing interest in IG waves, as 

demonstrated by the increase in literature on the topic [2]. 

Since the time of Stokes and his research on stationary progressive surface waves 

in 1847, there has been a focus on the trajectories of fluid particles and the 

associated mass flux. However, recent studies indicate that, especially in waves 

propagating over a shear flow, a net Eulerian flow can develop as opposed to 

Stokes drift [9]. Some studies suggest that in deep-water environments, net 

Eulerian flow may cancel the Lagrangian Stokes drift on a pointwise basis. 

In recent field measurements, it has been observed that the drift velocity correlates 

positively with the local mean depth of the fluid i.e. a wave with a rise has a large 

forward drift, while a wave with a fall has a net negative drift [3]. 

The study in question aims to examine what has been observed in the field through 

laboratory experiments conducted in a wave channel. Monochromatic and 

bichromatic waves of different characteristics were performed in the hydraulic 

laboratory of the Polytechnic University of Marche, using a wave channel (size: 

50m×1m×1.3m) with a piston wave generator, the use of a camera high resolution 

and light sheet created by a halogen lamp and ground chili peppers as the neutral 

seeding. 

Two experiments were conducted: in the first test a monochromatic wave 

characterized by a height of 3 cm and a period of 1 s; in the second test, a 

bichromatic wave composed by the same monochromatic wave as in the first test, 

superimposed to a long wave (height of 0.3 cm and a period of 10s) has been used. 

Focus was given on the particle trajectories and the longitudinal distribution of the 

velocity along the vertical. 

The bichromatic waves were generated by superimposing a shorter wave onto a 

longer wave, attempting to replicate the natural combination of shorter waves with 

longer infragravity waves typical of the coastal region. 

Detailed analysis of trajectories and drift velocities provides an in-depth 

perspective on the behavior of such elements along the trough and peak of the 
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bichromatic wave. 

Finally, the results obtained from this type of approach were then compared with 

previous research by Grue and Kolaas [6]. 
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Riassunto 
 
La tesi indaga le dinamiche generate dalle onde monocromatiche e di infragravità 

(IG). Negli ultimi dieci anni si è assistito ad un crescente interesse per le onde IG, 

come dimostrato dall’aumento della letteratura sull’argomento [2]. 

Sin dai tempi di Stokes e della sua ricerca sulle onde superficiali stazionarie 

progressive nel 1847, ci si è concentrati sulle traiettorie delle particelle fluide e sul 

flusso di massa associato. Tuttavia, studi recenti indicano che, soprattutto nelle 

onde che si propagano lungo un flusso di taglio, può svilupparsi un flusso euleriano 

netto in contrapposizione alla deriva di Stokes [9]. Alcuni studi suggeriscono che 

in ambienti di acque profonde, il flusso euleriano netto può annullare la deriva 

lagrangiana di Stokes su base puntiforme. 

In recenti misurazioni sul campo, è stato osservato che la velocità di deriva è 

correlata positivamente con la profondità media locale del fluido, ovvero un'onda 

con un aumento ha una grande deriva in avanti, mentre un'onda con una caduta ha 

una deriva netta negativa [3]. 

Lo studio in questione si propone di esaminare quanto osservato sul campo 

attraverso esperimenti di laboratorio condotti in un canale d’onda. Onde 

monocromatiche e bicromatiche di diverse caratteristiche sono state eseguite nel 

laboratorio idraulico dell'Università Politecnica delle Marche, utilizzando un 

canale d'onda (dimensioni: 50m×1m×1,3m) con un generatore di onde a pistone, 

l'uso di una telecamera ad alta risoluzione e un foglio luminoso creato da una 

lampada alogena e peperoncini macinati come semina neutra. 

Sono stati condotti due esperimenti: nella prima prova un'onda monocromatica 

caratterizzata da un'altezza di 3 cm e un periodo di 1 s; nella seconda prova è stata 

utilizzata un'onda bicromatica composta dalla stessa onda monocromatica della 

prima prova, sovrapposta ad un'onda lunga (altezza 0,3 cm e periodo 10s). 

L'attenzione è stata posta sulle traiettorie delle particelle e sulla distribuzione 

longitudinale della velocità lungo la verticale. 

Le onde bicromatiche sono state generate sovrapponendo un’onda più corta a 

un’onda più lunga, cercando di replicare la combinazione naturale di onde più 

corte con onde di infragravità più lunghe tipica della regione costiera. 
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L'analisi dettagliata delle traiettorie e delle velocità di deriva fornisce una 

prospettiva approfondita sul comportamento di tali elementi lungo la valle e il 

picco dell'onda bicromatica. 

Infine, i risultati ottenuti da questo tipo di approccio sono stati poi confrontati con 

le precedenti ricerche di Grue e Kolaas [6]. 
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Motivation and thesis outline 
 

This thesis aims to complement field observations regarding wave motion fields 

under monochromatic and bichromatic waves through laboratory experiments 

performed in a wave channel. The main objective is to investigate the dynamics 

generated by monochromatic and infragravity waves, each were tested with 

different characteristics. The research was conducted through a specific 

experimental campaign at the Hydraulics and Maritime Construction Laboratory 

of the Polytechnic University of Marche, located in Ancona. Through the 

methodical execution of experiments in the laboratory and the use of dedicated 

calculation software, the thesis aims to explore the behaviour of the particles inside 

the channel, focusing on these two different configurations. The selected water 

depth was h = 12 cm, over which several wave characteristics were tested (wave 

height a1 = 3 cm), period T1 = 1 s. The bichromatic wave was produced by 

superimposing a shorter wave onto a longer wave. The shorter component was 

based on the same characteristics of the above-mentioned monochromatic wave 

(a1, T1), while the longer component was characterized by a smaller wave height 

and a longer period (a2 = 0.3 cm, T2 = 10s), with the aim to reproduce the natural 

combination of shorter sea waves with longer infragravity waves that typically 

occur in the nearshore region [12]. The present thesis was inspired by research 

conducted by the University of Bergen, Norway, Department of Mathematics and 

the Institute of Coastal Ocean Dynamics, HelmholtzZentrum Hereon, Geesthacht, 

Germany [3]. The relative influence of wave-by-wave variations of mean water 

level, wave height and incipient wave breaking on the mass transport properties of 

waves in the surf zone was studied.  It has been quantitatively demonstrated that a 

high local mean water level positively correlates with an increase in Lagrangian 

mass transport to the free surface. Eulerian measurements of Acoustic doppler 

velocimeter (ADV) in the fluid column suggest that wave-by-wave depth-

integrated mass transport is also positively correlated with local mean water level 

and is only weakly related to wave height and wave breaking events. The main 

measurement system in this study [3] was a stereo imaging system, which was able 
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to resolve the movements of floating surface tracers (oranges) on the undulating 

water surface within the surf zone.  Additional supporting wind and wave data 

were obtained from a combination of in situ and remote sensing measurement 

systems, including bottom-mounted pressure wave gauges, a bottom-mounted 

ADV, bottom-mounted optical pole wave gauges and drone imagery (Figure 1). 

 

Figure 1: Lagrangian motion of a particle tracer in the same time window as the free-surface data in 
the left panel. The blue and yellow waves feature instantaneous wave set-up and corresponding strong 
shoreward Lagrangian transport while the red wave features set-down and backward drift. The black 

rectangle indicates the tracer position when tracking commenced, and the solid black square indicates 
the final tracer position. There are some gaps in the tracer positions in cases when the tracer was not 

visible in both cameras. Due to inherent differences between Eulerian and Lagrangian measurements as 
well as tracer drift, there are slight differences in the observed wave height between the upper left and 

upper right panels. (Bjørnestad et al.2021). 
 

 

Lagrangian particle paths were recorded in individual waves in the surf zone as 

shown in Figure 2. To better understand the particle paths observed in situ, 

comparisons were made with a theoretical wave model. 
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Figure 2: Lagrangian motion of a particle tracer in the same time window as the free-surface data in 
the left panel. The blue and yellow waves feature instantaneous wave set-up and corresponding strong 
shoreward Lagrangian transport while the red wave features set-down and backward drift. The black 

rectangle indicates the tracer position when tracking commenced, and the solid black square indicates 
the final tracer position. There are some gaps in the tracer positions in cases when the tracer was not 

visible in both cameras. Due to inherent differences between Eulerian and Lagrangian measurements as 
well as tracer drift, there are slight differences in the observed wave height between the upper left and 

upper right panels. (Bjørnestad et al.2021). 
 

The close relationship between the Lagrangian velocities on the free surface and 

the oscillations observed in the mean water level here points to the possibility that 

the dissipation of infragravity waves may also arise from gravity waves. 

Observation of the mean water level suggests that dissipation of infragravity waves 

could occur through the breaking of gravity waves, with subsequent dispersion of 

the infragravity field caused by the broken shorter waves. Indeed, the Lagrangian 

velocity on the free surface can be interpreted as a facilitator of shorter wave 

breaking, in line with the kinematic criterion for wave breaking [10]. 
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The thesis is divided into five distinct chapters.  

The first, dedicated to State of the art, presents a brief summary of past research 

and a broad overview of the importance of the waves studied is also provided. 

 

The second chapter, the experimental setup. This section provides a 

comprehensive exploration of the methodologies employed in the study. 

 

In the third chapter, the results deriving from the experimental analysis are 

examined in depth. 

 

In Chapter 4, Discussion, an in-depth comparison of the obtained results is 

provided, focusing mainly on the comparison between the bichromatic and 

monochromatic configurations. 

 

In Chapter 5, Conclusions, some final considerations emerging from the study and 

comparison just conducted are presented. 
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1 State of the art 
 
As a wave propagates, the fluid particles experience a net transport. This transport 

is called the Stokes drift and was first described around 170 years ago [1, 5]. The 

magnitude of the transport is largest at the surface and decays with depth [11]. 

Since the work of Stokes on steady progressive surface waves (Stokes, 1847), there 

has been interest in fluid particle trajectories and associated mass flux. The original 

result obtained by Stokes was based on linear theory, and implied that there is a 

net forward drift in the fluid beneath a propagating surface wave. In the non-

dimensional case, the drift velocity for a sinusoidal wave on a fluid of depth h is 

given by  

𝑈𝑈�𝐿𝐿 = 𝑎𝑎2ωk 
cosh�2𝑘𝑘(𝑧𝑧 + ℎ)�

2𝑠𝑠𝑠𝑠𝑠𝑠ℎ2𝑘𝑘ℎ
    𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �gk tanh kh 

 

Recent works suggest that in many cases, particularly in waves propagating over 

a shear flow, a net Eulerian flow may develop, which opposes to the Stokes drift. 

Monismith et al. (2007) [9] have presented several sets of laboratory measurements 

where the averaged Lagrangian wave drift velocity has been found to be zero 

across water column.  

 
Figure 3:  Mean flows under surface gravity waves.(Monismith et al.2007). 

 

This implies that an Eulerian mean velocity cancel locally the Stokes drift in those 

experiments. The results of Monismith et al. have primarily been found in the 

combined cases with waves propagating on constant and sheared currents, where 

in the experiments by Klopman, referred to in Groeneweg & Klopman (1998), and 

those of Nepf et al. (1995), the underlying channel flows were turbulent, where the 

effects of the bottom boundary layer could be felt throughout the depth at earlier 

distance and time compared to the case where waves propagate along a fluid layer 
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otherwise at rest.  

However, not all experiments reported in the literature conform with the 

measurements obtaining a vanishing Lagrangian wave drift velocity. Groeneweg 

& Klopman (1998),for instance, observed that.  

 
Figure 4: (a) Particle paths for several vertical positions and phases. (b) Particle path for one period 
backward and forward integration (blue solid line) and shifted by the drift during one period (red dashed 

line), where the black arrow indicates the drift distance (x0; y0). (J. Grue and J. Kolaas 2017). 

 

The differences in the results point to conflicts between the various experimental 

observations, including differences in the nonlinear wave and mean flow 

interaction processes as well as the boundary conditions. Further, Grue & Kolaas 

(2017) [6] saw that comparisons to calculations by the inviscid strongly nonlinear 

Fenton method and the second-order theory show that the streaming velocities in 

the boundary layers below the wave surface and above the fluid bottom contribute 

to a strongly enhanced forward drift velocity and excess period. The experimental 

drift velocity shear becomes more than twice that obtained by the Fenton method, 

which again is approximately twice that of the second-order theory close to the 

surface. There is no mass flux of the periodic experimental waves and no pressure 

gradient. The particle paths are closed at the two vertical positions where 𝑈𝑈𝐿𝐿 = 0. 

Moreover, Eulerian and Lagrangian measurements of orbital velocities in waves 

approaching a beach are analyzed with the goal of understanding the relative 
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influence of wave-by-wave variations in mean water level, wave height and 

incipient wave breaking on mass transport properties of waves in the surf zone. It 

is shown quantitatively that elevated local mean-water level correlates positively 

with increased Lagrangian mass transport at the free surface. 

The present work aims to investigate what was observed in the field by Kalisch et 

al. [3] through laboratory experiments conducted in a wave flume, where 

monochromatic and biochromatic waves of different characteristics were run. 

1.1 Infragravity Waves 
 

Over the last decade, numerous studies have integrated numerical modeling with 

either field or laboratory experiments to enhance comprehension of the processes 

governing the generation, propagation, and transformation of infragravity waves 

(IG) [4].  

 
Figure 5: Number of papers per year found in Scopus and Web of Science where the title includes IG 

waves or surf-beat. (Bertin et al 2018). 
  

Infragravity waves (IG) are surface ocean waves with frequencies below those of 

wind-generated “short waves”. Typical short-wave frequencies are between 0.04 

and 1 Hz whereas IG wave frequencies are generally defined as being between 

0.004 and 0.04 Hz. For a given water depth, IG waves have longer wavelengths 

than short waves. The first observation of IG waves date back only to the middle 

of the 20th century  Munk in 1948 [14] and two years later Tucker found a positive 

correlation between the wave height of the wave group and the infra-gravity wave 

[5]. 
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IG waves have a great number of implications in the hydro-sedimentary dynamics 

of coastal areas. For example, they can modulate current velocities in rip channels 

and strongly influence cross-shore and longshore mixing [2]. 

On sandy beaches, IG can have a strong impact on the water table and associated 

groundwater flows. On gently sloping beaches and especially in storm conditions, 

IG waves can dominate cross-shore sediment transport, generally promoting 

offshore transport within the surf zone.  

In storm conditions, IG waves can also induce overwash and ultimately promote 

dune erosion and barrier breakthrough. 

In tidal inlets, IG waves can propagate into the back-barrier lagoon during the flood 

phase and induce large modulations of currents and sediment transport. Their 

effect seems to be smaller during the reflux phase, due to the blocking of counter 

currents, especially in shallow systems [2].  

On coral and rocky reefs, IG waves can prevail over short waves and control the 

hydro-sedimentary dynamics on the flat reef and in the lagoon.[2] They are 

considered to be the source of background free oscillations of the solid earth, also 

referred to as “the hum of the Earth” [15]. This large range of implications 

probably explains the growing interest in IG waves over the last decade, as it is 

attested by the increasing volume of literature on the topic (Figure. 5). 

 
Figure 6: (A) Time series of two bichromatic waves with periods of 14 s (blue) and 15 s (pink) 

travelling over a flat bottom by 20 m water depth. (B) Resulting free surface elevation (blue) and bound 
wave (red). (Bertin et al 2018). 
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2 Methodology 
 

To obtain a complete understanding of all the operations carried out throughout 

the experimental campaign, it is essential to provide an accurate description of 

their characteristics and the approach with which they were used. The different 

working instruments used have been explained below. 

 
2.1 Instrumentation employed 
 
The analyses were carried out in the wave channel of the Laboratory of Hydraulic 

and Maritime Constructions at the Polytechnic University of the Marche (Ancona). 

The channel has a rectangular cross-section (Figure 7) and is equipped upstream 

with a wave generator system (Figure 8). It is easily controlled by an on-site control 

unit.  

The channel water supply and recirculation system are constructed with PVC 

pipes, which allow the height of the water to be adjusted to a predetermined level. 

A hydraulic system manages the filling of the channel and, if necessary, its 

emptying. The latter should be carried out to avoid water stagnation for prolonged 

periods or to allow detailed cleaning in preparation for an experiment. The 

dimensions of the canal are 1 meter wide and 50 meters long, with a height of 1.3 

meters. The 36 meters long section of the canal is bordered on the sides by glazing. 

At the ends of the canal, where the wave generator system and an anti-reflective 

gravel beach are located, the side walls are closed and composed of metal panels. 

The bottom of the channel consists of a 6 mm thick metal structure, which can 

optionally be covered with materials such as sand or plastic balls to replicate 

specific patterns for analysis.  

Experiments were conducted in the central part of the channel. This area allows 

filming without visual obstacles and has a steel platform at the bottom with a 

straight section between two small ramps. 
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Figure 7: Channel. 

 

 
Figure 8: Wave generator system. 
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2.2 Camera and lighting 
 

Outside of the channel, in the previously mentioned area of interest, is a FLARE 

12M125 CCD camera (Figure 9). This camera, with a resolution of 4100 X 3072 

pixels and a pixel depth of 16 bits, is connected to a dedicated Express Core DVR. 

It stores all captured images, which are then transferred to the control computer. 

From the control computer, it is possible to start and stop recording, extracting the 

frames that are subsequently analysed during the post-processing stages.  

 
Figure 9: FLARE 12M125 CCD camera. 

 
A key step before capturing video is the focusing of the camera, followed by the 

evaluation of the pixel-to-meter conversion ratio. This step is crucial to determine 

how many meters a single pixel in the image corresponds to. 

To perform this evaluation, a chessboard consisting of squares with a side of 2.5 

cm is used, placed on a dedicated panel (see Figure 10).   

The panel has been placed at different locations inside the field of view and several 

pictures of it have been taken with the camera. The goal of this process was to 

evaluate the dimension (in pixel) of a single chessboard square and, therefore, to 

estimate the pixel-to-mm ratio of the camera. The goal is to convert the 

displacements of the particles, measured in pixels, into measurable displacements 

in standard units. 

A crucial aspect in improving the quality of the frames is to ensure adequate 

lighting. In the experiments conducted, it was vital to obtain the right brightness 
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in the lower part of the channel, focusing on a limited space instead of covering 

the entire width of the channel. To this end, an halogen lamp was used, firmly 

positioned above some steel beams that were resting on the upper edge of the 

channel, more or less 1m from the water surface, and appropriately configured to 

minimise light dispersion. 

The strategic placement of the lamp prevented it from being reached by the waves 

once they had started. 

The described setup of camera and lighting has been used to capture a series of 

images during the experiment of wave propagation. The pictures, called "frames", 

show an instantaneous capture of the position of seed particles that occurs at a 

specific time during the wave propagation process (monochromatic or 

bichromatic). The frames were acquired at a frame rate of 120fps, meaning that 

120 frames were acquired for each second of recording. 

 

 
Figure 10: Chessboard. 

 
 
2.3 Seeding  
 
Performing all laboratory tests, ground chili pepper was selected as the neutral 

substance. Its use involves tracking from the camera, which needs to be chemically 

and physically neutral to the water inside the channel as much as possible. This 

allows for an estimation of the velocity field during wave passage using the Particle 

Tracking Velocimetry (PTV) technique.  
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To gain an in-depth understanding of the methodology used, it is essential to start 

the exposition with the definition of the concepts of linear and Stokes theory. These 

concepts will provide the essential conceptual foundation for subsequent chapters, 

which will delve into the fluid and inertial behavior of a particle in detail. 

 

2.4 Wave theory 
 

In the next chapter, we refer to the procedure illustrated by P. K. Kundu, I. M. 

Cohen, and D. Dowling in the 2016 book "Fluid Mechanics 6th Edition".  

We linearize the wave theory and find the Stokes drift. 

Our coordinate system is two-dimensional where x is the horizontal direction and 

z the vertical. The depth is given by h and η is the free surface. The velocity field 

is defined as u (x, z, t) = (u,w), where u is the horizontal velocity and w is the 

vertical. The parameters used to define a wave are the amplitude a, the spatial 

frequency k, also called wave number, and the angular frequency ω. The 

wavelength λ is the distance from wave crest to crest and is defined as λ = 2𝜋𝜋
𝑘𝑘

. The 

period is denoted T and could also be defined as T =  2𝜋𝜋
ω

. The wave travels with 

phase speed c = ω
𝑘𝑘

. 𝛽𝛽, which relates the fluid and particle densities, is evaluated 

with fluid density of 1000 kg/m3 and particle density of 1050 kg/m3, while the 

response time 𝜏𝜏 = 0.001s. 

Note that later in the thesis we use the parameter Initial Phase = 3.6 and UU= 0.016 

m/s which indicates the reverse current. 
 
 
We start out the continuity equation 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇  ∙ (𝜌𝜌𝜌𝜌) = 0     (1.1) 
 
 

Which states the principle of conversation of mass. We are only concerned about 

incompressible flow with constant density 𝜌𝜌, meaning the equation reduces to 

∇  ∙ 𝜌𝜌 = 0.     (1.2) 
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The other equation describing describing a fluid is the Navier-Stokes momentum 

equation. For incompressible and inviscid flow, it is reduced to 
 

𝐷𝐷𝐷𝐷
𝐷𝐷𝜕𝜕

= 𝜕𝜕𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜌𝜌 ∙ ∇u = −  ∇p
𝜕𝜕

+ 𝑔𝑔   (1.3) 
 
 
and named the Euler equation, which is a simplification of the Navier-Stokes 

momentum equation. 

Lastly, we assume ω = ∇ ∙ u = 0 meaning the flow is irrotational. This makes it 

possible to define a velocity potential ∅: 
 

u = ∇∅.      (1.4) 
 
 
Substituting the velocity potential into (1.2) leads to the Laplace's equation 
 
 

∆∅ = 0.      (1.5) 
 

The free surface problem has three boundary conditions. Two of the are kinematic 

boundary conditions and the last one is dynamic. The first one says that water 

cannot go through the bottom. This means that the normal velocity there has to be 

zero: 
 

ω = 𝜕𝜕∅/𝜕𝜕𝑧𝑧 = 0  𝑜𝑜𝑠𝑠  𝑧𝑧 = −ℎ.    (1.6) 
 

The second boundary condition says that the fluid particles at the free surface must 

have the same normal velocity as the normal velocity of the surface itself. This 

means that the fluid particles that make up the interface cannot leave the free 

surface and is written mathematically as 

 
  (n ∙ 𝜌𝜌)𝑧𝑧=η = n ∙ 𝜌𝜌𝑠𝑠     (1.7) 

 

where n is the surface normal and 𝜌𝜌𝑠𝑠 is the velocity of the free surface. The surface 

can be defined as 𝑓𝑓 (x, z, t) = z - η(x, t) = 0. The normal surface is then defined as 

n = ∇𝑓𝑓 and using (1.7) leads to 
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�−𝜌𝜌 𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

+ 𝑤𝑤�
𝑧𝑧=η

=  𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

.    (1.8) 
 
 
The boundary condition can also be written in terms of the velocity potential: 
 

�− 𝜕𝜕∅
𝜕𝜕𝑥𝑥

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

+ 𝜕𝜕∅
𝜕𝜕𝑧𝑧
�
𝑧𝑧=η

=  𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

.    (1.9) 
 
 
 
 
 
 
It is assumed that the surface has a purely vertical velocity  𝜌𝜌𝑠𝑠 = 𝜕𝜕𝜂𝜂/𝜕𝜕𝑡𝑡𝑒𝑒𝑧𝑧. 

For the last boundary condition, we need to re-write the Euler equation (1.3), into 

the Bernoulli equation: 
 

𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 1
2

|∇∅|2 + 𝑝𝑝
𝜕𝜕

+ 𝑔𝑔𝑧𝑧 =  0.      (1.10) 
 
 
This is possible because the flow is irrotational, inviscid and incompressible. By 

saying that the pressure p just below the surface is the same pressure as 𝑝𝑝0 just 

above, the Bernoulli equation is reduced to 

 

(𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 1
2

|∇∅|2 + 𝑔𝑔𝑧𝑧)𝑧𝑧=η =  0.   (1.11) 
 

 

and we have the last boundary condition called the dynamic boundary conditions. 

To summarize, the partial derivatives are written in a more compact form and the 

free surface problem then looks like: 
 
 
∅𝑥𝑥𝑥𝑥 + ∅𝑧𝑧𝑧𝑧 = 0 
∅𝑧𝑧 = 0                                              on z = −h                                   (1.12) 
𝜂𝜂𝜕𝜕 + ∅𝑥𝑥𝜂𝜂𝑥𝑥 − ∅𝑧𝑧  = 0                     𝑜𝑜𝑠𝑠 𝑧𝑧 =  𝜂𝜂 

∅𝜕𝜕 +
1
2

(∅𝑥𝑥2 + ∅𝑧𝑧2) + 𝑔𝑔𝑠𝑠 = 0        𝑜𝑜𝑠𝑠 𝑧𝑧 =  𝜂𝜂 
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2.5 Linear Theory 
 
For waves with small amplitudes and slopes the problem can be linearized. The 

goal is to solve for the velocity potential ∅. It is assumed that the components u, w 

and η are all of the same order and higher order terms will then be neglected. 

 
The kinematic boundary condition simplifies to: 
 

�𝜕𝜕∅
𝜕𝜕𝑧𝑧
�
𝑧𝑧=η

=  𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕 

.                                                           (1.13)                          
 
 
The left hand side is expanded around z = 0 leading to 
 
 
 

�
𝜕𝜕∅
𝜕𝜕𝑧𝑧
�
𝑧𝑧=η

=  �
𝜕𝜕∅
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

+ η�
𝜕𝜕2∅
𝜕𝜕𝑧𝑧2

�
𝑧𝑧=0

+ ⋯ ≈
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

                      (1.14) 

 
where the higher order terms are neglected and we are left with the linearized form 

of the kinematic boundary condition: 
 

�𝜕𝜕∅
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

=  𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

.                                                           (1.15) 
 

The dynamic boundary condition (1.11) is simplified by dropping the non-linear 

terms and expanding around z=0. The linear condition then looks like this 

�
𝜕𝜕∅
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

+ 𝑔𝑔𝜂𝜂 = 0.                                                 (1.16) 

 
Since the free surface problem now is defined for the linear case, the velocity 

potential φ can be found. We assume that the wave takes the shape: 
 

𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝑎𝑎 cos(𝑘𝑘𝑥𝑥 − ωt).                                    (1.17) 
 

Looking at the boundary conditions we see that the solution needs to be a sine 

function of phase (kx−ωt) for η to be correct. Therefore a solution is ”guessed” in 

the form of 

∅(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑓𝑓(𝑧𝑧) sin(𝑘𝑘𝑥𝑥 − ωt)                            (1.18) 
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where f(z) needs to be found. Substituting (1.18) into (1.5) leads to: 
 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑧𝑧2

− 𝑘𝑘2𝑓𝑓 = 0                                                         (1.19) 
 
which has the solution 𝑓𝑓(𝑧𝑧) = 𝐴𝐴𝑒𝑒𝑘𝑘𝑧𝑧 +  𝐵𝐵𝑒𝑒−𝑘𝑘𝑧𝑧 where A and B are constants. The 
velocity potential becomes: 
 

∅(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑘𝑘𝑧𝑧 +  𝐵𝐵𝑒𝑒−𝑘𝑘𝑧𝑧𝑠𝑠𝑠𝑠 𝑠𝑠(𝑘𝑘𝑥𝑥 − ωt).                    (1.20) 
 
 
The constants are found by substituting (1.20) into the no flow trough condition 
(1.6): 
 

𝑘𝑘(𝐴𝐴𝑒𝑒−𝑘𝑘ℎ + 𝐵𝐵𝑒𝑒𝑘𝑘ℎ) sin(𝑘𝑘𝑥𝑥 − ωt) = 0  → B = 𝐴𝐴𝑒𝑒−𝑘𝑘ℎ              (1.21)         
 
 
and using the kinematic boundary condition gives: 
 

𝑘𝑘(𝐴𝐴 − 𝐵𝐵) sin(𝑘𝑘𝑥𝑥 − ωt) = ω𝑎𝑎 sin(𝑘𝑘𝑥𝑥 − ωt) → K(A − B) = ω𝑎𝑎.     (1.22)      
 
 
The constants are then found to be: 
 

𝐴𝐴 =
aω

𝑘𝑘(1 − 𝑒𝑒−2𝑘𝑘ℎ)
 𝑎𝑎𝑠𝑠𝑑𝑑  𝐵𝐵 =  

aω𝑒𝑒−2𝑘𝑘ℎ

𝑘𝑘(1 − 𝑒𝑒−2𝑘𝑘ℎ)
                 (1.23) 

 
 
and the velocity potential can then finally be defined as: 
 

∅(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) =
aω
𝑘𝑘

 
cosh (k(z + h))

sinh (𝑘𝑘ℎ)
sin(𝑘𝑘𝑥𝑥 −ωt).                        (1.24) 

 
 
The velocities in the x and z-direction then easy to find: 
 

𝜌𝜌 �
𝜕𝜕∅
𝜕𝜕𝑥𝑥
� = aω 

cosh (k(z + h))
sinh (𝑘𝑘ℎ)

cos(𝑘𝑘𝑥𝑥 −ωt).                          (1.25) 

 

𝑤𝑤 �
𝜕𝜕∅
𝜕𝜕𝑧𝑧
� = aω 

sinh (k(z + h))
sinh (𝑘𝑘ℎ)

sin(𝑘𝑘𝑥𝑥 −ωt).                           (1.26) 

 
 
Until now, the dynamic boundary condition has not been used. Inserting ∅ and 𝜂𝜂 
into  (1.11) produces 
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−
aω2

𝑘𝑘
 
cosh(kh)
sinh(𝑘𝑘ℎ) cos(𝑘𝑘𝑥𝑥 −ωt) = −ga cos(𝑘𝑘𝑥𝑥 −ωt)             (1.27) 

 
 
which simplifies to what is called the dispersion relation: 
 

ω = �𝑔𝑔𝑘𝑘 tanh (𝑘𝑘ℎ).                                               (1.28) 
 

The dispersion relation explains how the temporal and spatial frequency are 

connected. Since the phase speed of the waves is given by c = ω/k it can by using 

this relation be written 

c = �
𝑔𝑔
𝑘𝑘

tanh(𝑘𝑘ℎ)  = �𝑔𝑔λ
𝑘𝑘

tanh(
2𝜋𝜋ℎ
λ

) .                         (1.29) 

 
Waves with larger wavelength λ will then travel faster compared to shorter waves. 
 

2.6 Stokes Drift 
 
For the linearized particle paths, particle motion follows closed circles or ellipses. 

The mean velocity of a particle will then be zero. However, in a real-life situation, 

if something is thrown into the ocean, it will slowly drift in the direction of 

propagation. Thus the mean velocity is not zero and this slow movement is called 

Stokes drift. By keeping higher order terms in the Taylor series of the velocity of 

the particle 
 
𝑑𝑑𝑥𝑥
𝑑𝑑𝜕𝜕

= 𝜌𝜌(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝜌𝜌(𝑥𝑥0, 𝑧𝑧0, 𝑡𝑡) + (𝑥𝑥 − 𝑥𝑥0) �∂u
∂x
�
𝑥𝑥𝑥𝑥,𝑧𝑧𝑥𝑥

+ (𝑧𝑧 − 𝑧𝑧0) �∂u
∂x
�
𝑥𝑥𝑥𝑥,𝑧𝑧𝑥𝑥

+ …         (1.30) 

 
𝑑𝑑𝑧𝑧
𝑑𝑑𝜕𝜕

= 𝑤𝑤(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑤𝑤(𝑥𝑥0, 𝑧𝑧0, 𝑡𝑡) + (𝑥𝑥 − 𝑥𝑥0) �∂u
∂x
�
𝑥𝑥𝑥𝑥,𝑧𝑧𝑥𝑥

+ (𝑧𝑧 − 𝑧𝑧0) �∂u
∂z
�
𝑥𝑥𝑥𝑥,𝑧𝑧𝑥𝑥

+…,  (1.31) 

 
the Stokes drift can be obtained. The position (x0; z0) is the fluid's location if there 

was no waves. The velocities are defined in (1.25) and (1.26). The horizontal and 

vertical distances in the Taylor series are defined like 

𝑥𝑥 − 𝑥𝑥0 = ∫ 𝜌𝜌(𝑥𝑥0, 𝑧𝑧0, 𝑡𝑡′)𝑑𝑑𝑡𝑡′ = 𝜕𝜕
0  …                (1.32) 

 

                                    −𝑎𝑎 cosh�k(𝑧𝑧0+h)�
sinh(𝑘𝑘ℎ)

sin(𝑘𝑘𝑥𝑥0 −ωt)                                           (1.33) 
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                          𝑧𝑧 − 𝑧𝑧0 = ∫ 𝑤𝑤(𝑥𝑥0, 𝑧𝑧0, 𝑡𝑡′)𝑑𝑑𝑡𝑡′ = 𝜕𝜕
0  …                         (1.34) 

 

−𝑎𝑎 sinh�k(𝑧𝑧0+h)�
sinh(𝑘𝑘ℎ)

cos(𝑘𝑘𝑥𝑥0 −ωt).                                         (1.35) 
 
 
 
 
Integrating (1.30) and (1.31) over a period T and then dividing by T, the time 
averages are found: 
 

                                                 𝜌𝜌𝑠𝑠 = 𝑎𝑎2ω𝑘𝑘 cosh�2k(𝑧𝑧0+h)�
2𝑠𝑠𝑠𝑠𝑠𝑠ℎ2(𝑘𝑘ℎ)

                                 (1.36) 
 
                         𝑤𝑤𝑠𝑠 = 0                      (1.37) 
 

 

As seen, there is no Stokes drift in the vertical direction. As the particles moves in 

the direction of wave propagation, it causes mass transport. Another word for 

Stokes drift is mass transport velocity. The Stokes drift is also the difference 

between Eulerian and Lagrangian velocity [12]: 
 

Stokes drift= 𝑉𝑉𝐿𝐿 – 𝑉𝑉𝐸𝐸 
 
 
 
Everything is calculated using MATLAB which allowed us to quickly analyse data 

and perform calculations. 

The suite used to perform particle tracking is Part2Track, which uses the Particle 

Tracking Velocimetry (PTV) approach and is capable of handling image sets on 

which it performs particle tracking. It takes advantage of the Matlab development 

framework and allows for both pre- and post-processing operations. Originally, 

PTV has solely been used for the evaluation of sparsely seeded flows. But over the 

time, PTV algorithms with the ability to handle large amounts of particles have 

been developed. Whereas early PTV studies have primarily been used to analyze 

time resolved image series, recent approaches extended the method to cope with 

double frame image data as well. [7] 

The analyses done and the various image processing steps are described below. 
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2.7 Pre-Processing 
 
Initially, we imported the folder named "raw" containing all the frames to be 

analysed, the "Part2track" folder, and the script "Parameter.m" into Matlab which 

will be explained in the following chapters. Even before removing the background 

and adjusting the contrast, we had to run the "FrameRenumber" script for the 

numbering of the frames to be analyzed, so that they start from 0001 and go in 

ascending order. It is suggested to use this approach when the frames to be 

processed are extracted from the central part of a video for which the frames have 

numbering that does not start from 0001. The second code to be used, called 

RemoveBackground.m, allows any noise and non-particle objects to be removed. 

This is required since the Part2Track software needs to work with clean, dark 

background images. The number of frames in the 'raw' folder to be analyzed is set, 

also specifying the number of frames to be averaged over for the identification of 

background features to be removed by RemoveBackground.m. 

The routine is executed only for the first few frames, those obtained by subtracting 

the number of frames on which to average from the number of frames to be 

analyzed. So, once the number of frames to average over has been identified, the 

RemoveBackround.m script works on this amount of images starting with the first 

one in the 'raw' folder. Having determined the average backround of these frames, 

it is removed from all the images. Once the script is run, a 'noBack' folder is 

generated, containing all the frames folder with no background.  

If we compare the figures 11 and 12, we can see the clear difference from the initial 

frame (Figure 12) to the one after running the script RemoveBackround.m (Figure 

11). In the second one the turbidity region appearing in the bottom part of the 

unaltered frame has been removed through the background removal process.  

To make the particles more visible to the software, it is also necessary to increase 

the contrast of the images. The script that allows this to be done is known as 

AdjustContrast.m. The images are now no longer taken from the initial 'raw' folder, 

but from 'noBack', the result of the previous step performed by removing the 

background. By running this script, you can manually adjust the new intensity 
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limits to achieve the desired contrast. The right trade-off is to observe brighter, 

visible particles while at the same time adding further unwanted noise. Once the 

'Minimum' and 'Maximum' limits of the desired intensity have been identified, the 

same brightness limits are applied to all the frames contained into the "NoBack" 

folder, and the resulting images are collected in a new 'contrast' folder. This then 

contains all the frames for which the background has been removed and the 

contrast corrected (see Figure 13). 

 

 

 

 
 

 
Figure 11: Frame with the background. 
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Figure 12: Frame without background. 

 
 
 
 
 

 
Figure 13: Frame with contrast. 
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2.8 Post-Processing  
 

The post-processing, which consists of the proper tracing of particles from frames, 

is based on the parameter file called parameter.m, which contains a number of very 

important parameters. The first of these, denoted as 'im_res' represents the 

resolution of the camera used. Specifically, the two numbers written describe the 

height and width of the frame, respectively. The time step between two consecutive 

frames is denoted as 'dt', which is nothing more than the inverse of framerate.  

 
                  Figure 14: Particle Displacement[px]. 

 

 

The two parameters that govern the process of particle recognition within frames 

are 'p_size' and 'p_int'. The first one indicates the average particle size in pixels, 

with typical values of 9,11 and 13 identified by thorough analysis while the second 

one is the average particle intensity always expressed in pixels. After a series of 

analysis, it was chosen 7000 as the value of p_int. 

The main Matlab code for particle tracking is placed inside the 'src' folder, 

contained in the Part2Track software, and is called main_proc.m. It takes as input 

images those within the 'contrast' folder, while the output comes in the form of 

another folder 'results'. Particle detection is performed by tracking particles, which 

appear in consecutive frames and by estimating their displacement and velocity. 

By reviewing each frame, particle trajectories are then extracted, the displacement 

of which is provided in pixels in the form of histograms (see Figure 14). The most 

important result, however, is a graph from which emerge, in various colours, all 
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the orbital paths traced by the particles. Most of them are not perfectly close 

because the traced particles seldomly disappear from the frames due to them 

moving outside of the light sheet following the wave motion, which can lose sight 

of a certain particle by moving from one frame to the next. Figure 15 represents 

the average velocity field and the trajectories of the particles. 

 

 

 
Figure 15: Velocity and trajectories of the particles. 

 

Then, a video was generated using the script called "VectorFieldVideo.m," in 

which we can observe the velocity field of the detected particles.  

In Figure 16 a snapshot of the particle velocity field generated in response to the 

passage of the wave is shown. The cloud of particles is seen to clearly move to the 

left part of the frame as a wave trough is moving from the left to the right. 
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Figure 16: Vector field. 

 
 

 

 

It is easy to see how in the central part of the wave, there is good seeding 

throughout the water column, which allowed us to obtain a fairly robust analysis. 

The next Matlab code is called VectorFieldInterpolate.m. This script allows the 

user to interpolate the velocity field extrapolated by Part2Track, which is 

configured as a set of dispersed vectors, over a regular grid defined by a specific 

number of points in the x- and y-direction (mm). The larger the size of such a grid, 

the larger the discretization in both directions. In our case we created a grid 

composed of 400 columns and 300 rows. 

Velocity profiles at any given vertical column in the field of view can be obtained 

using the script "VelocityFieldPhaseMean.m" for those averaged in phase. In 

particular, it is possible to choose a specific vertical line from which velocity 

profiles are extracted. In our case, the chosen "ixprofile" is 170 because, knowing 

that the grid consists of 400 columns and the area with more particles is just before 

the central part of the wave, we chose a value that referred to that area. 

"VelocityFieldPhaseMean.m" analyzes the velocity fields corresponding to the 

same phase across consecutive wave cycles are then grouped and averaged. In this 
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way, an indication of how the velocity profile across the water column varies 

according to the wave phase (i.e. across a wave cycle) can be obtained. 

The graph obtained is shown in Figure 17. Observing the values taken by "u" along 

the x-axis, it can be seen that the velocity profile oscillated between a maximum 

of 0.1 m/s and a minimum of -0.1 m/s, with the negative value indicating particle 

movement in the opposite direction to the wave propagation. Instead, with 

"VelocityFieldPeriodMean.m," it is possible to obtain velocity fields again, but 

this time averaged over the period. This means that the procedure is almost 

identical to the previous one, but in this case, all velocity fields falling within a 

single wave period, i.e. between two correspondent wave phases, are grouped and 

averaged. Here, the "ixprofile" we chose is the same of before (170). The graph 

obtained from this procedure is illustrated in Figure 18 where in the x-axis we have 

the horizontal component “u” and the y-axis shows the vertical distance measured 

from the top in mm. The various profiles are associated with the quadratic error of 

the mean profile with respect to all vertical profiles,of the horizontal velocity “u” 

,used to obtain it. These results refer to a monochromatic wave, later these 

considerations will also be made for the bichromatic one. 
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Figure 17: Phase mean. 

 
 

 

 
Figure 18: Period mean. 
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3 Results 
 
3.1 Analysis of Monochromatic Waves 
 

Through the script 'LongestTrajectories.m', we were able to plot the trajectories of 

particles. With this tool, we were able to select the frame to be analysed and the 

number of trajectories to be plotted by Matlab. To ensure clearer and faster results, 

we configured Matlab to show only the longest trajectories.  

 
         Figure 19: Incomplete Trajectories. 

 
Initially, we performed a visual analysis of the trajectories. Some of them were 

discarded because they were incomplete, as shown in Figure 19. This was mainly 

caused by Matlab's difficulty in tracking the motion of some particles during data 

acquisition. On the contrary, some trajectories, such as the one illustrated in Figure 

20, showed a pattern that led the particle towards the free surface, or towards the 

bottom of the channel as shown in Figure 21.  

This phenomenon can be attributed to the fact that the frames are related to 

approximately a few minutes after the release of the seeding, therefore it was 

predictable that they had stabilized in terms of falling speed. 

 

   
   Figure 20: Rising Trajectory. 
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Figure 21: Sinking Trajectory. 

 
After an in-depth analysis, it turned out that by setting the parameter p-size 

(Particle size in px) to 13 and options.min_dist (Maximum deviation from position 

prediction in px) to 5, Matlab was able to plot more precise and longer trajectories, 

as seen in Figure 22. Next, we identified twenty-two trajectories that we considered 

optimal through visual observation. For each of these trajectories, we calculated 

the maximum and minimum with respect to the x and y axes.  

 

 
Figure 22: Trajectories. 

 

The resulting graphs, similar to those presented in Figures 23 and 24, delineate the 

maximum and minimum with respect to the x-axis in the first graph and with 

respect to the y-axis in the second.  

By analysing these graphs and the trajectory section in the frame, it was also 

possible to identify different types of trajectories. In the previously selected 

trajectories, there were trajectories with a positive trend ( heading towards the 

wave direction), trajectories with a negative trend (moving in the direction 

opposite to the wave direction) and trajectories characterised by a sinking trend. 

The latter, in turn, were further subdivided into negative and positive trajectories. 
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                 Figure 23: Maxima and minima along the x-axis. 
 

  
                  Figure 24: Maxima and minima along the y-axis. 
 
 

 
Figure 25: Difference between maxima and minima on the x-axis. 
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Figure 26: Midpoint between maxima and minima on the y-axis. 

 

Now, our objective was to analyze the Horizontal Drift (Dx), taking into account 

the position and direction of each trajectory with respect to the wave. The Dx was 

calculated as the difference between two maxima or two minima from the values 

obtained on the x-axis (Figure 25). After calculating these differences for each 

trajectory, we added them up to obtain an average. As for the position and direction 

of the trajectory with respect to the wave, we calculated the midpoint between a 

maximun and a minimum of the values obtained on the vertical axis, as shown in 

Figure 26, and then calculated the average.  

We then represented these values in a graph, in which the Horizontal Drift was 

entered on the x-axis and the Y values obtained on the y-axis (Figure 27). It 

illustrates the behaviour of the Horizontal Drift in relation to depth and only 

particles moving in the same direction as the wave and those moving in the 

opposite direction have been portrayed.  

It is evident that negative values correspond to negative trajectories and positive 

values to positive trajectories. The light blue line represents the free surface while 

the dark blue line represents the channel bed. 
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      Figure 27: Horizontal Drift (Dx). 
 

Knowing that the camera used has captured 120 frames per second, the Drift 

velocities (𝑈𝑈𝐿𝐿) can be calculated as follows. After determining the number of 

frames for each maximum or minimum recorded along the x-axis, we obtained the 

time associated with each point of maximum and minimum for each trajectory. 

 

Next, we calculated the Lagrangian period (𝑇𝑇𝐿𝐿) where 𝑇𝑇1,𝑇𝑇2.., corresponds to x 

values calculated along the x-axis (see Figure 23) 
 

𝑇𝑇𝐿𝐿 =
[|(𝑇𝑇1 − 𝑇𝑇2)| + |(𝑇𝑇2 − 𝑇𝑇3)| + |(𝑇𝑇3 − 𝑇𝑇4)| … ]

𝑠𝑠
 𝑥𝑥 

1
120

 

 
Finally, we have that (𝑈𝑈𝐿𝐿) is obtained by the following formula 
 

𝑈𝑈𝐿𝐿 =
𝐷𝐷𝑥𝑥
𝑇𝑇𝐿𝐿

  

 

The figure 28 illustrates the drift velocity trend as a function of depth, showing a 

remarkable similarity to the horizontal drift trend,as expected. This consistency is 

attributed to the fact that the Lagrangian period remained consistently close to 1 

second. This result confirms the reliability of our data, considering that the camera 

is capable of capturing 120 frames per second.  
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To differentiate one trajectory from another, a reference number has been assigned 

and is also reported in the graph (Figure 28). 

Visual analysis of the Drift velocities clearly suggests an ideal best-fit curve.  

However, four trajectories near the free surface appeared anomalous, initially 

considered as extreme values. Further analysis revealed that these trajectories 

behaved as fluid, not as inertial particles. As a result, it turned out that the fitting 

curve should pass through those particles as well. To distinguish whether the 

particles at hand were fluid or inertial, two distinct scripts have been used based 

on both linear theory and Stokes theory. 

 

 

  

Figure 28: Drift velocities. 
  
 
 
 
 
 
c 
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3.2 Fluid particle motion 
 

The single particles of the fluid are considered an integral part of the total fluid 

mass. They follow the flow, and their speed is essentially the same as that of the 

fluid.  

To identify whether a particle exhibited behavior similar to that of a fluid particle, 

a Matlab script was used to trace both the real trajectory considered (real path) and 

the trajectory modeled by solving the following equations (linear theory): 

 
 

𝜌𝜌 �
𝜕𝜕∅
𝜕𝜕𝑥𝑥
� = aω 

cosh (k(z + h))
sinh (𝑘𝑘ℎ)

cos(𝑘𝑘𝑥𝑥 −ωt + phase) − UU, 

 

      𝑤𝑤 �𝜕𝜕∅
𝜕𝜕𝑧𝑧
� = aω sinh (k(z+h))

sinh (𝑘𝑘ℎ)
cos(𝑘𝑘𝑥𝑥 −ωt + phase) 

 

 

and also, an additional comparison of the velocity field of a Stokes wave, defined 

by equations (1)-(2) in Boffetta et al (2013) [12]. 

 

 

𝜌𝜌 = U cosh [k(z+h)]
sinh (𝑘𝑘ℎ)

cos(𝑘𝑘𝑥𝑥 −ωt) + 3𝑈𝑈2

4𝑐𝑐
cosh [2k(z+h)]
sinh 4(𝑘𝑘ℎ)

cos[2(𝑘𝑘𝑥𝑥 − ωt)]- UU,      (1) 

 

 

𝑤𝑤 = U sinh [k(z+h)]
sinh (𝑘𝑘ℎ)

sin(𝑘𝑘𝑥𝑥 −ωt) + 3𝑈𝑈2

4𝑐𝑐
sinh [2k(z+h)]
sinh 4(𝑘𝑘ℎ)

sin[2(𝑘𝑘𝑥𝑥 − ωt)].       (2) 
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3.3 Inertial particle motion 
 

The inertial particles are solid or liquid and are suspended in the fluid. They have 

sufficient mass to resist the viscous forces of the fluid. They can have independent 

trajectories and can be influenced by inertial forces. To determine if a particle 

displayed characteristics resembling those of an inertial particle, a Matlab script 

has been employed, which deals with solving the set of equations (3)-(4) present 

in the study by Boffetta et al. (2013) [11], where x(t) and V(t) represent, 

respectively, the particle position and its velocity. In (4) the Stokes response time 

is 𝜏𝜏 where 𝑎𝑎 is the particle radius and 𝑣𝑣 the kinematic viscosity of the fluid, and 

the added-mass effect has been taken into account via the dimensionless number 

𝛽𝛽, built from the fluid, 𝜌𝜌𝑓𝑓 , and particle, 𝜌𝜌𝑝𝑝, densities 

𝑑𝑑𝑥𝑥
𝑑𝑑𝜕𝜕

= 𝑽𝑽              (3) 

 
𝑑𝑑𝐕𝐕
𝑑𝑑𝜕𝜕

= 𝐷𝐷−𝐕𝐕
𝜏𝜏

+ (1 − 𝛽𝛽)𝑔𝑔 + 𝛽𝛽 𝑑𝑑𝐷𝐷
𝑑𝑑𝜕𝜕

    , 𝛽𝛽 = 3𝜌𝜌𝑓𝑓/(𝜌𝜌𝑓𝑓 + 2𝜌𝜌𝑝𝑝)  ,   𝜏𝜏 = 𝑎𝑎2/(3𝛽𝛽𝑣𝑣)          (4) 

    

using as initial conditions the position and velocity of the particle, which we have 

estimated from the trajectory data. The script used the orbital velocity field of a 

harmonic wave as per the classic linear wave theory, and an additional comparison 

of the velocity field of a Stokes wave, defined by equations (1)-(2) in Boffetta et 

al (2013) as for fluid particles. 

 

u = U cosh [k(z+h)]
sinh (kh)

cos(kx-ωt) + 3U2

4c
cosh [2k(z+h)]
sinh 4(kh)

cos[2(kx-ωt)]  

 

 w = U sinh [k(z+h)]
sinh (kh)

sin(kx −ωt) + 3U2

4c
sinh [2k(z+h)]
sinh 4(kh)

sin[2(kx − ωt)]. 

 

 

A comparison was made between the trajectories considered "anomalous" and 

those slightly below, belonging to the rest of the group. 36,23,32 and 10 
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trajectories have been analyzed in comparison to trajectories 7, 27, 11 and 17. The 

choice of trajectories 7, 27, 11 and 17 derived from the fact that they were all 

negative paths (i.e. they move in the opposite direction to the propagation of the 

wave), they were located at approximately the same depth and had a similar 

horizontal drift. For the script regarding the recognition of inertial behaviour, it is 

essential to know the radius of the particle.  

 

 
Figure 29: snapshot for estimating the particle size relative to the trajectory 36. 

 
 
 
As can be seen in equation (4) the particle radius is fundamental for the calculation 

of τ. Given the absence of particles with a uniform shape, it was necessary to 

initially divide the area of the particle analyzed into numerous small squares, each 

corresponding to a single pixel. Next, the radius of the particle was calculated by 

averaging between the major and minor diameters, as shown in Figure 29. 
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The conversion from pixels to millimeters was performed by multiplying the 

number of pixels by the conversion factor specified in the parameter.m script:  
27

average ([363.0675,364.3968,362.4045])
 . 

 

 

The trajectories analyzed are shown in the table below.  

 

 

 

 

 

 

 

 

 

 

 

n.Trajectories Depth [mm] D[mm] d[mm] 
Particle 

radius [mm] 
Particle 

radius [m] 
23 30,251 0,520246107 0,222962617 0,371604362 0,000371604 
36 26,8952 0,520246107 0,222962617 0,371604362 0,000371604 

7 42,4291 0,594566979 0,371604362 0,48308567 0,000483086 
27 40,8056 0,445925234 0,222962617 0,334443926 0,000334444 
11 38,5365 0,520246107 0,222962617 0,371604362 0,000371604 
17 32,3692 0,668887851 0,371604362 0,520246107 0,000520246 
32 14,0009 0,520246107 0,222962617 0,371604362 0,000371604 
10 17,348 0,594566979 0,29728349 0,445925234 0,000445925 

Table 1: Characteristics of the trajectories analyzed. 
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As previously mentioned in the script used for fluid particles, we generated two 

graphs for each trajectory. The ones on the left (Figs. 30, 32..) are calculated by 

applying the linear theory, while the ones on the right is based on Stokes theory. 

 

 

 
 

 
Figure 30: Trajectory 32, Fluid particle-Linear 

theory. 
 
 
  

 
Figure 31: Trajectory 32, Fluid particle- 

Stokes theory. 
 
 

 
Figure 32:  Trajectory 10, Fluid particle-Linear 

theory. 
 

 
Figure 33:  Trajectory 10, Fluid particle- 

Stokes theory. 
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Figure 34: Trajectory 36, Fluid  particle-              

Linear    theory. 

 
Figure 35: Trajectory 36, Fluid particle-Stokes 

theory. 
 
 

 
   Figure 36: Trajectory 23, Fluid particle-

linear theory. 
 

 
Figure 37: Trajectory 23, Fluid particle-Stokes 

theory. 
 

 

 
Figure 38: Trajectory 7, Fluid particle-linear 

theory. 
 

 
Figure 39: Trajectory 7, Fluid particle-Stokes 

theory 
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Figure 40: Trajectory 11, Fluid particle-linear 

theory. 
 

 
Figure 41: Trajectory 11, Fluid particle-Stokes 

theory. 
 
 

 
Figure 42: Trajectory 17, Fluid particle-linear 

theory. 
 

 
Figure 43: Trajectory 17, Fluid particle-Stokes 

theory. 
 
 

 
Figure 44: Trajectory 27, Fluid particle-linear 

theory. 
 
 

 
Figure 45: Trajectory 17, Fluid particle-Stokes 

theory. 
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In the script for inertial particles, both graphs associated with linear theory (Figs. 

46, 48..) and graphs referring to Stokes theory (Figs. 47, 49..) have been generated.  

 

 
     Figure 46: Trajectory 32, Inertial particle-

linear theory. 
 
 

 
 Figure 47: Trajectory 32, Inertial particle-

Stokes theory. 
 
 

 
     Figure 48: Trajectory 10, Inertial particle-

linear theory. 
 

 
 Figure 49: Trajectory 10, Inertial particle-

Stokes theory. 
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     Figure 50: Trajectory 36, Inertial particle-

linear theory. 
 

 
  Figure 51: Trajectory 36 Inertial particle-

Stokes theory. 
 
 

 
     Figure 52: Trajectory 23, Inertial particle-

linear theory. 

 
 Figure 53: Trajectory 23, Inertial particle-

Stokes theory. 
 
 

 
      Figure 54: Trajectory 7, Inertial particle-linear 

theory. 

 
  Figure 55: Trajectory 7, Inertial particle-

Stokes theory. 
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     Figure 56: Trajectory 11, Inertial particle-

linear theory. 

 
 Figure 57: Trajectory 11, Inertial particle-

Stokes theory. 
 
 

 
     Figure 58: Trajectory 17, Inertial particle-

linear theory. 
 
  

 
 Figure 59: Trajectory 17, Inertial particle-

Stokes theory. 
 
 

 
     Figure 60: Trajectory 27, Inertial particle-

linear theory. 
 

 Figure 61: Trajectory 27, Inertial particle-
Stokes theory. 
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When comparing the graphs obtained for each particle, it emerged that none of 

them exhibits behavior that can be attributed to an inertial particle. All the selected 

particles, however, show a behavior closer to that of a fluid particle. Consequently, 

we assumed as inappropriate to classify the four trajectories located close to the 

free surface as outliers. On the contrary, these trajectories must be considered when 

plotting the drift velocity adaptation curve. 

The reason why the four trajectories were closer to the free surface than the rest of 

the group, however, is still unknown. To try to clarify this point, the drift velocity 

was recalculated in relation to depth, following the same methodology previously 

mentioned, focusing exclusively on the first loop of each trajectory.  

Figure 62 presents the Drift trend, considering both the one calculated at the first 

loop of each particle (represented by the red dots) and the general one which takes 

into account the entire trajectory (represented by the blue dots). It is clear that there 

is no significant difference between the two approaches; the positions of the 

particles are essentially similar, except for particle 18.  

Consequently, we could proceed with the polynomial fitting curve by including all 

particles, those obtained considering all the loops for each trajectory (blue dots), 

without excluding any as can be seen in Figure 63.  

We believe that the placement of such particles can be attributed to a number of 

factors, including how the seeding was released, along with the non-uniform shape 

and weight of each particle.  
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Figure 62: Drift trend. 

 

 

 
       Figure 63: Fitting curve of drift trend. 
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3.4 Analysis of Bichromatic waves 
 

The bichromatic waves were generated by superimposing a shorter wave onto a 

longer wave. The shorter component was based on the same characteristics of the 

above-mentioned monochromatic wave (a1, T1), while the longer component was 

characterized by a smaller amplitude and a longer period (a2, T2), with the aim to 

reproduce the natural combination of shorter sea waves with longer infragravity 

(IG hereafter) waves that typically occur in the nearshore region [2].  

 

 

                     Figure 64: Free surface. 
 

 

The figure 64 illustrates the free surface in millimetres calculated on two thousand 

frames. The vertical tracking line is located in the centre of the frame to avoid 

possible inaccuracies at the edges. It is evident that the height of the short wave 

varies within a long wave cycle. Therefore, we chose to analyze the frames relating 

to the fourth peak (corresponding to the IG trough) and the ninth peak 

(corresponding to the IG peak), both with a height of approximately 2 cm. It is 

clear that all waves are influenced by the non-linear interactions between the two 

superimposed waves, causing a vertical elongation, as in the case of wave 8.  

The infragravity waves were analyzed following the same procedure used for the 

monochromatic waves. 

 After removal of the background, a reduced amount of seeding emerged compared 

to that used for the monochromatic wave throughout the entire water column, as 

highlighted in Figures 65 and 66. 
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              Figure 65: Shortwave particles on the trough. 
 

 

               Figure 66: Shortwave particles on the peak. 
 

The script VelocityFieldPhaseMean.m  is designed to extract velocity profiles 

within a specific vertical column in the field of view. However, in this particular 

instance, the term phase mean is not applicable since only one phase is involved.  

Observing the values taken by "u" along the x-axis, it can be seen that the velocity 

profile oscillated between a maximum of 0.07 m/s and a minimum of -0.1 m/s for 

the short wave at the Ig trough (Figure 67), with the negative value indicating 

particle movement in the opposite direction to the wave propagation and between 

a maximum of 0.11 m/s and a minimum of -0.05 m/s for the short wave at the Ig 

peak (Figure 68). 
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                  Figure 67: Selected velocity profiles at the IG trough. 
 

 

                  Figure 68: Selected velocity profiles at the IG peak. 
 

Through the LongestTrajectories.m script, the trajectories were also traced for the 

bichromatic waves. As is evident in both figures (Fig. 69 and 70), the observed 

behaviour corresponds exactly to our expectations. In Figure 69, we refer to the 

short wave at the IG trough, where all trajectories appear to move in the opposite 

direction to the direction of wave propagation. This phenomenon occurs because 

near the trough of the infragravity wave, the wave propagates in the opposite 

direction, providing the trajectories with the corresponding horizontal drift, while 
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each loop is generated by the monochromatic wave that overlaps with the 

infragravity one. Similarly, we observe the same behaviour for the short wave at 

the IG peak (figure 70), where all trajectories show a net movement towards the 

right of the frame considering that the wave move from the left to the right. This 

happens because the short wave is propagating at the peak of the infragravity wave. 

 
Figure 69: Short wave trajectories on the IG trough. 

 
 

 
Figure 70: Short wave trajectories on the IG. 
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Next, the specific trajectories occurring on the wave 4 trough and wave 9 peak 

were examined in detail, see figure 64. 

With regard to the trajectories associated with wave trough 4, only those that 

recorded their positions between frames 45 and 200 of the pertaining frame 

package were taken into account, as illustrated in figure 71. This interval was 

selected as those frames delimited the short wave placed in the IG trough: i.e. wave 

4 in Figure 64. 

 

With regard to the trajectories linked to the peak of wave 9, showing a clear 

position in frames 40 and 186 of the pertaining frame package were analysed 

(Figure 72).  

This interval was chosen as those frames delimited the short wave placed in the IG 

peak: i.e. wave 9 in Figure 64. 

 In both figures, the x-axis shows the number of frames, from which it is easy to 

obtain the Lagrangian period, while on the y-axis we have the calculated position 

relative to the x-axis, from which we can derive the horizontal drift. 

 

 
             Figure 71: Graphic on the x-axis relative to the Short wave trajectories at the IG trough. 
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           Figure 72: Graphic on the x-axis relative to the Short wave trajectories at the IG peak. 

 
 

 

 

For both configurations, a graph was created displaying the drift velocities in 

relation to depth (see Figures 73 and 74). As is evident from the graphs in Figures 

69 and 70, these representations were processed during the first cycle of each 

trajectory. 

Both the drift velocity and the depth of each trajectory were calculated using the 

same approach as for the monochromatic waves.  

The drift velocities were determined by calculating the difference in the horizontal 

drift and dividing it by the Lagrangian period, see Figures 71 and 72.  

As for the position of each particle within the wave (depth), the midpoint between 

a maximum and minimum of the graph obtained on the y-values was calculated, 

following the same methodology used for the monochromatic waves. 
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Figure 73: Drift trend about the short-wave trajectories on the IG peak. 

 

 
Figure 74: Drift trend about the short-wave trajectories on the IG trough. 

 
 

For the trajectories associated with the short wave on the IG trough, an average 

drift velocity of -25.1938 mm/s is obtained, with a standard deviation of 1.1858.  

As for the trajectories associated with the short wave on the IG wave peak, the 

average velocity is 24.1700 mm/s, with a standard deviation of 1.2579.  

Finally, for a better identification of the behaviour of the drift velocities, fitting 

curves were plotted using a second-degree polynomial equation, as illustrated in 

Figures 75 and 76. 
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              Figure 75: Fitting curve of short-wave trajectories on the IG peak. 

 

 
              Figure 76: Fitting curve of short-wave trajectories on the IG trough. 
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4 Discussion 
 
In this context, this thesis aims to analyze two types of waves: monochromatic and 

bichromatic, characterizing their differences and examining the related effects. 

Particular attention is paid to velocity fields, the tracking of particle trajectories 

within the waves and the trend of drift velocity. 

As regards the monochromatic wave, a velocity profile was obtained that oscillates 

between a maximum of 0.1 m/s and a minimum of -0.1 m/s, presenting a 

symmetrical trend (see figure 17).  

As highlighted in figure 67, for the bichromatic wave, however, the velocity profile 

oscillates between a minimum of -0.1 m/s and a maximum of 0.06 m/s for the short 

wave on the IG trough and between -0.06 and 0.1 for the short wave on the IG 

peak (figure 68). This phenomenon is attributable to the influence of the short wave 

on the long wave, determining a greater negative velocity in the first case and a 

greater positive velocity in the second. 

The validity of these results is further highlighted in graphs 69 and 70 where the 

trajectories of the particles in the short wave on the IG trough show a negative 

drift, i.e. opposite to the propagation of the wave, while the trajectories in the short 

wave on the IG peak show a positive behavior. 

The average drift velocity of the monochromatic wave was calculated, which 

stands at 2.0566 mm/s, representing approximately 8.31% of the average drift 

velocity (24.6819 mm/s) calculated between the short wave on the trough and that 

on the peak of the IG wave. 

Similarly, the standard deviation of the monochromatic wave, equal to 2.4482, is 

approximately double the average of the standard deviation of the two bichromatic 

configurations, which amounts to 1.22185. 

The graph relating to the drift trend of the monochromatic wave, described in the 

results chapter, has been dimensionally normalized in order to facilitate 

comparison with the experiments conducted by Grue and Kolaas [6]. 

Comparisons with calculations from the inviscid and strongly nonlinear Fenton 

method and second-order theory show that flow velocities in the boundary layers 

below the wave surface and above the fluid bottom contribute to a forward drift 
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velocity and to an excess period strongly increased. Furthermore, they showed that 

the experimental cutoff of the drift velocity becomes more than double that 

obtained with the Fenton method, which in turn is about double that of the second-

order theory near the surface. 

Observing the trend of the blue line in figures 77 and 78, qualitative similarity 

between our results and the Grue and Kolaas’s results is evident (figure 77). 

Both drift velocities appear to exhibit similar behavior, below the wave surface 

and above the bottom, they contribute to a notable increase in the forward drift 

velocity. On the contrary, they become clearly negative in the center of the water 

column. 

This would confirm that the measured Lagrangian drift velocity, systematically in 

excess of inviscid theories, indicates that wave-induced Stokes drift is significantly 

higher than that commonly represented in wave-current interaction models. 

 

 
              Figure 77: Drift trend of monochromatic wave (dimensionless). 
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Figure 78: Horizontal drift velocity UL for time window 1 (t~9:9–13:8 s). (J. Grue and J. Kolaas 

2017). 
 

If we focus our attention only on the drift velocities of the bichromatic wave, we 

notice that they are almost similar. In particular, the drift velocity of the short wave 

at the trough (-25.1938 mm/s) is of approximately 97.54%, lower than the celerity 

wave, i.e. 1.08 m/s, while that of the short wave at the peak (24.1700 mm/s) is 

approximately 97.7% lower. 

Analyzing figures 73 and 74, two distinct behaviors emerge in terms of drift 

velocity.  

In the graph relating to the peak of the IG wave, a greater drift velocity is 

highlighted at the walls (i.e water surface and seabed), suggesting a greater particle 

concetration in the central area.  

On the contrary, in the short wave at the IG trough, the absolute drift velocity is 

greater in the central area, indicating a greater presence of particles at the walls. 

These results may be of considerable interest in the context of tracers, pollutants 

or marine debris. Through such data, it is possible to understand the behavior of 

such elements both on the trough and on the peak of real-world IG wave. 
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5 Conclusion 
 
An experimental setup provided at the Laboratory of Hydraulics and Maritime 

Construction of the Polytechnic University of Marche (Ancona) was used to carry 

out experimental tests on monochromatic and bichromatic waves, to study the drift 

velocity along the water column. In the channel, two series of experiments were 

conducted, characterized by a height of 3 cm and a period of 1 s for the 

monochromatic test and a combination of a short wave (height of 3 cm and 1 period 

of 1s) and a long wave (height of 0.3 cm and a period of 10s).  

 

The tracer used was chili pepper, chosen for being neutral with respect to the water 

present in the channel. 

 

The experience acquired has provided various insights, both from a theoretical and 

practical point of view, especially in relation to the various configurations to be 

studied. 

 

Software like Matlab and toolboxes like Part2Track have made it possible to 

complete what was done in the laboratory. Their functionalities were used for post-

processing, which provided the results which are the object of study of this thesis. 

 

These results take on a role of particular relevance in the context of environmental 

management and marine safety, especially in relation to tracers, pollutants or 

marine debris. Detailed analysis of trajectories and drift velocities provides an in-

depth perspective on the behavior of such elements along the trough and peak of 

the bichromatic wave. 

By collecting accurate data, we are able to gain a clearer understanding of how 

these elements interact with the marine environment. This allows one to outline 

dispersal paths, identify any significant concentrations, and evaluate the possible 

impact of these elements on marine ecosystems. 
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Furthermore, the ability to model the motion of tracers or debris in different 

oceanographic conditions can be fundamental for the development of 

environmental management and emergency response strategies. 

Using such data ultimately helps inform crucial decisions regarding ocean 

protection and environmental sustainability. 

To delve deeper and clarify this topic in the best possible way, further analysis 

would be needed, considering that the entire study covered by the thesis is 

preliminary.  

In optimal test conditions, the experiment could be repeated, for example 

considering longer wave cycles, in order to have more sections at the trough and 

at the peak, average them and then make a comparison. 

Future developments would be desirable, both in terms of more detailed research 

and new experiments. 
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