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1 Abstract

The present work aims to present a list of scripts to model, simulate and control a spacecraft
in the presence of obstacles due to its proximity to a space station or other objects orbiting
in space. Two maneuvers will be studied in depth along with their modeling and simulation,
these will be called respectively reorientation under directional constraints and rendezvous in
the presence of physical obstacles. The mathematical model of the roto-translational motion
of a spacecraft as well as the design of control fields are entirely written by coordinate-free
Lie-group-type formulations. A series of numerical experiments extends the theoretical be-
havior and illustrates the achievements to present the reader with the most convenient control
strategy.

2 Italian Summary

In questa sezione verrà proposto un resoconto in lingua italiana del lavoro esposto in seguito in

lingua inglese.

La presente tesi di laurea illustra inizialmente una serie di concetti teorici propedeutici alla
comprensione delle scelte compiute nella creazione di algoritmi per la navigazione e il riorientamento
di un satellite di piccole dimensioni e senza equipaggio umano. In seguito, sono riportati i risultati
delle copiose simulazioni numeriche necessarie al raggiungimento delle versioni őnali degli algoritmi
proposti.

Nella sezione 3 vengono presentate le motivazioni che hanno spinto l’autore al completamento di
questa tesi e l’ambito in cui si intende andare ad operare. Vengono illustrate inoltre le fasi principali
della manovra di Rendezvous. Quest’ultima consiste nell’eseguire operazioni orbitali pianiőcate con
alta precisione al őne di far incontrare due oggetti spaziali, in questo caso un satellite di piccole
dimensioni ed una stazione spaziale (per esempio la ISS 1). L’operazione di Rendezvous può essere
divisa rispettivamente in cruising-phase e docking-phase, la prima si riferisce allo spostamento
del satellite da un predeterminato punto iniziale (in genere non nella stessa orbita della stazione
spaziale) őno alle prossimità della ISS, mentre la seconda inizia da una dozzina di metri dal docking
port 2 e si conclude con il corretto agganciamento del satellite alla stazione spaziale. Data la copiosa
quantità di detriti spaziali di tipo artiőciale (porzioni di altri satelliti) o naturale (rocce spaziali)
sorge la necessità di equipaggiare i computer di bordo dei satelliti con un sistema di Obstacle

Avoidance in grado di evitare danni da impatto con gli oggetti appena menzionati grazie alle
informazioni fornite dai sensori di cui il satellite si suppone sia equipaggiato.

La natura dei satelliti menzionati è di solito riconducibile allo studio dell’ambiente spaziale che
li circonda, per esempio la digitalizzazione di immagini di galassie lontane o stelle. Solitamente
questi dispongono di strumentazione come telescopi, sensibili però, alle fonti luminose come il sole
o la luna che li possono rovinare ed eventualmente rendere fuori uso. Per questo motivo è stato
implementato un secondo algoritmo volto alla riorientazione del satellite e tenendo in considerazione
vincoli direzionali dettati dalla direzione degli oggetti luminosi. Inoltre, essendo satelliti autonomi,
sorge la necessità di mantenere l’antenna principale del satellite sempre diretta verso la terra per
ricevere eventuali istruzioni o semplicemente per monitorare il suo comportamento dalla stazione
di terra. Dunque oltre ad evitare fonti eccessivamente luminose, l’algoritmo creato è anche in grado
di mantenere sempre l’asse con guadagno massimo dell’antenna in una direzione tale da permettere
lo scambio di dati con la base e contemporaneamente portare a termine la missione cioè puntare un
ipotetico telescopio da una direzione iniziale a quella successiva senza deteriorare la strumentazione
a bordo.
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3 Introduction

Autonomous guidance of small-sized unmanned spacecrafts has been a goal in applied research since
the inception of space missions. Autonomous guidance is able to overcome communications delays
with the ground mission guidance station while beneőting from direct on-site obstacle sensing
and avoidance. Current and future orbital missions involve operations in the proximity of large
space structures[27], such as the International Space Station. Rendezvous operations constitute a

Figure 1: A view of the International Space Station (ISS) reproduced from en.wikimedia.org.

vital step in unmanned spacecrafts missions to extend their operational life, as it allows on-orbit
refueling of cold gas propellants and maintenance [4]. Rendezvous may be broken down into a
cruising phase, during which the spacecraft leaves its orbit to approach the space station, and a
docking phase, which starts a few dozens of meters away from the station and lead the spacecraft
to physically conjoin the space station through one of the available docking ports shown in Figure
2.

Figure 2: Example of an ISS module designed for docking, PMA stands for Pressurized Mating Adapter

while IDA stands for International Docking Adapter. Source:en.wikimedia.org

While the docking phase concerns precision guidance and collision avoidance with the space
station, guidance along the cruising phase is heavily affected by physical obstacles which may be
moving or őxed with respect to the station and the spacecraft. Obstacles may be active satellites,
micrometeoroids or space debris, parts of vehicles arisen from collisions still in orbit around the
Earth. A serious accident on records happened in February 2009, when Iridium-33 communication
satellite and Kosmos-2251 (non-operating) military satellite accidentally collided [5] at an altitude
of 776 km above the territory of Siberia at a speed of 11.7 km/s. Both satellites were destroyed
in the impact producing more than 2,300 fragments. One third of such fragments entered the
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Figure 3: Logo of the Orbital Debris Program Office (ODPO) reproduced from

orbitaldebris.jsc.nasa.gov.

atmosphere and disintegrated, while the rest is still orbiting the Earth today. A large number of
space debris orbiting the Earth are currently being watched upon by NASA through the Orbital
Debris Program Office whose logo is reproduced in Figure 3. Reorientation of a spacecraft is
likewise a fundamental operation to be carried out during an exploratory mission. Large-angle
attitude slew maneuvers are required to achieve retargeting of payload instrumentation during
science missions [28]. Reorientation from one direction to another must be operated in such a way
that the boresight1 of sensitive instrumentation, such as cryogenically cooled infrared telescopes
[28] and star sensors [17], is not directed toward any bright object such as the sun, the Earth or
the moon, while the antenna does not loose communication with the ground or the space station
[16]. In particular, boresight evasion introduces the notion of attitude forbidden constraints [17].
Automated reorientation in the presence of attitude constraints poses a challenging computational
task for the on-board guidance control system [24].

Automated reorientation plays a crucial role even during the docking phase since safe docking
may take place only if the docking axis of the spacecraft is precisely oriented along the docking
axis of the station docking port. In this phase, orientation is supposed to happen with extreme
precision, facilitated by the alleged absence of directional obstructions.

The mathematical representation to model the roto-translational dynamics of a spacecraft, as
well as the control strategy to make a spacecraft execute the necessary movements in space, are
a subject of continued debate in the scientiőc community. In particular, the mathematical repre-
sentation of the rotational dynamics may be picked from the realms of Tait-Bryan representation,
quaternions and rotation matrices.

Tait-Bryan angles carry an intuitive and easy-to-visualize value [34], although the conversion
from angular to Cartesian coordinate is burdened by complex trigonometric expressions and from
inherent singularities [24]. Quaternion-based representations are often invoked in aerospace en-
gineering [24], although quaternions are affected by the well-known problem of unwinding due
to the redundancy of the unit quaternion (namely, when the rotation angle is sufficiently large,
the trajectory of attitude maneuver may be longer, leading to increased propellant consumption
and longer maneuver time) [17]. In addition, in the author’s opinion, quaternion machinery re-
sults in unnecessarily complicated expressions that directly affect modeling as well control design.
Although inherently redundant, coordinate-free rotation-matrices representations result to be sin-
gularity free [7] and easy to manage in modeling and control design thanks to the underlying
theory of Lie groups [9, 13, 14], hence rotation-matrices representations are the mathematical tool
of choice in the present research endeavor.

Automated control of rigid bodies, such as drones, satellites, ground robots as well as remotely

1Boresight: The term boresight came from high-gain antennas such as parabolic dishes, which produce narrow,

pencil-shaped beams. In this case the term will be referred to the main axis the instruments onboard.
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operated underwater vehicles, may beneőt from the theory of virtual attractive-repulsive potentials,
which has been explored and extended across the decades [2, 18, 19, 20, 22, 23, 25, 26, 31, 33, 36].
Artiőcial-potential-based control relies on artiőcial potential functions constructed so as to assign
a potential value to each point of the state space in a way that promotes state transition toward
a set goal while demoting state transitions toward undesired obstructions. In particular, it is im-
portant to cite the papers: [29] that revise and utilizes gradient-based control őelds in conjunction
with further physically-plausible forces, [12] that extended the theory of virtual attractive-repulsive
potential to control the rotational dynamics by Lie-group theory, and the paper [24] that intro-
duced the notion of barrier-type potentials to control the attitudinal dynamics of a spacecraft (in
quaternion representation).

The aim of this thesis is to devise a complete navigation and attitude control strategy for a
spacecraft bound to an orbital station to effect space missions and automated docking. After
recalling the principal equations governing the motion of an orbital spacecraft, it will be presented
a control strategy to effect reorientation under mandatory/forbidden directional constraints. In
addition, a multiobjective control strategy will be presented to make a spacecraft approach safely
an orbital station while avoiding still or moving obstacles, until the őnal guidance phase that
guarantees collision-free docking with the correct attitude.

A distinguishing feature of this work endeavor is that attitudes are represented through orthog-
onal rotation matrices and that the corresponding control actions are represented through vector
őelds on the space of skew-symmetric matrices. These matrices are treated as a whole, without
any need to resort to angles nor scalar velocities. Although as a matter of fact it is difficult for en-
gineers to free themselves from the need to make use of scalar variables, the present paper, among
other, shows that it is in fact convenient. A relation between quaternion and rotation-matrix
representations is discussed in the Appendix.

3.1 Organization of contents

The content is organized as follows in the present thesis, Section 4 recalls necessary details from
orbital dynamics, including the set of reference frames used to describe the equations of motion and
the kinds of propulsion systems available within a small-sized spacecraft. Section 5 details the no-
tion of spacecraft reorientation under directional constraints, with special emphasis on mandatory
and forbidden cones of the celestial sphere. In this section, appropriate virtual attractive-repulsive
potentials to achieve reorientation are presented along with related gradient-type control torque
terms. Section 5.4 of this document discuss rendezvous of the spacecraft with the main station by
breaking down a rendezvous maneuver task into three subtasks, namely: cruising in the presence of
(possibly moving) obstacles, far-end and near-end docking. Each subtask is discussed and tackled
separately through an appropriate control strategy adapted to the required degree of precision
needed. The general control strategy follows a speed control paradigm, based on sliding mode
control, aided by virtual attractive-repulsive potential theory. Section 6 illustrates the theoretical
content of this project through an extensive series of numerical experiments based on several cases-
of-study from the scientiőc literature. Section 7 concludes the document and suggests a number
of possible improvements to the current endeavor to be tackled in future research projects.
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4 Reference frames, physical model and equations of motion

The present section aims at recalling a number of essential details concerning the reference frames
used to describe the equations of motion of a small-sized spacecraft, the type of physical actuators
that govern such motion and a mathematical model of motion. Within this section, the terminology
that shall be used within this document will be recalled as well.

4.1 Spacecraft features

The scenario taken into consideration in the present work involves a main station, which is assumed
to stay in a stable orbit2 around the Earth and to be controlled directly by a ground station or by
on-board personnel and is hence operated independently. The scenario also involves a small-sized
unmanned spacecraft, endowed with a sensor (e.g., a telescope) to achieve scientiőc missions as well
as a communication device (e.g., a radio antenna) to keep in touch with the ground station and/or
the main station, and an on-board autonomous control system that is able to provide appropriate
navigation and control actions relative to objects around it.

Figure 4: A sideview of a small reaction wheel used to modify a spacecrtaft’s attitude from

en.wikipedia.org.

In the examined scenario, the small spacecraft, whose control is the main subject of present
investigation, is supposed to be endowed with two series of actuators, namely a series of cold-gas-
based reaction thrusters that serve to control its translational dynamics, and a series of reaction

wheels depicted in őgure number 4 that serve to control its rotational dynamics [4]. We shall assume
that the number and disposition of thrusters and wheels are appropriate to make the spacecraft
fully operated to ensure that the control actions generated by the devised control algorithm őnd
appropriate realization.

To what concerns the cold gas ejecting thrusters, it is assumed that their thrust cannot be
modulated and is either null (when ‘off’) or maximum (while ‘on’). Conversely, the spacecraft is
assumed to be endowed with three reaction wheels (one per axis) through which it is possible to
modulate any sort of active torque. (Special instances of under-actuated systems are studied, e.g.,
in [3].) A view of a small spacecraft is reproduced in Figure 5.

2A stable orbit is considered having a trajectory that completes perfect circles around earth (Geocentric) this

happens when the height of the orbit is relatively small
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Figure 5: A pictorial view of a small-sized spacecraft reproduced from https://www.nasa.gov.

4.2 Reference Frames

4.2.1 Inertial Reference Frame

An inertial reference frame FI is introduced to describe the direction of bright objects whose direct
light exposure should be avoided, such as the sun, the Earth, the moon. The inertial reference
frame FI is also necessary to specify the direction of a celestial object to be observed by pointing
a telescope to it. Finally this reference frame is used to match the boresight of a transmitting
antenna located on a ground station. Such reference frame is introduced on the condition that
the mentioned directions stay constant within the timespan of a given mission. Target attitudes,
mandatory and forbidden pointing directions during reorientation maneuvers are referred to the
frame FI.

4.2.2 Fixed Reference Frames

There are two Fixed Reference Frames that will be introduced.
Firstly a station-őxed reference frame FS. Such reference frame is concordant with the space

station and plays a fundamental role during rendezvous maneuvers and docking because in this
phase the spacecraft takes as docking reference the main axis of the port, expressed using this
Fixed Frame. In addition, during the cruising phase of rendezvous maneuver, the dynamics of
the spacecraft is expressed in terms of the location of the station through the Clohessy-Wiltshire
equations, which are valid for objects orbiting the Earth on circular orbits and that are spaced
apart of a few kilometers. The station-őxed reference frame FS is sometimes referred to as ‘local
vertical, local horizontal’ (LVLH) see Fig 6. Among the three orthogonal axes, one is directed from
the center of the station to the center of the Earth (Rbar or ZLVLH) and is associated a unit-vector
ez := [0 0 1]⊤, one is directed tangentially to the orbit in the direction of motion (Vbar or XLVLH)
and is associated a unit-vector ex := [1 0 0]⊤. The third axis (labeled either Hbar or YLVLH) is
oriented so as to form a right-handed frame with the former two. The symbol ⊤ denotes matrix
transpose.

A spacecraft-őxed reference frame FC is introduced as well, which serves to describe the relative
orientation and location of the spacecraft with respect to the inertial frame FI or the station-őxed
frame FS, depending on the maneuver being effected. (The subscript C stems from the fact that,
in the rendezvous literature, the spacecraft is often referred to as chaser.) The Cartesian axes of
the reference frame FC are assumed to be aligned to the principal axes of inertia of the spacecraft.
The relative orientation and location enters the control goals to be fulőlled by the spacecraft.

5



Figure 6: A pictorial view of the LVLH reference frame relative to an orbiting spacecraft

reproduced from [4]

4.3 Physical model and equations of motion

Under the assumption that the station and the spacecraft are both orbiting the Earth at slightly
different quotas, the translational motion of the spacecraft in the station-őxed reference frame FS

may be described through the Clohessy-Wiltshire equations. The ClohessyśWiltshire equations
describe a simpliőed model of orbital relative motion, in which both the station and the spacecraft
are in a circular orbit. The ClohessyśWiltshire model provides a őrst-order approximation of the
spacecraft’s motion in a station-őxed reference frame [8].

Denoting by p the coordinate vector of the spacecraft with respect to the station-őxed reference
frame FS, the ClohessyśWiltshire model reads

mp̈ = frt + fcc + fvd + frd, p(0) = p0, ṗ(0) = v0, (1)

where the term frt denotes the resultant of the mechanical forces exerted by the reaction thrusters
on the body of the spacecraft, fvd denotes viscous drag due to friction with atmospheric particles,
the term fcc denotes the resultant of őctitious forces (Coriolis and centrifugal), frd denotes the
resultant of random disturbances affecting the motion of the spacecraft and m denotes the total
mass of the spacecraft at a given time.

The őctitious force term takes the expression

fcc := m





0 0 0
0 −ω0 0
0 0 3ω2

0



 p+m





0 0 −2ω0

0 0 0
−2ω0 0 0



 ṗ, (2)

where ω0 denotes the orbital rate of the main station. For a circular orbit around a central body,
the orbital rate is assumed to be constant and is evaluated through the expression ω0 =

√

µ/r3,
where r denotes the radius of the circular orbit traveled by the station and µ denotes a standard
gravitational parameter [32]. (In the present context, the standard gravitational parameter reads
µ = GM , where G denotes the universal gravitational constant and M denotes the Earth’s mass.)

The viscous drag is considered to be non-negligible only in the direction of motion (correspond-
ing to the axis Vbar of the LVLH system), hence the braking force takes the expression

fvd := − 1
2ρV

2
0 SCDex. (3)

where ρ denotes the density of the atmosphere, V0 denotes the orbital speed of the spacecraft, S
denotes the frontal cross-section area of the spacecraft and CD denotes a drag coefficient. The
orbital speed may be written in terms of the orbital rate as V0 = r ω0 and is henceforth constant.
All the others known perturbations can be considered orders of magnitude smaller than the drag
force and so negligible. Further forcing terms, essentially of random nature, are taken into account
through the disturbance force frd.

To what concerns the rotational dynamics, the spacecraft is considered as a rigid body acted
upon by a series of mechanical torques due to the reaction wheels and external disturbances.
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A constructive detail to bear in mind regarding the transational dynamics of the spacecraft
is that the thrusters are arranged in such a way (in [4] a section shows the distribution of the
thrusters) that two of them are eventually switched on at once in order to exert a null torque on the
spacecraft body. Such design aids control development since it essentially decouples translational-
oriented actuation from rotational-oriented actuation.

The attitude of a spacecraft with respect to the space station is quantiőed by a rotation matrix
R ∈ SO(3) (namely, a special orthogonal matrix). Such rotation matrix is deőned to be the one
that aligns the spacecraft-őxed reference frame FC to either the inertial reference frame FI or to
the station-őxed reference frame FS, depending on what is the current maneuver being described.
The equations of motion may be derived in a standard minimal-action variational setting which
leads to classical Euler-Poincaré equations. Since the spacecraft is subjected to non-conservative
torques, such equations are not ‘pure’ [35].

The rotational dynamics of a rigid body is expressed by a system of two őrst-order differential
equations [9]:

{

Ṙ = RΩ, R(0) = R0,

JΩ̇ = QΩ+ Trw + Trd, Ω(0) = Ω0,
(4)

where Ṙ ∈ TRSO(3) denotes the rotational speed-matrix of the spacecraft, Ω ∈ so(3) denotes the
skew-symmetric angular speed-matrix of the spacecraft, the symbol J : so(3) → so(3) denotes the
inertia operator, the operator Q : so(3) → so(3) denotes the resultant of inherent torques due
to inertia and mass unbalance within the spacecraft, Trw ∈ so(3) denotes the mechanical torque
exerted by the reaction wheels and Trd ∈ so(3) denotes a random disturbance term. The operator
J, which is not a matrix, and the operator Q stem from the Euler-Poincaré equations of motion on
the Lie group SO(3). It is assumed here that the inertia tensor of the spacecraft is constant. The
function JΩ is hence linear (and invertible) in Ω, while the function QΩ is quadratic.

As it will be clariőed in Section 5, it is not necessary to specify the structure of the operator
Q, since a fully-actuated system may be controlled under the principle of dynamics replacement
[12], based on inherent dynamics deletion. In the model (4), the second equation establishes
the rotational speed in the reference frame FC. The mechanical torque őeld Trw will depend
on the actual attitude R through the chosen control law. The őrst equation in the system (4),
often referred to as ‘reconstruction equation’, allows one to reconstruct the actual attitude of the
spacecraft in the chosen reference frame.

Note that, in the present thesis, the rotation matrix R is the only quantity that is introduced
to represent the attitude of a spacecraft, hence quaternions will not be introduced nor Euler nor
Tait-Bryan angles. In addition, the matrix R will always be treated as whole, without any needs
to resort to its entries or angular coordinates.

The mass of a spacecraft changes over time due to propellant consumption during rendezvous.
Since the total mass m enters the equations of dynamics (1), mass decay needs to be taken into
account. Mass decay is described through the differential equation [38]:

ṁ = −
nf̄rt
gIsp

, m(0) = m0. (5)

In the above expression, the constant scalar f̄rt > 0 denotes the maximum thrust of each propulsor
when ’on’, the symbol g denotes the gravitational acceleration, the constant Isp denotes the speciőc
impulse of each propulsor. (Speciőc impulse is a measure of how efficiently a reaction mass engine
creates thrust.) The variable n denotes the number of active thrusters at a given time and may take
only the values 0, 2, 4, 6. Mass distribution also affects the rotational inertia of a spacecraft. We
shall however assume that the contribution of the propellant mass to the total inertia is negligible,
hence the inertia tensor will be considered constant throughout this document.
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4.4 Numerical implementation of the equations of motion

All in one, the system (4) constitute a system of differential equations on the tangent bundle
TSO(3), while the the ClohessyśWiltshire model is a system of differential equations in R3.

The ClohessyśWiltshire model may be implemented numerically by the help of a forward Euler
numerical scheme. Let us denote the discrete-time counterparts of the position vector as ps, of
the linear velocity v := ṗ as vs, of the resultant of all forces f := frt + fcc + fvd + frd as fs, and
of the mass as ms, where s denotes the step counter. Denoting by h the numerical time-step, the
numerical scheme then reads

{

vs+1 = vs + hfs/ms,

ps+1 = ps + h vs.
(6)

The result of such iteration is a numerical approximation of the actual trajectory, namely the
quantity ps is an approximation of the actual coordinate vector p(hs). It is worth noting that, in
an ideal setting, the orbital translational motion happen on the x− z plane, hence the coordinate
y does not play any role in the model.

In a similar way, upon denoting by ns the discrete-time counterparts of the number of active
thrusters, the equation (5) may be solved numerically as

ms+1 = ms −
nshf̄rt
gIsp

. (7)

To what concerns the numerical integration of the equations (4), it pays to introduce discrete-
time counterparts of the involved variables, namely Rs for the attitude matrix, Ωs for the angular
speed matrix, and Ts for the resultant torque matrix T := Trw + Trd. Then the rotational model
(4) may be simulated numerically by the following iteration

{

Rs+1 = RsExp(hΩs),

Ωs+1 = Ωs + h J−1(QΩs + Ts).
(8)

We shall notice brieŕy that the őrst iteration rule stems from the theory of numerical integration
of differential equations on Lie-group bundles. In the above relations, the symbol Exp denotes
matrix exponential. Interested readers might őnd more details in the papers [9, 12].
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5 Reorientation under directional constraints

The őrst control problem to be treated is reorientation in the presence of directional constraint.
Reorientation consists in generating a control action that changes the attitude of the spacecraft
from an initial attitude, represented by a rotation matrix Ri ∈ SO(3), to a desired attitude,
represented by a rotation matrix Rd ∈ SO(3). Without any further constraints, the problem would
be solved by the geodesic motion (namely, the shortest path in the space SO(3)) from Ri to Rd. In
actual space missions, however, reorientation must take into account directional constraints, which
may be classiőed as

• mandatory directions, speciőed by unit vectors eM,i ∈ R3 and angular amplitudes θM,i, that
represent cones of amplitude θM,i around given directions eM,i ∈ R3, that one of the axis of
the spacecraft must always lie within, and

• forbidden directions, speciőed by unit vectors eF,i ∈ R3 and angular amplitudes θF,i, that
represent cones of amplitude θF,i around given directions eF,i ∈ R3, that one of the axis of
the spacecraft must always keep out from.

An example of mandatory-type constraint arises from the requirement that the boresight of the
main antenna on the spacecraft keeps within the cone of contact of a ground-station antenna. The
angles θM,i are generally wider than the angles θF,j , favoring a broader range of motion since the
chaser’s antenna always has to be inside this area. An example of forbidden-type constraint arises
from the necessity to make the boresight of a light-sensitive telescope avoid sunbeams and other
brights sources.

An Example of these two types of cones is depicted in őgure 7 as a 3D őgure, here the satellite
is represented as a cube from which the cones extend outwards. The őgure is for clariőcation
purposes only but it’s important to notice that the mandatory cone is generally broader. Let one
of the axes be the one on which the main antenna lies, through the image it is possible to perceive
by intuition, how the cube can rotate but only maintaining the ax mentioned inside the green cone,
and a similar explanation follows for the forbidden cone. These two behaviors have to be respected
at all times during the maneuver described to complete it safely and to ensure that no instruments
get damaged.

Figure 7: A visual representation of two cones, the red one represent the forbidden direction while

the green one represent the mandatory direction both having specific apertures given by precise

angles to represent the zones to keep boresight within or out of. This picture was made with the

help of MATLAB© by the author.
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The directions eM,i and eF,i are generally speciőed in the inertial reference frame FI, while the
boresight axes of the antenna, hereafter denoted as eBA, and of the sensor, hereafter denoted as
eBS, aboard the spacecraft are speciőed in the spacecraft-őxed reference frame FC.

Reorientation is effected via virtual potential functions based on the above information. The
virtual potential functions deőned in the following is based on both an attractive term and on
barrier-type repulsive terms and enter the equations of dynamics through their Riemannian gra-
dient.

5.1 Rotational dynamics control by dynamics replacement and a virtual-

attractive-repulsive potential

The aim of control design for reorientation purpose is to determine an appropriate control action
that affects the rotational dynamics of the spacecraft through equations (4).

In the present research project, the reaction-wheel torque-type control őeld is taken as

Trw := − QΩ−Kf Ω−R⊤∇RV, (9)

where V : SO(3) → R denotes a virtual attractive-repulsive potential and ∇R denotes the Rieman-
nian gradient at R ∈ SO(3) corresponding to the canonical inner product in the tangent bundle
TSO(3).

The őrst term on the right-hand side of the relation (9) stems from the principle of dynamics
replacement. The purpose of such form of cancellation is to overrule the internal dynamics of
a rigid body with the aim of replacing it with a desired dynamics. Such principle may also be
referred to as decoupling [21].

The second term introduces a sort of rotational braking effect, whose purpose is to slow down the
rotational motion and make the effective control torque less sensitive to excessive control actions.
This term, discussed in [12, 17, 29], also prevents the control algorithm to oscillate excessively
around the optimal solution, which is a well-known effect in gradient-based optimization. The
constant Kf > 0 determines the relative importance of such term. In general, dissipative forces
proportional to speed are added to promote asymptotic stabilization of a dynamical system [21].

The third term on the right-hand side of the relation (9) provides a torque that drives the
attitude of the rigid body toward the minimum of the potential function V . The potential function
must be cautiously crafted in such a way to effectively drive the spacecraft from the initial attitude
to the desired attitude while avoiding undesired (forbidden) direction and yet meeting favorable
(mandatory) inclination. Notice that the potential is deőned in the inertial reference frame FI,
and so is its Riemannian gradient ∇RV , hence it needs to be brought back to the spacecraft-őxed
reference frame FC before entering the equations by a pre-multiplication by the FI-to-FC reference
conversion matrix R⊤.

On the basis of the chosen control law (9), the angular acceleration of the spacecraft reads

J−1(QΩ+ T ) = J−1(−Kf Ω−R⊤∇RV + Trd), (10)

hence it does not depend on the internal dynamics anymore. According to literature, the inertia
matrix of a spacecraft may be taken diagonal (by an appropriate choice of coordinate system FC)
and even isotropic [4, 24]. For the sake of simpliőcation, we shall assume that the three eigenvalue
of such matrix take the same value JC > 0, which readily implies that JΩ = JCΩ.
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5.2 Additive potential function and related gradient

As a őrst attempt to deőne a potential function, based on additive-repulsive potential theory
developed in [12, 24, 27], the expression:

VADD(R) := A(R) +
∑

i

Bi(R), (11)

is taken, where A : SO(3) → R denotes an attractive potential, whose purpose is to attract the
attitude of the spacecraft toward the desired attitude Rd, while each Bi : SO(3) → R is a barrier-
type repulsive potential aimed at making the spacecraft avoiding the forbidden direction while
keeping up with the mandatory directions.

In order to specify the structure of the attractive term, it is necessary to recall the notion of
geodesic distance in SO(3). Given two attitudes R1, R2 ∈ SO(3), their geodesic distance is deőned
as

d(R1, R2) := ∥Log(R⊤
1 R2)∥F, (12)

where Log denotes the principal matrix logarithm and the symbol ∥·∥F denotes a Frobenius matrix
norm.

Now, the attractive potential is deőned as a upside-down bell-shaped function of the geodesic
distance between the current attitude and the desired attitude as

A(R) := − 1
2KAℓ

2 exp

(

−
d2(Rd, R)

ℓ2

)

, (13)

which appears to be a monotonically increasing function with a minimum in R = Rd. The constant
KA > 0 determines the absolute strength of this component of the torque, while the constant ℓ > 0
represents the radius of inŕuence of the potential over the space SO(3): the larger ℓ, the larger its
inŕuence area.

In order to compute the Riemannian gradient of the attractive potential component, it is
worth recalling the golden formula (for a review of manifold calculus in system theory and control,
interested readers might consult [10, 11]):

∇Rd
2(Rd, R) = 2RLog(R⊤

d R). (14)

As result the torque term corresponding to the attractive potential is:

−R⊤∇RA = −KA exp

(

−
d2(Rd, R)

ℓ2

)

Log(R⊤
d R). (15)

The repulsive component of the potential is designed to be of barrier type. In the present
endeavor, barriers are designed to either keep a given axis of the spacecraft away from forbidden
directions or in the angular proximity of mandatory direction. Let us examine forbidden-cones and
mandatory-cones in details.

Given a mandatory direction eM ∈ R3 expressed in the reference system FI and an axis of
the spacecraft eBA ∈ R3 expressed in the reference system FC, the cosine of the angle between
these two directions is given by e⊤MReBA, where R denotes the current attitude of the spacecraft
with respect to the inertial reference system. In order to make sure that the axis eBA keeps at
an angular distance from the mandatory direction eM lesser than a prescribed threshold θM, the
following constraint needs to be imposed

e⊤MReBA − cos θM > 0. (16)

Such constraint appears as a linear inequality in the attitude matrix R.
A barrier potential to secure adherence to such directional constraint reads

BM(R) := −KM log(e⊤MReBA − cos θM), (17)

where KM > 0 determines the strength of the corresponding torque term in the control action,
while log denotes natural logarithm. It is immediate to recognize that, as the axis ReBA gets
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closer to the surface of the mandatory cone, hence the difference e⊤MReBA − cos θM approaches 0,
the function BM(R) approaches +∞ hence providing an inőnitely steep potential wall (a barrier,
in fact).

The above barrier-type virtual potential component is designed to produce an artiőcial repulsion
from the surface of an obstacle, which is represented as the zero sublevel set of a smooth function.
The potential component (17), albeit formally different, produces the same effect of the virtual
potential introduced in [6], which goes to inőnity as the inverse of a known scalar-valued analytic
function in the close vicinity of an obstacle and decays to zero at some positive level surface
sufficiently far from the obstacle. Such approach is, in turn, based on the obstacle-avoidance
technique introduced long before in [21] under the acronym FIRAS (Force Inducing an Artiőcial
Repulsion from a Surface).

The function (17) may equivalently be written as BM(R) := −KM log(tr(ReBAe
⊤
M) − cos θM),

where tr denotes matrix trace. Now, in order to compute the Riemannian gradient of such matrix-
to-scalar function, it pays to recall the formula

∇RB = Rσ

(

R⊤ ∂B

∂R

)

, (18)

where σ : R3×3 → so(3) is a matrix-to-matrix function deőnes as σ(Y ) := 1
2 (Y − Y ⊤) that

represents an orthogonal projection over the space of skew-symmetric matrices, while the symbol
∂
∂R

denotes the ordinary Jacobian matrix. (It is compelling to specify that the expression (18)
holds under the assumption that the tangent bundle TSO(3) is endowed with the canonical inner
product ⟨V1, V2⟩R := tr(V ⊤

1 V2) for every V1, V2 ∈ TRSO(3).)
In the present case, we got

∂BM

∂R
= −

KM

e⊤MReBA − cos θM
eMe⊤BA. (19)

Therefore, the torque component corresponding to a mandatory-type barrier potential takes the
expression

−R⊤∇RBM =
KM

e⊤MReBA − cos θM
σ(R⊤eMe⊤BA). (20)

Likewise, given a forbidden direction eF ∈ R3 expressed in the reference system FI and an
axis of the spacecraft eBS ∈ R3 expressed in the reference system FC, the cosine of the angle
between these two directions is given by e⊤FReBS. In order to make sure that the axis eBS keeps
at an angular distance from the mandatory direction eF larger than a prescribed threshold θF, the
following constraint needs to be imposed

cos θF − e⊤FReBS > 0. (21)

(For comparison purpose let’s recall, e.g. from [17], that such constraint written on the basis of a
quaternion [q⊤ q0]

⊤ would read

cos θF − (q20 − q⊤q)e⊤F eBS − 2e⊤F qq
⊤eBS − 2e⊤F q0q

×eBS > 0,

where q0 denotes the real part of the quaternion and the operator (·)× returns a so(3) matrix
from a R3 vector. Notice that the Jet Propulsion Laboratory (JPL) convention is used to denote
quaternions as is customary in the aerospace domain.)

A barrier potential to secure adherence to such directional constraint reads

BF(R) := −KF log(cos θF − tr(ReBSe
⊤
F )), (22)

where KF > 0 determines the strength of the corresponding torque term in the control action. The
torque component corresponding to such a forbidden-type barrier potential takes the expression

−R⊤∇RBF =
KF

e⊤MReBS − cos θF
σ(R⊤eFe

⊤
BS). (23)
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Gluing all pieces together, the complete additive potential expression reads

VADD(R) =−
1

2
KAℓ

2 exp

(

−
d2(Rd, R)

ℓ2

)

−KM

∑

i

log(e⊤M,iReBA − cos θM,i)

−KF

∑

i

log(cos θF,i − e⊤F,iReBS).
(24)

The corresponding control torque term TADD(R) := −R⊤∇RVADD(R) reads

TADD(R) =−KA exp

(

−
d2(Rd, R)

ℓ2

)

Log(R⊤
d R) +

∑

i

KM

e⊤M,iReBA − cos θM,i

σ(R⊤eM,ie
⊤
BA)

+
∑

i

KF

e⊤F,iReBS − cos θF,i
σ(R⊤eF,ie

⊤
BS),

(25)

where summations run over the number of mandatory/forbidden constraints, respectively. We have
chosen to weight the mandatory terms with the same constant KM and all forbidden terms with
the same constant KF, although, in practice, every coefficients may be chosen to take a different
value.

It is interesting, and perhaps counter-intuitive, to notice that the torques corresponding to
mandatory-type constraints look alike the terms corresponding to forbidden-type constraints. How-
ever, the scalar coefficients in the former types of constraints are positive-valued, while the coeffi-
cients in the latter types are negative-valued, hence they behave in an opposite way.

An important aspect to evaluate is the expression of the potential function V̄ADD and of the
corresponding gradient-based torque component T̄ADD = −R⊤

d [∇RVADD]R=Rd
at the expected

equilibrium point. Calculations show that

{

V̄ADD = − 1
2KAℓ

2 −KM

∑

i log(e
⊤
M,iRd eBA − cos θM,i)−KF

∑

i log(cos θF,i − e⊤F,iRd eBS),

T̄ADD =
∑

i
KM

e⊤
M,i

RdeBA−cos θM,i
σ(R⊤

d eM,ie
⊤
BA) +

∑

i
KF

cos θF,i−e⊤
F,i

RdeBS

σ(R⊤
d eF,ie

⊤
BS),

(26)
since d(Rd, Rd) = 0 and Log(R⊤

d Rd) = 0. The expression V̄ADD is useful in numerical simulation
to verify as to whether the gradient-based control algorithm seeks in fact the minimum of the
potential function.

The expression T̄ADD tells that even at the equilibrium point there exists a non-zero torque that
tend to orient the spacecraft in a direction that is not exactly the desired one. In formal terms,
the solution of the equation TADD(R) = 0 differs from R = Rd because of the residual pull-push
effect of the barriers. This effect is not necessarily disruptive for at least two reasons: 1) during
reorientation, even if the boresight of a telescope does not match exactly the preferred direction
of observation of a target, an observation mission might still be carried out; 2) during docking, a
tolerance in the alignment might be borne [40] (as in underwater missions [15]).

With the aim of őxing the above-noted inconsistency, the next section 5.3 explains a different
approach to the problem.
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5.3 Mixed multiplicative-additive potential and related gradient

Many potential functions have been evaluated for the case. Existing approaches differ on how to
combine reorientation goal and constraints to concur in the deőnition of a virtual potential. To
recall a few, the paper [24] suggest a mixed multiplicative/additive potential, where the component
associated to re-orientation is multiplies by the sum of the barrier-type components associated
to directional obstacles. The paper [17] follows a similar approach, although the components
associated to re-orientation and obstacles differ in mathematical structure. The paper [30] remarks
that a combination of partial potentials may yield a function with potentially multiple critical
points and recall the notion of ‘navigation functions’ which constitute possible remedies to such
difficulty. The function proposed in [30] is a nonlinear combination of the reorientation potential
and of the sum of the reorientation-potential with the product of constraint-enforcing potentials.

In the present research project, it is deemed appropriate to explore the features of a mixed
potential inspired by the paper [24]. Such mixed potential is a variant of the additive potential
expressed in (11) and reads

VMIX(R) := A(R) +M(R)
∑

i

Bi(R), (27)

where the barrier functions take the same expression as in (17) and (22), the attractive function
A(R) takes the same expression as in (13) while the additive potential is taken as a quadratic
function as

M(R) := − 1
2d

2(R,Rd), (28)

which is a monotonically increasing function with one minimum in R = Rd.
The detailed expression of the mixed-form potential reads

VMIX(R) =−

1

2
KA ℓ

2 exp

(

−

d2(R,Rd)

ℓ2

)

−

1

2
d
2(R,Rd)

(

KM

∑

i

log(e⊤M,iReBA − cos θM,i) +KF

∑

i

log(cos θF,i − e
⊤

F,iReBS)

)

.

(29)

The torque control component corresponding to the Riemannian gradient of such virtual potential
may be determined by going through the same calculations shown in Section 5.2. The obtained
expression TMIX(R) := −R⊤∇RVMIX(R) reads

TMIX =−KA exp

(

−

d2(R,Rd)

ℓ2

)

Log(R⊤

d R)

+

(

KM

∑

i

log(e⊤M,iReBA − cos θM,i) +KF

∑

i

log(cos θF,i − e
⊤

F,iReBS)

)

Log(R⊤

d R)

+
1

2
d
2(R,Rd)

(

∑

i

KM

e⊤
M,iReBA − cos θM,i

σ(R⊤
eM,ie

⊤

BA) +
∑

i

KF

e⊤
F,iReBS − cos θF,i

σ(R⊤
eF,ie

⊤

BS)

)

.

(30)

With reference to the classical error-feedback control, it is worth noticing that the above expression
appears as a weighted sum of the reorientation error E := Log(R⊤

d R) and of a constraint-enforcing
torque

C :=
∑

i

KM

e⊤M,iReBA − cos θM,i

σ(R⊤eM,ie
⊤
BA) +

∑

i

KF

cos θF,i − e⊤F,iReBS
σ(R⊤eF,ie

⊤
BS) (31)

through the weighting functions

W := −KM

∑

i

log(e⊤M,iReBA − cos θM,i)−KF

∑

i

log(e⊤F,iReBS − cos θF,i) (32)
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and M , respectively to which we added an attractive potential A to enforce the satellite to reach
the desired Rd.

It is immediate to recognize that, at the sought equilibrium point R = Rd, it holds that
VMIX(Rd) = 0 and, more importantly, that TMIX(Rd) = 0. Such approach might potentially be
able to overcome the problem of non-zero torque at equilibrium entailed by the approach presented
in Section 5.2. The virtual potential (29) may be interpreted as an additive repulsive potential
weighted by an additive potential increasing with the distance to the desired attitude.

The reason why an attractive function A has been added to the equation is that a potential
drawback of the mixed multiplicative-additive approach just detailed could be that there is no
chance to balance, through a weighting constant, the opposed actions of the attractive term and
of the repulsive terms.

5.4 Relation with a navigation function

The barrier terms, on which the above-discussed virtual potential functions are based on, may be
recast in a different expression by exploiting the properties of the logarithm. In fact, upon deőning
the total barrier term

BT := KM

∑

i

log(e⊤M,iReBA − cos θM,i) +KF

∑

i

log(cos θF,i − e⊤F,iReBS), (33)

it is immediate to recognize that

BT =
∑

i

log(e⊤M,iReBA − cos θM,i)
KM +

∑

i

log(cos θF,i − e⊤F,iReBS)
KF

= log

(

∏

i

(e⊤M,iReBA − cos θM,i)
KM

∏

i

(cos θF,i − e⊤F,iReBS)
KF

)

.

(34)

It readily follows that

exp(BT) =
∏

i

∏

j

(e⊤M,iReBA − cos θM,i)
KM(cos θF,j − e⊤F,jReBS)

KF . (35)

Hence the total barrier function may be regarded as a product of partial function that are positive
only in the permissible zones delimited by each barrier, a design strategy suggested in [30], where
the weighting coefficients KM and KF play the role of order parameters.
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Position control

During cruising and docking under positional constraints

Autonomous navigation toward the space station aimed at complete docking is one of the primary
goals of control design. Since navigation is a complex task, it is customary to break it into subtasks
[4] to be separately tackled on the basis of the current physical distance between the spacecraft and
the docking port. In the present research project, the approaching trajectory is subdivided in three
parts: cruising, far-end docking and near-end docking, as detailed in the next sections. Figure 8
serves to display Juno’s trajectory for its mission, in this case docking is not comprehended but the
image clearly shows how the spacecraft moves between different orbits which is a similar behavior
as the chaser’s in this paper that needs to go from a lower orbit to a higher orbit (the same as the
station) before attempting docking.

Figure 8: Spacecraft Juno’s mission trajectory via: https://www.jpl.nasa.gov

5.5 Control strategy during cruising in the presence of physical obstacles

The maneuvering a spacecraft in the presence of obstacles requires to be carried out autonomously
by the help of sensors by a guidance algorithm. The algorithm devised in the present project is
based on virtual attractive-repulsive potential theory and is declined in three versions: a version
adapted from [4], a version based on impulsive control drawn from [27], and a version that build
on impulsive control by an adaptive desired speed.

During an approaching phase, the motion of the spacecraft is referred to the station’s LVLH
reference system, hence the attitude matrix R, in the present context, is the one that aligns the
spacecraft-őxed reference frame FC to the station-őxed reference frame FS.

According to [4], the control algorithm switches on the thrusters according to a őrst-order
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sliding-mode control method, described by the relation:

frt = −2φ f̄rt R sign(σ), (36)

which expresses the fact that a pair of thrusters per axis of the spacecraft are eventually switched
on, hence exert a thrust twice as large as the maximum thrust. Which pairs of thrusters is currently
switched on is determined by the sliding output vector σ ∈ R3, whose value is inessential except
for the signs of its components. The variable φ ∈ {0, 1} represents a ŕag employed in impulsive
control.

In general, sliding mode control (SMC) is based on a discontinuous feedback that switches
among a number of control laws according to a pre-deőned decision rule. For a basic review of its
features, readers might consult [1, 37]. For a more advanced account of SMC, interested readers
might consult [39].

It is worth highlighting that the force term frt and the number n are related through the
relation

φ ∥frt∥
2 = 2n f̄2

rt, (37)

which, in fact, allows determining the number of active thrusters on the basis of the output of the
control algorithm.

The variable σ depends on the mismatch between the current velocity ṗ of the spacecraft and
the desired velocity ṗd ∈ R3, as well as on the mismatch between the current position p of the
spacecraft and the desired position pd ∈ R3, through the linear combination

σ := ṗ− ṗd + c(p− pd). (38)

The constant c ≥ 0 determines the relative weight between position and velocity mismatch.
The quantity pd is determined by the position of the target of the cruising phase, which normally

is located from within a few hundreds to a few dozens meters away from the docking port, and is
generally constant. The desired velocity changes along the trajectory and is determined through
a virtual potential by the following expression

ṗd = vd
−∇pVC

∥∇pVC∥
, (39)

where vd > 0 denotes the desired speed, determined independently of the virtual potential, while
∇pVC ∈ R3 denotes the gradient of the potential VC : R3 → R. As a result, it holds that ∥ṗd∥ = vd,
hence the entity and the direction of the desired speed are determined independently by the control
algorithm.

The cruising phase ends when the distance between the spacecraft and the desired position is
less than a given threshold, namely as soon as ∥p− pd∥ ≤ 50.

5.6 Virtual potential design

The virtual potential function is designed to decrease when a spacecraft gets closer to the target
location and to increase when a spacecraft gets closer to a physical obstacle. The gradient-based
sliding-mode control algorithm is hence designed to seek the minimum of the potential function.

The virtual potential is constructed as a sum of terms, one of which is attractive and depends
on the desired location, while further terms are repulsive and depend on the location and on the
safety radii of physical obstacles. Formally, the potential reads

VC(p) = AC(p) +
∑

i

PC,i(p), (40)

where AC : R3 → R denotes the attractive-type component and PC,i : R
3 → R denote the repulsive-

type components. The sum runs over the number of obstacles within the radius of sensitivity of
the proximity sensors aboard the spacecraft.
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The attractive-type component of the potential function is deőned by

AC(p) :=
1
2HA∥p− pd∥

2, (41)

where HA > 0 is a constant that determines the strength of the attractive component of the
potential. The component AC(p) is monotonically increasing with a unique minimum in p = pd.

In order to enable the spacecraft to avoid the physical obstacles, a number of repulsive-type
components need to be designed that exhibit their maximum value in correspondence of the location
of the obstacles and whose action vanish as rapidly as the distance between the spacecraft and the
obstacles increases. We shall denote as oi ∈ R3 the location of each obstacle in the station-őxed
reference frame FS and by ηi the safety radius of each obstacle. Obstacles are assumed to be
of spherical shape, hence each safety radius may be thought of as the sum of the radius of the
spherical obstacle augmented by an extra safety distance (which should not exceed the sensitivity
radius of the proximity sensor). On the basis of such data, the repulsive-type component of the
potential associated to the ith obstacle was deőned as

PC,i(p) :=
1

2
HR exp

(

−
∥p− oi∥

2

η2i

)

, (42)

where the constant HR > 0 determines the strength of each repulsive term. Notice that the expres-
sion chosen represents only a soft constraint: although it cannot be ensured that the spacecraft
will not enter the obstacle, a reasonable safety distance may be determined through a careful
handcrafting of the safety radii.

The anti-gradient of the virtual potential function reads

−∇pVC = −HA(p− pd) +HR

∑

i

exp

(

−
∥p− oi∥

2

η2i

)

p− oi
η2i

. (43)

It is important to remark that the present setting stays unvaried whether the obstacles are
őxed with respect to the reference frame FS or are moving, instead.

5.7 Speed intensity determination

The desired speed may be determined on the basis of different criteria. In the present research
work are compared the performances of three strategies to determine such speed.

The computationally-simplest strategy was drawn from reference [4] and consists in setting the
desired speed to the maximum allowable speed v̄ and the ŕag φ to ‘on’-state, namely

vd = v̄, φ = 1. (44)

The next strategy examined was inspired by the notion of impulsive control discussed in [27]. It
consists in switching on the reaction thrusters only when the spacecraft effectively gets off the right
track, hence keeping them in the off state whenever not necessary, with the aim to save propellant.
Formally,

vd = v̄, φ =

{

1, if ∆ξ > τ

0, otherwise,
(45)

where ∆ξ :=
∥

∥

∥

ṗ
∥ṗ∥ −

∇pVC

∥∇pVC∥

∥

∥

∥
and τ denotes a predeőned threshold that determines the sensitivity

of the algorithm to difference in direction. By handcrafting and testing the model was found that
the threshold should be of the order of 10−2 for example using τ = 0.05. Notice that this strategy
only inŕuences the ‘off’-state of the thrusters, while does not inŕuence the ‘on’-state.

An allegedly more proőcient strategy also inŕuences the ‘on’-state of the thrusters by deter-
mining the speed amplitude. The law here proposed aims to determine a desired speed in such
way so that the more the spacecraft gets closer to the target, the lesser the cruising speed is. In
formulas:















vd = min
{

v̄, 5∆ξ∥p− pd∥
1

4

}

,

φ =

{

1, if ∆ξ > τ

0, otherwise.

(46)
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The relationship to determine the desired speed intensity was empirically handcrafted. The hard-
limiting check prevents the computed speed to exceed its maximum allowable value.

5.8 Attitude control during a cruising phase

During cruising it is not essential to control the attitude of a spacecraft, which may keep a constant
orientation, resulting from previous maneuvers, until the beginning of the docking phase. This
statement can be made provided that the spacecraft has a sufficient number of sensors on board
to detect the presence of obstacles whatever the attitude is and also that the attitude maintained
favors connection to ground station. Nevertheless, to aid stability of a spacecraft [4] against
unforeseen events, in the present research projects it was deemed appropriate to explore attitude
regulation strategies.

A way to control orientation during cruising is to establish a desired attitude Rd and to set up
a control strategy to make sure the actual attitude matrix R of the spacecraft matches the desired
attitude. In order to control the attitude of the spacecraft, a control torque is chosen according to
synchronization theory [13] to be

Trw := − QΩ−Kf Ω−KS log(R
⊤
d R), (47)

where KS > 0 determines the strength of coupling in the leader/follower pair. (Notice that the
term KS log(R

⊤
d R) stems as the Riemannian gradient ∇R of the potential function 1

2KS d
2(R,Rd)

and may be recognized as the ‘proportional’ component of a Lie-group type PID controller.)
To what concerns the desired attitude, two possibilities were studied. A őrst attempt consists

in setting up a őxed attitude matrix that coincides with the one required for docking, namely
Rd = I3. As a second attempt, the desired attitude was set up to the one which corresponds to
the direction of the desired speed ṗd as deőned in (39). The relation between the (time-varying)
matrix Rd and the components of the desired speed vector ṗd may be found in [4], in equations
(15)-(17).

A third strategy, corresponding to lack of synchronization, was tested against the former two
methods. This corresponds to setting the control torque as

Trw := − QΩ−Kf Ω, (48)

which aims at just passivating the spacecraft and to mitigate the effects of unpredictable distur-
bances in other words the spacecraft is instructed to activate its reaction wheels to reorient the
spacecraft in the wanted direction for example if the spacecraft gets hit by very small debris.

A fourth strategy, loosely based on [12], consists in setting up a control torque that tends to
align the speed ṗ of the spacecraft to the desired speed resulting from the virtual potential function
described in Section 5.5, namely −

∇pVC

∥∇pVC∥ . The corresponding torque term reads

Trw := − QΩ−Kf Ω+
KFBP

∥∇pVC∥
(ṗ(∇pVC)

⊤ − (∇pVC)ṗ
⊤), (49)

where KFBP > 0 denotes the aligning torque. Notice that the rightmost terms corresponds to the
cross product ṗ ∧ (∇pVC) in so(3), which vanishes when these vectors are parallel.
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5.9 Final guidance to docking in the absence of physical obstacles

In close proximity to the space station, at a distance of a few dozen meters, it is reasonable and
safe to assume that no large obstacles stand in the way to the space station. During the őnal
approach maneuver, therefore, the only obstacle to be taken into account is the outer structure of
the space station itself. The space station (let’s refer to the ISS) in fact has various modules with
different shapes that need to be avoided during the őnal approach as well as a number of robotic
arms 9 to complete various actions like docking, moving personal during missions or maintenance
and rearranging payload across the station. As of the current date, the ISS main robotic arms
are Canadarm2 and the European Robotic Arm (ERA), however, in future launches is planned to
augment the station’s capabilities with additional robotic arms such as "GITAI S1" designed in
Japan that is now undergoing the testing phase .

Figure 9: Station Commander Luca Parmitano of the European Space Agency conducts repairs while

attached to the space station’s robotic arm during the first spacewalk to repair the Alpha Magnetic

Spectrometer on Nov. 15, 2019 source: nasa.gov

In order to avoid colliding with any part of the station, a technique adapted from [27] is
deployed, based on a safety zone whose border takes the shape of a cardioid curve. The radius
of the cardioid must be selected in such a way to encompass the whole space station in order to
allow a spacecraft to safely approach from every direction. The cardioid itself includes a recess, a
cuspid whose tip coincides with the docking port and whose asymptote coincides with the docking
axes (taken to be the X axis of the LVLH reference frame). The actual maneuver during docking
is divided into two subtasks.

The őrst subtask is termed far-end approaching. It ensures that, not matter what is the direction
of arrival of the spacecraft, it gets positioned to the right of the docking port while avoiding the
outskirts of the space station by keeping out of the cardioid-shaped safety region. This procedure
takes, as input, the desired location of the just mentioned intermediate step pfe ∈ R3 and the safety
radius of the space station, that shall be denotes as rS. The tip of the cardioid cusp is located at
pfe ∈ R3 and the cusp opens along the X axis. The far-end approaching phase continues until the
distance between the spacecraft and the desired position is less than a given threshold, namely as
soon as ∥p− pfe∥ ≤ 1 .

The current distance and angle of arrival, in the LVLH reference frame FS, are calculated as
{

ρ = ∥p− pfe∥,

θ = π
2 − atan2((p− pfe)

⊤ex,−(p− pfe)
⊤ez),

(50)
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where the function atan2(·) returns the correct and unambiguous value for the angle while con-
verting from Cartesian coordinates to polar coordinates.

The cardioid is built from its parametric equations and a preferred direction is evaluated at
each position during the far-end phase from the boundary tangent vector of the cardioid

γfe =











ẋ = −Ht(sin(θ)− sin(2θ)),

ẏ = 0,

ż = −Ht(cos(θ)− cos(2θ)),

(51)

where Ht > 0 is the weighting factor that can be handcrafted ad hoc. The control strategy
used to achieve the task is a variable desired speed control similar to the one described from the
cruising phase 5.7















vd = min
{

v̄fe,∆ξρ
1

4

}

,

φ =

{

1, if ∆ξ > τ

0, otherwise.

(52)

where ∆ξ :=
∥

∥

∥

ṗ
∥ṗ∥ − γfe

∥γfe∥

∥

∥

∥
and v̄fe = v̄

10 were chosen empirically after evaluating some real cases

of docking maneuvers.
The second subtask is termed near-end approaching, it ensures slow and steady docking in the

absence of any obstacle of sort, except for the docking port. Such procedure takes, as input, the
desired location pne ∈ R3 to drive the spacecraft to the docking port. Since the spacecraft is now
aligned with the docking axis, the preferred direction is deőned as

γne = −ex, (53)

during the entirety of the phase.
The control strategy used in this phase is a variable desired speed control as described before

but considering instead a non-impulsive control, this choice was taken due to the necessity to have
the best level of precision possible while in the previous phases the margin of error was larger.
This requirement is due both to the proximity of the space station’s modules and arms as well as
the level of accuracy needed to align the chaser to the docking port so that once the maneuver is
over the soft and hard docking can be carried out 3. In formulas the desired speed reads:

vd = min{v̄ne,∆ξρ
1

4 }, (54)

where ∆ξ :=
∥

∥

∥

ṗ
∥ṗ∥ − γne

∥γne∥

∥

∥

∥
, ρ := ∥p− pne∥ and v̄ne = v̄fe.

The near-end approaching phase continues until the distance between the spacecraft and the
desired position is ideally zero, especially considering the position p of the spacecraft as the position
of its center of mass, we can deőne the end of this phase when that distance is equal to the distance
between the center of mass and the juncture port of the spacecraft.

3The soft docking refers to making contact and latching of the docking connector. After soft docking, an hard

docking is completed where it is first checked that both spacecrafts are pressurized and then is formed and airtight

seal granting the safe opening of the hatches
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5.10 Alignment to a docking axis during final guidance

In order to regulate the attitude of a spacecraft during the őnal guidance stage, a control torque
is again chosen according to synchronization to be

Trw := − QΩ−Kf Ω−KD log(R⊤
d R), (55)

with KD > 0.
During őnal guidance, the desired attitude of the spacecraft is constant to Rd = I3, which

describes a state of stable alignment between the reference system FC and the frame FS. Hence,
the expression of the active torque may be simpliőed to

Trw = − QΩ−Kf Ω−KD log(R). (56)
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6 Results of numerical experiments

In this section is presented the culmination of the extensive computational investigations with
outcomes of the numerical experiments made through systematic simulation, data-driven explo-
ration and extensive handcrafting. The parameters that appear in the mathematical model of a
spacecraft motion are summarized in Table 1.

Parameter Symbol Value

Initial spacecraft mass m0 600 (kg)

Maximum allowable speed v̄ 6 (m/s)

Principal inertia JC 144 (kg·m2)

Maximum thrust f̄rt 10 (N)

Frontal area S 1.44 (m2)

Drag coefficient CD 2.20 (−)

Speciőc impulse Isp 220 (s)

Gravitational acceleration g 9.81 (m/s2)

Atmosphere density ρ 10−12 (kg/m3)

Orbit radius r 6, 878 · 103 (m)

Gravitational parameter µ 3.986 · 1014 (m3/s2)

Table 1: Physical parameters and constants entering the spacecraft model.

6.1 Numerical simulations on reorientation

In order to test the reorientation strategy, the numerical experiments adapted from [24] will be
replicated with two different potentials, namely, additive-potential 5.2 and mixed-potential 5.3 that
will be later discussed. Since during the testing phase some inconsistencies have been detected in
the numerical data, some data has been restored in consistency (the authors, contacted on this
matter, have not replied to the inquiry).

In these experiments, the spacecraft is assumed to be endowed with a radio antenna whose
boresight axis is eBA = ey and a sensor whose boresight axis is eBS = ez. In order to evaluate the
performance of reorientation, it is deőned the following őgure of merit, referred to as Reorientation
Performance Indicator:

RPI := 100

(

1−
d(Ra, Rd)

d(Ri, Rd)

)

(%), (57)

where Ra denotes the attitude actually achieved by the reorientation control algorithm in the given
time frame. All experiments in the present section were performed with a stepsize h = 0.01 (sec).

In the following experiments, the initial angular speed Ω0 was set to 03 (which denotes a null
3× 3 matrix).
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Experiment 1: The őrst experiment consisted in simulating reorientation from an initial
attitude, described by the matrix Ri to a desired attitude, described by the rotation matrix Rd,
in the presence of a mandatory zone in which the antenna must always lie within during the
process, according to Case 2 discussed in the paper [24]. The problem will be tackled by an
additive-potential-based control algorithm as explained in Section 5.2.

In this experiment, the potential and the associated torque read







VADD(R) = − 1
2KAℓ exp

(

−d2(Rd,R)
ℓ

)

−KM log(e⊤MReBA − cos θM),

TADD(R) = −KA exp
(

−d2(Rd,R)
ℓ

)

Log(R⊤
d R) + KM

e⊤
M
ReBA−cos θM

σ(R⊤ eM e⊤BA).
(58)

Table 2 shows the data pertaining to this simulation tackled with a virtual additive potential.

Description Numerical value

Initial attitude Ri























0.3181 0.9375 −0.1409

0.7050 −0.3333 −0.6260

0.6339 −0.0998 0.7670























Desired attitude Rd























0.0265 0.7821 0.6226

0.2073 0.6050 −0.7688

0.9779 −0.1494 0.1462























Mandatory direction eM [0.8530 − 0.2653 0.4495]⊤

Aperture of the mandatory cone θM 70 (°)

Constant KA 2.8 · 10−1JC

Constant ℓ 50

Constant Kf 1.4JC

Constant KM 1 · 10−5JC

Table 2: Numerical data corresponding to Experiment 1 tackled with a virtual additive potential.

The initial and desired attitude are represented using a 3× 3 matrix.

The numerical results obtained with an additive potential are illustrated in the Figure 10 while
the outcome achieved by the control algorithm in the given time frame is RPI = 100% and the
trajectory can be visualized in Figure 11.

As it may be readily appreciated from the őgure, the optimization-based control algorithm
effectively attains the minimum value of the potential function while keeping the boresight of the
antenna within the mandatory cone. It is interesting to point out that, through some handcrafting
of the constants, it is possible to operate while being really close to the barrier and reach the goal
which assumes importance when acknowledging that operating in such area is difficult because
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Figure 10: Numerical results obtained for the Experiment 1. Top panel: values of the distance

between the actual attitude and the desired attitude, and value of the potential during

reorientation; the dashed line represents the theoretically-evaluated minimum value of the potential

pertaining to this experiment. Bottom panel: Angle between the boresight direction of the antenna

and the mandatory direction; the green area represents the mandatory zone. Time is measured in

seconds.

Figure 11: Trajectory achieved by the mandatory axis as explained in Experiment 1. Left panel:

The trajectory is shown on a sphere that surrounds the satellite and centered in the center of

gravity of the spacecraft. Right panel: Two dimensional representation of the sphere, the

mandatory zone and the trajectory of the mandatory axis. The red cross represents the attitude

reached at the end of the simulation, while the red circle represents the initial attitude.
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bounded by two different artiőcial potential functions namely the attractive one towards the goal
and the repulsive one from the barrier.

Experiment 1.1: now a different approach to the same problem will be presented (Case

2 of paper [24]) that uses a variant of the previously explained potential-based maneuver which
is the mixed additive-multiplicative potential-based approach explained in Section 5.3. Let this
approach be called mixed-potential-based control from now on. The potential and the associated
torque of this experiment read:



















VMIX(R) = − 1
2KAℓ exp

(

−d2(Rd,R)
ℓ

)

−KM
d2(Rd,R)

2 log(e⊤MReBA − cos θM),

TMIX(R) = −KA exp
(

−d2(Rd,R)
ℓ

)

Log(R⊤
d R) +KM log(e⊤MReBA − cos θM)Log(R⊤

d R)

+d2(Rd,R)
2

KM

e⊤
m
Re⊤

BA
−cos θM

σ(R⊤ eM e⊤BA).

(59)

The Table 3 shows the data pertaining to this simulation tackled with a virtual mixed potential.

Description Numerical value

Constant KA 9.3 · 10−2JC

Constant ℓ 50

Constant Kf 1.4JC

Constant KM 0.1JC

Table 3: Numerical data corresponding to the numerical Experiment 1.1 tackled with a virtual mixed

potential. Note that the initial and desired attitude are not shown as they are the same as

Experiment 1 (6.1) as well as the mandatory direction and its aperture of mandatory cone

The numerical results obtained with a mixed potential are illustrated in the Figure 12. The
result achieved by the control algorithm in the given time frame is RPI = 100%. By comparing the
two approaches that tackle the same problem (Figure 11 vs Figure 13) where the former shows the
additive potential case while the latter displays the mixed potential case it can be noticed that the
trajectories are not exactly the same but really similar to each other. This, in fact, is a particular
case in which the constraint for the attitude is only to stay inside the mandatory zone so both
trajectories are really close to the fastest (and feasible) way to get to the desired attitude and will
only differ slightly due to handcrafting the constants used in the algorithm.
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Figure 12: Numerical results obtained for the Experiment 1.1. Top panel: values of the distance

between the actual attitude and the desired attitude, and value of the potential during

reorientation; the dashed line represents the theoretically-evaluated minimum value of the potential

pertaining to this experiment. Bottom panel: Angle between the boresight direction of the antenna

and the mandatory direction; the green area represents the mandatory zone. Time is measured in

seconds.

Figure 13: Trajectory achieved by the mandatory axis as explained in Experiment 1.1. Left panel:

The trajectory is shown on a sphere that surrounds the satellite and is centered in the center of

gravity of the spacecraft. Right panel: Two dimensional representation of the sphere, the

mandatory zone and the trajectory of the mandatory axis. The red cross represents the attitude

reached at the end of the simulation, while the red circle represents the initial attitude.
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Experiment 2: The second experiment consisted in simulating reorientation in the presence
of four forbidden zones, according to Case 1a discussed in the paper [24]. The problem will őrstly
be tackled by an additive-potential-based control algorithm as explained in Section 5.2. In this
experiment, the potential and the associated torque read















































VADD(R) = − 1
2KAℓ exp

(

−d2(Rd,R)
ℓ

)

−KF log(cos θF1 − e⊤F1ReBS)

−KF log(cos θF2 − e⊤F2ReBS)−KF log(cos θF3 − e⊤F3ReBS)

−KF log(cos θF4 − e⊤F4ReBS),

TADD(R) = −KA exp
(

−d2(Rd,R)
ℓ

)

Log(R⊤
d R) + KF

e⊤
F1

ReBS−cos θF1

σ(R⊤eF1e
⊤
BS)

+ KF

e⊤
F2

ReBS−cos θF2

σ(R⊤eF2e
⊤
BS) +

KF

e⊤
F3

ReBS−cos θF3

σ(R⊤eF3e
⊤
BS)

+ KF

e⊤
F4

ReBS−cos θF4

σ(R⊤eF4e
⊤
BS).

(60)

Table 4 shows the data pertaining to this simulation tackled with a virtual additive poten-
tial. Notice that, as in the previous experiment, some constants are parameterized to the inertial
coefficient JC for convenience.

The numerical results obtained with an additive potential are illustrated in the Figure 14. The
result achieved by the control algorithm in the given time frame is RPI = 95.8%. As it may be
readily appreciated from the őgure, the optimization-based control algorithm effectively attains
the minimum value of the potential function while keeping the boresight of the sensor away from
the forbidden cones. While the objective of avoiding forbidden areas is accomplished the desired
rotation matrix is not achieved. In fact from Figure 15 can be seen that initially eBS moves towards
its goal, signaled by the red cross, but when the boresight approaches the directional obstacle the
algorithm operates a change of trajectory to avoid entering the red area and starts coasting with
a reasonable distance the forbidden space. Eventually the algorithms struggles to reach the exact
orientation as it only swings by the desired attitude. From the top panel of Figure 14 it can be
seen how the geodetic distance almost reaches zero around 55 seconds in the simulation but then
slowly increases and never reaches its goal. Moreover, it can be seen in the bottom left panel how
the boresight of the antenna once it gets close to the forbidden area number 3 starts coasting near
it while maintaining distance. The combination of the behaviors just explained clariőes why the
goal is not reached as two opposites constraints need to be respected , namely, reaching the goal
and maintaining distance from the forbidden area. While it is true that through some manual
adjustments of the constants implied in the simulation a better RPI can be reached, the problem
remains because the trajectory obtained always coasts the forbidden area and then misses the
objective.
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Description Numerical value

Initial attitude Ri























0.4726 −0.3499 −0.8089

−0.8129 0.1814 −0.5534

0.3404 0.9191 −0.1987























Desired attitude Rd























−0.4112 0.4083 0.8150

0.8165 0.5625 0.1302

−0.4053 0.7190 −0.5646























Forbidden direction eF1 [−0.174 0.934 − 0.34]⊤

Forbidden direction eF2 [0 − 0.7071 0.7071]⊤

Forbidden direction eF3 [0.8532 − 0.4361 − 0.2861]⊤

Forbidden direction eF4 [−0.1220 − 0.1400 − 0.9830]⊤

Aperture of the first forbidden cone θF1 40 (°)

Aperture of the second forbidden cone θF2 40 (°)

Aperture of the third forbidden cone θF3 30 (°)

Aperture of the fourth forbidden cone θF4 20 (°)

Constant KA 5 · 10−1JC

Constant ℓ 50

Constant Kf 1.5JC

Constant KF 3.5 · 10−2JC

Table 4: Numerical data corresponding to the numerical Experiment 2 tackled with a virtual additive

potential.
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Figure 14: Numerical results obtained for the Experiment 2. Top panel: values of the distance

between the actual attitude and the desired attitude, and value of the potential during

reorientation; the dashed line represents the theoretically-evaluated minimum value of the potential

pertaining to this experiment. Bottom-left and bottom-right panels: Angle between the boresight

direction of the sensor and each forbidden direction; the red areas represent the forbidden zones.

Time is measured in seconds.

Figure 15: Numerical results obtained for the Experiment 2. Left panel: 3D visualization of

boresight trajectory. Right panel: 2D representation of the maneuver. The green cross represents

the attitude reached at the end of the simulation, while the green circle represents the initial

attitude. The red cross represents the desired attitude.
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Experiment 2.1: it is now proposed tackling the problem using the mixed-potential ex-
plained in Section 5.3 using the same data for initial and desired rotational matrices and also
for directional obstacles and amplitudes as Experiment 2 ( 6.1)while the variables used for this
version of the experiment had to be handcrafted and modiőed to obtain a good looking trajectory:
KA = 2 · 10−1JC, ℓ = 50, Kf = 2JC, KF = 2.8 · 10−2JC. The torque and the potential for this case
read:


























































VMIX(R) = − 1
2 KA ℓ exp

(

−d2(Rd,R)
ℓ

)

−KF
d2(Rd,R)

2 (log(cos θF1 − e⊤F1ReBS)

+ log(cos θF2 − e⊤F2ReBS) + log(cos θF3 − e⊤F3ReBS) + log(cos θF4 − e⊤F4ReBS)),

TMIX(R) = KA exp
(

−d2(Rd,R)
ℓ

)

Log(R⊤
d R) +KF log(cos θF1 − e⊤F1ReBS)

+KF log(cos θF2 − e⊤F2 ReBS) +KF log(cos(θF3 − eF3
⊤ ReBS)

+KF log(cos θF4 − e⊤F4 ReBS)Log(R
⊤
d R)

+d2(Rd,R)
2 ( KF

e⊤
F1

ReBS−cos θF1

σ(R⊤eF1e
⊤
BS) +

KF

e⊤
F2

ReBS−cos θF2

σ(R⊤eF2e
⊤
BS)

+ KF

e⊤
F3

ReBS−cos θF3

σ(R⊤eF3e
⊤
BS) +

KF

e⊤
F4

ReBS−cos θF4

σ(R⊤eF4e
⊤
BS)).

(61)
The result obtained in Experiment 2.1 are displayed in Figure 16 and also the trajectory obtained
is presented in Figure 17. Let Trajectory 1 be the trajectory accomplished using the additive
potential-based control shown in Figure 15 and Trajectory 2 the one accomplished using the mixed
potential-based control shown in Figure 17. Let’s compare the trajectories obtained: őrstly, it
is important to notice that the desired attitude is reached only using the mixed potential-based
control, in fact in Figure 17 the red cross marking the desired attitude is not visible since it coincides
with the reached attitude signaled with a green cross that indicates the attitude achieved. Taking
in consideration the őrst part of the two trajectories it is visible that while Trajectory 1 has a more
direct approach to the obstacle (Forbidden zone number 3), instead Trajectory 2 moves towards
the obstacle with a direction that has more slope. Let’s now compare the section where the two
trajectories coast around the obstacle, both have similar behaviors given that the distance slowly
increases towards the end of the simulation, but even if they have a similar behavior the results
differ because in the coasting phase in Trajectory 1 is longer than Trajectory 2 resulting in a greater
distance from the obstacle and, consequently, from the goal.
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Figure 16: Numerical results obtained for the Experiment 2.1. Top panel: values of the distance

between the actual attitude and the desired attitude, and value of the potential during

reorientation; the dashed line represents the theoretically-evaluated minimum value of the potential

pertaining to this experiment. Bottom-left and bottom-right panels: Angle between the boresight

direction of the sensor and each forbidden direction; the red areas represent the forbidden zones.

Time is measured in seconds.

Figure 17: Numerical results obtained for Experiment 2.1. Left panel: 3D visualization of

boresight trajectory. Right panel: 2D representation of the maneuver. The green cross represents

the attitude reached at the end of the simulation and the desired one, while the green circle

represents the initial attitude.
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Experiment 3: the third experiment concerning reorientation is similar to Experiment 2

with slight differences in obstacle positions and corresponds to Case 1b discussed in the paper [24].
Table 5 displays the values of the constants used in this simulation. In this case the potential and
the associated torque are exactly the ones used in Experiment 2 and are written in equation 60.

Description Numerical value

Initial attitude Ri























0.4566 0.8892 0.0269

0.3579 −0.1559 −0.9207

−0.8145 0.4300 −0.3894























Desired attitude Rd























−0.8140 0.1648 0.5570

0.4620 −0.3975 0.7928

0.3520 0.9027 0.2474























Forbidden direction eF1 [−0.163 − 0.986 0.02]⊤

Forbidden direction eF2 [0 − 0.573 0.819]⊤

Forbidden direction eF3 [0.067 0.462 − 0.88]⊤

Forbidden direction eF4 [0.813 − 0.548 − 0.19]⊤

Aperture of the first forbidden cone θF1 40 (°)

Aperture of the second forbidden cone θF2 40 (°)

Aperture of the third forbidden cone θF3 20 (°)

Aperture of the fourth forbidden cone θF4 20 (°)

Initial angular speed 03

Table 5: Numerical data corresponding to the numerical Experiment 3.

As a őrst attempt, the problem was tackled by an additive-potential-based control algorithm
as explained in Section 5.2. The values of the coefficients chosen in this experiment were KA =
4.5 · 10−1JC, ℓ = 50, Kf = 3JC, KF = 0.1 · 10−3JC.

The numerical results obtained with an additive potential are illustrated in the Figure 18 and
the trajectory achieved is shown in Figure 19. The optimization-based control algorithm effectively
attains the minimum value of the potential function while keeping the boresight of the sensor away
from the forbidden cones moreover the result achieved by the control algorithm in the given time
frame is RPI = 100%.

33



Figure 18: Numerical results obtained for the Experiment 3 tackled with a virtual additive

potential. Top-left panel: values of the distance between the actual attitude and the desired

attitude, and value of the potential during reorientation; the dashed line represents the

theoretically-evaluated minimum value of the potential pertaining to this experiment. Bottom-left

and bottom-right panels: Angle between the boresight direction of the sensor and each forbidden

direction; the red areas represent the forbidden zones. Time is measured in seconds.

Figure 19: Numerical results obtained for the Experiment 3. Left panel: 3D visualization of

boresight trajectory. Right panel: 2D representation of the maneuver. The green cross represents

the attitude reached at the end of the simulation and the desired one, while the green circle

represents the initial attitude.
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Experiment 3.1: As a further attempt, the problem was tackled by a mixed additive-
multiplicative potential-based approach as explained in Section 5.3. This experiment uses the
potential and the associated torque that can be found in 6.1.

The values of the coefficients chosen in this experiment were KA = 2.7 · 10−1JC Kf = 2JC,
KF = 1 · 10−3JC.

The numerical results obtained with a mixed potential are illustrated in the Figure 20 while
the trajectory completed is presented in Figure 21. In this experiment, the result achieved by the
control algorithm in the given time frame is RPI = 100%. In this case using two different potential-
based controls has not shown any particular convenience supplying almost the exact trajectories
and data.
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Figure 20: Numerical results obtained for the Experiment 3.1 tackled with a virtual

additive-multiplicative potential. Top-left panel: values of the distance between the actual

attitude and the desired attitude, and value of the potential during reorientation. Bottom-left and

right-hand panels: Angle between the boresight direction of the sensor and each forbidden

direction; the red areas represent forbidden zones. Time is measured in seconds.

Figure 21: Numerical results obtained for the Experiment 3.1. Left panel: 3D visualization of

boresight trajectory. Right panel: 2D representation of the maneuver. The green cross represents

the attitude reached at the end of the simulation and the desired one, while the green circle

represents the initial attitude.
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Experiment 4: the fourth experiment concerning reorientation is based on a mandatory
zone and three forbidden zones and corresponds to Case 3 discussed in the paper [24]. Table 6
shows the reorientation data pertaining to this simulation, őrstly completed using an additive
potential-based control algorithm using the following equations:
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(62)

Description Numerical value

Initial attitude Ri (0.714, 0.637, 0.13,−0.26)

Desired attitude Rd (−0.23,−0.08,−0.491, 0.84)

Mandatory direction eM [0.813 − 0.548 − 0.192]⊤

Forbidden direction eF1 [0 1 0]⊤

Forbidden direction eF2 [0 − 0.819 0.573]⊤

Forbidden direction eF3 [0.122 0.139 − 0.982]⊤

Aperture of the mandatory cone θM 70 (°)

Aperture of the first forbidden cone θF1 40 (°)

Aperture of the second forbidden cone θF2 40 (°)

Aperture of the third forbidden cone θF3 20 (°)

Initial angular speed 03

Table 6: Numerical data corresponding to the numerical Experiment 4. The rotation matrix are

expressed in JPL quaternion notation for the sake of notation conciseness.

The values of the coefficients chosen in this experiment were KA = 4.5 · 10−2JC, ℓ = 50,
Kf = 1.8JC, KM = 4 · 10−3JC, KF = 6 · 10−3JC. The results obtained with an additive potential
are illustrated in the Figure 22 while in Figure 23 is displayed the trajectory of the evolution of
the attitude projected in a 2 dimensions.
While the optimization-based control algorithm effectively keeps the boresight of the sensor away

from the forbidden cones and the boresight of the antenna within the mandatory zone, the attained
orientation does not match at all the desired one and also the algorithm is not able to reach the
minimum of the potential function. In fact the result achieved by the control algorithm in the
given time frame is only RPI = 32.3%.
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Figure 22: Numerical results obtained for the Experiment 4 tackled with a virtual additive

potential. Top-left panel: values of the distance between the actual attitude and the desired

attitude, and value of the potential during reorientation; the dashed line represents the

theoretically-evaluated minimum value of the potential pertaining to this experiment. Time is

measured in seconds. Notice the behavior of panel "Forbidden 1 " and "Mandatory ", this is explained

in 6.1 in Experiment 4.1.

Figure 23: Trajectory obtained for Experiment 4 tackled with a virtual additive potential. The red

crosses represent the attitude reached at the end of the simulation, the blue crosses represent the

desired attitude and finally the red circles represent the initial attitude.
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Experiment 4.1: As a further attempt, the problem was tackled by a mixed additive-
multiplicative potential-based approach as explained in Section 5.3. The values of the coefficients
chosen in this experiment were Kf = 2.5JC, KM = 1.5 · 10−1JC, KF = 1.2 · 10−2JC. The numerical
results obtained with a mixed potential are illustrated in the Figure 24 and the trajectory is
displayed in Figure 25 while the potential and torque related to this experiment read:
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(63)

The result achieved by the control algorithm in the given time frame is RPI = 100%. Comparing
the results obtained in Experiment 4 and Experiment 4.1 the difference is substantial, in fact
őrst of all the trajectories follow two completely different paths and end up with very different
RPI percentages. In Experiment 4 the path chosen by the algorithm makes the boresight of the
telescope go towards the right of the forbidden zone number one as seen in Figure 23 while instead
in Experiment 4.1 the telescope boresight goes towards the left of the obstacle. By going to the
right of the obstacle, in Figure 23 we can see that the trajectory in the given time frame stops
(before reaching the desired attitude signaled with blue crosses) in such way that the telescope
boresight is very close to the forbidden zone number 1 while the antenna boresight is very close
to the barrier of the mandatory zone, this is due to physical constraints. In fact the trajectory
encounters a point in which the satellite physically cannot go beyond because the angle between
the right most outer part of the forbidden zone and the mandatory zone create an angle that is
greater than the angle between the boresight of the antenna and the telescope. If the algorithm
decides to iterate (keep moving in that direction) further more than the points marked with two
red crosses in 23 (one in the mandatory zone and one near forbidden zone 1) one constraints of
the two would be broken and either the antenna would exit the mandatory zone or the telescope
would fall inside of the obstacle.

To better understand the situation, refer to Figure 22 . Notice that, in the bottom panels of the
picture, two particular behaviors out of the four depicted just skim the surface of respectively, the
green and red area, denoting that the directional constraints are dangerously close to be broken.

In Experiment 4.1 instead the algorithm runs a different approach making the telescope bore-
sight pass through the left side of obstacle 1 which results in avoiding the singular situation just
explained. In fact őrst thing őrst the antenna boresight moves away from the desired attitude and
once the telescope has avoided the obstacle both boresights of the antenna and the telescope can
őnally move towards the desired attitude (two red crosses this time overlap the two blue crosses
seen in Figure 23 because the attitude reached coincides with the desired one) őnally satisfying
both constraints given.
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Figure 24: Numerical results obtained for the Experiment 4.1 tackled with a virtual

additive-multiplicative potential. Top-left panel: values of the distance between the actual

attitude and the desired attitude, and value of the potential during reorientation. Bottom-left and

bottom-right panels: Angle between the boresight direction of the sensor and each forbidden

direction, as well as angle between the boresight direction of the antenna and the mandatory

direction; the red areas represent forbidden zones while the green area represent the mandatory

zone. Time is measured in seconds.

Figure 25: Trajectory obtained for the Experiment 4.1 tackled with a virtual additive-multiplicative

potential. The two red circles at the start of antenna and telescope trajectory represent their

start points, while the red crosses represent the final and desired points of the two.
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6.2 Numerical simulations about rendezvous

A number of experiments concerning rendezvous has been completed. A őrst set of experiments was
performed in the presence of obstacles whose position is őxed with respect to the reference frame
FS. The second set of experiments was devoted to testing the behavior of the guidance algorithm
in the presence of moving obstacles. The third set of experiments was, instead, dedicated to
evaluating the performance of a guidance strategy that consists in joint translation and attitude
control.

Experiment 1. The őrst experiment was performed by assuming the presence of obstacles
whose position is őxed with respect to the reference frame FS. The aim of this experiment is
to compare the performances of the three control strategies described in Section 5.5 in terms of
propellant consumption. In this experiment is set h = 0.01 (sec).

The initial location, desired location and initial speed are summarized in Table 7.

Description Value

Initial location pi [−16,100 0 3, 000]⊤ (m)

Initial speed ṗi [−0.5 0 0.01]⊤ (m/s)

Desired location pd [0 0 150]⊤ (m)

Table 7: Reference values for the Experiment 1 about cruising phase. We recall that the Z (or

Rbar) axis points toward the Earth, hence a quota of 150 m in the LVLH reference frame indicates a

target location below the station (as seen from the Earth).

It’s important to point out that the control algorithm is implemented in such a way that the
cruising phase is deemed concluded whenever the distance between the spacecraft and the target
is less than 50 m. Table 8 shows the location of four obstacles along with their safety radius.

Safety radius (m) Location (m)

η1 = 650 (m) o1 = [−10, 000 0 1, 500]⊤ (m)

η2 = 350 (m) o2 = [−5, 500 0 1900]⊤ (m)

η3 = 150 (m) o3 = [−2, 800 0 0]⊤ (m)

η4 = 50 (m) o4 = [−2, 100 0 200]⊤ (m)

Table 8: Location and safety radius of the obstacles ordered by size. All obstacles happen to

locate below the station (as seen from the Earth).

In this experiment the components of random disturbance Frd are zero-mean random Gaussian
variables with standard deviation of 100 N. Notice that the random disturbance takes a non-zero
component along the y axis, henceforth, if the motion of the spacecraft will take place slightly off
the x−z plane the control algorithm will need to compensate for such unwanted effect (the desired
position is located on the vertical plane, in fact).

The numerical results are illustrated in Figure 26, which shows the trajectory of the spacecraft
along the x− z plane in the LVLH coordinate frame, and in Figure 27, which shows the trajectory
of the spacecraft along the landscape of the virtual potential function used to achieve automated
guidance.
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Figure 26: Numerical results obtained for the Experiment 1 about cruising phase: Trajectory in the

LVLH coordinate frame. Recall that the X (or Vbar) axis points toward the direction of motion over

the orbit, hence a negative value of the x coordinate indicates a spacecraft that is, in fact,

chasing the space station from behind. The ovals denote the boundaries of the safety regions

surrounding each obstacle.

In particular, Figure 26 shows how the spacecraft is enabled to traverse the space, keeping
sufficiently far from the obstacles while approaching the target location. The results displayed in
this őgure show that, in the absence of obstacles, the spacecraft is driven to take the shortest route,
except for the case where, in the vicinity of the obstacles, the spacecraft is forced to turn around
the safety surface of the obstacles found on its path, hence taking a detour from a straight path.
The degree of curvature depends certainly on the chosen values of the parameters, which may be
subject to a more or less conservative design, and on the safety radii of the obstacles which, to
some extent, depend on the sensitivity range of the sensors mounted aboard the spacecraft. Notice
that it was assumed that the space station has mapping abilities and provides a detailed map of
the main obstacles sites and sizes so that a spacecraft endowed with proximity sensors may safely
navigate through them.

On the other hand, Figure 27 serves to illustrate the shape and the function of the devised
potential energy function. The landscape of the potential presents a global minimum corresponding
to the desired location as well as four peaks in correspondence to the obstacles central location.
The trajectory of the spacecraft develops bypassing the areas of higher potential while łrolling
downž toward the minimal-potential location.

Such results were obtained by setting the values of the parameters deőned in the context of
attractive-repulsive potential as HA = 10−2 and HR = 106. The obtained trajectories appear quite
similar to one another and the three control strategies are able to achieve the desired location where
the cruising phase ends.

However, the consumption of propellant resulting from the application of the three control
strategies results to be quite different. The consumption resulting from the three regulation strate-
gies are displayed in the Figure 28.

The introduction of impulsive control hence results in a sensible reduction of propellant con-
sumption compared to non-impulsive regulation. Furthermore, the reduction of total mass corre-
sponding to the regulation algorithm based on impulsive control with variable desired speed versus
the one with constant-speed case are similar, depending on various cases it produces a better or
worse performance. This happens because of a different behavior at the end of cruising phase.
While the former control, thanks to its lowest speed at the end of the cruising phase, follows the
desired direction and so takes a shorter route to the far-end phase end point, the latter control
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Figure 27: Numerical results obtained for the Experiment 1 about cruising phase: Trajectory along

the landscape of the virtual potential function.

(constant speed) is less affected by changes of trajectory due to an higher speed because, again,
compared to the variable-speed approach, this method "does not sense" to be about to reach the
target and keeps the same speed (maximum feasible for this phase) while the method with variable
speed decreases velocity as it gets closer to the goal. This explains why the red line in Figure 28
decreases later in time with respect to the black one and in a more gradual manner achieving also
slightly lower fuel consumption.

Figure 28: Numerical results obtained for the Experiment 1 about cruising phase: Cold gas

consumption.

A further element of evaluation of the control strategies under comparison is the őnal speed
upon reaching the predeőned target location. No control requirements were deőned on this matter,
hence the control strategies do not embody any information about a őnal desired speed. However,
the regulation strategy based on variable speed implicitly makes the őnal speed vanish to zero since
it is proportional to the distance to the target. The effects of explicit speed limitation is illustrated
in Figure 29, from which it is apparent how, in this instance, the spacecraft arrives ready to start
the docking sequence while the other two types of control őrst need a broader trajectory to lower
their speed.
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Figure 29: Numerical results obtained for the Experiment 1 about cruising phase: Detail of the

final guidance maneuver to attain docking. The color code is the same as in previous figures

concerning Experiment 1. Ht = 1 for all the docking phase.

The position at which the far-end maneuver stops is indicated as pfe ∈ R3 = [40 0 0]⊤ (m),
while the position at which the near-end maneuver stops is indicated as pne ∈ R3 = [15 0 0]⊤ (m).
Notice that the őnal target pne is located 15 m right to the center of the station ś whose coordinate
in the FS system is [0 0 0]⊤ by deőnition ś to comply with the actual position of the docking port.

Because of the above-mentioned evaluation elements, it has been deemed appropriate to perform
the following experiments only on the basis of the impulsive-control with variable-speed regulation
strategy.

Since in the experiments a disturbance is present even along the y axis, it is interesting to
evaluate the effects of such disturbance on the ability of a spacecraft to adhere to the orbital plane.
The control strategies do not have as explicit goal to keep the motion of a spacecraft over the vertical
(x−z) plane but the őnal guidance implicitly attains such goal. The Figure 30 shows the effects of
the disturbances on the y coordinate of the spacecraft in the LVLH reference frame. Is worthily to
highlight how in the proximity of the őrst obstacle along the route, corresponds a peak of off-orbit
displacement, this result is a consequence of the repulsive force, which is important due to the
radius of that obstacle, combined with natural y displacement caused by random disturbances.

Figure 30: Numerical results obtained for the Experiment 1 about cruising phase: Detail of the

off-orbit effect caused by random disturbances.
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Experiment 2. The aim of the second experiment is to verify the correct behavior of the
guidance algorithm of the őrst experiment in a case of moving obstacles. We considered the same
obstacles as Experiment 1, considering though that their position is now changing over time in
a uniform rectilinear motion by setting an initial speed and a direction angle. Every obstacle is
considered moving on the x-z plane in the LVLH coordinate frame. The initial conditions are
shown in Table 9.

Figure 31 shows the trajectory of the spacecraft during the cruising phase. As shown in the
őgure, the algorithm behave correctly near the obstacles by directing the spacecraft away from
obstacles’ motion direction (dashed circles represent position and safety radii of obstacles), while
it performs as usual for the last two őxed obstacles.

As already described, to ensure the avoidance we considered a spacecraft provided with sensors
capable to detects debris and other obstacles from enough distance or a spacecraft already provided
with the position of each obstacles over time.

No other major differences can be evaluated between this experiment and the previous one
because the results about propellant consumption and off-orbit displacement depends majorly
from the obstacles direction and speed.

Speed (m/s) Direction angle (°)

ν1 = 1 (m/s) θ1 = 140 (°)

ν2 = 0.5 (m/s) θ2 = −80 (°)

ν3 = 0 (m) θ3 = 0 (°)

ν4 = 0 (m) θ4 = 0 (°)

Table 9: Speed and direction angles of the obstacles ordered by size. Note that the last two

obstacles are not moving.

Figure 31: Numerical results obtained for the Experiment 2 about cruising phase: Obstacles moving

in a uniform rectilinear motion. The blue and green dashed lines represent the position,

respectively, of obstacle 3 and obstacle 4, at minimum distance from spacecraft during cruising

phase. While the continuous blue and green ovals without a red dot inside are the final positions

of moving obstacles.
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Experiment 3. The purpose of the third experiment on rendezvous operation was to eval-
uate how the merging of position and orientation controls affect the performance of spacecraft
guidance algorithm.

In the present experiment, random disturbances on the mechanical torque affecting the orien-
tation of the spacecraft were taken into account. In particular, the non-entries of the term Trd

were chosen to be zero-mean Gaussian random variables of standard deviation 0.01 N·m.
Four attitude-regulation control torques were tested, corresponding to the cases discussed in

Section 5.8. The values of the parameters were chosen to be KS = 2.5 JC, KFBP = 0.002 JC
and Kf = 2.5 JC. (As in the previous experiments, the coefficients are parameterized as units
or fractions of the inertia coefficients JC for convenience.) The numerical results are illustrated
in Figure 32, which shows the trajectory of the spacecraft along the x − z plane in the LVLH
coordinate frame.

Figure 32: Numerical results obtained for the Experiment 3 about cruising phase: Trajectory in the

LVLH coordinate frame.

From this őgure it appears clearly that the variable-desired-attitude strategy fails in the prox-
imity of the largest obstacle. On the other hand, the strategy based on not setting a desired
attitude, the one based on a őxed (horizontal) attitude and the ones based on velocity alignment
perform similarly to one another.

The above results tell that the best performing control strategy corresponds to setting a constant
desired attitude (which, in the present endeavor, was chosen to be the docking orientation). It
should be, however, recognized that the strategy that entails the least consumption of propellant
consists in not operating the reaction wheels at all during the cruising phase, hence leaving the
spacecraft at the mercy of inertia and little accidental impacts with small debris.
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During the docking maneuver, both position and orientation regulation are of prime importance,
to guarantee that the spacecraft approaches the docking port of the space station at the right
location and with the right orientation.

Figure 33, shows the trajectory of the spacecraft along the x− z plane in the LVLH coordinate
frame during docking phase. From the őgure, it is readily observed that in all cases the trajectory

Figure 33: Numerical results obtained for the Experiment 3 about docking phase: Trajectory in the

LVLH coordinate frame. (Since the Z axis actually points toward the Earth, the picture looks

upside down.) The dashed green line represent the safety cardioid-shaped contour that the

spacecraft should keep out of.

of the spacecraft keeps well behind the safety contour during the far-end-approaching phase, while
the near-end-approaching maneuver drives the spacecraft straight behind the docking port.

As a further element of evaluation in Figure 34 is shown the velocity of the spacecraft along
the x and z axis in the LVLH coordinate frame during the whole rendezvous maneuver.

Figure 34: Numerical results obtained for the Experiment 3 about rendezvous: Velocity of the

spacecraft in the LVLH coordinate frame.

The velocity curves corresponding to a variable-speed, impulsive control strategy in connection
with the four discussed orientation regulation methods show that the no-desired-attitude and the
variable-desired-attitude methods stand out negatively. Such methods, as a matter of fact, causes
a sudden rise of velocity in the proximity of large obstacles. Figure 35, shows the consumption
of propellant during the whole rendezvous maneuver. Vertical lines within the őgure stand as
delimiters of the three different phases of rendezvous (cruising, far-end approach and near-end
approach).
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Figure 35: Numerical results obtained for the Experiment 3 about rendezvous: Propellant

consumption.

From the mass-decay curves it emerges that most propellant is consumed during the cruising
phase. Also, the curves show that the őxed-horizontal-attitude strategy causes the most limited
consumption of propellant during the entire rendezvous maneuver.

In addition to the above elements, to evaluate the behavior of the control strategies under ex-
amination, Figure 36 shows the orientation of the spacecraft along the entire rendezvous maneuver
in terms of Euler angles computed on the basis of the instantaneous attitude matrix-indicator R.

,

Figure 36: Numerical results obtained for the Experiment 3 about rendezvous: Euler angles computed

on the basis of the instantaneous attitude matrix-indicator R.

It is immediate to notice that the speed-alignment-based attitude control strategy does not
stand as particularly appealing as it leads to a very low convergence rate and, if sped up, entails
an excessive disturbance to the navigation algorithm.

It is important to remark that the choice of a constant desired attitude is possible only if the
spacecraft is provided with a sufficient number of on board proximity sensor positioned all over
the spacecraft, if that is not possible due to different reasons, the best choice would be to let the
chaser pointing always toward the space station, but this strategy has not been elaborated in the
present research.
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6.3 Illustration of a complete rendezvous maneuver

From the previous evaluated experiments, a complete maneuver is performed from initial aim point
to a docking port through cruising, far-end approaching and near-end approaching.

Figure 37 illustrates the cruising and docking phases. The shown result is performed using the
variable-speed impulsive control algorithm explained in Section 5.7 and, for attitude control, őxed
horizontal desired attitude strategy described in Section 5.8, these already mentioned strategies
are the most suitable for cruising phase among the ones studied in this thesis (weaknesses and
strengths are evaluated in Experiment 1 and Experiment 3 ). The far-end and near-end phases are
performed as described in Sections 5.9 and 5.10. All constants used come from Experiment 3.
A smooth trajectory is performed across the obstacles and around the space station, while the
spacecraft keeps enough far from the radii of the obstacles and from the cardioid region. A őxed
attitude control strategy is able to point the spacecraft toward the docking axis and, as seen in
Experiment 3, to reduce the propellant consumption. Hence, the solution obtained ensures a steady
rendezvous and stable trajectory during all three phases.

Figure 37: Complete rendezvous from initial point to docking port: Trajectory in the LVLH

coordinate frame. The main plot shows the complete trajectory from the initial aim point to the

arrival docking port, while the box is a zoom in of far-end and near-end approaching.
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7 Conclusions

The aim of the present thesis was to propose a framework to model, simulate and control a small
unmanned spacecraft, orbiting in close proximity of a space station, through manifold calculus.
Two maneuvers were modeled and simulated, that is, reorientation under directional constraints
and rendezvous in the presence of őxed as well as moving obstacles.

Obstacle avoidance was traditionally considered a high-level planning problem, while in recent
research endeavors part of such task has been shown to be manageable by real-time low-level
control algorithms [21]. The present document follows such modern line of research and is based
on multi-objective optimization.

The main theoretical instrument utilized in the present research project is that of virtual
attractive-repulsive potential. In fact, a physical object moves in a force őeld derived as anti-
gradient of a potential function which embodies localized information about the spacecraft to be
guided and the surrounding environment. It was believed that the complexity of tasks that can
be tackled by means of this approach is limited, because of local minima in the potential function
[21] which may lead a controlled object to a stable conőguration different from the intended goal.
However, it has been shown even by the present contribution that virtual-potential-based guid-
ance, if properly designed and tuned, shows ability to lead to acceptable results under reasonable
tolerance levels.

A distinguishing feature of the present endeavor was that, unlikely most research papers in
the area that invoke the use of coordinates or quaternions, the mathematical model of the roto-
translational motion of a spacecraft as well as the design of control őelds were written in a
coordinate-free Lie-group-type fashion.

A number of numerical experiments, aimed at complementing the theoretical developments,
were discussed to illustrate the achieved progress and to guide the reader though a series of eval-
uations. Such evaluation stages were aimed at establishing which control strategy, among various
possible combinations, appears to be the most convenient one.

During the development of the present project, a number of minor issues emerged which would
need a closer examination.

An aspect to pay attention to is the effect of repulsive őelds far away from the obstacles,
either physical and directional, which may drive a spacecraft slightly off-track with respect to the
intended target. Such problem has been dealt with by tuning the constant parameters in the
guidance algorithm, although a hard-limiting strategy would perhaps prove more effective as it
would cut off completely the repulsive őelds whenever sufficiently far from their source.

A further aspect to pay attention to concerns alignment of a spacecraft attitude to a docking
axis during őnal guidance in a robust way. Currently, őnal guidance is performed by setting up
a torque term that tends to keep the reference frame FC aligned to the frame FS irrespective of
possible orientation constraints or disturbances. Attitude control during such phase may be made
more robust by introducing mandatory as well as forbidden directions and by enriching the torque
control őeld by components related to such directional constraints.
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Appendix:

Unit-quaternion to rotation-matrix conversion precision

In a computer code, a unit quaternion denotes a point on a 4D hypersphere S3 and a 3D rotation
matrix denotes an element on the special orthogonal group SO(3) up to machine precision. While
a rotation matrix is seldom expressed directly through its numerical entries, a quaternion often is.
When the entries of a quaternion are describe by a small number of digits, e.g. by four decimal
digits, its conversion to a rotation matrix does not result in a true rotation. The conversion of a
quaternion [qi qj qk q0]

⊤ written in JPL notation to a rotation matrix R may be expressed as

R̃ =





1− 2(q2j + q2k) 2(qiqj − qkq0) 2(qiqk + qjq0)
2(qiqj + qkq0) 1− 2(q2i + q2k) 2(qjqk − qiq0)
2(qiqk − qjq0) 2(qjqk + qiq0) 1− 2(q2i + q2j )



 ,

where q0 denotes the real part of the quaternion. To őx non-unitarity, a projection to the SO(3)
group has been added based on singular value decomposition (SVD), namely

UDV ⊤ = R̃, R := UV ⊤,

where U, V denote the orthogonal factors of the SVD.
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