
UNIVERSITÀ POLITECNICA DELLE MARCHE

Facoltà di Ingegneria
Corso di laurea in Ingegneria Informatica e dell’Automazione

Tesi di Laurea
Micol Zazzarini

Analisi di Strategie di Branching attraverso la
Regolazione dei Parametri di Configurazione

Analysis of Branching Strategies through
Configuration Parameter Tuning

Relatore: Correlatore:
Prof. Fabrizio Marinelli, Dott. Luciano Porretta,
Ancona Antwerp

A.A. 2022-2023

In primis, un ringraziamento speciale al professor Fabrizio Marinelli che attraverso le sue
lezioni ha suscitato in me l’interesse per una materia complessa quale la Ricerca Operativa,
per avermi incoraggiato a prendere il volo quando mi chiedevo se fossi stata in grado, e per

avermi fornito gli strumenti necessari per farlo con successo.
Un sentito grazie al Dott. Luciano Porretta, correlatore di tesi, per aver risposto

quotidianamente alle mie mille domande in azienda, per il supporto costante, le dritte
indispensabili e la sua complicità nella realizzazione di ogni capitolo della mia tesi.

Ringrazio l’azienda OMPartners per avermi dato la possibilità di svolgere il mio lavoro di
tesi in un luogo interessante e dinamico, che mi ha permesso di mettermi in gioco e fare

un’esperienza che sarà preziosa per il mio futuro.
Ringrazio i miei genitori per avermi sempre spinto a dare il meglio e a far nascere in me la

sana competizione con la quale appoccio qualsiasi aspetto della mia quotidianeita‘.
Un grazie di cuore a Ramon, che da guida presso l’universita‘ di Ingegneria di Las Palmas e‘

diventato poi compagno di vita, migliore amico, confidente, colui che mi da forza e mi
incoraggia tutti i giorni.

La dedica e‘ per me stessa. Fiera di rimanere ogni giorno coerente alle mie priorita‘, grata per
amarmi e scegliere sempre il meglio per la mia vita, orgogliosa per tutti i sacrifici con i quali

raggiungo quotidianamente le mie piccole e grandi soddisfazioni.

“Se l’uomo non sapesse di Matematica non si eleverebbe di un sol palmo da terra.”

Galileo Galilei

iii

Sommario

Questo lavoro e‘ il risultato di una esperienza lavorativa nella sede belga di OMP, ad
Anversa, Wommelgem, dal 1 Settembre 2023 al 5 Gennaio 2024. Il tirocinio e‘ stato a
conclusione del percorso di laurea in Ingegneria Informatica e dell’Automazione.
OMP ha offerto l’opportunita‘ di mettere in pratica le nozioni teoriche apprese duran-
te il corso di Ricerca Operativa, e l’esperienza e‘ stata accompagnata dalla scrittura
della tesi in oggetto.
Infatti, molte delle sfide e dei problemi affrontati da OMP, in quanto leader nell’ambi-
to della pianificazione della supply chain, interessano sistemi complessi che possono
essere formulati in termini di Programmazione Matematica, e in particolare Pro-
grammazione Lineare Intera. In dettaglio, l’attenzione e‘ focalizzata sull’algoritmo di
Branch and Bound, cercando di affrontare attraverso la configurazione dei parametri
il problema di "Ping-Pong branching", per poter fornire a OMP utili informazioni e
dati, aiutando a migliorare la loro applicazione.
Verra‘ fornita una presentazione completa dell’esperienza, partendo dall’azienda e
gli aspetti piu‘ pratici del lavoro, fino ad arrivare allo specifico problema affrontato.
La comprensione della parte sperimentale sara‘ accompagnata da esaustive definizio-
ni matematiche e da un’introduzione del modello di Lot Sizing analizzato. Inoltre,
prima di immergersi nei dati, il lettore sara‘ introdotto al problema di Configuration
Parameter Tuning e a una guida per l’utilizzo di SCIP Optimizatio Suite, con il quale
viene eseguito il tuning manuale nell’intera analisi. A conclusone, in seguito a una
verifica dei risultati ottenuti, sara‘ anche possibile conoscere similarita‘ e differenze
tra il tool in questione e l’applicazione sviluppata da OMP.

iv

Abstract

This work is the result of a work experience at the belgian headquarters of OMP,
in Antwerp, Wommelgem, from the 1st of September 2023 to the 5th January 2024.
The internship was the conclusion of a first three-year degree in Computer and
Automation Engineering.
OMP offered the opportunity to put into practice the theoretical notions learned
during the Operations Research course , and the experience was accompanied by the
writing of this thesis.
In fact, many of the challenges and problems faced by OMP, as a leader in supply
chain planning, affect complex systems that can be formulated in terms of Mathe-
matical Programming, and in particular Integer Linear programming. In detail, the
attention is focused on the Branch and Bound Algorithm, trying to face through
Configuration Parameter Tuning the problem of "Ping-Pong branching", in order
to provide useful informations and data to OMP helping them to improve their
application.
A complete presentation of the experience will be provided, starting from the com-
pany and the practical work aspects, up to the specific project addressed. The under-
standing of the experimental part will be accompanied by exhaustive mathematical
definitions and an introduction of the analyzed Lot Sizing model. Furthermore, be-
fore delving into the data, the reader will be introduced to the problem of parameter
configuration and to a guide on the use of SCIP Optimization Suite, with which
manual tuning is performed and which will accompany the entire analysis. In con-
clusion, following a verification of the results obtained, it will also be possible to
know similarities and differences between the tool in question and the application
developed by OMP.

Contents

Index v

Glossary xiii

List of symbols xv

I Theoretical Setting 1

Introduction 3

1 OMPartners supply chain planning solution 5
1.1 OMPartners . 5
1.2 Field of action . 6
1.3 Solution . 7
1.4 Work teams . 7
1.5 Experience . 9

2 From the birth of linear programming to B&B 11
2.1 Linear Programming . 12

2.1.1 Duality . 13
2.2 Combinatorial Optimization and Integer Linear Programming 13
2.3 Discrete optimization . 14

2.3.1 Relaxations and Bounds . 15
2.4 Branch-and-Bound . 16

2.4.1 Preprocessing . 19
2.4.2 Branching . 19

2.5 Branch-and-Cut . 19
2.5.1 Managing the LP relaxations 22

3 The capacitated Lot Sizing Model 23
3.1 Mathematical models for Lot Sizing problems 23
3.2 Logistics applications . 27

v

vi CONTENTS

3.2.1 Lot sizing model under study 29

4 Parameter Configuration Problem 33
4.1 Automatic Parameter Tuning . 33
4.2 Manual Parameter Tuning with Scip Optimization Suite 35

4.2.1 Branch-and-Bound in SCIP . 36
4.2.2 Using SCIP . 37

5 Focusing on Primal Heuristics 41
5.1 Locks . 41
5.2 Feasibility Pump . 43
5.3 Shift and Propagate . 44
5.4 Zirounding . 45
5.5 Intshifting . 46

II Experiments 49

6 Analysis 51
6.0.1 Presolving . 52
6.0.2 Primal Heuristics and Separation configuration search 60

7 Conclusions 83

III Final Considerations 87

8 Running on OMP application 89

A Tables 95
A.1 Supporting Data . 95
A.2 Additional Data . 100

A.2.1 PingPong . 100
A.2.2 PingPong10 . 102
A.2.3 PingPong100 . 103
A.2.4 PingPong200 and PingPong1000 104

B Definitions 107

Bibliography 111

List of Tables

6.1 Branch and Bound tree data analysing presolving on model PingPong 52
6.2 Branch and Bound tree data analysing presolving impact on the reso-

lution of the problem . 53
6.3 Branch and Bound tree data analysing presolving impact mantaining

primal heuristics active. x ∈ {10, 100, 200}. 54
6.4 Branch and Bound tree data analysing presolving impact mantaining

separators active . 54
6.5 Branch and Bound tree data analysing presolving on model PingPong,

mantaining primal heuristics active . 55
6.6 Branch and Bound tree data analysing presolving on model PingPong,

mantaining separators active . 56
6.7 Presolving behavior switching setting for all presolvers 57
6.8 Analysis of Branch and Bound tree switching the setting for all pre-

solvers . 58
6.9 Branch and Bound tree data analysing heuristics setting all separators

off . 60
6.10 Branch and Bound tree data analysing separators setting off all heuristics 62
6.11 Heuristics behavior switching setting for all heuristics 64
6.12 Propagators increment setting heuristics emphasis fast 65
6.13 Presolving increment setting heuristics emphasis aggressive 66
6.14 Branch and Bound tree switching setting for all heuristics 67
6.15 Heuristics behavior disabling locks on each model, compared with

results obtained running the program in default setting 69
6.16 Branch and Bound tree improvement disabling locks heuristic in Ping-

Pong1000 . 70
6.17 PingPong100.lp heuristics behavior with heuristics emphasis aggres-

sive and heuristics locks freq -1. 71
6.18 PingPong100.lp branch tree with heuristics emphasis fast and ziround-

ing freq -1 . 71
6.19 Branch and Bound tree improvement given by locks setting heuristics

emphasis off and heuristics emphasis fast, for each model. 73
6.20 Branch and Bound tree data setting on heuristics one to one 74

vii

viii LIST OF TABLES

6.21 Branch and Bound comparison activating locks and feaspump 75
6.22 Separators behavior switching setting for heuristics 76
6.23 Ping-Pong.lp B&B tree changing the setting of separators when dis-

abling heuristics . 77
6.24 Branch and Bound tree improvement strengthening separators when

setting heuristics emphasis fast . 79
6.25 Branch and Bound tree worsening disabling aggregation separator . 80
6.26 PingPong1000.lp separators behavior switching the setting for all

heuristics . 80
6.27 PingPong1000.lp branch tree improvement strengthening separating 81
6.28 PingPong1000.lp branch and bound tree resulting from additional

configurations . 82

7.1 Results given by all possible configurations in terms of branch and
bound tree size and time. 84

7.2 Comparison between primal heuristics used running PingPong2000
in default configuration by SCIP and the best one 85

7.3 Comparison between results pn B&B tree and solving time running
PingPong2000 in default configuration by SCIP and the best one . . . 85

8.1 Statistics data given by default setting of OMP solver 91
8.2 Statistics data given by the use of aggregation 92
8.3 Statistics data given by feaspump . 93

A.1 Presolvers used setting off heuristics and separators. x ∈ {10, 100, 200, 1000} 95
A.2 Primal heuristics data analysing presolving impact mantaining primal

heuristics active. x ∈ {10, 100, 200} . 96
A.3 Separators used evaluating presolving effect on separators, maintain-

ing heuristics disabled . 96
A.7 Separators behavior strengthening separators when setting heuristics

emphasis fast, for models PingPong10,PingPong200 96
A.4 Primal heuristics evaluated setting off all separators. x ∈ {10, 100, 200} 97
A.5 B&B tree changing the setting of separators when disabling heuristics 98
A.6 Branch and Bound tree changing the setting of separators when im-

posing heuristics emphasis fast . 99
A.8 PingPong1000.lp separators behavior switching the setting for all sep-

arators . 100
A.10 Ping-Pong.lp propagators behavior changing heuristics setting 100
A.9 Ping-Pong.lp solutions changing the setting for all heuristics 101
A.11 Ping-Pong.lp use of constraint handlers changing the setting of sepa-

rators when disabling heuristics . 102
A.12 Ping-Pong.lp use of propagators changing the setting of separators

when disabling heuristics . 102
A.13 PingPong10.lp use of constraint handlers switching the setting for all

heuristics . 102
A.14 PingPong10.lp use of propagators changing the setting of heuristics . 103
A.15 PingPong100.lp solutions changing the setting for all heuristics . . . 103
A.16 PingPong100.lp solutions disabling single heuristics 103

LIST OF TABLES ix

A.17 PingPong200.lp solutions changing the setting for all heuristics . . . 104
A.18 PingPong1000.lp solutions changing the setting for all heuristics . . . 105

List of Figures

1.1 OMP building in Antwerp . 5
1.2 OMP offices around the world . 6
1.3 Unison Planning . 8

3.1 DLSP as network flow problem . 25
3.2 Reverse rappresentation of a DLSP . 25
3.3 Representation Ping-Pong branching (I) 30
3.4 Representation Ping-Pong branching (II) 31
3.5 Representation Ping-Pong branching (III) 31

4.1 Automatic Parameter Tuning algorithms 34
4.2 Graphical representation of all parameters viewable via SCIP 39
4.3 Graphic representation of SCIP cycle resolution of a problem 40

5.1 locks fixing algorithm . 42
5.2 Feasibility Pump basic scheme . 44
5.3 Basic Shift and Propagate algorithm 45
5.4 ZI Round . 46

6.1 Configurations given by combinations of settings of heuristics and
separators. 61

6.2 Configurations given by setting presolving and separating default,
switching the setting for heuristics. 63

6.3 Configurations given by setting presolving default, heuristics off,
switching the setting for separators. 77

6.4 Configurations given by setting presolving default, heuristics fast,
switching the setting for separators. 78

6.5 Configurations given by setting presolving default, heuristics default,
switching the setting for separators. 81

6.6 Additional Configurations evaluated for PingPong1000. 82

8.1 PingPong model on OMP Optimizer 90
8.2 PingPong general statistics by OMP Optimizer 91

xi

xii LIST OF FIGURES

8.3 PingPong1000 statistics given by OMP solver on branch and Bound tree 92
8.4 PingPong statistics using aggregation 92
8.5 PingPong2000 results found by FeasPump 93

LIST OF FIGURES xiii

LIST OF FIGURES xv

Part I

Theoretical Setting

1

Introduction

Object of study

Material requirements planning (MRP) is a production planning, scheduling, and
inventory control system used to manage manufacturing processes. An MRP sys-
tem is useful to ensure raw materials are available for production and products are
available for delivery to customers, to maintain the lowest possible material and
product levels in store, to plan manufacturing activities and delivery schedules and
purchasing activities.
Many of these problems that affect complex systems, such as a supply chain and MRP,
are decision problems that can be formulated in terms of Mathematical Programming,
and in particular integer linear programming. Most of these problems are computation-
ally difficult and requires the application of sophisticated computation.
In particular, MRP systems based on mathematical programming models use the
B&B, an algorithm design paradigm for discrete and combinatorial optimization
problems and mathematical optimization.
A branch-and-bound algorithm consists of a systematic enumeration of candidate
solutions by means of state space search: the set of candidate solutions is thought of
as forming a rooted tree with the complete set at the root. The algorithm explores
branches of this tree, which represent subsets of the solution set. Before enumerating
the candidate solutions of a branch, the branch is checked against upper and lower
estimated bounds on the optimal solution and is discarded if it cannot produce a
better solution than the best one found so far by the algorithm.
The problem is that the algorithm is very effective in most cases, but it can be very
inefficient in some specific ones, because its search space expands very rapidly as the
domain sizes of the problem variables grow.
For example, this happens whenever the demand for multiple products exceeds the
capacity of a shared machine and the lot size of one or several products is not a
multiple of the machine’s capacity.
In a standard branching scheme, integer variables linked to the lot size can be
branched up and down consecutively because they exchange some left-over capacity
that is a fraction of a lot size. This “ping pong” behavior of the branching could lead
to performance degradation of the whole algorithm. Instead, a more intuitive and

3

4 Introduction

fast approach is to branch all these variables down in one go because there is no
way to make an extra lot size. The idea of this strategy is to cluster the values of
a variable’s domain into sets. Branch and bound can then branch on these sets of
values rather than on individual values in order to construct a collection of sets on
which branching will still allow effective bounding, reducing in this way branching
factor and the size of the explored search space.

Objectives and contents

After analyzing the literature on the B&B algorithm, a series of manual tests
have been performed through a particular tool, on different instances of a Lot Sizing
problem, comparing the results with those obtained through the OMP device. Being
a commercial product, the implementation of the latter application is unknown.
However, the goal was to understand what the best parameter configuration was to
solve many batch sizing problems using SCIP Optimization Suite, in order to support
the OMP application to work as efficiently as possible.
In detail, it was noted that in the context of a particular Lot Sizing problem, and
in correspondence with certain instances with a certain number of variables, SCIP
presents a different resolution behavior compared to that of the OMP application,
still reaching optimal results, if not better than those of this last one.
The algorithms used are very sophisticated and depend on many parameters. So,
through a manual tuning of the most important parameters, it was thus possible to
arrive at the best parameter configuration to solve the problem via SCIP. Given this
result, useful information was extrapolated to improve the application of OMP.

CHAPTER 1

OMPartners supply chain planning solution

Let’s start with a presentation of the company where the intership was carried out.
You can find here a description of what the company does, what the challenges and goals
of this great company are and how they carry it out. I am grateful for the opportunity I
have been given.

Figure 1.1: OMP building in Antwerp

1.1 OMPartners

OMP is a software and consulting company delivering advanced solutions with
its innovative planning software. It was founded in 1985 and it has strong roots in
mathematical optimization. Over the years it was subject of a subsequent evolution
towards supply chain solutions and now it is an internationally recognized player, one
of the leaders in supply chain planning.
A supply chain describes a network of organizations, resources, activities and tech-
nologies involved in the creation and sale of a product and includes everything: from
the delivery of basic materials from the supplier to the manufacturer to delivery to

5

6 1 − OMPartners supply chain planning solution

the end user.
With a workforce of more than 1,000 people in offices around the world, Belgium,
China, France, Germany, India, the Netherlands, Spain, Ukraine and the US, five
core teams and six supporting teams keep things running smoothly (see Fig.1.2),
they supervise, optimize and control the entire development process to guarantee
top quality to their customers, including many leading global companies, such as
ArcelorMittal, BASF, Dow, L’Oréal, Michelin, Procter & Gamble, Shaw, Shell, Smurfit
Kappa, and Yoplait.
The product offered by OMP, Unison Planning, is a large generic application capable
of adapting to the diversity of its customers, a layered solution offering a generic
planning functionality with templates providing all the necessary to cover the specific
industries, as supply chain planning challenges differ across them.

Figure 1.2: OMP offices around the world

1.2 Field of action

OMP work for different types of industries such as chemicals, consumer goods,
life sciences, metals, paper, plastic film and packaging industries.
Orchestrating the chemicals supply chain to boost profitability means minimize
changeovers, taking into account fixed-wheel, flexible wheel policies, throttling deci-
sions, co-product fractions, and the performance of catalyst installations. Moreover,
it also consists in the optimization of consumption through a mix of make-to-order
and make-to-stock production strategies, quality control processes, networks of sub-
contractors and distribution channels, in order to maximize asset initialization, keep
inventory levels within reasonable limits, and reduce waste and costs.
Tough challenges in the consumer goods industry are fierce competition, tight mar-
gins, shorter and shorter product life cycles, and difficult management of global
operations. For them OMP offers sensing instruments, smart solvers and scenario
planning tools to manage phase-ins and phase-outs, optimize asset utilization and
continuously rebalance DC network. At all times, supply and demand must be in

§1.3 − Solution 7

tune across the entire consumer goods supply chain, and production must happen
on a just-in-time basis as much as possible.
The complexities of metal supply chain require to maximize asset utilization, min-
imize scrap, keep inventory levels low, and improve delivery performance. OMP
gives the solution to design and manage all operations in perfect unison. Key pro-
cesses such as forecasting, sales and operations planning, campaign planning, order
promising, and detailed order planning an scheduling are perfectly harmonized,
leading to continuous improvement. Bills of materials and complex routing plans are
generated dynamically.
In order to embrace the global digital era, OMP adjust manufactoring network, keep
campaigns tuned to demand, balance the mix of make-to order and make-to stock
operations, and optimize cutting and trimming plans. Paper and plastic film markets
are increasingly diverse and complex. Paper mills and plastic film plants have to be
flexible and have to constantly adapt their cutting plans as well as their master and
campaign plans. The packaging industry is challenged by diminishing margins and
increasing traceability requirements. OMP allows to manage all complexities with its
smart forecasting and S&OP tools, planning, cutting, multistage trimming, schedul-
ing and retrimming tools, with a unique corrugator optimization functionality.
In addition to the industries featured above, they develope solutions for aerospace,
animal feed, cement, floor covering, glass, mining, rubber, starch, textiles, tires, wood,
and more.

1.3 Solution

Supply chain planning is complex business. A decision maker have to face many
challenges all at the same time.
Unison Planning responds to the needs of create sustainable value for the long
run, control the risks while keeping all stakehlders in sync and garantee good
performances. It‘s built upon one model that captures supply chain in all its di-
mensions, supported by Applied AI, data science and embedded intelligence, for
capital-intensive industries. These companies in fact share one common challenge.
They all need to combine optimal planning of material flows and optimal use of
bottleneck capacities.
Instead of bringing together a disparate series of individual apps into one overarch-

ing solution, the one-model approach of UP treats the supply chain as a whole, from
the ground up. It embraces the supply chain as a mix of intertwined dimensions, to
be solved in their dependencies. (see Fig.1.3).
In this way users can now move back and forth easily between the strategic, opera-
tional and execution levels. That’s helpful during analysis and for decision-making.

1.4 Work teams

OMP’s work force include teams working for customer solutions, product de-
sign and software development. In this way they can assist their customers during
the entire process, from the initial business case to the detailed configuration, they

8 1 − OMPartners supply chain planning solution

Figure 1.3: Unison Planning

provide assistance before, during and after implementation, they provide training
and documentation and helping. Through the product design team they can identify
opportunities for product improvement, they work for marketing and they can give
support for the use. Software development team work with codes, software, algo-
rithms through solvers, AI, machine learning, strong logic, smart data structures, and
solid architecture, focusing on the performance of the application.

Even if focused on my own project, during my experience I worked in strict contact
with the Product Design team with supply chain specialists, mathematical modelers,
and data scientists. They work to provide a smart supply chain planning solution
and steer the development process from drawing board to product launch. They
help users and consultants to fully understand and use the OMP Solution, creating
training materials, manuals and documentation for end users and consultants. The
advisory and implementation teams count on them for expert advice throughout
the entire project life cycle. In addition, they provide third line support for customer
questions after the go-live.
As the architects of the OMP Solution, they play a key role in product marketing.
They create demos and promotional materials to guide customers through the soft-
ware’s functionalites. They host webinars on new product features and offer domain
expertise during presales.

§1.5 − Experience 9

1.5 Experience

Like all new arrivals, during my first weeks at the company I underwent a training
period in order to be able to face the next work.
In particular, during my first two week, after visiting the company, I completed and
passed the final tests of the following courses:

• Information Security Policy

• Introduction to OMP

• Introduction to office management

• Introduction to ICT

After that, getting more into the subject, I started my training with the tool that I
would later use throughout my experience, SCIP Optimization Suite. After having
studied a simple presentation focused on the Configuration Parameter Tuning and
having consulted the official page and the documentation, I passed immediately
to practice starting with simple models with a few variables, and then gradually
increasing the complexity.
At the beginning of October I was ready to start working on the project and my
colleagues introduced me specifically to the problem I would have to face. In detail,
through their presentation and the bibliographic material provided, I studied the
structure of the general Lot Sizing Problem and I was provided with the model that I
would analyze.
Having the model instances available, I began my analysis. At the end of each phase
of work I had to prepare a presentation of the results obtained, and the next work to
be carried out was planned.
In the meantime, I participated with interest to the Product Development meetings
that were held in the company.

CHAPTER 2

From the birth of linear programming to B&B

Entering into the subject, here is given a quick explanation of the mathematical
prerequisites necessary to tackle the project, acquired during the Operations Research
course, and result of further bibliographical research. Starting from the basics of math-
ematical programming, we then move on to linear and integer linear programming.
Therefore, in this context, the fundamental definitions of discrete and combinatorial opti-
mization, up to the definition of the Branch and Bound algorithm, which will accompany
the entire drafting of the thesis and experimentation, are provided in detail.

Mathematical programming is the use of mathematical models to assist in taking
decisions. In particular it makes use of optimization models with the aim to obtain
the best solution of the problem associated with the mathematical model. When
the mathematical representation uses linear functions exclusively, we have a linear-
programming model, and it’s especially this one of the best developed and most used
branches of management science. It concerns for example the optimum allocation
of limited resources among competing activities, under a set of constraints imposed
by the nature of the problem being studied. They can be financial, technological,
marketing, organizational constraints and many others types.
Linear programming and the first problems connected to it date back to 1945, when
George Stigler formulated "the diet problem", in order to find the best diet model,
best satisfying nutritional requirements with the minimum expense. Starting from
this study, it was realized that this model can be considered a particular case of a
more general class of objective function and linear constraint problems and that
there is not yet a direct method for solving this type of problem. At the same time
Dantzig, studying military problems, realized that many organizational problems can
be formulated in the form of systems of linear inequalities, until in 1947 he formalized
the concept of linear programming and also developed the first calculation method
resolution, nowadays known as the "Simplex method", the only method until the
introduction of the Interior Point method to solve larger problems by improving
timing.
It is soon realized that the fractional values of some variables are not acceptable, in
fact in many real-world situations it is often impossible to represent certain aspects
of a problem using only continuous variables. it is sometimes necessary to represent

11

12 2 − From the birth of linear programming to B&B

discrete quantities through variables that are forced to take only integer values, so
that a new type of problem is therefore created which combines continuous variables
with variables of a discrete nature: Mixed Integer Linear Programming (MILP). Since
the most used technique to solve this type of problem (the so-called Branch&Bound
method) consists in solving a large number of LP problems until the optimal solution
of the MILP problem is identified, it becomes increasingly important to make the
algorithms even more efficient and performing in such a way as to be able to solve
even this class of problems in a reasonable time.

2.1 Linear Programming

A linear programming (LP) problem therefore consists of an objective function
to be minimized (or maximized) subject to constraints (which may be in the form of
equation or inequality), both of a linear type.

max z = cTx cTx is the objective function
Ax ≤ b {X = x ∈ Rn s.t. Ax ≤ b} is the feasible region
x ≥ 0

Unknowns

• x ∈ Rn Decision variables vector. Every x ∈ X is a feasible solution.

• z ∈ R Value assumed by the objective function in correspondence with a solution x ∈ X.

Parameters

• c ∈ Rn vector of coefficients of the objective function.

• b ∈ Rn vector of the known terms of the constraints

• A ∈ Rm×n matrix of constraint coefficients

Redundant constraint: The constraint aTx ≤ b is redundant with respect to the
system of constraints Ax ≤ b if every solution of Ax ≤ b is also a solution of aTx ≤ b.

PL problem solution: A PL problem (in maximal form) can:

1. be feasible with one or more finite optimal solutions.The solution x ∈ X is
optimal if ∀y ∈ X cTx ≥ cTy.

2. be empty or inadmissible (X = ∅)

3. be unlimited above, this happens when ∀δ ∈ R ∃x ∈ X : cTx > δ .

Solving a PL problem means determining whether it is unbounded or inadmissible,
i.e. producing a finite optimal solution.

Polyhedron: A polyhedron is the intersection of a number finite m of affine halfspaces

§2.2 − Combinatorial Optimization and Integer Linear Programming 13

of Rn.
Polytope: A polytope is a bounded polyhedron.

Any system of linear equations/inequalities defines a polyhedron.The feasible region
X of a PL problem is a polyhedron denoted by P(A,b);

Vertex: a point v of a polyhedron P is called vertex of P if ∃ a vector c such that
cTv < cTx ∀x ∈ P ̸= v.

Fundamental Theorem of PL: If a PL problem admits a finite optimum then ex-
ists one optimal solution which is a vertex of P.
If the problem is posed in standard form P: max{cTx s.t. Ax = b, x ≥ 0, x ∈ Rn}
, any feasible solution of P is also one solution of the system of linear equations
Ax = b.

2.1.1 Duality

A linear programming problem is called a primitive problem in its original formu-
lation, but always has a dual problem. The solution of the primitive problem allows
you to easily obtain that of the dual problem.

P: z∗ = max cTx
Ax ≤ b
x ≥ 0

D: w∗ = min yTb

ATy ≥ c
y ≥ 0

2.2 Combinatorial Optimization and Integer Linear Pro-
gramming

Combinatorial Optimization is a branch of Operations Research which, in math-
ematically modeling and solving complex problems of a discrete nature, combines
combinatorial calculus techniques with the theory of algorithms and the theoretical
and methodological results of linear programming.
It is one of the most important research areas in the field of optimization. In fact, it has
multiple practical applications in many fields that have all a common characteristic:
that of want to achieve an objective in compliance with constraints that regulate the
use of resources available only in limited and finite quantities.
A discrete optimization problem can always be posed in form of linear mathemat-
ical model with integer variables, and a linear programming problem in which

14 2 − From the birth of linear programming to B&B

all variables are constrained to assume only integer values is called linear integer
programming. If the integrality clause concerns only some variables, it is called
mixed-integer linear programming (MIP). In the last decade the use of mixed-integer
programming models has increased dramatically. Today is possible to solve problems
with thousands of integer variables and obtain good approximate solutions, thanks
to developments in modeling, algorithms, software and hardware.

The program:

max cx
Ax ≤ b
l ≤ x ≤ u
xj integral, j = 1, ...p,

is called Mixed Integer Program (MIP). The input data are the matrices c(1xn)
,A(mxn), b(mx1), l(1xm), u(1xn), and the n vectors x to be determined. We assume
1 ≤ p ≤ n otherwise the problem is a linear program (LP). If p = n, the problem is a
pure integer program (PIP). A PIP in which the variables have to be equal to 0 or 1
is called a Binary Integer Program (BIP) and a MIP in which all integer variables
have to be equal to 0 or 1 is called a Mixed Binary Integer Program (MBIP). Binary
integer variables occurr very frequently in MIP models of real problems.

In these cases, linear programming cannot be used directly, we therefore use ex-
act algorithms based on LP:

• Cutting planes algorithm (polyhedral approach) : generation of a sequence of
hyperplanes that separate the optimal solutions provided by the simplex from
the optimal solution of the problem of PLI.

• LP-based Branch-and-Bound (implicit enumeration) : recursive decomposition
of the solution space and exclusion a priors of non-useful solutions.

They are general algorithms capable of solving any problem of discrete optimization
expressed in terms of Integer Linear Programming.

2.3 Discrete optimization

P = max{ f (x) s.t. x ∈ X}

Solving a discrete optimization problem means determining an x ∈ X that maximizes
(or minimizes) the function f.

§2.3 − Discrete optimization 15

Due to the high computational complexity, the universal algorithm turns out to be
impractical. In fact, it is generally of exponential complexity because constructs,
evaluates and verifies all possible solutions of the space of search, which in a combi-
natorial optimization problem consists of 2n subsets of U (if |U| = n).
However an exponential algorithm does not always perform a total enumeration, it
only happens in the worst case. The objective therefore becomes to avoid as much as
possible the worse case, making the enumeration on average efficient.

2.3.1 Relaxations and Bounds

Relaxation: Let P : max{c(x) : x ∈ X ⊆ Rn} be an optimization problem. The
problem R : max{c(x) : x ∈ Y ⊆ Rn} is a relaxation of P if X ⊆ Y, that is, if the
feasible region of P is contained in that of R.
if y∗ is optimal for R and x∗ is optimal for P then c(y∗) ≥ c(x∗). The optimal solution
of the relaxation provides an upper bound on c(x∗).
A relaxation is obtained, for example, by eliminating any set of constraints from the
model. In particular, by eliminating the integrality constraints, continuous relaxation
is obtained.

Continuous relaxation: Let P: z∗ = max{cTx : Ax ≤ b, x ∈ Zn} be a PLI problem
and Pr : z∗r = max{cTx : Ax ≤ b, x ∈ Rn} its continuous relaxation.
It always applies z∗r ≥ z∗ that is, the optimal value of the continuous relaxation is
always a higher limitation to the optimal value of the problem. Furthermore, if x∗r is
integer then x∗r is the optimal solution of P. Similarly, in the case of a minimum prob-
lem we always have z∗r ≤ z∗ that is, the optimal value of the continuous relaxation is
always a lower bound than the optimal value of the problem.

Lower and upper bounds: Let z∗ be the optimal value of an optimization problem.

• Each zl ∈ R : zl ≤ z∗ is called lower bound to the optimal value of the problem;

• Each zu ∈ R : zu ≥ z∗ is called upper bound to the optimal value of the
problem.

In a minimum (maximum) problem every feasible solution provides an upper (lower)
bound, but that’s not true each infeasible solution provides a lower bound (upper).

We call primal bound a bound provided by a feasible solution and dual bound
a lower bound in a minimization problem or an upper bound in a maximum prob-
lem.
The quality (the distance from the optimal value) of the primal bounds and dual
bounds is a critical factor for the viability of exact algorithms.

16 2 − From the birth of linear programming to B&B

2.4 Branch-and-Bound

Branch-and-Bound algorithm is based on the recursive decomposition of the
solution space and exclusion of non-useful solutions. In particular, foundamental
elements of a Branch-and-Bound algorithm are:

1. separation into subproblems (partition)

2. relaxation (upper bounding)

3. fathoming of subproblems (lower bounding)

4. selection of subproblems (branching)

The basic structure of branch-and-bound is an enumeration tree. The root node of
the tree corresponds to the original problem. Through the algorithm the tree grows
by a process called branching that creates two or more child nodes of the parent
node. In particular, the problems corrisponding to the child nodes are formed by
adding constraints to the parent node’s problem. The new constraint is obtained by
bounding on a single integer variable. In this way each feasible solution to the parent
node problem is feasible to at least one of the child node problems.
The most popular choice of relaxation is LP relaxation. The LP relaxation of a MIP is
obtained by dropping the integrality restrictions. The main use of the LP relaxation
in solving a MIP is that the optimal value of the LP relaxation provides an upper
bound on the optimal value of the corrisponding MIP, and in many cases it gives a
good approximation to the solution.
In addiction, if an optimal solution to the LP relaxation is found that satisfies the op-
timality restrictions, then that solution is also optimal to the MIP. If the LP relaxation
is infeasible, then the MIP is also infeasible.
This is important because the most important feature in the success of Branch-and-
Bound codes is the "distance" from the LP optimum to the MILP optimum.
There are also others types of relaxations, such as the Lagrangian relaxation, even if
the LP relaxation still remains the main used.

Lagrangian relaxation: For MILP’s of the form:

max cx
Ax ≤ b
Dx ≤ d
x ≥ 0, xjinteger, j ∈ I

a Lagrangian relaxation is:

max cx − Λ(Ax − b)
Dx ≤ d
x ≥ 0, xjinteger, j ∈ I

§2.4 − Branch-and-Bound 17

where Λ is a non-negative vector.

Since mostly of time consumed by a branch and bound algorithm is spent on
solving the ralaxation, the speed improvements that have taken place in the last
decade are extremely important, and are essential for the new Branch-and-Bound
algorithms called Branch-and-Cut and Branch-and-Price.

Basic Algorithm

1. Initialization: l = P, x = ∅, zl = −∞

2. Stop criterion: if l = ∅ then x is the optimal solution. STOP.

3. Subproblem selection: choose a P problem i from list l and remove it from the
list.

4. Evaluation: solve Pi
r , LP relaxation of Pi.

if Pi
r is infeasible, then Pi is infeasible; go to 1.

Let xr
i be an optimal solution of Pi

r .

5. Bounding: Bounding: if zi
r = zi

u ≤ zl then go to 1.
if xr

i is integer, then zl = zi
r; x = xr

i; go to 1.

6. Branching: Split Pi in the subproblems Pi
1, ..., Pi

k such that Pi = ∪jPi
j and add

the problems to l; go to 1.

For LP based Branch-and-Bound algorithms the partitioning consists in separat-
ing a problem into subproblems introducing a set of contradictory constraints on one
of the variables required to be integer.
In the normal course of a branch-and-bound algorithm, an unevaluated node is
chosen, the LP relaxation is solved, and a fractional variable is chosen to branch on,
so it’s necessary to choice the active node to evaluate and the fractional value to
branch on. These choices are important to keep the tree size small.
Suppose the LP relaxation has been solved at node k and the solution doesn’t satisfy
xj integer, j ∈ I.
A variable xr, r ∈ I is chosen which has fractional value. yr0 = yr0 + fr0, fr0 ≥ 0.Sk is
partitioned into:

Sk
⋂
{x|xr ≤ |yr0|}

Sk
⋂
{x|xr ≥ |yr0|+ 1}

For this we can consider:

18 2 − From the birth of linear programming to B&B

• Priorities: a priority structure is an ordering in importance of the set of variables.
To establish priorities the user may know that certains variables are critical
and others are of secondary importance, while in absence of prior information,
priorities can be set by ordering the variables by cost, using the down and up
preudo costs of xi, CD

i and CU
i , partitioning on that variable that maximize:

min{CD
i fi0, CU

i (1 − fi0)}, i ∈ I

Pseudo costs permit to estimate the change in objective function value caused
by forcing a variable which is currently fractional to be integer. They can be
estimated by the user or by the original costs of the variables, or performing
small computation. Assume that the node k has been partitioned based on
xi, i ∈ I, and note that at nodes k + 1 and k + 2, xi will be integer valued:

CD
i =

z̄k − ¯zk+1

fi0

CU
i =

z̄k − ¯zk+2

1 − fi0

• Quasi-Integer variables: it’s possible to specify a tolerance t such that vari-
able xi is considered integer if max{ fi0, (1 − fi0)} < t. Such variables can be
considered less important then those which are more seriously fractional.

Fathoming of node k occurs when z̄k ≤ z where z is the value of the best known
solution of the MILP. Fathoming will be accelerated is z is high, close to z∗. There
are different ways to attempt to get a good lower bound on z∗. Sometimes a good
feasible solution is known a priori.
In the normal course of algorithm good feasible solution are discovered at various
nodes, and the nodes that seem to have probability of containing feasible solution
would be good candidates for early investigation.
Another way to find good feasible solution is the use of heuristics for any particular
instance of the combinatorial problem. In particular, they can be incorporated at node
zero in order to obtain an initial good lower bound, but also later in the tree.

The efficiency of the algorithm depends on many factors, from the selection cri-
terion of the subproblem, from the choice of the branching variable, from the quality
of the problem formulation, the type of relaxation adopted, the heuristics adopted.
In particular, to speed up the execution, techniques such as the Preprocessing and
various Branching strategies are adopted.

§2.5 − Branch-and-Cut 19

2.4.1 Preprocessing

Preprocessing consists on applying logic to reformulate the problem in a more
convenient way, reducing the size by fixing variables and eliminating constraints,
and detecting sometimes infeasibility.
The simplest test is the one based on the bound, through which redundant constraints
can be eliminated or a bound on a variable can be tightened by recognizing that a
constraint becomes infeasible if the variable is set at that bound. In this way spending
more time initially it’s possible to reduce the possibility of long solution times.
Furthermore we can increase the power of these simple logical tests with probing,
that means setting temporarly a 0-1 variable at 0 or 1 and then redoing the logical
testing. If the logical testing show that the problem has become infeasible, then the
variable on which we probe can be fixed to the other bound. If the logical testing show
that a constraint has become redundant, then it can be tightened by the coefficient of
reduction.
So, preprocessing can identify infeasibility, redundant constraints, improve bounds,fix
variables, generate new valid inequalities.

2.4.2 Branching

At any stage of the enumeration process, there are living nodes to be chosen for
the next step of the algorithm. Node choice rules are motivated by the desire to find
good feasible solutions early in the search, to limit the growth of the tree. In fact, the
objective is always to solve the problem in a short time and this is function of the tree
size and of the computation done at each node of the tree.
It’s difficult to balance the advantages and disadvantages of selecting nodes near the
top or bottom of the tree.
In general, the number of active nodes may explode if the active node is always
chosen high up in the tree. On the other hand, if the node is always chosen from
down low in the tree, the number of active nodes stay small but it may take a long
time to find a good feasible solution.
A reasonable compromise is a mix of these two strategies, starting by investigating
on one of the successors of the current node in order to find a good feasible solution,
and then to keep the tree small examining the node k for witch z̄k is greater over all
live nodes.

2.5 Branch-and-Cut

The idea of Branch-and-Cut is the most significant advance in computational
integer programming since basic Branch-and-Bound. It’s a solution techniques to
solve integer linear programs with a really high number of constraints.

A valid inequality for a MIP is an inequality that is satisfied by all feasible so-
lutions.

A cut is a valid inequality that is not part of the current formulation and it’s not
satisfied by all feasible points to the LP-relaxation. A cut that is not satisfied by the

20 2 − From the birth of linear programming to B&B

given optimal solution to the LP- relaxation is called violated cut.

If we have a violated cut , we can add it to the LP-relaxation and tighten it, modifying
the current formulation in such a way that the LP-feasible region becomes smaller
but the MIP feasible solution doesn’t change. Then we can resolve the MIP and repeat
this process continuing to find violated cuts. If none are found we branch.

A significant question in branch and cut is what classes of valid inequalities to
generate and when. For generic mixed-integer programs, for example, cut generation
is most important in the root node.
So, depending on the structure of the instance, different classes of valid inequalities
may be effective. Sometimes, this can be predicted ahead of time (knapsack inequali-
ties), while in other cases, we have to use past history as a predictor of effectiveness.
Anyway, predicting what cuts will be effective is difficult in general. We can use
the Degree of violation or other measures such as the Bound improvement or the
Euclidean distance from point to be cut off but it is also possible to generate cuts
using a different measure than that which is used to add them from the local pool.
This might be done because generation by a criteria other than degree of violation is
difficult.

We have two ways of obtaining cutting-planes for linear constraints on integer vari-
ables: taking linear combinations of the constraints, and using modular arithmetic,
sufficient to obtain all the cutting planes when an integer program has a bounded
feasible region.

For h ≥ 0, let IP(h) be a linear program consisting of a reasonable size subset
of the constraints of LP(∞). Solve LP(h), which yields an optimal solution x̄h . If this
solution is feasible for IP(∞), it is an optimal solution, else assume we have a black
box algorithm that gives us at least one constraint of LP(∞) violated by x̄h , if one
exists, or tells us that all constraints are satisfied. If at least one violated constraint is
returned, LP(h + 1) is obtained from LP(h) by adding these constraints to those of
LP(h).
Note that for every h ≥ 0, if zLP(h) is the optimal value of LP(h), we have zLP(h) ≤
zLP(h+1) ≤ zLP(∞) ≤ zI P(∞) .

The black box algorithm is called the separation algorithm.
So , given a solution to the LP-relaxation of a MIP that doesn’t satisfy all the integral-
ity constraints, the separation problem is trying to find a cut.
Separation routines are frequently based on fast heuristics. There are three types of
valid inequalities that can be used to archieve integrality:

1. Type 1: no structure: based only on variables being integral or binary, they can
always be used to separate a fractional point.

2. Type 2: relaxed structure: derived from relaxation of the problem.

3. Type 3: Problem specific structure: derived from the full problem structure.

§2.5 − Branch-and-Cut 21

Branch-and-Cut may fail for the following reasons:

1. We do not have a good algorithm to perform the cutting plane phase;

2. The number of iterations of the cutting plane phase is too high;

3. The linear program becomes unsolvable because of its size;

4. The tree generated by the branching procedure becomes too large and termi-
nation seems unlikely within a reasonable amount of time.

Cut management refers to strategies in Branch-and-Cut algorithms to ensure effective
and efficient use of cuts in an LP-based Branch-and-bound algorithm.
They decide when to generate cuts, which of the generated cuts to add to the active
linear program, and when to delete previously generated cuts from the active linear
program, in order to try to decrease the time spent on generating cuts without
reducing the effectiveness of the branch-and-cut algorithm.
This can be done by limiting the number of times cuts are generated during the
evaluation of a node or by not generating cuts at every node of the search tree.
Standard methods for generating cuts are:

• Gomory, GMI, MIR, and other tableau-based disjunctive cuts.

• Cuts from the node packing relaxation (clique,odd hole).

• Knapsack cuts (cover cuts).

• Single node flow cuts (flow cover).

• Simple cuts from pre-processing (probing).

The problem is to choose among these methods which to apply in each node, and it
depends on the level of effort we want to put into cut generation.

22 2 − From the birth of linear programming to B&B

2.5.1 Managing the LP relaxations

Sometimes the number of inequalities generated can be huge, so that it’s important
to keep the size of the LP relaxations small in order to not sacrifice efficiency. This is
done in two ways:

• Limiting the number of cuts that are added each iteration.

• Systematically deleting cuts that have become ineffective.

An ineffective cut is one whose dual value is near zero,or whose slack variable is
basic or positive.
In practice, newly generated cuts enter a buffer (the local cut pool), but only a limited
number of what are predicted to be the most effective cuts from the local are added
in each iteration. Cuts that prove effective locally may eventually sent to a global
pool for future use in processing other subproblems.

CHAPTER 3

The capacitated Lot Sizing Model

Since the addressed problem is an example of a Lot Sizing Model, an introduction to
this family of problems is necessary. A general presentation of the Lot Sizing problem
model is therefore given, in its direct or inverse form, highlighting how this can be
adapted to an enormous variety of real problems. The model adapted to the original is
then given, the instances of which were analyzed in the experimental part at OMP.

Starting from the developments of the Economic Order Quantity model and of the
formulation of the Dynamic Lot Sizing Problem, inventory models have been widely
employed to solve a wide range of theoretical and real-world problems. In fact, mod-
ifying the original models adapting them to the situations, it’s possible to describe
complex supply chains and logistics systems.
The history of inventory problems dates back to the Economic Order Quantity (EOQ)
model presented by Harris in 1913, and firstly used in practice by Wilson in 1934. It
presents a single item whose demand is continuous with an infinite plannng horizon,
and its scope is to find the optimal quantity to be ordered, balancing setup and
holding costs.
In presence of multiple items and capacity restrictions the model becomes NP-hard,
and the Dynamic Lot Sizing Problem, first proposed by Wagner and Whitin in 1958
is an extension of the previous. In this case there are a deterministic and dynamic
demand and finite time horizon but with the same objective of EOQ.
From this point onwards, different variants were born by adding or varying sim-
ple constraints, introducing new conditions, limitations, resources and objectives,
inspired by specific real life applications and focusing on industrial production
planning problems.

3.1 Mathematical models for Lot Sizing problems

We represent the time through N buckets denoted with t ∈ 1...N, so we have:

• dt: demand forecast

23

24 3 − The capacitated Lot Sizing Model

• pt: unit production or purchasing cost

• ht: unit inventory cost

• ft: fixed setup or ordering cost

• Ct: maximum feasible lot size capacity

Variables:

• st: stock at the end of period t

• xt: quantity to be produced or ordered during period t

• yt: binary variable equal to 1 if units of the product are manufactured or ordered
in period t

DLSP model

min z =
N

∑
t=1

(ptxt + htst + ftyt) (3.1.1)

st = st−1 + xt − dt t = 1, ..., N (3.1.2)
st = 0 t = 0 and t = N (3.1.3)
xt ≤ Ctyt t = 1, ..., N (3.1.4)
st ≥ 0; xt ≥ 0; yt ∈ 0, 1 t = 1, ..., N (3.1.5)

The objective function (3.1.1) aims to minimize production, inventory and setup costs.
Among the constraints, the equilibrium constraint (3.1.2), aims to balance inventory
levels, whereas the condition (3.1.3) imposes inventory levels at the beginning and
the end of the planning horizon equal to 0. It is possible to have a positive production
between 0 and Ct in period t only if the setup variable is equal to 1 (3.1.4), while the
constraint (3.1.5) impose the non-negativity and binary restrictions of the variables.
Zangwill in 1969 provided an interpretation of the problem as a fixed charge network
problem, represented in Figure 3.1. The flow from the node 0 to another node, repre-
sented by an arc (0,t), is the production xt in period t, while the flow from t to t + 1
represented by arc (t, t + 1) reproduces the stock lend st at the end of the period t.
The aim is to define the production inflows xt able to satisfy the outflows dt with the
minimum costs, considering also the holdover flows from the previous periods.

It is possible also to use a reverse representation (see Figure 3.2), reversing flows
xt and dt, so in this case the outflows (xt) have to be determined in order to absorb

§3.1 − Mathematical models for Lot Sizing problems 25

Figure 3.1: DLSP as network flow problem

the sum of the demand inflows (dt) and of holdover flows from the previous period
(st−1). The constraints have to be written reversing the signs of the variables xt and
parameters dt:

st = st−1 − xt + dtt = 1, ..., N

Figure 3.2: Reverse rappresentation of a DLSP

In the case of a multi-item problem, with M items,the index j ∈ 1, ..., M represents
one of the M items, so each parameter and variable presents a double index j and t.
The formulation of the DLSP becomes

26 3 − The capacitated Lot Sizing Model

min z =
N

∑
t=1

M

∑
j=1

(pt jxt j + ht jst j + ft jyt j) (3.1.6)

st j = st−1 j + xt j − dt j t = 1, ..., N; j = 1, ..., M (3.1.7)

st j = 0 t = 0 and t = N; j = 1, ..., M (3.1.8)

xt j ≤ Ct jyt j t = 1, ..., N; j = 1, ..., M (3.1.9)
M

∑
j=1

ajxt j +
M

∑
j=1

bjyt j ≤ Rt t = 1, ..., N; j = 1, ..., M (3.1.10)

st j ≥ 0; xt j ≥ 0; yt j ∈ 0, 1 t = 1, ..., N; j = 1, ..., M (3.1.11)

where aj is the capacity consumed for the production of one unit of item j,bj is the
capacity consumed for the setup of item j and Rt the total available capacity in period
t.
Clearly according to the particular situations and needs it’s possible to add to the
model constraints to describe different production mode options, such as limits on
the setups per period, limitations on the inventory and others:

M

∑
j=1

yt j ≤ Kt t = 1, ..., N (3.1.12)

M

∑
j=1

st j ≤ St t = 1, ..., N (3.1.13)

st j ≤
δ

∑
k=1

dt+k j t = 1, ..., N − δ; j = 1, ..., M (3.1.14)

yt+λ j ≤ (1 − yt j) t = 1, ..., N − λ; j = 1, ..., M (3.1.15)

yt+1 j ≥ yt j t = 1, ..., N − 1; j = 1, ..., M (3.1.16)

Contstraints (3.1.12) assume that at most Kt setups per period are allowed and (3.1.13)
express a limitation to the total inventory level in each period. Constraint (3.1.14)
impose an upper bound to the inventory level, (3.1.15) impose a minimum interval λ
between two consecutive setups, and (3.1.16) impose that once the production of an
item has been started, it will continue until the end of the planning horizon as y is a
binary variable equal to 1 if item j is produced in period i. From this, for example,
if in period 1 the production of j is active (y1 j = 1), it can no longer be interrupted
until the end (yt+1 j ≥ yt j, t = 1, ..., N − 1). These last two constraints are useful to
represent semi-continuous production processes.

For the reverse representation:

st j = st−1 j − xt j + dt j t = 1, ..., N; j = 1, ..., M (3.1.17)

st j ≤
δ

∑
k=1

xt+k j t = 1, ..., N − δ; j = 1, ..., M (3.1.18)

§3.2 − Logistics applications 27

3.2 Logistics applications

The general model of flow control can be useful to describe various optimization
problems, seeing item j as a logistic service. In this way dimensioning and synchro-
nization problems related to logistic services can be solved. In this case variables xt j
and st j represent respectively the demand for service j to be satisfied in period t, and
the residual demand for service j at the end of period t, while yt j is the activation of
service j during t.
For example we can consider the following applications:

• The bus terminal schedule optimization problem: we have a bus transit
terminal, where lines starting from a set of origins converge and users through
them lines can reach a set of destinations. Important is the schedule of output
lines towards the set of most common destinations. The problem aims to find
tradeoffs solutions minimizing the activation costs of the output lines and the
user’s waiting costs.
Adapting the model to this specific case, here dt j is the number of passengers
arrived at transit terminal at time t and directed to one of the destinations j,
while yt j is a binary variable equal to 1 if a bus leaves the terminal at time
towards destination j. Assuming a reverse network flows representation, the
problem can be viewed as the determination of passengers leaving the terminal
at each time t towards destination j. The objective function for example can
describe a performance measure defined as the sum of the costs associated with
users waiting times and the costs associated with departing lines activation. In
particular, in absence of unit production costs.
The formulation of the model can include flows (passengers) conservation
constraints, with the conditions that no passenger must be in the terminal at the
beginning and at the end of the planning horizon, and constraints associated
with the capacity of buses.

• The cross-docking operations optimization problem: in a complex supply
chain, a cross-docking platform receives goods from suppliers and sorts them
into alternative arrangements which have to be delivered to given destinations.
This kind of systems requires a relevant synchronization between inbound
and outbound flows in order to obtain both lower lead times and inventory
costs. The aim of this problem is reduce the total distribution costs considering
the benefits of a warehousing strategy in terms of consolidation and keeping
minimum storage costs.

• The check-in service optimization problem: in an airport terminal, the check-
in service consists in processing and accepting passengers arriving at designated
desks. In this case an efficient management of such service is due to increasing
air passengers’ traffic and to a concurrent decrease in resources employed
in handling operations. There’s the necessity of cutting costs for airlines and
third party providers due to the congestions of the terminal infrastructures and
long waiting times and queues at check-in-desks. So the aim in this case is the
optimization of the use of available check-in capacity.

28 3 − The capacitated Lot Sizing Model

The adaptation of all the elements of the basic version is easy, parameters and de-
cision variables of the CLSP can be interpreted, in order to describe these specific
applications, in the following way:

• j: service

• dt j:Units of demand

• ft j:Cost associated with the activation of service j in period t

• pt j:Cost for satisfying a unit of demand for service j in period t

• ht j:Cost for maintaining a unit of demand for service j in queue at the end of
period t

• Ct j: Maximum number of units of demand for service j that can be satisfied in
period t

• Rt: Total service capacity in period t

• aj: Capacity consumption for satisfying a unit of demand for service j

• bj: Capacity consumption for the activation of service j

• Kt: Maximum number of services that can be activated in period t

• St: Maximum demand still to be satisfied at the end of period t

• δ: Maximum waiting time for service demand

• xt j: Units of demand for service j being processed in period t

• st j: Residual demand units for service j waiting to be processed at the end of
period t

• yt j: Binary variable concerning the activation of service j in period t

§3.2 − Logistics applications 29

Capacitated Lot-Sizing model can be seen as a general model of flow control, in
fact it’s possible to use it to describe and formulate a great variety of optimization
problems through simple adaptations of the basic version.

3.2.1 Lot sizing model under study

Let’s see now the particular model analyzed at OMP. We have:

• dt: Demand forecast for period t

Variables:

• St: Stock at the end of period t, St = SPost − SNegt

• Pt: Binary variable concerning the activation of the service in period t

• TotBin: Integer variable used for the clustering.

In every period of time, or bucket, there is a certain demand by the customer, and
on this depends the resulting production. However, production is divided into two
parts, one aimed at satisfying demand, and the other intended for stock. The stock
resulting from production can be then used to satisfy demand in the following period.

min z =
N

∑
t=1

SPost + 10
N

∑
t=1

SNegt (3.2.1)

10P1 = S1 + d1 (3.2.2)
St−1 + 10Pt = St + dt t = 2, ..., N (3.2.3)
St = SPost − SNegt t = 1, ..., N (3.2.4)
d1 = 9.99 (3.2.5)
dt = 10 t = 2, ..., N (3.2.6)
SPost ≥ 0 t = 1, ..., N (3.2.7)
SNegt ≥ 0 t = 1, ..., N (3.2.8)
Pt ∈ {0, 1} t = 1, ..., N (3.2.9)

The objective function (3.2.1), aims to minimize the total Stock and, in particular, it
aims to penalize above all the negative stock quantities. In fact, as can be seen in
constraint (3.2.4), the total stock of a bucket corresponds to the difference between the
positive stock quantity, i.e. what is left over from production, and the negative stock
quantity, i.e. the demand that cannot be satisfied. What we would like is to have at
most positive stock quantities, satisfying all demand, and reduced to a minimum.
For this reason, in the objective function the negative stock is penalized with a factor
of 10, unlike the positive stock.

30 3 − The capacitated Lot Sizing Model

Among the constraints we find the equilibrium constraint (3.2.3), which aims to
balance inventory levels. In detail, the stock of the previous period added to the
production of the current period has to be equal to the stock that is being produced,
added to the current demand that we have to satisfy. Note that in our model the
initial inventory level,or stock, is equal to 0, expressed on constraint (3.2.2).
We have then the demand forecast values ((3.2.5),(3.2.6)). In detail, these values were
chosen as they are the ones that "extreme" the most the so-called "Ping Pong" behavior
of the model, and make it more evident.
The relation balancing all the program is the following:

−10Pt − SPost−1 + SPost + SNegt−1 − SNegt = −dt

that corresponds to the equilibrium constraint.

Using the OMP solver, when the clustering strategy is not applied, the program
analyzes the problem variables one by one. That is, it performs branching for each
time bucket. Although effective at first, as the computational complexity of the in-
stances increases, the performance deteriorates, making the resolution less efficient.
To overcome this problem, therefore, OMP uses aggregation, that is, it introduces the
TotBin variable on which to perform aggregate branching of the problem variables,
reducing time, complexity, and size of the branching tree. However, it has been noted
that using SCIP, although it does not use clustering, manage to obtain the same
performance as OMP solver, until a limit number of variables.
When the clustering strategy is used, the following constraints are added:

−
N

∑
t=1

Pt + TotBin = 0 (3.2.10)

TotBin ∈ I (3.2.11)

That is, the integer variable TotBin is used for clustering variables Pt, t = 1...N.

Let’s go deeper into this question. Assuming to have ten buckets, see 3.3.
As you can note, the inventory (stock) corresponds to the difference between the plan

Figure 3.3: Representation Ping-Pong branching (I)

(production), and the demand. In this case we have negative stocks as the demand is
never satisfied. Let’s go on analyzing the resolution of the model.
Assuming not to use the clustering strategy, we begin by solving the continuous

relaxation of our problem. In figure 3.4 you can see the result. This is the first node of
the Branch and Bound tree. At this point, as can be seen, the variable P1, correspond-
ing to the production of the first bucket, doesn’t satisfy the integrality constraint. This
is the first branching variable. We have two choices: setting the variable to 9 or 10.
Since our objective function requires penalizing negative stocks, and since we want

§3.2 − Logistics applications 31

Figure 3.4: Representation Ping-Pong branching (II)

to satisfy the demand, we set P1 to 10, and we go on. Once fixed the variable P1, let’s
we solve the continuous relaxation again.
See figure 3.5. The same situation as before occurs. That is, the variable P2 does not

Figure 3.5: Representation Ping-Pong branching (III)

satisfy the integrity constraint as it is equal to 0.999. By branching on this variable,
for the same reasons as above we set it to 10, and we go on.
As can be imagined, the process is repeated through all the variables. This is the so
called "Ping-Pong" behavior of the Branch-and-Bound algorithm.
It is clear how, when we only have 10 variables, the Ping-Pong behavior does not
bring any problems to the resolution of our model. When the number of variables
increases it can cause major problems of loss of efficiency of the algorithm.
Precisely to overcome this problem we introduce TotBin, an aggregate decision
sort that has a direct impact on all the other variables, by forcing the algorithm to
immediately branch on this variable.
We do this by imposing through the constraints (3.2.10) and (3.2.11), that the sum
of all production variables must equal an integer value, variable. For example, in
the case of figure 3.5, TotBin would take the value of 9.999, not satisfying the
integrality constraint. By branching on the latter instead of P2, we would have an
impact not only on P1, but also on all subsequent variables, greatly increasing the
efficiency of Branch-and-Bound.

CHAPTER 4

Parameter Configuration Problem

The analysis of the Lot Sizing Problem conducted at OMP consisted of searching
for the best parameter configuration to ensure maximum efficiency. In other words, this
operation is called Configuration Parameter Tuning. After presenting the automatic
tuning technique, we move on to the manual one and give an explanation of how in this
context the SCIP Optimization Suite tool was used during the work carried out at OMP.

The mathematical modeling of real-life optimization problems gives rise to complex,
large-scale mixed-integer linear programs (MILP) with integer and binary variables,
that require long computational times to solvers to return feasible solutions.

The parameter configuration problem consists of finding a parameter configura-
tion that gives a particular algorithm the best performance on the given instance
space, based on a specific criterion.
For this reason today the Automatic Parameter Tuning is one of the most practical
remedies to reduce time, but it’s possible to apply also a Manual Parameter Tuning,
having the opportunity to personally test the desired parameters, for a more precise
study. In both cases the aim is to to reduce time and improve the solution quality of
these algorithms, for which the performance depends on the parameter combination
used.

4.1 Automatic Parameter Tuning

Many automatic tuners are problem-dependent algorithms, they work specifically
with an algorithm to tune and its application areas1. In detail, Model-based algo-
rithms use explicit statistical models for studying the dependence of the algorithms
on their parameters, and include the Sequential Model-Based Optimization (SMBO)
and Sequential Parameter Optimization (SPO) approaches.

1More about automatic tuning is discussed in Ilyas Himmic [2023], Iommazzo et al. [2020] on
references

33

34 4 − Parameter Configuration Problem

The SMBO approach consists in iteratively building statistical models with available
data and using them to analyze the configuration space by studying the interaction
between parameters.
The SPO approach starts with constructing the initial configuration using Latin Hy-
percube Sampling (LHS). The parameter value interval is divided into equal intervals.
Then, a random number is chosen from each interval to generate configurations. The
performance of each generated configuration is measured after some executions, and
the best performing configuration is selected as the initial configuration. Then, a
stochastic Gaussian model is run to estimate the algorithm performance. This model
is updated after each iteration based on the best-found configuration, which is then
used in the subsequent iteration.
Model-free algorithms, not based on specific models, on the other hand, incorporate
four classes techniques: Design of Experiments (DoE), Racing, Iterated Local Search
(ILS), and Genetic Algorithms (GA).
The DoE approach consists of collecting data before analyzing it by statistical meth-
ods to draw valid conclusions, it decomposes parameter space to apply automated
tuning procedures efficiently.
The Racing approach sequentially evaluates the candidate configurationtions and
discards poor ones by evaluating the statistical data. This speeds up the procedure
and allows the evaluation of promising configurations obtaining more reliable esti-
mates of their behavior.
The ILS approach consists of an iterative call of local searches starting from new
solutions, i.e a new parameter configuration, obtained using a perturbation of a
previously found local optimum.
The GA approach relies on the GA metaheuristic, commonly used to reach high-
quality solutions to optimization problems by relying on biologically inspired opera-
tors such as mutation, crossover, and selection.
We summarize the presented automatic parameter tuning algorithms on Fig.4.1.

Figure 4.1: Automatic Parameter Tuning algorithms

§4.2 − Manual Parameter Tuning with Scip Optimization Suite 35

4.2 Manual Parameter Tuning with Scip Optimization
Suite

For the presented work, parameter tuning was performed manually through SCIP
Optimization Suite.
SCIP is one of the fastest non-commercial solvers for mixed integer programming
and mixed integer nonlinear programming, and it’s also a framework for constraint
integer programming and branch-cut-and-price. It combines solving techniques for
CP, MIP, and satisfiability problems (SAT) such that all involved algorithms operate
on a single search tree, which yields a very close interaction.
Integer Programming and Constraint Programming have different strenghts: Integer
Programming uses LP relaxations and cutting planes to provide strong dual bounds,
Constraint Programming can handle arbitrary constraints and uses propagation to
tighten domains of variables.
It provides the infrastructure to implement very flexible branch-and-bound based
search algorithms and it includes a large library of default algorithms to control the
search.
Its approach provides high flexibility and the capability to manage differently each
kind of constraint. This allows in many cases to consider constraints as a unique
entity, without separating the inequalities it is composed by. The disadvantage of
the constraint based approach is the limited global view of the problem, since a
constraint knows its variable but a variable does not know the constraints it appears
in.

It was created by the Zuse Institute of Berlin in 2002, a non-university research
institute and computing centre, thanks to many developers who contributed to this
project. The institute’s research focuses on modeling, simulation and optimization
with scientific cooperation partners from academia and industry.
Most ideas and algorithms of the state-of-the-art MIP solver SIP of Alexander Martin
were transferred into the initial version of SCIP. Since then, many new features have
been developed that further improved the performance and the usability of the
framework.2

Nowadays SCIP counts more than 500 000 lines of source code and its development
is still very active and the number of contributors is growing and growing.
SCIP can be used alone, but the SCIP Optimization Suite is available too. It is a
complete source code bundle of SCIP, SoPlex, ZIMPL, GCG and UG. In combination
with either SoPlex or CLP as LP solver, it is the fastest non-commercial MIP solver
that is currently available.
SoPlex (Sequential object-oriented simPlex) is a Linear Programming solver based on
the revised simplex algorithm. It features preprocessing techniques, exploits sparsity,
and also offers primal and dual solving routines. It can be used as both a standalone
solver and embedded into other programs.
ZIMPL (Zuse Institut Mathematical Programming Language) is a little language
to translate the mathematical model of a problem into a linear or nonlinear mixed

2SCIP is freely available in source code for academic and non-commercial use and can be down-
loaded from http://scip.zib.de

36 4 − Parameter Configuration Problem

integer mathematical program such that it can be read by a LP or MIP solver.
UG (Ubiquity Generator framework) is a generic framework to parallelize branch-
and-bound based solvers in a distributed or shared memory computing environment.
GCG (Generic Column Generation) is a generic Branch-Cut-and-Price solver for
mixed integer programs.

4.2.1 Branch-and-Bound in SCIP

SCIP is based on the branch-and-bound procedure. The idea of branching is to
successively divide the given problem instance into smaller subproblems until the
individual subproblems are easy to solve. The best of all solutions found in the sub-
problems yields the global optimum. During the course of the algorithm, a branching
tree is created with each node representing one of the subproblems. The purpose of
bounding is to avoid a complete enumeration of all potential solutions of the initial
problem. If a subproblem’s lower (dual) bound is greater than or equal to the global
upper (primal) bound, the subproblem can be pruned. Lower bounds are calculated
with the help of a relaxation. In order to improve a subproblem’s lower bound, one
can tighten its relaxation, e.g., via domain propagation or by adding cutting planes.
Primal heuristics contribute to the upper bound. The selection of the next subproblem
in the search tree and the branching decision have a major impact on how early good
primal solutions can be found and how fast the lower bounds of the subproblems
increase.
SCIP provides all necessary infrastructure to implement branch-and-bound based
algorithms for solving CIPs. It manages the branching tree along with all subproblem
data, automatically updates the LP relaxation, and handles all necessary transforma-
tions due to presolving problem modifications. Additionally, a cut pool, cut filtering,
and a SAT-like conflict analysis mechanism are available. SCIP provides its own
memory management and plenty of statistical output. Besides the infrastructure,
all main algorithms of SCIP are implemented as external plugins. In particular, the
following analysis is focused on Presolvers, Primal Heuristics, Separators plugins.

Presolvers

Presolving is a way to transform the given problem instance into an equivalent
instance that is easier to solve.
The task of presolving is threefold: first, it reduces the size of the model by removing
irrelevant information such as redundant constraints or fixed variables. Second, it
strengthens the LP relaxation of the model by exploiting integrality information, e.g.,
to tighten the bounds of the variables or to improve coefficients in the constraints.
Third, it extracts information such as implications or cliques from the model which
can later be used, for example for branching or cutting plane separation.
SCIP implements a full set of primal and dual presolving reductions for MIP prob-
lems.
Restarts differ from the classical presolving methods in that they are not applied
before the branch-and-bound search begins, but abort a running search process in

§4.2 − Manual Parameter Tuning with Scip Optimization Suite 37

order to reapply other presolving mechanisms and start the search from scratch.

Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures inside
a MIP solver: they help to find good feasible solutions early in the search process,
which helps to prune the search tree by bounding and allows to apply more reduced
cost fixing and other dual reductions that can tighten the problem formulation.
Overall, there are 23 heuristics integrated into SCIP. They can be roughly subclassified
into four categories:

• Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility for the constraints is maintained or
recovered by further roundings.

• Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search in the branch-and-bound
tree.

• Objective diving heuristics are similar to diving heuristics, but instead of fix-
ing the variables by changing their bounds, they perform “soft fixings” by
modifying their objective coefficients.

• Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

Cutting Plane Separators

Besides splitting the current subproblem Q into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order to
rule out the current solution and to obtain a different one. The LP relaxation can
be tightened by introducing additional linear constraints that are violated by the
current LP solution but do not cut off feasible solutions. Thus, the current solution is
separated from the convex hull of integer solutions by the cutting plane.

4.2.2 Using SCIP

During the experimental phase of the work, tests on a series of models that
differed in the number of variables, or temporal buckets, were carried out. This is
because it has been noted that the behavior of the model is roughly the same until
the number of buckets reaches a limit value, after which the efficiency of the algo-
rithm decreases enormously. Through this tests we tried to detect possible aggregate
branching decisions trying to individuate which elements represent a possible ad-
vantage for the B&B algorithm efficiency, and what the lack is in those cases where
efficiency decreases. In this way, it’s possible to guess how to improve the branching
strategy limiting the depth of the search tree by taking such aggregate branching
decisions.
In particular, the analysis was performed using SCIP Optimization Suite because

38 4 − Parameter Configuration Problem

it has been noticed that, while using the default settings, solving specific types of
models with OMP application,the resolution of the problem turns out to be ineffi-
cient, compared with the solution given by SCIP. Since SCIP permits switching the
settings for all the parameters, the model resolution was tested with the different
types of them. Subsequently, the results were compared by studying the statistics to
understand the differences, advantages, and disadvantages.
SCIP was used as a pure CP/SAT solver by using the function SCIPsetEmphasis().
It’s possible to change the behavior of SCIP switching the settings for all presolvers,
heuristics, and separation plugins to three different modes via the set{
presolving, heuristics, separating} emphasis parameters in the inter-
active shell.
In detail, off turns off the respective type of plugins, while fast and aggressive
respectively choose settings that lead to less ore more time spent in this type of
plugins, making minimal or maximal their use or changing their frequency.
In this way, we could learn more about the presolve reasoning SCIP applies to the
combinatorial optimization problem. Typing display statistics in the inter-
active shell it’s possible to see which of the presolvers, propagators or constraint
handlers performed the reductions.
Through the statistics it was possible to check which separators and heuristics are
used, and the size of the search tree too, reported there as “nodes”, and in particular
the number of nodes that were processed during the search (see 4.2).
Furthermore to perform the analysis the application KDiff3 was used. It’s a diff and
merge program that compares or merges two or three text input files or directories
and underlines the differences line by line and character by character. It also pro-
vides an automatic merge-facility and an integrated editor for comfortable solving of
merge-conflicts. It prints of differences and gives an alignment of lines and has an
intuitive graphical interface. It helped a lot to underline differences between models
with different parameters settings.
Setting a parameter is done via the set command in the interactive shell:

set presolving/heuristics/separating emphasis
off/aggressive/fast

To save statistics on files we used the following command, which saves only non-
default params:

set diffsave <filename>.set

Once established the settings for the instances, we invoke SCIP directly with:

bin/scip -f <Modelname>.lp -s <filename>.set > <filename>.log

In the following figure (4.2) you can see the SCIP cycle resolution of an instance.
First of all, SCIP is initialized by typing SCIP on the command window, and the
model is read through read <modelname>. We have then the possibility to modify
the parameters. After that, the model have to be presolved. Generally, without any
specific command, SCIP automatically performs presolving and then moves directly
to solving. However, if you want to control every step of the cycle, it’s possible to

§4.2 − Manual Parameter Tuning with Scip Optimization Suite 39

Figure 4.2: Graphical representation of all parameters viewable via SCIP

type presolve and view the results by display statistics and then initialize
solving step with solve. Once reached the end of the cycle, the SCIP output consists
of 3 relevant parts:

• Output for presolving progress

• Periodic status line during branch-and-bound in solving step

• Statistics to be displayed after solving was terminated/interrupted

The presolving output consists of the number of deleted/added variables and con-
straints etc. For each round, a problem summary at the end of presolving, and the
presolving time.
The solving output consists of periodic status lines showing the elapsed time in
seconds, the number of solved nodes, simplex iterations,the primal and dual bound,
and the gap.
In particular, in this case we’ll focus on presolving step, primal heuristics and separa-
tors.
There’s also an analysis of how the program reacts to the change of parameters of

40 4 − Parameter Configuration Problem

Figure 4.3: Graphic representation of SCIP cycle resolution of a problem

presolvers.

CHAPTER 5

Focusing on Primal Heuristics

In this chapter you can find a brief description with related algorithm of the primal
heuristics of greatest impact in the analysis carried out. Knowledge of how they works
is fundamental to be able to implement new heuristics and understand why they work
well or not on the particular problem we are facing.

Generally speaking, primal heuristics play an important role in the solving of mixed
integer programs as they often provide good feasible solutions early and help to
reduce the time needed to prove optimality, and Branch-and-bound algorithm profits
directly from finding good solutions as early as possible. On the one hand, these
solutions originate from integral solutions to the linear programming (LP) relaxation,
obtained by omitting the integrality restrictions, and is repeatedly solved for (sub-
)problems during the branch-and-bound search to provide solution candidates and
lower bounds. On the other hand, primal heuristics try to construct new feasible
solutions or improve existing ones.

Searching for the best configuration, we noticed how some primal heuristics had
more or less effect on the resolution of our problem. For this reason, it is interesting
to delve deeper into them to try to understand what their functioning actually is and
above all to understand why they work well in our case. In fact, through these analy-
ses, studying the behavior of known heuristics on particular models, it is possible
to have guidance on how to design even more specific heuristics according to one’s
needs.
Here are presented general functionalities and basic algorithms of some of the primal
heuristics which have been protagonists of the research carried out on the Lot Sizing
model through SCIP at OMP, that is, Locks, Feaspump, Zirounding, Shift-and-Propagate,
Intshifting.

5.1 Locks

locks is one of the start heuristics that can be executed without previous knowl-
edge of an LP solution or a previously found entire feasible solution. It uses global

41

42 5 − Focusing on Primal Heuristics

structures, varible locks, available within MIP solvers to iteratively fix integer vari-
ables and propagate these fixings1.

Variable locks are defined by the constraint matrix and take into account all given
constraints. They are a measure of how many constraints may block an increase or
decrease of the value of a variable.

The heuristic is motivated by greedy heuristics for set covering problems: Start-
ing with an all-zero solution, one selects one variable which is contained in the
highest number of constraints and fixes it to 1. By this, all these set covering con-
straints are fulfilled independently of the other variables’ values. In subsequent steps,
a variable is selected which is contained in the highest number of not-yet fulfilled
constraints. It does not necessarily aim at fixing as many binary variables as possible.
It constantly monitors how many of the constraints became redundant with respect
to the tightened domains and stops the fixing phase as soon as all constraints became
redundant. The values for all remaining variables can easily be determined by the
subsequent LP solve. On the other hand, the variable-locks-driven fix-and-propagate
heuristic is based on a strucure which covers the whole problem, in particular all
binary variables, this means that it can always specify a fixing value for all of them.

How the variable-locks-driven fix-and-propagate heuristic translates this approach
to general MIP is shown in the following algorithm on 5.1. In each iteration of the

Figure 5.1: locks fixing algorithm

fixing process, a “high-impact” binary variable is selected, where the impact of a
variable is decided based on the sum of its up- and down-locks, which corresponds
to the number of constraints it is part of, cf. line 5. Then, the given variable is fixed

1Gamrath et al. [2019]

§5.2 − Feasibility Pump 43

to the bound where it has the smaller number of locks, see lines 8 to 12. This aims
at reaching feasibility fast and possibly ensuring that some constraints are already
fulfilled after a few fixings, no matter how the values of the remaining variables in
the constraint will be chosen within their updated bounds. If a variable has the same
number of up- and down locks, a randomized approach is used to determine its
fixing value. The variable is then fixed to 1 with a probability of 67%, where it showed
a good performance. If a constraint is already fulfilled, its locks are disregarded (see
lines 2–4), so that the impact and the fixing direction are always determined with
respect to the not-yet fulfilled constraints only. Therefore, it may happen that all
constraints are fulfilled already and none of the remaining variables has any locks
left. In this case, the fixing procedure stops and returns that the LP should be solved
directly in order to determine optimal values for the remaining variables, cf. lines
6–7.

5.2 Feasibility Pump

The Feasibility Pump2 is probably the best known primal heuristic for mixed
integer programming. The fundamental idea of all Feasibility Pump algorithms is to
construct two sequences of points which hopefully converge to a feasible solution of
a given optimization problem. One sequence consists of points which are feasible for
a continuous relaxation, but possibly integer infeasible. The other sequence consists
of points which are integral, but might violate some of the constraints. The next point
of one sequence is always generated by minimizing the distance to the last point of
the other sequence, by possibly using different distance measures in either cases.

The Feasibility Pump algorithm was originally introduced by Fischetti, Glover, and
Lodi in 2005 for 0-1 mixed-integer linear programs, i.e., for the special case of MIPs
in which lj = 0 and uj = 1 for all j ∈ I, where lj and uj are the lower and upper
bound of the variable xj and I ⊆ N = {1, ..., n}. The main idea is as follows. First, the
LP relaxation of a MIP is solved. The LP optimum x is then rounded to the closest
integral point

x =

{
[xj] i f j ∈ I
xj i f j /∈ I

(5.2.1)

where [.] represent scalar rounding to the nearest integer. This part of the fp algorithm
is called the rounding step. If x is not feasible for the linear constraints, the objective
function of the LP is changed to the norm distance function

∆(x, x̃) := ∑
j∈I

|xj − x̃j| = ∑
j∈I:x̃j=0

xj + ∑
j∈I:x̃j=1

(1 − xj) (5.2.2)

on the set I of binary variables, and a new LP point x is obtained by minimizing
∆(x, x̃) over the linear constraints of the MIP. The process is iterated until x̃ = x,
which implies feasibility. The operation of obtaining a new x from x̃ is known as
the projection step, as it consists of projecting x̃ to the feasible set of a continuous
relaxation of the MIP along the direction ∆(x, x̃). Two iterations of the algorithm

2Berthold et al. [2019]

44 5 − Focusing on Primal Heuristics

Figure 5.2: Feasibility Pump basic scheme

are illustrated for a simple example with a pseudocode description of the method is
given in Figure 5.2.

The algorithm thus produces two sequences {xk}K
k=1 and {x̃k}K

k=1for a finite K,
which is either the iteration at which a feasible solution is found or some limit set to
guarantee termination. All points of the sequence xk, with k denoting the iteration
count of the FP, are feasible for the LP relaxation, all points x̃k are integral,i.e., x̃k ∈ Z

for all j ∈ I. Thus, x̃k = xk implies integrality and constraint-feasibility, which means
that the corresponding point is feasible for the MIP.

5.3 Shift and Propagate

Shift-and-Propagate3 is a pre-root primal heuristic that does not require a
previously found LP solution. It applies domain propagation techniques to quickly
drive a variable assignment towards feasibility. Computational experiments indicate
that this heuristic is a powerful supplement of existing rounding and propagation
heuristics.
The purpose of this primal heuristic is finding a feasible MIP solution at the very
early stage of the solution process where no information about the root LP solution
is available. In addition, it should be computationally cheap, using only domain
propagation techniques.

The basic idea is as follows: in each iteration, the heuristic selects an unfixed variable
j ∈ K and a fixing value t∗j within the domain of xj , to which the variable is shifted.
Then, domain propagation routines are called for this fixing. If domain propagation
detects that fixing xj → t∗j is infeasible, a one-level backtrack-strategy is applied.
Otherwise, the heuristic proceeds with the next unfixed variable. The goal of this
heuristic is to find a good start solution, before the root node processing of a MIP
solver starts, in particular prior to the first LP being solved. It might then serve
as a reference point for improvement heuristics and for inferring further domain
reductions.

3Berthold e Hendel [2015]

§5.4 − Zirounding 45

Figure 5.3: Basic Shift and Propagate algorithm

The general algorithm is described in 5.3.

5.4 Zirounding

ZI Round4 is a pure integer rounding heuristic that attempts to round each
fractional variable while using row slacks to maintain primal feasibility.
For integer variable xj , define the fractionally of xj as ZI(xj) = min{xj − ⌊x⌋, ⌈x⌉ −
xj}. Also for solution x, define ZI(x) := ∑i∈I ZI(xi), the integer infeasibility. The goal
of ZI Round is to search the integer variables for ones that can be rounded to improve
ZI until the integer infeasibility becomes zero at which point an integral solution
has been found. ZI Round begin by calculating how much an integer variable can
be moved within its bound while maintaining primal feasibility. To satisfy primal
feasibility a variable shift of xj must keep all slacks nonnegative.
So xj can not be moved up more than ub, where ub = mini{ s̄i

ai j
: ai j > 0} for current

slacks s̄. Also xj can not move past its upper bound, thus the shifting of xj is limited
by UB := min{ub, upperbound(xj)− xj}. Likewise xj can not be shifted down more
than LB := min{lb, xj − lowerbound(xj)}, where lb = mini{−s̄

ai j
: ai j < 0}.

During ZI Round we first calculate UB and LB for variable xj. We then move xj
to xj + UB when ZI(xj + UB) < ZI(xj) or similarly we move xj to xj − LB when
ZI(xj − LB) < ZI(xj). If xj can be moved in both direction, we chose the direction
which reduces ZI(xj) the most. If a tie occurs, i.e. both directions reduce ZI(xj) by
the same amount, we round xj in the direction which improves the objective function.
We repeat this process until no more ZI improving shifts can be found. When ZI
Round ends, if ZI(xj) = 0 for all j ∈ I then x is a feasible integer solution.
One detail that speeds up the ZI Round heuristic: stop calculating UB and LB if both
fall below a predefined threshold. For xj the threshold is a small positive number
which we denote by ϵ. In practice we used ϵ = 0.00001. Once UB < ϵ and LB < ϵ then
there is no need to continue calculating UB and LB because ZI(xj) is limited by UB
and LB and can change very little. Once a different variable has been rounded, the

4Wallace [2010]

46 5 − Focusing on Primal Heuristics

Figure 5.4: ZI Round

slacks change and it might be possible to round xj . This is the reason ZI Round has
two loops.

5.5 Intshifting

Intshifting5 is a LP rounding heuristic that tries to recover from intermediate
infeasibilities, shifts integer variables, and solves a final LP to calculate feasible
values for continuous variables. The goal of rounding heuristics is to convert a
fractional solution x of the system Ax ≤ b, l ≤ x ≤ u into an integral solution, i.e.,
xj ∈ Z ∀j ∈ I. All rounding For a MIP, we call the number of positive coefficients
ψ+ := ∥{i : ai j > 0}∥ the up-locks of the variable xj ; the number of negative
coefficients is called the down-locks ψ− of xj.
Rounding heuristics performs roundings which potentially lead to a violation of
some linear constraints, trying to recover from this infeasibility by further roundings
later on. It takes up- and down-locks of an integer variable with fractional LP value
xj into account. As long as no linear constraint is violated, the algorithm iterates
over the fractional variables and applies a rounding into the direction of fewer locks,
updating the activities Aix̄ of the LP rows after each step, Ai being the i-th row of
A. If there is a violated linear constraint, hence Aix̄ > bi for some i, the heuristic
will try to find a fractional variable that can be rounded in a direction such that the
violation of the constraint is decreased, using the number of up- and down-locks as a
tie breaker. If no rounding can decrease the violation of the constraint, the procedure
is aborted.
The shifting heuristic is similar to Rounding, but it tries to continue in the case that
no rounding can decrease the violation of a linear constraint. In this case, the value
of a continuous variable or an integer variable with integral value will be shifted
in order to decrease the violation of the constraint. To avoid cycling, the procedure

5Achterberg et al. [2012]

§5.5 − Intshifting 47

terminates after a certain number of non-improving shifts. A shift is called non-
improving, if it neither reduces the number of fractional variables nor the number of
violated rows.

Part II

Experiments

49

CHAPTER 6

Analysis

The analyzes carried out on instances of the model under study described before,
instances that differ in the number of temporal buckets and in the presence or absence
of TotBin variable, used for aggregation, are presented. The idea is to study how the
efficiency of the solver changes as the size of the model increases, and, if improvements
are achieved without clustering, understand what they derive from.

Let’s start from two first simple models with 10 variables, one of which makes use of
clustering, and then continue with increasingly large models, respectively with 100
and 200 variables, until we reach a limit number of buckets, 1000, in which the ef-
ficiency of the problem decreases, and we find a different behavior from all the others.

To help the reader understand, an appendix containing definitions of various pa-
rameters is provided (Appendix B). Furthermore, for further curiosities about SCIP
Optimization Suite you can consult the documentation1.

For each model, an analysis of the program’s behavior switching the settings for all
presolvers, heuristics and separators was performed, in order to see how its efficiency
could be changed by avoiding, strengthening, or making minimal their use.
Through SCIP, we are able to set the desired parameters, and, after running the
program, we can save the results of the statistics on files to compare the different
data more easily, using the application KDiff3 too.
In detail, the aim of all tests was to find the best configuration of each plugin in order
to garantee the fastest end most efficient resolution of the problem considered.
First of all, for each plugin, the best configuration isolating it from all the others is
evaluated. After that, we have to consider particular cases taking in consideration
how the operations of the various plugins influence each other by working separately
or in competition.
The following presentation of the results will be supported by the use of tables,
provided with all the data taken directly from the analyzed statistics. On this Tables,

1Bestuzheva et al. [2023] on Bibliography

51

52 6 − Analysis

you can find the data provided for all plugins (P=Presolving, H=Heuristics,
S=Separating) with different settings (d=default, off=emphasis off,
a=aggressive, f=fast). In detail:

Psetting ∈ { d, off, a, f}
Hsetting ∈ { d. off, a, f}
Ssetting ∈ { d, off, a, f}

6.0.1 Presolving

To study the actual impact of the presolving process on problem resolution, we
want to evaluate the results given by the presolvers by isolating them from all others
parameters. We can do this by deactivating everything that could somehow alter the
results given by presolving, i.e. heuristics and separators. These tests for all models
are performed in the following way:

• set presolving default/emphasis off
set heuristics emphasis off
set separating emphasis off

and then the results will be compared.

Performing these tests for PingPong model (see page 29), we obtain interesting
results, as shown on Table 6.1. PingPong is the model with 10 variables in which the
integer variable TotBin is introduced. When presolving process is executed TotBin
is deleted, so the program doesn’t make use of aggregation. On the contrary when all
presolvers are disabled, strong branching heuristic comes in to play, as one of
the heuristics which can’t be disabled by SCIP. As shown on Table 6.1 the number of
nodes in this last case decreases respect to the 12 nodes of the first case. In this case
SCIP benefits from the use of clustering strategy.

B&B tree P=d,H=S=off P=H=D=off
Number of runs 1 1

Nodes 12 1
Feasible leaves 1 0
Infeas.leaves 1 1

Objective leaves 0 0
Nodes (total) 12 1

Nodes left 0 0
Max depth 10 0

Max depth (total) 10 0
Backtracks 9 0

Early backtracks 0 0
Nodes exc. Ref. 0 0
Delayed cutoffs 9 0
Repropagations 9 0

Avg switch length 4.83 2.00
Switching time 0.00 0.00

Solving time 0.00 0.00
Table 6.1: Branch and Bound tree data analysing presolving on model PingPong

53

Regarding models which make no use of clustering, referring to Table 6.2, it is clear
how the presolving process doesn’t influence the resolution of the program. For
exception of a small difference on model PingPong1000, the branch and bound tree
on all other cases remains unchanged, with and without presolvers.

B&B tree P=H=S=off P=d.H=S=off
PP10 PP100 PP200 PP1000 PP10 PP100 PP200 PP1000

Number of runs 1 1 1 1 1 1 1 1
Nodes 12 102 202 1997 12 102 202 1996

Feasible leaves 1 1 1 216 1 1 1 209
Infeas.leaves 1 1 1 681 1 1 1 687

Objective leaves 0 0 0 100 0 0 0 100
Nodes (total) 12 102 202 1997 12 102 202 1996

Nodes left 0 0 0 0 0 0 0 0
Max depth 10 100 200 1000 10 100 200 1000

Max depth (total) 10 100 200 1000 10 100 200 1000
Backtracks 9 99 200 889 9 99 200 895

Early backtracks 0 0 0 0 0 0 0 0
Nodes exc. Ref. 0 0 0 0 0 0 0 0
Delayed cutoffs 9 99 199 4 9 99 199 5
Repropagations 9 99 200 26494 9 99 200 20096

Avg switch length 4.83 5.86 5.94 51.27 4.83 5.86 5.94 43.40
Switching time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Solving time 0.00 0.00 0.00 11.00 0.00 0.00 0.00 10.00
Table 6.2: Branch and Bound tree data analysing presolving impact on the resolution of the

problem

To know which presolvers are used for each case in all models, on Table A.1 you can
find how many calls are done for each presolver. Note that, for all models, not only
same presolvers are used, but also with the same number of calls.

In order to confirm this result, we have to study the impact of presolvers when
they are part of the solving process together with primal heuristics or separators,
performing the following tests:

• set presolving default/emphasis off
set heuristics default
set separating emphasis off

• set presolving default/emphasis off
set heuristics emphasis off
set separating default

So, maintaining primal heuristics or separators active, on the following tables (6.3,
6.4) you can find the results obtained on B&B tree switching on and off presolvers,
for models without TotBin variable.

54 6 − Analysis

B&B tree H=d, P=S=off H=P=d, S=off
PPx PP1000 PPx PP1000

Number of runs 1 1 1 1
Nodes 1 1612 1 1611

Feasible leaves 0 0 0 0
Infeas.leaves 0 627 0 626

Objective leaves 1 1 0 1
Nodes (total) 1 1612 1 1611

Nodes left 0 0 0 0
Max depth 0 984 0 984

Max depth (total) 0 984 0 984
Backtracks 0 404 0 417

Early backtracks 0 0 0 0
Nodes exc. Ref. 0 0 0 0
Delayed cutoffs 0 357 0 358
Repropagations 0 627 0 3692

Avg switch length 2.00 6.64 2.00 8.42
Switching time 0.00 0.00 0.00 0.00

Solving time 0.00 6.00 0.00 5.00
Table 6.3: Branch and Bound tree data analysing presolving impact mantaining primal heuris-

tics active. x ∈ {10, 100, 200}.

B&B tree S=d, P=H=off S=P=d, H=off
PP10 PP100 PP200 PP1000 PP10 PP100 PP200 PP1000

Number of runs 1 1 1 1 1 1 1 1
Nodes 3 102 202 1997 5 102 202 1999

Feasible leaves 1 1 1 287 1 1 1 267
Infeas.leaves 1 1 1 600 1 1 1 625

Objective leaves 0 0 0 110 0 0 0 107
Nodes (total) 3 102 202 1997 5 102 202 1999

Nodes left 1 0 0 0 0 0 0 0
Max depth 1 100 200 1000 3 100 200 1000

Max depth (total) 1 100 200 1000 3 100 200 1000
Backtracks 0 99 200 827 3 99 200 844

Early backtracks 0 0 0 0 0 0 0 0
Nodes exc. Ref. 0 0 0 0 0 0 0 0
Delayed cutoffs 0 99 199 4 2 99 199 2
Repropagations 0 99 200 20754 3 99 200 24972

Avg switch length 2.00 5.86 5.94 42.47 3.60 5.86 5.94 51.36
Switching time 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Solving time 0.00 0.00 1.00 12.00 0.00 0.00 0.00 11.00
Table 6.4: Branch and Bound tree data analysing presolving impact mantaining separators

active

From Table 6.3, emerges that when heuristics are active, for models under 1000 vari-
ables, same B&B tree is obtained, while on PingPong1000 there is a small difference
of one node between cases with and without presolvers. On the contrary, as shown
on Table 6.4, when we maintain separators active but all heuristics are disabled, pre-
solving process influences not only the resolution of PingPong1000 like the previous
case, but also PingPong10. In fact, we can see that in absence of presolving process
B&B tree presents less nodes making resolution more efficient.
For further data, on Table A.3 on page 96 of Appendix A, you can find which separa-
tors are used for each model performing this analysis.

55

When primal heuristics are active, in all cases, even if in PingPong1000, for the
complexity of the problem, more primal heuristics come in to play, but solution is al-
ways found by locks heuristic2 (see Table A.2), with and without presolving process.

Performing the same tests on PingPong model (Tables 6.5,6.6), different results are
obtained activating heuristics and separators.
On the first case the presence of primal heuristics ensure that, even in the absence
of presolvers, TotBin variable is not used. In detail, when presolving process is
executed, TotBin variable is deleted, so that when solve operation is executed the
model corresponds in structure and behavior to PingPong10 model, obtaining the
same branch and bound tree. When presolvers are disabled, like in all other cases,
solution is found by locks, and the tree presents one more leaf due to the necessity
to pass also through the variable TotBin, but without benefiting from clustering.
You can check this from the following Table 6.5.

B&B tree H=d, P=S=off H=P=d, S=off
Number of runs 1 1

Nodes 1 1
Feasible leaves 0 0
Infeas.leaves 0 0

Objective leaves 1 0
Nodes (total) 1 1

Nodes left 0 0
Max depth 0 0

Max depth (total) 0 0
Backtracks 0 0

Early backtracks 0 0
Nodes exc. Ref. 0 0
Delayed cutoffs 0 0
Repropagations 0 0

Avg switch length 2.00 2.00
Switching time 0.00 0.00

Solving time 0.00 0.00
Table 6.5: Branch and Bound tree data analysing presolving on model PingPong, mantaining

primal heuristics active

Instead, when we put on separators but we disable primal heuristics, the situation
is similar to that of Table 6.1. Note in particular that on tables 6.1,6.6 there are
the same data. This is because even in this case in absence of heuristics, when
presolving process is not ran and the variable TotBin can’t be deleted, the program
takes advantage from the use of clustering. In fact, as before, strong branching
heuristic finds the solution.

2See Heuristic locks.h File Reference on Bibliography

56 6 − Analysis

B&B tree S=d, P=H=off S=P=d, H=off
Number of runs 1 1

Nodes 1 5
Feasible leaves 0 1
Infeas.leaves 1 1

Objective leaves 0 0
Nodes (total) 1 5

Nodes left 0 0
Max depth 0 3

Max depth (total) 0 3
Backtracks 0 3

Early backtracks 0 0
Nodes exc. Ref. 0 0
Delayed cutoffs 0 2
Repropagations 0 3

Avg switch length 2.00 3.60
Switching time 0.00 0.00

Table 6.6: Branch and Bound tree data analysing presolving on model PingPong, mantaining
separators active

Drawing conclusions from previous analyses, in general, in models under 1000 vari-
ables, which don’t present the integer variable TotBin, the presolving process does
not influence the resolution of the problem at all. Only a little attention can be paid
to the PingPong10 model.
On the contrary, in PingPong model, the absence of presolvers is decisive as it allows
the use of clustering strategy, greatly improving the efficiency of the problem thanks
to the intervention of strong branching heuristic.
In PingPong1000, although there are changes in B&B tree, they don’t make a big
difference in the structure since the difference in nodes is extremely small compared
to the total of them. However, extra attention needs to be paid to this model as pre-
solving process has an impact on resolution time. In particular, as shown on Tables
6.3,6.4,6.2, presolvers make the program faster, and consequently more efficient.

Consequentially, from now on, having completely different executions due to the use
of aggregation, PingPong model will be excluded in the following tests, focusing only
on the models without TotBin variable, being able to make a comparison between
them.

Regarding these models, it is not enough to know that presolvers don’t affect the
resolution of the problem when set in default, because it’s important to know what
their best configuration is. So, in order to find it, it’s necessary to make a compar-
ison among results obtained running the program in default, and switching their
setting with presolving emphasis fast/aggressive. As a result of the pre-
vious analysis, performing these additional tests, we can leave primal heuristics and
separators in default setting.
Firstly, the program in default setting is ran, and the results of statistics are saved
in a first file. After that, the problem is ran again after switching the setting for all
presolvers and the results are saved in a second file. Then, the two files are compared
to underline differences. Let’s do this in the following way through command line:

57

scip
read <PingPongx>
set diffsave file1.set
quit
scip -f Ping-Pong.lp -s file1.set > file1.log
scip
read Ping-Pong.lp
set presolving emphasis off/aggressive/fast
set diffsave file2.set
quit
scip -f Ping-Pong.lp -s file2.set > file2.log
fc file1.log file2.log

Presolvers P=H=S=d H=S=d, P=a H=S=d, P=f
PPx PPx PPx

boundshift 1
domcol 1 1
dualagg 1

dualcomp 1 1 1
dualinfer 1

dualsparsify 1 1
implics 1 1 1

inttobinary
milp 1 1 1

redvub 1
sparsify 1 1
stuffing 1
trivial 1 1 1

tworowbnd 1
dualfix 1 1 1
probing 1 1

symmetry 1 1 1
linear 2 2 2

components 1 1
Table 6.7: Presolving behavior switching setting for all presolvers

On Table 6.7 you can see in detail which presolvers are called for each case analyzed.
On the first column you can see all presolvers, the values represent the number of
calls made to each of them, for each model, switching their setting. In detail, on
the first multicolumn we have all presolvers used running the program in default
setting, and these data are compared to those used setting presolving emphasis
fast/aggressive, on the following multicolumns. There are no data for the set-
ting presolving emphasis off as, although with SCIP is not possible to disable
some presolvers, in this case these ones are not used. In all cases, stregthening
the impact of presolving with presolving emphasis aggressive, because of
the greater number of presolvers used, more operations during presolving process
are done. On the contrary with presolving emphasis fast and presolving
emphasis off, the process is less burdensome, if not absent, however bringing a
series of disadvantages which will have an impact above all on the B&B tree.

58 6 − Analysis

Furthermore, note on Table 6.8 (Solving time), that switching setting for presolvers on
model PingPong1000 influence solution time too. In particular, setting presolving
emphasis off/aggressive slows down the resolution of the problem.

B&B tree P=H=S=d P=off/f, H=S=d P=a, H=S=d
PPx PP1000 PPx PP1000 PPx PP1000

Number of runs 1 1 1 1 1 1
Nodes 1 1611 1 1612 1 1609

Feasible leaves 0 0 0 1612 0 0
Infeas.leaves 0 626 0 627 0 624

Objective leaves 0 1 1 627 0 1
Nodes (total) 1 1611 1 1612 1 1609

Nodes left 0 0 0 0 0 0
Max depth (total) 0 984 0 984 0 984

Backtracks 0 417 0 404 0 454
Early backtracks 0 0 0 0 0 0
Nodes exc Ref 0 0 0 0 0 0

Delayed Cutoffs 0 358 0 357 0 360
Repropagations 0 3692 0 627 0 2961

Avg switch length 2.00 8.42 2.00 6.64 2.00 8.11
Solving Time 0.00 5.00 0.00 6.00/5.00 0.00 6.00

Table 6.8: Analysis of Branch and Bound tree switching the setting for all presolvers

On Table 6.8, you can find also how the B&B tree changes in each model, switching
the setting for all presolvers. In detail, we find on the first column the list of the
different parameters of the B&B tree to evaluate. Then we have three multicolumns
where we find the default values of B&B tree, and on the subsequent, the values ac-
quired by the parameters switching the setting, imposing presolving emphasis
off/aggressive/fast, for each model. PPx is a parameter indicating models
which make no use of aggregation under 1000 variables (x ∈ {10, 100, 200}). PP1000
is the model with 1000 variables and, as can be seen, shows a completely different
behavior than all others ones, in which same results are obtained.
Using presolving emphasis fast the B&B tree turns out to be the same as in the case
in which the presolvers are reset. For models under 1000 variables, comparing with
results obtained running the program in default, we have a different value for the
parameter objective leaves, the number of processed leaf nodes that hit LP
objective limit (for more informations about B&B tree parameters go to Appendix
B). This could be due to the lack of some presolvers in running the program with
presolving emphasis fast, such as domcol,dualsparsify,sparsify
,probing,components (referring to Table 6.7).
The optimal solution in all cases is the same and it’s always found by locks heuristic.
Since no particular differences occur when using presolving emphasis
aggressive, using this setting doesn’t bring particular advantages. On the contrary
it makes the program less efficient, increasing the number of operations done during
presolving process without useful results.

Completely different is PingPong1000 case. In fact, although the presolvers used are
the same as in the previous cases, as evident in Table 6.7, the mechanism that in some
way kept the size of the problem limited in previous models is missing here. Also in

59

this case the presolving process is unable to eliminate variables and constraints and
from the results we already have 1611 nodes in the default case. The number of nodes
worsens if we impose presolving emphasis off/fast, while it undergoes a
slight increase by strengthening the use of presolvers, which however is insufficient
to improve its efficiency because it slows down the resolution of the model (see on
Table 6.8 Solving Time).

In order to understand what the difference in the first three models in the B&B
tree is due to, we have to study in more detail the behavior of individual presolvers
to know what their contribution is to this result.
In fact, if we recognize that one special plugin works poorly or well for my prob-
lem, we can change/disable some parameters of the problem in order to study their
influence on it. In this case, the following code is used to disable presolvers:

SCIP > set presolvers <name of a presolver> maxrounds 0

and the result with its statistics are saved into files.
The value of objective leaves parameter is 1 only in presolving emphasis
off and presolving emphasis fast cases, while it is equal to 0 in default and
heuritics emphasis aggressive cases. We could therefore assume that in
presolving emphasis fast case, there is an absence of presolvers that could
make a difference in solving the problem. So, let’s try to deactivate these presolvers
in the original model, one by one, to understand how they influence the solution. It’s
possible to do it only with domcol, dualsparsify,sparsify presolvers. In fact
with SCIP some of them like probing and components can’t be disabled.
In all cases, no difference emerges in the B&B tree, while trying to disable one or two
of these presolvers. This make think that the change could be due to the absence of
all three presolvers taken into consideration or to the order in which they are used in
the problem. Furthermore it could be due also to one of those presolving parameters
which is not possible to modify. For example with presolving emphasis fast
the probing cycle present in the default case is not carried out.

From the previous tests, since the small differences produced by switching the
setting don’t bring particular advantages, we can assume that the best configuration
for the presolvers is the default setting. Consequently, from now on, to perform
subsequent tests on primal heuristics and separators, presolvers setting won’t be
changed, leaving them in default.

60 6 − Analysis

6.0.2 Primal Heuristics and Separation configuration search

In order to understand the best configuration for primal heuristics and separators,
first of all, we evaluate the behavior of the program by switching their setting,
isolating them from everything else. In detail, as already seen, the presolving process
does not influence the resolution of the problem, therefore we can leave the presolvers
in default, but in order to be able to precisely evaluate the results given by primal
heuristics or separators respectively, it is necessary that the one or the other are
initially deactivated.
For primal heuristics, the following test are performed:

• set presolving default
set heuristics emphasis default/aggressive/fast
set separators emphasis off

On Table 6.9, you can find the results on B&B tree obtained for each model. Note that
model PingPong1000 shows again a completely different behavior than all the others.
Regarding models under 1000 variables, setting heuristics emphasis aggressive
doesn’t bring any advantage to the resolution. In fact, despite more operations are
carried out, branch and bound tree and solution time remain unchanged. Setting
heuristics emphasis fast the results are even worse, as there is an important
increase of the number of nodes.
Therefore, it is clear how for these models the best configuration for the heuristics is
the default.
On the contrary, model PingPong1000 presents a great improvement setting heuristics
emphasis fast. In fact, B&B tree nodes decrease until 1151, against the 1611 and
1985 of the others cases, and through this configuration the fastest resolution is also
obtained, of only 3.00 seconds.

B&B tree P=H=d, S=off P=d, H=a, S=off P=d, H=f, S=off
PPx PP1000 PPx PP1000 PP10 PP100 PP200 PP1000

Number of runs 1 1 1 1 1 1 1 1
Nodes 1 1611 1 1985 21 201 401 1151

Feasible leaves 0 0 0 0 0 0 0 0
Infeas.leaves 0 626 0 992 10 100 200 157

Objective leaves 0 1 0 1 1 1 1 1
Nodes (total) 1 1611 1 1985 21 201 401 1151

Nodes left 0 0 0 0 0 0 0 0
Max depth 0 984 0 992 10 100 200 993

Max depth (total) 0 984 0 992 10 100 200 993
Backtracks 0 3 0 418 9 99 200 1002

Early backtracks 0 417 0 0 0 0 0 0
Nodes exc. Ref. 0 0 0 0 0 0 0 0
Delayed cutoffs 0 358 0 0 0 0 0 8.36
Repropagations 0 3692 0 1245 1 1 1 5805

Avg switch length 2.00 8.42 2.00 34.54 3.62 3.96 2.99 22.19
Switching time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Solving time 0.00 5.00 0.00 22.00 0.00 0.00 0.00 3.00
Table 6.9: Branch and Bound tree data analysing heuristics setting all separators off

In addition, if you want to know which heuristics3 are used for each model for each
3consult the Bibliography for more about specific heuristics structure and files

61

setting you can check it on Table A.4 on page 97 of Appendix A.

Performing the same test on separators deactivating heuristics, in the following
way:

• set presolving default
set heuristics emphasis off
set separating emphasis default/aggressive/fast

we find the results on B&B tree represented on Table 6.10 on page 62. Running the pro-
gram setting separators default or imposing separating emphasis aggressive
B&B tree remains unchanged, while setting separating emphasis fast there
is an increment of number of nodes, and on PingPong1000 resolution is slower. In
conclusion, the best configuration for separators seems to be the default.

However, we cannot jump to conclusions by looking only at previous results. In
the case of presolvers we were able to conclude which was the best configuration
because, by acting before the solving phase, they don’t work in parallel with the
plugins that operate later, but only deal with simplifying the problem, when possible,
before moving on to the resolution.
On the contrary, with separators and heuristics it is necessary to consider the best
combination of settings to find the ideal configuration for solving our problem. In fact,
they influence each other by working in parallel and in competition. Consequently,
although considering them in isolation we obtained useful results for a first general
idea, it is possible that through further tests the process can be further improved, as
demonstrated in the following paragraphs. In detail, setting presolvers in default,
as shown in the following figure, we have to explore 42 configurations given by
combinations of settings of heuristics and separators.

Figure 6.1: Configurations given by combinations of settings of heuristics and separators.

62 6 − Analysis

B&
B

tree
P=S=d,H

=off
P=d,H

=off,S=a
P=d,H

=off,S=f
PP10

PP100
PP200

PP1000
PP10

PP100
PP200

PP1000
PP10

PP100
PP200

PP1000
N

um
ber

ofruns
1

1
1

1
1

1
1

1
1

1
1

1
N

odes
5

102
202

1999
5

102
202

1999
7

102
202

1999
Feasible

leaves
1

1
1

267
1

1
1

267
1

1
1

264
Infeas.leaves

1
1

1
625

1
1

1
625

1
1

1
629

O
bjective

leaves
0

0
0

107
0

0
0

107
0

0
0

106
N

odes
(total)

5
102

202
1999

5
102

202
1999

7
102

202
1999

N
odes

left
0

0
0

0
0

0
0

0
0

0
0

0
M

ax
depth

3
100

200
1000

3
100

200
1000

5
100

200
1000

M
ax

depth
(total)

3
100

200
1000

3
100

200
1000

5
100

200
1000

Backtracks
3

99
200

844
3

99
200

844
5

99
200

845
Early

backtracks
0

0
0

0
0

0
0

0
0

0
0

0
N

odes
exc.R

ef.
0

0
0

0
0

0
0

0
0

0
0

0
D

elayed
cutoffs

2
99

199
2

2
99

199
2

4
99

199
2

R
epropagations

3
99

200
24962

3
99

200
24962

5
99

200
20405

A
vg

sw
itch

length
3.60

5.86
5.94

51.36
3.60

5.86
5.94

51.36
4.29

5.86
5.94

41.73
Sw

itching
tim

e
0.00

0.00
0.00

1.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

1.00
Solving

tim
e

0.00
0.00

0.00
11.00

0.00
0.00

0.00
11.00

0.00
0.00

0.00
12.00

Table
6.10:Branch

and
Bound

tree
data

analysing
separators

setting
offallheuristics

63

Primal Heuristics

An additional analysis of primal heuristics is performed in the following way:

• set presolving emphasis default
set heuristics emphasis defaut/off/aggressive/fast
set separating emphasis default

Figure 6.2: Configurations given by setting presolving and separating default, switching the
setting for heuristics.

On Table 6.11 on page 64 it’s possible to see which heuristics act in different cases
and how they influence the resolution of the model. In detail, for each heuristic there
are how many times it was called, if it found a feasible solution and if the solution
found was the current best solution. Running the program in default and setting
heuristics emphasis aggressive all models under 1000 variables presents
the same situation (PPx : x ∈ {10, 100, 200}).

When we deactivate heuristics, the number of B&B nodes increases, bringing many
disadvantages. Others constraint handlers are started such as benderslp,integral,
benders,countsols (see for example Table A.13 on page 102 of Appendix A Ad-
ditional Data). Go to Appendix B for detailled descriptions.
In PingPong1000, being primal heuristics insufficient to guarantee an efficient reso-
lution, branching process is always activated, while in all other models it is present
only when heuristics are deactivated, or their use is limited, but we will focus on
this aspect in the next section. In particular, relpcost is used. This branching rule
uses the notion of pseudo costs to measure the expected gain in the dual bound
when branching on a particular variable. In the other cases there are no branching
operations as the solution is easily found by heuristics.
Setting heuristics emphasis fast generates an increment in the operations of
propagators, as shown in the following Table 6.12 on page 65. Go to Appendix B for
detailed descriptions.

64 6 − Analysis

Prim
al H

euristics
P=H

=S=d
P=S=d,H

=a
P=S=d,H

=f
PPx

PP1000
PPx

PP1000
PP10

P100
P200

PP1000
adaptivediving

1C
1C

6C
,1F,1B

alns
5C

20C
bound

1C
50C

coefdiving
1C

1C
conflictdiving

1C
4C

feaspum
p

1C
1C

fracdiving
1C

gins
3C

3C
intshifting

3C
2C

1C
,1F,1B

1C
,1F,1B

1C
,1F,1B

11C
,

1F,
1B

locks
1C

,1F,1B
1C

,1F,1B
1C

,1F,1B
50C

,
1F,

1B
m

utation
3C

oneopt
1C

1C
1C

1C
3C

3C
3C

3C
pscostdiving

1C
1C

randrounding
50C

100C
9C

13C
22C

62C
rens

1C
20C

rins
6C

6C
r ounding

389C
417C

11C
104C

156C
402C

shiftandpr opagate
1C

,1F,1B
1C

,1F,1B
1C

,1F,1B
shifting

99C
167C

19C
1C

,1F,1B
105C

trivial
2C

2C
2C

51C
2C

2C
2C

2C
tr ustregion

1C
tw

oopt
1C

zer oobj
1C

,1F,1B
1C

,1F,1B
zirounding

984C
992C

3C
,1F,1B

100C
,

1F,
1B

200C
,

1F,
1B

992C

Table
6.11:H

euristics
behavior

sw
itching

setting
for

allheuristics

65

Pr
op

ag
at

or
s

P=
H

=S
=d

P=
S=

d,
H

=f
PP

10
PP

10
0

PP
20

0
PP

10
00

PP
10

PP
10

0
PP

20
0

PP
10

00
du

al
fix

pr
op

ag
at

e
10

pr
op

ag
at

e
11

pr
op

ag
at

e
11

pr
op

ag
at

e
11

pr
op

ag
at

e
19

pr
op

ag
at

e
19

pr
op

ag
at

e
19

pr
op

ag
at

e
19

ps
eu

do
ob

j
pr

op
ag

at
e

9,
D

om
-

R
ed

s
39

pr
op

ag
at

e
10

,
D

om
-

R
ed

s
20

0

pr
op

ag
at

e
10

,
D

om
-

R
ed

s
40

0

pr
op

ag
at

e
69

68
,c

u
t-

of
fs

6,
d

om
re

d
s

12
39

58
0

pr
op

ag
at

e
41

,
D

om
-

R
ed

s
41

pr
op

ag
at

e
34

0,
D

om
-

re
ds

40
0

pr
op

ag
at

e
64

4,
D

om
-

re
ds

80
0

pr
op

ag
at

e
54

40
,

cu
t-

of
fs

80
4,

d
om

re
d

s
60

00
re

dc
os

t
pr

op
ag

at
e

19
68

pr
op

ag
at

e
15

pr
op

ag
at

e
21

0
pr

op
ag

at
e

41
3

pr
op

ag
at

e
19

97
ro

ot
re

dc
os

t
pr

op
ag

at
e

1,
D

om
-

R
ed

s
8

pr
op

ag
at

e
2,

D
om

-
R

ed
s

20

pr
op

ag
at

e
2,

D
om

-
R

ed
s

20
0

pr
op

ag
at

e
2,

D
om

-
R

ed
s

40
0

pr
op

ag
at

e
2.

D
om

-
R

ed
s

20
00

vb
ou

nd
s

pr
op

ag
at

e
1

T a
bl

e
6.

12
:P

ro
pa

ga
to

rs
in

cr
em

en
ts

et
ti

ng
he

ur
is

ti
cs

em
ph

as
is

fa
st

66 6 − Analysis

Switching the setting for primal heuristics also partially influence presolving pro-
cess. In fact, while setting heuristics emphasis off and heuristics emphasis
fast, there are no differences regarding presolvers, but a slight advantage is ac-
quired in the case in which we strengthen the use of heuristics with heuristics
emphasis aggressive, in which the presolved problem presents one less vari-
able. On Table 6.13 it’s possible to see the increment of presolvers while setting
heuristics emphasis aggressive, compared with default case.

Presolvers P=H=S=d P=S=d, H=a
PPx PP10 PP100/PP200 PP1000

domcol 1 1 1
dualagg 1

dualcomp 1 1 1 1
dualinfer 1

dualsparsify 1 1 1 1
implics 1 1 2 1

inttobinary
milp 1 1 1 1

sparsify 1 1 1 1
trivial 1 10 3 2
dualfix 1 10 3 2
probing 1 1 1 1

pseudobj 1 1 1
symmetry 1 1 1 1

linear 2 11 4 3
components 1 1 1 1

Table 6.13: Presolving increment setting heuristics emphasis aggressive

In particular there is an increment of dualfix, trivial, linear, implics
presolvers. Multiple rounds of presolving are performed, 1 variable is eliminated,
and an admissible solution is found immediately by the zeroobj. Separators are
not used as branching process is not executed.

In PingPong200 we have also some tests performed to understand to which of
all presolvers this improvement is due to. Some presolvers are disabled one by one
and results are compared with the case heuristics emphasis aggressive in
the following way:

set heuristics emphasis aggressive
set presolving <presolver> maxrounds 0.

Unfortunately, through this test we can’t find interesting results and furthermore
with SCIP it’s impossible to deactivate linear, dualfix, pseudobj presolvers.

In default case and setting heuristics emphasis aggressive, optimal solu-
tion is found efficiently by locks heuristic. On the other hand in heuristics
emphasis fast, in which locks heuristic is disabled, and disabling all heuristics,
resolution is less efficient. The greater impact can be found in the B&B tree, by looking
at how the values of parameters change consequently to the switch of the setting of
heuristics, as you can see on Table 6.14 on page 67.

67

B&
B

tr
ee

P=
S=

d,
H

=o
ff

P=
S=

d,
H

=a
P=

S=
d,

H
=f

PP
10

PP
10

0
P2

00
PP

10
00

PP
10

PP
10

0
P2

00
PP

10
00

PP
10

PP
10

0
PP

20
0

PP
10

00
N

um
be

r
of

ru
ns

1
1

1
1

1
1

1
1

1
1

1
1

N
od

es
5

10
2

20
2

16
99

1
1

1
19

85
7

20
1

40
1

17
99

Fe
as

ib
le

le
av

es
1

1
1

26
7

0
0

0
0

0
0

0
0

In
fe

as
.le

av
es

1
1

1
62

5
0

0
0

99
2

3
99

19
9

80
5

O
bj

ec
ti

ve
le

av
es

0
0

0
10

7
0

0
0

1
1

2
2

2
N

od
es

(t
ot

al
)

5
10

2
20

2
19

99
1

1
1

19
85

7
20

1
40

1
17

99
N

od
es

le
ft

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

de
pt

h
3

10
0

20
0

10
00

0
0

0
99

2
3

10
0

20
0

99
2

Ba
ck

tr
ac

ks
3

99
20

0
84

4
0

0
0

41
8

3
98

19
9

10
00

Ea
rl

y
ba

ck
tr

ac
ks

0
0

0
0

0
0

0
0

0
0

0
0

N
od

es
ex

c
R

ef
0

0
0

0
0

0
0

0
0

0
0

0
D

el
ay

ed
C

ut
of

fs
2

99
19

9
2

0
0

0
0

0
0

0
18

6
R

ep
ro

pa
ga

ti
on

s
3

99
20

0
24

97
2

0
0

0
12

45
0

1
1

17
92

A
.S

w
it

ch
Le

ng
th

3.
60

5.
86

5.
94

51
.3

6
2.

00
2.

00
2.

00
34

.5
4

3.
57

3.
96

2.
99

37
9.

17
So

lv
in

g
ti

m
e

0.
00

0.
00

0.
00

11
.0

0
0.

00
0.

00
0.

00
21

.0
0

0.
00

0.
00

0.
00

4.
00

T a
bl

e
6.

14
:B

ra
nc

h
an

d
Bo

un
d

tr
ee

sw
it

ch
in

g
se

tt
in

g
fo

r
al

lh
eu

ri
st

ic
s

68 6 − Analysis

For models with less than 1000 variables, there is no difference between the
default case and heuristics emphasis aggressive case. Meanwhile, by im-
posing heuristics emphasis off/fast, the number of nodes increases, even
in PingPong1000. That is, as we wanted to demonstrate, considering primal heuristics
isolated than all the rest can lead to errors of evaluation. Disabling all separators,
setting heuristics emphasis fast, appeared as the probable best configura-
tion. On the contrary, in this case, although solution time lowers to 4.00s, there is a
worsening of B&B tree, in which nodes reach the number of 1799 against the 1611
of default case. Furthermore, for PingPong1000, B&B tree size increase not only set-
ting heuristics emphasis fast/off, but also with heuristics emphasis
aggressive, with 1985 nodes. This clearly represent a disadvantage in the resolu-
tion as what we want is a branching tree that is as small as possible.

In order to understand which heuristic has a particular influence on the resolu-
tion, some tests are performed deactivating heuristics individually to study their
behavior in detail. Except for heuristics emphasis off/fast cases, the final
solution is always found by locks heuristic, that fixes variables based on their
rounding locks, so that the attention is focused on it in the following tests.
We disable primal heuristics using the following command, and then analyzing the
results through statistics.

SCIP > set heuristics <name of a heuristic > freq -1

In particular, in addiction to locks,in PingPong and PingPong10, we do this with
intshifting, shiftandpropagate, zeroobj, zirounding, oneopt,
trivial4 in order to compare results with or without clustering. Intshifting
tries to recover from intermediate infeasibilities, shifts integer variables, and solves a
final LP to calculate feasible values for continuous variables. Shiftandpropagate
is a pre-root heuristic to expand an auxiliary branch-and-bound tree and apply prop-
agation techniques, while zeroobj is a pre-root heuristic to expand an auxiliary
branch-and-bound tree and apply propagation techniques. Zirounding takes row
slacks and bounds into account. This analysis are made because they are the heuristics
which found a feasible solutions in the previous cases. We test oneopt and trivial
too, that respectively try to improve setting of single integer variables and try some
trivial solutions,because even if they do not find the solution, they are used in the
default case and their absence could lead to slowdowns or a reduction in efficiency.

As expected, emerges that by deactivating the first mentioned group of heuristics
the behavior turns out to be exactly the same as the default case and the solution is
found by the locks heuristic, and the same is when we deactivate oneopt. When
trivial is disabled, the resolution of the problem, by locks, requires less time
and there are some differences in values of constraint handlers but it doesn’t bring
particularly important differences in the final solution.
Obviously more important results are obtained when locks heuristic is deactivated,
tested in all models. On table 6.15 on page 69 you can see which heuristics come in to
play disabling locks in default setting, in each model.

4see Heuristics File References on Bibliograpgy

69

Primal Heuristics P=H=S=d P=H=S=d,locks freq -1
PPx PP1000 PP10/100 PP200 PP1000

adaptivediving 1C 1C
alns 5C 1C 1 C 5C

bound
coefdiving 1C
crossover

conflictdiving 1C 1C
distributiondivin 1C 1C

feaspump 1C 1C,1F,1B 1C,1F,1B 1C,1F,1B
fracdiving 1C 1C

gins 3C 2C
intshifting 3C 1C,1F,1B 1C,1F,1B 10C,1F,1B

linesearchdiving 1C
locks 1C,1F,1B 1C,1F,1B

mutation
objcostdiving 1C

oneopt 1C 1C 1C 1C 2C
pscostdiving 1C 1C

randrounding 50C 7C 11C 61C
rens 1C 1C 1C 1C
rins 6C 5C

rounding 389C 7C 11C 395C
shiftandpropagate 1C,1F,1B 1C,1F,1B 1C,1F,1B

shifting 99C 7C 11C 100C
trivial 2C 2C 2C 2C 2C

trustregion
twoopt
zeroobj

zirounding 984C 1C 1C 970C,1F
Table 6.15: Heuristics behavior disabling locks on each model, compared with results ob-

tained running the program in default setting

In all cases the resolution of the problem proceeds more slowly, more propagators
must be put into operation, as well as constraint handlers. In models with less
than 1000 variables, branching process, which was not used in default setting, is
started with the consequent use of separators, while in PingPong1000 their use
is strenthened. In particular the separators used are cut pool, aggregation,
clique, gomory, impliedbounds, mcf, mixing (for detailed informations
go to Appendix B).
One more time from the B&B tree a great difference in PingPong1000 respect to
all others models is found. In fact, while in the other models, although the lack of
locks brought a decrease in efficiency, the branching tree remained unchanged, in
PingPong1000 we find a different size. However, there is not a worsening of the tree
as one would have expected, but rather an improvement, in fact the number of nodes
decreases until 1121, for an improvement of about 500 of them. This demonstrates
even more how this model has anomalous behavior compared to all the others. Nev-
ertheless, note on Table 6.16, that there is a worsening of solving time of 2.00s.
That is, since the exploration of each node requires the use of a resolution algorithm,
for example the Simplex Algorithm, the analysis time of each of them is not deter-
ministic, but always varies. There are therefore cases like this in which, although
the nodes explored are fewer, the total resolution time is higher. In this case the

70 6 − Analysis

choice depends on what we believe to be most important for the resolution of our
specific problem. In most cases we associated the size of the tree with the yardstick to
decide the best configuration, especially in models with few variables. However, it is
essential to keep in mind that what we are looking for is always efficiency, inevitably
linked to the solution time, since at the level of effectiveness, all possible configura-
tions lead to the optimal solution.

In the following table you can see in detail the difference brougth to B&B tree
disabling locks in PingPong1000, compared to that of default case.

B&B tree P=H=S=d P=H=S=d,locks freq -1
number of runs 1 1
feasible leaves 0 0
infeas.leaves 626 150

objective leaves 1 1
total nodes 1611 1121
max depth 984 970
backtracks 417 978

delayed cutoffs 358 820
repropagations 3692 4805

avg switch length 8.42 27.96
switching time 1.00 0.00
Solving time 5.00 7.00

Table 6.16: Branch and Bound tree improvement disabling locks heuristic in PingPong1000

Other heuristics like feaspump,inshifting,shiftandpropagate come in to
play (see Table 6.15) improving the solution three times and, in particular, the best
solution is found by feaspump heuristic.
In PingPong100, we perform further tests on single heuristics in order to under-
stand which of them have more influence on the resolution, but setting heuristics
emphasis aggressive/fast. That is, setting heuristics emphasis aggressive
the solution was improved two times by zeroobj and locks heuristics. So, the
following test are made comparing the results with the case in which we only impose
heuristics emphasis aggressive:

set heuristics emphasis aggressive
set heuristics locks/zeroobj freq -1

Disabling locks results are similar to those of the previous test. The objective value is
higher and also in this case branching process and separators are activated. Solution
is improved three times by feaspump, zeroobj and intshifting heuristics
(see Table 6.17)

71

Primal Heuristics P=S=d, H=a, locks freq -1
alns 1C

feaspump 1C, 1F, 1B
intshifting 1C, 1F, 1B
proximity 1C

randrounding 7C
rens 1C

repair 1C
rounding 7C
shifting 7C
trivial 2C
twopt 1C

shifting 7C
zeroobj 1C, 1F, 1B

zirounding 1C
Table 6.17: PingPong100.lp heuristics behavior with heuristics emphasis aggressive and

heuristics locks freq -1.

Disabling zeroobj, during the presolving process no variables are delated from the
original model, this means that zeroobj has an important influence in the presolv-
ing process. The objective value is higher but it is found with only one improvement
by locks heuristic (see solution values on table ?? on page ?? of Appendix A)

When we impose heuristics emphasis fast solution was improved three
times by intshifting, oneopt, zirounding heuristics. Disabling intshifting,
shiftandpropagate we don’t find particular results, while interesting is the case
in which we disable zirounding. In particular, important results are obtained on
the B&B tree, as it can be seen in the following table.

B&B tree P=S=d, H=f P=S=d, H=f, zirounding freq -1
Number of runs 1 1

Nodes 201 103
Feasible leaves 0 1
Infeas.leaves 99 1

Objective leaves 2 1
Nodes (total) 201 103

Nodes left 0 0
Max depth 100 100

Max depth (total) 100 100
Backtracks 98 98

Early backtracks 0 0
Nodes exc. Ref. 0 0
Delayed cutoffs 0 98
Repropagations 1 99

Avg switch length 3.96 5.81
Switching time 0.00 0.00

Table 6.18: PingPong100.lp branch tree with heuristics emphasis fast and zirounding freq -1

The number of nodes decreases decisively, this means that in some way, zirounding
heuristic makes a worsening in solving the problem.

72 6 − Analysis

Performing a different type of tests on locks in all models interesting results are
found. In detail, the aim is to intensify its use in those cases that turned out to be the
worst, in order to evaluate how it can really make the difference.

set heuristics emphasis off/fast
set heuristics locks freq 1

You can see results of this analysis on B&B tree on Table 6.19 on page 73. On the first
column there are all branch and bound tree parameters analyzed, while on the follow-
ing two multicolumns the results obtained respectively when we disable heuristics
and when we set heuristics emphasis fast, on each model. These results are
compared to the cases in which we also strengthen the use of locks heuristics, on
the last two multicolumns. Note that in these last cases, the same tree for models
PingPong10, PingPong100, PingPong200 is obtained, so PPx : x ∈ {10, 100, 200}.
With the exception of PingPong1000, activating locks heuristic, there’s again only
1 B&B node, less constraint handlers,propagator and total absence of separators,
cutselectors and branching operations. The B&B tree comes back to the default form.
Furthermore, this seems to be until more efficient than the default case as less con-
straint handlers and heuristics are used.
Clearly the best case remains the case in which only locks heuristics is active be-
cause setting heuristics emphasis fast there is a waste of time calling others
heuristics that don’t have an important impact on the resolution.
Totally different is the result given by PingPong1000. In fact, setting on locks heuris-
tic, despite a small improvement in B&B tree, in both case we have an important
worsening in solving time.

Given the inconsistency between the previous results given by PingPong1000 model
and all the others, it is not possible to conclude in advance on the efficiency of locks
heuristic. In order to find the best heuristic, it is necessary to test all the others one by
one, then comparing the results in terms of B&B tree and times. Particular attention
is given to PingPong1000 model, where having more variables, the changes are more
evident, especially in terms of time.
In particular, referring to Tables 6.15,6.11, it is interesting to test those heuristics which
come into play finding feasible solution in absence of locks, such as feaspump,
intshifting, shiftandpropagate, zirounding, one to one, isolating them
from all others heuristics. The mechanism of the test is always the same:

• set presolving default
set heuristics emphasis off
set heuristics <heuristic> freq 1
set separating default

On Table 6.20 on page 74 you can see the results on B&B tree for each model.
Regarding models under 1000 variables, best results are obtained setting on locks
and feaspump but solving time is the same between these two cases so it’s not
possible to establish the best one. On contrary, watching to solving times, it’s clear
how feaspump is more efficient than locks. Despite B&B tree for both cases is
the same, setting on feaspump solving time decrease until 3.00s, against the 22.00
seconds of the other case.

73

B&
B

tr
ee

P=
S=

d,
H

=o
ff

P=
S=

d,
H

=f
P=

S=
d,

H
=o

ff
,l

oc
ks

fr
eq

1
P=

S=
d,

H
=f

,l
oc

ks
fr

eq
1

PP
10

PP
10

0
P2

00
PP

10
00

PP
10

PP
10

0
P2

00
PP

10
00

PP
x

PP
10

00
PP

x
PP

10
00

N
um

be
r

of
ru

ns
1

1
1

1
1

1
1

1
1

1
1

1
N

od
es

5
10

2
20

2
19

99
7

20
1

40
1

17
99

1
19

83
1

16
25

Fe
as

ib
le

le
av

es
1

1
1

26
7

0
0

0
0

0
0

0
0

In
fe

as
.le

av
es

1
1

1
62

5
3

99
19

9
80

5
0

99
1

0
63

3
O

bj
ec

ti
ve

le
av

es
0

0
0

10
7

1
2

2
2

0
1

0
1

N
od

es
(t

ot
al

)
5

10
2

20
2

19
99

7
20

1
40

1
17

99
1

19
83

1
16

25
N

od
es

le
ft

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

de
pt

h
3

10
0

20
0

10
00

3
10

0
20

0
99

2
0

99
1

0
99

1
Ba

ck
tr

ac
ks

3
99

20
0

84
4

3
98

19
9

10
00

0
41

9
0

41
7

Ea
rl

y
ba

ck
tr

ac
ks

0
0

0
0

0
0

0
0

0
0

0
0

N
od

es
ex

c
R

ef
0

0
0

0
0

0
0

0
0

0
0

0
D

el
ay

ed
C

ut
of

fs
2

99
19

9
2

0
0

0
18

6
0

0
0

35
8

R
ep

ro
pa

ga
ti

on
s

3
99

20
0

24
97

2
0

1
1

17
92

0
31

87
0

28
31

A
.S

w
it

ch
Le

ng
th

3.
60

5.
86

5.
94

51
.3

6
3.

57
3.

96
2.

99
37

9.
17

2.
00

15
.2

7
2.

00
7.

20
So

lv
in

g
ti

m
e

0.
00

0.
00

0.
00

11
.0

0
0.

00
0.

00
0.

00
4.

00
0.

00
24

.0
0

0.
00

22
.0

0
T a

bl
e

6.
19

:B
ra

nc
h

an
d

Bo
un

d
tr

ee
im

pr
ov

em
en

tg
iv

en
by

lo
ck

s
se

tt
in

g
he

ur
is

ti
cs

em
ph

as
is

of
fa

nd
he

ur
is

ti
cs

em
ph

as
is

fa
st

,f
or

ea
ch

m
od

el
.

74 6 − Analysis

B&
B

tree
P

=
S=

d
,H

=
off,

feaspum
p

freq
1

P=S=d
,H

=off,intshift-
ing

freq
1

P
=

S=
d

,H
=

off.
shiftand

-
propagate

freq
1

P=S=d,H
=off,zirounding

freq
1

PPx
PP1000

PP10
PP100

PP200
PP1000

PP10
PP100

PP200
PP1000

PP10
PP100

PP200
PP1000

N
um

ber
ofruns

1
1

1
1

1
1

1
1

1
1

1
1

1
1

N
odes

1
1983

4
102

202
2001

6
103

203
2001

7
201

401
1992

Feasible
leaves

0
0

1
1

1
294

1
2

2
36

0
0

0
266

Infeas.leaves
0

991
1

1
1

489
1

1
1

956
3

100
200

618
O

bjective
leaves

0
1

0
0

0
218

0
0

0
9

1
1

1
108

N
odes

(total)
1

1983
4

102
202

2001
6

103
203

2001
7

201
401

1992
N

odes
left

0
0

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

depth
0

991
2

100
200

1000
4

100
200

1000
3

100
200

1000
M

ax
depth

(total)
0

991
2

100
200

1000
4

100
200

1000
3

100
200

1000
Backtracks

0
419

2
99

200
708

4
98

199
999

3
99

200
844

Early
backtracks

0
0

0
0

0
0

0
0

0
0

0
0

0
0

N
odes

exc.R
ef.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
elayed

cutoffs
0

0
1

99
199

0
3

98
198

2
0

0
0

9
R

epr opagations
0

3187
2

99
200

1158
4

100
201

1954
1

1
1

20733
A

vg
sw

itch
length

2.00
15.27

3.00
5.86

5.94
111.95

4.00
6.66

6.34
499.57

2.57
3.96

2.99
53.35

Sw
itching

tim
e

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Solving
tim

e
0.00

3.00
0.00

0.00
0.00

11.00
0.00

0.00
0.00

2.00
0.00

0.00
0.00

11.00
T able

6.20:Branch
and

Bound
tree

data
setting

on
heuristics

one
to

one

75

In order to confirm this result, it is necessary to test these two heuristics in com-
petition. In fact, until now, the best case, especially referring to PingPong1000, is
the default one. However, it is important to note that when the heuristics are set
to default, feaspump heuristic has no priority over locks. In detail locks has a
priority of 3000 with a frequency of 0, while feaspump has priority and frequency
set respectively to -10000 and 20. Consequently, there have previously been no cases
in which they were found to operate at the same conditions.
We verify this performing the following test, for PingPong1000 model:

• set presolving default
set heuristics emphasis off
set heuristics locks freq 0
set heuristics feaspump freq 1
set heuristics feaspump advanced priority 3000
set separating default

One more time solution is found by locks heuristic so we can’t confirm the previous
results about feaspump efficiency. Furthermore, running the following test:

• set presolving default
set heuristics emphasis off
set heuristics locks freq 0
set separating default

we obtain the following results on Table 6.21:

B&B tree P=H=d, locks freq 0 P=H=d, feaspump freq 0
number of runs 1 1
feasible leaves 0 0
infeas.leaves 991 991

objective leaves 1 1
total nodes 1983 1983
max depth 991 991
backtracks 419 419

delayed cutoffs 0 0
repropagations 3187 3187

avg switch length 15.27 15.27
switching time 1.00 0.00
Solving time 3.00 3.00

Table 6.21: Branch and Bound comparison activating locks and feaspump

76 6 − Analysis

Separators

With exception of PingPong1000, the use of separators occurs only in some cases.
In particular, the separators, fundamental in the branching process, are not used in
the default case as the solution is found directly by locks heuristic, nor when we
modify the presolving setting. They act if the heuristics are deactivated, or if they are
insufficient, i.e. all those times in which the branching process is activated. For this
reason a more in-depth study of these parameters is carried out, trying to understand
how they act during the resolution process. We therefore suppose to change the
setting of the separators in those cases in which they participate in the resolution of
the model.
On Table 6.22, you can check which separators are used for each model, in these men-
tioned cases. In detail, the values on the table stay for the number of calls effectuated
for each separator, for models with less then 1000 variables, for which we perform a
different analysis.

Separators P=S=d, H=off P=S=d, H=f P=S=H=d, locks freq -1
PP10 PP100 P200 PP10 PP100 P200 PP10 PP100 PP200

cut pool 15 28 38 16 27 43 13 13 21
aggregation 8 12 13 8 11 15 7 7 11
cgmip 1
clique 1 1 1 1 1 1 1 1 1
eccuts 1
gomory 8 12 13 8 11 13 7 7 10
impliedbounds 8 12 13 8 11 15 7 7 11
mcf 1 1 1 1 1 1 1 1 1
mixing 8 12 12 8 11 15 7 7 11
rlt 8 8 8 8 8 10 7 7 10
zerohalf 8 12 13 8 11 15 7 7 11

Table 6.22: Separators behavior switching setting for heuristics

As in the previous cases, there is an analysis of the behavior of the separators by
switching their setting using the emphasis command. In particular, in models with
less of 1000 variables, we perform the analysis switching the setting of the separators
in each of those cases in which they are activated. After that, for those cases which
had given particular results, there is a deeper analysis performed by deactivating
individual separators, to understand which of them can have a more important role
in solving the problem.
We made this in the following way:

set heuristics /emphasis off/emphasis fast/locks freq -1
set separating emphasis off/ aggressive/ fast

running the following tests for models PingPong, PingPong10, PingPong100, Ping-
Pong200 :

1. When we impose heuristics emphasis off branching process is acti-
vated and consequentially also the use of separators. With this test we want to
investigate how actually the separators influence the branching process when

77

we deactivate heuristics, changing their setting through emphasis command,
in the following way:

set presolving default
set heuristics emphasis off
set separating emphasis default/off/ aggressive/ fast

Referring also to Table A.5 on page 98, note how these operation have greater

Figure 6.3: Configurations given by setting presolving default, heuristics off, switching the
setting for separators.

impact only on the simplest model PingPong10, as you can see on the following
Table 6.23

B&B tree PingPong10
P=S=d,
H=off

P=d,
H=S=off

P=d,
H=off,S=a

P=d,
H=off,S=f

Number of runs 1 1 1 1
Nodes 5 12 5 7

Feasible leaves 1 1 1 1
Infeas.leaves 1 1 1 1

Objective leaves 0 0 0 0
Nodes (total) 5 12 5 7

Nodes left 0 0 0 0
Max depth 3 10 3 5

Max depth (total) 3 10 3 5
Backtracks 3 9 3 5

Early backtracks 0 0 0 0
Nodes exc. Ref. 0 0 0 0
Delayed cutoffs 2 9 2 4
Repropagations 3 9 3 5

Avg switch length 3.60 4.83 3.60 4.29
Switching time 0.00 0.00 0.00 0.00

Table 6.23: Ping-Pong.lp B&B tree changing the setting of separators when disabling heuris-
tics

78 6 − Analysis

While in the first model the disadvantage is evident above all from the B&B
tree as number of nodes is higher, in PingPong100 and PingPong200 the tree re-
mains unchanged (Table A.5). As regards the solution, there are not differences
and the final bound if found by relaxations in all cases.
However, for PingPong10, watching to the structure of the tree, where the
number of nodes increases, this is sufficient to be able to state that deactivating
the separators brings disadvantages to the resolution of the model, while for
the others it might even be an advantage, ass without them less operations are
performed.
When heuristics are deactivated and we strengthen the use of separators with
separating emphasis aggressive (Table A.5), in all cases B&B tree re-
mains exactly the same as the case in which we only deactivate the heuristics,
forcing the program to perform more operations unnecessarily, without provid-
ing any advantage.

2. As in the previous case, because also imposing heuristics emphasis fast
separators are active, let’s repeat the last analysis in this case too:

set presolving default
set heuristics emphasis fast
set separating emphasis default/off/ aggressive/ fast

On Table A.6 on page 99 of Appendix A you can see the results on B&B

Figure 6.4: Configurations given by setting presolving default, heuristics fast, switching the
setting for separators.

tree for each model.
When imposing heuristics emphasis fast and deactivating the sepa-
rators or seting separating emphasis fast, like before, on PingPong10
there is an evident disadvantage seeing the B&B tree where in this case we have
even 21 nodes. On the other hand we don’t find particular differences on the
others models as values are quite the same.
Interesting is the case in which we impose separating emphasis aggressive.

79

In fact, in PingPong10, and most of all in PingPong200 we have a clear improve-
ment, so in this case changing the separator setting proves to be very useful.
Strange is the case of PingPong100 where the tree remains almost unchanged.

B&B tree P=S=d, H=f P=s,H=f,S=a
PP10 PP100 P200 PP10 PP100 P200

Number of runs 1 1 1 1 1 1
Nodes 7 201 401 1 201 1

Feasible leaves 0 0 0 0 0 0
Infeas.leaves 3 99 199 0 99 0

Objective leaves 1 2 2 0 2 1
Nodes (total) 7 201 401 1 201 2

Nodes left 0 0 0 0 0 0
Max depth 3 100 200 0 100 0

Max depth (total) 3 100 200 0 100 0
Backtracks 3 98 199 0 98 0

Early backtracks 0 0 0 0 0 0
Nodes exc. Ref. 0 0 0 0 0 0
Delayed cutoffs 0 0 0 0 0 0
Repropagations 1 1 1 0 1 0

Avg switch length 2.57 2.99 3.96 2.00 3.96 2.00
Switching time 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.24: Branch and Bound tree improvement strengthening separators when setting
heuristics emphasis fast

As can be verified on Table 6.24, strengthening separators in PingPong and
PingPong10, B&B tree come back to default form, but the improvement is es-
pecially noticeable in PingPong200, in which the operation has a great impact
on presolving process too. In fact, resolution time increase a lot, but, restarting
after 6 global fixings of integer variables, more cycles of presolving are effectu-
ated obtaining 19 delated vars, 25 delated constraints, 15 tightened bounds, 1
implication. After that in the B&B tree only 1 solving node is obtained, against
the 401 nodes of the case heuristics emphasis fast.
This makes me think that there is a highly useful separator that is used in this
last case but not in the case in which the separators are left in a default situation.
In order to study in more detail the separators that bring this improvement to
the model, referring to Table A.7 on page 96 of Appendix A, we try to disable
one by one those separators which increased setting separating emphasis
aggressive, in the following way:

set heuristics emphasis fast set separating emphasis
aggressive set separating <name of a separator> freq -1

In particular, for PingPong10, this test is performed with aggregation, closecuts,
gomory, implied bounds, mixing, rlt, zerohalf separators, while
with PingPong200 we add clique and mcf too. It’s impossible with SCIP to
deactivate cut pool separator.
In all cases, when closecuts,gomory,
impliedbounds,mixing,rlt,zerohalf are deactivated, B&B tree results

80 6 − Analysis

unchanged, so this means that they are not important in the resolution of the
problem. On the contrary, whithout aggregation, the number of nodes in-
crease significantly (see Table 6.25).This means that maybe a lack of aggregation
has a certain impact in the resolution, since when it is disabled the efficiency of
the problem decreases.

B&B tree P=d,H=f,S=a P=d,H=f,S=a, aggr. freq -1
PP10 P200 PP10 P200

Number of runs 1 2 1 1
Nodes 1 1 19 401
Feasible leaves 0 0 0 0
Infeas.leaves 0 0 9 200
Objective leaves 0 1 1 1
Nodes (total) 1 2 19 401
Nodes left 0 0 0 0
Max depth 0 0 9 200
Max depth (to-
tal)

0 0 9 200

Backtracks 0 0 9 200
Early backtracks 0 0 0 0
Nodes exc. Ref. 0 0 0 0
Delayed cutoffs 0 0 0 0
Repropagations 0 0 1 1
Avg switch
length

2.00 2.00 2.84 2.99

Switching time 0.00 0.00 0.00 0.00
Table 6.25: Branch and Bound tree worsening disabling aggregation separator

3. We have the same analysis of separators behavior also in case in which locks
heuristic is disabled:

set heuristics locks freq -1
set separating emphasis off/ aggressive/ fast

In all cases, through this test we don’t find particular results. There are no
differences in B&B tree and solution values.

On table 6.26, youcan see how separators operate for each setting of heuristics in
PingPong1000, in terms of number of calls.

Separators P=H=S=d P=S=d,
H=off

P=S=d,
H=a

P=S=d,
H=f

cut pool 143 123
aggregation 5 14 5 16

clique 1 1 1 1
gomory 5 14 5 14

impliedbounds 5 14 5 16
mcf 1 1 1 1

mixing 5 16 5 16
rlt 1 8 1 10

zerohalf 5 14 5 16

81

Table 6.26: PingPong1000.lp separators behavior switching the setting for all heuristics

Presenting PingPong1000 a different behavior then all others ones, we carry out the
separators analysis for this model separately, in a different way.
As in this case branching process is executed also running in default setting, we try
to switch the setting for all separators to see how they influence the resolution of the
model. How separators operate for each setting is reported on Table A.8 on page 100
of Appendix A.
Disabling separators or setting separating emphasis fast there are no particu-

Figure 6.5: Configurations given by setting presolving default, heuristics default, switching
the setting for separators.

lar differences respect to default result. When use of separators is increased, although
solution time is higher, of 7.00 seconds, there’s an improvement in the number of
solving nodes, 1589 against the 1611 nodes of default case, while primal and dual
bounds are the same. In the following table you can see how B&B tree is improved
strengthening separators, compared with that of default case.

B&B tree P=H=S=d P=H=d, S=a
number of runs 1 1

nodes 1611 1589
feasible leaves 0 0
infeas.leaves 626 605

objective leaves 1 1
nodes (total) 1611 1589

nodes left 0 0
max depth 984 983

max depth (total) 984 983
backtracks 417 435

early backtracks 0 0
nodes exc ref 0 0

delayed cutoffs 358 378
repropagations 3692 3353

avg switch length 8.42 8.59
switching time 0.00 0.00
Solution time 5.00 7.00

82 6 − Analysis

Table 6.27: PingPong1000.lp branch tree improvement strengthening separating

On Table 6.28 you can find the results on B&B tree given by the last configurations to
evaluate, represented in the following figure.

Figure 6.6: Additional Configurations evaluated for PingPong1000.

B&B tree P=d,H=f,S=a P=d,H=S=a P=d,H=a,S=f P=d,H=S=f
number of runs 1 1 1 1

nodes 1799 1892 1985 1800
feasible leaves 0 0 0 0
infeas.leaves 805 899 992 806

objective leaves 2 1 1 2
nodes (total) 1799 1892 1985 1800

nodes left 0 0 0 0
max depth 992 992 992 992

max depth (total) 992 992 992 992
backtracks 417 419 418 1000

early backtracks 1000 0 0 0
nodes exc ref 0 0 0 0

delayed cutoffs 186 93 0 185
repropagations 1800 1775 1245 1188

avg switch length 378.42 51.10 34.54 114.04
switching time 0.00 0.00 0.00 0.00
Solution time 4.00 22.00 22.00 4.00

Table 6.28: PingPong1000.lp branch and bound tree resulting from additional configurations

CHAPTER 7

Conclusions

In this chapter, by summarizing the various configurations analyzed and looking at
their results, we reach a conclusion. It is possible to state which is the best configuration
and, to confirm this, this latter is tested in a final model with numerous variables
where the clear improvement obtained through it is highlighted compared to the results
obtained leaving the default setting of SCIP.

Let’s now take stock of the situation and draw conclusions from our analysis.
Summing up, what has been done is searching through manual parameter tuning for
the best configuration to efficiently solve a particular lot sizing model. In particular,
the attention was focused on the tuning of 3 parameters, presolvers, heuristics and
separators, as they are those with the greatest impact on the results, in terms of size of
the branching tree and solution time.
To do this, 5 instances of our model were tested, two of these with 10 variables, one of
which containing the TotBin variable, and the others with 100, 200, 1000 variables
respectively.
Starting from the search for the best configuration for the presolvers, subsequently,
the analysis proceeded with the search for the best configuration for heuristics and
separators, taking into account however that they could not be considered alone,
working in parallel and in competition.

On the following Table 7.1 you can check the results obtained setting each model to
all possible configurations analyzed.
As already mentioned previously, there are several factors to consider in order to
establish which is the best one. Mainly the most important factors are the size of the
branching tree, and the total resolution time. However, since the resolution time of
each node is non-predictable, evaluating these two factors together as one depends
on the other, what we want is a resolution that is as efficient as possible, especially in
terms of time.
So, based on this, for models under 1000 variables we can say that the best configura-
tion is the number 2 of the table, as it permits a reduction of the total of operations
switching off all separators. However, referring to the particular test described on
page 31, we can also consider to choose a configuration on which setting on only

83

84 7 − Conclusions

locks heuristic, without spending time for additional operations with all others
one.
Instead, watching to the results given by PingPong1000, the best configuration seems
to be the number 14 with the best number of nodes, of 1151, and the best resolution
time of 3.00 seconds.

Configuration PP10 PP100 PP200 PP1000
size time size time size time size time

1 P=H=S=d 1 0.00 1 0.00 1 0.00 1611 5.00
2 P=H=d,S=off 1 0.00 1 0.00 1 0.00 1611 5.00
3 P=H=d,S=a 1 0.00 1 0.00 1 0.00 1589 7.00
4 P=H=d,S=f 1 0.00 1 0.00 1 0.00 1611 6.00
5 P=S=d,H=off 5 0.00 102 0.00 202 0.00 1999 11.00
6 P=d,H=S=off 12 0.00 102 0.00 202 0.00 1996 10.00
7 P=d,H=off,S=a 5 0.00 102 0.00 202 0.00 1999 11.00
8 P=d,H=off,S=f 7 0.00 102 0.00 202 0.00 1999 12.00
9 P=S=d,H=a 1 0.00 1 0.00 1 0.00 1985 21.00
10 P=d,H=a,S=off 1 0.00 1 0.00 1 0.00 1985 22.00
11 P=d,H=S=a 1 0.00 1 0.00 1 0.00 1892 22.00
12 P=d,H=a,S=f 1 0.00 1 0.00 1 0.00 1985 22.00
13 P=S=d,H=f 7 0.00 201 0.00 401 0.00 1799 4.00
14 P=d,H=f,S=off 21 0.00 201 0.00 401 0.00 1151 3.00
15 P=d,H=f,S=a 1 0.00 201 0.00 1 0.00 1799 4.00
16 P=d,H=S=f 11 0.00 201 0.00 401 0.00 1800 4.00

Table 7.1: Results given by all possible configurations in terms of branch and bound tree size
and time.

To verify the results obtained in the previous instances, in particular by referring
to the PingPong1000 model, now let’s verify a more complex model. In this way
we can evaluate whether the configuration found, starting from 1000 variables, is
constantly effective at increasing levels of computational complexity, or whether
when the number of variables increase it loses efficiency or effectiveness. In detail,
this test is performed on a model with 2000 variables.
Initially, we run the program with the default setting provided by SCIP, and then
we compare these results with those given by which should the best configuration
according to the previous analysis, comparing the files via the Kdiff application.

85

Primal Heuristics PingPong2000
P=H=S=d P=d,H=f,S=off

adaptivediving 1C ET
5.00,4C,1F,1B

alns ET 16.00,5C
conflictdiving ET 2.00,1C ET 2.00, 5

Calls
feaspump 1C
fracdiving ET 2.00,1C

gins 4C
intshifting 3C 10C,1F,1B

locks 1C,1F,1B
oneopt 1C 3C

pscostdiving ET 2.00, 1C
randrounding 100C 101C

rens ET 2.00, 1C
rins ET 3.00,6C

rounding 603C 584C
shiftandpropagate 1C,1F,1B

shifting 159C 200C
trivial 2C 2C

veclendiving ET 1.00,1C
zirounding 1000C 1000C

Table 7.2: Comparison between primal heuristics used running PingPong2000 in default
configuration by SCIP and the best one

B&B tree PingPong2000
P=H=S=d P=d,H=f,S=off

Number of runs 1 1
Nodes 3400 2098

Feasible leaves 0 0
Infeas.leaves 1405 99

Objective leaves 1 1
Nodes (total) 3400 2098

Nodes left 0 0
Max depth 1994 1998

Max depth (total) 1994 1998
Backtracks 724 2007

Early backtracks 0 0
Nodes exc. Ref. 0 0
Delayed cutoffs 589 1899
Repropagations 3490 10562

Avg switch length 989.02 18.76
Solving time 37.00 11.00

Table 7.3: Comparison between results pn B&B tree and solving time running PingPong2000
in default configuration by SCIP and the best one

As expected, the configuration (P=d,H=f,S=off) brings a great improvement on the
resolutions with more than 1300 nodes less on the B&B tree and 11.00s of solving
time against the 37.00s of the default one. This attests to the validity of the results
obtained previously.

Part III

Final Considerations

87

CHAPTER 8

Running on OMP application

In this chapter you can find brief notes about the results obtained by solving the
previous instances with the OMP solver, and become aware of the differences found
between the latter’s resolution and that provided by SCIP. From this, it’s possible to
hypothesize possible future developments.

As already explained previously, the motivation that led to the project carried out
through SCIP was to be able to provide useful information to then make improve-
ments to the company solver. Indeed, it has been noted that in the context of the
model and the instances analyzed, for certain quantities of variables, when OMP re-
sorts to the use of clustering through the integer variable TotBin , the same problem
is solved efficiently by SCIP without using it.
In fact, we noticed at the beginning of the experimental phase how aggregation for
SCIP is the last alternative used, only when presolvers and heuristics are deactivated.
When presolving is active, variable TotBin is discarded at the beginning, but the
model is solved easily thanks to locks heuristic. For this reason we then discarded
the first model from the following tests, as when the presolving does its job this
model is reduced to the PingPong10 model.
In other cases, as showed below, the application developed by OMP prevails over
SCIP, even without clustering support, thanks to the use of specific heuristics.
Below, with the support of the statistics provided by the OMP application, the results
given by solving some of the instances analyzed via SCIP are shown, and the differ-
ences are highlighted.

On Fig. 8.1 you can see our first model PingPong on OMP Optimizer. We will
obtain the rest of the instances by changing the range of the buckets between B01 to
Bx : x∈ {100, 200, 1000, 2000}. After being generated in their explicit form a series of
solving tests are performed for each instance.
In detail, three type of solving tests are runned. Regarding the setting of branch-
ing strategies, the first test is performed given priority on binary variables, while
the second using the clustering strategy. After that, an additional test is performed
setting on Feasibility Pump Heuristics. In normal conditions feaspump is

89

90 8 − Running on OMP application

Figure 8.1: PingPong model on OMP Optimizer

disabled in OMP solver as, by operating within the main thread, it can be cause
slowdowns in the program, but in our case it’s interesting to test it having found
good results using it in our analysis through SCIP.

As can be observed on Fig. 8.2, representing the statistics printed by our solver
for the first simple model of ten variables, giving priority to binary variables generate
a B&B tree of 11 nodes, definitely worse than the solution given by SCIP thanks to
Locks heuristic, of only one node. The same situation resulted from models with
100 and 200 buckets, in which respectively 101 and 201 nodes.

On the contrary, totally different results have been obtained for models with more
variables, like in our case PingPong1000, PingPong2000. See on Fig. 8.3 the statistics
about the results of PingPong1000. In this case OMP solver results to be extremely
more efficient than SCIP. We manage to reach 149 nodes for PingPong1000 and,
surprisingly, only 67 wheh we have 2000 variables, while with SCIP we haven’t
been able to go below 1000 nodes. In both cases the solution is found by LP based
objective, an heuristic that, using the LP-value of the binaries as cost, it look for a
MIP solution maximizing it.

91

Figure 8.2: PingPong general statistics by OMP Optimizer

Parameter n =
10

n = 100 n = 200 n = 1000 n = 2000

Number of nodes 11 101 201 149 67
Current depth 10 100 200 0 0

number of iterations 194 3872 8172 7478 8807
Source solution MIP MIP MIP LP based

objective
Smart
rounding

Table 8.1: Statistics data given by default setting of OMP solver

Let’s go on with aggregation. Modifying the setting of branching strategies and
taking away the priority on binary variables, I allow the program to execute the first
branching on the integer variable TotBin, that is, the problem is solved applying
clustering strategy.

See Fig. 8.4 on page 92. For model PingPong, but also for models with 100, 200,
1000, 2000 variables, we reach a Branch and Bound tree with only two nodes. This
means, on critical cases such as models with less than 1000 variables, OMP solver
manages to get good results compared to SCIP results only making use of aggre-
gation. On the other hand, OMP application results better than SCIP for all other
models and it’s able to improve further their results thanks to clustering strategy.

92 8 − Running on OMP application

Figure 8.3: PingPong1000 statistics given by OMP solver on branch and Bound tree

Figure 8.4: PingPong statistics using aggregation

Parameter n =
10

n = 100 n = 200 n = 1000 n = 2000

Number of nodes 2 2 2 2 2
Current depth 1 1 1 1 1

number of iterations 56 317 517 2117 4117
Source solution MIP MIP MIP MIP MIP

Table 8.2: Statistics data given by the use of aggregation

Extremely interesting results have been found putting into operation Feasibility
Pump Heuristic, deactivated so far.
You can find on Fig. 8.5 on page 93 the results obtained on the model with 2000
variables. On this models, and in all the rest, the branching tree is reduced to just 1
node, demonstrating the enormous potential of this heuristic.

93

Figure 8.5: PingPong2000 results found by FeasPump

Parameter n =
10

n = 100 n = 200 n = 1000 n = 2000

Number of nodes 1 1 1 1 1
Current depth 0 0 0 0 0

number of iterations 43 459 949 4877 9786
Source solution feas.

pump
feas.
pump

feas.
pump

feas.
pump

feas.
pump

Table 8.3: Statistics data given by feaspump

Now, the question is, what would happen if we implemented locks heuristic on
OMP solver?
locks played a central role throughout the analysis carried out on these same mod-
els with the SCIP solver. it is clear that, in the case of models with less than 1000
variables, it is thanks to this heuristic that SCIP manages to achieve excellent results
even where OMP was forced to use clustering.
Furthermore, by testing locks in competition with feaspump through SCIP, we
noticed how the solution was found by the first one, although not achieving in Ping-
Pong1000 and PingPong2000 the same good results obtained by OMP solver thanks
to the second one.
This will certainly be the next step to address in the process of improving the com-
pany’s solver.
The advice for the company is to delve deeper into this heuristic and possibly im-
plement it, paying particular attention to smaller models, with less than a thousand
variables.
In fact, such a number of variables should absolutely not be underestimated. In
fact, as already explained previously, our variables represent time buckets for our
company’s production plan. A model of 200 variables can be translated in real terms
to a production schedule of a product for almost one year, considering time buck-
ets of one day, something regular for OMP. Furthermore, considering that OMP’s
production plans involve not just one, but hundreds of products, making our solver
more efficient in terms of time could prove decisive for our planning.

APPENDIX A

Tables

A.1 Supporting Data

In this section you can find all tables used to carry on the data analysis.

Presolvers PPx: H=S=off
boundshift 0

domcol 1
dualagg 0

dualcomp 1
dualinfer 0

dualsparsify 1
implics 1

inttobinary 0
milp 1

redvub 0
sparsify 1
stuffing 0
trivial 1

tworowbnd 0
dualfix 1
probing 1

symmetry 1
linear 2

components 1
Table A.1: Presolvers used setting off heuristics and separators. x ∈ {10, 100, 200, 1000}

95

96 A − Tables

Primal Heuristics H=d, P=S=off H=P=d, S=off
PPx PP1000 PPx PP1000

alns ET 1.00, 5C ET 2.00, 5C
conflictdiving 1C 1C

fracdiving ET 1.00, 1C
gins 3C 3C

intshifting 2C 3C
locks 1C,1F,1B 1C,1F,1B 1C,1F,1B 1C,1F,1B

oneopt 1C 1C 1C 1C
pcostdiving 1C 1C

randrounding 50C 50C
rens ET 1.00, 1C 1C
rins 6C 6C

rounding 437C 389C
shifting 99C 99C
trivial 2C 2C 2C 2C

zirounding 984C 984C
Table A.2: Primal heuristics data analysing presolving impact mantaining primal heuristics

active. x ∈ {10, 100, 200}

Separators S=P=d, H=off S=d, P=H=off
PP10 PP100 P200 PP1000 PP10 PP100 P200 PP1000

cut pool 15 28 38 143 19 31 41 147
aggregation 8 12 13 14 10 13 14 15
clique 1 1 1 1 1 1 1 1
gomory 8 12 13 14 10 12 13 14
impliedbounds 8 12 13 14 10 13 14 15
mcf 1 1 1 1 1 1 1 1
mixing 8 12 13 16 10 13 14 16
rlt 8 8 8 8 10 10 10 10
zerohalf 8 12 13 14 10 13 14 15

Table A.3: Separators used evaluating presolving effect on separators, maintaining heuristics
disabled

Separators P=S=d, H=f P=d, H=f, S=a
PP10 P200 PP10 P200

cut pool 16 43 19 51
aggregation 8 15 11 28
clique 1 1 1 2
closecuts 0 0 1 2
gomory 8 13 10 20
impliedbounds 8 15 11 28
mcf 1 1 1 2
mixing 8 15 11 28
rlt 8 10 10 20
zerohalf 8 15 11 28

Table A.7: Separators behavior strengthening separators when setting heuristics emphasis
fast, for models PingPong10,PingPong200

§A.1 − Supporting Data 97

Pr
im

al
H

eu
ri

st
ic

s
P=

H
=d

,S
=o

ff
P=

d,
H

=a
,S

=o
ff

P=
d,

H
=f

,S
=o

ff
PP

x
PP

10
00

PP
10

PP
10

0
PP

20
0

PP
10

00
PP

10
PP

10
0

PP
20

0
PP

10
00

ad
ap

ti
ve

di
vi

ng
E

T
1.

00
,

1C
6C

,1
F ,

1B

al
ns

E
T

2.
00

,
5C

1C
1C

E
T

9.
00

,
20

C
bo

un
d

1C
50

C
co

ef
di

vi
ng

1C
co

nfl
ic

td
iv

in
g

1C
E

T
1.

00
,1

C
E

T
1.

00
,

4C
fe

as
pu

m
p

1C
fr

ac
di

vi
ng

gi
ns

3C
3C

in
ts

hi
ft

in
g

3C
2C

1C
,1

F,
1B

1C
,1

F,
1B

1C
,1

F,
1B

11
C

,1
F,

1B
lo

ca
lb

ra
nc

hi
ng

2C
lo

ck
s

1C
,1

F ,
1B

1C
,1

F ,
1B

1C
,1

F ,
1B

1C
,1

F ,
1B

1C
,1

F .
1B

50
C

,1
F,

1B
m

ut
at

io
n

E
T

1.
00

,
3C

on
eo

pt
1C

1C
1C

1C
1C

1C
3C

3C
3C

3C
pr

ox
im

it
y

E
T

2.
00

,
1C

ps
co

st
di

vi
ng

1C
E

C
1.

00
,

1C
ra

nd
ro

un
di

ng
50

C
10

0C
2C

6C
11

C
51

C
re

ns
1C

E
T

4.
00

,
20

C
re

pa
ir

1C
ri

ns
6C

6C
r o

un
di

ng
38

9C
41

7C
10

C
10

0C
15

0C
39

8C
sh

if
ta

nd
pr

op
ag

at
e

1C
,1

F ,
1B

1C
,1

F ,
1B

1C
,1

F ,
1B

1C
,1

F ,
1B

sh
if

ti
ng

99
C

16
7C

2C
,1

F
11

C
21

C
10

0C
tr

iv
ia

l
2C

2C
2C

2C
2C

51
C

2C
2C

2C
2C

tr
us

tr
eg

io
n

E
T

1.
00

,
1C

ze
ro

ob
j

1C
,1

F,
1B

1C
,1

F,
1B

1C
,1

F,
1B

1C
,1

F,
1B

zi
ro

un
di

ng
98

4C
99

2C
10

C
,1

F,
1B

10
0C

,1
F,

1B
20

0C
,1

F,
1B

99
3C

Ta
bl

e
A

.4
:P

ri
m

al
he

ur
is

ti
cs

ev
al

ua
te

d
se

tt
in

g
of

fa
ll

se
pa

ra
to

rs
.x

∈
{1

0,
10

0,
20

0}

98 A − Tables

B&
B

tree
P=S=d,H

=off
P=d,H

=S=off
P=d,H

=off,S=a
P=d,H

=off,S=f
PP10

PP100
P200

PP10
PP100

P200
PP10

PP100
PP200

PP10
PP100

PP200
N

um
ber

ofruns
1

1
1

1
1

1
1

1
1

1
1

1
N

odes
5

102
202

12
102

202
5

102
202

7
102

202
Feasible

leaves
1

1
1

1
1

1
1

1
1

1
1

1
Infeas.leaves

1
1

1
1

1
1

1
1

1
1

1
1

O
bjective

leaves
0

0
0

0
0

0
0

0
0

0
0

0
N

odes
(total)

5
102

202
12

102
202

5
102

202
7

102
202

N
odes

left
0

0
0

0
0

0
0

0
0

0
0

0
M

ax
depth

3
100

200
10

100
200

3
100

200
5

100
200

M
ax

d
ep

th
(to-

tal)
3

100
200

10
100

200
3

100
200

5
100

200

Backtracks
3

99
200

9
99

200
3

99
200

5
99

200
Early

backtracks
0

0
0

0
0

0
0

0
0

0
0

0
N

odes
exc.R

ef.
0

0
0

0
0

0
0

0
0

0
0

0
D

elayed
cutoffs

2
99

199
9

99
199

2
99

199
4

99
199

R
epr opagations

3
99

200
9

99
200

3
99

200
5

99
200

A
vg

sw
itch

length
3.60

5.86
5.94

4.83
5.86

5.94
3.60

5.86
5.94

4.29
5.86

5.94

Sw
itching

tim
e

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

T able
A

.5:B&
B

tree
changing

the
setting

ofseparators
w

hen
disabling

heuristics

§A.1 − Supporting Data 99

B&
B

tr
ee

P=
S=

d,
H

=f
P=

d,
H

=f
,S

=o
f f

P=
d,

H
=f

,S
=a

P=
d,

H
=S

=f
PP

10
PP

10
0

P2
00

PP
10

PP
10

0
P2

00
PP

10
PP

10
0

PP
20

0
PP

10
PP

10
0

PP
20

0
N

um
be

r
of

ru
ns

1
1

1
1

1
1

1
1

2
1

1
1

N
od

es
7

20
1

40
1

21
20

1
40

1
1

20
1

1
11

20
1

40
1

Fe
as

ib
le

le
av

es
0

0
0

0
0

0
0

0
0

0
0

0
In

fe
as

.le
av

es
3

99
19

9
10

10
0

20
0

0
99

0
5

99
19

9
O

bj
ec

ti
ve

le
av

es
1

2
2

1
1

1
0

2
1

1
2

2
N

od
es

(t
ot

al
)

7
20

1
40

1
21

20
1

40
1

1
20

1
2

11
20

1
40

1
N

od
es

le
ft

0
0

0
0

0
0

0
0

0
0

0
0

M
ax

de
pt

h
3

10
0

20
0

10
10

0
20

0
0

10
0

0
5

10
0

20
0

M
ax

d
ep

th
(t

o-
ta

l)
3

10
0

20
0

10
10

0
20

0
0

10
0

0
5

10
0

20
0

Ba
ck

tr
ac

ks
3

98
19

9
9

99
20

0
0

98
0

5
98

19
9

Ea
rl

y
ba

ck
tr

ac
ks

0
0

0
0

0
0

0
0

0
0

0
0

N
od

es
ex

c.
R

ef
.

0
0

0
0

0
0

0
0

0
0

0
0

D
el

ay
ed

cu
to

ff
s

0
0

0
0

0
0

0
0

0
0

0
0

R
ep

ro
pa

ga
ti

on
s

1
1

1
1

1
1

0
1

0
1

1
1

A
vg

sw
it

ch
le

ng
th

2.
57

2.
99

3.
96

3.
62

3.
96

2.
99

2.
00

3.
96

2.
00

2.
73

3.
96

2.
99

Sw
it

ch
in

g
ti

m
e

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

T a
bl

e
A

.6
:B

ra
nc

h
an

d
Bo

un
d

tr
ee

ch
an

gi
ng

th
e

se
tt

in
g

of
se

pa
ra

to
rs

w
he

n
im

po
si

ng
he

ur
is

ti
cs

em
ph

as
is

fa
st

100 A − Tables

Separators P=H=S=d P=H=d,
S=a

P=H=d,
S=f

cut pool 1
aggregation 5 7 5

clique 1 1 1
gomory 5 6 5

impliedbounds 5 7 5
mcf 1 1

mixing 5 7 5
rlt 1 5 1

zerohalf 5 7 5
Table A.8: PingPong1000.lp separators behavior switching the setting for all separators

A.2 Additional Data

In the following tables you can find additional informations and data about
parameters like propagators, constraint handles, solution values. Although not of
primary importance, also these data have been used to reach the conclusions of the
analysis. It’s possible to verify in this section how constraint handlers and propa-
gators have been used switching setting of the program and solution values. That
is, regarding solution values, how many times a feasible solution was found and
improved, the value of the first solution and the gap between the fist solution and
the optimal solution, and the value of final primal and dual bounds.
In addiction, which types of operations and how many operations of each type
were performed by constraint handlers and propagators are provided, switching the
setting for heuristics and separators, on models Ping-Pong.lp and PingPong10.lp

A.2.1 PingPong

Propagators P=S=H=d P=S=d, H=off P=S=d, H=a P=S=d, H=f
dualfix propagate 9 propagate 1 propagate 10 propagate 19

pseudoobj propagate 8,
DomReds 39

propagate 7,
Domreds 18

propagate 10,
Domreds 40

propagate 41,
Domreds 41

redcost propagate 15
rootredcost propagate 1,

Domreds 20
propagate 2,
Domreds 20

vbounds propagate 1
Table A.10: Ping-Pong.lp propagators behavior changing heuristics setting

§A.2 − Additional Data 101

So
lu

ti
on

s
Pi

ng
-P

on
g.

lp

P=
S=

H
=d

P=
s=

d,
H

=o
ff

P=
S=

d,
H

=f
P=

S=
d,

H
=a

So
lu

ti
on

s
fo

un
d

1
(1

im
pr

ov
em

en
t)

1
(1

im
pr

ov
em

en
t)

3
(3

im
pr

ov
em

en
ts

)
2

(2
im

pr
ov

em
en

ts
)

Fi
rs

t S
ol

ut
io

n
9.

99
99

99
99

99
99

79
e−

02
(i

n
ru

n
1,

af
te

r
1

no
d

es
,

ti
,e

0.
00

,
de

pt
h

11
,f

ou
nd

by
<l

oc
ks

>

9.
99

99
99

99
99

98
72

e−
02

(i
n

ru
n

1,
af

te
r

4
no

d
es

,
ti

m
e

0.
00

,
d

ep
th

3,
fo

u
nd

by
<

re
la

x-
at

io
n>

)

5.
49

90
00

00
00

00
0e

+
03

(i
n

ru
n

1,
af

te
r

1
no

d
es

,
ti

m
e

0.
00

,
de

pt
h

12
,f

ou
nd

by
<s

hi
ft

an
d-

pr
op

ag
at

e>
)

5.
39

90
00

00
00

00
52

e+
03

(i
n

ru
n

1,
af

te
r

0
no

d
es

,
ti

m
e

0.
00

,
de

pt
h

0,
fo

un
d

by
<z

er
oo

bj
>)

G
ap

Fi
rs

tS
ol

in
fin

it
e

42
.8

6%
in

fin
it

e
in

fin
it

e

G
ap

La
st

So
l

in
fin

it
e

42
.8

6%
42

.8
6

%
in

fin
it

e

Pr
im

al
Bo

un
d

9.
99

99
99

99
99

99
79

e−
02

9.
99

99
99

99
99

98
72

e−
02

1.
00

00
00

00
00

47
96

e−
02

(i
n

ru
n

1,
af

te
r

1
no

d
es

,
ti

m
e

0.
00

,
de

pt
h

11
,f

ou
nd

by
<l

oc
ks

>)

9.
99

99
99

99
97

63
53

e−
02

(i
n

ru
n

1,
af

te
r

1
no

d
es

,
ti

m
e

0.
00

,
de

pt
h

11
,f

ou
nd

by
<l

oc
ks

>)

D
ua

lB
ou

nd
9.

99
99

99
99

99
99

79
e−

02
9.

99
99

99
99

99
98

72
e−

02
1.

00
00

00
00

00
47

96
e−

02
9.

99
99

99
99

97
63

53
e−

02

G
ap

0.
00

%
0.

00
%

0.
00

%
0.

00
%

Ta
bl

e
A

.9
:P

in
g-

Po
ng

.lp
so

lu
ti

on
s

ch
an

gi
ng

th
e

se
tt

in
g

fo
r

al
lh

eu
ri

st
ic

s

102 A − Tables

Constraints P=S=d, H=off P=d, S=H=off P=d, H=off,
S=a

P=d, H=off,
S=f

benderslp enfolp 4 enfolp 11 enfolp 4 enfolp 6
integral enfolp 4, Chil-

dren 6
enfolp 11, Chil-
dren 20

enfolp 4, Chil-
dren 6

enfolp 6, Chil-
dren 10

linear number 10,
MaxNumber
10, separate
8, enfolp 1,
propagate
33, CutOffs 1,
Domreds 22

number 10,
MaxNumber
10, propagate
47, CutOffs 1,
Domreds 24

number 10,
MaxNumber
10,separate
9, propagate
33, enfolp
1,cutoffs 1,
DomReds 22

number 10,
MaxNumber
10, separate
6, propagate
38, cutoffs 1,
domreds 22

Table A.11: Ping-Pong.lp use of constraint handlers changing the setting of separators when
disabling heuristics

Propagators P=S=d, H=off P=d, H=S=off P=d, H=off,
S=a

P=d, H=off,
S=f

dualfix propagate 1 propagate 1 propagate 1 propagate 1
pseudoobj propagate 7,

DomReds 18
propagate 13,
DomReds 37

propagate 7,
DomReds 18

propagate 10,
DomReds 18

rootredcost propagate 1,
Domreds 20

propagate 1,
Domreds 20

propagate 1,
Domreds 20

propagate 1,
DomReds 20

Table A.12: Ping-Pong.lp use of propagators changing the setting of separators when dis-
abling heuristics

A.2.2 PingPong10

Constraints P=S=H=d P=S=d, H=off P=S=d, H=a P=S=d, H=f
benderslp check 10 enfolp 4, check

2
check 12 enfolp 3, check

22
integral check 10 enfolp 4, check

2, children 6
check 12 enfolp 3, check

22, children 6
linear number 10,

MaxNumber
10, propagate
43, check
5,DomReds 21

number 10,
MaxNumber
10, separate
8, propagate
32, enfolp
1,cutoffs
1,DomReds 20

number 10,
MaxNumber
10, propagate
41, check 6,
DomReds 24

number 10,
MaxNumber
10, separate
8, propagate
71, check 16,
cutoffs 3, dom-
reds 40

benders check 2 enfolp 1, check
1

check 4 check 4

countsols check 2 enfolp 1, check
1

check 4 check 4

Table A.13: PingPong10.lp use of constraint handlers switching the setting for all heuristics

§A.2 − Additional Data 103

Propagators P=S=H=d P=S=d, H=off P=S=d, H=a P=S=d,H=f
dualfix propagate 10 propagate 1 propagate 8 propagate 19

pseudoobj propagate 9,
DomReds 39

propagate 6,
DomReds 19

propagate 8,
DomReds 40

propagate 41,
DomReds 41

redcost propagate 15
rootredcost propagate 1,

Domreds 20
propagate 2,
DomReds 20

vbounds propagate 1
Table A.14: PingPong10.lp use of propagators changing the setting of heuristics

A.2.3 PingPong100

Solutions PingPong100.lp
P=S=d, H=off P=S=d, H=a P=S=d, H=f

Solutions found 1 (1 improvement) 2 (2 improvements) 3 (3 improvements)
First Solution 9.99999999999979e−01

(in run 1, after 101
nodes, time 0.00, depth
100, found by <relax-
ation>)

5.04890000000004e+05

(in run 1, after 0 nodes,
time 0.00, depth 0,
found by <zeroobj>)

5.0499000000000e+05

(in run 1, after 1 nodes,
time 0.00, depth 102,
found by <shiftand-
propagate>)

Gap First Sol 1328.57% infinite infinite
Gap Last Sol 1328.57% infinite 1328.57 %
Primal Bound 9.99999999999979e−01 9.99999999702249e−01

(in run 1, after 1 nodes,
time 0.00, depth 101,
found by <locks>)

1.00000000046989e−00

(in run 1, after 101
nodes, time 0.00, depth
99, found by <ziround-
ing>)

Dual Bound 9.99999999999979e−01 9.99999999702249e−01 1.00000000046989e−00

Gap 0.00% 0.00% 0.00%
Table A.15: PingPong100.lp solutions changing the setting for all heuristics

Solutions PingPong100.lp
P=S=H=d, locks freq -1 P=S=d,H=a, locks freq

-1
P=S=d,H=a, zeroobj
freq -1

Solutions found 3 (3 improvements) 3 (3 improvements) 1 (1 improvement)
First Solution 5.0499000000000e+05

(in run 1, after 1 nodes,
time 0.00, depth 102,
found by <shiftand-
propagate>)

5.0499000000000e+05

(in run 1, after 1 nodes,
time 0.00, depth 102,
found by <zeroobj>)

+9.99999999999979e−1

(in run 1, after 1 nodes,
time 0.00, depth 102,
found by <locks>)

Gap First Sol infinite infinite infinite
Gap Last Sol 1566.67 % 1566.67 % 1566.67 %
Primal Bound 9.99999999999979e−01

(in run 1, after 101
nodes, time 0.00, depth
99, found by <ziround-
ing>)

9.99999999999979e−01

(in run 1, after 101
nodes, time 0.00,
depth 99, found by
<feaspump>)

9.99999999999979e−01

(in run 1, after 101
nodes, time 0.00, depth
99, found by <locks>)

Dual Bound 9.99999999999979e−01 9.99999999999979e−01 9.99999999999979e−01

Gap 0.00% 0.00% 0.00%
Table A.16: PingPong100.lp solutions disabling single heuristics

104 A − Tables

A.2.4 PingPong200 and PingPong1000

Solutions PingPong200.lp
P=S=H=d P=S=d, H=a

Solutions found 1 (1 improvements) 2 (2 improvements)
First Solution 1.9999999999996e−00 (in run 1, after

1 nodes, time 0.00, depth 201, found
by <locks>)

2.00988000000001e+06 (in run 1, af-
ter 0 nodes, 0.00 seconds, depth 0,
found by <zeroobj>)

Gap First Sol infinite infinite
Gap Last Sol infinite infinite
Primal Bound 1.99999999999996e−00 1.99999999946212e+00 (in run 1, af-

ter 1 nodes, 0.00 seconds, depth 201,
found by <locks>)

Dual Bound 1.99999999999996e−00 1.99999999946212e+00

Gap 0.00% 0.00%
Table A.17: PingPong200.lp solutions changing the setting for all heuristics

§A.2 − Additional Data 105

So
lu

ti
on

s
Pi

ng
Po

ng
10

00
.lp

P=
S=

H
=d

P=
S=

d,
H

=o
ff

P=
S=

d,
H

=a
P=

S=
d,

H
=f

So
lu

ti
on

s
fo

un
d

1
(1

im
pr

ov
em

en
ts

)
26

7
(2

67
im

pr
ov

em
en

ts
)

2
(2

im
pr

ov
em

en
ts

)
3

(3
im

pr
ov

em
en

ts
)

Fi
rs

tS
ol

ut
io

n
1.

99
99

99
99

99
97

9e
−

00
(i

n
ru

n
1,

af
te

r
1

no
d

es
,t

im
e

0.
00

,d
ep

th
10

01
,f

ou
nd

by
<l

oc
ks

>)

+
9.

92
99

77
00

00
00

00
e+

04

(i
n

ru
n

1,
af

te
r

21
7

no
d

es
,

0.
00

se
co

nd
s,

d
ep

th
1,

fo
un

d
by

<r
el

ax
at

io
n>

)

+
5.

00
49

79
99

99
99

95
e+

07

(i
n

ru
n

1,
af

te
r

0
no

d
es

,
0.

00
se

co
nd

s,
d

ep
th

0,
fo

un
d

by
<z

er
oo

bj
>)

+
5.

00
49

90
00

00
00

00
e+

07

(i
n

ru
n

1,
af

te
r

1
no

d
es

,
1.

00
se

co
nd

s,
d

ep
th

10
02

,
fo

un
d

by
<s

hi
ft

an
d

pr
op

a-
ga

te
>)

G
ap

Fi
rs

tS
ol

in
fin

it
e

12
40

00
86

2.
50

%
in

fin
it

e
in

fin
it

e

G
ap

La
st

So
l

in
fin

it
e

35
2.

49
%

in
fin

it
e

89
90

.9
1

%

Pr
im

al
Bo

un
d

1.
99

99
99

99
99

99
79

e−
00

(i
n

ru
n

1,
af

te
r

1
no

d
es

,t
im

e
0.

00
,d

ep
th

20
1,

fo
u

nd
by

<l
oc

ks
>)

+
9.

99
99

99
99

99
99

79
e00

(
in

ru
n

1,
af

te
r

13
74

no
d

es
,9

.0
0

se
co

nd
s,

d
ep

th
10

00
,

fo
u

nd
by

<
re

la
x-

at
io

n>
)

+
1.

00
00

00
00

03
07

33
4e

01
(

in
ru

n
1,

af
te

r
1

no
de

s,
0.

00
se

co
nd

s,
d

ep
th

10
01

,
fo

un
d

by
<l

oc
ks

>)

+
1.

00
00

00
00

36
06

06
e01

(i
n

ru
n

1,
af

te
r

22
5

no
de

s,
1.

00
se

co
nd

s,
d

ep
th

10
01

,
fo

u
nd

by
<

ad
ap

ti
ve

d
iv

-
in

g>
)

D
ua

l B
ou

nd
1.

99
99

99
99

99
99

79
e−

00
+

9.
99

99
99

99
99

99
79

e00
+

1.
00

00
00

00
03

07
33

4e
01

+
1.

00
00

00
00

36
06

06
e01

G
ap

0.
00

%
0.

00
%

0.
00

%
0.

00
%

T a
bl

e
A

.1
8:

Pi
ng

Po
ng

10
00

.lp
so

lu
ti

on
s

ch
an

gi
ng

th
e

se
tt

in
g

fo
r

al
lh

eu
ri

st
ic

s

APPENDIX B

Definitions

B&B tree parameter Description
1 feasible leaves number of leaf nodes processed with feasible relaxation so-

lution
2 infeasible leaves number of infeasible leaf nodes processed
3 delayed cutoffs bool parameter to indicate that treeCutoff() call was delayed

because of diving and has to be executed
4 repropagations cyclicly increased counter to create markers for subtree re-

propagation
5 depth depth in the tree

Solution parameter Description
6 Primal Bound gets global primal bound (objective value of best solution or

user objective limit) for the original problem
7 Dual Bound global dual bound
8 Solution Found number of feasible primal solutions found so far
9 Gap gets current gap |(primalbound −

dualbound)/min(|primalbound|, |dualbound|)| if both
bounds have same sign, or infinity, if they have opposite
sign

Presolvers Description
10 boundshift presolver that converts variables with domain [a,b] to vari-

ables with domain [0,b-a]
11 domcol This presolver looks for dominance relations between

variable pairs. From a dominance relation and certain
bound/clique-constellations variable fixings mostly at the
lower bound of the dominated variable can be derived. Ad-
ditionally it is possible to improve bounds by predictive
bound strengthening

107

108 B − Definitions

12 dualagg This presolver looks for variables which could not be han-
dled by duality fixing because of one up-/downlock. If the
constraint which delivers the up-/downlock has a specific
structure, we can aggregate the corresponding variable

13 dualcomp This presolver looks for variables with i) objcoef >= 0 and
exactly one downlock ii) objcoef <= 0 and exactly one uplock
and fixes the variable in case i) at the lower bound and in
case ii) at the upper bound if a combination of singleton
continuous variables can compensate the downlock in case
i) and the uplock in case ii)

14 dualinfer This presolver does bound strengthening on continuous
variables (columns) for getting bounds on dual variables y.
The bounds of the dual variables are then used to fix primal
variables or change the side of constraints. For ranged rows
one needs to decide which side (rhs or lhs) determines the
equality

15 dualsparsify This presolver attempts to cancel non-zero entries of the con-
straint matrix by adding scaled columns to other columns

16 milp Calls the presolve library and communicates (multi-
)aggregations, fixings, and bound changes to SCIP by uti-
lizing the postsolve information. Constraint changes can
currently only be communicated by deleting all constraints
and adding new ones

17 redvub This presolver looks for dominating variable bound con-
straints on the same continuous variable and discards them

18 sparsify This presolver attempts to cancel non-zero entries of the
constraint matrix by adding scaled equalities to other con-
straints

19 stuffing Investigate singleton continuous variables if one can be fixed
at a bound

20 trivial round fractional bounds on integer variables, fix variables
with equal bounds

21 tworowbnd Perform bound tightening on two inequalities with some
common variables

Propagators Description
22 dualfix to fix roundable variables to best bound
23 pseudobj to propagate the objective function using the cutoff bound

and the pseudo objective value
24 rootredcost to globally propagate against the cutoff bound through the

root reduced cost
25 redcost to propagate the variables against the cutoff bound using

the reduced cost of an optimal solved LP relaxation
26 vbounds to deduce global and local bound changes thanks to infor-

mation provided by scip

Primal Heuristics Description

109

27 alns Adaptive large neighborhood search heuristic that orches-
trates popular LNS heuristics

28 intshifting LP rounding heuristic that tries to recover from intermediate
infeasibilities, shifts integer variables, and solves a final LP
to calculate feasible values for continuous variables

29 oneopt improvement heuristic that alters single variable values
30 randrounding randomized LP rounding heuristic which also generates

conflicts via an auxiliary probing tree
31 rens heuristic that finds the optimal rounding to a given point
32 rounding rounding heuristic that tries to recover from intermediate

infeasibilities
33 shifting LP rounding heuristic that tries to recover from intermediate

infeasibilities and shifts continuous variables

Separators Description
33 aggregation flow cover and complemented mixed integer rounding cuts

separator
34 mcf multi-commodity-flow network cut separator
35 mixing mixing/star inequality separator
36 rlt separator for cuts generated by Reformulation-Linearization-

Technique

Bibliography

(2000), «Progress in Linear Programming-Based Algorithms for Integer Programming:
An Exposition», INFORMS J. on Computing, vol. 12 (1), p. 2–23.

ACHTERBERG, T., BERTHOLD, T. e HENDEL, G. (2012), «Rounding and Propaga-
tion Heuristics for Mixed Integer Programming», in KLATTE, D., LÜTHI, H.-J. e
SCHMEDDERS, K., curatori, «Operations Research Proceedings 2011», p. 71–76,
Springer Berlin Heidelberg, Berlin, Heidelberg. (Cited at page 46)

ACHTERBERG, T., BERTHOLD, T., KOCH, T. e WOLTER, K. (2008), «Constraint
Integer Programming: A New Approach to Integrate CP and MIP», in «Inte-
gration of AI and OR Techniques in Constraint Programming», URL https:
//api.semanticscholar.org/CorpusID:6951394.

ATAMTÜRK, S. M. W. P., ALPER (2005), «Integer-Programming Software Sys-
tems», Annals of Operations Research, URL https://doi.org/10.1007/
s10479-005-3968-2.

BERTHOLD, T. e HENDEL, G. (2015), «Shift-and-Propagate», Journal of Heuristics,
vol. 21, p. 73–106, URL https://api.semanticscholar.org/CorpusID:
209833456. (Cited at page 44)

BERTHOLD, T., LODI, A. e SALVAGNIN, D. (2019), «Ten years of feasibility
pump, and counting», EURO Journal on Computational Optimization, vol. 7 (1),
p. 1–14, URL https://www.sciencedirect.com/science/article/pii/
S219244062100109X. (Cited at page 43)

BESTUZHEVA, K., BESANÇON, M., CHEN, W.-K., CHMIELA, A., DONKIEWICZ, T.,
VAN DOORNMALEN, J., EIFLER, L., GAUL, O., GAMRATH, G., GLEIXNER, A.,
GOTTWALD, L., GRACZYK, C., HALBIG, K., HOEN, A., HOJNY, C., VAN DER HULST,
R., KOCH, T., LÜBBECKE, M., MAHER, S. J., MATTER, F., MÜHMER, E., MÜLLER,
B., PFETSCH, M. E., REHFELDT, D., SCHLEIN, S., SCHLÖSSER, F., SERRANO, F.,
SHINANO, Y., SOFRANAC, B., TURNER, M., VIGERSKE, S., WEGSCHEIDER, F.,
WELLNER, P., WENINGER, D. e WITZIG, J. (2023), «Enabling Research through the
SCIP Optimization Suite 8.0», ACM Trans. Math. Softw., vol. 49 (2), URL https:
//doi.org/10.1145/3585516. (Cited at page 51)

111

https://api.semanticscholar.org/CorpusID:6951394
https://api.semanticscholar.org/CorpusID:6951394
https://doi.org/10.1007/s10479-005-3968-2
https://doi.org/10.1007/s10479-005-3968-2
https://api.semanticscholar.org/CorpusID:209833456
https://api.semanticscholar.org/CorpusID:209833456
https://www.sciencedirect.com/science/article/pii/S219244062100109X
https://www.sciencedirect.com/science/article/pii/S219244062100109X
https://doi.org/10.1145/3585516
https://doi.org/10.1145/3585516

112 BIBLIOGRAPHY

BRUNO, G., GENOVESE, A. e PICCOLO, C. (2014), «The capacitated Lot Sizing
model: A powerful tool for logistics decision making», International Journal of
Production Economics, vol. 155, p. 380–390, URL https://www.sciencedirect.
com/science/article/pii/S0925527314000887, celebrating a century of
the economic order quantity model.

COOK, W. J., CUNNINGHAM, W. H., PULLEYBLANK, W. R. e SCHRIJVER, A.
(1998), Combinatorial optimization, John Wiley & Sons, Inc., USA, URL https:
//onlinelibrary.wiley.com/doi/book/10.1002/9781118033142.

GAMRATH, G., BERTHOLD, T., HEINZ, S. e WINKLER, M. (2019), «Structure-driven
fix-and-propagate heuristics for mixed integer programming», Mathematical Pro-
gramming Computation, vol. 11 (4), p. 675–702. (Cited at page 42)

ILYAS HIMMIC, N. E. H. I. E. H. A. M. F. S., EL MEHDI ER RAQABI (2023), «MILPS:
An Automatic Tuner for MILP Solvers», Computers and Operations Research. (Cited
at page 33)

IOMMAZZO, G., D’AMBROSIO, C., FRANGIONI, A. e LIBERTI, L. (2020), «A Learning-
Based Mathematical Programming Formulation for the Automatic Configuration
of Optimization Solvers», in «Machine Learning, Optimization, and Data Science:
6th International Conference, LOD 2020, Siena, Italy, July 19–23, 2020, Revised
Selected Papers, Part I», p. 700–712, Springer-Verlag, Berlin, Heidelberg, URL
https://doi.org/10.1007/978-3-030-64583-0_61. (Cited at page 33)

J.T.LINDEROTH e M.W.P.SAVELSBERGH (1998), «A Computational Study of Search
Strategies for Mixed Integer Programming», .

MARTIN, A. (2001), General Mixed Integer Programming: Computational Issues for Branch-
and-Cut Algorithms, p. 1–25, Springer Berlin Heidelberg, Berlin, Heidelberg, URL
https://doi.org/10.1007/3-540-45586-8_1.

NADDEF, D. e RINALDI, G. (2002), 3. Branch-And-Cut Algorithms for the Capaci-
tated VRP, p. 53–84, URL https://epubs.siam.org/doi/abs/10.1137/1.
9780898718515.ch3.

WALLACE, C. (2010), «ZI Round, a MIP Rounding Heuristic», Journal of
Heuristics, vol. 16 (5), p. 715–722, URL https://doi.org/10.1007/
s10732-009-9114-6. (Cited at page 45)

Websites consulted
• Wikipedia – www.wikipedia.org

• SCIP Optimization Suite – https://scipopt.org/

• OMPartners – https://omp.com/solution

https://www.sciencedirect.com/science/article/pii/S0925527314000887
https://www.sciencedirect.com/science/article/pii/S0925527314000887
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118033142
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118033142
https://doi.org/10.1007/978-3-030-64583-0_61
https://doi.org/10.1007/3-540-45586-8_1
https://epubs.siam.org/doi/abs/10.1137/1.9780898718515.ch3
https://epubs.siam.org/doi/abs/10.1137/1.9780898718515.ch3
https://doi.org/10.1007/s10732-009-9114-6
https://doi.org/10.1007/s10732-009-9114-6
www.wikipedia.org
https://scipopt.org/
https://omp.com/solution

BIBLIOGRAPHY 113

• Applied Mathematical Programming – http://web.mit.edu/15.053/www/
AppliedMathematicalProgramming.pdf

• Branch-and-Cut algorithm – https://coral.ise.lehigh.edu/~ted/files/
computational-mip/lectures/Lecture12.pdf

Heuristics File References
• Heuristic locks.h File Reference –https://www.scipopt.org/doc/html/
heur__locks_8h.php

• Heuristic feaspump.h File Reference – https://www.scipopt.org/doc/
html/heur__feaspump_8h.php

• Heuristic zirounding.h File Reference – https://www.scipopt.org/doc/
html/heur__zirounding_8h.php

• Heuristic zeroobj.h File Reference – https://www.scipopt.org/doc/html/
heur__zeroobj_8h.php

• Heuristic shiftandpropagate.h File Reference – https://www.scipopt.org/
doc/html/heur__shiftandpropagate_8h.php

• Heuristic shifting.h File Reference – https://www.scipopt.org/doc/html/
heur__shifting_8h.php

• Heuristic oneopt.h File Reference – https://www.scipopt.org/doc/html/
heur__oneopt_8h.php

• Heuristic adaptivediving.h File Reference – https://www.scipopt.org/
doc/html/heur__adaptivediving_8h.php

• Heuristic alns.h File Reference – https://www.scipopt.org/doc/html/
heur__alns_8h.php

• Heuristic clique.h File Reference – https://www.scipopt.org/doc/html/
heur__clique_8h.php

• Heuristic oneopt.h File Reference – https://www.scipopt.org/doc/html/
heur__oneopt_8h.php

• Heuristic randrounding.h File Reference – https://www.scipopt.org/
doc/html/heur__randrounding_8h.php

• Heuristic trivial.h File Reference – https://www.scipopt.org/doc/html/
heur__trivial_8h.php

• Heuristic rounding.h File Reference – https://www.scipopt.org/doc/
html/heur__rounding_8h.php

http://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf
http://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf
https://coral.ise.lehigh.edu/~ted/files/computational-mip/lectures/Lecture12.pdf
https://coral.ise.lehigh.edu/~ted/files/computational-mip/lectures/Lecture12.pdf
https://www.scipopt.org/doc/html/heur__locks_8h.php
https://www.scipopt.org/doc/html/heur__locks_8h.php
https://www.scipopt.org/doc/html/heur__feaspump_8h.php
https://www.scipopt.org/doc/html/heur__feaspump_8h.php
https://www.scipopt.org/doc/html/heur__zirounding_8h.php
https://www.scipopt.org/doc/html/heur__zirounding_8h.php
https://www.scipopt.org/doc/html/heur__zeroobj_8h.php
https://www.scipopt.org/doc/html/heur__zeroobj_8h.php
https://www.scipopt.org/doc/html/heur__shiftandpropagate_8h.php
https://www.scipopt.org/doc/html/heur__shiftandpropagate_8h.php
https://www.scipopt.org/doc/html/heur__shifting_8h.php
https://www.scipopt.org/doc/html/heur__shifting_8h.php
https://www.scipopt.org/doc/html/heur__oneopt_8h.php
https://www.scipopt.org/doc/html/heur__oneopt_8h.php
https://www.scipopt.org/doc/html/heur__adaptivediving_8h.php
https://www.scipopt.org/doc/html/heur__adaptivediving_8h.php
https://www.scipopt.org/doc/html/heur__alns_8h.php
https://www.scipopt.org/doc/html/heur__alns_8h.php
https://www.scipopt.org/doc/html/heur__clique_8h.php
https://www.scipopt.org/doc/html/heur__clique_8h.php
https://www.scipopt.org/doc/html/heur__oneopt_8h.php
https://www.scipopt.org/doc/html/heur__oneopt_8h.php
https://www.scipopt.org/doc/html/heur__randrounding_8h.php
https://www.scipopt.org/doc/html/heur__randrounding_8h.php
https://www.scipopt.org/doc/html/heur__trivial_8h.php
https://www.scipopt.org/doc/html/heur__trivial_8h.php
https://www.scipopt.org/doc/html/heur__rounding_8h.php
https://www.scipopt.org/doc/html/heur__rounding_8h.php

	Index
	Glossary
	List of symbols
	I Theoretical Setting
	Introduction
	OMPartners supply chain planning solution
	OMPartners
	Field of action
	Solution
	Work teams
	Experience

	From the birth of linear programming to B&B
	Linear Programming
	Duality

	Combinatorial Optimization and Integer Linear Programming
	Discrete optimization
	Relaxations and Bounds

	Branch-and-Bound
	Preprocessing
	Branching

	Branch-and-Cut
	Managing the LP relaxations

	The capacitated Lot Sizing Model
	Mathematical models for Lot Sizing problems
	Logistics applications
	Lot sizing model under study

	Parameter Configuration Problem
	Automatic Parameter Tuning
	Manual Parameter Tuning with Scip Optimization Suite
	Branch-and-Bound in SCIP
	Using SCIP

	Focusing on Primal Heuristics
	Locks
	Feasibility Pump
	Shift and Propagate
	Zirounding
	Intshifting

	II Experiments
	Analysis
	Presolving
	Primal Heuristics and Separation configuration search

	Conclusions

	III Final Considerations
	Running on OMP application
	Tables
	Supporting Data
	Additional Data
	PingPong
	PingPong10
	PingPong100
	PingPong200 and PingPong1000

	Definitions
	Bibliography
	Indice analitico

