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Abstract

The heart is a complex organ with multiple structures. It is divided into four
chambers, left and right ventricles, and left and right atriums. Although multiple
ways can be used to image the heart structures, using UltraSound (US) rays in
echocardiography is considered the most economic solution, and yet a great tool that
can be used to perform early detection of many hearts malfunctions.
Performing semantic segmentation on echocardiography images is an important step
to evaluate the function of the heart. If done manually, it requires both time and
experience and is highly prone to error. Thus, an automatic semantic segmentation
procedure may be necessary, but it is still challenging due to the low Signal-to-Noise
Ratio (SNR) of the US images and the wide range of patient characteristics.
Conventional image segmentation methods, such as edge detection, contour and shape
detection, and deformable models, were used to deal with this problem, but with
the advancement of deep learning techniques especially convolution neural networks,
a lot of researchers tried to create a deep learning module to perform an accurate
semantic segmentation of the echocardiography images.
In this thesis, a Convolutional Neural Network (CNN) system based on the YOLOv7
algorithm and U-Net architecture was proposed to automate the segmentation of
the Left Ventricular endocardium (LVendo), Left Ventricular epicardium (LVepi) and
Left Atrium (LA). The system was trained and tested on the Cardiac Acquisitions
for Multi-structure Ultrasound Segmentation (CAMUS) dataset, which consists of
clinical exams from 500 patients, acquired at the University Hospital of St Etienne
(France), for each patient, exists two views of Apical two champers view (A2C) and
Apical four champers view (A4C) during End-Systolic (ES) and End-Diastolic (ED)
events, this dataset was divided into training, validation and test sets.
One system was trained for both views, and The system was able to achieve Dice
Similarity Coefficient (DSC) of (91.42%, 85.3%, and 88.19%) for LVendo, LVepi and
LA segmentation respectively, and Hausdorff distance (HD) of (3.88 pixels, 4.96pixels,
and 4.00pixels) for LVendo, LVepi and LA segmentation respectively. To our knowledge,
our system is unique in the way that it implements the YOLO algorithm, and in
terms of evaluation metrics it achieved good results compared to the literature.
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Introduction

The human circulation system consists of the blood vessels, blood, and the heart,
which is a complex organ that plays the role of pumping blood and regulating its
pressure.
Like other organs in the human body, there are multiple ways to image the heart, and
each has its advantages and disadvantages, while magnetic resonance imaging (MRI)
consider the golden standard in terms of image quality, the US is much cheaper and
more accessible, and can image the heart from many angels giving many views each
has it diagnostical purposes.
In many clinical cases performing segmentation on these images is a crucial step,
usually, this is done manually, whereas an expert would perform it. However, this is
both time-consuming and subject to errors, in order to solve this, efforts are made to
automate this procedure.
These efforts are in two classes, traditional methods, and machine learning methods,
traditional methods use techniques like edge detection, i.e. robust methods that
rely on handcrafted features, which indeed succeed to a limit, the machine learning
methods appeared to exceed these limits, and proved itself to be the future of image
processing.
Due to limited resources, there was not much research on this particular topic. How-
ever, in 2019 a research team introduced a new dataset called CAMUS, consisting of
annotated echocardiography images, and launched a challenge to perform semantic
segmentation on it.
In this thesis, we introduce a system to perform semantic segmentation on echocardio-
graphy images, taken from the CAMUS dataset, to perform semantic segmentation of
the LV endocardium, the LV epicardium, and the LA, the system relied on machine
learning, and consists of two sequential steps, and evaluates the performance of our
system in terms of images segmentation evaluation metrics.
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Chapter 1

Anatomy and physiology of the human
heart

1.1 Introduction

The human circulation system consists of the heart, blood vessels, and blood, the
blood vessels circulate the entire human body, providing blood to its organs and
tissues. Blood carries oxygen and nutrients to all the parts of the body and carries
carbon dioxide and other waste materials away from tissues, while the heart plays
the role of pumping the blood and regulating its pressure. Figure 1.1 shows an
illustration of the human circulation system with its parts and connections to the
body organs.
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Figure 1.1: Human circulation system.

1.2 Anatomy of the human heart

1.2.1 Positioning

The human heart lies in the protective thorax, posterior to the sternum and costal
cartilage, it rests on the superior surface of the diaphragm, occupying a space between
the plural cavities called the (middle mediastinum), which can be defined as the
space inside the pericardium. It is located between the two lungs, which occupy the
lateral spaces, called the pleural cavities. The space between these two cavities is
referred to as the mediastinum, and it assumes an oblique position in the thorax,
with two-thirds to the left of the midline[1]. Figure 1.2 shows the position of the
heart inside the protective thorax and the surrounding tissues.
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1.2 Anatomy of the human heart

Figure 1.2: Position of the heart inside the protective thorax.

In a rare condition called "Dextrocardia", the Heart is located on the right side of
the thorax (Medial), which in itself does not provide any life-threatening and accords
only once in 12,000 pregnancies [2].

1.2.2 Shape and dimensions

The heart is a conical hollow muscular organ, measures (12cm x 8.5cm x 6cm), it
weighs around (280g - 340g) in males and (230g -280g) in females [3].

1.2.3 Structure

The heart is divided into right and left sections, each one has two sections called
chambers, in total the heart has four chambers:

• Right Ventricle:
The right ventricle (RV), is the most anteriorly positioned chamber, sitting
directly posterior to the sternum. Anteriorly, the RV is convex, with the
pericardium separating it from the thoracic wall[4]. RV is connected to the
pulmonary artery.

• Left Ventricle:
The left ventricle (LV), is situated posterior to the right ventricle, it has a
cone shape similar to the RV but more extensive and narrower, and its wall
is three times thicker than the walls of the RV with a typical thickness of
(12–15)mm, and this gets thinner as we approach the apex with the wall of
the apex measures only (1–2)mm thickness.[5], LV is connected to the aorta
which is the main artery that carries blood away from your heart to the rest
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of your body, and separating it from the RV is The "interventricular septum",
also known as the "ventricular septum", which is a triangular wall of cardiac
tissue that separates the left and right ventricles (i.e., the lower chambers) of
the heart. The entire interventricular septum can be further divided into two
parts: a muscular portion and a membranous portion.

• Right Atrium:
The right atrium (RA), is positioned anteriorly, located above the RV. and
separated from the LA by the interatrial septum. It can be described as
anterolateral to the right side of the left atrium. [6]. The main vessels entering
RA are the superior vena cava and the inferior vena cava

• Left Atrium:
The left atrium (LA), It has cuboidal-shaped and is housed at the base of
the heart, and is the most posterior of all the cardiac chambers. [6]. The
pulmonary veins enters the LA.

Figure 1.3 shows the chambers of the heart and the anatomical structures that
separate/connect them together.

Figure 1.3: Heart chambers.
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1.2.4 Valves

Valves are anatomical structures that maintain unidirectional blood flow, in another
word, it controls the flow of blood and make sure that it travels in one direction,
also it can open and close, which would stop the flow. There are four valves in the
human heart, two are between heart chambers called "atrioventricular valves", and
two between chambers and vessels called "semilunar valves", they are as follows:

• Tricuspid valve:
The tricuspid valve (TV), is located between the RV and the RA, it prevents
the blood from flowing back to the RA, typically composed of 3 leaflets of
unequal size. However, in some variants, it was found that two leaves or more
than three, these leaflets are referred to as the septal, anterior, and posterior
leaflets. [7]

• Mitral valve:
The mitral valve (MV) is also known as the bicuspid valve. It is located between
the LV and LA [8], preventing the blood from flowing back to the RA, It has
two leaflets, and the opening of the mitral valve is surrounded by a fibrous ring
known as the mitral annulus.

• Pulmonary Semilunar valve:
The pulmonary semilunar valve (PV), located between the RV and the pul-
monary artery, is composed of three valve leaflets, each attached to its respective
sinus, which prevents the blood from flowing back to the RV[8].

• Aortic Semilunar valve:
The aortic semilunar valve (AV), located between the LV and the aorta, is
similar to the PV as it is also composed of three valve leaflets[8].

These valves are shown in Figure 1.4.
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Figure 1.4: Heart valves.

1.2.5 Layers of the walls

The heart wall consists of three layers: the endocardium, myocardium, and epicardium.
as shown in Figure 1.5.
The endocardium: is the thin membrane that lines the interior of the heart, while,
the myocardium: is the middle layer of the heart. It is the heart muscle and is the
thickest layer of the heart, and the epicardium: is a thin layer on the surface of the
heart in which the coronary arteries lie. The covering that directly surrounds the
heart and defines the pericardial cavity is called the pericardium or pericardial sac.
It also surrounds the “roots” of the major vessels or the areas of closest proximity to
the heart. The pericardium, which literally translates as “around the heart,” consists
of two distinct sublayers: the sturdy outer fibrous pericardium and the inner serous
pericardium. The fibrous pericardium is made of tough, dense connective tissue
that protects the heart and maintains its position in the thorax. The more delicate
serous pericardium consists of two layers: the parietal pericardium, which is fused
to the fibrous pericardium, and an inner visceral pericardium, or epicardium, which
is fused to the heart and is part of the heart wall. The pericardial cavity, filled
with lubricating serous fluid, lies between the epicardium and the pericardium. The
epicardium consists of a simple squamous epithelium called a mesothelium, reinforced
with loose, irregular, or areolar connective tissue that attaches to the pericardium.
This mesothelium secretes the lubricating serous fluid that fills the pericardial cavity
and reduces friction as the heart contracts. Figure 1.5 illustrates the pericardial
membrane and the layers of the heart[9].
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1.2 Anatomy of the human heart

Figure 1.5: Layers of the heart walls.

1.2.6 Conduction system

The heart is able to create its own electrical impulses and control the route the
impulses take via a specialized conduction pathway. This pathway consisted of five
elements:

• Sinoatrial node:
The sinoatrial node (SA): is a small, flattened, ellipsoid strip of specialized
cardiac muscle, it is 10 to 20mm long and 2 to 3mm wide and tends to
narrow caudally toward the inferior vena cava. It is located in the superior
posterolateral wall of the RA immediately below and slightly lateral to the
opening of the superior vena cava[10].

• Atrioventricular node:
The atrioventricular node (A-V) node is located in the posterior wall of the
RA immediately behind the TV, Morphologically, the A-V can be subdivided
into the lower nodal bundle and compact node (CN). From the lower nodal
bundle, the rightward inferior nodal extension spreads along the TV toward
the coronary sinus and the leftward nodal extension spreads from the CN along
the tendon of Todaro[11].

• Bundle of His:
The bundle of His is a bundle of specialized muscles for electrical conduction.

9
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• The left and right bundle branches:
The Bundle of His is divided into two branches, one to conduct the electrical
pulses to the LV, and the other for the RV.

• The Purkinje fibers:
Purkinje fibers (or Purkyne tissue) are located in the inner ventricular walls of
the heart, just beneath the endocardium.

Figure 1.6 shows the positions of these structures inside the heart.

Figure 1.6: Conduction system of the heart.

1.3 Heart physiology

1.3.1 Function

The heart has three main functions: moving blood throughout the body, controlling
the rhythm and speed of the Heart rate, and maintaining blood pressure. The three
functions are related and integrated together. The heart acts as the pump of the
blood circulation system, this function can be described using two separate parts:
systemic circulation which can be summarized as moving the oxygenated blood
from the lungs to the RV, then into LV, and from that to the body organs, and
pulmonary circulation which can be summarized as moving deoxygenated blood from
body organs to the RA, then into LA and from that to the lungs where it can be
oxygenated again, this is done during what is known as the heart cycle, which can
be divided into two periods: one during which the heart muscle relaxes and refills
with blood, called diastole, following a period of robust contraction and pumping of
blood, called systole.
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1.3.2 Mechanical events of cardiac cycle

The mechanical events during this cycle can be described as the following: The
Heart cycle starts with the contraction of the two ventricles, which happens almost
synchronously. As contraction starts in the ventricle, the blood pressure there grows
rapidly. At this stage, the AV is still closed because the pressure in the aorta exceeds
that in the ventricle. As the pressure in the ventricle grows larger than in the atrium
and, after a very short period of backward flow into the atrium, the mitral valve
closes. The valve closure is accompanied by a sound that is audible at the chest. It is
known clinically as the first heart sound. This sound marks the start of the systole,
which is the period of ventricular contraction. The pressure in the ventricle keeps
rising until it exceeds that in the aorta. During this phase, there is no change in
ventricular volume as there is no flux through the valves and the blood is effectively
incompressible. This phase is known as the isovolumetric period. When the pressure
in the ventricle exceeds that in the aorta the aortic valve opens. At this moment the
blood ejection into the systemic circulation starts. As the tension in the ventricle wall
falls, the ventricular pressure starts to decrease. The pressure gradient between the
ventricle and the aorta is reversed and flow starts to decelerate. After a short period
of backflow into the ventricle the aortic valve closes. This generates the second heart
sound, which marks the onset of the diastole. At this stage, all valves are closed and
a second isovolumetric period occurs during which the ventricular muscle relaxes and
the pressure in the ventricle decrease. At the same time, the pressure in the atrium
rises again as the left atrium is filled by the pulmonary venous system. When the
pressure in the atrium exceeds that of the ventricle the mitral valve reopens. At this
stage, the blood flow refills the ventricle. This process is initially passive, driven by
a pressure difference between the atrium and the ventricle (80% in volume). Then, it
becomes active as the atrium contracts and the atrial systole pushes the remaining
20% of blood volume. Shortly after that the ventricle contracts again, starting the
same cycle again. [8]

1.3.3 Electrical events of cardiac cycle

The SA node generates the rhythmic pulse through an action potential, i.e. an
electrochemical signal that propagates as a traveling wave along the neurons. The
pulse goes from the SA node to the atria and, through the internodal pathways, to
the AV node. There it is delayed to let the atria empty into the ventricles before
starting the ventricular contraction. From the AV node, the pulse moves through
the atrioventricular bundle, which splits into the right and left branches, reaching
the ventricles about 0.16s after the initial SA node impulse. The term used for the
release (discharge) of an electrical stimulus is "depolarisation", and the term for
recharging is "repolarization", which means the electrical events can be described as
three stages atrial depolarisation, ventricular depolarisation atrial, and ventricular
repolarization. The electrical events produced by the heart can be captured and
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recorded by using electrodes placed on the skin in specific places, this recording is
known as the "electrocardiogram" or "ECG", Figure 1.7 shows an ECG for a healthy
subject during one heart cycle

Figure 1.7: Electrocardiogram for a healthy subject during one cardiac cycle.

The first wave (P-wave) represents atrial depolarisation, in fact, the contraction
of the atriums is required to empty only around 30% of the blood which means
only a small muscle mass is required thus explaining the relatively lower voltage,
the flat line after the P wave (P-R segment) is because the stimulus is delayed in
the bundle of His, as the electrical stimulus passes from the bundle of His into the
bundle branches and Purkinje fibers, it causes the depolarisation of the ventricles,
and appeares on the ECG as the (QRS-complex), which can be further explained
as during Q wave the depolarisation is in the septum, while the R wave represents
the electrical stimulus as it passes through the main portion of the ventricular walls,
and S wave represents depolarisation in the Purkinje fibre. Both ventricles repolarise
before the cycle repeats itself and therefore the (T wave) is visible representing
ventricular repolarization. The U wave occurs when the ECG machine picks up the
repolarisation of the Purkinje fibers. However, it is very common not to see the
U-wave ECG.[12] The connection between the electrical and mechanical events can
be shown by the "Wiggers’ diagram" illustrated in Figure 1.8, the Figure shows the
cardiac cycle events occurring in the left ventricle. In the atrial pressure plot: wave
"a" corresponds to atrial contraction, wave "c" corresponds to an increase in pressure
from the mitral valve bulging into the atrium after closure, and wave "v" corresponds
to passive atrial filling [13].
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Figure 1.8: Wiggers diagram

1.3.4 Ejection fraction

Left ventricle ejection fraction or is the fraction of chamber volume ejected in systole
(stroke volume) in relation to the volume of the blood in the ventricle at the end of
diastole, where stroke volume is calculated as the difference between end-diastolic
volume and end-systolic volume, equation 1.1 describes how we can get this parameter
mathematically[14].

EF% =
(︃

EDV − ESV

EDV

)︃
∗ 100 (1.1)

EF corresponds to the ejection fraction represented as a percentage, EDV is the end
diastole volume, and ESV is the end-systole volume.
EF plays an important role in diagnosing early heart failure and in the assessment of
heart function overall. It can also be used as an assessment of global and segmental
left ventricular function: qualitative and quantitative [14].
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Chapter 2

Echocardiography

2.1 Introduction

The heart can be imaged by multiple methods, including magnetic resonance imaging
(MRI), computed axial tomography (CAT), catheterization laboratory (cath-lab), and
ultrasound. Although the MRI is considered the clinical gold standard for noninvasive
imaging in coronary heart disease [14], the ultrasound option or Echocardiography
is considerably faster and cheaper than other options as it uses non-ionizing rays
(compared to Xray used by CT and cath-lab), and non-invasive (compared to cath-
lab).

2.2 Physics of ultrasound imaging

US machines use mechanical natural aquatic waves, with a frequency of more than
20Khz which makes it not audible by humans hence the name (ultrasound). The
basic principle is the same as that used in radar and sonar and is similar to the
echo-location method of bats. An ultrasound machine will produce a mechanical
wave, this wave will pass through the tissue, suffering from refraction, transmission,
scattering from irregular boundaries, absorption, and diffraction. the part that will
reflect is detected by the machine and is used to generate the image.

2.2.1 Emission and receiving of ultrasound rays

Ultrasound waves are generated using piezoelectric crystals that, when electrical
impulses are applied, produce waves at frequencies determined by equation 2.1 [15].

f = t

2 (2.1)

Where f is the frequency generated by the crystal measured in hertz (Hz), t is the
thickness of the crystal measured in meters (m). The lower the ultrasound frequency,
the larger the penetration depth is reached but the less resolution it gives, while
higher frequency has less penetration depth and more resolution. The same crystals
are used to receive the reflected wave, i.e. it will transfer the mechanical waves
into an electrical signal, this is possible because the machines apply energy and,
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ultimately sound waves, in pulses [15]. The pulsatile nature of ultrasound waves
produced facilitates the emission and reception of sound waves, the time between
the beginning of one pulse and the beginning of the next pulse is called the pulse
repetition period (PRP) or it is represented as frequency we call pulse repetition
frequency (PRF) as shown in Figure 2.1.

Figure 2.1: Typical ultrasound wave showing the pulse, PRP, and PRF.

Crystals are packed inside what is called a "Transducer" which is the instrument
that controls emitting and receiving ultrasonic rays, different types of transducers
are used for different medical applications, this will be discussed later.

2.2.2 Acoustic imaging

The depth information is encoded in the time that an aquatic wave takes to travel
to a tissue an back to the transducer, hence the creation of an image relays on the
knowledge of the ultrasonic waves propogation speed inside a medium, i.e. the rate
at which waves pass through a medium. Table 2.1 shows the speed of sound in
different mediums [15].
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Table 2.1: Sound speed in different meduims.

Medium Speed [m/s]

Air 330

Fat 1450

Water 1480

Soft tissue 1540

Liver 1560

Blood 1500

Muscle 1600

Tendon 1700

Bones 3500

Propagation speed depends on the characteristics of the medium that waves are
traveling through and is independent of the frequency, as tissue density increases,
the propagation speed decreases, by contrast, the stiffer the tissue, the higher the
propagation speed.[15] As seen in Table 2.1 various tissues in the human body differ
from each other in terms of their specific speed of sound, when performing abdominal
scans, aberration distortions can become significant due to the change in the speed of
sound between connective tissues, fat layers, muscles, and abdominal organs, despite
this variation, clinical ultrasound scanners typically use an assumed speed of sound
(1540 m/s) for image reconstruction.

2.3 Imaging mode

Different types of ultrasound imaging are used in medicine.

2.3.1 Amplitude mode

Amplitude mode (A-mode) is the simplest type of ultrasound. A single transducer
scans a line through the body with the echoes plotted on screen as a function of
depth.

2.3.2 Brightness Mode

Brightness Mode (B-mode) is the most commonly used in medicine, an array of
transducers simultaneously scans a plane through the body that can be viewed as a
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two-dimensional image on the screen. Figure 2.2 shows a B-Mode obstetric b-mode
ultrasound image.

Figure 2.2: B-MODE ultrasound image.

2.3.3 Motion mode

Motion mode (M-mode), in which a rapid sequence of B-mode scans whose images
follow each other in sequence on screen enables doctors to see and measure a range of
motion, as the organ boundaries that produce reflections move relative to the probe.
it is very common to use it in cardiac applications. Figure 2.3 shows an M-Mode
cardiology ultrasound image.

Figure 2.3: M-Mode cardiology ultrasound image
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2.3.4 Doppler mode

This mode is used to measure the speed and direction of moving objects and plot it,
although, it is most commonly used to measure the speed of blood flow, it is can be
also used to measure the speed of tissue such as the tissue of the heart. This mode
depends on the Doppler effect: which is the change in frequency of a wave in relation
to an observer who is moving relative to the wave source. equation 2.2 describe this
shift [16]:

f0 = ν + νo

ν + νs
(2.2)

Where fo represents observer frequency of sound in (Hz) ,ν represents speed of sound
waves in (m/s),νo is observer velocity (m/s),νs is source velocity (m/s),and fs is
actual frequency of sound waves (Hz).

2.4 Types of transducers

Transducers can be categorized by the type of image they produce (1D, 2D, and 3D)
or by the invasion criteria (invasive like the vaginal probe or the transesophageal
probe (TEE) showed in Figure 2.4 and noninvasive).

Figure 2.4: TEE Transducer and its parts.

They can also be categorized by the shape and alignment of the piezoelectric
crystals array inside the transducer into:

2.4.1 Linear probes

Linear probe usually has a range of frequencies of (3˘12MHz), as its name suggests,
this type of transducer has a linear arrangement of individual transducer elements,
images from a linear array are generally rectangular, and the image width corresponds
to the width of the array, a set of adjacent elements is used to fire a single image line
or a portion thereof, its applications are small parts, superficial vascular, obstetrics
[17]
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2.4.2 Curved arrays probes

Curved arrays probes form sector images, because of the shape of the aperture,
a relatively wide image can be achieved using a smaller footprint aperture, scan
lines are no longer parallel to each other but form a fan beam arrangement with
field of view angles of up to 85◦, (150◦ for some endocavitary arrays). Typical
bandwidths range from 2–8 MHz, which is a lower range than for linear arrays since
this type of probe is intended for large penetration depths where frequency-dependent
attenuation prohibits very high frequencies, its applications are abdominal, obstetric,
transabdominal, transvaginal, transrectal, and pediatric imaging [17].

2.4.3 Phased array probes

Phased arrays are also designed to form sector images, but contrary to curved arrays,
where the natural shape of the physical aperture provides the basis for the sector
shape, phased arrays steer the beam to form the image, specific timing delays for the
sub-aperture can not only focus on a specified depth but also steer the beam in the
lateral direction, large fields of view can be achieved this way, but the development
of increased side and grating lobes is a trade-off. Anatomical locations with small
diameter access to larger distal regions can be imaged with this type of ultrasound
array, cardiac imaging typically relies on phased arrays due to acoustic shadowing
from the rib cage, where one needs to image between narrowly spaced ribs in order
to interrogate the much larger-sized heart chambers. Its applications are Cardiology,
liver, spleen, fontanelle, and temple [17]. Figure 2.5 shows the three different types
of probes.

Figure 2.5: (a): Linear, (b): Curved (c): Phased array probes.
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2.5 Echocardiography

Echocardiography is a type of medical imaging of the heart, using standard ultra-
sound or doppler ultrasound, it can be both invasive: known as a transesophageal
echocardiogram (TEE), and noninvasive which is known as transthoracic echocardio-
gram (TTE). The TTE usually uses a phased array probe, which produces different
2D images, these images depend on the location the probe is placed on which is
known as the window, each window has multiple views depending on the rotation of
the probe. These windows are in five categories:

2.5.1 Parasternal long axis window

The parasternal long axis (PSLA) window can show the structures of RV, LV, LA,
AV, MV, aorta (AO), and descending aorta pericardium (DA), Figure 2.6 shows an
illustration of this view.

Figure 2.6: Parasternal long axis.

2.5.2 Parasternal short axis window:

The parasternal short axis (PSSA) window has three main views:

• Mid-papillary view: which shows RV and LV structures.
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• Mitral valve view: which shows RV, LV, and MV: both anterior and posterior
leaflets structures.

• Aortic valve view: which shows RV, TV, AV, PV, right ventricular outflow
tract (RVOT), RA, and LA structures.

Figure 2.7 shows this window and the three different views.

Figure 2.7: Parasternal short axis window.

2.5.3 Apical window

The apical windows are some of the most important views to be able to obtain when
doing a hemodynamic assessment of the heart. This includes looking at diastolic
dysfunction, valvular regurgitation, cardiac output, etc. This window has multiple
views:

• Two chambers view (A2C): in which we can identify LV, anterior leaflet (AL),
posterior leaflet (PL), LA, left atrial appendage (LAA), abdominal aorta(Abd
Ao), and descending thoracic aorta (DTA) structures.

• Four chambers view (A4C): in which we can identify LV, interventricular
septum (IVS), RA, RV, AL, PL, septal leaflet (SL), TV, AV, interatrial septum
(IAS), LA, RA, right upper pulmonary vein (RUPV), and DTA structures.

• Five chambers view (A5C): in which we can identify LV, IVS, RA, RV, TV,
AV, IAS, LA, RA, Ao, and aortic root (AoR) structure.

• Three-Chamber View (A3C): in which we can identify LV, IVS, RA, RV, AL,
PL, SL, TV, AV, IAS, LA, RA, RUPV, and ascending aorta (AscAo) structure.

Figure 2.8 shows this window with its view.
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Figure 2.8: Apical window views.

2.5.4 Subcostal window

The subcostal window has the advantage of the absence of bone or lung tissue to
obstruct the view of the heart This window includes the following views:

• Four-chamber view: structures to identify in this view are RV, LV, AL, PL, SL,
LA, RA, IAS, pericardium PC, TV, MV, and anterolateral papillary muscle
(ALPM).

• Short-axis view: structures to identify in this view are Hepatic Vein(HV), IVC,
RV, TV, SL, and RA.

• Vena cava view: which shows Abd-Ao.

Figure 2.9 shows the different views of this window.

23



Chapter 2 Echocardiography

Figure 2.9: (a): Four-chamber, (b): Short axis, (c): Vena cava.

2.5.5 Suprasternal window

The suprasternal window is located in the jugulum right on top of the sternum
(suprasternal notch), this window is rarely used by cardiologists, but it can be quite
useful for specific situations, such as measuring the width of the aortic arch, looking
for aortic dissection or coarctation, assessing retrograde flow in the DA (using color
Doppler) or when quantifying aortic regurgitation. Figure 2.10 describes this window.

Figure 2.10: Suprasternal window.
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Machine learning and computer vison

3.1 Introduction

Digital processors deal with images as an array of values called pixels - a combination
between the word picture and cell - i.e. a computer can’t really see as an image
as it is just a collection of numbers, this was the motivation behind developing a
new field in computer science called computer vision, this field can be defined as an
interdisciplinary scientific field that deals with how computers can gain high-level
understanding from digital images or videos, from the perspective of engineering, it
seeks to understand and automate tasks that the human visual system can do [18].
Much work has been done to develop this field and with the development of machine
learning and deep learning the intersection between the two fields gave great tools,
such as convolutional neural networks. Many subjects can be listed under computer
vision, such as feature extraction, and image classification.

3.2 Image segmentation

An image is a collection measurement in 2D space or 3D space, these measurements
can be acquired in the continuous domain (a medical example would be Xray films)
or in discrete space which gives us digital images, the process in which the digital
image can be divided into regions that share some characteristic such as intensity or
texture is called image segmentation i.e. If an image is the set I the segmentation
problem is to determine set Sk where it satisfy equation 3.1

I =
K⋃︂

k=1
Sk (3.1)

If the process is considered with only assigning a label (or class) to each pixel the
problem is known as semantic segmentation, but if the problem is to separate labels
for different instances of the same class, the problem becomes instance segmentation,
figure 3.1[19] shows the differences between the two problems. In other words,
semantic segmentation would identify the pixels which belong to the class of cells.
However, instance segmentation will determine which pixels belong to each "cell"
instance.
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Figure 3.1: Instance segmentation and semantic segmentation.

3.3 Object detection

Object detection can be defined as detecting instances of semantic objects of a certain
class, the main difference between it and image segmentation, is that finds bounding
boxes around objects and classifies them. Figure 3.2 shows an object detection
example in a CT scan to detect the liver and spine, it shows the bounding boxes
around the detected regions.

Figure 3.2: Object detection in CT image.
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3.4 Evaluation metrics in image segmentation

When developing an algorithm to perform semantic image segmentation it is crucial
to define quantitative metrics to evaluate the performance of the algorithm. The
following describes some of these metrics:

3.4.1 Pixel accuracy

Pixel accuracy is described as the ratio of the truly predicted pixels to the number
of all pixels, This metric is very problematic to use when there is a class unbalanced,
an example is given in Figure 3.3, the problem is trying to segment the tumor in a
CT scan image, as the tumor ratio is only 2% from the whole image, an algorithm
which considers the whole image as background would still have an accuracy of 98%.

Figure 3.3: Brain tumor in CT image - Left shows the original CT image, right the
ground truth mask for the tumor segmentation.

3.4.2 Jaccard’s similarity coefficient

Jaccard’s similarity coefficient (JSC), which is also known as Intersection over Union
or (IoU), in statistics compares members for two sets to see which members are
shared and which are distinct. It’s a measure of similarity for the two sets of data,
its value is between 0 and 1, equation 3.2 describes how to calculate this index for
two sets of numbers (A) and (B):

JSC = |A ∩ B|
|A ∪ B|

(3.2)
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In image segmentation, JSC is the area of overlap between the predicted segmentation
and the ground truth divided by the area of union between the predicted segmentation
and the ground truth, for binary classification (There are only two classes) JSC can
be described by equation 3.3

JSC = TruePositive

TruePositive + FalsePositive + TrueNegative
(3.3)

3.4.3 Dice similarity coefficient

Simply put, the dice similarity coefficient (DSC) is very similar to JSC it only doubles
the counts for intersection (true positive), as described in equation 3.4.

DSC = 2 ∗ TruePositive

2 ∗ TruePositive + FalsePositive + TrueNegative
(3.4)

3.4.4 Hausdorff distance

The average Hausdorff distance (HD) between two finite point sets S and L is defined
in equation 3.5.

HD95th = max{Kth
s∈S min

g∈G
∥ S − L ∥, Kth

s∈S min
g∈G

∥ L − S ∥} (3.5)

3.4.5 Mean absolute distance

Let Yi and Xi denote the ith contour point from the segmented contour and the
ground truth, respectively, after equally spaced sampling. The Mean absolute distance
(MAD) is defined as in equation 3.6.

MAD = 1
n

n∑︂
i=1

(||Xi − Yi||) (3.6)

3.4.6 Center of mass distance

The center of mass distance (CMD) is the euclidean distance between the center of
the mass of the ground truth mask and the center of mass of the predicted mask.

3.5 Deep learning

Deep learning methods are learning methods with multiple levels of representation,
achieved by assembling simple but non-linear modules, each of which converts the
representation at one level (starting from the raw input) into a representation at
a higher, slightly more abstract level, by assembling a sufficient number of such
transformations, very complex functions can be learned [20]. Deep learning can be
"supervised", "semi-supervised", and "unsupervised", it can be used to solve regression,
classification problems, clustering and other problems,
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3.5.1 Artificial neuron

An artificial neuron is the base structure for an artificial neural network (ANN),
loosely modeled by the neurons in a biological brain. The simplest neuron is modeled
after McCulloch-Pitts neurons, which was published in 1943 [21], the neuron has
inputs and an output, and it consists of a linear part, followed by a nonlinearity, as
shown in Figure 3.4.

Figure 3.4: McCulloch-Pitts Neuron.

The input is processed in the neuron as shown in equation 3.7.

Yk = ϕ(
∑︂

n

xn ∗ Wkn + bk) (3.7)

Wkn is called weights, and the function ϕ is called the activation function.

Activation functions

There are many choices of the activation function used by artificial neural networks:

• Step function: This was one of the earliest functions used in ANN, equation 3.8
describes this function, and it is useful to use in binary classification problems.
However, the problem is the derivative of the step function is 0, which is a
problem with training algorithms, Figure 3.5 shows the plot of the function.

f(x) =

⎧⎨⎩0 x < 0
1 x > 1

(3.8)
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Figure 3.5: Step function.

• Sigmoid function: A sigmoid function is a bounded, differentiable, real function
that is defined for all real input values and has a non-negative derivative at
each point, equation 3.9 describes this function where e is Euler’s number, and
Figure 3.6 shows the plot of the function.

f(x) = 1
1 + e−x

(3.9)

Figure 3.6: sigmoid function.

• Softmax function: This function converts a vector of real numbers into a
probability distribution of possible outcomes, very useful in the case of multi-
class classification. equation describes this function.

f(xi) = exp(xi)∑︁
j exp(xj) (3.10)
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• Rectified Linear Unit (ReLU) function: This is a piecewise linear function
that will output the input directly if it is positive, otherwise, it will output
zero. It has become the default activation function for many types of neural
networks because a model that uses it is easier to train and often achieves
better performance, equation 3.11 describes this function, and Figure 3.7 shows
the plot of the function.

f(x) = max(0, x) (3.11)

Figure 3.7: Rectified linear unit function.

• MISH function: It was proposed in 2020 [22], and it aimed on solving some of the
problems which ReLU had, such as Dying ReLU, which is experienced through
a gradient information loss caused by collapsing the negative, mathematically
described in equation 3.12, while Figure 3.8 shows its plot.

f(x) = x. tanh((ln(1 + ex))) (3.12)

31



Chapter 3 Machine learning and computer vison

Figure 3.8: MISH function

3.5.2 Artificial neural network

Artificial Neural network (ANN) is a computation system inspired by the human
brain to solve complex problems, it consists of connected Artificial Neurons, and
traditional ANN can be modeled as shown in Figure 3.9, as it has an input layer, an
output layer and hidden layers between them. Cybenko et. al (1989) [23] proved that
a multilayer ANN with 1 hidden layer is a universal approximator of any continuous
function defined on a compact subset of RP . This is a useful theorem but it does
not explain how many units are needed nor how should the weights be chosen.

Figure 3.9: Traditional neural network.

This structure is quite useful for many applications, but when it comes to dealing
with raw images as input, the computational complexity becomes very high. As an
alternative to this structure, in 1980 Fukushima et. al [24] proposed a structure to
extract features from the images, and in 1998 Lecun et. al [25] proposed the name
"Convolutional neural network", and in 2012, the winner of ImageNet challenge used
CNN, known as AlexNet [26], which reduced the error from 25.8% to 16.4%, finally
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in 2015 CNN exceeded human accuracy in a classification where it is estimated that
human performance has around 5.1% of error while CNN achieved an error rate of
3.57% [27]. Usually, CNN architecture has multiple different layers, that has different
working principle.

Convolutions layers

Convolutions Layers are the most important layer, as they are the main building
block of a CNN, it was inspired by that of the visual nervous system of vertebrates,
the layer has a set of filters (or kernels) with a fixed size, and trainable weights, and
this filter scans the entire image using a step called "stride". Assuming the network
received an image A(m−1) with Km channels as an input, the output A(m) will have
Om channels, where Om is equal to the number of kernels the layer has, equation
3.13 explain it mathematically [26].

A(m)
o = gm

∑︂
k

W (m)
o k ∗ Am−1

k + b(m)
o (3.13)

where W
(m)
ok is matrix of shape PmÖQm and b

(m)
o ∈ R. The matrix W

(m)
ok parameter-

izes a spatial filter that the layer can use to detect or enhance some feature in the
incoming image. Figure 3.10 shows an example of a kernel of size 3X3 when applied
to an image.

Figure 3.10: Convolutions Layer with a kernel size 3x3

Pooling layer

Pooling layers of a CNN implement a spatial dimensionality reduction operation
designed to reduce the number of trainable parameters for the next layers and allow
them to focus on larger areas of the input pattern. This reduction could be carried
out by using functions such as max, or averages. Pooling layers’ parameters are not
trainable.
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Dropout layer

Dropout was proposed by Hinton et al. (2012)[26] as a form of regularization for
fully connected neural network layers. Each element of a layer’s output is kept with
probability p, otherwise is set to 0 with probability (1 − p). Extensive experiments
show that dropout improves the network’s generalization ability, giving improved
test performance.

Batch normalization layers

Batch normalization layers are built upon the idea that for every neuron (activation)
in a particular layer, we can force the pre-activations to have zero mean and unit
standard deviation, this can be achieved by subtracting the mean from each of the
input features across the mini-batch and dividing by the standard deviation. This
layer has two trainable parameters, an offset factor α and a scaling factor γ.

Transposed convolutional layer

Transposed convolutional layers are supposed to reverse the operation of a convolution
layer, i.e. it will expand the size of the feature map, they are different from upsampling
because they have trainable weights, and they work in a manner very similar to the
convolutional neural networks.

3.5.3 Training artificial neural network

Training a network is the process to adjust the weights in order to minimize the
error between the predicted output and the true output. Many algorithms were
developed to achieve this purpose, in which the error is measured by what we call a
loss function, there are many available loss functions that have different advantages
depends on the problem and the nature of the data.

Dice Loss function

It depends on the dice similarity coefficients, mathematically it can be expressed by
equation 3.14.

L = 1 − D (3.14)

Where D is the dice similarity coefficient described in equation 3.4.

Cross categorical entropy

In binary classification, where the number of classes M equals 2, Binary Cross-Entropy
(BCE) can be calculated as described in equation 3.15

BCE = −(y log(p) + (1 − y) log(1 − p)) (3.15)
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If M > 2 (i.e. multiclass classification), we calculate a separate loss for each class
label per observation and sum the result, as explained in equation 3.16

MCCE = −
M∑︂

c=1
yo,c log(po,c) (3.16)

Where M represents the number of classes, log is the natural log, y is a binary
indicator (0 or 1) if class label c is the correct classification for observation o, and p

represents predicted probability observation, and o is of class c.

3.5.4 Over-fitting

One of the problems of training any supervised machine learning model is overfitting,
in which the Model does not generalize well from observed data to unseen data,
in another word, the model becomes specifically designed for the data used in the
training procedure. The causes of this phenomenon might be complicated, generally,
we can categorize them into three kinds:

• noise learning on the training set: when the training set is too small in size or
has less representative data or too many noises.

• hypothesis complexity: the trade-off in complexity, a key concept in statistic
and machining learning, is a compromise between variance and bias.

• multiple comparisons procedures which are ubiquitous in induction algorithms,
as well as in other artificial intelligence (AI) algorithms.

One method to solve this problem is to identify when to stop training, this is usually
done by dividing the training set into two sets, the training set that is used to train
the model and the validation set which is used to track the performance of the model
during training when the model tends to fit the training i.e. the loss function for the
training set starts to decay while the loss function for the validation set is increasing,
the training should be stopped by that moment, which is known as "early stop"[26],
figure 3.11 shows the position of this point, stopping before it is underfitting, and
after it is overfitting.
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Figure 3.11: Overfitting and early stop point.

3.5.5 Fully convolutional network

A fully Convolutional Network (FCN), is a class of artificial neural network ar-
chitecture, mainly used for semantic segmentation, as it takes an image with an
arbitrary size and produces an image with the same size. Usually, FCN consists of a
downsampling path, used to extract and interpret the context, and an upsampling
path, which allows for localization [28]. Figure 3.12 shows an FCN archetechture.

Figure 3.12: Fully connected network.

Later the concept was developed with the idea of skip connection, which as the
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name suggests skips some of the layers in the neural network and feeds the output
of one layer as the input to the next layers, which gave the architectures known as
FCN8, FCN16, and FCN32. The three architectures share the same down-sampling
path (known as encoder), but a different upsampling path, as shown in Figure 3.13
FCN-32s: Upsamples at stride 32, predictions back to pixels in a single step (Basic
layer without any skip connections) FCN-16s: Combines predictions from both the
final layer and the pool4 layer with stride 16, finer details than FCN-32s. FCN-8s:
Adds predictions from pool3 at stride 8, providing even further precise boundaries.

Figure 3.13: Fully connected Network 8, 16, and 32

3.5.6 UNET architecture

UNET structure was proposed by Krizhevsky et. al (2015) [26] for biomedical image
segmentation, this model was built upon the before mentioned FCN model using an
encoder and a symmetric upsampling path (or decoder), this decoder has the same
shape as the encoder but in reverse, which give the network a shape like the letter U,
hence the name, the skip connections are used after every pooling layer except the
last one. Figure 3.14 shows the architecture of the proposed UNET by Krizhevsky
et. al (2015) [26].
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Figure 3.14: U-net architecture (example for 32x32 pixels in the lowest resolution)

This architecture has advantages over FCN, it performs better even with a small
training set, and the skip connections help to further localize the higher features.

3.5.7 Object detection algorithm

You Only Look Once (YOLO) algorithm proposes the use of an end-to-end neural
network that makes predictions of bounding boxes and class probabilities all at once.
YOLO algorithm employs CNN to detect objects in real-time. As the name suggests,
the algorithm requires only a single forward propagation through a neural network
to detect objects, which makes it faster than other algorithms. YOLO has three
important features most important is speed, this algorithm improves the speed of
detection because it can predict objects in real time, high accuracy where YOLO is a
predictive technique that provides accurate results with minimal background errors,
and learning capabilities because The algorithm has excellent learning capabilities
that enable it to learn the representations of objects and apply them in object
detection.

Working principle

YOLO algorithm aims to predict four different values about the class:

• Coordinates of the center of the bounding box (bx, by).

• High of the bounding box.
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• Width of the bounding box.

• Class of the Object c.

• The probability of the prediction PC .

Because of this, YOLO expects the data to be prepared during training in the shape
of images for the input and XML files that contain the required information about
the bounding boxes in that image, where the coordination should define the center
coordinates, high and width, and the class of that bounding box, all these values
should be scaled to be between 0 and 1 considering the upper left corner as the
origin, as shown in Figure 3.15.

Figure 3.15: YOLO bounding box annotation system.

First, the image is divided into various grids, each grid has a dimension of SxS.The
algorithm need to generate a vector for each cell in the form described in 3.17.

Cn,m = (P 1
C , B1

x, B1
y , B1

w, B1
h, P 2

C , B2
x, B2

y , B2
w, B2

h, C1, C2) (3.17)

Where C1 and C2 are binary values referes to the class of the image, the vector can
have as many Cn values as the classes in the dataset. Training this architecture
requires a loss function, which we define as if the cell i predicts class probabilities
p̂i(aeroplane), p̂i(bicycle)... and the bounding box x̂i, ŷi, ŵi, ĥi then our full loss
function for an example is given by equation 3.18:

n∑︂
i=0

(︃
λ1obj

i

(︁
(xi−x̂i)2+(yi−ŷi)2+(

√
wi−

√︁
ŵi)2+(

√︁
hi−

√︂
ĥi)2)︁

+
∑︂

c∈classes
(pi(c)−p̂i(c))2

)︃
(3.18)

Where 1
obj
i encodes whether any object appears in cell i. Note that if there is

no object in a cell the algorithm does not consider any loss from the bounding box
coordinates predicted by that cell. In this case, there is no ground truth bounding
box so we only penalize the associated probabilities with that region. One issue that
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might happen is when the algorithm predicts several bounding boxes for one class, a
solution could be selecting only one box per class, that has the highest probability,
but what if there are more objects of one class on the image, because of that, YOLO
uses a non-max suppression algorithm, where it takes the boxes with the maximum
probabilities, and compares the box with all other boxes of that particular class using
IoU, if the IoU is higher than the predefined threshold (for example 0.5), then the
box with a smaller probability is suppressed or excluded. It means that two boxes
with high IoU values probably indicate the same object on the image, so it excludes
the box with a lower probability. This process is repeated until all boxes are taken
as object prediction or excluded. The CNN used in the original YOLO is shown in
Figure 3.16

Figure 3.16: YOLO architecture.

This was the first version of YOLO presented by Nekrasov et. al (2016) [28] known
as YOLOv1, There were many improvements over the years on the algorithm, in
YOLOv2 for example instead of making arbitrary guesses on the boundary boxes,
in YOLO v2 authors defined 5 anchor boxes with predefined width and height. To
identify the most appropriate dimension of the boxes, k-means clustering is used on
the dimensions of bounding boxes from the data set, with distance metric based on
IoU [28], the later versions kept improving the accuracy and the performance.
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Literature review

4.1 Introduction

Researchers have been trying to perform semantic segmentation on echocardiography
images, whether using conventional image processing methods, like edge detection or
predefined contours or using deep learning techniques like CNN.

4.2 Method

PubMed search engine was used to carry out the search for related research, the
keywords for this task were: "Semantic Segmentation", "2D Echocardiography",
and "deep learning" we also searched for "Ejection fraction estimation" with "Deep
Learning" or "Convectional Neural Networks" as these researches also would include
segmentation procedure mainly for the Left ventricle, we excluded researchers that
have been done on the fetal heart during pregnancy, as they were dealing with
a different problem, finally, although we excluded researches that were done on
cardiac images from sources other than ultrasound, we included studies that used
multi-images-sources as long as it includes Echocardiography.

4.3 Results

The way of searching described above gave us 10 researches that have been published
between 2019 and 2023.

4.3.1 Leclerc et al. (2019)

This paper [29] was to introduce the Cardiac Acquisitions for Multi-structure Ultra-
sound Segmentation (CAMUS) dataset. Although the introduction of the dataset
was the main purpose, they discussed the problem using deep learning, and compare
multiple methods, they only segmented the Left Ventricular endocardium and Left
Ventricular myocardium using all but poor image quality. However, they showed how
encoder-decoder-based architectures outperform state-of-the-art non-deep learning
methods their work paved the way for future research to be done using the same
dataset.
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4.3.2 Moradi et al. (2019)

The work of Moradi et al. [30] is one of the earliest works that used UNET to
segment the left ventricle which we could find, it modified the UNET architecture to
improve its performance, the proposed architecture - named MFP-Unet) adds extra
convolution layers for extracting feature maps from all levels of the expansion path
in order to be included in the segmentation process in the last layer. This inclusion
is promised by a feature pyramid network. While they got better results than the
work of Leclerc et al. [29]. However, the main limitation was the limited data used
for training, also they only segmented the LV. Figure 4.1 describes the proposed
MFP-Unet architecture.

Figure 4.1: MFP-Unet architecture used by Moradi et al.(2019)

4.3.3 Kim et al. (2021):

The work of Kim et al. [31] aimed to segment the Left Ventricle endocardium and
Left Ventricle myocardium regions from porcine images, and then using learning
transfer techniques they tested it on the human dataset, this study uses six different
views, both Apical views, and base views, and used post-processing on the output
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of the Neural Network which seemed to improve the metrics, but upon further
inspection using statistical analyze it turns out this was not statistically significant
(P>0.05). The main limitation of this study was using images which were obtained
from open-chest pigs, which has better quality than human echo, using transfer
learning may prove that the concept works on human but only two views (Apical
4CH and Apical 2CH) were available to test. Figure 4.2 describes the proposed
neural network in this study.

Figure 4.2: segAN architecture used by Kim et al.(2021)

4.3.4 Zhuang et al. (2021):

YOLOv3 (You only look once) algorithm was used by Zhuang et al. [32] to detect
three points of the left ventricle -Apex and bottom (septal wall base and lateral
wall base) - and the overall bounding box of the left ventricle, then using iterated
conditional model (ICM) they performed initial segmentation of the Myocardium,
using the three points location as a restraining condition Myocardium’s left and right
part are located, finally using B-spline method to smooth the edges and morphological
filter to reduce speckle noise. This research combines the CNN methods to detect the
LV region and its points and other image processing methods, which are promising
methods, especially the YOLO algorithm is known to be fast and convenient for
real-time detection. In terms of accuracy indices (i.e., SDC, MAD and HD) this
model did not achieve better results than other research, and this paper does not give
detail about the dataset used or the ratio of (training/validation/test). Figure4.3
shows the YOLOv3-based architecture proposed used in this research.
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Figure 4.3: proposed architecture used by Zhuang et al.(2021)

4.3.5 Girum et al. (2021)

Girum et al. [33] in this paper came up with the idea of combining modified UNET
architecture for forward learning with FCN encoder for a feedback loop, this idea
is supposed to improve the high-level feature extraction and allow the system to
learn from its mistakes by providing a second chance for the forward system’s
decoder network to look back on its predicted output. This network is tested on four
different datasets, one of the CAMUS dataset, and it actually segmented the heart
into three different classes (Not including the background), with good, promising
results. Figure4.4 shows the UNET with FCN feedback (which they named LFB-Net)
architecture proposed used in this research.

Figure 4.4: LFB-Net architecture used by Girum et al.(2021)
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4.3.6 Liu et al. (2021)

The work of Liu et al. [34], addressed two problems, first the low contrast between
myocardium tissues and edge dropout, which is related to the fact that 2D echography
has low SNR, secondly that the current deep image segmentation technique assigns
a prediction to each pixel alone without taking its neighbors’ values into consid-
eration, for that they proposed a deep learning model, called deep pyramid local
attention neural network, this technique has been rarely used in semantic medical
image segmentation models, and it is a little complicated, it uses BiSeNet Bilateral
Segmentation Network to extract deep semantic features, then using pyramid local
attention algorithm to enhance feature within the compact and sparse neighboring
contexts, finally comes the novel Label coherence learning mechanism (LCL), which
they claimed to solve the single pixel prediction problem. The author claimed that
this method was also helpful in accurately locating the vertical axis, a parameter that
is very important to compute the EF using the modified Simpson method. The main
problem with this approach is the memory- consumption of the network training
is large, which can cause a memory explosion in the training phase. It also only
segments the LV endocardium and Left Ventricular myocardium. Figure4.5 shows
the PLANet architecture proposed used in this research.

Figure 4.5: PLANet architecture used by Zhuang et al.(2021)
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4.3.7 Lei et al. (2021)

Lei et al. [35] proposed a system (named Cardiac-SegNet), consisting of three sub-
networks, the first one is a UNET to perform higher feature extraction, the second
one is a Fully Convolutional OneState object detector (FCOS), which will segment
the image into three ROI, after that the ROI will rescale and used in Mask Head
network which will perform the segmentation. This system can segment three regions
(Left Ventricle endocardium, Left Atrium, and Left Ventricle myocardium), while
this system performs well in the segmentation process, and the idea of using the
bonding box and center of mass to improve the segmentation is promising. However,
the paper reports that the time of segmentation can be 0.5 seconds.

Figure 4.6: UNET architecture used by Alam et al.(2022)

4.3.8 Alam et al. (2022):

Alam et al. [36] proposed a two parallel pipeline for each of the ES frame and ED
frame, this procedure used DeepResUNet for segmentation (alongside UNET and
ResUNET for comparison), and finally, they used the segmented masks to estimate
ejection fraction using Simpson’s method, since the main goal was to calculate EF
the two pipelines were suggested. The study had a relatively low DSC
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Figure 4.7: UNET architecture used by Alam et al.(2022)

4.3.9 Saeed et al. (2022)

Saeed et al. [37] tried to use a self-supervised algorithm to segment the left ventricle
from four apical chambers view, using DeepLapV3 and SimCLR pre-trained backbone,
also they tried to use BOYL and U-NET which did not perform better, this research
tried to overcome the lack of labeled data by using the self-supervised technique,
they do not provide detailed explanation about the loss function used in training
the network, and they only segment the LV. Finally, both SimCLR and BYOL are
sensitive to batch sizes and require very large batch sizes for optimal performance.

4.3.10 Zeng et al. (2023)

Zeng et al. [38] proposed a system to estimate the Left ventricle ejection fraction
from Apical four chambers 2D cardiography, using a modified Simpson’s method,
this system takes a video as an input and passes it through Multi-attention efficient
feature fusion that will give out a binary mask for the left ventricle, the network has
an encoder-decoder structure with skip connections, the Network took advantage
of the Dual-Attention layers and they introduced a new concept for up-sampling
under the name of (pixel shuffling layers), a concept they claimed it overpass the
low resolution of the images. The paper achieved good results in terms of DICE
coefficients but because of the low resolution of some of the images in the EchoNet
dataset, they had to downsample all frames to 112x112 which is a very low resolution.
Figure4.8 describes the architecture used by this study.
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Figure 4.8: The architecture of the MAEF-Net proposed by Zeng et al.(2023):

4.4 Comparison tables and discussion

Clearly, not all studies focused on LA segmentation since the application of LV
endocardium included the calculation of EF all studies perform its segmentation,
while LV myocardium segmentation was present more than LA but not as many as LV
endocardium since it has some application in measuring some features like strain. We
provided in this section comparison among the studies we used in our review, Table
4.4 provides a general comparison, where In this Table: A4C: Apical four Chamber
view, A2C: Apical two Chamber view, LV endo: Left Ventricle endocardium, LVMayo:
left ventricular myocardium, DSC: Dice similarity coefficients, JSC: Jaccard distance,
AER: Aera error ration, HD: Hausdorff distance, MAD: Mean absolute distance,
CMD: Center of Mass distance, P: Precision, S: Sensitivity. Table 4.1 describes
the results of the LV endocardium segmentation, Table 4.2 describes the results of
the LV myocardium segmentation, and 4.3 describes the results of the Left atrium
segmentation.
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Table 4.1: Comparison of LV endocardium segmentation results among studies.
DSC% JSC% HD[mm] MAD[mm]

Zeng et. al (2023)
(Private)

92.81 ± 2.85 - - -

Zeng et. al (2023)
(EchoNet)

93.10 ± 2.22 87.21 ± 3.85 2.17 ± 1.37 -

Saeed et. al (2022)
(EchoNet)

92.52 ± 0.0476] - - -

Saeed et. al (2022)
(CAMUS)

93.11 ± 0.0424 - - -

Alam et. al (2022)
(ES)

82.1 ± 0.8 66.9 ± 6.4 23.8 ± 0.1 -

Alam et. al (2022)
(ED)

86.5 ± 1.1 63.7 ± 9.6 19.7 ± 0.2

Liu et. al (2021)
(EchoNet) (ES)

91.8 ± 3.4 5.4 ± 2.6 1.6 ± 0.7

Liu et. al (2021)
(EchoNet) (ED)

94.2 ± 2.1 5.0 ± 2.2 1.4 ± 0.6

Liu et. al (2021)
(CAMUS) (ES)

93.1 ± 3.2 - 4.3 ± 1.5 1.4 ± 0.6

Liu et. al (2021)
(CAMUS)(ED)

95.1 ± 1.8 4.2 ± 1.4 1.3 ± 0.5

Girum et. al (2021)
(2CH)

94.00 ± 3.0 - 5.6 ± 3.22 -

Girum et. al (2021)
(4CH)

94.00 ± 3.0 - 5.0 ± 2.83 -

Lei et. al (2021)
(ES)

92.7 ± 4.3 - 2.247 ± 2.274 1.893 ± 1.785

Lei et. al (2021)
(ED)

94.8 ± 2.4 2.288 ± 1.784 1.887 ± 1.530

Kim et. al (2021) 91.7 ± 0.071 - 5.14 ± 1.71 -
Leclerc et. al (2019)

(ES)
91.6 ± 6.1 - 5.5 ± 3.8 1.6 ± 1.6

Leclerc et. al (2019)
(ED)

93.9 ± 4.3 - 5.3 ± 3.6 1.6 ± 1.3

Moradi et. al (2019)
(CAMUS)

95.3 ± 1.9 - 3.49 ± 0.95 1.32 ± 0.53

Moradi et. al (2019)
(costume)

94.5 ± 1.2 98.0 ± 1.0 1.62 ± 0.05 1.12 ± 0.11
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Table 4.2: Comparison of LV myocardium segmentation results among studies.
DSC% HD[mm] MAD[mm]

Liu et al. (2021) (ES) 95.6 ± 1.4 4.6 ± 1.4 1.6 ± 0.6
Liu et al. (2021) (ED) 96.2 ± 1.2 4.6 ± 1.5 1.5 ± 0.5
Girum et al. (2021) (2CH) 88.0 ± 4.0 7.1 ± 3.86 -
Girum et al. (2021) (4CH) 86.0 ± 6.0 6.7±3.04 -
Zhuang et al. (2021) 93.5 ± 1.9 6:68 ± 1:78 2:57 ± 0:89
Lei et al. (2021) (EchoNet) (ES) 94.3 ± 1.9 5.5 ± 2.1 1.8 ± 0.6
Lei et al. (2021) (EchoNet) (ED) 95.1 ± 1.7 5.5 ± 2.1 1.7 ± 0.7
Lei et al. (2021) (CAMUS) (ES) 95.3 ± 2.2 2.755 ± 2.157 2.746 ± 2.329
Lei et al. (2021) (CAMUS) (ED) 96.0 ± 1.6 2.946 ± 2.125 2.369 ± 2.029
Kim et al. (2021) 85.9 ± 6.4 6.18 ± 1.17 1.9 ± 1.2
Leclerc et al. (2019) (ES) 94.5 ± 3.9 6.1 ± 4.6 -
Leclerc et al. (2019) (ED) 95.4 ± 2.3 6.0 ± 3.4 -

Table 4.3: Comparison of LA segmentation results among studies.
DSC% HD[mm] MAD[mm] CMD[mm]

Girum et. al 2021 92.0 ± 4.0 5.2 ± 3.48 - -
Lei et. al 2021

(ES)
92.2 ± 5.5 2.65 ± 3.453 1.703 ± 1.677 1.352 ± 1.639

Lei et. al 2021
(ED)

89.5 ± 8.5 2.214 ± 4.107 1.696 ± 1.750 1.645 ± 2.148
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Chapter 5

Multi-structure semantic segmentation of
Echocardiography images

5.1 Introduction

The human heart is a complex multi-structured organ with a main pumping function
and the US is considered a powerful tool that can image these structures. In
order to make important measurements that can quantify the heart functions and
early diagnosis of heart failure, semantic segmentation must be performed. This
segmentation can be done manually by an expert sonographer. However, many
studies have been done to automate this process, using conventional or deep learning
methods.

5.2 Materials and methodology

5.2.1 Dataset

The dataset which was used in this research is part of the "Cardiac acquisitions for
multi-structure ultrasound segmentation" (or CAMUS) challenge. The data was
collected from 500 patients, using GE Vivid E95 ultrasound scanners (GE Vingmed
Ultrasound, Horten Norway), with a GE M5S probe (GE Healthcare, US) at the
University Hospital of St.Etienne in France. In order to make the data realistic
regarding clinical cases, no data selection was performed, some cases did not give
high-quality images and yet were included as part of the dataset. For each patient,
there are two sequences taken from the apical window each showing one heart cycle,
one is four chambers view (4CH), and the other is two chambers view (2CH), within
the full sequence, two frames were specified from each sequence, one showed end-
systolic (ES) frame while the other showed end-diastolic (ED) frames, these frames
were chosen following the recommendations of American society of echocardiography
and the European association of cardiovascular imaging [39], where the ED frame
is the frame appearing immediately after the mitral valve is closed, or the frame
in which the left ventricle has the largest volume, and the ES frame is the frame
appearing immediately after the aortic valve is closed, or the frame in which the
left ventricle has the smallest volume, due the lack of reliable electrocardiography
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Chapter 5 Multi-structure semantic segmentation of Echocardiography images

data the volume method were chosen. The data contained segmented masks for
450 patients, and the authors chooses to not publish the mask for the remaining 50
patients as a part of the challenge, the masks were only provided for the end-systolic
and end-diastolic frames, which gave each patient four annotated frames. The masks
were generated manually by three experts, they were asked to segment: The LV
endocardium, the LV epicardium, and the LA. Figure 5.1 shows images from the
dataset with their corresponding masks, the black regions in the mask are considered
the background (this will include the heart’s other structures like the right ventricle,
right atrium, ... etc), and white is the left atrium, light gray is the left ventricle
epicardium, and dark gray is The Left ventricle endocardium.

Figure 5.1: - first-row Ultrasound image, second row the masks, (a) four chambers at
end-systole (b) four chambers at end-diastole (c) two chambers at end-systole (d)

two chambers at end diastole

Images have different sizes in the dataset ranging from 584x354 up to 1945x1181.
The images are saved with "mhd" and "raw" extensions, and the mask is provided as
an image with four possible values for each pixel, as the following: 0 indicates that
the pixel is background, 1 indicates that the pixel belongs to LV endocardium, 2
indicates that the pixel belongs to LV epicardium, and 3 indicates that the pixel is
from LA. The data is available online1.

5.2.2 Proposed model

We proposed a deep learning model to perform semantic segmentation to extract
The LV endocardium, the LV epicardium, and the LA regions from two-dimensional

1https://www.creatis.insa-lyon.fr/Challenge/camus/databases.html

54



5.2 Materials and methodology

ultrasound images, Apical two and four chambers views, this model consists of two
steps:

1. Extract the region of interest (ROI): Using YOLOv7 [40] algorithm to perform
extraction of the regions of the left chambers. YOLOv7 is the latest version of
the YOLO algorithm at the time this research was done. It has better accuracy
than the older version. However, as it uses more floating points operation it is
a little slower.

2. Performing Semantic segmentation: Using UNET architecture, this step used
the output of the first step as its input, as this step will have to perform
semantic segmentation on the ROI detected by the last step. Figure 5.2
shows the proposed unit for this research. It consists of five stages encoder,
and a similar five stages decoder, each step in the encoder path has two
convolutional layers, with the "MISH" function as their activation function, one
batch normalization layer, and max pooling layer, with the final stage having
a dropout layer with the rate of 0.5 to prevent overfitting. The decoder used
transpose layers for upsampling (or deconvolution), with the final layer having
softmax as an activation function since this is a multi-class problem.

Figure 5.2: UNET proposed in this research

After each max pooling layer, the feature size will go down by half, which
means the size of the high feature array will go to 25 its original size. The
output layer will have four filters, this is known as one hot encoding, each layer
is a binary array representing the probability of each pixel to be from this class.
We need to perform argmax operation on each pixel to determine its class.

Figure 5.3 shows the flow chart of the proposed system.
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Figure 5.3: Proposed system flow chart.
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5.2 Materials and methodology

5.2.3 Training strategy

We implemented the thesis in a Python environment for all steps.

Preprocessing

The dataset as mentioned before is provided using "MHD" and "RAW" extensions,
which are common extensions in the medical field. However, they are not well
compatible with python packages like Tensorflow, hence we converted these images
to PNG, using the SimpleITK python package.
The PNG images had different sizes which would cause a problem in building patches
for training, for that we had to resize the images.
The chosen size was 320x320 pixels, two factors supported this choice, one is that the
smallest dimension in the dataset was 354, and since this number is not divisible by
32, a crucial point in our encoder-decoder architecture, the closest factor was chosen
i.e. 320.
Resizing was carried out using the OpenCV python package, and we made sure to
use the suitable interpolation for the resizing, in order to make sure that no values
besides the allowed one appear in the masks (0,1,2 and 3).
Although the masks were made available no mask bounding boxes data were available,
and training of YOLO requires these data, we created the corresponding these boxes
by following a simple algorithm; in which we scanned the images from the top
row first, and then from the bottom row going up searching in both cases for the
first instance of each class, saving the corresponding row number, then repeating
the procedure with the columns, right to left the left to right, till we got the four
coordinators, which then we used to get the center coordinators according to equation
5.1, were Xcenter, Ycenter represent the row and column of center, and the height and
width of the box using equation 5.2

Xcenter = rowtop + rowbotom

2 ; Ycenter = columnleft + columnright

2 (5.1)

Xcenter = rowtop − rowbotom; Ycenter = columnleft − columnright (5.2)

These values were scaled to be between 1 and 0 and used to create the XML files.
Finally, the dataset were divided into three sets: the training set which contained
60% of the data (1080 frames), these frames were used to train the system, the
validation set which contained 10% of the data (180 frames) for the sole purpose
of determining when to stop training to avoid overfitting the training set, and the
test set containing 30% of the data (540 frames) this data were kept away from the
system during training and were used only to evaluate the system, as shown in Figure
5.4
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Figure 5.4: Splitting the dataset.

Loss function

The loss function to train the UNET is given by equation 5.3

Ltotal = 1
2 × (Lentropy + LDice) (5.3)

Where Lentropy and LDice are given using equation 5.4 and 5.5 respectively:

Lentropy = −
c∑︂

k=1

I∑︂
i=1

log

[︄
es(k,i)∑︁
i s(k, i)

]︄
(5.4)

LDice = 1 − 1∑︁
k αkk

[︄∑︂
k

αkk
2 ×

∑︁
i∈I uk

i µk
i∑︁

i∈I uk
i +

∑︁
i∈I µk

i

]︄
(5.5)

Where c: is a number of classes (3 in our case ignoring the background ), I: is the
number of pixels in each image, s(k, i) is the probabilistic feature maps at a pixel
i ∈ I belonging to the pixel class k. αk: A unique weight given to each class.

Cloud computational

Training a model requires a huge amount of computational power, specifically a
powerful graphic process unit (GPU), there are some services that allow users to
run their codes on clouds server, Google provides one of these services under the
name google collab, which provides a Jupyter notebook to run python codes. The
paid version can provide: 32GB of Random access memory (RAM), and NVIDIA
Tesla P100 or T4 GPU, adding the fact that it can access cloud google cloud storage
service (Google Drive), which made this service very suitable for this application. In
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5.3 Results

the collab environment, we cloned the YOLOv7 files from 2 which is built using the
PyTorch package, while the UNET we built using the TensorFlow package.

5.2.4 Evaluation Metric

The metric which was used to evaluate our model: are the dice similarity coefficient
described in equation 5.6, Jaccard’s similarity coefficient (JSC) provided by equation
5.7, and Hausdorff distance (HD) defined in equation 5.8

DSC = 2 ∗ TruePositive

2 ∗ TruePositive + FalsePositive + TrueNegative
(5.6)

JSC = |A ∩ B|
|A ∪ B|

(5.7)

HD95th = max{Kth
s∈S min

g∈G
∥ S − L ∥, Kth

s∈S min
g∈G

∥ L − S ∥} (5.8)

5.3 Results

The first step was trained for 100 epochs, with an early stop at epoch number 80,
while the second step was trained for 50 epochs and early stops at epoch number 42.
Figure 5.5 shows the output of the YOLO algorithm using a four chambers image,
while Figure 5.6 shows the output of the YOLO algorithm using a two chambers
image, each bounding box has a value representing the confidence factor.

Figure 5.5: YOLO output, four chambers view.

2https://github.com/WongKinYiu/yolov7
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Figure 5.6: YOLO output, two chambers view.

Tables 5.1 details the DSC results for each class in each data set, while tables 5.2
shows the JSC, and table 5.3 provide the HD.

Table 5.1: DSC% results
Training set Validation set Testing set

LV endocardium 93.00 ± 3.90 92.00 ± 3.90 91.00 ± 6.40
LV epicardium 88.00 ± 4.20 86.00 ± 4.30 85.00 ± 7.60
LA 91.00 ± 5.60 89.00 ± 9.50 88.00 ± 11.8

Table 5.2: JSC results
Training set Validation set Testing set

LV endocardium 87.00 ± 6.30 86.00 ± 7.20 86.00 ± 7.30
LV epicardium 78.00 ± 6.40 77.00 ± 7.60 86.00 ± 7.30
LA 85.00 ± 7.70 83.00 ± 10.50 83.00 ± 10.30

Table 5.3: HD resultspixels

Training set Validation set Testing set
LV endocardium 3.68 ± 0.94 3.87 ± 0.99 3.88 ± 0.95
LV epicardium 4.68 ± 0.78 4.86 ± 0.76 4.96 ± 0.86
LA 3.77 ± 0.83 4.06 ± 1.03 4.00 ± 0.98

Figure 5.7 shows an A2C view with its ground truth mask and our predicted mask,
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5.4 Discussion

while Figure 5.8 shows an A4C view.

Figure 5.7: Two chamber view with ground truth and predicted mask - From left to
right, input image, ground truth mask, predicted mask

Figure 5.8: Four chamber view with ground truth and predicted mask - From left to
right, input image, ground truth mask, predicted mask

5.4 Discussion

We proposed in this thesis a fully automated system that can segment structures
from echocardiography images, in order to be used later in the evaluation of heart
function and in diagnosing heart malfunctions, specifically the system was able to
segment LV endocardium, LV epicardium, and LA from A4C and A2C images.
The proposed system depended on deep learning and CNN to perform the semantic
segmentation, using two steps, first by performing object detection to extract the
region of interest (ROI) using YOLOv7 algorithm, this is done by combining the
three bounding boxes around the needed regions, and then semantic segmentation is
performed on the ROI using U-net, and the system was trained and tested on the
CAMUS dataset.
The combination between object detection and semantic segmentation allowed the
system to perform better even when training the system using both views at the same
time, i.e. there was no need for the training of two separated systems for each view,
also unlike conventional image processing methods, our system could work on images
with low resolution, as the images in the dataset had resolution categorize into (good,
medium, and bad) and no image was excluded from this dataset. Furthermore, the
images in the dataset belong to patients with different EF, as half of the patients
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had EF less than 45%.
This kind of system has its problems and limitation, as it requires a huge amount
of computational power to train, specifically in terms of GPU, we dealt with that
problem by taking advantage of cloud computing services, another problem with
these methods is that it requires a lot of data to train and test, finally because of
the way the training procedure work we had to resize the images, which would affect
other parameters like the EF.
Compared with the literature, only a handful of research have been done to segment
all three regions, while most focused on the LV endocardium, others included LV
epicardium and only two we could find that included LA, thus we tried to make our
model generic and useful as possible.
While Zhuang et. al.(2021) tried to implement object detection in their module, they
used in their work YOLOv3 a much older version than the one used in our work, and
only segmented the LV epicardium, on the other hand, our work was the only one as
far as we know that implemented the YOLOv7 algorithm in this way to get the ROI.
Also, we relied on the CAMUS dataset only, using data split into three sets, while
other researchers had access to another dataset like the echo-dynamic dataset, for
example, Liu et. al.(2021) was able to use the entire CAMUS dataset as a test, while
the work of Kim et. al.(2021) used a huge dataset of porcine images and applied to
learn transfer to test it on human images.
Our work did not split the images into two datasets either using views (A4C and
A2C) or using events (ES and ED). Regarding the size of the frame, almost all
literature resizes the entire dataset to a unified size. However, some went smaller like
the Zeng et. al.(2023) in which the size of the frame was (112x112) pixels, since we
did not use any pre-trained module, the size was chosen based on the dataset itself,
and the way U-Net work. In terms of evaluation metrics, our system was able to
achieve better HD than most of the work we found in the three classes.
While the system did not exceed the results achieved by the CAMUS team in the
original papers, it was very close. However, it is worth mentioning that unlike the
team we included all images, while they excluded the images with low quality, the
class which has the lowest DSC score was the LV myocardium.
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Conclusion

In this thesis, we provided a summary of the human heart, its structure and how it
works, we explained the basics of computer vision and deep learning, and reviewed
recent work in the field of semantic segmentation on echocardiography images, and
finally we presented our full automated system to perform semantic segmentation
on echocardiography images. While the results of our system are promising, there
is room for improvement in terms of evaluation metrics, this improvement can be
achieved by acquiring more data, and experiment more with CNN parameters. Next
step should be finding a way to keep the original size of the images while keeping a
reasonable batch size, also YOLO algorithm can be used to detect key points in LV
that can help to measure EF. This thesis showed the ability of CNN in segmenting
multiple structures of the echocardiography images, we were able to test this idea
because there was an available annotated dataset. However, structures like the RV
or RL also could be segmented providing the annotated data should be a priority in
this field.
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