
Università Politecnica delle Marche

Laurea Magistrale in Ingegneria Informatica e dell’Automazione

Design and Simulation of a Collision Warning
System for Vulnerable Road Users (VRUs) with a

priori Map Knowledge

Design e simulazione di un sistema per predire

collisioni tra utenti vulnerabili della strada (VRU) e

veicoli

Tesi di Laurea di:
Chiara Leonori

Relatore: Chiar.mo Correlatori:
Prof. David Scaradozzi Markus Wendl

Torsten Hafer

A.A. 2020/2021

To you, babbetto,
my father, my rock, my angel.

Though I cannot hug you,
I know you are always with me.

Tutto é per te e grazie a te.

Abstract

In Stati come la Germania, un numero sempre maggiore di persone rinun-
ciano all’utilizzo di un’auto, prediligendo spostamenti tramite bicicletta o a
piedi, anche al fine di proteggere l’ambiente. Per questo motivo, é stata in-
trodotta nel Codice della Strada nel 2021 una nuova categoria denominata
VRU, Vulnerable Road Users o Utenti Vulnerabili della Strada, nei cui con-
fronti sono previste misure per agevolare gli spostamenti e ridurre i disagi. In
particolare, tale termine indica tutti i soggetti non motorizzati e sprovvisti
di protezioni esterne, quindi piú a rischio, come ad esempio pedoni e ciclisti.
Tali provvedimenti, seppur riducendo notevolmente il numero di incidenti in
cui i VRU sono coinvolti, non risolvono il problema alla radice. Vari sistemi
sono stati sviluppati negli ultimi anni per essere installati nei veicoli o nelle
infrastrutture stradali, per aumentare la sicurezza dei VRU e diminuire in-
cidenti in situazioni di NLoS (Non-line-of-Sight): sensori, come ad esempio
LiDAR e camere, e tecnologie V2P (Vehicle2Pedestrian) rappresentano sola-
mente un esempio.
In tale cornice si colloca il progetto People Mover, promosso e finanziato
dalla cittá di Ratisbona (Germania), volto a diminuire gli incidenti che ve-
dono coinvolti VRU. Tale progetto, in fase di decollo, mira all’installazione
di una infrastruttura stradale nella zona industriale, e precisamente in uno
dei crocevia più trafficati.
Lo studio condotto in questa tesi propone un sistema preposto alla predizioni
di rischi per i VRU, basato sulla conoscenza a priori della mappa stradale
circostante e su un rilevamento precoce delle intenzioni dei singoli veicoli per
una accurata predizione delle traiettorie.

Stato dell’Arte Nel rilevare i VRU a rischio, risulta di fondamentale im-
portanza una precisa predizione delle traiettorie dei vari veicoli che popolano
tale incrocio, in modo tale da diminuire i vari false warning (falsi positivi).

I

A tal fine sono stati condotti diversi studi nella letteratura, che si dividono
principalmente in tre modelli:

• modelli basati sulla fisica, dove il movimento é dettato dalle leggi della
fisica;

• modelli basati sulle manovre, dove grande influenza hanno le attuali (e
future) manovre del guidatore;

• modelli che tengono in considerazione le varie interazioni tra i veicoli.

I diversi modelli di moto presentati nel corso della letteratura, come CV
(Constant Velocity), CA (Constant Acceleration), CTRA (Constant Turn
Rate and Acceleration), sono stati analizzati da Schubert et al., che ha riscon-
trato nel CTRA una maggiore accuratezza per predizioni a breve termine. Al
contrario, in orizzonti di tempo maggiori, le varie predizioni sono affette da
errori elevati, a causa di incertezze e limiti dell’evoluzione dei diversi modelli.
Nel corso della letteratura sono quindi state proposte diverse soluzioni che
permettono di passare da un modello ad un altro, in modo da descrivere la
sua evoluzione nel modo migliore. IMM (Interacting Multiple Model) e SKF
(Switching Kalman Filter) combinano le ipotesi di stato da diversi modelli di
filtro, per ottenere una stima migliore nel caso di dinamiche mutevoli. Una
seconda metodologia consiste nel combinare soluzioni provenienti da trai-
ettorie calcolate mediante modelli che descrivono la dinamica del veicoli e
traiettorie basate sulla esatta geometria stradale. Nonostante l’efficienza in
real-time, i risultati prodotti da questi metodi possono non essere sufficienti,
in quanto le varie manovre possibili non vengono prese in considerazione.
Keep lane (mantenere la corsia), Change lane (cambio corsia), U-turn (in-
versione a U) e overtaking (sorpasso) sono solamente un set delle possibili
manovre che un veicolo esegue. Diversi sistemi MRM (Maneuver Recogni-
tion Model), HMM (Hidden Markov Models) o DNN (Deep Neural Networks)
sono stati quindi studiati e sviluppati, per integrare tali comportamenti nella
predizione delle traiettorie. Nel primo caso, il calcolo si basa su una funzione
pesata che combina l’output del CTRA e quello del MRM, basato ad esem-
pio su DBA (Dynamic Bayesian Network). Un filtro Bayesiano (classifica-
tore HMM) puó essere altrimenti utilizzato per rilevare le possibili manovre:
una volta calcolati i parametri mancanti, come lo yaw rate, tramite il fil-
tro di Kalman, le osservazioni integrate con le informazioni derivanti dalla
mappa possono essere passate al classificatore HMM, in modo da calcolare

II

una traiettoria regolare. Negli ultimi anni anche le reti neurali hanno trovato
impiego in questo campo: l’integrazione di caratteristiche cinematiche, come
la posizione e la velocità, e il contesto ha permesso il riconoscimento delle
intenzioni di manovra, senza ricorrere al modelli fisici.
Le metodologie appena presentate risultano però incomplete in uno sce-
nario a traffico elevato, assumendo il veicolo indipendente dall’ambiente e
dai soggetti circostanti. Sebbene tali scenari sono pressoché impossibili da
trasformare in modelli matematici, studi recenti hanno visto le reti neu-
rali LSTM (Long Short-Term Memory) e CNN (Convolutional Neural Neut-
works) giocare un ruolo fondamentale. Tramite l’analisi del comportamento
temporale e la sequenza delle coordinate dei veicoli circostanti, la traiettoria
dell’ego-vehicle viene calcolata tramite informazioni probabilistiche circa la
posizione futura dei soggetti circostanti. Le reti SCALE-Net, seppur non
risolvendo completamente la problematica, si propongono di ridurre l’elevato
carico computazionale dei sistemi basati sulle LSTM.
La predizione delle traiettorie, come già accennato, risulta essere lo step
iniziale per identificare una futura collisione. Il metodo TTC (Time-To-
Collision), definito come il tempo necessario affinché due veicoli collidano,
supponendo che continuino la loro traiettoria alla medesima velocità, risulta
essere assai diffuso. Parallelamente ai metodi binari, che cercano l’intersezione
di due traiettorie, sono stati sviluppati metodi probabilistici, che si basano
su HMM per calcolare la probabilità di collisione su una porzione di spazio
discretizzato, ovvero di condivisione della stessa cella di spazio da parte di
due veicoli.

Concetti principali Questa tesi si propone di illustrare un nuovo metodo
di predizione delle collisioni basato sulla conoscenza a priori della mappa
stradale in cui tale sistema verrà messo in funzione. Il contributo principale
di questa tesi risulta essere proprio il ricorso a metodologie computazional-
mente non pesanti e di semplici funzioni, con conseguente riduzione dei tempi
di esecuzione, garantendo buone prestazione a real-time. Tali vantaggi sono
dovuti alla presenza di conoscenze pregresse circa l’ambiente in cui tale sis-
tema viene messo in funzionamento: le cosidette predefined routes. Una route
predefinita é una traiettoria percorribile da veicoli (non pedoni), nel rispetto
delle regole stradali. In prossimità di un incrocio, ad esempio, un veicolo
che si trova nella corsia più a destra potrà solamente effettuare una svolta a
destra, mentre quello nella corsia centrale procedere diritto oppure svoltare

III

a sinistra. L’impiego di tali routes semplifica la generazione delle traiettorie
di ogni singolo soggetto presente nello scenario.
Ogni soggetto viene infatti descritto tramite uno stato xA = [x, y, θ, v, w, a],
dove (x, y) indicano la posizione nello spazio bidimensionale attraverso la
quale una route viene assegnata, θ l’heading angle, v e a rispettivamente la
velocità e l’accelerazione lineare, w la velocità angolare.
Segue la definizione di traiettoria come insieme di punti rappresentanti le
future posizioni all’interno di una ben definita finestra temporale. Tale in-
sieme viene generato a partire dalla conoscenza di due informazioni princi-
pali: tipo di soggetto (pedone o non pedone) e attuale stato (per i pedoni
Moving o Waiting, altrimenti KeepLane, Curving o ChangeLane). Mentre
il percorso discretizzato generato per i pedoni non é sottoposto a successivi
vincoli, quello dei non pedoni dipende strettamente dalla manovra riconosci-
uta. Qualora il veicolo sia in KeepLane o Curving, l’insieme dei punti é un
sottoinsieme dei punti appartenenti alle predefined routes, altrimenti risulta
essere un sottoinsieme dei punti definiti da una Curva di Bézier, che descrive
il moto necessario per passare dalla route di origine alla route obiettivo.
A questo punto le traiettorie dei singoli veicoli vengono intersecate in uno
spazio bidimensionale sulla mappa, per identificare future collisioni, basan-
dosi sul concetto di area di conflitto o conflict area. Un’area di conflitto viene
definita come una porzione di superficie, contenente almeno un punto dello
spazio, occupata da almeno due soggetti nello stesso instante temporale.
Le traiettorie rappresentabili fino a questo momento tramite segmenti curvi-
linei, vengono espanse integrando le reali dimensioni del singolo soggetto
(larghezza e lunghezza). Infine, se le aree occupate da due soggetti nello
stesso istante di tempo hanno almeno un punto in comune, si avrà una col-
lisione.

Riconoscimento Manovra - IMM Il modulo di riconoscimento manovra
si basa sull’utilizzo del filtro IMM (Interacting Multiple Model), filtro ibrido
sub-ottimo, proposto inizialmente da Blom, che manda in esecuzione diversi
filtri in parallelo, mescolando lo stato e la covarianza dei vari filtri, tramite
pesi assegnati ad ogni filtro, per ottenere una stima composita dello stato
e della covarianza. Il filtro IMM viene implementato tramite un algoritmo
ricorsivo, che si basa su precisi parametri in input:

• il vettore delle probabilità del modello, che definisce con quale proba-
bilità ogni singolo modello descriva l’attuale stato,

IV

Schema generale del funzionamento generale del filtro IMM, che illustra i tre
step principali del filtro: interazione, filtraggio e update delle probabilità.

• la matrice delle probabilità di transizione, che indica con quale proba-
bilità si passa da un modello i ad un modello j (i termini per cui i = j
indicano la probabilità di rimanere in tale modello).

• la definizione dei singoli filtri M e delle loro stime.

Nella figura sottostante viene illustrato il funzionamento generale di un filtro
IMM, applicato al caso in esame.

In questo studio, i filtri implementati sono due, uno per il modello KeepLane
e il secondo per il modello ChangeLane, che integra la velocità angolare.
L’output del filtro, che definisce le probabilità di modello, viene quindi inte-
grato con le informazioni provenienti dalla mappa e dall’insieme di predefined
routes. In tal modo è possibile l’utilizzo di soli due modelli che descrivono
in maniera generale tali manovre, senza dover ricorrere alla reale geometria
della strada per riconoscere la terza manovra del set, ovvero Curving.

Predizione della traiettoria - Veicoli Il modulo di predizione delle trai-
ettorie genera le future posizioni del veicolo (in questa sezione, si usa il ter-
mine veicolo per indicare un soggetto motorizzato o non, utenti della strada,
non pedoni), partendo dalla conoscenza della futura manovra.
Qualora si sia riscontrata una ChangeLane, il percorso discretizzato nei di-
versi istanti di tempo viene generato lungo due segmenti di Curve quadratiche

V

di Bèzier simmetriche. Tale curva viene calcolata durante la prima identi-
ficazione del cambiamento di stato, per mezzo dei seguenti control points
(punti di controllo):

• P0(0, 0);P1(c, 0);P2(a, b);

• P2(a, b);Q1(2a− c, 2b);Q2(2a, 2b);

Dove a dipende dalla velocità del veicolo, b rappresenta la metà della dis-
tanza tra la corsia attuale e la corsia finale, mentre c è la sezione aurea di a.
In caso contrario, la traiettoria viene generata lungo la route predefinita as-
sociata allo stato corrente al veicolo.
Durante la generazione di questi punti viene considerato per ogni istante di
tempo un’incertezza sulla velocità (sottoforma di ±∆v), in quanto inverosim-
ile mantenere la stessa velocità per la durata di percorrenza di un incrocio,
dovuto a manovre come svolta a destra (o sinistra) e alla presenza di altri
veicoli.

Predizione della traiettoria - Pedoni Il modello di moto preso in esame
per quanto riguarda i pedoni è un semplice CA (Constant Acceleration), ap-
plicato allo stato corrente, qualora il pedone fosse già in moto.
Altrimenti, il moto del pedone viene inizializzato e la traiettoria viene cal-
colata supponendo che esso attraversi in maniera ortogonale la predefined
route più vicina.

Predizione della collisione Una volta definito l’insieme delle traiettorie,
il modulo di identificazione di possibili rischi entra in esecuzione. Facendo uso
di una metodologia binaria, il carico computazione necessita di essere ridotto.
A questo proposito, un algoritmo di preselezione analizza quali coppie di
veicoli e VRU sono ”vicini” abbastanza, da poter rappresentare un pericolo
(coppie di pedoni vengono ignorate). Di queste coppie rimanenti, per ogni
istante di tempo vengono analizzate le varie traiettorie, rappresentabili come
un polinomio interpolato tra i punto della route raggiungibili con una velocità
pari a v − ∆v e v + ∆v. Se l’insieme risultato dall’intersezione dei due
polinomio é non vuoto, una collisione viene identificata. Nel caso contrario si
procede integrando le reali dimensioni del soggetto (larghezza e lunghezza),
trasformando i due polinomi in un porzioni di superficie: se le aree hanno
punti in comune, gli oggetti devono essere informati del rischio.

VI

Vista dell’incrocio (GoogleMaps) Incrocio modellato in CarMaker

Simulazione Con lo scopo di raccogliere ed esaminare i dati per una val-
idazione dello studio effettuato, é stato impiegato il software di simulazione
CarMaker, prodotto da IPG Automotive. In questo contesto sono stati ri-
creati scenari realistici, in cui l’incrocio preso in esame é stato completamente
modellato.

A tal fine, una mappa 3D é stata creata a partire da GoogleMaps e dal
software open-source Blender, in modo tale da avere a disposizione una base
su cui modellare in maniera realistica le varie strade. Ciò risulta di cruciale
importanza nella generazione del set di route predefinite: un oggetto campi-
one, dotato di un sensore stradale e configurato per percorrere determinate
routes, raccoglie tali dati che saranno poi elaborati da uno script Matlab
per la creazione del DB, che include tutte le informazioni impiegate online
durante la predizione delle traiettorie.
Ogni scenario, avente come base tale mappa, viene popolato non solo dall’ego-
vehicle (piattaforma elevatrice bianca), che coincide con l’origine degli assi
del sistema di riferimento preso in considerazione, ma anche da Diversi ve-
icoli, biciclette e pedoni, per simulare situazioni di traffico quotidiano.
Tramite l’API di CarMaker, CarMaker for Simulink (cm4sl), viene effettuata
la simulazione in Simulink, dove un subsystem implementa il modulo di gen-
erazione delle traiettorie e il modulo di predizione delle collisioni. I risultati
vengono quindi mostrati tramite diversi plot.
Una GUI é stata altresì implementata, per agevolare l’user-experience.

Risultati I risultati ottenuti in questa tesi possono essere riassunti nei
punti seguenti.

VII

Riconoscimento di manovra La simulazione dei diversi scenari ha
permesso di raccogliere dati riguardanti il ritardo tra l’inizio della manovra
e l’identificazione di essa. Per manovre con una durata più lunga (circa 5s) e
ad una velocità che rientra nei limiti (30 km/h), si ha un ritardo di circa 1.5s,
instante in cui il veicolo non ha ancora attraversato la linea di separazione
delle corsie. Nel caso di VRU o biciclette o di manovre in un intervallo di
tempo limitato, il ritardo é contenuto nel range]0.08s; 0.25s[.

Predizione della traiettoria I risultati ottenuti per quanto riguarda
la predizione delle traiettorie possono essere riassunti nei seguenti punti:

• la predizione delle traiettorie per pedoni, in assenza di movimenti im-
provvisi (difficili da prevedere), é accettabile per predizioni all’interno
di una finestra temporale fino a t = 3s. Per t = 4s, l’errore è pressoché
inaccettabile, raggiungendo anche i e = 12/15m.

• la predizione delle traiettorie per non-pedoni, in assenza di accelerazioni
o decelerazioni sono in generale accurate e affetto da errore accettabile
(e = 3− 5m), sia per manovre di KeepLane che di ChangeLane.

• in caso di accelerazioni o decelerazioni improvvise (difficili da prevedere),
il calcolo della traiettorie é soggetta ad errori elevati, che raggiungono
anche 15/20m in un orizzonte temporale t = 4s.

Predizione delle collisioni Sebbene il sistema abbia riconosciuto tutte
le situazioni di pericolo implementate nei vari scenari, sono stati rilevati
numerosi false warning (falsi positivi), causati dalla distanza di sicurezza.
Un buon compromesso potrebbe essere in questo caso quello di limitare
l’orizzonte temporale a t = [0.5s; 3s].

Conclusioni Come accennato, il contributo principale di questa tesi é lo
studio e l’implementazione di un sistema di riconoscimento dei rischi volto
principalmente alla salvaguardia dei VRU, tramite l’impiego della conoscenza
della mappa stradale (o set di route predefinite, secondo le leggi del traffico
stradale). Il modulo di riconoscimento manovra, che integra un filtro IMM
e le informazioni provenienti dalla mappa, é stato dimostrato essere capace
dell’identificazione di cambiamenti di manovra con buon anticipo, andando
a risparmiare tempo in un avvertimento circa un eventuale rischio. Le Curve

VIII

di Bezier, inoltre, oltre ad essere computazionalmente non pesanti, emulano
il cambiamento di corsia con una buona approssimazione. Il numero di trai-
ettorie generate per ogni veicolo é esattamente una, riducendo drasticamente
il numero di traiettorie considerate in altri studi.
Dal momento che questo studio é stato effettuato in un mondo ideale e
facendo uso di mappe generate da un software di simulazione, futuri studi
si focalizzeranno sulla raccolta di tali informazioni partendo da dati re-
ali. Ulteriori ampliamenti nella parte implementativa saranno poi necessari
per includere restanti manovre (come sorpassi o inversioni a U). Incertezze
riguardanti la posizione laterale dovranno essere integrate per simulare i di-
versi stili di guida. L’attuale studio non prende inoltre in esame casi in cui
una route si biforca: una possibile soluzione potrebbe essere quella di con-
siderare tutte le possibili traiettorie.
Il lavoro fino ad ora effettuato solamente in un mondo ideale, verrà en-
tro l’anno 2021-2022 testato nella realtà, nel contesto del progetto People
Mover.

IX

Acknowledgments

First and foremost, I would like to thank my supervisor at the University,
Prof. David Scaradozzi, whose enthusiasm in teaching and helping students
has always impressed me. Thank you for all your support not only during
this work but also throughout all these years.
This thesis would not have been possible without my advisors, Markus Wendl
and Torsten Hafer. Your inputs and suggestions have guided me over these
months. I will never forget the help and the soothing words, during my ups
and downs. I would also thank all the Team of Autonomous Reply, headed by
Peter Schieckofer, whose passion and energy in these topics have motivated
me each day more and more. Hope we can soon meet in Munich for a pizza!
And thank you, mamma and Giacomo. We have been through so many
difficulties these years, that left an heavy mark in us, but nevertheless we
have been always together (though the 800km distance between us), like
today.
Last but not least, I would thank you my boyfriend, Andreas. The man, who
could calm me down during my time of stress when I thought I couldn’t do
it. The man, who supported and supports me each day. The man, who told
me ”if you start with a PhD, I will disappear throughout all that period”.

X

Contents

1 Introduction 1
1.1 Motivation behind the Project 2
1.2 Problem Statement . 5
1.3 Thesis Structure . 6

2 State of the Art 8
2.1 Physics-based Model for Trajectory Prediction 8
2.2 Maneuver-based Model for Trajectory Prediction 9

2.2.1 Maneuver Recognition Model 10
2.2.2 Hidden Markov Models 12
2.2.3 LSTM and RNN . 12

2.3 Interaction-aware Model for Trajectory Prediction 14
2.3.1 LSTM and CNN . 14
2.3.2 SCALE-Net . 14

2.4 Collision Prediction or Risk Assessment 15
2.4.1 TTC . 15
2.4.2 Binary and Probabilistic Methods 16

3 Proposal and approach 18
3.1 Collision warning with map-based trajectory predictions . . . 18

3.1.1 The core concepts . 19
3.1.2 The applied solution 20
3.1.3 Motivation . 23

3.2 Software architecture: 4+1 Architectural View Model 24
3.2.1 The Logical view . 25
3.2.2 The Development view 26
3.2.3 The Process view . 28
3.2.4 The Physical view . 28

XI

3.2.5 The Use Case view . 30
3.3 Introduction to CarMaker . 32

3.3.1 Actors: Test vehicle and traffic objects 34
3.3.2 Scenario Road and Routes 38
3.3.3 CarMaker Frames . 39
3.3.4 CarMaker for Simulink 41

4 Methodology 44
4.1 2-4 Wheelers Lane Change detection 44

4.1.1 Motion Models . 45
4.1.2 Extended Kalman Filter 47
4.1.3 IMM - Interacting Multiple Model 50

4.2 2-4 Wheelers Map-Based Trajectory Prediction 53
4.2.1 Predefined Routes . 53
4.2.2 Lane Change with Bézier Curve 58
4.2.3 Drive along a Route 60

4.3 Pedestrian Trajectory Prediction 61
4.4 Trajectory Generator . 61
4.5 Collision Prediction . 62

5 Simulation 65
5.1 Simulink Model overview . 65

5.1.1 Setup process . 66
5.1.2 Trajectory Prediction 68
5.1.3 2-4 Wheelers Trajectory Prediction 70
5.1.4 Pedestrian Trajectory Prediction 76
5.1.5 Collision Prediction 78
5.1.6 Simulation Outputs 80

5.2 Graphical User Interface . 80

6 Experimental results and evaluation 86
6.1 Test Driving Scenarios and Results 86

6.1.1 Evaluation guidelines 87
6.1.2 Scenario 00 . 90
6.1.3 Scenario 01 . 91
6.1.4 Scenario 02 . 96
6.1.5 Scenario 03 . 99
6.1.6 Scenario 04 . 100

XII

6.1.7 Scenario 05 . 105
6.1.8 Scenario 06 . 106
6.1.9 Scenario 07 . 109
6.1.10 Scenario 08 . 114

6.2 Discussion . 118
6.2.1 Lane Change Detection 118
6.2.2 Trajectory Prediction 118
6.2.3 Collision Prediction 119

7 Conclusion and future work 120

A Scenario06: Prediction Errors 121

XIII

Chapter 1

Introduction

In 2020, about 9.8% of the German population rode their bike daily, and
almost 25% did at least once per week. Due to lack of an adequate protection
such as an external shield and the inability to respond in vehicular collisions,
cyclists, as well as pedestrians and motorcyclists, are called Vulnerable Road
Users (VRU). In the ITS (Intelligent Transport Systems) they are defined as
“non-motorized road users, such as pedestrians and cyclists as well as motor-
cyclists and persons with disabilities or reduced mobility and orientation”.

As not only the number of VRU, but also the number of their deaths
continues to climb, reaching 350.000 in 2016[24], many approaches have been
investigated to improve their safety. In the past decade, governments made
many efforts to implement new regulations not only to reduce drivers’ and
VRUs’ errors but also to increase the awareness of VRU safety problem. Al-
though such initiatives have prevented a relevant number of road crashes,
they cannot resolve the root problem, and the number of accidents that in-
volve pedestrian or cyclists, remain high. Hence, in the meanwhile, different
measures to improve traffic safety using ITS have been developed, by making
the vehicle or the road infrastructure more intelligent. In-vehicle systems use
sensors as radar, infrared, camera or LiDAR, to detect a VRU in the environ-
ment, calculating a collision risk between the ego-vehicle and the VRU. This
features are called V2P (Vehicle to Pedestrian) technologies: side-underrun
facilities, blind spot warning devices, pedestrian friendly front-end design air
bags, infrared pedestrian monitoring and detection (with Autonomous Emer-
gency Brake system), pedestrian in crossing detection system (based on V2P
communication). However, these products cannot handle situation without
line-of-sight (LOS), i.e. when parked cars obscure the LOS.

1

Solutions to increase safety at intersections and crossing have been devel-
oped, installing and integrating sensors, such cameras or LiDAR, in the road
infrastructure. Information and data gathered by sensors, are then sent to
a control unit, that estimates the trajectories of the different road users, to
calculate a risk assessment of potential collision. In case of crucial situation,
not only the vehicle but also the VRU will be warned.

In this context, furthermore, trajectory prediction plays an important
role, to foresee vehicles’ maneuvers and lane changing before approaching an
intersection, to buy time in VRUs warning in case of possible a potential
critical situations.

1.1 Motivation behind the Project
The ”People Mover” Project promoted from the city of Regensburg (Ger-
many), targets, among others, these issues. Within this Project, currently
(Q2 2021) at its initialization phase, Autonomous Reply GmbH, specialized
in innovative Autonomous Things (AuT) solutions, is charged with the task
of developing a collision warning system, aiming to inform VRU about critical
situations.

The whole infrastructure, comprising sensors, such as LiDARs and cam-
eras, to collect data of traffic participants, and edge devices that communi-
cate with the Cloud, is planned to be firstly installed in a well-defined city
quarter, the Business Park (see fig. 1.1), and afterwards to be expanded to
further urban areas. The Business Park represents in Regensburg the main
and most important location of offices, trade and commerce, with its 155
000 qm rental space. During the 2021, two electric autonomous shuttles are
planned to be put into operation in the Business Park.
Autonomous Reply (hence, this work) focuses on the development of the
aforementioned collision warning system for VRU for a specific portion of
the Business Park, the T-Crossroad in fig. 1.2.

The concept elaborated by Autonomous Reply relies on three sets of data
collector systems (sensors-edge devices), located roughly as shown in fig. 1.3,
completely independent of each other. This configuration shall avoid the so-
called NLoS (Non-line-of-sight) situations.

LiDARs, cameras and GNSS (Global Navigation Satellite System) re-
ceivers are connected to the edge device. The first two sensors allow to collect
information about each traffic participant, to perform 3D-Object Recognition

2

(a) Schema of the BusinessPark (b) Google Maps Screenshot

Figure 1.1: Business Park in Regensburg

Figure 1.2: Google Maps screenshot of the T-Crossroad in the Regensburg
Business Park, this work is focused on

3

Figure 1.3: Schema of the collision warning service, provided by Autonomous
Reply.

4

(position, orientation, dimension, type) through neural networks. This list
of object data is then finalized with the time stamp provided by the GNSS
sensor: it defines the detection time for a later comparison with the data
coming from the shuttle.

After each device has sent its own object list to the Cloud, the data fusion
step is performed. The module responsible for the collision prediction is then
triggered, after predicting each object future trajectory, on the basis of the
object type (pedestrian, vehicle, bicycle, etc). Is a collision involving a VRU
foreseen, the VRU shall be warned through an acoustic and/or optical signal:
each VRU may be required to be provided by a smartphone to receive the
message.

1.2 Problem Statement
The trajectory prediction problem could fall within the not completely deter-
ministic problem, since an observer could lack of important information such
as the driver’s intentions or driving style. Many prediction approaches esti-
mate the future velocity and acceleration, as well as heading angle, between
certain bounds, through hypothesis about the driver comfort and physics
limits (a vehicle does not accelerate or decelerate faster than the engine or
breaks allow). The number of possible trajectories can be though high.

This study, conducted within the trajectory prediction and collision warn-
ing module of the ”People Mover” Project, aims to integrate physical map
information, such as the pre-defined routes, generated in accordance to the
traffic rules. A route is defined in this context as the pathway traveled by a
vehicle, following always the same lane, without any overtaking or changing
lane maneuver. Assume a vehicle is entering the crossroad from the top. Ac-
cording to the road traffic regulations, it is foreseen to turn right (its right),
when driving in the most right lane. On the contrary, if in the middle lane,
it will turn left (as described by the road markings). A vehicle maneuver
detection results therefore in the key instrument to early updated the route,
hence the vehicle future trajectory.

Given the state (position, orientation and velocities), dimensions and
type of each traffic object, the future trajectory in the time horizon shall
be generated, in accordance to the pre-defined routes and the maneuver the
vehicle is currently performing. The traffic participants predicted paths shall
be then overlapped, to identify possible collisions or critical situations, by

5

detecting possible conflicting areas occupied by more than one object in the
same time window in the future.

This study is completely carried out in simulation, making use of Mat-
lab/Simulink and the IPG CarMaker software. As the actual position of the
three sets sensors/edge-device is (at the present time) not yet known, no sen-
sor is employed: data collected and elaborated during the different tests are
provided by CarMaker, and are assumed to be the ones that are passed in
the Cloud to the Trajectory Prediction module after the sensor fusion step.
In this context, hence, issues like tracking and latency are not taken into
account. The methodology developed is intended to be integrated into the
whole system, being fed with the real fused and process data, collected by
the sensors and passed through the object recognition module.

To summarize, the key contribution of this thesis is a method to raise
collision warnings as a result of the traffic participants trajectory predictions,
computed basing on the a priori generated routes, in conformity with the
map geometry and the traffic rules.

1.3 Thesis Structure
The structure of this thesis is presented here:

• Chapter 2 State of the Art: in this chapter a review of the literature of
trajectory prediction and collision detection approaches is set out.

• Chapter 3 Proposal and Approach: this chapter presents the adopted
solution, not only under a more abstract point of view, describing its
core concepts, but also in a software architecture perspective, introduc-
ing the CarMaker software, to simulate and test the system developed.

• Chapter 4 Methodology: a detailed overview about the different tech-
niques used for the trajectory prediction, basing on the traffic object
type is discussed in this chapter. The collision prediction is then ex-
haustively outlined.

• Chapter 5 Simulation: this chapter jumps into the implementation,
focusing on the software key components.

• Chapter 6 Results: after reviewing the different test driving scenario,
the experimental results are discussed and evaluated.

6

• Chapter 7 Conclusions: this provides a short summary of the thesis,
illustrating the limitations of the methodology and providing sugges-
tions for future works.

7

Chapter 2

State of the Art

This chapter aims to provide a clear overview of the methods present in
literature. The structure of this chapter derives from the one presented in a
survey conducted by Lefevre et al. [20], where the different motion modeling
and prediction approaches have been organised into three main categories:

• Physics-based model: the motion depends only on physics laws (Section
2.1);

• Maneuver-based model: the motion is also influenced by the driver
current maneuver (Section 2.2);

• Interaction-aware model: the surrounding vehicles’ maneuvers affects
the single vehicle path prediction (Section 2.3).

Finally, an outline about the methodology for the collision prediction problem
is presented in 2.4

2.1 Physics-based Model for Trajectory Pre-
diction

The evolution of the state of a vehicle model depends on dynamic and kine-
matic models. The former refers to Lagrange’s equations, that take into
account the external forces, to which it is subjected, resulting in complex
and large models. Moreover, these forces are measurable only by exterocep-
tive sensors. ITS systems, therefore, make wider use of the kinematic models,

8

that rely only on the motion model state: position, steering angle, speed and
acceleration. Integrating these parameters with some vehicle properties (such
as the weight and its dimensions) as well as external conditions (i.e. the road
friction coefficient) the future state can be computed.

Schubert et al. [30], analyzing the several motion models (whose detailed
overview is given in section 4.1.1), derived the higher performance of the
Constant Turn Rate and Acceleration (CTRA) motion model, in compari-
son with the CV (Constant Velocity), CA (Constant Acceleration). Though
the accuracy of their results is remarkably for short term prediction (< 1s)
[23], they are not reliable for long-term predictions, since uncertainties and
shortcomings of the evolution model are not taken into account.

The issues deriving from the great range of maneuvers, and, hence, of
models describing the vehicle motions are solved by Switching Kalman Filter
(SKF) and Interacting Multiple Model (IMM) filters [15, 22, 32]. These
filters run in parallel a set of Kalman filter, each one implementing a distinct
state transition model, that represents a possible evolution vehicle model,
and switch between them, basing on a probability and weights system, that
selects which model is actually in effect [15, 22, 32].

Polychronopoulos [27] presented, on the other hand, a solution to switch
between the different models using heuristics: a path is estimated based on
vehicle dynamics and adaptive multiple models, while an alternative path is
estimated based on the road geometry; the paths are hence combined based
on a priori knowledge (see fig. 2.1).

Although physics-based motion models have good real-time efficiency,
they are not sufficient to describe changes in vehicle motion due to abruptly
maneuvering behaviors.

2.2 Maneuver-based Model for Trajectory Pre-
diction

The Maneuver-base models are based on a early recognition of a driver ma-
neuvers (executing lane change, turning left, performing a u-turn, etc.). The
estimation of the driver intention, hence, leads to the generation of the future
path corresponding to the observed maneuver. Maneuver Recognition Mod-
els (MRM) are frequent in the literature and they usually take advantage
of a fully-defined road mathematical representation [32, 12, 34]. Besides, a

9

Figure 2.1: Structure of the fusion process for the estimation of the path
[27].

classification of a wide range of maneuver can be performed using discrim-
inative learning algorithms, such as MLP (Multilayer Perceptron), or SVM
(Support Learning Machines). A further common approach focuses on HMM
(Hidden Markov Model), that breaks down each maneuver into a chain of
consecutive events, whose transition probabilities are learned from data.

2.2.1 Maneuver Recognition Model
Toledo-Moreo [32] introduced an IMM-based lane change prediction method
to predict lane changes in straight and curved roads with short latency times
in highways. As the set of maneuver is limited to a two-element list, Change-
Lane and KeepLane, the IMM is configured with two EKFs. Different state
transition functions are though fed to the EKF for straight and curved road
stretches: in the second case, the road is defined through a y = c1x + c0
equation and the knowledge of the road parameters is required. This draw-
back is significant in scenarios where the road has many curvatures. This
IMM-based algorithm could foresee a change lane between 1s and 1.5s before
the vehicle fully crossed the lane line.

Houenou et al. [12] presented a Maneuver Recognition Model (MRM),
to detect the current maneuver (keep lane, change lane, turn), based on an

10

Figure 2.2: Integration of physics- and maneuver-based trajectory prediction
models [34].

early detection of the lane where the driver is intending to. A weight function
combined, then, the trajectory computed by a CTRA motion model and the
one derived by the recognized maneuver, whose complexity grew significantly
in case of non constant road curvature.

A combination of a physics-based prediction (CTRA) with a simple MRM
based on a Dynamic Bayesian Network (DBA), whose parameter are learned
from realistic driving data [34]. The IMMTP (Interacting Multiple Model
Trajectory Prediction) exploits the first method for short-term prediction,
while referring to the second one for longer time horizon. A schematic rep-
resentation is shown in fig. 2.2.

11

2.2.2 Hidden Markov Models
Drakoulis et al. [29] predicted intersection crossing trajectories by means
of the vehicle kinematics, the road topology and the short-term maneuver-
ing intention, limiting the vast space of feasible future trajectories. Once
the Kalman filter has calculated missing parameters, such as the yaw rate,
the observations, integrated with the localization and map information, are
passed through a Bayes filter (HMM classifier), to detect possible maneuvers
and a smooth long-term trajectory is derived. The final predicted trajectory
is derived through the combination of the the short-term prediction (CTRA
motion model) and the intention-aware qualitative prediction. This approach
allows to predict driver intention of turning left or right on circa 3.5s, before
entering the turn.

2.2.3 LSTM and RNN
Rule-based approaches, that simulate lane-changing behavior according to a
series of traffic rules, are widely used, but the model performance is affected
by the difficulty to describe the pattern of a driver potential decision. In the
last years, much progress has been made in this field through deep neural
networks: RNN (Recurrent Neural Networks) and LSTM (Long Short-Term
Memory) are the most common [1, 8, 25, 26, 35]. LSTM is composed of three
gates and this internal gate mechanism can regulate the flow of information
by enabling timeseries analysis: the gates can learn which data in a sequence
is important to keep or throw away. [35] presented a method to predict the
driver intention based on a LSTM, analysing a combination of kinematic
features (position, speed, heading) and location context, without using a
physical based model for prediction. The characteristics of each maneuver
contributed to the maneuver classification: for instance, a driver turning
across traffic will slow down and move to the center of intersection and a
driver turning left will generally move to the outside of the road and slow
down in preparation for the turn. RNN and graphical models have been used
as well to predict the future categorical driving intent, for lane changes in
highways, up to three seconds into the future given a 1 second time-window
of past position and speed measurements [26].

In 2019, LSTM, GRU (Gated Recurrent Units, similar to LSTM without
handling hidden states) and SAE (Stacked Denoising Autoencoder, composed
of networks trained as autoencoders, learning efficient coding of unlabeled

12

Figure 2.3: The architecture of the proposed prediction reference baseline
determination method [33].

data and validate the encoding by attempting to regenerate the input) have
been compared in [21]. LSTM and GRU have demonstrated to have higher
performances (recall, accuracy and precision) than SAE. Furthermore, as the
sequence length grows, the performances of LSTM an GRU improve: the two
result in higher accuracy respectively for long-term and short-term sequences.

A Lane-Attention [25], based on LSTM, has been recently introduce. It
treats lanes as a graph and uses attention mechanism to aggregate the static
environmental information. The model is trained to learn drivers’ intention,
manifested as the different levels of attention scores, that could be passed to
a subsequent trajectory prediction.

A complete trajectory prediction approach based on Knowledge-Driven
LSTM in urban roads was presented in [33]. A first offline phase establishes
the ontology model ”human-vehicle-road”, extracting the main characteris-
tics of the road network and traffic participants, and the behavior prediction
rule, using the background knowledge about the traffic regulations and the
driving experience. A Prolog reasoning system matches these rules with the
actual knowledge (ontology model obtained by the factual scenario), inferring
the driver intent. Finally, the trajectory prediction phase uses the LSTM to
learn the continuous features of the historical trajectory on the basis of the
current intent and then generates the future path (fig. 2.3).

13

2.3 Interaction-aware Model for Trajectory Pre-
diction

The previous categories assume that the vehicles move independently from
each other. This assumption falls in case of Interaction-aware Model, where
inter-vehicle dependencies can be modeled with Coupled HMMS (CMMHS)
[5], that analyse pairwise dependencies between entities. The number of
possible pairwise grows quadratically with the number of traffic participants,
hence the complexity is not manageable. LSTM are also widely used in this
context: a small outline is given hereafter.

2.3.1 LSTM and CNN
The first study aiming to solve this issue using LSTM predicted single vehicle
trajectory at each iteration, leading to a significant computational load. [16]
analyses the temporal behavior and predicts the future coordinates of the
vehicle, feeding the sequences of vehicle coordinates obtained from sensor to
the LSTM and producing probabilistic information on the future location of
the vehicles. Such an approach, exploiting the vehicle states, can efficiently
capture the single vehicle maneuver, but the computation time and the pre-
diction error increase with the number of vehicle. [13, 19], on the other hand,
take advantages from the occupancy grid map in a traffic scene, making use
of CNN (Convolution Neural Networks) and LSTM, to predict the future
occupancy of each cell. By using integrated driving scene input, the model
is powerful to capture scene-level interaction context, even in dense traffic
situations, but they are still computational heavy for a single iteration.

2.3.2 SCALE-Net
With the aim to guarantee the consistency in terms of accuracy and com-
putational load, a fully scalable trajectory prediction network that models
inter-vehicle interactions, SCALE-Net is proposed in [14], based on edge-
enhanced graph convolutional neural network (EGCN) [9] and LSTMs. His-
torical states of the vehicles are used as input of the overall system. Though
this model can be applied to any level of traffic complexity with low compu-
tational resources, SCALE-Net cannot consider the road structures, one of
the most prominent features of traffic scenes. An overview of the architecture

14

Figure 2.4: Overall architecture of SCALE-Net for the trajectory prediction
algorithm [9].

employed in fig. 2.4 is only for information purposes.

2.4 Collision Prediction or Risk Assessment
One of the major challenges after predicting trajectories is to detect possible
critical situation, in order to react accordingly to mitigate or to fully avoid
accidents.

2.4.1 TTC
The well-known TTC (Time to Collision) [11], defined as “the time equired
for two vehicles to collide if they continue at their present speed and on
the same path”, finds many application in the literature as risk indicator:
the lower the TTC, the higher the probability of collision. Kim et al [17]
computed the TTC comparing the entrance and exit time of two vehicles
into and out of the conflict area (region of the space where the two areas
overlap) in curvilinear coordinates (fig. 2.5), after calculating the future
trajectory using quintic polynomial. This work showed acceptable results
only for non long-term prediction, as uncertainties on the future are not
taken into account.

15

Figure 2.5: 5th degree polynomial trajectory based TTC computation
method: entrance time and exit time in the conflict area are compared [9].

2.4.2 Binary and Probabilistic Methods
The simplest, but computational complex method to evaluate a potential risk
is to find the intersection between two trajectories, once the linear differen-
tial equations of the motion models (Physics-based model) have been solved.
Another solution is to approximate the trajectories with linear piecewise seg-
ments or to discretize the trajectories, checking iteratively for a collision at
each discrete timestep [3]. Vehicle dimensions are fundamental in a risk
assessment, and usually it is represented as a polygon [6], or ellipse if the
uncertainties on the measurements is known [2].

These methods provide only basic information such as whether, where
and when a collision will occur, while new approaches based on HMM sup-
ply details such as the probability and the severity of the risk. These studies
compute the collision probability on a discretized position space, exploring
the probability that two vehicles share the same cell. In [10] a two layer
reasoning computation architecture measures the collision probability as the
percentage of overlap between the future trajectories represented as geomet-
ric shapes. This early warning system has been demonstrated to work in
real-time even in complex-scenarios. [8] applied a monitoring algorithm for
collision prediction based on VANET (Vehicle ad-hoc networks, whose nodes
are vehicles, created ”spontaneously” for data exchange between vehicles).
After computing the vehicles’ uncertain trajectories using LSTM, the uncer-
tainty regions occupied by two vehicles at time t are compared: the dimension

16

Figure 2.6: Example of two uncertainty regions intersecting: a collision is
therefore foreseen [8].

of the intersection area defines the amount of risk (fig. 2.6).

17

Chapter 3

Proposal and approach

This chapter presents an overview of the adopted approach: after predicting
potential future trajectories, through a method that falls within a mixture
of physical-based and maneuver-based motion prediction, for all the moving
entities in the scene, the risk is estimated by analysing pair of traffic par-
ticipants and their trajectories. This requires predicting traffic participants
trajectories in reference to the exact geometry of the road and the current
maneuver that a vehicle intends to perform. After discussing (Section 3.1)
the solution and its reasons behind in a more mathematical and abstract
manner, the software implemented is described under an architectural point-
of-view (Section 3.2). Section 3.3 introduces, finally, the IPG CarMaker
software, that allows to validate the implementation and the methodology,
simulating different driving use cases.

3.1 Collision warning with map-based trajec-
tory predictions

This section introduces the core concepts of this work under a mathematical
point of view. Afterwards, the prediction strategies are outlined more in
details, jumping into the proper workflow.
Advantages have been taken of the knowledge of the road geometry, allowing
the generation of trajectory predictions along the predefined routes, expressed
as a set of points occupied by an actor over a time horizon. The current
maneuver of a traffic object (in this specific case, pedestrians are excluded)
plays an important role in the trajectory generation. If the space regions,

18

occupied at a certain time step by a pair of actors, have at least one point
in common (conflict area), a collision is foreseen.

3.1.1 The core concepts
Assume that the crossroad is populated by dynamic actors, such as VRUs
(pedestrians, cyclists or skaters) and vehicles (cars, trucks, buses, etc.) and
that the system has no kind of control over the state of each actor. Assume
that the world is described by a two-dimensional space modeled by a top-
bottom view of the real world.
The state of an actor A is a vector xA(t) ∈ Rn as a function of time t that
encodes the properties of actor A at time t. The n-dimensional vector is in
the form of

xA = [x, y, θ, v, w, a] (3.1)
holding the position of the actor (x, y), the direction (or heading angle) θ,
the scalar velocity and angular velocity, as well as the acceleration.
The set Ψ, called predefined route, is a well-known set of points

Ψ ∈ R2 (3.2)

The one-dimensional trajectory of an actor over time

PA(xA) = {(x, y, t) : (x, y) = PA(xA, t), t ∈ T} ⊆ R2 × T (3.3)

is a set of poses of the actor A within a future time interval T , as a function
of the current state xA.
Future trajectory poses of 2-4 wheeler actors are further restricted to relies
inside the predefined routes set of points:

PA(xA) = {(x, y, t) ∈ Ψ, t ∈ T} (3.4)

It is essential to consider also the region of the two-dimensional space

Ω(PA(xA)) ⊆ Rn × T (3.5)

physically occupied by an actor over time, as a function of its trajectory PA.
The pair of actors ΥA|B = Ω(PA(xA)),Ω(PB(xB)) is the collection of the 2D
trajectories of two actors.
A collision of between ΥA|B is detected if the set of points defining the conflict
area ΦΥA|B is not empty.

ΦΥA|B = {Ω(PA(xA, t)) ∩ Ω(PB(xB, t)), t ∈ T} ̸= ∅ (3.6)

19

3.1.2 The applied solution
When predicting vehicle trajectories, it is reasonable to assume that all ob-
served vehicles will behave according to traffic rules. Their movements are
confined to the boundaries of the road and their trajectories can be seg-
mented into smaller path, characterized by a specific starting and end point.
Consider a group of vehicle driving in the crossroad of this study. The driven
trajectories, ignoring in this case overtaking or lane change maneuvers, would
create a graph G = (E, N), where N are nodes (or vertices) and E edges (or
segments) of the graph G, and delineate the predefined routes. For this
purpose, the crossroad is modeled in CarMaker (sec. 3.3), exploiting its ca-
pabilities of simulating real scenarios: the generation of the business park
3D map and the accurate replication of the road geometry made the process
of recreating the real map simple and detailed.

Firstly, it is necessary to emphasize the distinct approaches regarding the
trajectory prediction methodology applied to pedestrians and to 2-4 wheelers,
due to their complete incomparable dynamic motion models and movements.
A clarification about the workflows is presented in fig. 3.1. Actors equipped
with wheels (vehicles, bicycles, motorcycles) move along the map routes, that
are always characterized by a polynomial, calculated during the predefined
route generation step. The future pose at a specific time step t ∈ T , that is
going to define the trajectory PA(xA), is calculated as a function of xA. In
other words, given initial position, the current velocity and the acceleration,
the final position on the route after t is known.

Realistically seen, a vehicle performs not only the so-called keep lane ma-
neuver, but often changes its route, path (change lane maneuver), impacting
the trajectory prediction. During this operation, it deviates from the course
of the predefined road map, requiring a different methodology for the tra-
jectory generation. Many trajectory planning techniques for vehicles lane
change had been discussed in the literature. Among them, B-spline curves
and clothoid curves are widely used, but these methods could cause a com-
plex calculation and the maximum lateral acceleration was hard to control.
A further approach based on Bezier Curve (see fig. 3.2) was presented in 2013
by Chen et al. [7] : they demonstrated how this kind of curve could be solved
quickly and efficiently, satisfying real-time requirements. In this study, this
methodology is adopted, resulting in generated trajectories following Bézier
Curves in case of lane change operations (fig. 3.3).

The lane change maneuver detection plays therefore an important role:

20

Figure 3.1: Flowchart describing the work-flow adopted for the pedestrian
and vehicles/bicycles predictions, followed by the main steps of the collision
detection process.

21

(a) Quadratic Bézier
Curve (b) Cubic Bézier Curve

Figure 3.2: Example of Bézier Curves. On the left (a) a quadratic Bézier
Curve, defined by its 3 control points. On the right (b) a couple of cubic
Bézier Curve and their control points

Figure 3.3: Example of a Bézier Curve used in path planning for a lane
change maneuver. Source: Lane change path planning based on piecewise
Bézier Curve for autonomous vehicle.

22

the sooner it is observed, the sooner the trajectory prediction can be updated.
This task is carried out by an Interacting Multiple Model (IMM) filter that
computes the probabilities that the motion model describing the lane change
maneuver is in effect at current time step, against the lane keeping model.
The filter solves the problem of using a single motion model the wide range
of vehicle maneuvers, running a set of filter in parallel, combining their states
and covariances and calculating the model probabilities. In this study, a pair
of EKF (Extended Kalman Filter) are configured with respectively a state
measurement motion model for the keep lane maneuver and for the change
lane maneuver. The model probabilities indicates which curve (Bézier Curve
or the road map) the actor is going to follow.

The generation of a pedestrian trajectory closely depends on the his cur-
rent movement. When standing alongside the road, waiting for crossing, his
velocity may tend to zero. The generated path, basing on its velocity, would
result in a cloud of point near the current pose. Thus, his velocity is assigned
an average velocity and the pedestrian is assumed to move perpendicularly
to the road (crossing the street). If the state xi already defines a velocity,
that does not tend to null, and an heading angle, the future positions are
predicted basing on his state xi. The CA motion model applied is described
in the next chapter (sec. 4.1.1).

After collecting all the trajectories of the actor populating the crossroad,
the generated paths for each pair of actors Υi|j are intersected, searching for
a common point in the set of trajectories. This shall be reached by both the
traffic object at the same time step t. This method is anyway not enough,
as it considers only the center of the mass of the vehicle. Each 1D trajectory
(describing the path of the center of mass of the actor) is then transformed
into a 2D area Ωi, by means of the actor’s real dimensions. The space sections
Ωi|t and Ωj,t at each time step t ∈ T are overlapped, to find a conflict area. If
for any t the conflict area contains at least one point, a collision is detected.

3.1.3 Motivation
The specific real world scenario and the knowledge of the road map played an
important role in elaborating the aforementioned approach: the awareness
of predefined routes have considerably simplified the trajectory prediction
step, without the need of over engineered calculation with heavy computa-
tional cost. Therefore, although interesting and maybe applicable in future
studies and works following this thesis, methodology based on neural net-

23

works, and especially Long-Short-Term-Memory neural networks, have not
been involved.

It’s worth mentioning that many solutions in the literature have been
applied to create such a map graph. Quehl et al. [28] proposed to generate
this graph using the accumulated trajectory data coming from a set of vehicle
equipped with sensors for accurate tracking. Hence, the possible paths were
infered: the recorded trajectories were first converted to a top-view gray-scale
image and, after removing short branches (noise), reduced to simple lines,
through image processing and agglomeration algorithms. A further approach
involves online maps, that allows the extraction of information about the
surrounding road structure, such as OpenStreetMap. However, these maps
could be affected by a non precise geo-reference, such that accurate lane
depiction could be missing, as well as the number of lanes.

The always varying geometry model of the map, along the routes, would
impose a great amount of motion model configured in the IMM filter (almost
one for each curved road segment). Thus, the integration of the map defi-
nition, that enhance and improve the differentiation between a lane change
maneuver and a turn maneuver, that would generate completely distinct
path.

The choice of employing CarMaker relies on two main reasons. The first
one is based on the intent of running the overall system in simulation, without
physical vehicles. The second one is originated from the drawbacks of online
street maps.

3.2 Software architecture: 4+1 Architectural
View Model

The ”4+1” View Model for describing the Software Architecture was intro-
duced by Philippe Kruchten in 1995 [18]. The purpose of this view is to
provide five concurrent views, to capture and illustrate the different aspects
of the system design. The ”4+1” View Model gets its name from the 4
primary views and 1 supporting view that are used:

• Logical view: to give an overview of the functionality.

• Development view: to statically describe the system on a developers’
perspective.

24

• Process view: to illustrate the communication between the different
processes.

• Physical view: to outline the services’ deployment.

• Use Case view: the supporting view, aimed at describing the function-
ality of the system from a user perspective.

These multiple views address separately not only the concerns of the various
”stakeholders” of the architecture (end-user, developers, etc.), but also the
functional (logical and development views) and non-functional requirements
(process and deployment views).

3.2.1 The Logical view
The Logical view captures the functionality of the system in terms of its static
structure and dynamic behavior: through the decomposition of structural
elements, functional requirements are described. Since a UML Component
can effectively depict component-based systems, the package diagram in Fig.
3.4 was deemed appropriate to show the arrangement of the model elements.

25

Figure 3.4: Package Diagram that show the organization of the packages

At a first glance, it appears clear that the organization of the software is kept
simple. Each package is as much as possible independent from each other
and develop a specific functionality of the software.

3.2.2 The Development view
The Development view describes the system from a programmer’s perspec-
tive. It is concerned with the organization of physical code, its main modules
and their dependencies. Class diagrams are the most suitable diagrams for
this view, as they provide a good overview of the code structure, modeling
classes, their component parts and the relations between one another.
The different types of objects implemented within this system are shown in
figure 3.5.

All the classes, excepting the IMM and EKF, are Simulink Busses, analogous
to a structure definition in C: they defines the number, the properties, such
data type, and the configuration of each bus element. Easing and automati-
cally validating the data flow during Simulink models simulations, especially
where Matlab functions are used, Simulink.Bus data type has been choosen
for all the other objects.

26

Figure 3.5: Class Diagram for the development view, providing a code struc-
ture description

27

3.2.3 The Process view
The Process view focuses on the run-time behavior of the system and the ele-
ments of the system that relate to process performance, as well as the flow of
information. While the general workflow is usually illustrated through states
and transitions diagrams (such sequence diagrams or activity diagrams), non-
functional aspects (like scalability, throughput, and process response times)
can be easier put in words than in diagrams.

Such diagrams present the system for a dynamic point of view, unlike
class diagrams, that focuses on the static definition and description of the
different component parts.

The activity diagram presented in figure 3.6 documents the implemen-
tation of the collision warning system process. The process can be roughly
divided into two parts: the first one for the trajectory prediction and the
second one that basically predicts the collision. The former step is comprises
two flows of activities, depending on the class (type) of the detected object
(is it a person or a vehicle?): in case of pedestrians, a simple CA motion
model (see section 4.1.1) is applied. For objects with wheels (vehicles, bicy-
cles, roller, etc) the prediction starts with the detection of the driving mode
(keepLane or changeLane) using two EKFs (one for each motion model) that
runs parallel within an IMM Filter. This defines the probability that a certain
model (keepLane or changeLane) is in effect at a specific time step. Given
the probabilities and the road geometry, the trajectory can be calculated for
many time windows in the future. After defining all the trajectory points
for each time step, the second (and final) step can begin: the trajectories
calculated until now, are those of the center of mass of the object, not of a
2D object. For this reason, the width and height of each object are integrated
to calculate if a conflict area exists at each time step.

3.2.4 The Physical view
The Physical view shows the system from a system engineer’s point-of-view,
representing the deployment layout or infrastructure of an application. The
software components are mapped across the hardware including computers
and devices. Standard options include UML deployment diagram or Network
diagram.
In this case, the deployment diagram (3.7) is really simple, as the system
runs only in simulation mode on the laptop: the Simulink model is respon-

28

Figure 3.6: Activity diagram that illustrates the system dynamic behavior

29

Figure 3.7: Deployment diagram with the CarMaker and Matlab/Simulink

sible for the trajectory prediction and collision warning computation, that is
executed real-time during the simulation in CarMaker, using the CarMaker
for Simulink integration.

3.2.5 The Use Case view
A Use Case diagram, used for high level of design, specifies the events of
a system and their flows, without referring to the implementation. The
representation of the externally visible system behavior leads to a great ef-
fectiveness in communicating the system behavior in the users’ perspective,
main purpose of the Use Case view.
The use case diagram in figure 3.8 depicts the general collision warning sys-
tem behavior.

Two types of actors (on the left side) are supposed to interact with the
system: pedestrians and vehicles/bicycles: a single use case can be populated
by zero or more of each kind of actors. The third one (on the right) is the
external system, tasked with the real warning to the VRU. It is directly
connected to the end goal (”find conflicting areas”), that is reached through
the different actors’ trajectory predictions.

30

Figure 3.8: Use Case Diagram that shows the system behavior from a user
perspective

31

3.3 Introduction to CarMaker
The company IPG Automotive is widely known in the vehicle dynamics sim-
ulation field, providing systems for the whole virtual vehicle development.
Besides TruckMaker and MotorcycleMaker, which are adopted to test re-
spectively heavy-duty vehicles and motorized two-wheelers, IPG Automotive
provides the Simulator CarMaker, a simulation tool used for testing light-
duty vehicles in virtual realistic environments during each phase of the in-
the-loop development process.
CarMaker is a test platform which allows to recreate real-world driving sce-
narios in a virtual environment, simulating every type of road and traffic,
performing realistic execution through the event and maneuvers-based testing
method. The parametrization of the test scenario is stored in the TestRun,
which collects the information about the overall environment:

• Vehicle: the definition of the ego-vehicle data set used.

• Road: the definition of the road, such as its geometry, its characteristics
and the surrounding buildings, and the driving routes.

• Maneuver: the definition of the different maneuvers that the ego-vehicle
performs during the simulation. This list of instructions do not set
directly the vehicle motion, but the control actions that are meant to
lead to certain vehicle motion: in other words, the vehicle follows the
desired vehicle motion, if not beyond the vehicle limits.

• Driver: the definition of the driver behavior (defensive, normal, aggres-
sive).

• Traffic: further static or moving traffic objects in the simulation (as
pedestrians, cyclists, further vehicles, etc).

• Environment: the description of environmental conditions like the tem-
perature, the time of day or the wind velocity, that influences the sim-
ulation results.

The ego-vehicle can be configured in every aspects, some of them are sum-
marized in the following list: modules:

• Sensor Cluster: the parametrization of the sensor mounted on the ego-
vehicle (radar, camera, etc.).

32

Figure 3.9: IPG CarMaker GUI

• Tire: the configuration of the tire data set.

• Trailer: the definition of a potential trailer attached to the ego-vehicle.

A preview of the CarMaker GUI is showed in 3.9. The upper section is
completely dedicated to the vehicle (Car, Trailer, Tires and Load), while the
maneuver section, on the left-down corner, displays the set of instructions
for the test driver. The simulation box allows to completely control the
simulation status, and to start and stop the simulation: if the simulation
does not run in a HIL environment, another performance than real-time
(run slower or faster) are possible. The Status entry display the status of the
simulation:

• Starting Application: during the connection of the GUI to the appli-
cation, when the simulation is started for the first time.

• Idle: default state when the simulation is not running.

• Preparation: vehicle parameters are set.

• Running: the simulation is running.

• Pause: the simulation is paused, to be resumed at a later point.

33

Figure 3.10: ScissorLift object used as test vehicle (1.5m x 1m x 2.5m)

Finally, the Storage of Results area allows the user whether to save (save all
option is selected) or not (collect only) the results to the disk. This last option
saves the results temporarily in a ring buffer, without being continuously and
automatically saved to the disk. Which output quantities shall be saved, can
be configured as well.

3.3.1 Actors: Test vehicle and traffic objects
One or more actors (at least the ego vehicle) populate each test scenario.

Ego-Vehicle

Two different types of Ego-Vehicle are used in these tests. The first one is, as
showed in fig. 3.9 inside the Car section, the DemoCar, a Volkswagen Beetle
adopted by IPG for EuroNCAP tests, with a RoadSensor. The second vehicle
is a ScissorLift 3.10, a static object, whose car dynamic is inherited from the
DemoCar, but the vehicle 3D model and the wheel frames have been adapted
in the Vehicle Data Set (see fig. 3.11 for the wheel frames configuration).

34

Figure 3.11: CarMaker Vehicle Data Set window, where the Wheel position
can be configured

While the former is only used for the road map acquisition and creation,
the second one appears in all of the scenarios used for the collision warning
system tests.

Traffic

Additional road users can be added into the driving scenario. A traffic object
can be whether movable, a dynamic part of the test run, such as parking or
driving vehicles, bicycle riders, pedestrians, animals, or a stationary object
(buildings, gas stations, etc), that are mainly used to create an ambience,
which lead to a more realistic visual representation. Each object name, di-
mensions and orientation can be customized, as well as the start route and the
start position offset. CarMaker allows the use of a three-dimensional model,
to enhance the visualization of the traffic object, similar to the ego-vehicle
(fig. 3.12).

The traffic object can be configured to use different motion model pro-
vided by CarMaker. The single track model represents the lateral and yaw
motions of a traffic object: it can be 4Wheels in case of vehicles (see fig. 3.13)
or 2Wheels for bicycles. The difference between the two resides in the roll
and pitch model. While the pedestrian motion model is specific for pedes-
trian and animal objects, a further motion model, called ball, simulates the
motion of a ball bouncing and rolling on the road.

Analogous to the test vehicle, driving maneuver independent to the ego-

35

Figure 3.12: CarMaker Traffic GUI, with the list and general configuration
of traffic objects

36

Figure 3.13: CarMaker Traffic Motion Model section. For vehicles the 4
Wheels Single Track motion model is automatically set.

37

Figure 3.14: CarMaker Traffic Maneveur, where the minimaneuver of each
traffic objects can be defined

vehicle can be defined for each traffic object, not only for single track motion
model objects, but also for pedestrians: several options that define the longi-
tudinal and lateral movements (such as change lane) are available (fig. 3.14).

3.3.2 Scenario Road and Routes
The Scenario Editor is the GUI that not only enables the creation of road
networks for vehicle and driving simulation but also the definition of routes
for the test vehicle and the traffic objects.

The road networks is defined by links and by junctions, that joins multiple
links with each other. Each link is then divided into lanes, a maximum of 10
lanes can be defined: parameters as their section, type (driving lane, bicycle
lane, bus lane, parking area etc.) can be configured as desired (fig. 3.15).
Furthermore, some editor options facilitates the use of road accessories, such
as road markings, traffic signs and traffic lights, traffic barriers, and the
beautification of the simulation environment. Elements belonging to this
latter feature are bridges, tunnels and geometry objects.
A path is defined as a trajectory section on a link that is used for creating
routes. Hence a route is a set of consecutive paths. Various routes can be
defined in order to create many different driving possibility on the road.

38

Figure 3.15: CarMaker Scenario Editor window

3D-Map

In order to recreate a realistic road scenario a 3D map has been attached to
the road as a geometry object. The capture of the 3D-Map from GoogleMaps
has been performed using RenderDoc, a free MIT licensed stand-alone graph-
ical debugging tool for single-frame captures. A second software, Blender, a
free and open source creation suite, allowed to improve the acquired 3D Map
and to remove already parked cars (3.16).
After importing the map into the scenario geometry object (by means of
Blender a .dae Collada file format could be generated), parked cars have
been added again in the road scenario using traffic objects: this choice has
improved the visualization, keeping it as realistic as possible. The final result
of the driving scenario, after adding the roads, road markings, traffic objects,
is showed in fig. 3.17.

3.3.3 CarMaker Frames
The CarMaker inertial axis system 3.18, known as global system, is a earth
fixed origin with the following properties:

• O is the origin, while X, Y, Z are the 3 axis.

39

Figure 3.16: Blender, import of 3D-Map, after removing some parked cars
and some view-obstructing trees

Figure 3.17: Driving scenario in CarMaker, with roads, road markings and
traffic objects

40

Figure 3.18: Visual description provided by CarMaker of the global and local
system, with the wheel frames

• O, X, Y is the horizontal driving plane.

• Z is directed upwards, as product of XxY .

Another important axis system is given by the so called local system: a
frame attached to each moving object, where X points to the moving direc-
tion, Y to the left and Z upwards. Many points, like car loads or sensor
mountings, are parametrized in referece to this frame. The wheel position,
as well, as shown in fig. 3.11, has been defined referring to the local frame.
Within the local frame a mount-point is defined, that corresponds to the ori-
gin O, center of each wheel. This axis system, attached to the mount-point
has its X axis pointing in forward driving direction, while Y is the wheel spin
axis, therefore (O, X, Z) is the wheel plane.

3.3.4 CarMaker for Simulink
CarMaker for Simulink is a complete integration of CarMaker into the Mat-
lab and Simulink modeling and simulation environment. CarMaker features
and functionalities are integrated into the Simulink environment using S-
Functions and API functions provided by Matlab/Simulink. A custom Car-

41

Figure 3.19: The CarMaker Simulink model structure

Maker blockset is provided, in order to directly connect a Simulink model
with CarMaker. These CarMaker for Simulink blocks are direct feed through
and run with the fixed step size of the CarMaker application (1000 Hz). The
logic of the collision warning system is developed in Simulink thanks to the
CarMaker extension. By opening the Simulink model, it is possible to see
the main structure (3.19):

• By clicking on the ”Edit Model Configuration”, few additional settings
for advanced application can be set (environment variables, or server
application name).

• ”CarMaker” block is the Simulink representation of CarMaker mod-
els, as shown in figure 3.20, with several subsystems of the CarMaker
environment, where the exchanged signal are accessible;

• ”Open GUI” block connects the Simulink model to a running CarMaker
GUI; if no running GUI is detected a new CarMaker process is started
and a TestRun shall be selected.

42

Figure 3.20: The CarMaker subsystem, representing the general structure of
CarMaker in Simulink

43

Chapter 4

Methodology

This chapter focuses on explaining in details the solution adopted for the
collision prediction. Firstly the methodology applied for the trajectory pre-
diction of vehicles and bikes are presented: after going into detail for what
the mode detection concerns (Section 4.1), the proper trajectory prediction
based on pre-defined route is discussed (Section 4.2). Thereupon Section 4.3
presents the method adopted instead for pedestrians. Finally, when all the
future trajectories are defined, the approach used for the collision detection
is explained (Section 4.5).

4.1 2-4 Wheelers Lane Change detection
This chapter gives an overview about the approach used for the lane change
intent detection. Firstly, section 4.1.1 provides a general overview of the
motion models, that describe a vehicle dynamic behavior. Despite the fact
that an Extended Kalman Filter (EKF) is applied to non-linear system 4.1.2,
there is not a unique vehicle model (hence, not a unique filter) suitable for all
the situation in which the vehicle can be involved. Therefore, the diversity of
possible road maneuvers leads to the application of an Interacting Multiple
Model (IMM) 4.1.3, that is able to run many models at the same time,
selecting the one which better represent the system behavior. In this study,
two EKFs have been chosen, one with a constant acceleration-like (CA) state
update model and one implementing a constant turn rate and acceleration
(CTRA) state update model. The former describes the kinematic model
while keeping the lane, while the latter fits the change lane use case. Applying

44

the IMM filter on a set of measurement, the model probabilities computed by
the IMM filter, allows to describe The Motion Mode Probabilities estimated
by the IMM allows to detect a lane change maneuver, defining how probable
is that a model is in effect at the current time step.

4.1.1 Motion Models
Motion models are mathematical frameworks, describing a vehicle dynamic
behavior. They can be used to perform short-term prediction of a vehicle
future state using the current state. Due to the great number of motion
models used in the literature, it is not possible to give a precise overview,
but a first systematization can be achieved by distinct levels of complex-
ity. Roughly, at the lower end of such a scale, there are models that do
not consider rotation (linear motion models): constant velocity (CV) and
constant acceleration (CA) are two examples. A second level of complexity
is defined by curvilinear motion models, as Constant Turn Rate and Veloc-
ity (CTRV) and Constant Turn Rate and Acceleration (CTRA). Schubert
et al.[30] demonstrated that CTRV and CTRA provide better performances
than CV: the use of the yaw rate reduce position errors. Furthermore, the
incorporation of the acceleration additionally improves the overall tracking
performance.

Constant Velocity Model The constant velocity (CV) model is a linear
and rectilinear motion model, with consider a constant velocity. The state
vector is given as X = [x vx y vy]. The state update equation is:

−→x (t+ dt) =

x(t) + vxdt

vx
y(t) + vydt

vy

 (4.1)

Constant Acceleration Model As the CV model, the Constant Accel-
eration Model (CA) is a linear and rectilinear motion model, that consider a
constant acceleration. The state vector is given as X = [x vx ax y vy ay] The
state update equation is:

45

−→x (t+ dt) =

x(t) + vxdt+

1
2
axdt

2

vx + axdt
ax

y(t) + vydt+
1
2
aydt

2

vy + aydt
ay

 (4.2)

Constant Turn Rate and Velocity model The Constant Turn Rate
and Velocity (CTRV) model is a non-linear and curvilinear motion model.
The state vector is X = [x y θ v ω] and the state update equation is:

−→x (t+ dt) =

x(t) + v

ω
sin(ωdt+ θ)− v

ω
sin(ω)

y(t)− v
ω
cos(ωdt+ θ) + v

ω
sin(ω)

ωdt+ θ
v
ω

 (4.3)

Constant Turn Rate and Acceleration model The Constant Turn
Rate and Acceleration (CTRA) model is a nonlinear and curvilinear motion
model. The state vector is X = [x y θ v a ω] and the state update equation
is:

−→x (t+ dt) =

x(t) + ∆x
y(t) + ∆y

ωdt
adt
0
0

 (4.4)

with

∆x =
1

ω2
[(v(t)ω+aωdt)sin(θ(t)+ωdt)+acos(θ(t)+ωdt)−v(t)ωsin(θ(t)−acos(θ(t))]

(4.5)
and

∆y =
1

ω2
[(−v(t)ω−aωdt)cos(θ(t)+ωdt)+acos(θ(t)+ωdt)+v(t)ωcos(θ(t)−asin(θ(t))]

(4.6)

46

4.1.2 Extended Kalman Filter
The Kalman Filter (KF) is a well-known recursive algorithm for estimation
and prediction of dynamic systems. KF is used for linear transition functions
whereas under non-linear transition, Extended Kalman Filter (EKF) is used.
The main difference between the two filters lies in the linearization of non-
linear functions performed by the EKF, employing a Jacobian matrix.

Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a recursive
solution to the discrete-data linear filtering problem. The Kalman Filter
is a recursive algorithm, used to estimate states based on linear dynamical
system in state space format. The main principle of Kalman Filter consists in
finding the probability of the predicted state hypothesis, given by prior state
hypothesis, and then using the data from measurement sensor to correct the
hypothesis to get the best estimation for each time. Basically, applying KF
has to concern about model creation including state and measurement model.
In other words, it estimates the state x ∈ Rn of a discrete-time controlled
process that is governed by the linear stochastic difference equations:

xk = Axk−1 +Buk−1 + wk−1 (4.7)

zk = Hxk + vk (4.8)
The first equation, linear stochastic equation, means that each xk is eval-

uated. The second equation explains that any measured value, unsure of its
accuracy, is a linear combination of the measurement noise and the signal
value (both considered to be Gaussian). Both process and measured noise are
assumed to be independent, white and with normal probability distribution.

p(w) ∼ N(0, Q) (4.9)
p(v) ∼ N(0, R) (4.10)

where Q and R are respectively the process noise covariance and the mea-
surement noise covariance, that might change with each time step or mea-
surement.

The Kalman filter estimates a process by using a form of feedback con-
trol: the filter estimates the process state at some time and then obtains

47

feedback in the form of noisy measurements. Hence, the Kalman Filter al-
gorithm can be divided into two steps: prediction, described by time update
equations(4.11), and correction, whose equations are known as measurement
update equations(4.12).

x̂−
k = Ax̂k−1 +Buk−1

P̂−
k = AP̂k−1A

T +Q
(4.11)

yk = zk −Hx̂−
k

Kk = P−
k HT (HP−

k HT + T)−1

x̂k = x̂−
k +Kkyk

Pk = (I −KkH)P̂−
k

(4.12)

The time update equations are responsible for predicting forward (in time)
the current state x̂−

k and the error covariance estimates P̂−
k to obtain the a

priori estimates for the next time step. The state and covariance estimates
are projected forward from time step k − 1 to step k. The measurement
update equations are responsible for the feedback: after computing the mea-
surement residual yk, also known as innovation, and the Kalman gain Kk,
the a posteriori state covariance Pk and state estimate x̂k, are obtained, by
incorporating the process measurement zk. In details, the residual is the
difference between the true measurement zk and the estimated measurement
Hx̂−

k , where H is the measurement matrix. Hence, the update state estimate
x̂k can be calculated as the difference between the previous state estimate and
the correction term Kkyk. The final step is the computation of the updated
state error covariance Pk, that together with the updated state estimate x̂k,
will be used in the next iteration, or time step. The updated error covariance
is smaller than the predicted error covariance, which means the filter is more
certain of the state estimate after the measurement is utilized in the update
stage.

The Extended Kalman Filter

When either the system state dynamics or the measurement model is non-
linear, the Extended Kalman Filter can deal with these systems, linearizing
about the current mean and covariance, using Jacobian matrices. The state
model and the measurement model are respectively described by (4.13) and
(4.14).

48

xk = f(xk−1, uk−1 + wk−1) (4.13)

zk = h(xk + vk) (4.14)
where f is the non-linear transition function of the previous state xk−1

and the control input uk−1, that provides the current state xk, h is the mea-
surement function that relates the current state xk to the measurement zk.
wk and vk are Gaussian white noises for the process model and the measure-
ment model with covariance Q and R.

By defining the Jacobian matrix J of partial derivatives of f with respect
to x (4.15) and the Jacobian matrix H of partial derivatives of h with respect
to x (4.16), the complete set of equation can be derived: as in the linear
discrete Kalman Filter, the process of the EKF recursive algorithm is divided
into the prediction stage (4.17) and the correction stage (4.18).

Jk−1 =
δf

δx

∣∣∣∣
x̂k−1,uk−1

(4.15)

Hk =
δh

δx

∣∣∣∣
x−
k

(4.16)

After obtaining the predicted state estimate x̂−
k , by the nonlinear func-

tions f(xk−1, uk−1), and the predicted state error covariance P̂−
k , the correc-

tion part can start. The Kalman gain K represents the trustable value of
state model and measurement variable: when R approaches to 0, it means
the measurement variable is more trustable than state model but if P−

k ap-
proaches to 0, then it is viceversa. An important feature of the EKF is that
the Jacobian Hk in the equation of K, serves to correctly propagate only
the relevant component of the measurement information. After updating
the state by the use of the Kalman gain K and the innovation yk, and the
state error covariance, all parameters are updated. Hence, in each iteration
predicted and estimated data continue to become more accurate.

x̂−
k = f(x̂k−1, uk−1 + 0)

P̂−
k = JkP̂k−1J

T
k +Qk−1

(4.17)

49

yk = zk − h(x̂−
k)

Kk = P−
k HT

k (R +HkP
−
k HT

k)
−1

x̂k = x̂−
k +Kkyk

Pk = (I −KkHk)P̂
−
k

(4.18)

Advantages and disadvantages of EKF

The advantage of the EKF over other non-linear filtering methods is its rel-
ative simplicity compared to its performance. Since it is computationally
cheaper than other non linear filtering methods such as point-mass filters
and particle filters, the Extended Kalman Filter has been used in various
real-time application like navigation systems.
On the other hand, the Extended Kalman Filter is based on a local linear
approximation of the state and measurement, in order to apply the Kalman
Filter equations to the resulting linear estimation problem. Hence, for prob-
lems that contain considerable non-linearities, further filters as Particle Filter
or Uscented Kalman Filter (UKF) should be used, with increased computa-
tional cost.
For the purpose of this study the EKF was choosen for two reasons: approx-
imation errors ignored during the prediction/update state are negligible and
the computational cost play an important role. The results demonstrate that
this choice is reasonable.

4.1.3 IMM - Interacting Multiple Model
The Interacting Multiple Model (IMM) estimator is a sub-optimal hybrid
filter that has been shown to be one of the most cost-effective hybrid state
estimation schemes [22]. The model of hybrid system and the IMM algorithm,
initially proposed by Blom [4], may serve as a basis for tracking maneuvers[31]
and lane change prediction[32]. Hybrid systems are characterized by:

• State, that evolves according to a stochastic differential equation model;

• Model, that is governed by a stochastic process: it is one of a finite
number of possible models (each corresponds to a behavior mode),
that undergo switches from one model to another according to a set of
transition probabilities.

50

In practice, the IMM can operate different Kalman Filters in parallel, and
carefully blends state and covariance from each filter to make a composite
state estimate and covariance.

Problem Formulation

In general, an hybrid system with additive noise can be described as follow:

x(k + 1) = f [k, x(k),m(k + 1)] + g[k, x(k),m(k + 1), v[k,m(k + 1)]]
(4.19a)

z(k) = h[k, x(k),m(k)] + w[k,m(k)]]
(4.19b)

where x is the base state, z is the mode-dependent noisy measurement and
m(k) s the modal state at time k. The transition probability of the system
mode is

P{mj(k + q)|mi(k)} = ϕ[k, x(k),mi,mj] ∀mi,mjϵMs (4.20)

where mj(k) is the event that mode j is in effect at time k, Ms is the set of
all modal states at all times, v and w are the mode-dependent process and
measurement noise sequences with means vj and wj and covariances Qj and
Rj, respectively.

For the purpose of this thesis, a fixed-structure hybrid system is analyzed.
In such hybrid systems, a set of modes are selected in advance. Hence, the
system 4.21 can be rewritten as

x(k + 1) = fj[k, x(k)] + gj[k, x(k), vj(k) ∀jϵMf (4.21a)
z(k) = hj[k, x(k)] + wj(k) ∀jϵMf (4.21b)

with Mf fixed set of Nf modes.
The problem of hybrid state estimation is to estimate the base state and

the model state based on the measurement sequence.

Design Parameters

The IMM design parameters are as follows:

• The set of models for the various regimes and their structures (Ms);

51

• The process noise intensities (v)

• The jump structure and the transition probabilities matrix (TPM) be-
tween the different n models.

Algorithm

The IMM algorithm has three important properties: it is recursive, modular,
and has fixed computational requirement It repeatedly executes three steps
per iteration:

1. Interaction between filters (interaction);

2. Individual filter update (filtering);

3. Combine filter information (combination).

A more detailed overview about each step is given by following the notation
and the explanation provided by Bar-Shalom et al.[22]

Interaction For this step, the IMM algorithm requires three set of input:
the vector of model probabilities at current time step, the transition proba-
bility matrix and the M individual filters’ estimates at time k.
First of all the mixing probability is computed (4.22)

µi|j(k − 1|k − 1) =
1

cj
pijµi(k − 1), ∀i, j ∈ Mf (4.22)

where cj is a normalization factor

cj =
∑

mi∈Mf

pijµi(k − 1) (4.23)

Now, the mixed initial state x0j(k−1|k−1) and covariance P0j(k−1|k−
1) of the current time step can be derived by blending together the state
estimates and the covariance from all the filters at the previous time step.

x̂0j(k − 1|k − 1) =
∑
i

x̂i(k − 1|k − 1)µi|j(k − 1|k − 1) (4.24)

52

P0j(k − 1|k − 1) =
∑
i

µi|j(k − 1|k − 1){Pi(k − 1|k − 1)

+ [x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)]

× [x̂i(k − 1|k − 1)− x̂0j(k − 1|k − 1)]T} (4.25)

Filtering The estimate (4.24) and covariance (4.25) are used as input to
the Kalman filter matched to mj(k) to obtain the state estimate x̂j(k|k) and
covariance Pj(k|k) at time k, as well as the mode likelihood Λj(k)

Λj(k) = |Sj(k)|
−
1

2 exp{−1

2
yTj (k)S

−1
j (k)yj(k)} (4.26)

where yj(k) and Sj(k) are innovation and its covariance (4.27) of the jth
conditional filter.

Sj(k) = Hj(k)Pj(k|k − 1)Hj(k)
T +Rj(k) (4.27)

The mode probabilities are then updated as well

µk(k) =
1

c
Λj(k)

∑
i

pijµi(k − 1) =
1

c
Λj(k)cj (4.28)

where c =
∑s

j=1 Λj(k)cj is the normalization factor, to ensure that µjk sums
to one.

Combination The combination of the updated mode conditioned esti-
mates and covariances produces the output estimates:

x̂(k|k) =
∑
j

x̂j(k|k)µj(k)

P (k|k) =
∑

{Pj(k|k) + [x̂j(k|k)− x̂(k|k)][x̂j(k|k)− x̂(k|k)]T}µj(k)

(4.29)

4.2 2-4 Wheelers Map-Based Trajectory Pre-
diction

4.2.1 Predefined Routes
The generation of the trajectory of a vehicle or a bike is strictly linked to the
geometry of the road map. As already mentioned in Section 3.1, predefined

53

Figure 4.1: Car Maker road scenario with all the different possible routes (in
red)

routes, that vehicles are driving along, shall be defined. The general approach
adopted to generate them is now presented.

Collect the route data

CarMaker, as discussed in 3.3.2, allows to add different routes in the road
scenario, for the ego-vehicle and the different traffic objects (autos, bicycles,
motorcycles, etc.).

Starting from the generic-model.slx made available by CarMaker, a simple
Simulink model has been developed (fig. 4.2), to simulate a vehicle (veloc-
ity and vehicle specifications have no relevance in this case) driving along
each route, from the start until the end, without further maneuvers. Cru-
cial importance has the RoadSensor mounted on the ego-vehicle: it collects
information about the road, like the road bend and deviation, road marker

54

Figure 4.2: Simulink first level subsystem, where data from the RoadSensor
are written to a timeseries in the Matlab Workspace, to be then stored in a
.mat file

attributes or longitudinal and lateral slope, and about the relative position.
The RoadSensor block (available in the CM4SL library) requests information
from the mounted road sensor and outputs them to a Simulink.Bus element,
in order to create the map graph offline. Using the ToWorkspace block, this
bus will result as a timeseries in the Matlab workspace after the simulation,
ready to be stored in a .mat file.

After collecting each route data, in other words, after having run all the
simulations, the actual generation of the graph, can be simply triggered by
a standalone Matlab script, whose single input is the set of .mat files.

Define a Route Segment

In the first instance, each route is splitted into shorter segments (linear or
curvilinear), basing on the road curvature: as soon as the road switches from
a linear path (curvature = 0) to a positive (or negative) not null value, or
viceversa, a new segment starts. In the example in fig. 4.3, the route consists
of two linear segments (the first one in rosa and the last one in blue), where
the curvature is 0, and of a curvilinear segment (the second one in yellow).
Both type of segments are described by the following entries:

• index: segment number, used as unique id to identify it within the

55

Figure 4.3: Example of road splitted into shorter segments, basing on the
road curvature

entire map definition.

• boundaries: the (x, y) coordinates of the starting and end point (black
filled scattered in the previous example).

• curvature: the curvature of the path at xy plane. 0 for linear segments,
and abs(curvature) > 0 for curvilinear segments.

• polynomial: each segment is described by a polynomial. Whereas for
linear segments a first order polynomial, such y = mx+q, fits perfectly
the segment, for a curvilinear segments a 5th degree polynomial is
necessary.

• direction: two-elements vector, where the two values (in radians) define
the vehicle heading angle at the beginning and the end of the segment.
Please note, in case of linear segments, the two angles are identical.
Curvilinear segment direction can be affected by inaccuracies origi-
nated by the not 100% fitting polynomial. These values are calculated
deriving the angle of the tangent of the curve at the aforementioned
points.

56

• next: two-elements vector containing the indexes of the segments, by
which the segment is followed. This attribute is initialized with a vector
[−1;−1]: when a sequent adjacent is found, the first −1 is replace with
the respective index. Please note, that the size of this vector remains
fixed (no more than two items can follow this path), in order to avoid
Bus definition issues during simulation: this assumption is reasonable
in this case of study, as each segment has maximum 2 following paths.
This value can be though always be changed, with a redefinition of the
size of the next attribute of the MapDefinition_Segment.

• changeLane: segment index (if exists) of the possible target lane in
case of a lane change maneuver starting from the segment in object.
The value is initialized with −1. The size if fixed and the consideration
made for the attribute above apply here as well. A change lane segment
is defined if and only if the distance between the two route is less than
the maximum of a lane width and the direction are identical, to avoid
wrong way paths.

• isForVehicle: boolean value that distinguish driving lanes from bicycle
lanes. It plays an important role while defining the entry above: a
vehicle target lane is supposed not be a bicycle lane.

• definition: 101x3 vector used during the trajectory prediction, to move
a traffic object along the segment (see section 4.2.3). The curve (whether
linear or curvilinear) is divided into N units, whose length can be ap-
proximated by Eq. 4.30. Hence, each row of the vector contains the x
and y coordinates, as well as the length of the section defined by the
start of the curve and the (x, y) coordinates.

dx = xi − xi−1

dy = yi − yi−1

arcLength = arcLengthi−1 +
√

dx2 + dy2

(4.30)

Generated Map

All the segments are then contained in a DB, in form of a .mat file. In the
fig. 4.4, the generate map used in this study is illustrated. Boundaries of the
each segment are scattered. Cyclists routes are plotted with dashed lines,
indexes are in italic.

57

Figure 4.4: Plot of the generated Map: vehicles routes are defined by continu-
ous lines, bicycle routes with dashed lines. Segment boundaries are scattered.

4.2.2 Lane Change with Bézier Curve
Bézier Curves were invented in 1962 by the French engineer Pierre Bézier for
designing automobile bodies. A Bézier Curve of degree n can be represented
as

P[t0,t1](t) =
n∑

i=0

Bn
i (t)Pi (4.31)

where Pi are the control points such that P(t0) = P0 and P (t1) = Pn,
Bn

i (t) is a Bernstein polynomial given by

Bn
i (t) =

(
n

i

)
(
t1 − t

t1 − t0
)n−1(

t− t0
t1 − t0

)i, i ∈ {0, 1, ..., n} (4.32)

Bézier curves have three main distinct properties:

• They always passes through P0 and Pn

• They are always tangent to the lines connecting P0 to P1 and Pn to
Pn−1 at P0 and Pn respectively.

• They always lie within the convex hull consisting of their control points
(P (t) ∈ convexhullP0, P1, ...Pn).

58

Figure 4.5: Geometric description of Bézier control points

Compute the Bézier Curve

The approach presented in [7] uses piecewise quadratic Bézier curves in order
to avoid problem of heavier calculation required by higher degree Bézier
Curves, whose fitting precision is sometimes still not enough. In this study,
the results presented using the quadratic Bézier curves are plausible.
The lane change path has been generated by two quadratic Bézier curves, P
and Q, whose control points are, as described in 4.5

• P0(0, 0);P1(c, 0);P2(a, b);

• P2(a, b);Q1(2a− c, 2b);Q2(2a, 2b);

where c ∈ (0, a), in particular c = 0.618a, which means that c is the golden
section point of P0P

′
2, where P ′

2 is the projection of P2 on the x-axis. Param-
eter b is half the width of the lane. Finally a depends on the speed of the
vehicle a = 1.393 ∗ v, where v is expressed in m/s.

Rotate the Bézier Curve

After defining the maneuver, the two quadratic Bézier Curves shall be inte-
grated into the road map, by means of a rotation about the origin P0 (center
or rotation) of an angle α, that is the angle in the xy plane counterclockwise
from the positive x-axis, formed by the road segment and the y-axis. The
rotation matrix is shown in 4.33:

59

Figure 4.6: Before (red) and after (blue) curve rotation.

[
cos(α) −sin(α)
sin(α) cos(α)

]
(4.33)

4.2.3 Drive along a Route
In order to let a traffic object ”move along” a segment or a Bézier curve, the
curve definition (as described in 4.30) plays an important role. The distance
s that a vehicle can travel, given the velocity and the acceleration in a known
time window, corresponds to the arc length between the starting position and
the position that the vehicle will reach.

Given v and a, the traveled distance s can be easily defined using the
equation of motion:

s = s0 + v0t+
1

2
at2

v = v0 + at
(4.34)

60

If s exceeds the curve arc length, the maneuver is finalized before dt, that
means in the remaining time ∆t = t − tmaneuver the vehicle will drive along
the next segment.

4.3 Pedestrian Trajectory Prediction
For pedestrian, a CA motion model is applied, resulting in an extreme
easier workflow than the one adopted for 2-4Wheelers. Even in this case
there is more than one status possible: TrafficObjectStatusEnum.WAITING
or TrafficObjectStatusEnum.MOVING. While the former status denotes a
pedestrian standing and (maybe) waiting to cross the nearest road, the lat-
ter may describe a VRU moving alongside the route or already crossing the
road. There is no real difference between these two type of moves within the
trajectory prediction: if a pedestrian is already moving, he is supposed to
follow its path, whether perpendicular or parallel to the road.
The key difference between WAITING or MOVING lies in the velocity and head-
ing angle fed into the CA motion model. When a pedestrian is moving, the
velocity and the heading is already given by his current path. In case of
a standing pedestrian, the velocity tends to 0, therefore a mean velocity is
required for the trajectory initialization. The heading angle could not match
the one used in the event the person starts crossing the road: he could just
being look around, controlling if vehicles are approaching. Hence, the initial
heading angle is perpendicular to the closest road segment.

4.4 Trajectory Generator
Having outlined the general approach for VRU and not VRU trajectory pre-
diction, the path generation process, that applies to both the categories, is
illustrated here below.

The until now unanswered question is ”Which is the time horizon? And
how is a trajectory computed?”. The prediction of the future position is com-
puted for each instant in the time window, from 0.5s until 4s, with a time
interval δt of 0.1s (0.5, 0.6, 0.7, ..., 4). This configurations have been assigned
on the basis of experiments, resulting an optimal compromise between com-
putational cost and precision.
The prediction calculated on the basis of the current velocity and accelera-

61

tion can result in an intrinsic inaccuracy, as highly unlikely that a vehicle, for
example, keeps its velocity in a crossroad over the considered time window.
Hence, a variation in the speed (±∆V), or in other words an acceleration/de-
celeration is integrated. However, it is although improbable, that the velocity
in the next 0.5s is affected by an error as high as after 4s. Therefore, it deems
it appropriate to variate the ∆V progressively, increasing it the further in
the future the prediction is computed.
The trajectory is defined by a set of positions, two for each time step: one de-
rived using −∆V , that defines the nearest reachable position, and the other
by −∆V (the most distant position the object can get to). These two points
are the boundaries, extremes, of the polynomial that covers the possible oc-
cupied area by the center of the mass of the object (at this step, the real
dimension are still not considered) on the route.

4.5 Collision Prediction
Finally all the traffic object trajectories are processed to detect eventual
collision. As defined in Section 3.1, an accident happens when the areas
occupied by a pair of objects, at the same time, have at least one point
in common. A first (faster) approach relies on intersecting the center of
mass trajectories, expressed in form of a polynomials. For this purpose the
problem of finding roots of Pz(x) = P1(x)− P2(x) = 0 is solved: if at least a
real solution within the boundaries defined in the previous step exists, then
a collision will take place.
On the contrary, moving from a 1D to a 2D space, by integrating the width
and height of the traffic object is from here on strictly required: the object
is no more represented as a point, but as a rectangle. This means, the
polynomial must be shifted to the left and to the right (or to the bottom and
to the top) to take the vehicle width into account, delineating an area on the
map.
The trajectory is divided in N sample segments, defined by N+1 equidistant
points, as shown in fig. 4.7. Around these points a rectangle is created (grey
dashed lines), by means of the real dimensions, and then rotated to match the
heading angle of the route (red dashed line). The tangent to the segment (in
grey) in this point splits the object in two sections: the points on the left are
listed in the set of coordinates the first polynomial (yellow continuous line)
shall fit. The first and the last element in the list represent the boundaries

62

Figure 4.7: Example of expanding a center of mass trajectory to a 2D tra-
jectory, of an object with a specific width and length. The initial trajectory
in black is divided into smaller segment defined by the points in blue. After
the rectangle is created (dashed grey) and rotated (dashed red), the angles
are divided into two sets, the one on the left that defines the first polynomial
(yellow) and the one on the right for the second polynomial (green).

of the polynomial. Similarly the polynomial on the right (green continuous
line), as well as its boundaries are derived.

The definition of the polynomial allows to define a curvilinear area that
the traffic object occupies, at a specified time step. The next step is to check
whether a conflict area exists. The region is approximated by breaking the
area down into rectangles or trapezoids (fig. 4.8).

If at least one of the extremes of the second area is located inside or on the
edge of one polygon, a conflict area is found and, thus, a collision predicted.

63

Figure 4.8: The area between the two polynomials is divided into trapezoids.
One of the extremes (in blue) of the second ares is inside the first region: a
collision warning shall be triggered.

64

Chapter 5

Simulation

A general overview of the Simulink Model is firstly presented (Section 5.1),
describing the implementation of the main blocks such as the VehiclePredic-
tion, the PedestrianPrediction and the Collision blocks. A GUI (Section 5.2)
has been developed as well in order to ease the use and the results display.

5.1 Simulink Model overview
As presented in 3.3.4, a generic.mdl, that implements the plain CarMaker
vehicle model, is present in each CM4SL new project. Instead of creating a
complete new model from scratch, the generic.mdl model has been extended
by the trajectory prediction and collision prediction functionality (fig. 5.1).

The initialize system, that is triggered by the model initialize event,
set the different state writers (RouteStruct, BezierCurve and Trajectory
Prediction), used as initial condition for the three UnitDelays (respectively
UD_RouteStruct, UD_BezierCurve and UD_TrajectoryPredictions), in the
trajectory prediction step. These UnitDelays are responsible of sampling and
holding for one sample period delay the values calculated for the RouteList,
BezierCurve and TrajectoryPredictions at each time step (a detailed
overview is provided in 5.1.2.
The main logic of the collision prediction is contained in the CollisionWarning
block (fig. 5.2). The number of TrafficObject present in the Scenario, as well
as the test vehicle position are calculated and fed into the TrajectoryPrediction
block. The Scissor List position is red using the Inertial Sensor mounted on
the vehicle. The Inertial Sensor block 5.3 allows to read all the data recorder

65

Figure 5.1: Simulink root model with the initialization and the Collision
Warning subsystem

by this sensor during the simulation, like position, transitional and rotational
velocity, transitional and rotational acceleration in the global frame (see Sec-
tion 3.3.3). In this case, the position (x, y) of the object in the global frame
is stored in the Bus Creator, that will be propagated throughout the model,
to shift the traffic object coordinates to the frame having its center in the
local frame of the Scissor Lift, FrO.

The number of traffic objects in the scene is read by a simple CarMaker
block, Read CM Parameter (fig. 5.4, that let Simulink access the numerical
paramter contained in the CarMaker infofiles, plain ASCII file where all the
TestRun parameter are stored in form of key-value pair.

5.1.1 Setup process
The setup() function, configured as PreLoadFcn Callback in the root of the
Simulink model, is responsible of the environment setup. In particular:

• Initialization of CarMaker: the script cmenv script, provided by Car-
Maker, extends the Matlab search path to search for the CarMaker for
Simulink’s installation directory. This script must be always kept in
the same directory as the Simulink model;

• Load the CarMaker selected scenario, by cmguicmd. During this step,
an error can occur (connection failed), if the CarMaker GUI is not yet

66

Figure 5.2: Collision warning system with the two main blocks Trajecto-
ryPrediction and CollisionPrediction

Figure 5.3: The inertial sensor block responsible for reading the ego vehicle
position

Figure 5.4: The Read CM infofile parameter block, used to access the entry
Traffic.N in the TestRun file

67

open: the only possible solution is to open manually the CM GUI and
run again the setup function.

• Parse of TestRun to store some actor configurations, otherwise not
accessible at runtime: name, object type (Vehicle, People, Cyclist, ...)
and dimension (length and width).

• Load of mess struct: this variable contain all the filter’s parameteriza-
tion, such as the measurement noise and process noise.

• Add project paths to Matlab path: not only the CarMaker path shall
be added to the search path, but also the project specific paths, where
the packages are to be found.

• Load bus elements: the file busObjects.mat contains all the bus defini-
tion, in order not to have to redefine them by each initialization. The
list of the bus elements loaded into the workspace corresponds to the
class defined in fig. 3.5.

• Load the road map into the Workspace: the file mapDB.mat, load the
map definition into the workspace. In case this file is deleted, for any
reason, or if is extended with new route, it can be recreated calling the
roadmap.createMapDB() function.

5.1.2 Trajectory Prediction
The need of getting the amount of objects involved in the simulation is soon
explained, by having a look inside the TrajectoryPrediction subsystem
(fig. 5.5): this quantity sets the number of for-loop iterations, meaning
the subsystem repeats its execution n times at each time step. Through the
computation of the GlobalObjectID, unique object ID, that characterizes an
object in the list of all the items in the scenario, is possible to collect all the
data inherent to the specific traffic object using the TrafficObject block.
It delivers the information about its absolute position (position in the global
frame), translation velocity, rotation and acceleration. This data, in form of
a bus element, are fed into the GetTrafficObjectMeasurements subsystem
(fig. 5.6), responsible to collect the previous 20 state measurements, that
shall be delivered to the single trajectory prediction process throughout the
TrafficObjectMeasurements bus.

68

Figure 5.5: Subsystem dedicated to the calculation of the trajectory predic-
tion of all the object in the simulation

The delay blocks configured with an external delay length allow to obtain
a previous measurement at a certain time step in the past. It is worth
noting, the difference between the simulation frequency (fsim = 100Hz) and
the sampling frequency (freal = 20Hz), that is supposed to be used when
working with a real use case. This means, at k time step, the previous
measurement is not k − 1, but k − fsim/freal = k − 5. Furthermore, for each
time step, n iterations are repeated, and this leads to a total delay length
of k − n · fsim/freal = k − 5n. The second last measurement is computed
through a delay length of k − 2 · n · fsim/freal = k − 10n, the third last with
k − 3n · fsim/freal = k − 15n. Therefore, the delay length can be expressed
by k− i · n · fsim/freal, where i is the i-th past sample. Please note, that the
simulation sample time is read using a Read CM Parameter, that accesses the
SimParameter infofile, where the SimParam.Delta parameter can be defined:
the choice of 100Hz as frequency configuration, is due to an error raising with
a greater sample time (0.02 would raise the following error IPGDriver: Time
stepsize too big at time = 0.080000: dt=0.020000 (> 0.02s) (id=300))
The traffic object coordinates shall be now translated into the FrO frame
from the global frame, task performed by the GetStateInFrO block library,
that create TrafficObject bus, whose signals are the position, the velocity
(on the x and y axes), the heading angle, the traffic and global object ID.

Before proceeding with the real trajectory prediction computation, the

69

Figure 5.6: Subsystem that packs the last 20 measurement in the TrafficOb-
jectMeasurements

type of the detected traffic object shall be defined: given the traffic object
id, the TO_BasicInfos bus is accessed, to return its object class. For this
purpose, the Matlab Function shown in fig. 5.7 has been implemented: the
switch-case solution is necessary, due to the impossibility of a dynamic
access of a field or property of a non scalar struct (as in this case) or ob-
ject is not supported for code generation. The returned enumeration class
is passed as well to the TrafficObjectTrajectoryPrediction subsystem.
Other input of this subsystem are the 20 last traffic object measurments
(TrafficObjectMeasurements bus), the previous TrafficObjectRoutes,
TrafficObjectBezierCurve and TrajectoryPrediction, whose actual value
is propagated outside the system, together with the ModeDetection.

5.1.3 2-4 Wheelers Trajectory Prediction
The case of a Cyclist is analogous to the one of a Vehicle, therefore the two
will be discussed together in this paragraph, referring to the traffic object
as a vehicle. The structure of this subsystem aims to split each step of the
process, in order to be implemented as Matlab Function, separately one from
another, keeping them as simple as possible (fig. 5.8).

70

Figure 5.7: Matlab Function for retrieving the object class by accessing the
TO_BasicInfos bus

Figure 5.8: Vehicle and Cyclist TrajectoryPrediction system

71

Locate the Object on the Map

First of all, the m_locateVehicle Matlab Function checks the fundamental
pre-conditions, detectability and predictability, for a lane change detection.
The first defines whether the traffic object is in the area delineated by a circle
with origin in the center of the mass of the scissor lift and radius equal to
100m (please note, this value can be set in the setup configuration by the
user). The latter one determines if the number of object detections exceeds
a threshold. The analysis carried out during the development of the system
identifies a threshold equal to 5 reasonable, the IMM response working with
5 measurement seems to be acceptable. This means that the first prediction
is computed, earliest, after 0.2s (available state measurement at 0s, 0.05s,
0.1s, 0.15s, 0.2s).
The 2-4 wheeler objects, proven to be detectable and predictable, are then
located on the map, computing the route where they are driving along. The
roadmap.getRoute() function is of the utmost importance in this context:
it searches not only the closest segment, proving firstly that the object is
inside the segment boundaries, but also that the segment direction matches
with the object heading angle. This pre-selection helps to reject immediately
too distant or wrong-way road segments. Summing up, if the vehicle is inside
the road boundaries (and the distance between the route and the traffic ob-
ject beneath a threshold) and the route direction matches the object heading
angle, than the segment can be selected. Due to inaccuracies coming from
the estimation of the best-fitting 5th degree polynomial during the mapDef-
inition database creation, a fallback mechanism has been implemented, in
order to handle wrong initial and final direction angles of the segment: this
method saves all the possibleRoutes, whose direction seems not to meet the
pre-conditions, giving them ”a second chance” if the no exact route has been
found. In this event, the closest possibleRoutes route (prerequisite is a dis-
tance below the threshold) is returned.

Lane-Change Detection

The m_IMMFilter computes the mode probabilities related to the KeepLane
and ChangeLane motion models in act at the time step, by means of the
IMM Filter (for further details, please refer to section 4.1.3). Firstly the
IMM Filter is initialized, hence, the two required EKFs, shall be configured.
Eq. 5.1 and Eq. 5.2 show respectively the measurement noise and process

72

noise matrix: while the latter is the same for both of the EKF, the former
differs owing to the heading angle.

QCL =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0.15 0
0 0 0 0 0 2.0.

QKL =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.2 0 0 0
0 0 0 0 0 0
0 0 0 0 0.0205 0
0 0 0 0 0 2.0.

(5.1)

R =

0.2500 0 0 0 0

0 0.2500 0 0 0
0 0 0.0004 0 0
0 0 0 0.0001 0
0 0 0 0 0.099.

 (5.2)

The probabilities of filter model transitions are set to:

R =

[
0.989 0.011
0.019 0.981

]
(5.3)

For a complete initialization of the IMM Filter, the initial state, as well
as the initial state error covariance matrix, that is initialized with an identity
matrix.
The initial state measurement received from the previous block, shall be
processed, in order to transform it from the form (5.4) to the one requested
by the motion models (5.5). [

x y vx vy θ
]T (5.4)[

x y θ v w a
]T (5.5)

As the scissor lift is rotated of π
2
, the heading angle delivered by Car-

Maker, must be compensate and normalized, adding π
2
. The velocity, on the

other side, is derived by means of vx and vy. Acceleration and the yaw rate
are initialize to 0.
As soon as the initialization is completed, the filter runs on the set of mea-
surements (min. 5 measurements, max. 20 measurements). For each step,

73

the predict function is immediately followed by the correction function, fed
up with the real measurement: the yaw rate and the acceleration result re-
spectively from Eq. 5.6 and Eq. 5.7.

w =
θi − θi−1

dt
(5.6)

a =

√
v2x|i + v2y|i −

√
v2x|i−1 + v2y|i−1

dt
(5.7)

The output of the filter, modeProbabilities, is propagated through out
the model as a two-elements vector: the first element represents the proba-
bility that the object is in a KEEP_LANE mode, while the second one that the
object is going to CHANGE_LANE.

Map-Based Prediction

The filter cannot distinguish between a change lane and a vehicle/cyclist
driving along a curve, although they represents two completely different ma-
neuvers: the first one would follow a Bézier Curve, while the second only the
course of the road. For this reason, the m_modeDetection block is considered
apart, despite the strict dependency from the mode probabilities calculated
in the previous step by the IMM filter.
This function incorporates the computed probabilities with the map defini-
tion, to identify the CURVING mode. Below, an example of the algorithm
adopted:

74

Algorithm 1: Get the driving mode status
Result: TrafficObjectStatusEnum
if modeProabilities(1) > modeProbabilities(2) then

if isVehicleCurving then
return TrafficObjectStatusEnum.CURVING;

else
if BezierCurve not yet defined then

defineBezierCurve();
end
return TrafficObjectStatusEnum.CHANGE_LANE;

end
else

return TrafficObjectStatusEnum.KEEP_LANE;
end
As briefly illustrated in the algorithm, the Bézier Curve for a change lane

maneuver is defined if not already initialized: this happens at the first change
lane detection.
Hence, all the information, such as the actual route on the map of the traffic
object, as well as the driving mode and the actual measurement state, are
available and the proper trajectory prediction can start.
Crucially important is that the prediction is not computed for a specific
instant in the future, but for a set of intervals, as described in section 4.4:
from 0.5s until 4s with unit interval of 0.1s (0.5, 0.6, 0.7, ..., 4). Thus, the
36 predictions are computed for each simulation time step, and results are
stored in a 2D array, as:
0.5 x1|min x1|max y1|min y1|max v1|min v1|max R1|min R1|max

0.6 x2|min x2|max y2|min y2|max v2|min v2|max R2|min R2|max

...
4 x36|min x36|max y36|min y36|max v36|min v36|max R36|min R36|max.

(5.8)

The min and max subscripts indicated respectively the minimum and
maximum position that can be reached from the traffic object when inte-
grating an error on the velocity, ±∆V = 10%. It shall not be ruled out,
that this couple of positions on the map, can be located on different routes:
hence, the Ri|min and Ri|max are stored as well, to calculate, if necessary, the
area occupied by the object during the collision prediction algorithm (Section

75

Figure 5.9: Pedestrian Trajectory Prediction system

5.1.5).

5.1.4 Pedestrian Trajectory Prediction
The workflow for a pedestrian prediction, though an analogous main process
(fig.5.9), mostly diverges from the 2-4Wheelers’, as already discussed in Sec-
tion 4.3.
After checking the pre-conditions (detectability and predictability), as ex-
plained in 5.1.3, they are extended with a further requirements: the pedes-
trian shall be close enough to at least one route segment, meaning his poten-
tial interaction with vehicles or bikes on the road. This approach ensures to
ignore pedestrians in parking slots just waiting to get in the car, for example:
it leads to fewer calculations and, thus, a smaller computational load.

Are the preconditions satisfied, the m_modeDetection returns whether
the pedestrian is in a TrafficObjectStatusEnum.MOVING or TrafficObject
StatusEnum.WAITING status, that is trivially set when the velocity of the
pedestrian is negligible (less than 10−2m/s).
Thus, the prediction computation starts: the output is here as well a 2D
array, as shown in eq.5.8. The same considerations made about the time
window (from 0.5s to 4s) and about the ∆V apply also in this case.

76

The trajectory prediction for both mode detections is equivalent (Section 4.3,
but varies in the initial state definition.
When the pedestrian is waiting for crossing, his velocity tends to 0. The
initial state is hence initialized with a minimum velocity and a maximum
velocity (for each prediction, a min position and a max position is required).
While the lower velocity, 1m/s, has been defined considering old people (or
Tyrannosaurus Rex, whose walking speed has been derived to be 4.6km/h by
a recent study based on a biomechanical model), the upper threshold walking
speed is 3m/s, without taking into account that people would cross the road
running, in order not to produce many false warning.

As shown in 5.4, the measurement vector delivered by CarMaker needs
to be transformed, to be fed into the CA motion model (see Section 4.1.1),
as a six-element vector (Eq. 5.9)[

x vxax y vy ay
]T (5.9)

The initial state vector is, hence, derived as follows:
x
vx
ax
y
vy
ay

 =

x

vmeancos(θ⊥)
0
y

vmeansin(θ⊥)
0

 (5.10)

where θ⊥ is the angle defined by the perpendicular to the route direction,
that the pedestrian is supposed to cross.

On the other hand, if the pedestrian is detected to be moving (crossing
or not), the velocity is already defined by the measurement vector and the
error (±∆v). The current state is therefore obtained by Eq. 5.11:

x
vx
ax
y
vy
ay

 =

x
vx + vx∆V cos(θ)

vx|i−vx|i−1

dt

y
vy + vy∆V sin(θ)

vy|i−vy|i−1

dt

 (5.11)

where θ is simply the traffic object heading angle.

77

Figure 5.10: Collision prediction system

The CA motion model, finally, calculates the state in the future based on
the current state (initial state) and the time interval.

5.1.5 Collision Prediction
After calculating the required input, such as the TrajectoryPredictions
and the TO_BezierCurves, the process, that evaluates a possible collision
between pair of objects (excluding pairs (Pedestrian, Pedestrian)), starts
(fig. 5.10).

A code snippet of the Matlab Function is shown in fig. 5.11 The output
matrices (one for each object), defining the trajectories, are iterated through
and at each time step prediction a possible collision is evaluated: a colli-
sion is detected if two areas occupied by two objects have at least one point
overlapping (conflict area, see Section 4.5) at the same time step. Hence, a
pre-selection is performed in order to reduce the computational time of this
process, that drastically use the number of iteration through the matrices.
The function collision.canTrajectoryIntersect() checks if the two ob-
jects’ trajectory could intersect, by comparing the coordinates of the min
and max positions: these are considered as boundaries of two segments that
can intersect if:

• xi|min or xi|max ∈ [xj|min, xj|min] where i = 1, 2; j = 1, 2; i ̸= j

78

Figure 5.11: Collision prediction Matlab Function

• yi|min or yi|max ∈ [yj|min, yj|min] where i = 1, 2; j = 1, 2; i ̸= j

As the trajectories still describe the path of the center of mass of the
object (width and height are not yet integrated), the function relies on the
use of a tolerance (2). A square, whose sides represents twice the tolerance
set) is drawn around the point, to simulate the maximum width and length
an object can have. Since this specific function is only called during the
pre-selection, it is acceptable to consider such a tolerance for a pedestrian as
well.

The boolean flag returned allows the process of collision evaluation to go
on in the detection through the function collision.getCollision BetweenTwoTrafficObjects(),
otherwise the next time step is stepped over. Firstly the center of mass trajec-
tories are intersected: if they cross each other, there is no need to expand the
object. The predicted path is described by a polynomial (the route segment
polynomial or the Bezier Curve polynomial) stored in the prediction matrix,
with boundaries defined at min position and max position. If a common
real root within the boundaries is found, then a collision is predicted. By
contrast, the traffic object center of mass is expanded, by defining two poly-
nomial, that describe the trajectory of the two sides (the first at −width/2

79

and +width/2) of the traffic object (a more detailed explanation is provided
in Section 4.5). It’s worth mentioning, that in order to define these best-
fitting polynomials, the centering and scaling values µ are calculated as well
through the Matlab polyfit function. µ is a two-elements vector with cen-
tering and scaling values, that polyfit uses to centers x at zero and scales it
to have unit standard deviation: µ(1) is the mean value of x, while µ(2) is the
standard deviation of x. This centering and scaling transformation improves
the numerical properties of both the polynomial and the fitting algorithm.
These polynomials identify the region predicted to be occupied by a traffic
object at a specific time step. A collision is predicted, if at least one extreme
of the first area resides inside the second region.

The output is given as 2D-Vector, where each row defines a traffic object,
the first columns defines whether a collision will happen (1) or not, while the
second and third position store, respectively, the time of collision and the
index of other traffic object involved.

5.1.6 Simulation Outputs
A StopFcn Callback is configured, to execute a postProcess.plotStaticResults(),
after the simulation stops. This function displays the simulation results, ac-
cessing the following timeseries in the Workspace:

• WS_Collisions: 2D-Vector containing information about predicted
collision at each time step as explained at the end of section 5.1.5;

• WS_Predictions: TO_TrajectoryPredictions Simulink.Bus;

• WS_Modes: mode detection as Enum: TO_StatusEnum, for each traffic
object at each simulation time step;

• WS_States: CM measurement as TO_CMMeasurement, Simulink.Bus for
each traffic object at each simulation time step;

An example of the figure resulting from the plot, is shown in fig. 5.12.
A detailed description follows in Section 6.1.1.

5.2 Graphical User Interface
It is worth mentioning the developed user-friendly GUI, to ease the simulation
of some different pre-defined CarMaker scenarios and the plot, hence, the

80

Figure 5.12: Example of plot create at the end of simulation, for a first
evaluation of the results

evaluation of the results.
The two panels on top in fig. 5.13 allows to choose two different source

where the results shall be loaded from. Throughout the Simulate TestRun
dashboard, a pre-defined scenario can be simulated and, if the Generate
Plot is enabled, results are plotted and displayed. The selection of a specific
scenario loads the scenario recorded video, if available. Please note, the video
is not recorded real-time during the simulation from CarMaker. However, a
further different video, can be always selected in the CM Recorded Video
search field. This is pretty useful when loading results from an existing .mat
file using the Load result functionality. To enable the Load Results button a
validation of the .mat file shall be performed 5.14: this checks that all the
required variables (such as WS_Collisions or WS_TrajectoryPredictions
for an eventual plot are contained in the file. If the validation files a small
error message is displayed in the Status bar.

Is a video loaded, the play button is enabled, meaning the video can be
started thereby. The time slider, that visualizes the temporal progress of the
video, allows the user move the animation forwards and backwards.

After the simulation is terminated or after loading already existing results
in the workspace, the Collision Warning and the Custom Plot panels are
enabled. In the first one, during playback, the lamp indicators become yellow
as soon as a collision for the corresponding object is predicted 5.15. If the

81

Figure 5.13: Screenshot of the GUI as soon as it opens

82

Figure 5.14: The load results button is now enabled, after the validation of
the file. A custom video is selected, because of a different point of view.

83

Figure 5.15: The two yellow lamps indicate a collision prediction between
the two objects. On the right side the generated plots.

traffic objects names (configured in the CarMaker TestRun) are available in
the Matlab workspace, they are display under each lamp, in order to ease
the mapping between the traffic object number and the traffic object in the
video.

In a more crowded scenario, the Custom Plot can help to plot only a
specific set of traffic objects, g. This results in the plots shown in fig. 5.16:
these will be deeply presented in the following Chapter.

84

Figure 5.16: Resulting plot after selecting only the first two object in the
GUI in the Custom Plot.

85

Chapter 6

Experimental results and
evaluation

This chapter aims to present and discuss the results obtained during this
work. In Section ??, the CarMaker driving scenarios, designed to test and
validate this work, are outlined. After giving separately insights into the
observed data for the Lane Change module, the trajectory prediction compo-
nent (for pedestrian and 2-4Wheelers) and, lastly, for the collision prediction
(Section 6.1), a couple of more complicated scenarios are presented, to come
to the final discussion and conclusion in section 6.2.

6.1 Test Driving Scenarios and Results
In order to validate and test the overall collision warning system, a scenario-
based approach was chosen. By definition, a scenario is a ordered set of
interactions between the system and external actors. Each scenario not only
documents the system requirements, specifying the system behavior, but also
validates the system while development. In total, 9 scenarios have been es-
tablished and set up in CarMaker: some of them consider VRUs involved
in accidents, whereas others demonstrate, how critical situations can be de-
tected for pedestrians willing to cross the road and waiting on the road side.

86

Figure 6.1: Mode Probabilities Plot for Lane Change of scenario 00.

6.1.1 Evaluation guidelines
To provide an overview of the employed evaluation methods, the output
generated by the scenario 00 (sec. 6.1.2 is shown and described.

Mode Probabilities and Maneuver Detection The mode probabilities
plot in fig. 6.1 aims to give an overview of results produced by the maneuver
recognition module. The graph on the left shows the real traveled path
of each traffic object. The red crosses illustrate at with position a change
in the mode detection is detected. The circles indicate the start position.
The graphs on the right illustrate in detail, not only the IMM filter output
(green dashed line for the ChangeLane and red for the KeepLane, y axis on
the right), but in general, also the traffic object status obtained integrating
the map definition information (y axis on the left). Whereas pedestrians
are characterized by a set of status CR\MOVE = crossing or moving, WAIT
= standing, NONE = unknown, for other traffic objects the possible motion
modes are CL = change lane, CURVE = turning left/right, KL = keep lane,
NONE = unknown.

87

Figure 6.2: Trajectory Prediction Plot for vehicle TO2 in Scenario00.

Trajectory Prediction Each object trajectory predictions are described
in a plot analogous to fig. 6.2. On the left, the prediction computed for
the time horizon 1s are displayed. The subplots on the right side aim to
graph the error in the predictions of the x position and y position for ∆T =
1s, 2s, 3s, 4s.

Collision Prediction Two plots are provided to detail the collision predic-
tion between traffic objects. The first one (fig. 6.3), gives an overview of all
the predicted trajectories, reporting, below, a schema of the potential critical
situations for each traffic object. The shades on the plot aim to describe how
distant the collision is/would be in terms of time: the soon it can happen,
the dark it is plotted. The second graph (fig.6.4) aims to details the results,
showing which other traffic object is involved in the predicted impact and
the specific time horizon. This graph is fundamental for crowded scenarios,
as the Scenario 07 (sec. 6.1.9)

The second graph explains more in details the collision prediction for each
traffic object, in order to illustrate the second object involved in the potential
accident (y axes on the left) and the time horizon in which it is predicted (y
axes on the right).

88

Figure 6.3: Simple collision prediction plot in Scenario00

Figure 6.4: Detailed collision prediction plot in Scenario00

89

Figure 6.5: Scenario00: vehicle is driving straight on (sky blue). The two
pedestrians are waiting for crossing (blue and white boundaries). At 3s, when
the vehicle is passed by, the pedestrian on the right starts crossing the road
(blue trajectory).

6.1.2 Scenario 00
The first scenario is the main baseline use case. A vehicle is driving straight
on in the crossroad, from the left to the right, at a velocity of v = 10m/s
(light blue trajectory in fig. 6.5). Two pedestrians are standing on the side
of the road. The pedestrian on the right (in blue) side waits for crossing, and
as soon as the auto is passed by (at 3s), starts to cross the road at a velocity
of 3m/s: the movement is only longitudinally, towards the opposite parking
place. The pedestrian on the left (in white), instead, is just standing on the
road side. There are no collision in this scenario, but warning are supposed
to be raised, to signal the VRUs that a vehicle is approaching and a crossing
the road would represent a critical situation.

Mode Detection The vehicle is configured to keep its route. The mode
detection switches between KL and CURVE, in correspondence of a non linear
path segment. Whereas the pedestrian TO0 is only waiting, TO1 is detected
to start crossing the road at 3.06s (mini maneuver configured in CarMaker
to start at 3s).

90

Trajectory Prediction TO0 is displayed in Fig 6.6: the pedestrian does
not move from its position, hence, the prediction for ∆T = 1s does not
undergo changes: the error for any time horizon remain stable, as he/she does
not reach the predicted position. Please note, the prediction error time line is
shorter as the time window increase: the simulation span is 10s, thus, having
a time horizon of ∆T = 4s, the maximum time for which the prediction error
value can be calculated is trivially 10s− 4s = 6s.

Unlike TO0, as TO1 keeps proceeding on its path, the generated path
is updated as well. During the crossing, the error increases with the time
horizon, while for prediction of ∆T = 1s is almost negligible (max. 0.32m on
the y axes), it amounts to ca. 2.2m for ∆T = 2s, reaching 6m for ∆T = 3s,
approaching 13.5m for ∆T = 4s. Such a great error in the prediction is due
to the acceleration, as the pedestrian motion model is not a constant velocity
model: at the beginning of the action (t = 3s), has a velocity of v = 0m/s,
after 0.5s it reaches v = 1m/s and at 4s is already v = 2m/s. After some
meters its acceleration starts to decrease until he stops. The motion model
used in this work is a CA and together with the uncertainties on the velocity
has delivered acceptable results, as described later in the collision prediction
section.

The trajectory of vehicle TO2 in fig. 6.2 is affected as well by errors: in
this case, because of a not unique next segment for the traveled route (the
vehicle could not only drive straight on but also, as wrongly predicted, exit
the crossroad). Until 5s the path is generated along the route that exits the
crossroad, but as soon as the vehicle is detected to be on the other (the correct
one) route, the prediction is updated, and the errors significant decrease.

Collision Prediction Right from the start until tD = 2.13s, a critical
situation is predicted for the VRU TO1: a collision would occurs, if he starts
cross the road. Afterwards, at tD = 4.96s, as soon as the vehicle TO1 is
predicted to follow the correct route (and not the one exiting the crossroad),
the VRU TO1 shall be warned (until the vehicle is passed by at 8s more or
less).

6.1.3 Scenario 01
Unlike the previous scenario, here (fig. 6.8) a collision is foreseen between
the vehicle and the pedestrian (the only two traffic objects populating the
crossroad). The vehicle coming from the left, exits the crossroad with a turn

91

Figure 6.6: Trajectory Prediction Plot for pedestrian TO0 in Scenario00.

Figure 6.7: Trajectory Prediction Plot for pedestrian TO1 in Scenario00.

92

Figure 6.8: Scenario01: vehicle is exiting the crossroad (white) and pedes-
trian is crossing the road (blue boundaries).

left. Its velocity is set to 10m/s. Suppose a rainy day, a pedestrian equipped
with an umbrella has a limited visibility and overlooks the approaching auto.
Thus, he/she starts to cross the road after 3s, with a maximum velocity of
vmax = 2.5m/s. Unfortunately, a collision at tC = 5.3s is inevitably.

Collision Prediction At tPC = 1.52s, a possible collision for the pedes-
trian is predicted, with a time horizon of ∆T = 4s. The warning signal
is disabled at t = 3.04. It restarts, though, at tPC = 3.28s (time hori-
zon ∆T = 3s). The warn remains enabled until the pedestrian is overrun
(tC = 5.3s). Thus, the collision is initially foreseen δt = 3.78s before is
happens.

The small time span, when no risk is foreseen, is due to the pedestrian’s
acceleration required to pass from a standing position to a velocity of v =
2.5m/s. For a more detailed explanation, please refer to the Scenario00,
where an analogous use case for the TO1 is explained. Fig. 6.11 shows the
same pattern for the prediction error seen in the previous scenario.

The error to which the vehicle TO1 is kept small, for all the time horizons
(fig. 6.12).

93

Figure 6.9: Scenario01: Collision prediction graph.

Figure 6.10: Scenario01: A more detailed collision graph to document the
predictions between TO0 and TO1.

94

Figure 6.11: Scenario01, TO0: Prediction error graph. The pattern is
analogous to the one of TO1 in Scenario01.

Figure 6.12: Scenario01, TO1: Prediction error graph that show the error
in both axes for the different time horizons.

95

Figure 6.13: Scenario 2: vehicle(white) is entering the crossroad, and af-
ter a lane change maneuver turns left. The pedestrian is hit at 7.2s (blue
boundaries).

6.1.4 Scenario 02
In this case (fig. 6.13) a pedestrian (blue) and a vehicle are involved in the
impact at time tC = 7.2s. The vehicle enters the scene and performs a change
lane maneuver in the first 5s, to turn left at the intersection. Its velocity is
constant. The pedestrian, an old woman, starts slowly to cross the road with
a longitudinal velocity of vx = 1m/s and a latitudinal of almost vy ≈ 1m/s.

Mode Detection This scenario has been mainly used to validate the
Bézier Curve computation with path prediction for a lane change maneu-
ver. As documented in fig. 6.14, the change lane mode detection is over the
time span t = [1.51s, 4.5s[. At the first detection, the vehicle has not yet
cross the lane line (fig. 6.15). Then, the keep lane mode prevails, until the
vehicle starts turning left (t = 5.15s).

Trajectory Prediction Fig. 6.16 shows the slight error on the predicted
Bézier Curve, that has a peak of only 0.8m, at t = 3.36s, during the maneuver
time window t = [1.51s, 4.5s[. Afterwards, a relative greater error is due to
the adjustment of the prediction to the updated driving mode. It’s worth
mentioning, that the error on the pedestrian generated path is acceptable (fig.
6.17). The two peaks present (for each ∆T) are generated by the abruptly
change of direction of the old woman.

96

Figure 6.14: Scenario02: Mode detection graph. The vehicle TO0 is de-
tected to change lane after 1.51s the beginning of the maneuver.

Figure 6.15: Position of the vehicle TO0 during the first lane change detec-
tion: it has not yet crossed the lane line.

97

Figure 6.16: Scenario02, TO0: Prediction error graph. The Bézier Curve
computed during for the lane change maneuver is subjected to negligible
errors.

Figure 6.17: Scenario02, TO1: Prediction error graph that show the error
in both axes for the different time horizons.

98

Figure 6.18: Scenario02:Collision prediction graph. The first detection is
4s before the impact (t = 3.23s).

Collision Prediction Another important result in this scenario is given
by the collision prediction, that is firstly foreseen at tPC = 3.23s, 4s before
it happens.

6.1.5 Scenario 03
A further scenario (fig. 6.19) used to validate the pedestrian motion and the
collision prediction is the fourth one. Two children are in the parking place
next to the scissor lift. Whereas the female (sky blue boundaries) stands still,
the male (white boundaries) moves initially longitudinally (vx = 1m/s) and
then start crossing the road while looking at the smartphone and without
paying attention to the approaching vehicle. This, after an initial speed of
(v = 10m/s), accelerates as the intersection seems to be free, reaching after
5s a speed of v = 15m/s and hits the pedestrian at t = 5.7s.

Trajectory prediction Fig. 6.20 shows the prediction error for the tra-
jectory generation of TO0. During the first 1s time window, the high error is
due to the abrupt movement of the child and the varying acceleration. As

99

Figure 6.19: Scenario 3: vehicle(blue) is entering the crossroad and turns
left. The pedestrian is hit at 5.7s (white boundaries).

soon as he begin the cross road maneuver, the error decreases, stabilizing
at lower values (max∆T=1s = −0.01m,max∆T=2s = −0.08m,max∆T=3s =
−2.5m,max∆T=4s = −5.5m).

Collision prediction A dangerous situation is foreseen for the female
pedestrian TO2 at t = [1.03s, 2.63s[, in case she would move towards the
opposite parking place. The real collision between the vehicle TO1 and the
child TO0, at tC = 5.7s, is firstly detected at tCP = 1.78s, with a time horizon
of almost ∆T = 3.9s.

6.1.6 Scenario 04
An other type of VRU appears in the Scenario04 (fig. 6.22), a cyclist. Start-
ing on the bicycle lane route, he changes its lane twice straight, to be able to
turn left at the intersection. After 1.5s he has completed the first lane change
and at 3s the second one. Then he proceeds with a velocity v = 9m/s. A
vehicle coming from the left side seems not to see the cyclist and hit him at
t = 7s, almost at the end of his turn maneuver.

100

Figure 6.20: Scenario03, TO0: Prediction error graph. The error decrease
significantly as soon as the pedestrian stabilizes his movement.

Figure 6.21: Scenario03: Collision prediction graph. The pedestrian TO2
should be warned between 1.03s and 2.63s because of the approaching vehicle,
while the impact between TO0 and TO1 is detected 3.9s ahead.

101

Figure 6.22: Scenario 4: vehicle(blue) hits the cyclist (white boundaries),
during the turn left maneuver.

Mode Detection The Scenario04 helps to evaluate the mode probabilities
and trajectory prediction for 2Wheelers VRU, such as skaters or cyclist. In
this case, a cyclists performs two straight lane changes: the mode probabil-
ities graph in fig. 6.23 shows that the cyclist is detected to change the lane
0.23s after the start of the simulation. This maneuver lasts 3s, instant when
the IMM filter starts to decrease the CL model probability. At t = 4.92s the
curving mode replace the keep lane, until the end of the turn (t = 7.93s).
The vehicle model probabilities switches between KL and CURVE, depending
on the curvature of the road.

Trajectory Prediction The error on the prediction is graphed in fig. 6.24.
With exception of the peak at t = 1.81s due to the beginning of a new change
lane, the error computed for ∆T = [1s, 2s, 3s] are almost negligible. For
longer-term predictions, it reaches 7.7m before the second lane change and
4.4m at t = 5s. The generated path for TO1 is more accurate, and does not
exceed 0.65m during the simulation (fig. 6.25).

Collision Prediction The collision is foreseen starting at tCP = 2.86s,
δt = 4.2s ahead, though the time horizon is set to 4s, due to the uncertainties
on the position taken into account during the path generation of the cyclist
and the vehicle (fig. 6.26).

102

Figure 6.23: Scenario04: Mode probability graph. Cyclist is detected to
change the lane after 0.23 from simulation start.

Figure 6.24: Scenario04, TO0: Prediction error graph. The error decrease
significantly as soon as the pedestrian stabilizes his movement.

103

Figure 6.25: Scenario04, TO1: Prediction error graph. The error does not
exceed 0.65m during the complete simulation.

Figure 6.26: Scenario04: Collision prediction graph. The impact is pre-
dicted at t = 2.86s, 4.2s ahead.

104

Figure 6.27: Scenario 5: vehicle(blue) hits the airhead skater (white). The
pedestrian is in red boundaries.

6.1.7 Scenario 05
A really airhead skater, (vinit = 8m/s) is hit in Scenario 05 (fig. 6.27). He
decelerates at the curve, with a rate of −0.3m/s2 for 6.5s. Once he has
invaded the vehicle lane at 6.5s at a v = 5m/s, he continues on his path until
the collision (t = 8.8s), due to the vehicle approaching from behind. The
vehicle (vinit = 9.75m/s) accelerates for 3s reaching a speed v = 12.75m/s,
and then tries to break (in vain), as soon as he realized that the skater was
on its path. A male worker is on the roadside.

Mode Detection As in the previous scenario, a 2Wheeler VRU (a skater,
in this case) populates the scene. A scheme of the driven path and the de-
tected driving mode of the traffic participants is displayed in fig. 6.28. At
the beginning (tCurve|start = 0.55s) the turn maneuver is recognized, until
tCurve|end = 3.85s. The IMM filter detects a lane change at tCL|start = 6.58s,
0.58s after the start of the maneuver, that lasts 1.5s. In this case the IMM fil-
ter keeps the CL probability higher, but the integration of the route geometry
information, let the algorithm return a keep lane.

Trajectory Prediction The maximum error on the prediction (fig. 6.29)
is for the skater −2.4m for ∆T = 2s, 3s, 4s, while for ∆T = 1s it does
not exceeds 1.6m on the y axis. Such an inaccuracy in the prediction is

105

Figure 6.28: Scenario05: Mode probability graph. The lane change is firstly
predicted at t = 6.58s, 0.58s after the beginning.

encountered during the change of the skater motion (at 6s he starts the
maneuver).

Collision Prediction These errors, though, seem to be acceptable in ref-
erence to the collision prediction (fig. 6.30): as soon as the CL mode is
detected (tCL|start = 6.58s), the collision is predicted with a time horizon of
∆T = 2.3s (hence, δt = 2.2s ahead). The male worker in the scene would be
warned until t = 1.86s because of the vehicle TO1.

6.1.8 Scenario 06
In Scenario 06 (fig. 6.31) 3 vehicles and two VRUs (a pedestrian and a
cyclist) are defined:

• The pedestrian, TO0, an old woman (white boundaries), who survives
to three impacts: the first one with the cyclist (at t = 3.7s), the second
one with the grey vehicle (blue trajectory) at t = 7.5s, and finally at
t = 9.15s with the sky blue vehicle.

106

Figure 6.29: Scenario05, TO0: Prediction error graph. The error does not
exceed 1.6m during the complete simulation.

Figure 6.30: Scenario05: Collision prediction graph. The impact is pre-
dicted at t = 6.58s as soon as the change lane is detected.

107

Figure 6.31: Scenario 6: the LandRover TO1 (blue), after overtaking the
black vehicle (green), turns right and hit the pedestrian (red). The last
vehicle and the cyclist keep their lanes and hit the pedestrian respectively at
t = 3.7s and t = 9.15s.

• A grey vehicle, TO1 (blue trajectory). It enters the intersection from
the top, and approaching a second vehicle (TO3), changes its lane to
turn left at the intersection (v = 15m/s).

• A blue vehicle, TO2 (sky blue trajectory). keeps its route and speed of
10 m/s for all the simulation.

• A black vehicle, TO3 (green trajectory). It enters the crossroad ant
turns right at the intersection, keeping its velocity constant (v =
10m/s).

• The cyclist, TO4 (yellow trajectory). His starting speed is vstart = 8m/s
and reaches during the simulation a speed of vend = 8m/s.

Mode Detection A summary of the development of the scene is given in
6.32. In this graph it is interesting to notice, that the lane change of TO1 is
firstly identified at tCL|start = 1.52s, when the vehicle has not yet cross the
lane line.

Trajectory Prediction In the Appendix A A, all the prediction error
graphs are provided.

108

Collision Prediction Through the analysis of the collision detection graph
(fig. 6.33), the three different accidents, where the pedestrian is involved can
be easily analysed:

• The first collision between the pedestrian TO0 and the cyclist TO4, is
firstly detected at tCP = 0.6s with a time horizon of ∆T = 3.7s. Hence,
it is predicted to occur at tP = 4.3s, though it occurs at tC = 3.7s:
(inaccuracy due to the acceleration of the cyclist over the time).

• From tCP = 3.53s (∆T = 4s), another critical situation is detected for
the pedestrian, because of TO1. tCP = 7.53s against the real time of
collision tC = 7.5s.

• At tCP = 5.47s TO2 is predicted to collide with the pedestrian (∆T =
3.7s). tP = 9.17s against tC = 9.15s.

A further critical situation is detected between TO1 (vehicle approaching
from behind, in blue) and TO3 (green trajectory). Would the vehicle TO1 keep
the same lane and the same velocity, would impact TO3 at ca. t = 3s. 0.03s
after the lane change detection, this warning is disabled, as the trajectory is
updated.

6.1.9 Scenario 07
The Scenario 07 (fig. 6.34) is more crowded than the previous, but no real
collision occurs, though, vehicle should be warned because of too small safety
distance. Here below a list of the traffic objects present in the scene:

• A male worker (white boundary): he just stands still at the roadside
on the left.

• A mum with her baby (sky blue boundary): she does not move and
waits to cross the road.

• A girl (blue boundaries): she moves along the roadside (vx = 2m/s)
and then stops for 6s. At t = 8s she starts move perpendicular to the
route.

• A grey Audi Q8 (green trajectory): after accelerating for the first 3s
with a rate of a = 2m/s2, it exits the crossroad at a velocity v = 9m/s.

109

Figure 6.32: Scenario06: Mode probability graph. Summary of the scene
development and the mode detected for all the traffic participants.

Figure 6.33: Scenario06: Collision prediction graph. A more detailed
overview about the collision prediction between the different traffic objects.

110

Figure 6.34: Scenario 7: scenario with no collisions, populated by vehicles
and pedestrians

• A blue Audi S3 (yellow trajectory): it enters the business park and
turns left, with an acceleration of a = 2m/s2 between [0s, 2s] and
[3.5, 5.5s]. Afterwards it keeps its velocity.

• A blue NIO ES8 (brown trajectory): it simply proceeds with a constant
velocity v = 10m/s straight on.

• A black Renault Megane (red trajectory): it enters the crossroad,
turning right, accelerating during the overall simulation reaching v =
19m/s.

• A yellow IPG CompanyCar (purple trajectory): it exits the business
park, at a constant velocity of v = 10m/s.

Collision Prediction A summary of the development of the scene is given
in 6.35. In this scenario, the focus in on the collision prediction, thus, only
the graph in fig. 6.36 will be discussed, going through each traffic object.

• Pedestrian TO0 (white/lila): the pedestrian is firstly warned because of
TO7, until t = 1.45s: TO7 is not yet passed by, but it does not represent
a risk anymore, because, if the pedestrian would start to cross the road

111

at that instant, the trajectories of the two objects would not intersect
at the same time. Soon after t = 1.46s a second potential risk is
identified because of TO5: in this case, too, the warning is shut down
before the car is passed by (t = 2.44s). Almost at the same time,
a potential threat is represented by TO4, but only with an high time
horizon, due to the position uncertainties considered. This could be,
hence, considered as false warning. As well as the signal raised for 0.11s
due to the vehicle TO3.

• Pedestrian TO1 (blue): once she stops walking along the road, she is
warned over a 3s time window (t = [3s, 6s]), that the vehicle TO6 could
overrun her. The same for the vehicle TO5 for (t = [6.24s, 8s]). Hence,
she starts moving towards the opposite parking place, and the warning
is again enabled at t = 9.3s, though no collision occur.

• Pedestrian TO2 (sky blue): a potential critical situation is detected for
the mum with her baby over the time window t = [4.13s, 7.75s]. The
single scatter warning of TO5, is due to the not unique next segment
of the route, where the vehicle is driving at the beginning: it could
turn left or go straight on(please, refer to sec. 6.1.2 for a more detailed
explanation).

• Vehicle TO3 (green): a collision is predicted with TO4 because of too
short safety distance between the vehicles. The uncertainties in the
position and the constant acceleration of TO3 for the first 3s bring to a
collision prediction over the time span t = [1.63s, 3s]. The prediction
with the pedestrian has already been discussed.

• Vehicle TO4 (yellow): the predictions referring to TO0 and TO3 have
already been discussed.

• Vehicle TO5 (brown): the possibility of a collision with TO7 is due to
the uncertainties and loss of long enough safety distance. They are,
in fact, predicted for long time horizons and until t = 5.91s, when the
correct route for the vehicle is selected.

• Vehicle TO6 (red): please, refer to the pedestrian TO1.

• Vehicle TO7 (purple): the potential impacts with TO0, TO5 and TO2 have
been already detailed in the respective points.

112

Figure 6.35: Scenario07: Mode probability graph. Summary of the scene
development and the mode detected for all the traffic participants.

Figure 6.36: Scenario07: Collision prediction graph. A more detailed
overview about the collision prediction between the different traffic objects.

113

6.1.10 Scenario 08
The last Scenario07 is intended to model some other particular cases, aiming
to validate whole collision prediction system.

• A pedestrian (white/lila) stands for the first 3 second, and then crosses
the road with a velocity v = 2m/s for 8s. Hence, she walks along the
roadside at v = 1.2m/s

• A Wheelchair pedestrian (blue) gets to the opposite site at v = 4m/s
between t = 5.5s and t = 9.5s. Afterwards he proceeds slowly with a
v = 2m/s.

• An E-Scooter rider (sky blue) exits the intersection, maintaining an
acceleration rate for the first 5s a = 0.5m/s2, and soon decelerating
the next 5s at a = −0.25m/s2.

• An grey Audi (green) changes its path the first 2.5s at a velocity of
v = 10m/s. Then, he proceeds on its lane until it decides to get
back to the previous route abruptly between t = [3.5s, 5s], with an
acceleration of a = 2m/s2. Once it accelerates again for 1s, it keeps its
constant velocity.

• A police auto (yellow) populates this scene: once it changes its lane
between t = 0.5 and 3s entering the business park, it turns right at the
intersection at v = 9m/s and then decelerates at t = [5.5s, 8s].

• A Mercedes Benz (brown) starts at a velocity of vinit = 15m/s. Due
to the grey Audi, it shall decelerate (a = −3.8m/s2) for 2.5s in order
to avoid an accident. After it keeps its velocity for the next 2s, it
accelerates again consistently (a = 4m/s2) for 2s.

• A red Peugeot (red) exits the business park, decelerating at the curve
(a = 1m/s2) for 1s, and then accelerating again for the next 2s (a =
2m/s2).

• A NAVYA shuttle bus (purple) restart its path after stopping at a bus
station. It proceeds with a velocity of v = 8.3m/s over the simulation.

114

Figure 6.37: Scenario08: Mode probability graph. Summary of the scene
development and the mode detected for all the traffic participants.

Mode Probabilities As in the previous scenario, the focus is on the col-
lision prediction analysis. Though, it is necessary to have firstly an insight
to the detected mode probabilities (fig. Fig. 6.37) for some remarks, espe-
cially related to the NAVYA shuttle (TO7) and the vehicle TO3, that abruptly
changes its route. TO3 maneuver is soon detected, until t = 2.47s (end of the
maneuver is set to t = 2.5s). During the transition time span t = [3.5s, 5s],
the vehicle is labeled as CURVING, as a real lane change in the road intersec-
tion would be not allowed. Though it could be seen as a system limitation,
it must be kept in mind, that this pre-defined route mechanism relies on
traffic rules. The prediction is hence updated as soon as the vehicle is close
enough to the new route. The shuttle motion, that starts at 2s, is recognised
as a change lane maneuver, that lasts according the the maneuver recogni-
tion module until t = 5.13s, though it is completed at t = 4s: in this time
window, the error is huge, as a proper lane change route cannot be defined.

Collision Probabilities As for Scenario07, all detected potential critical
situation will be now in details explained (fig. 6.39 and 6.40):

• Pedestrian TO0 (white/lila): he is firstly warned because of TO5, until

115

Figure 6.38: Scenario08, TO7: Trajectory prediction error graph for the
shuttle. The error is huge as no proper lane change route is found.

it is enough far away, such that the trajectories of the objects would
not intersect anymore at the same time if the pedestrian would start at
the instant to cross the road (t = 2.69s). At the same time, a warning
is shortly raised due to TO3. Then, as soon as the route of the shuttle
is correctly updated, a collision warning is registered between TO7 and
TO0 (t = 8.71).

• Wheelchair VRU TO1 (blue): the collision warning (TO4) terminates at
t = 1.99s. The E-Scooter represents no continuous real threat.

• The E-Scooter TO2 (sky blue): the collision with TO1 is predicted at
t = 5.62s because of the integrated uncertainties. A longer warning
is raised between t = 8.38s and t = 8.83s, when the E-Scooter is
decelerating.

• The Vehicle TO3 (green) is subjected to a warning for a potential crush
with the red vehicle TO6, until it does not change its path at t = 2.5s.
Afterwards a not long enough safety distance is the reason behind the
predicted collision with TO5.

116

Figure 6.39: Scenario08: Collision prediction graph.

Figure 6.40: Scenario08: Collision prediction graph. A more detailed
overview about the collision prediction between the different traffic objects.

117

scenario TO v(m/s) tstart tD|start tend tD|end

02 01 10 0.00s 1.51s 5.00s 4.50s
04 00 8 0.00s 0.23s 5.00s 4.92s
05 00 5 6.50s 6.58s 8.00s 8.44s
06 01 10 0.00s 1.51s 5.00s 4.50s
08 04 10 0.00s 0.23s 2.50s 2.42s
08 07 8 2.00s 2.12s 5.00s 5.12s

Table 6.1: Summary table for a more clear overview about the delay in the
lane change detection

6.2 Discussion
In this section, the results obtained in this work are presented in a summary
form, as a means of inferring conclusions.

6.2.1 Lane Change Detection
The results achieved by the maneuver motion module regarding the lane
change maneuvers is shown in table 6.1. The greatest delay in the recognition
is given by the vehicle maneuver over 5s: as already illustrated in fig. 6.15,
the vehicle has though not yet crossed the lane line. Results achieved for
vehicles and VRU are, otherwise, almost the same, and the delay in the
detection is in the range of 0.08s - 0.23s.

6.2.2 Trajectory Prediction
The results inherent to the future path generation can be collected and
summed up in the following points:

• The trajectory prediction for pedestrian, who are not moving abruptly,
is acceptable for the time horizons ∆T = 1s, 2s, 3s. The more the ∆T
increases, the more consistent is the error. For ∆T = 4s the prediction
is subjected to huge inaccuracies (reaching 12/15m).

• The adopted quadratic piece-wise Bezier Curve have demonstrated to
generate accurate path.

118

scenario TO TO tP tCP ∆T

02 Ped 00 Veh 01 7.2s 3.23s 4.0s
03 Ped 00 Veh 01 5.7s 1.78s 3.9s
04 Cyc 00 Veh 01 7.0s 2.86s 4.2s
05 Ska 00 Veh 01 8.8s 6.58s 2.2s
06 Ped 00 Cyc 01 3.7s 0.60s 3.1s
06 Ped 00 Veh 01 7.5s 3.53s 3.9s
06 Ped 00 Veh 02 9.15s 5.47s 3.7s

Table 6.2: Summary of the collision time and collision prediction time for all
the scenario, where impacts are configured.

• The trajectory prediction for non-pedestrian driving without suddenly
acceleration and deceleration deliver accurate good results for all the
time horizons, both for KeepLane and ChangeLane. In case of accel-
erations/decelerations, the prediction is affected by important errors
(15/20), especially for time horizons close to ∆T = 4s.

• The trajectory prediction in case of a route forks, can be generated
along the wrong following road segment (Scenario00, i.e.).

• The shuttle TO7 in the Scenario 07 opens the door to future develop-
ments, to allow correct trajectory predictions for traffic objects that
stops at bus stops, or just overtake a preceding vehicle.

6.2.3 Collision Prediction
A concise overview for the collision prediction in case of impacts is provided
in table 6.2.

The Scenario04 and Scenario05 describe the fundamental role, that the
lane change detection module can have in savings time for a collision pre-
diction and notification to the VRU: the collisions are detected before the
traffic object is on the target route.

During the collision prediction analysis of more complicated scenarios
such as Scenario06 and Scenario07, many warnings have been raised, because
of the safety distance. A good compromise, in this case, would be to avoid
prediction for long time horizon (i.e. t = [3.5s, 4s]), or to consider more
appropriate uncertainties in the traffic object future poses.

119

Chapter 7

Conclusion and future work

The main contribution of this work is to introduce a real-time method to
compute the collision risk for VRU (and vehicles), taking advantage of an a
priori knowledge of the road geometry and pre-defined routes. The maneuver
recognition module (IMM filter integrated with map information) has been
demonstrated to deliver consistent and early lane change detection, that
save time in the collision prediction and, thus, in VRU risk notification.
The adopted piecewise quadratic Bezier Curve, whose computational load
had proved in the past to be light, can accurate approximate a lane change
maneuver path. The number of generated trajectories for each vehicle is
exactly one, reducing drastically the number of trajectory in other studies.

As this study aims to introduce a new collision system based on trajectory
generated using pre-defined routes, future works are foreseen to refine and
improve the whole module. First of all, maneuvers like overtaken or restart
from the roadside are not foreseen and the predictions are currently not re-
liable in these cases. Position uncertainties are integrated but only on the
longitudinal direction of the motion: no lateral offsets are considered, though
in real-time scenarios is high likely that some vehicles take a curve slighter
than others, for example. A further improvement shall be made within the
map definition and trajectory generation context, for forking roads: a gen-
eration of more than one possible trajectory in this case seems to be the
most reliable solution. An alternative approach could be the definition of
probability based on real collected data, that describes how likely a specific
segment will be chosen over the other.

In the future, this work will be tested on real scenarios within the ”People
Mover” project.

120

Appendix A

Scenario06: Prediction Errors

Figure A.1: Scenario00, TO0: Trajectory prediction error graph.

121

Figure A.2: Scenario00, TO1: Trajectory prediction error graph.

Figure A.3: Scenario00, TO2: Trajectory prediction error graph.

122

Figure A.4: Scenario00, TO3: Trajectory prediction error graph.

Figure A.5: Scenario00, TO4: Trajectory prediction error graph.

123

Bibliography

[1] Florent Altché and Arnaud de La Fortelle. An lstm network for highway
trajectory prediction. In 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pages 353–359, 2017.

[2] Samer Ammoun and Fawzi Nashashibi. Real time trajectory predic-
tion for collision risk estimation between vehicles. In 2009 IEEE 5th
International Conference on Intelligent Computer Communication and
Processing, pages 417–422, 2009.

[3] Georges S. Aoude, Brandon D. Luders, Kenneth K. H. Lee, Daniel S.
Levine, and Jonathan P. How. Threat assessment design for driver as-
sistance system at intersections. In 13th International IEEE Conference
on Intelligent Transportation Systems, pages 1855–1862, 2010.

[4] H. Blom. An efficient decision-making-free filter for processes with
abrupt changes. IFAC Proceedings Volumes, 18:631–636, 1985.

[5] M. Brand, N. Oliver, and A. Pentland. Coupled hidden markov models
for complex action recognition. In Proceedings of IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, pages
994–999, 1997.

[6] Mattias Brännström, Erik Coelingh, and Jonas Sjöberg. Model-based
threat assessment for avoiding arbitrary vehicle collisions. IEEE Trans-
actions on Intelligent Transportation Systems, 11(3):658–669, 2010.

[7] Jiajia Chen, Pan Zhao, Tao Mei, and Huawei Liang. Lane change path
planning based on piecewise bezier curve for autonomous vehicle. In
Proceedings of 2013 IEEE International Conference on Vehicular Elec-
tronics and Safety, pages 17–22, 2013.

124

[8] Hongwei Ding, Hao Wu, Lan Dong, and Zejun Li. Vehicle intersection
collision monitoring algorithm based on vanets and uncertain trajecto-
ries. In 2018 16th International Conference on Intelligent Transportation
Systems Telecommunications (ITST), pages 1–7, 2018.

[9] Liyu Gong and Qiang Cheng. Exploiting edge features in graph neural
networks, 2019.

[10] Daniel Greene, Juan Liu, Jim Reich, Yukio Hirokawa, Akio Shinagawa,
Hayuru Ito, and Tatsuo Mikami. An efficient computational architec-
ture for a collision early-warning system for vehicles, pedestrians, and
bicyclists. IEEE Transactions on Intelligent Transportation Systems,
12(4):942–953, 2011.

[11] Jia Hou, George F. List, and Xiucheng Guo. New algorithms for com-
puting the time-to-collision in freeway traffic simulation models. Com-
putational Intelligence and Neuroscience, 2014:761047, Dec 2014.

[12] Adam Houenou, Philippe Bonnifait, Véronique Cherfaoui, and Wen
Yao. Vehicle trajectory prediction based on motion model and maneuver
recognition. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4363–4369, 2013.

[13] Hyeong-Seok Jeon, Dong-Suk Kum, and Woo-Yeol Jeong. Traffic scene
prediction via deep learning: Introduction of multi-channel occupancy
grid map as a scene representation. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1496–1501, 2018.

[14] Hyeongseok Jeon, Junwon Choi, and Dongsuk Kum. Scale-net: Scalable
vehicle trajectory prediction network under random number of interact-
ing vehicles via edge-enhanced graph convolutional neural network. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 2095–2102, 2020.

[15] N. Kaempchen, K. Weiss, M. Schaefer, and K.C.J. Dietmayer. Imm
object tracking for high dynamic driving maneuvers. pages 825–830,
2004.

[16] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee,
Chung Choo Chung, and Jun Won Choi. Probabilistic vehicle trajectory

125

prediction over occupancy grid map via recurrent neural network. In
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pages 399–404, 2017.

[17] Jae-Hwan Kim and Dong-Suk Kum. Threat prediction algorithm based
on local path candidates and surrounding vehicle trajectory predictions
for automated driving vehicles. In 2015 IEEE Intelligent Vehicles Sym-
posium (IV), pages 1220–1225, 2015.

[18] P.B. Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, 1995.

[19] Donghan Lee, Youngwook Paul Kwon, Sara McMains, and J. Karl
Hedrick. Convolution neural network-based lane change intention pre-
diction of surrounding vehicles for acc. In 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6,
2017.

[20] Stephanie Lefevre, Dizan Vasquez, and Christian Laugier. A survey on
motion prediction and risk assessment for intelligent vehicles. Robomech
Journal, 1, 07 2014.

[21] Jie Li, Tao Li, Yujie Zhang, Junping Xiang, and Dalin Xu. A compara-
tive study on lane-changing decision model using deep learning methods.
In 2019 Chinese Automation Congress (CAC), pages 1519–1523, 2019.

[22] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interacting
multiple model methods in target tracking: a survey. IEEE Transactions
on Aerospace and Electronic Systems, 34(1):103–123, 1998.

[23] R. Miller and Qingfeng Huang. An adaptive peer-to-peer collision warn-
ing system. In Vehicular Technology Conference. IEEE 55th Vehicular
Technology Conference. VTC Spring 2002 (Cat. No.02CH37367), vol-
ume 1, pages 317–321 vol.1, 2002.

[24] World Health Organization. Global status report on road safety 2018.
Global status report on road safety, 2018.

[25] Jiacheng Pan, Hongyi Sun, Kecheng Xu, Yifei Jiang, Xiangquan Xiao,
Jiangtao Hu, and Jinghao Miao. Lane-attention: Predicting vehicles’
moving trajectories by learning their attention over lanes. In 2020

126

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7949–7956, 2020.

[26] Sajan Patel, Brent Griffin, Kristofer Kusano, and Jason Corso. Predict-
ing future lane changes of other highway vehicles using rnn-based deep
models. 01 2018.

[27] Aris Polychronopoulos, Manolis Tsogas, Angelos J. Amditis, and Luisa
Andreone. Sensor fusion for predicting vehicles’ path for collision avoid-
ance systems. IEEE Transactions on Intelligent Transportation Systems,
8(3):549–562, 2007.

[28] Jannik Quehl, Haohao Hu, Sascha Wirges, and Martin Lauer. An ap-
proach to vehicle trajectory prediction using automatically generated
traffic maps. 2018.

[29] Drakoulis Richardos, Bolovinou Anastasia, Drainakis Georgios, and
Amditis Angelos. Vehicle maneuver-based long-term trajectory predic-
tion at intersection crossings. In 2020 IEEE 3rd Connected and Auto-
mated Vehicles Symposium (CAVS), pages 1–6, 2020.

[30] Robin Schubert, Eric Richter, and Gerd Wanielik. Comparison and
evaluation of advanced motion models for vehicle tracking. In 2008 11th
International Conference on Information Fusion, pages 1–6, 2008.

[31] Iliyana Simeonova and Tzvetan Semerdjiev. Specific features of imm
tracking filter design. An International Journal of Information and
Security, 9, 01 2002.

[32] Rafael Toledo-Moreo and Miguel A. Zamora-Izquierdo. Imm-based lane-
change prediction in highways with low-cost gps/ins. IEEE Transactions
on Intelligent Transportation Systems, 10(1):180–185, 2009.

[33] Shaobo Wang, Pan Zhao, Biao Yu, Weixin Huang, and Huawei Liang.
Vehicle trajectory prediction by knowledge-driven lstm network in urban
environments. Journal of Advanced Transportation, 2020:8894060, Nov
2020.

[34] Guotao Xie, Hongbo Gao, Lijun Qian, Bin Huang, Keqiang Li, and Jian-
qiang Wang. Vehicle trajectory prediction by integrating physics- and

127

maneuver-based approaches using interactive multiple models. IEEE
Transactions on Industrial Electronics, 65(7):5999–6008, 2018.

[35] Alex Zyner, Stewart Worrall, James Ward, and Eduardo Nebot. Long
short term memory for driver intent prediction. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 1484–1489, 2017.

128

