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ABSTRACT 

 

Physical activity is becoming an essential part of our daily lives, helping to prevent and reduce 

the risks associated to many diseases and improving physical and mental health. The physical 

workload results in physical fatigue, which can be subjectively classified based on different 

perceived effort scales, such as the Borg’s scale. Physical activity can be categorized into 

sedentary, light, moderate, and vigorous levels. Assessing the level of physical activity achieved 

is very important, especially if the subject suffers from heart disease. Physiological signals (e.g., 

heart rate, temperature and electrodermal activity) combined with accelerometer signals can 

give us information about the level of physical activity performed. This thesis explores an out-

of-laboratory approach to effectively predict relative physical activity intensities on multimodal 

physiological signals combined with accelerometer data, and on electrodermal activity data. 

Three participants completed 10 physical activity sessions where each session consisted of 3 

trials including sedentary (sitting), moderate (squat with low repetition frequency) and intense 

(squat with high repetition frequency) activity. During the trials, participant’s heart rate, blood 

volume pulse, electrodermal activity, body temperature and accelerometer data were recorded 

using the Empatica E4 wearable device. Immediately after each trial, participants provided their 

rating of perceived effort using the 6-20 Borg scale. This work uses features extracted from each 

signal acquired through the sensor; followed by a balance of the data.  Then, using the leave-

one-subject-out cross-validation, two machine learning algorithms including support vector 

machine and bagged tree were applied on multimodal physiological and accelerometer data and 

on electrodermal activity data. Specifically, the features from physiological (heart rate, RR 

intervals, temperature) and accelerometric signals have been labelled via the Borg’s scale, while 

the features from the electrodermal response have been labelled with the predictions of 
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classification using acceleration and physiological signals. The results showed that using the 

support vector machine algorithm on multimodal physiological and accelerometer data can 

effectively predict relative physical activity intensities.  
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1. INTRODUCTION 

 

The level of performed Physical activity (PA) has become an essential criterion for evaluating 

the health status of a person [1]. The World Health Organization (WHO) recommends at least 

150 min of moderate-intensity PA, or at least 75 min of vigorous intensity PA per week, 

accumulated in bouts of at least 10 min in duration to prevent chronic disease, including 

cardiovascular disease, type-2 diabetes, cancers of the breast and colon, and depression [2][3]. 

Low levels of PA are among the most common risk factors for morbidity and mortality from all 

causes [4]. In fact, according to the World Heart Federation (WHF), physical inactivity increases 

the risk of hypertension by 30 percent and coronary heart disease by 22 percent [5].  This 

extensive scientific evidence for the health benefits of PA has prompted several public and 

medical health organizations to issue recommendations or guidelines for participation in PA. 

PA intensity is one of the crucial PA measurement parameters which can be defined in either 

relative or absolute terms. The absolute PA intensity considers the external workloads for a 

particular PA, and usually refers to the energy cost of a specific activity expressed as multiples 

of resting metabolism or Metabolic Equivalents (METs). The relative PA intensity, on the other 

hand, personalises the PA intensities based on the person’s fitness or capacity. In relative terms, 

the moderate intensity PA is typically defined as 40% to 60% of VO2  reserve or a rating of 

perceived exertion (RPE) of 12 – 14 [6]. It means that, to achieve moderate intensity PA based 

on absolute intensity, individuals with a low aerobic capacity are required to work at a 

significantly high relative intensity [7]. Thus, a significant proportion of individuals with limited 

aerobic capacity is erroneously misclassified as not meeting PA guidelines. To date, research 

efforts to quantify PA and their intensities are mostly based on the accelerometer sensors [6][7]. 

Accelerometers are only able to capture external workloads, therefore can be used for 
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calculating absolute intensity [7][8]. To determine the relative PA intensity, operationalising 

intensity as a percentage of maximal oxygen uptake is considered the gold standard, but this is 

not feasible in most situations because its measurement needs sophisticated instruments and lab-

based individual calibration. Self-rated perceived exertion scales, e.g., Borg’s RPE for adults 

[10] and OMNI perceived exertion scale for children [11], are widely used in exercise testing 

and prescription contexts and have been shown to a valid and reliable indicator of relative PA 

intensity [12][13].  However, they are not usable in automated scenarios as they need manual 

involvements to enter data. Using both sensors and sensing modalities, manual entries can be 

avoided or reduced. For example, the Photoplethysmography (PPG) sensor can be used to 

measure the heart rate (HR), and consequently to detect the relative intensity as percentage of 

HR reserve (% HRR) or percentage of HR maximum (% HR max) [14][15].While the HR based 

methods are more objective and suitable for predicting moderate to vigorous relative intensities, 

they are not effective for low relative intensities [16]. Moreover, these approaches require 

knowledge of HR max for which commonly used age-related prediction equations are subject 

to considerable measurement error [17][18]. Concerning patients affected by cardiovascular 

disease, conventional HR based indices can significantly underestimate the true relative 

intensity of exercise and put patients with low exercise tolerance at risk. In addition to HR, some 

other modalities of physiological data, including electrodermal activity (EDA) and body 

temperature, can be easily obtained using wearable sensors. These physiological indicators can 

provide valuable information about the metabolic demand of exercise and can also be used to 

predict relative PA intensity [19][20]. Currently, PA levels are usually measured in young, adult, 

and older population through the so-called “objective methods” (e.g., accelerometer), wearable 

devices to self-monitor PA (e.g., smartphone, wristband), or questionnaires (e.g., International 

Physical Activity Questionnaires (IPAQ) [21], Global Physical Activity Questionnaire (GPAQ) 

[22]).   
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There is a risk of inducing individuals to perform exercises at a level that is neither safe nor 

effective as the latter affects biomechanics, physiological and psychological responses of the 

individual. Identifying the abilities of everyone to a specific activity is still a challenging task, 

a system should consider the aerobic fitness, age or health of an individual to produce more 

accurate PA level recommendations [23]. 

In recent years, due to the increasing use of wearable sensor technology, accelerometer and HR 

based objective PA monitoring has become popular among researchers and consumers [24]. In 

contrast to self-report methods, sensor-based approaches can be used to collect real-time 

responses from users efficiently and unobtrusively, and can track the frequency, intensity and 

duration of PA [25]. Such features enable users to record, view and share PA status with their 

health practitioners and peers. Because current PA guidelines call for participation in moderate- 

and vigorous-intensity PA, it is important that wearable sensor systems for monitoring PA 

behaviour provide accurate determinations of PA intensity. If features in the signals from 

multiple physiological sensors can be trained to predict relative PA intensity category based on 

RPE, then PA intensity predictions can be more personalized, whereby users can track their PA 

sessions to exercise at an intensity that is both safe and effective. Relative intensity assessments 

based on RPE categories that are easily understood by patients and end-users (i.e., low, moderate 

and high) can have more validity and therefore clinical utility [26]. 

The aim of this study is to classify the perceived physical exertion intensity from data collected 

by wearing a wrist-worn multi-sensors device, namely Empatica E4. In the proposed approach, 

the perceived physical effort was expressed by the subjects through the Borg’s RPE scale to 

effectively label the measured data with the different PA intensities. Two state-of-the-art 

machine learning (ML) algorithms (i.e., support vector machine (SVM) and bagged tree) were 

fed with labelled data. 
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The key components of this research are shown in Figure 1. 

 

Figure 1:  The framework of this research. 

 

The study involved data collection, data processing, feature extraction, classification, and 

validation of the models. Specifically, in the data collection phase, a real-world dataset was 

collected using Empatica E4 wearable device in the out-of-lab context. The collected data 

included EDA, acceleration, blood volume pulse (BVP) and skin temperature. Then, the 

structural and statistical features were extracted from the data and were given as input to two 

ML classification algorithms to predict the relative intensity. Finally, all models have been 

validated and compared. 

This thesis is structured as follows. In Chapter 2, a theoretical background about the measure 

and classification of PA intensity studies is reported. Chapter 3 gives information about the 

material and methods used in this study. In Chapter 4, the experimental results are presented. 

Discussion is reported in Chapter 5 and, finally, conclusions, limits and future developments are 

proposed in Chapter 6. 
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2. STATE OF ART 

 

This chapter aims to provide an overview of the background to the research aim. In particular, 

the state of the art of wearable sensor-based approaches to measure PA, the features extracted 

from the signals acquired by the sensors and the supervised learning algorithms used to classify 

PA intensity will be presented. 

 

2.1 SENSOR-BASED METHODS TO MEASURE PHYSICAL ACTIVITY  

 

The use of wearable devices to self-monitor PA has increased exponentially over the past 

decade, thereby offering individuals the opportunity to track and meet PA recommendations 

[27]. 

Accelerometers measure body movement in terms of acceleration which is useful for 

determining the type and intensity of PA and energy expenditure in real life contexts 

[28][29][30]. Montoye, et al. [31] are among the first to recognise the potential of 

accelerometers to objectively assess the intensity of PA. The early accelerometer-based works 

used the single-axis accelerometers [32], while recent works are using 3-dimensional 

acceleration signals [33][34][35]. Nowadays physiological sensors are also widely used in PA 

research because the corresponding data are directly related to the intensity of PA and can be 

considered important cues for assessing user’s PA [33][36]. Previous researchers have utilised 

HR with accelerometer data for measurement of PA type and energy expenditure, and reported 

consistent improvement over the approaches that used accelerometers alone [37][38]. For 

example, Smolander et al. [39] improved the energy expenditure estimation (with the highest 
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correlation (range 0,83-0,99) between the two methods reached at higher HR levels) by using 

respiration rate with the HR, compared to HR alone. In addition to HR, some other physiological 

data, including EDA and body temperature, can be easily obtained using wearable sensors. 

These physiological indicators can provide valuable information about the metabolic demand 

of exercise and can also be used to predict relative PA intensity as they are affected by physical 

exertion. Recent studies, as those by Chowdhury et al. [19] and Tjondronegoro et.al [20], have 

shown a good prediction (with a F1-score equal to 71.71% (Random Forest (RF)), 64.88% 

(SVM) and 61.79% (Neural Network (NN)) for Chowdhury et al. study [19] and a root mean 

square error (RMSE) value equal to 1.84 (SVM regression) for Tjondronegoro et.al [20])  of the 

intensity of PA using only physiological signals (HR, RR, temperature and EDA). 

In conclusion, several studies [30][40][41] report that the best prediction of PA intensity is given 

by the combination of acceleration and physiological signals such as skin temperature, EDA, 

RR intervals and HR. 

 

2.2 MACHINE LEARNING ALGORITHMS TO CLASSIFY PHYSICAL 

ACTIVITY INTENSITY 

 

Several studies used a range of learning algorithms, including supervised, unsupervised and a 

combination of them ML algorithms to classify the sensor output into classes of PA intensity 

[42]. Supervised learning is an approach in which models are trained using labelled data, so it 

needs to find the mapping function to map the input variable (X) with the output variable (Y). 

Instead, in the unsupervised learning, patterns are inferred from the unlabelled input data. The 

goal of this approach is to find the structure and patterns from the input data. Unsupervised 
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learning, unlike the supervised one, does not need any supervision [43]. In this section we will 

just highlight a background of studies that have classified PA using the supervised approach. 

Previous physical activity studies [17][34] [44][46][44], before using as input variable a wide 

range of features extracted from raw sensor data, they initially segmented the raw signal into 

sequences of consecutive windows and then extracted a number of features from each window 

[44]. The size of the window is an important parameter and varies from study to study. For 

example, 1-2 seconds [17], 4 seconds[44], 6.7 seconds [45], 10 seconds [34], and 60 seconds 

[46]. Most studies focused on physical activity classification used non-overlapping sliding 

windows to extract features [34][47]. However, some other studies have been shown to be 

effective using 50% overlapping sliding windows [45]. Overlapping of sliding windows can 

provide more data points/windows to train a model, especially when the available dataset is 

small.  

The features extracted from accelerometer data can be divided into three types: time domain, 

frequency domain, and combined time-frequency domain ones. Most works utilised time-

domain features or a combination of time-domain and frequency domain features. Some studies 

used physiological features along with the accelerometer features, which are mainly statistical 

measures extracted from HR, RR interval, galvanic skin response and skin temperature. The 

time domain features are usually statistical measures such as mean, median, variance, skewness, 

kurtosis, etc., extracted from a window of raw data, or low-pass or high-pass filtered data 

[48][46][49]. Correlations between accelerometer axes data are also used, and have been shown 

to improve recognition performance [45][50]. Frequency domain features are typically extracted 

from the Fast-Fourier-Transformed (FFT) window. FFT of time domain signals provides the 

amplitude of the frequency components and distribution of the signal energy. Some widely used 

frequency domain features include entropy, signal energy, principal frequency, and magnitude 

of principal frequency [51]. Few researchers have investigated both time and frequency 
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characteristics of the sensor data using wavelet analysis [48]. Wavelet analysis such as discrete 

wavelet transforms (DWT) decomposes sensor data into several coefficients based on frequency 

bands while temporal information is preserved. In general, statistical measures such as standard 

deviation or root mean square of specific wavelet coefficient are used for physical activity 

recognition [51][52]. 

Some studies [40][41], in addition to extracting statistical features, also extract structural 

features that take into account the relationship among data. 

Among the supervised algorithms, artificial neural networks (ANNs) [20][30], SVMs [53][54], 

RF [55], k-nearest neighbour (kNN) [56], and decision tree (DT) [45] are widely used, reporting 

high PA recognition performance using a single accelerometer. For example, Trost, et al. [30] 

developed a ANN model for predicting PA type and energy expenditure. They found high 

classification accuracy (equal to 88.4%) for PA type prediction. Ellis, et al. [57] developed a RF 

classifier for PA recognition and achieved 92.7% and 87.5% average overall accuracy for the 

hip and wrist accelerometer, respectively. In their later study [58], they developed a 2-step 

activity recognition model by combining a hidden Markov model with RF. They reported a 

balanced accuracy of 88.1% and 83.6% for the hip and wrist, respectively. There are some 

studies that compared the performance of different classification algorithms for PA recognition. 

For example, Reiss and Stricker [59] used DT classifiers which worked best among some base- 

and meta-level classification techniques. Bao and Intille [41] applied decision tree, kNN and 

naïve Bayes classification to identify 20 physical activities. They reported high accuracy for 

both DT (84%) and kNN (83%). Maurer, et al. [60] reported similar performances for decision 

tree, naïve Bayes, and kNN in wrist accelerometer data for 6 activities including sitting, 

standing, walking, ascending stairs, descending stairs, and running. In a study by Gyllensten 

and Bonomi [61], authors reported higher accuracy for SVM model (lab – 95.1%, daily living 

– 75.6%) compared to NN (lab – 91.4%, daily living – 74.8%), and DT (lab – 92.2%, daily 
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living – 72.2%) models using waist accelerometer data in both laboratory and daily living 

settings. Ermes, et al. [62] used hip and wrist accelerometers where they reported at least 4% 

higher classification rate using NN (87%) than hierarchical (83%) and DT (60%).  

To date, researchers have developed several regression equations between accelerometer count 

and assessment of PA to estimate PA related energy expenditure and absolute intensity [63]. 

Most studies were conducted in laboratory settings where correlation values between activity 

count and energy expenditure ranged from 0.58 to 0.92 during various activities [64]. Apart 

from linear regression, a few NN [30][65][66] based regression methods such as Radial Basis 

Function Network (RBFN) and Generalised Regression Neural Network (GRNN) were also 

used by researchers which performed better than the linear regression [46]. Trost, et al. [67] 

reported 30-40% lower RMSE for energy expenditure prediction using a ANN model compared 

to conventional regression-based models.  

Zhu, et al. [68] successfully adopted deep learning for energy expenditure prediction for adults. 

They reported 30-35% lower RMSE using deep learning compared to existing activity-specific 

linear regression model. Preece, et al. [48] completed a comprehensive review of learning 

algorithms used for classification or regression problems in the PA domain. They were unable 

to declare one ML technique as universally better than others. In a recent study, Kate, et al. [69] 

compared the performance of eight learning algorithms for both PA recognition and energy 

expenditure prediction. In their results, they were unable to find a ML technique that worked 

best in all testing situations. Interestingly, while no single algorithm works best in isolation, 

Catal, et al. [70] showed that the combination or fusion of multiple classification algorithms 

using majority vote can yield better performance than a single classifier. The ensemble of 

multiple classification and models is advantageous as it usually reduces the chances of 

overfitting and improves the generalization of the classification task. 
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3. MATERIALS AND METHODS 

 

This chapter is intended to provide information about the data collection performed in this study 

through the Empatica E4 device and the type of protocol used in the data acquisition. The 

subsequent sections summarise all the steps of a learning method e.g., data processing, feature 

extraction and ML algorithms. 

 

3.1 EMPATICA E4 DEVICE 

 

Empatica E4 is a multi-sensor device designed for real-time, continuous and comfortable data 

acquisition in everyday life [71]. According to the datasheet provided by the manufacturer, four 

sensors are embedded in such device, specifically: 

 Photoplethysmography (PPG) sensor. It measures BVP (Blood Volume Pulse), from 

which some cardiovascular parameters as HR and heart rate variability (HRV) can be 

derived.  

 3-axis Accelerometer. It measures continuous gravitational force (g) applied to each of 

the three spatial directions (X, Y and Z axes).  

 EDA (ElectroDermal Activity) sensor. It measures skin electrical changes related to 

sympathetic nervous system (SNS) arousal and, by extension, provides information 

about involvement, excitement and stress of a subject.  

 Infrared Thermopile. It records skin temperature. 
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The E4 wristband is provided with an event mark button that allows subjects to tag the start and 

the end of different trials.  

Figure 2 shows all the sensors available on E4, and some technical specifications. 

 

 

Figure 2: Empatica E4 wristband sensors details.  

 

E4 may work in two distinct modalities: memory mode and recording mode. The recording 

modality (Figure 3) allows capturing and storing data in an internal flash memory for up to 60 

hours. Once the session terminates, the device must be connected via USB to a computer for 

transmitting data acquired to a secure cloud platform, named E4 Connect. This operation is 
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supported by a desktop application, the E4 Manager. As soon as the user has logged in and the 

wristband is connected, the app transfers all data acquired to the Empatica cloud server.  

 

 

Figure 3: E4 recording mode. 

 

Differently, when operating in streaming mode (Figure 4), the E4 wristband connects to 

smartphones or tablets via Bluetooth. A mobile application, named E4 Realtime, allows the real-

time visualization of data being acquired on the smartphone. Specifically, it provides the real-

time curves of the BVP and EDA and displays HR and skin temperature values. When the 

acquisition ends, raw data is automatically uploaded to E4 Connect. 

In this study, E4 was used in streaming mode to monitor the HR directly from the interface of 

the app during the acquisition. 

 

 

Figure 4: E4 streaming mode. 
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The raw data related to the users are downloaded in .csv format and are compressed in a ZIP 

directory containing the following files [72]:  

 ACC.csv file contains three-axis accelerometer sensor data sampled at 32 Hz in the range 

[-2g, 2g]; 

 BVP.csv file contains PPG sensor data sampled at 64 Hz; 

 EDA.csv file contains data from the EDA sensor in μS and sampled at 4 Hz; 

 IBI.csv file contains Inter Beat Intervals obtained from the processing of the BVP signal 

with an algorithm that already removes incorrect peaks due to noise in the BVP signal; 

 TEMP.csv file contains temperature sensor data expressed in degrees on the Celsius (°C) 

scale and sampled at 4 Hz; 

 HR.csv file contains the average HR values, derived directly from the BVP with 1 Hz 

sampling rate;  

 tags.csv contains the event mark times. Each row corresponds to a physical button press 

event performed on the device; the same time as the status LED is first illuminated. The 

time is expressed as a Unix timestamp in UTC and it is synchronized with initial time of 

the session indicated in the related data files from the corresponding session; 

 info.txt file contains the descriptions of the files. 

 

3.2 DATA ACQUISITION PROTOCOL 

 

Three adults (age range= [25-29] years, BMI range= [17-23] kg/m2), including two females (F) 

and one male (M), participated in the study (Table 1). 
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Table 1: Study participants’ details. 

Subject Sex [M/F] Age [years] Weight [kg] Height [cm] 

1 M 28 72.5 175 

2 F 25 38.5 150 

3 F 29 46.0 155 

 

The inclusion criterion was only good health condition. Prior to participating in the study, each 

participant provided informed consent compliant to the General Data Protection Regulation 

(GDPR). 

Participants completed up to ten physical activity (PA) test sessions. These were carried out 

twice a day, in the morning and in the afternoon, as far as possible always at the same time for 

5 consecutive days. Each session included three PA intensity levels ranging from sedentary to 

vigorous intensity. The first test included a sitting condition of the subject (10 minutes), the 

second was squatting (10 minutes) and the third was squatting with a higher frequency of 

execution (10 minutes) with respect to the second test. 

The frequency of squat execution was self-selected by keeping HR for moderate and intense 

activity between 90 and 120 beats per minute (bpm) and between 120 and 140 bpm, respectively 

[58]. These values were checked by visualizing running data in E4 Realtime app. A period of 

rest condition (2 minutes) at the end of the moderate activity phase and intense activity phase 

was included in the acquisition protocol to ensure vital signs could get back to their baseline. 

Thus, each session lasted about 34 minutes (min). The subjects wore sports clothing. 
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Figure 5 shows a scheme of the experimental protocol. During each trial, subjects wore the 

Empatica E4 device on their non-dominant wrist. At each session, the participant pressed the 

event mark button placed at the top of the device to identify the start and end time of each 

activity, so a total of four tag events were marked: at the end of the sedentary activity, coinciding 

with the beginning of the moderate activity, at the end of the moderate activity and at the 

beginning and the end of the intense activity. Immediately after each trial, participants rated 

their perceived exertion for the entire PA session using the Borg RPE scale [10]. The latter was 

presented and explained to the participants before performing the session. Table 2 describes the 

Borg RPE scale, where different levels of exertion are categorised into three relative intensity 

classes corresponding to low (6–11), moderate (12–14) and high intensity (15–20). 

 

 

Figure 5: Time arrangement of PA testing sessions. 
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Table 2: Borg RPE scale. 

 Borg RPE scale Description of perceived exertion 

6  

Very very light 7 

8  

Very light 9 

10 

Light 

11 

12 

 

Somewhat hard 

13 

14 

15 Hard 

16 
 

 

Very hard 

17 

18 

19 

 

Very very hard 



19 

 

3.3 DATA PROCESSING 

 

Following the data acquisition step, the data collected during each session, excluding those 

acquired during break periods, were processed and analysed in MATLAB R2020b environment. 

Figures 6 and 7 show, respectively, the HR and the temperature signals visualized in MATLAB. 

The three graphs correspond to a single trial performed by subject 1 in a morning session.  

 

 

Figure 6: HR signal expressed in bpm for each activity intensity level. In vertical axis, the average HR signal is 

reported, while the samples in abscissa axis. The blue dashed lines mark the limits of 90,120 and 140 bpm. 

 

Acceleration data were separated for each axis and were divided by 64 to express them in the 

range [-g, g]. Moreover, to remove some artefacts in the acceleration data due to the relative 
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motion between the E4 and the subject’s wrist, a Butterworth bandpass filter of 4th order with a 

low and high pass frequency cut-off of 0.5 and 1.5 Hz, respectively, was applied. Figure 8 shows 

the raw acceleration signal compared to the filtered one, acquired during a session performed 

by subject 1. The first, second and third column report the two signals along each axis during 

sedentary, moderate and intense activity, respectively. 

 

 

Figure 7: Temperature expressed in °C for each activity. In vertical axis, temperature signal is reported, while the 

sample number in abscissa axis. 

 

From BVP data, the RR intervals have been derived. To find all local maxima, the ‘findpeaks’ 

MATLAB function was implemented. Then, after calculating the temporal distances between 

two consecutive peaks, a tachogram was obtained for each activity, as show in Figure 9. 
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Figure 8: Raw (blue) and filtered (red) acceleration signal along each axis, acquired during each activity. In 

ordinate axis, the acceleration signal given in multiple values of g and, in abscissa axis sample number is 

reported. 

 

Figure 9: Tachogram constructed from BVP data for each activity. In ordinate RR distances expressed in seconds 

are represented and in abscissa the number of heart beats are reported. 
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3.4 FEATURE EXTRACTION  

 

Two approaches have been proposed to extract the meaningful features: statistical detectors and 

structure detectors. The first approach uses quantitative characteristics of the data to extract 

features, while the second one considers the interrelationship among data. Since vital signs have 

much lower variability than acceleration signals, structure detectors turn out to be a suitable 

approach to extract features from vital sign time series.  

These detectors use an arbitrary function f (linear, polynomial, exponential or sinusoidal) with 

a set of free parameters {𝑎0, . . ., 𝑎𝑛} to fit the points of a given time series S. Rakesh et.al [41] 

and Lara et.al [40] have shown that the third-degree polynomial is the function that best fits the 

vital sign time series and therefore the extracted features are the coefficients of the polynomial. 

In our study, this arbitrary function has been applied for the analysis of both HR and temperature 

data. 

At the beginning, all processed signals are segmented into sequences of consecutive windows 

interspersed with 50% overlapping windows to sliding windows, both with a duration of 12 

seconds. For each time window, 8 features in the acceleration signal for each axis, 7 in the RR 

interval, 4 in the HR signal, 11 in the temperature signal and 7 features in the EDA signal, were 

extracted as follows: 

 Acceleration (ACCx (g), ACCy (g), ACCz (g)) feature set: statistical time domain features 

include mean, variance, standard deviation, correlation between axes, interquartile 

range, mean absolute deviation, and root mean square; statistical frequency domain 

features include energy, that was calculated as the sum of the squared discrete fast 

Fourier transform (DFT) component magnitudes of the signal (ACC). Energy features 

were normalised by the window length (𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒), expressed in samples, as follows: 
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                                                     (1)            𝐸𝑛𝑒𝑟𝑔𝑦 (ACCx) =
∑ 𝑎𝑏𝑠(𝐷𝐹𝑇(ACCx))

2

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
 

                                                     (2)           𝐸𝑛𝑒𝑟𝑔𝑦 (ACCy) =
∑ 𝑎𝑏𝑠(𝐷𝐹𝑇(ACCy))

2

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
 

                                                     (3)            𝐸𝑛𝑒𝑟𝑔𝑦 (ACCz) =
∑ 𝑎𝑏𝑠(𝐷𝐹𝑇(ACCz))

2

𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
. 

 

 RR feature set: statistical features in the time domain include mean, variance, standard 

deviation, skewness, kurtosis, and median. 

 HR feature set: structure detectors include the coefficients of the 3°order polynomial. 

 Temperature feature set: statistical time domain features include mean, variance, 

standard deviation, skewness, kurtosis, and median. Structure detectors include the 

3°order polynomial coefficient that best fit the data. 

 EDA feature set: statistical time domain features include mean, variance, standard 

deviation, skewness, kurtosis, and median. 

Therefore, a total of 50 features have been extracted between which those statistics in the domain 

of the time and the frequency and those structural. Table 3 summarises the features extracted 

mentioned above. 

Table 3: Extracted features from the measured signals. 

 

 

Measured 

signals 

Extracted Features 

Statistical Structural 

Time domain Frequency 

domain 
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𝐀𝐂𝐂𝐱 (g) 

𝐀𝐂𝐂𝒚 (g) 

𝐀𝐂𝐂𝒛 (g) 

• Mean 

• Variance 

• Standard 

deviation 

• Correlation 

between 

axes 

• Interquartile 

range 

• Mean 

absolute 

deviation 

• Root mean 

square 

• Energy 

HR (bpm) 
 

• 3°order 

polynomial 

coefficients 

 

 

RR Interval 

(s) 

• Mean 

• Variance 

• Standard 

deviation 

• Skewness 

• Kurtosis 

• Median 
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Temperature 

(°C) 

• Mean 

• Variance 

• Standard 

deviation 

• Skewness 

• Kurtosis 

• Median 

 

• 3°order 

polynomial 

coefficients 

 

 

EDA (μS) 

• Mean 

• Variance 

• Standard 

deviation 

• Skewness 

• Kurtosis 

• Median 

  

 
TOTAL=50 

 

To limit and standardize the several features to a common range, and to optimize the quality of 

input data, the Z-score normalization was used [19]. This method normalises the features (𝑥𝑖) 

to a zero mean and unit variance by subtracting the corresponding mean (𝑥)̅̅ ̅ and dividing by its 

standard deviation (𝜎): 

 

(4)        �̂� =
𝑥𝑖−�̅�

𝜎
 . 
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Some features may assume an invalid result in given windows, so these NaN values were 

excluded from the analysis. The remaining derived features were used as inputs to the ML 

learning algorithms. 

 

3.5 CLASSIFICATION ALGORITHMS 

 

Two state-of-the-art supervised ML algorithms, namely SVM and Bagged Tree, were used to 

predict the PA intensity. 

Supervised learning is the most common type of ML algorithms. It uses a known dataset (called 

the training dataset) to train an algorithm with a known set of input data (called features) and 

known responses (called label) to make predictions. Therefore, the training dataset includes 

labelled input data that pair with desired outputs, or response values. From it, the supervised 

learning algorithm seeks to create a model by discovering relationships between the features 

and output data and then makes predictions of the response values for a new dataset. Supervised 

learning includes two categories of algorithms: regression and classification algorithms. 

There’s a significant difference between the two; classification is a problem that is used to 

predict which class a data point is part of, which is usually a discrete value; regression is a 

problem that is used to predict continuous quantity output, such as an integer or floating point 

value [73]. 

This study aims to classify the PA intensity and therefore each time window has been labelled 

as 0 (sedentary), 1 (moderate) or 2 (intense) class activity, according to the effort perceived by 

the participant and expressed through the Borg RPE scale. It was obtained a data sets that did 

not have exactly equal number of instances in each class. Figure 11 shows the moderate class 
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as the majority one with a total of 4851 instances followed by the sedentary class with 2970 

instances and the intense class that, is the minority, with 1089 instances.  

 

 

Figure 10: Imbalance dataset. 

 

In order to overcome this problem of imbalanced dataset, the Synthetic Minority Over-Sampling 

Technique (SMOTE) was used to balance the class distribution of our classification data set. 

The subsequent sections describe the SMOTE and the three supervised ML algorithms. 

 

3.5.1 BALANCE OF DATA 

 

SMOTE is an algorithm that belongs to the set of oversampling methods and the general idea 

behind it is to artificially generate new examples of the minority class using the nearest 

neighbors of these cases. The algorithm first selects a minority class instance a at random and 

finds its k nearest minority class neighbors. The synthetic instance is then created by choosing 
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one of the k nearest neighbors b at random and connecting a and b to form a line segment in the 

feature space. Then, the synthetic instances are generated as a convex combination of the two 

chosen instances a and b (Figure 11) [74]. 

 

 

Figure 11: Illustration of SMOTE. 

 

In this study, two options were chosen: the number of neighbors set to 5 and the use of the 

Euclidean distance metric. Figure 12 shows the classes balanced thanks to the SMOTE 

algorithm.  

 

  

Figure 12: Balanced dataset. 
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3.5.2 SUPPORT VECTOR MACHINE 

  

SVM is a supervised ML algorithm which can be used for both classification and regression 

challenges. However, it is mostly used in binary classification studies, by finding the best 

separator between the two classes involved. To enable multi classification using SVM, two 

classes were adapted in a fashion that firstly it classifies one class against another class (one vs. 

one), and then it classifies another class versus remaining classes and so on (Figure 13). 

 

 

Figure 13: Multi-class classification: one vs. one approach. Each object represents a class. 

 

In this study, cubic and gaussian kernel function were empirically set. According to the data 

distribution, the cubic kernel was chosen for the multimodal and acceleration signal and the 

gaussian kernel was chosen for the galvanic skin response with a kernel scale that was 

empirically set to 0.61. 
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3.5.3 BAGGED TREE 

  

Bagged Tree is a kind of bagging ensemble algorithm. Bagging stands for bootstrap aggregation. 

It involves taking multiple random samples of training instances (with replacement) and 

applying a weak learning algorithm, in this study a DT, to the data. Then, the decisions of each 

classifier are combined to make a final class prediction using Majority-Voting rule (Figure 14). 

In this study, a bag method was used with a DT learner. The number of DTs in each classifier 

was empirically set to 30. 

 

 

Figure 14: Bagged tree algorithm. 
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3.6 PERFORMANCE EVALUATION 

 

The ML classifiers were implemented using the leave-one-subject-out (LOSO) cross-validation. 

In LOSO, data from one user are used for testing, the other user’s samples are used for training. 

In this way, samples of each subject are used exactly once for testing.  

Then, the analysis of classifiers performance was carried out by computing the accuracy of the 

model, area under the curve (AUC), confusion matrix, sensitivity, specificity and F1 score to 

measure the performance of each classifier.  

Accuracy is one metric for evaluating classification models. Informally, accuracy is the fraction 

of predictions our model got right so it can be defined as the percentage of correct predictions 

for the test data. 

The AUC value represents the degree or measure of separability. It tells how much the model is 

capable of distinguishing between classes. Higher the AUC, the better the model.  

The confusion matrix is a specific table layout that allows visualization of the performance of 

an algorithm. Each column of the matrix represents the instances in a predicted class, while each 

row represents the instances in a true class. The name stems from the fact that it makes it easy 

to see whether the system is confusing to distinguish, in our cases, the three classes. 

Sensitivity of a classifier is the ratio between how much were correctly identified as positive to 

how much were positive the relative class. 

 

(5)          Sensitivity= 
True Positive (TP)

False Negative (FN)+True Positive (TP)
. 

 

Specificity is the ratio between how much were correctly classified as negative to how much 

was negative the class. 
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       (6)           Specificity = 
True Negative (TN)

False Positive (FP)+True Negative (TN)
. 

 

TP and TN are the observations that are correctly predicted. Specifically, TP are the instances 

that are correctly predicted positive values instead TN are the correctly predicted negative 

values, e.g., the value of actual class is no and value of predicted class is also no. FP and FN 

occur when the actual class contradicts with the predicted class. FP, when actual class is no and 

predicted class is yes, instead FN when actual class is yes but predicted class in no. 

F1-score is another performance parameter that measures the accuracy of the test but t it is not 

influenced by class distribution. It can be defined as:  

 

                                     (7)           F1-score= 
2·TP

(2·TP+ FP+ FN)
. 
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4. RESULTS 

 

This thesis work is intended to classify PA intensity. To achieve this aim, two different routes 

have been adopted, one applied two ML algorithms on multimodal physiological and 

accelerometer data, and the other one on EDA data labelled with the predictions of the previous 

classification. The following sections describe the results about the performances of the 

evaluated classifiers working on collected dataset.  

 

4.1 MULTIMODAL PHYSIOLOGICAL AND ACCELEROMETER 

SIGNAL FOR CLASSIFICATION 

  

This section reveals the results obtained with a set of features extracted from accelerometric 

data, HR, RR intervals and temperature, with data labelled via the Borg scale. 

Figures 15 and Figure 16 show the confusion matrices obtained using SVM classifier and 

bagged tree classifier on both multimodal physiological and accelerometer data, respectively. 

Nine cells have been obtained as there are 3 classes to be recognised: 0, 1 and 2 related to 

sedentary, moderate, and intense activity. Each row of the matrix represents the instances in the 

effective class, while each column represents the instances of the expected class. Each cell is 

tinded with a colour. The blue cells (i.e., principal diagonal) indicate the positive class that is 

correctly identified so the number of instances that have obtained a predicted class equal to the 

true class. Bluer the colour, more correct the obtained previsions. The cells tinded with a range 

of pink identify the prediction errors and they are represented by values outside the diagonal. 
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In the confusion matrix of Figure 15, it is possible to see as the SVM classifier correctly 

predicted 5266 instances out of the 5344 actual instances, belonging to the class 0 (sedentary): 

71 instances were classified as class 1 (moderate) and 7 as class 2 (intense). For the moderate 

class, 4724 instances were predicted correctly, among which 116 instances were confused with 

the sedentary class and 503 with the intense activity class. Regarding this last class, 5219 

instances were correctly predicted, but 166 were exchanged for the moderate class and 5 for the 

sedentary class. 

 

 

Figure 15: Confusion matrix for SVM classifier applied on multimodal physiological and accelerometer data. 

 

In the confusion matrix of Figure 16, it is possible to see as the bagged tree classifier correctly 

predicted 5208 instances out of the 5344 actual instances belonging to the sedentary class: 120 
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instances were classified as the moderate class and 16 as the intense class; of the 5343 instances 

of the moderate class, 4823 were correctly predicted, 71 were exchanged for the sedentary class 

and 449 for the intense class. 

For the intense class, 5065 instances were predicted correctly, while 5 instances were confused 

with the sedentary activity and 320 with the moderate activity. 

 

 

Figure 16: Confusion matrix for bagged tree classifier applied on multimodal physiological and accelerometer 

data. 

 

Figure 17 shows the column chart in which are reported the accuracy, expressed in percentage 

(%), for each classifier. It is obtained an accuracy of 94.5% and 93.9% for SVM and bagged, 

respectively. Table 4 reported the AUC, specificity, sensitivity and F1-score value obtained 

from each classifier. It is possible to notice how good performance values have been obtained. 
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Figure 17: Column chart reporting the accuracy of each classifier using multimodal physiological and 

accelerometer data. 

 

Table 4: Performance parameter obtained from SVM and bagged tree algorithm on multimodal physiological and 

accelerometer data. 

 

 

 

SVM 

AUC Specificity [%] Sensitivity [%] F1-score [%] 

1.00 98.67 98.54 98.15 

0.99 97.79 88.41 91.69 

0.99 95.23 96.83 93.88 

 

 

BAGGED 

TREE 

0.99 99.29 97.46 98.01 

0.99 95.90 90.27 90.95 

0.99 95.65 93.97 92.77 

 



37 

 

4.2 CROSS-CLASSIFICATION FOR GALVANIC SKIN RESPONSE 

 

EDA responses were labelled with the predictions obtained from the previous classification and 

therefore using the features extracted from the accelerometer and physiological signals, as the 

EDA data were recorded synchronously with these signals. This way we aimed to verify, by 

reusing the SVM classifier and bagged tree classifier, if a better classification of the perceived 

physical exertion intensity is obtained even if made only on the EDA response or if, instead, 

this does not give results corresponding to those obtained in section 4.1. 

Figures 18 and 19 show the confusion matrix obtained using SVM classifier and bagged tree 

classifier on EDA data. 

In the confusion matrices of Figure 18 and 19, it is possible to see as the SVM classifier correctly 

predicted 4977 instances belonging to the class 0 so the sedentary activity, for 292 instances the 

algorithm exchanges them as the moderate class and 15 as the intense class instead; the bagged 

tree classifier correctly predicted 4232 instances belonging to the sedentary activity, 927 

instances were exchanged as the moderate class and 125 as the intense class. 

For the moderate class, the SVM classifier correctly predicted 1121 instances, 2962 instances 

were exchange for the sedentary class and 1180 for the intense class. The bagged tree classifier 

correctly predicted 2976 instances of the moderate class, 1192 instances were exchange for the 

sedentary class and 1095 for the intense class. For this last class, the SVM classifier correctly 

predicted 4380 instances,745 instances were exchange for the sedentary class and 405 for the 

moderate class instead in the bagged tree classifier 4727 instances were predicted correctly, 193 

instances were exchange for the sedentary activity and 610 for the moderate activity. 

Table 5 reports the AUC, specificity, sensitivity and F1-score value obtained by the two 

classifiers. 
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Figure 20 shows the column chart in which are reported the accuracy for each classifier. It is 

obtained an accuracy of 65.8% for SVM and 73.8% for bagged tree. The results obtained have 

lower values than the first classification by exploiting multimodal physiological and 

accelerometer data. 

 

 

Figure 18: Confusion matrix for SVM classifier applied on EDA data. 
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Figure 19: Confusion matrix for bagged tree classifier applied on EDA data. 

 

Table 5: Performance parameter obtained from SVM and bagged tree algorithm on EDA data. 

 

 

 

SVM 

AUC Specificity [%] Sensitivity [%] F1-score [%] 

0.99 65.65 94.19 71.26 

0.98 93.55 21.30 31.66 

0.99 88.67 79.20 78.88 

 

 

BAGGED 

TREE 

0.99 87.17 80.09 77.64 

0.99 85.79 56.55 60.88 

0.99 85.43 85.48 82.37 
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Figure 20: Column chart reporting the accuracy of each classifier using EDA data. 
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5. DISCUSSION 

 

This study systematically investigated the use of two ML algorithms (SVM and bagged tree), 

trained and tested firstly on multimodal physiological and accelerometer features; then, the same 

algorithms were fed with EDA features. The former features were labelled through the Borg’s 

RPE scale therefore the perception of the users has been used as a ground truth measure of 

relative intensity. In the second study, the EDA responses were labelled according to the 

classification obtained from the multimodal physiological and accelerometer data. The 

Empatica E4 device was used to collect data from three individuals, while they were performing 

PAs ranging from sedentary to intense intensity.  

For both the classifiers, the set of features extracted from HR, RR interval, skin temperature and 

accelerometer data provided the best performance compared to features extracted from EDA. In 

this sense, our results are consistent with some previous studies demonstrating that the features 

derived from the combination of acceleration and physiological data provide better prediction 

of relative PA intensity than a single signal [30][33][40][41]. EDA is also linked to PA intensity, 

it is affected by sweat due to physical exertion, and psychological stress [33]. However, our 

results (Figure 17 and 20) found that the prediction of PA intensity, using EDA alone, provides 

a lower performance respect to the combination of different signals (from 94.5% to 65.8% 

(SVM), from 93.9% to 73.8% (bagged tree) of accuracy). Among the two state-of-the-art ML 

algorithms, SVM provided slightly better accuracy applied on multimodal physiological and 

accelerometer features while bagged tree on EDA features. 

Table 4 shows as the lowest result in the sensitivity (88.41%) is obtained from the SVM 

classifier of the moderate activity instead the highest AUC values (1.00), sensitivity (98.54%) 

and F1-score (98.15%) are obtained for the sedentary class from the SVM classifier while the 
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highest specificity (99.29%) is obtained for the sedentary activity from the bagged tree classifier. 

The intense activity reported modest values; for both classifiers, it is obtained an AUC value 

equal to 0.99, similar results have been obtained for sensitivity values (95.23% for SVM and 

95.65% for bagged tree) instead, it is obtained values better for the specificity (96.83%) and the 

F1-score (93.88%) for the SVM classifier respect to the bagged tree (specificity-93.97% and 

F1-score- 92.77%). 

The confusion matrices obtained using SVM (Figure 15) and bagged tree (Figure 16) on 

multimodal physiological and accelerometer data, confirm the values obtained and reported in 

Table 4. There is a relatively higher misclassification for moderate relative intensity categories 

but, in general, most of the sedentary (0), moderate (1) and intense (2) relative intensity were 

classified correctly. Very few intense trials were misclassified as sedentary (5 instances, in both 

classifier), which is important in exercise monitoring applications serving low-fit individuals 

with chronic health conditions among whom intense intensity exercise may be unsafe. In 

contrast, sedentary intensity exercise trials have been slightly more often misclassified as intense 

intensity (7 instances in SVM classifier and 16 in the bagged tree classifier), which is important 

for end-users wishing to exercise at a relative intensity that is effective for promoting health and 

cardiorespiratory fitness. However, for moderate relative intensity, classification accuracy was 

modest. More misclassifications were obtained compared to the intense and sedentary class; 116 

instances in the SVM classifier and 71 instances in the bagged tree classifier were exchanged 

for sedentary activity while 503 instances in the SVM classifier and 449 instances in the bagged 

tree classifier were exchanged for intense activity. It may be that differentiating moderate 

intensity exercise from sedentary- or intense-one using the Borg RPE scale is more challenging 

for individuals, and that the relationship between features in the physiological signals and 

perceived effort during moderate intensity exercise is more complex. 
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In the confusion matrices obtained on cross correlation for EDA using SVM and bagged tree 

(Figure 18 and 19), most of the sedentary and intense relative intensity samples were classified 

correctly. Only 15 instances for the SVM classifier and 125 instances for the bagged tree 

classifier, belonging to the sedentary class, have been wrongly classified as of the intense class. 

On the contrary, many more observations belonging to the intense class have been classified as 

belonging to the sedentary class, specifically 745 instances for the SVM and 193 instances for 

the bagged tree. Instead, these classification models show relatively higher misclassification for 

moderate relative intensity categories. A total of 2962 instances for the SVM classifier and 1192 

instances for the bagged tree classifier, belonging to the moderate activity class, have been 

wrongly classified as of the sedentary activity while 1180 instances for the SVM classifier and 

1095 instances for the bagged tree classifier, were misclassified as of the intense activity.  In 

fact, the lowest values of sensitivity and F1-score, reported in Table 5, result in the moderate 

class in both classifiers (sensitivity-21.30% and F1-score-31.66% (SVM) and sensitivity-56.55 

% and F1-score-60.88 % (bagged tree)). Table 5 also shows how the best specificity value 

(93.55 %) was obtained from the sedentary class with the SVM classifier. The lowest AUC 

value (0.98) was obtained by the SVM classifier for the moderate class. 

In conclusion, from the Tables 4 and 5, and from the confusion matrices in Figure 15, 16, 18 

and 19, it can be noticed as in both the cases of study, the moderate class is the one which obtains 

more errors of classification, because in some cases there is a light difference between the 

acquired physiological values during the moderate activity and intense activity. This will depend 

especially on the effort perceived by the subject; the latter could perceive the intense activity as 

moderate, and vice versa. 

The sedentary class is the one that gets the best performance as there is a clear difference 

between physiological signals, including EDA, and accelerometer signals acquired during the 

moderate activity and the sedentary activity. 
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As this study used leave-one-subject-out cross-validation, the inter-person differences in the 

moderate relative intensity zone played a vital role for these misclassifications. From the 

application point of view, it may be of a less concern to misclassify moderate intensity as intense 

(and vice versa) as they both are counted toward meeting PA guideline. But the misclassification 

between moderate and low intensity is problematic as it can provide incorrect information on 

whether a person meets PA guideline [5]. This is all a problem because it can cause the 

individual to perform exercises at a level that is not appropriate to his/her status of health 

especially if the subject has heart problems. 
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6. CONCLUSION AND FUTURE WORKS 

 

The results demonstrate that relative PA intensity predication can be performed by using SVM 

algorithm on multimodal physiological and accelerometer data. 

There were, however, some limitations that warrant consideration. First, only few types of PAs 

were included in the study. Future studies should include a more diverse set of PAs ranging 

from sedentary to vigorous. Second, only three subjects participated in the study, with a small 

age range and with a similar state of health (i.e., no heart problem, no obesity condition or other 

pathological condition). Therefore, a higher number of participants, including people with 

different physical training conditions, different ages and individuals with chronic diseases, 

should be considered to verify the effectiveness of the proposed approach. 

In addition, different combinations of physiological and acceleration signals could be tested to 

assess which of them best predicts PA intensity, e.g., combined EDA with the RR interval, HR 

data, temperature or accelerometer data. 

Moreover, further research is needed to reduce misclassification between sedentary and 

moderate intensity trial, e.g., including additional individuals’ features such as height, weight, 

age, BMI, gender and PA status.  
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