
Università Politecnica Delle Marche

Dipartimento di Ingegneria dell’Informazione

LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA E

DELL’AUTOMAZIONE

TITOLO:

Progettazione e sviluppo di algoritmi basati su deep learning per il

rilevamento ed inseguimento di oggetti da immagini ottenute da

drone

Design and development of deep learning based algorithms for object

detection and tracking from drone images

Relatore:

Prof. Adriano Mancini

Correlatore:

Dott. Luigi Ridolfi

Candidato: 1102498

Davide Olivieri

Anno Accademico 2021 / 2022

Vorrei esprimere la mia gratitudine a tutte le persone che hanno contribuito alla

realizzazione della mia tesi, in particolare al Prof. Adriano Mancini, al mio

tutor aziendale il Dott. Luigi Ridolfi e all’intera azienda MBDA Italia s.p.a che

mi ha dato la possibilità e i mezzi necessari per svolgere questo lavoro.

Un ringrazimento speciale va ai miei genitori che con il loro costante sostegno

mi hanno permesso di raggiungere questo importante traguardo, inoltre vorrei

ringraziare i miei compagni di studio, Lorenzo e Antonio, per il loro supporto.

Abstract

The related work was carried out during a curricular internship at the company

MBDA Italia s.p.a, Europe’s leading designer and manufacturer of missiles

and missile systems. The aim of this work is to study solutions for the detec-

tion and tracking of objects acquired by drones using Deep Learning approaches.

Particular attention was paid to studying the relationship between the accuracy

and inference speed of the models, in order to run them on embedded boards

and test their benefits in Real Time. The dataset chosen for this work is Vis-

Drone 2019, it represents a challenge, still completely open due to its enormous

difficulties derived from the high unbalanced of classes and the size of the objects.

In the first part of the project we will look at the results obtained for Multi

Object Detection through YOLOv5 (You Only Look Once) and compare them

with the state-of-the-art results for the VisDrone 2019 Challenge.

The second part of the project focuses on solving the problem of Multi Object

Tracking of images taken by drones. For this purpose, a cascade approach was

adopted between two algorithms, the first of which uses YOLOv5 for object

detection, while the second (strongSORT) takes the output of YOLOv5 as

input and creates traces for each detected object by assigning it an ID. This

approach was tested first on a single person tracking task taken from a drone,

and then on video sequences from the VisDrone Tracking dataset, achieving good

results.

The last part of the project is focused on the deployment of the Object

Detection algorithms on the NVIDIA Jetson TX2 board, in order to compare

the execution times and study the behaviour of the networks in Real Time.

3

Contents

1 Introduction 8

1.1 Problem Definition . 9

1.2 Project Steps . 11

1.3 Glossary . 12

2 Materials and Methods 13

2.1 Convolutional Neural Network . 13

2.2 Multi Object Detection . 16

2.3 Multi Object Tracking . 18

2.4 Materials . 22

2.4.1 Docker . 22

2.4.2 GitHub . 25

2.4.3 PyTorch . 26

3 Object Detection using YOLOv5 28

3.1 YOLOv5 . 29

3.1.1 Architecture . 31

3.1.2 Non Maximum Suppresion Algorithm (NMS) 34

3.1.3 Loss Function . 35

3.1.4 Anchors Box . 36

3.2 Evaluation Metrics . 37

3.3 VisDrone Dataset . 40

3.3.1 DPNet . 43

3.4 Implementation . 43

5

CONTENTS

3.5 Training . 44

3.6 Testing . 47

3.7 Optimization . 48

4 Object Tracking adding strongSORT 52

4.1 Architecture . 52

4.1.1 Re-Identification . 54

4.1.2 Hungarian Algorithm . 55

4.2 Evaluation Metrics . 57

4.3 Testing . 59

4.3.1 Optimization . 61

5 Deploy 63

5.1 NVIDIA Jetson TX2 . 64

5.2 Testing . 64

5.3 Real-Time Testing . 65

6 Conclusion 68

6.1 Future works . 68

7 Sommario 70

Bibliography 78

6

Chapter 1

Introduction

Computer Vision is one of the fields of artificial intelligence that trains and

enables computers to understand the visual world. Computers can use digital

images and deep learning models to accurately identify and classify objects and

react to them.

Computer vision in Artificial Intelligence is dedicated to the development of au-

tomated systems that can interpret visual data in the same manner as people

do. The idea behind computer vision is to instruct computers to interpret and

comprehend images on a pixel-by-pixel basis. This is the foundation of the com-

puter vision field. Regarding the technical side of things, computers will seek

to extract visual data, manage it, and analyze the outcomes using sophisticated

software programs.

In history scientists and engineers have been trying to develop ways for

machines to see and understand visual data for about 60 years. In the 1960s,

AI emerged as an academic field of study, and it also marked the beginning of

the AI quest to solve the human vision problem. In 1982, neuroscientist David

Marr established that vision works hierarchically and introduced algorithms for

machines to detect edges, corners, curves and similar basic shapes. Concurrently,

computer scientist Kunihiko Fukushima developed a network of cells that could

recognize patterns. The network, called the Neocognitron, included convolutional

layers in a neural network.

8

CHAPTER 1. INTRODUCTION

By 2000, the focus of study was on object recognition, and by 2001, the first

real-time face recognition applications appeared. Standardization of how visual

data sets are tagged and annotated emerged through the 2000s. In 2010, the

ImageNet dataset [1] became available. It contained millions of tagged images

across a thousand object classes and provides a foundation for Convolutional

Neural Networks and deep learning models used today.

1.1 Problem Definition

One of the main problems in computer vision is object detection, it is the ba-

sis of many computer vision applications, such as instance segmentation, image

captioning, object tracking, etc. This study will address the challenge of ob-

ject detection and tracking using deep learning approaches. Before studying this

type of problem, it is necessary to explain other fundamental aspects of computer

vision.

Image classification [2] focuses on classifying objects within an image into

one or more predefined categories. This problem is different from object detec-

tion as it does not focus on the precise location of objects. Currently, the chal-

lenge of this problem can be addressed with contemporary techniques such as

convolutional neural networks, but there have been various classical approaches

developed throughout the years. This report implements an image classifier using

a combination of classic computer vision and deep learning techniques.

Semantic segmentation [3] is another problem that focuses on separating

objects within an image into different categories. The main difference with image

classification is that semantic segmentation provides information on the precise

location of each object within the image. The objective of semantic segmentation

is to assign a label to each pixel of an image. The task involves dividing an image

into several segments, each of which corresponds to a different object or back-

ground, and assigning a label to each of these segments. This provides a much

more detailed understanding of the scene than traditional image classification, in

which only the presence of an object in an image is determined.

9

CHAPTER 1. INTRODUCTION

Instance segmentation [4] is a computer vision task in which objects in

an image are segmented and differentiated from one another. The goal of in-

stance segmentation is to differentiate objects belonging to the same category,

for example, it can distinguish between two "car" objects within an image. This

is an extension of semantic segmentation, which separates objects in an image

into different categories, but does not differentiate between objects of the same

category.

Figure 1.1: Computer Vision Challenges [5]

While object detection combines all challenges by focusing on the identifi-

cation and classification of specific objects within an image or video, while also

providing their coordinates.

10

CHAPTER 1. INTRODUCTION

1.2 Project Steps

The aim of the project is to test new Deep Learning approaches with CNN for

applications on unmanned aerial systems, with a focus on execution speed for

implementation on embedded platforms. This study will deal the following steps:

1. Fine-Tuning of five YOLOv5 models for Multi Detection Object with Vis-

Drone Dataset [sec. 3.3].

2. Testing YOLOv5 models on VisDrone Test Dataset [sec. 3.6].

3. Models optimization with quantization technical after training.

4. Study of the trade-off between inference speed and accuracy [3.7].

5. Implementation of an object tracker model obtained by adding the strong-

SORT algorithm to the detector output [4.1].

6. Testing the tracking algorithm with single object and multi object datasets

to study the trade-off between speed and accuracy [4.3].

7. Deployment of YOLOv5 models for object detection on embedded platform

(NVIDIA Jetson TX2) [sec. 5.1].

8. Testing and optimization of models on the NVIDIA Jetson TX2 [sec.5.2].

9. Real Time Object Detection with YOLOv5 models to evaluate inference

speed [sec. 5.3].

11

CHAPTER 1. INTRODUCTION

1.3 Glossary

CNN : Convolutional Neural Network

AI : Artificial Intelligence

FC : Fully Connected

CV : Computer Vision

OS : Operating System

MOD : Multi Object Detection

MOT : Multi Object Tracking

R-CNN : Region Based Convolutional Neural Networks

YOLO : You Only Look Once

SSD : Single Shot Detector

CSRT : Comparing state of the art Region of Interest trackers

KCF : Tracking with Correlation Filters

SVM : Support Vector Machine

UAS : Unmanned Aerial Systems

CUDA : Compute Unified Device Architecture

VM : Virtual Machine

mAP : Mean Average Precision

AP : Average Precision

mAP : Mean Average Precision

CPU : Central Processing Unit

GPU : Graphics processing unit

CLI : Command-Line Interface

CSP : Cross Stage Spatial

SSP : Spatial Pyramid Pooling

NMS : Non Maximum Suppression

IoU : Intersection Over Union

FP32 : Floating Point 32 bit

FP16 : Floating Point 16 bit

INT8 : Integer 8 bit

12

Chapter 2

Materials and Methods

MBDA is the only European group capable of designing and producing missiles

and missile systems to meet the whole range of current and future needs of the

three armed forces, therefore the scenario considered is airspace, in particular

terrestrial recognition from airspace.

Currently there is a lot of AI research in the defence sector, this work focuses on

using Convolutional Neural Network (CNN) for the detection, recognition and

tracking of objects seen by drones.

These Convolutional Neural Networks could be used on board missiles to engage

target and track it. In this chapter, the challenges to be solved and the solutions

proposed for this study will be explained.

2.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a subset of machine learning. It

is one of the various types of artificial neural networks which are used for different

applications and data types. A CNN is a kind of network architecture for deep

learning algorithms and is specifically used for image recognition and tasks that

involve the processing of pixel data.

There are other types of neural networks in deep learning, but for identifying and

recognizing objects, CNNs are the network architecture of choice. This makes

them highly suitable for computer vision tasks and for applications where object

13

CHAPTER 2. MATERIALS AND METHODS

recognition is vital, such as self-driving cars and facial recognition.

A CNN’s architecture is analogous to the connectivity pattern of the hu-

man brain. Just like the brain consists of billions of neurons, CNNs also have

neurons arranged in a specific way. In fact, a CNN’s neurons are arranged like

the brain’s frontal lobe, the area responsible for processing visual stimuli. This

arrangement ensures that the entire visual field is covered, thus avoiding the

piecemeal image processing problem of traditional neural networks, which must

be fed images in reduced-resolution pieces. Compared to the older networks, a

CNN delivers better performance with image inputs, and also with speech or

audio signal inputs.

Figure 2.1: Basic CNN Architecture [6]

As shown in the image 2.1, a deep learning CNN consists of three layers:

• Convolutional layer, the majority of computations happen in the con-

volutional layer, which is the core building block of a CNN. A second con-

volutional layer can follow the initial convolutional layer. The process of

convolution involves a kernel or filter inside this layer moving across the

receptive fields of the image, checking if a feature is present in the image.

Over multiple iterations, the kernel sweeps over the entire image. After

each iteration a dot product is calculated between the input pixels and the

filter. The final output from the series of dots is known as a feature map or

convolved feature. Ultimately, the image is converted into numerical val-

ues in this layer, which allows the CNN to interpret the image and extract

14

CHAPTER 2. MATERIALS AND METHODS

relevant patterns from it

• Pooling layer, In most cases, a Convolutional Layer is followed by a Pool-

ing Layer. The primary aim of this layer is to decrease the size of the

convolved feature map to reduce the computational costs. This is per-

formed by decreasing the connections between layers and independently

operates on each feature map. Depending upon method used, there are

several types of Pooling operations. It basically summarises the features

generated by a convolution layer.

In Max Pooling, the largest element is taken from feature map. Average

Pooling calculates the average of the elements in a predefined sized Im-

age section. The total sum of the elements in the predefined section is

computed in Sum Pooling. The Pooling Layer usually serves as a bridge

between the Convolutional Layer and the FC Layer.

• Fully connected layer, the FC layer is where image classification happens

in the CNN based on the features extracted in the previous layers. The

Fully Connected (FC) layer consists of the weights and biases along with

the neurons and is used to connect the neurons between two different layers.

These layers are usually placed before the output layer and form the last

few layers of a CNN Architecture.

In this, the input image from the previous layers are flattened and fed to

the FC layer. The flattened vector then undergoes few more FC layers

where the mathematical functions operations usually take place. In this

stage, the classification process begins to take place. The reason two layers

are connected is that two fully connected layers will perform better than a

single connected layer. These layers in CNN reduce the human supervision.

15

CHAPTER 2. MATERIALS AND METHODS

2.2 Multi Object Detection

Figure 2.2: Object Detection [7]

One of main challenges on computer vision is the Object Detection. As explained

by Zou et al. [8], the Object Detection is an important computer vision task

that concerns the identification of class instance objects in an image (or video),

and locating the actual position of said object in the picture. Commonly the spa-

cial orientation of the detected object is framed by a rectangular bounding box

that determines its height and width. Thus, object detection is far more pow-

erful than mere image classification, not only because it "draws" a box where

the object is located, but also because it can identify multiple object instances

in a single image, while classification models have the limit of labeling only the

one predominant object in the scene. As one of the fundamental problems of

computer vision, object detection forms the basis of many other computer vision

tasks, such as instance segmentation, image captioning, object tracking, etc.

From the application point of view, object detection can be grouped into two

research topics “general object detection” and “detection applications”, where the

former one aims to explore the methods of detecting different types of objects

under a unified framework to simulate the human vision and cognition, and the

later one refers to the detection under specific application scenarios, such as

16

CHAPTER 2. MATERIALS AND METHODS

pedestrian detection,face detection, text detection, etc.

In recent years, as shown in figure 2.3, the rapid development of deep learning

techniques has brought new blood into object detection, leading to remarkable

breakthroughs and pushing it forward to a research hot-spot with unprecedented

attention. Object detection has now been widely used in many real-world appli-

cations, such as autonomous driving, robot vision, video surveillance.

Figure 2.3: A road map of object detection [8]

Currently, the models for object detection can be divided in two categories:

Two-Stages and One-Stage.

In the first category (Two-Stages), we talk about models that split the object

detection task in several steps, as:

• R-CNN (Region Based Convolutional Neural Networks) [9] first generates

region proposals using an algorithm such as Edge Boxes. The proposal

regions are cropped out of the image and resized. Then, the CNN classifies

the cropped and resized regions. Finally, the region proposal bounding

boxes are refined by a support vector machine (SVM) that is trained using

CNN features.

• The Faster R-CNN [10] adds a region proposal network (RPN) to gen-

erate region proposals directly in the network instead of using an external

algorithm like Edge Boxes. The RPN uses Anchor Boxes for Object Detec-

tion. Generating region proposals in the network is faster and better tuned

17

CHAPTER 2. MATERIALS AND METHODS

to your data.

To the second category (One-Stage) belong all models that compute the object

detection in one step, as:

• YOLO (You Only Look Once), is the simplest object detection architec-

ture. It predicts bounding boxes through a grid based approach after the

object goes through the CNN. It divides each image into an (N ×N) grid,

with each grid predicting M boxes that contain any object. From those

(N × N ×M) boxes, it classifies each box for every class and picks the

highest class probability. To ensure the time of inference, for this work has

been selected YOLOv5 model [?], described in detail in sec. 3.1.

• SSD (Single Shot Detector), is similar to YOLO, but uses the feature

maps of each convolutional layer (output of each filter/layer) to predict the

bounding boxes. After consolidating all the feature maps, it runs a 3x3

convolutional kernel on them to predict bounding boxes and classification

probability. SSD is a family of algorithms, with the popular choice being

RetinaNet.

2.3 Multi Object Tracking

Multi Object Tracking (MOT) is a crucial component of situational awareness

in military defense applications. With the growing use of Unmanned Aerial

Systems (UASs), MOT methods for aerial surveillance is in high demand [11].

18

CHAPTER 2. MATERIALS AND METHODS

Figure 2.4: Samples of tracking

Object Tracking in deep learning is the task of predicting the positions of

objects throughout a video using their spatial as well as temporal features. More

technically, tracking is getting the initial set of detections, assigning unique ids,

and tracking them throughout frames of the video feed while maintaining the

assigned ids.

When the Object Detection gives information about the presence of objects in a

frame, Object Tracking goes beyond simple observation to more useful action of

monitoring objects. Unmanned Aerial Vehicle (UAV), such as a missile might be,

would need to know the location and all objects detected by the camera in order

to target acquisition or to carry out reconnaissance, which is why the challenge

of multi object tracking has become one of the most important in recent years

with the advent of deep learning. By utilizing the information from a sequence

of frames which measured with timestamp, autonomous object can come up with

an estimate of the positions of object in future timestamp.

Target tracking has been studied for decades with numerous applications [12].

As explained by Satya Mallick on your blog [13], the several reasons why tracker

is needed:

• Tracking when object detection fails, there are many cases where an

object detector might fail. But if we have an object tracker in place, it will

still be able to predict the objects in the frame. For example, Consider

19

CHAPTER 2. MATERIALS AND METHODS

a video where a motorbike running through the woods and we apply a

detector to detect the motorbike. Here’s what will happen in this case,

Whenever a bike gets occluded or overlapped by a tree the detector will

fail. But, if we have a tracker with it, we will still be able to predict and

track the motorbike.

• ID assignment: while using a detector, it only showcases the location of

the objects, if we just look at the array of outputs we will not know which

coordinates belong to which box. On the other hand, A tracker assigns an

ID to each object it tracks and maintains that ID till the lifetime of that

object in that frame.

• Real-time predictions: trackers are very fast and generally faster than

detectors. Because of this property, trackers can be used in real-time sce-

narios and has many applications in the real world.

There are many types of trackers can be classified based on number of objects to

be tracked:

• Single Object Tracker, these types of trackers track only a single object

even if there are many other objects present in the frame. They work by first

initializing the location of the object in the first frame, and then tracking

it throughout the sequence of frames. These types of tracking methods

are very fast. Some of them are CSRT, KCF, and many more which are

built using Traditional computer vision [14]. However, deep learning based

trackers are now proved to be far more accurate than traditional trackers.

For example, GOTURN [15] is a example of deep learning based single

object trackers.

• Multi Object Tracker, these types of trackers can track multiple objects

present in a frame. Multiple object trackers are trained on a large amount

of data, unlike traditional trackers. Therefore, they are proved to be more

accurate as they can track multiple objects and even of different classes at

the same time while maintaining high speed.

20

CHAPTER 2. MATERIALS AND METHODS

In this related work, as explained in detail on chapter 4, will be use the

strongSORT tracker.

Both type of tracker can be belong to two categories:

• Tracking by Detection, the type of tracking algorithm where the object

detector detects the objects in the frames and then perform data association

across frames to generate trajectories hence tracking the object. These

types of algorithms help in tracking multiple objects and tracking new

objects introduced in the frame. Most importantly, they help track objects

even if the object detection fails.

• Tracking without Detection, the type of tracking algorithm where the

coordinates of the object are manually initialized and then the object is

tracked in further frames.

In this study will be used a Tracker Multi Object with Detection 2.5,

where the detector is YOLOv5 model while the tracker is strongSORT algorithm.

Figure 2.5: MOT Functional Architecture by Xie et al. [11]

In this study will be used a tracker multi object with detection, figure 2.5,

where the Object Detector is YOLOv5 while the Object Tracker is strong-

SORT with OSNET.

21

CHAPTER 2. MATERIALS AND METHODS

2.4 Materials

Throughout the development phase was used a NVIDIA GPU P4000 [16]

that combines a 1792 CUDA core Pascal GPU, large 8 GB GDDR5 memory and

advanced display technologies to deliver the performance and features that are

required by demanding professional applications, while Ubuntu 20.04 LTS [17]

was used as Operating System.

To ensure a safe and clean development environment was used Docker [18] plat-

form that creates a isolated container for application.

There are many frameworks for deep learning, the most widely used are PyTorch

and TensorFlow, but we chose PyTorch, based on the Python programming

language and the Torch library. [19], because Python’s performance is faster for

PyTorch, and also for convolutional networks PyTorch’s training time is signifi-

cantly higher than that of TensorFlow on GPUs [20].

2.4.1 Docker

Docker is an open source platform that enables developers to build, deploy,

run, update and manage containers—standardized, executable components that

combine application source code with the operating system (OS) libraries and

dependencies required to run that code in any environment.

Containers simplify development and delivery of distributed applications. They

have become increasingly popular as organizations shift to cloud-native develop-

ment and hybrid multicloud environments. It’s possible for developers to create

containers without Docker, by working directly with capabilities built into Linux

and other operating systems. But Docker makes containerization faster, easier

and safer.

Containers are made possible by process isolation and virtualization capabil-

ities built into the Linux kernel. These capabilities—such as Control Groups

(Cgroups) for allocating resources among processes, and Namespaces for re-

stricting a processes access or visibility into other resources or areas of the sys-

tem—enable multiple application components to share the resources of a single

22

CHAPTER 2. MATERIALS AND METHODS

instance of the host operating system in much the same way that a hypervisor

enables multiple virtual machines (VMs) to share the CPU, memory and other

resources of a single hardware server. As a result, container technology offers

all the functionality and benefits of VMs including application isolation, cost

effective scalability, and disposability plus important additional advantages.

Figure 2.6: Docker Architecture [18]

In the figure 2.6 you can see the difference in architecture between VM and

Docker.

Now will explain how was created the Docker Application. Every Docker con-

tainer starts with a simple text file containing instructions for how to build the

Docker container image. DockerFile automates the process of Docker Image

creation. It’s essentially a list of command-line interface (CLI) instructions that

Docker Engine will run in order to assemble the image.

Docker Images contain executable application source code as well as all the

tools, libraries, and dependencies that the application code needs to run as a

container. When you run the Docker image, it becomes one instance (or multiple

instances) of the container. It’s possible to build a Docker image from scratch,

but most developers pull them down from common repositories, for this work in

the Docker Hub Store there is a YOLOv5 Docker Image [21] to pull down.

23

CHAPTER 2. MATERIALS AND METHODS

1 # YOLOv5 by Ultralytics, GPL-3.0 license

2 # Start FROM NVIDIA PyTorch image

3 FROM nvcr.io/nvidia/pytorch:22.04-py3

4 RUN rm -rf /opt/pytorch

5

6 # Install linux packages

7 RUN apt update && apt install --no-install-recommends -y zip htop

screen libgl1-mesa-glx

8

9 # Install pip packages

10 COPY requirements.txt .

11 RUN python -m pip install --upgrade pip

12 RUN pip uninstall -y torch torchvision torchtext Pillow

13 RUN pip install --no-cache -r requirements.txt albumentations wandb

gsutil notebook Pillow>=9.1.0

14

15 # Create working directory

16 RUN mkdir -p /usr/src/app

17 WORKDIR /usr/src/app

18

19 # Copy contents

20 COPY . /usr/src/app

21 RUN git clone https://github.com/ultralytics/yolov5 /usr/src/yolov5

22

23 # Set environment variables

24 ENV OMP_NUM_THREADS=8

24

CHAPTER 2. MATERIALS AND METHODS

In the Dockerfile used to build the YOLOv5 Image there are 5 key words:

• FROM, a Dockerfile must begin with a FROM instruction, it specifies the

Parent Image from which you are building. In this case was used NVIDIA

PyTorch Image

• RUN, this instruction will execute any commands in a new layer on top

of the current image and commit the results. It was used to install linux

packages and to clone GitHub Repository [22].

• COPY, to copy files or folder from local to container, in this case to copy

the requirements to install

• WORDIR, used to create a working directory

• ENV, to set environment variables

Docker containers are the live, running instances of Docker images. While Docker

images are read-only files, containers are life, ephemeral, executable content.

Users can interact with them, and administrators can adjust their settings and

conditions using Docker commands. Each time a container is created from a

Docker image, yet another new layer called the container layer is created.

2.4.2 GitHub

GitHub is a for profit company that offers a cloud based Git repository hosting

service. Essentially, it makes it a lot easier for individuals and teams to use Git

for version control and collaboration.

GitHub’s interface is user friendly enough so even novice coders can take advan-

tage of Git. Without GitHub, using Git generally requires a bit more technical

savvy and use of the command line.

GitHub is so user friendly, though, that some people even use GitHub to man-

age other types of projects, like writing books. Additionally, anyone can sign

up and host a public code repository for free, which makes GitHub especially

popular with open-source projects. The main purpose of GitHub is to facilitate

25

CHAPTER 2. MATERIALS AND METHODS

the version control and issue tracking aspects of software development. Labels,

milestones, responsibility assignment, and a search engine are available for issue

tracking. For version control, Git allows pull requests to propose changes to the

source code.

Inside the Docker container, the YOLOv5 repository was extracted from GitHub

[22], then other GitHub repositories were used within the same container, cre-

ating a single repository. Have been integrated the strongSORT repository to

MOT [23], the MOT Evaluation repository to calculate the metrics [24] and the

Quatization repository [25].

2.4.3 PyTorch

PyTorch is an open source deep learning framework that’s known for its flexibil-

ity and ease of use. This is enabled in part by its compatibility with the popular

Python high level programming language favored by machine learning developers

and data scientists.

PyTorch is a fully featured framework for building deep learning models, which

is a type of machine learning that’s commonly used in applications like image

recognition and language processing. Written in Python, it’s relatively easy for

most machine learning developers to learn and use. PyTorch is distinctive for

its excellent support for GPUs and its use of reverse mode auto differentiation,

which enables computation graphs to be modified on the fly. This makes it a

popular choice for fast experimentation and prototyping.

The framework combines the efficient and flexible GPU-accelerated backend li-

braries from Torch with an intuitive Python frontend that focuses on rapid proto-

typing, readable code, and support for the widest possible variety of deep learning

models. PyTorch and TensorFlow are similar in that the core components of both

are tensors and graphs.

Tensors are a core PyTorch data type, similar to a multidimensional array, used

to store and manipulate the inputs and outputs of a model, as well as the model’s

parameters. Tensors are similar to NumPy’s arrays, except that tensors can run

on GPUs to accelerate computing.

26

CHAPTER 2. MATERIALS AND METHODS

Graphs are data structures consisting of connected nodes (called vertices) and

edges. Every modern framework for deep learning is based on the concept of

graphs, where Neural Networks are represented as a graph structure of computa-

tions. PyTorch is based on dynamic computation graphs, where the computation

graph is built and rebuilt at runtime, with the same code that performs the com-

putations for the forward pass also creating the data structure needed for back

propagation.

Figure 2.7: Deep Learning Software NVIDIA [19]

GPU accelerated deep learning frameworks offer flexibility to design and train

custom deep neural networks and provide interfaces to commonly used program-

ming languages such as Python. Widely used deep learning frameworks such

as PyTorch on NVIDIA GPU accelerated libraries to deliver high performance,

multi GPU accelerated training (figure 2.7).

27

Chapter 3

Object Detection using YOLOv5

The object detection algorithm chosen for the scope of this study is YOLO (You

Only Look Once), version 5 (v5) in detail.

YOLO is popular because it achieves high accuracy while also being able to run

in real-time. The algorithm “only looks once” at the image in the sense that it

requires only one forward propagation pass through the neural network to make

predictions.

As shown in the figure 3.1 made by Wenying Chen et. al, after the analysis of the

experimental results above, RetinaNet is more suitable if higher recognition ac-

curacy is required, evaluated in mAP (Mean Average Precision) [sec. 4.2], while

YOLOv3 may be more suitable for use when the priority is real-time performance

and a slightly lower accuracy can be accepted.

YOLOv5 is different from all other prior releases, as this is a PyTorch imple-

mentation rather than a fork from original Darknet. Same as YOLOv4, the

YOLOv5 has a CSP backbone and PA-NET neck. The major improvements

includes mosaic data augmentation and auto learning bounding box anchors.

28

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Figure 3.1: Comparison between the object detection models

3.1 YOLOv5

You Only Look Once is one of the most popular model architectures and ob-

ject detection algorithms Redmon et al. in 2015 [26], presented YOLO, a new

approach to object detection. Until then, classifiers were used for object detec-

tion, whereas here the creators frame object detection as a regression problem on

spatially separated bounding boxes and associated class probabilities. A single

neural network predicts bounding boxes and class probabilities directly from full

images in a single evaluation. YOLOv5 was implemented by Ultralytics [22] in

June 2020 and are available 5 pretrained models on COCO dataset with different

number of layers and parameters so different results (figure 3.2). Version 5 of the

YOLO was chosen because version 6 is 15% [27] slower than version 5, while the

later versions 7 and 8 were developed after my work started. The graphic show

the huge difference about speed inference on validation between YOLO models

and EfficientDet model.

29

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Figure 3.2: Types of YOLOv5 models [22]

All algorithms apply a single neural network to the full image, and then divide

the image into regions and predicts bounding boxes and probabilities for each

region. These bounding boxes are weighted by the predicted probabilities.

It recognizes each bounding box using a tuple composed by four numbers:

• (xc, yc) = Center of the bounding box

• w = Width of the box

• h = Height of the box

In addition to that, it predicts the corresponding number c for the predicted

class as well as the probability of the prediction.

30

CHAPTER 3. OBJECT DETECTION USING YOLOV5

3.1.1 Architecture

In figure 3.3 the architecture of YOLOv5 model is presented. The image is fed

to CSPDarknet53 (Backbone) for feature extraction and again fed to PANet

(Neck) for feature fusion. Finally, the YOLO layer generates the results.

Figure 3.3: Architecture YOLOv5 (Kim et al., 2021 [28])

YOLOv5 is a single-stage object detector (i.e., object localization and clas-

sification are applied in the same step) and it has three important parts like any

other single-stage object detector (figure 3.3):

1. As Backbone is used the CSP-Darknet53, it’s just the Convolutional

Network Darknet53 used as the backbone for YOLOv3 [29] to which the

authors applied the Cross Stage Partial (CSP) network strategy. The

CSP is based on the same principle of instead of using the full-size input

feature map at the base layer, the input will be separated into 2 portions.

A portion will be forwarded through the dense block as usual and another

one will be sent straight on to the next stage without processed [30].

The primary benefit of CSP is that it enables the network to effectively use

the spatial context of an image, by blending features from various parts

of the image and various stages of the CNN. This increases the network’s

robustness to object deformation and scale changes, resulting in more pre-

cise object detection. Darknet53 is composed by 53 convolutional layers for

performing feature extraction. As shown in the Figure 3.3, the difference

between YOLOv3 is the Focus Layers, it is the merge by three layers in

31

CHAPTER 3. OBJECT DETECTION USING YOLOV5

the previous version and that are designed to detect specific features in the

input image. The focus layer is responsible for identifying potential areas

in the image where an object may be located, these areas are called region

proposals. These region proposals are then further analyzed by the rest of

the network to make the final predictions of object detection. In the Back-

bone there is also a CSB Block, it employs a method known as "cross-scale

boundary detection", which detects the edges of objects at various scales

and locations, utilizing features from different scales. This enhances the

network’s robustness to changes in object scales and increases the precision

of object detection. The last block in Backbone is SSP (Spatial pyramid

pooling), it divides the feature maps into a pyramid of regions, each region

at a different scale. Then it performs Max-Pooling operation on each region

to extract the most important features and concatenates them.

2. Nek, The features maps generated by using a top-down architecture with

lateral connections allow the PANet (Path Aggregation Network) to ag-

gregate features from different scales and different positions of the image,

by using a bottom-up architecture with lateral connections. This allows

the network to make use of information from different scales of the image.

PANet has been developed to enhance the precision of object detection by

incorporating a feature pyramid and a path-aggregation mechanism, which

enables the network to utilize information from various scales of the image.

This makes the network more resistant to variations in object scale and

improves the accuracy of object detection.

3. Head, the final portion of the YOLOv5 network architecture, known as

the head, is responsible for producing the final object detection predictions.

It is made up of various components such:

• Detection layers are responsible for making the final object detec-

tion predictions; it is composed from three convolution layers that

predicts the location of the bounding boxes, the scores and the ob-

jects classes.

32

CHAPTER 3. OBJECT DETECTION USING YOLOV5

• NMS (Non-Maximum Suppression) is a technique used to suppress

multiple bounding boxes that may have been generated for the same

object in an image. It helps to increase the accuracy of the object

detection predictions.

• Anchors Box are pre-established bounding boxes of varying aspect

ratios and scales that are utilized to detect objects of different shapes

and sizes within the input image. These anchors have an initial size,

some of which will be adjusted to fit the size of the object, based on

the outputs from the neural network. The network’s role is not to

predict the final size of the object, but rather to adapt the size of the

closest anchor to match the object’s size.

• Loss is a function that is used to measure the difference between the

predicted object and the ground truth object. This is used to adjust

the weights of the network during training.

33

CHAPTER 3. OBJECT DETECTION USING YOLOV5

3.1.2 Non Maximum Suppresion Algorithm (NMS)

Before explaining in detail the procedure for calculating NMS, let us define a two

fundamental metrics that will be used as as a thresholds.

The IoU (Intersection Over Union) The IoU measures the accuracy of detections.

Given a ground-truth bounding box and a detected bounding box, we compute

the IoU as the ratio of the overlap and union areas (Figure 3.4).

Figure 3.4: Intersection Over Union

The other threshold to be set is confidence. The confidence threshold is the

minimum probability that an anchor box contains an object to be detected.

Define a value for Confidence Threshold and IoU Threshold, NMS algorithm

Loop over all boxes, starting first with the box that has highest confidence and

remove the boxes that have a Confidence < Confidence_Threshold. In the

second step calculate the IOU of the current box, with every remaining box that

belongs to the same class, if the IoU < IoU_Threshold remove the boxes.

34

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Algorithm 1 NMS Algorithm
Input: (n, xc, yc, w, h, Class, Conf)

1: Box_List_Thresholded ← []
2: Box_ListNew ← []
3: Box_Sorted ← Sort_for_Conf(Input)
4: for all box ∈ Boxes_Sorted do
5: if box[Conf] > Th_Confidence then
6: Box_List_Thresholded ← box
7: end if
8: end for
9: while len(Box_List_Thresholded) > 0 do

10: Current_Box ← Box_List_Thresholded[0]
11: Box_List_New ← Current_Box
12: for all box ∈ Box_List_Thresholded do
13: if (Current_Box[Class] = box[Class]) and (IoU > Th_IoU)

then
14: remove(Box)
15: end if
16: end for
17: end while

3.1.3 Loss Function

In agreement with Zu et al. [31], the input tensor is split into (S x S) grid cells,

in our case (19,19). Each grid cell is responsible for identifying a target if the

center point of the target falls within its boundaries. Each grid cell has B anchors

box. Specifically, for each anchor, (5 + C) values are predicted, with the first 5

values used to adjust the anchor’s center point position and size. If the center

of the target is within the grid cell, it is then determined to be a target, and the

position of the target’s bounding box is calculated using the following formula.

Cj
i = P j

i · IoU (3.1)

Cj
i is the confidence score of the j bounding box of the i grid. P j

i = 1 if in

box j there is a target; otherwiseP j
i = 0. the loss function used by this network

is the sum of three loss:

1. lbox, bounding box regression loss function [3.2]

2. lcls, classification loss function [3.3]

35

CHAPTER 3. OBJECT DETECTION USING YOLOV5

3. lobj , confidence loss function [3.4]

Let’s see each loss function in detail.

lbox = λcoord

S2∑︂
i=0

B∑︂
j=0

Iobji,j (2−wi×hi)[(xi−xîj)2+(yi−yîj)2+(wi−wî
j)2+(hi−hî

j
)2]

(3.2)

where λcoord is the position loss coefficient and x̂, ŷ, ŵ, ĥ are the ground truth

boxes. S is the grid total of the splitted image and for each grid there are B

anchor boxes.

lcls = λclass

S2∑︂
i=0

B∑︂
j=0

Iobji,j

∑︂
C∈cls

pi log(pl̂(c)) (3.3)

where λclass is the category loss coefficient and pl̂(c) is is the true value of the

category.

lobj = λnoobj

S2∑︂
i=0

B∑︂
j=0

Inoobji,j (ci − cl̂)
2 + λobj

S2∑︂
i=0

B∑︂
j=0

Iobji,j (ci − cl̂)
2 (3.4)

If the anchor box at (i, j) contains targets then the value Iobji,j = 1, else the

value is 0.

So the final function loss is:

loss = lbox + lcls + lobj (3.5)

3.1.4 Anchors Box

Anchor boxes are a collection of bounding boxes with predefined dimensions.

They are used to identify and track the size and shape of objects to be surveyed.

Prior to training the network, it is necessary to decide which anchor boxes to use

according to the data. This process is done by applying a K-Means clustering

algorithm [32] using Intersection over Union (IoU) as the distance metric. In this

work, a K of 9 was selected due to the 10 classes of VisDrone, with the first two

(Pedestrian and People) having very similar characteristics.

K-Means is a clustering algorithm for unsupervised learning that organizes

data into a specified number of groups, also known as clusters, based on their

36

CHAPTER 3. OBJECT DETECTION USING YOLOV5

similarity. The algorithm splits the data into K clusters, where K is the desired

number of clusters, and continuously adjusts the cluster centroids and the data

points assigned to them until the sum of distances between the data points and

their corresponding cluster centroids reaches minimum.

3.2 Evaluation Metrics

In this section, we will define the algorithm evaluation metrics for for multi ob-

ject detection. The importance of the Confidence Threshold (Th_Conf) and

the IoU Threshold (Th_IoU), which will influence the metrics, was explained

earlier. Both score will determine whether a detection is a true positive or a

false positive. The flowchart in Figure 3.6 shown as the choice of true positive

detection depends on the both score.

The input is the tupla of bounding box predicted (x, y, w, h, Conf,Class), the

first step is to check whether the predicted confidence (Conf) is above the cho-

sen confidence threshold (Th_Conf). If it does not exceed the threshold, it is

necessary to check whether the box actually exists as ground truth, if not, the

predicted box represents a False Negative (FN) otherwise it will be a True Nega-

tive (TN). If, on the other hand, the threshold is exceeded then there is a target

in the image and we proceed to the second step. If the predicted class (Class)

matches the class of a ground truth and the predicted bounding box has an IoU

greater than a threshold (in this case 0.5) then a detection is considered True

Positive (TP) else it will be False Positive (FP).

37

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Figure 3.5: Flowchart to evaluate the boxes predicted

Algorithm 2 Algorithm to evaluate true positive detections [33]

1: for all detection that has a confidence score > Th_Conf do
2: choose one that belongs to the same class and has the highest IoU
3: if no ground-truth can be chosen or IoU < Th_IoU then
4: the detection is a False Postive
5: else
6: the detection is a True Positve

That said, we can go on to define the Precision (P) as the number of true

positives divided by the sum of true positives and false positives:

Precision =
TP

TP + FP
(3.6)

The Recall (R) as the number of true positives divided by the sum of true

38

CHAPTER 3. OBJECT DETECTION USING YOLOV5

positives and false negatives:

Precision =
TP

TP + FN
(3.7)

By setting the threshold for confidence score and IoU at different levels, we get

different pairs of precision and recall.These two classical metrics are not sufficient

to evaluate the models in the mod, so a new metric is introduced.

These two classical metrics are not sufficient to evaluate the models in the mod,

so a new metrics is introduced. The precision-recall curve is a useful tool for eval-

uating detector performance, but it can be difficult to compare different detectors

when their curves intersect. A numerical metric, such as Average Precision

(AP), can be used instead. AP calculates the average precision across all unique

recall levels and is based on the precision-recall curve. AP can then be defined

as the area under the interpolated precision-recall curve, for the interpolation 11

levels of recall are considered. This metric is calculated as following formula [33]:

AP =
n−1∑︂
i=1

(ri+1 − ri)pinterpr(i+1) (3.8)

where the pinterp is the interpolated precision at a certain recall level r′ ≥ r:

pinterp(r) = max pr′ (3.9)

Figure 3.6: Average Precision

39

CHAPTER 3. OBJECT DETECTION USING YOLOV5

The calculation of AP only involves one class, in this task of MOD it will

be necessary to find the average across all classes so the Mean Average Precision

(mAP) will be used.

mAP =
1

K

K∑︂
i=1

APi (3.10)

For the VisDrone Challenge will be used 2 variants of mAP:

• mAP Iou=0.5, obtained by setting an IoU threshold of 0.5

• mAP Iou=0.5:0.05:095, which is mAP averaged over 10 IoU thresholds from

0.5 to 0.95 with 0.05 step. This will be the most important evaluation

metric of the challenge

3.3 VisDrone Dataset

Object detection is a fundamental aspect of many advanced computer vision ap-

plications such as self-driving vehicles, facial recognition, and activity recognition.

Despite recent advancements, these algorithms often focus on general scenarios

rather than those captured by drones. This is due to the lack of publicly available

large-scale benchmarks or datasets for drone-captured scenes, which has limited

the research in this area. This challenge is still active today and the Dataset

VisDrone 2019 [34] was used for this work. VisDrone is a dataset that captures

real-life scenarios from drones and its particular difficulties are a high class imbal-

ance and targets that can be even less than 1% of the image. It is composed by

8.599 images divided into 6.471 for training, 548 for validation and 1.580 for

testing.There are 10 object categories of interest including pedestrian, people,

car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle.

40

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Figure 3.7: Instances of VisDrone

From the histogram in Figure 3.7, it is possible to see one of the main problems

of this challenge, the categories of objects to be detected are very unbalanced;

for example, there are about 150,000 instances of cars and only 2,000 of tricycles.

The other difficulty is related to the size of the targets to be detected, as

shown in the Figure 3.8, at the top the histogram (x, y) has an approximately

normal distribution, so the detection model can detect the discriminant parts

more flexibly. From the (x, width) and (y, height) patches can be seen that

the local parts are evenly distributed on both axes. Interesting to see in in the

(width, height) patch that almost all parts only cover a rather small area of the

whole image.

41

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Figure 3.8: Labels Correlogram VisDrone

In the results of the VisDrone Challenge 2019 [35], the best 33 algorithms are

presented in order of AP. In the table 42 some models are shown, the AP metrics

is mAP Iou=0.5:0.05:095 while the mAP Iou=0.5 is AP50.

Position Model AP [%] AP50 [%] GPU Speed [fps]

1 DPNet 29,62 54 Titan XP 6

2 RRNet 29,13 55,82 RTX2080ti 1,5

3 ACM-OD 29,13 54,07 Tesla V100 0,5

32 DBCL 16,78 31,08 Titan XP 2,5

Table 3.1: Challenge Results VisDrone 2019

42

CHAPTER 3. OBJECT DETECTION USING YOLOV5

3.3.1 DPNet

The architecture of DPNet [36] is dual-path and allows the parallel extraction

of high-level semantic features and low-level object details. Although DPNet has

an almost duplicated form compared to single-path detectors, the computational

costs do not increase significantly. To improve representation capability, they

introduced a light autocorrelation module (LSCM) for dependencies between

neighbouring scale features.

The main difference with the YOLOv5 architecture is in the backbone. Both

networks divide the input into two paths for feature extraction at different levels.

An important difference that makes YOLOv5 faster is the initial Focus Layer,

which allows a path to only analyse the regions proposed by the latter. Further-

more, it uses the CSP strategy in the backbone, concatenating features at various

points in the network at different levels and using the SSP pyramid block finally

allows max pooling for each proposed region at different scales.

3.4 Implementation

For this development phase was used a GPU NVIDIA Quadro P4000 [16]

which combines a 1792 CUDA core Pascal GPU, large 8 GB GDDR5 memory and

advanced display technologies to deliver the performance and features that are

required by demanding professional applications. Using the tools and technology

described in 2, a docker container was prepared which the GitHub that containing

the original code of YOLOv5 network was pulled. As described in section 3.1

are available 5 models of YOLOv5 trained on the COCO Dataset. The results

of models validated on this dataset are as follow:

Therefore pre-trained models were used using the transfer learning technique

for this task. Transfer learning is an effective technique that lets us utilize ex-

isting models to quickly adapt to new tasks with limited resources. This can be

facilitated by manipulating certain layers of the target model and leaving others

intact. To make this process as efficient as possible, some layers are fine-tuned

to fit the new dataset and task, while others remain unchanged.

43

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Model Size [Pixel] mAP:50-95 [%] mAP:50 [%]

YOLOv5n 640 28 45,7

YOLOv5s 640 37,4 56,8

YOLOv5m 640 45,4 64,1

YOLOv5l 640 49 67,3

YOLOv5x 640 50,7 68,8

Table 3.2: Validation Results on COCO

Figure 3.9: Transfer Learning

3.5 Training

After studying the the limits of VisDrone Dataset (sec. 3.3), proceeded with train

phase of five models. The first training was carried out in order to choose the

confidence threshold most suitable of this challenge. The results shown in Figure

3.10a indicate how increasing confidence improves accuracy but worsens recall

3.10b. The importance of mAP, a metric taken into account by the creators of

the challenge, was explained in section 3.2, so the aim is to increase the air under

the blue curve in the Precision-Recall graph 3.10c. The blue lines represents the

44

CHAPTER 3. OBJECT DETECTION USING YOLOV5

mean of all classes.

(a) Precision Curve (b) Recall Curve (c) Precision-Recall Curve

Figure 3.10: Precision and Recall as the confidence changes

By increasing the confidence threshold, we could increase the mAP metric

by significantly reducing the recall, but this would lead to insensitivity. After

training on the simplest model (YOLOv5n) was validated at different confidence

thresholds, it can be seen from the figure 3.11 that the choice of 0.25 has a good

relationship between precision and recall generating an increase in mAP.

Figure 3.11: Validation YOLOv5n

Having chosen a confidence threshold = 0.25 and an IoU threshold =

0.5 all models were trained keeping the configuration unchanged:

45

CHAPTER 3. OBJECT DETECTION USING YOLOV5

• Image size = (640 x 640)

• Batch size = 16

• Epochs = 100

• Optimizer = SGD (Stochastic Gradient Descent)

• Learning Rate = 0,01

• Weight Decay = 0,0005

Gli iperparametri sono stati scelti dopo un’ottimizzazione attraverso un al-

goritmo genetico (GA). The Genetic Algorithm [37] is an optimisation algorithm

based on principles inspired by evolutionary biology, such as natural selection

and genetic mutation. This algorithm is used to solve optimisation problems

that require finding an optimal solution in a space of potential solutions. The

evolution is performed on a base scenario that is attempted to be improved.

In this case, the base scenario is the tuning of VisDrone for 10 epochs, using

pre-trained YOLOv5s.

Below are the results of the validation of the models on 548 images, note how

the choice of the confidence of 0.25 shows a good trade off between precision and

recall in the YOLOv5x model, which will also prove to be the best for the test

challenge. These may not seem like good results, but it should be remembered

that the model trained on COCO had 50,7% of mAP:50-95 3.2 in validation.

YOLOv5

[size]

Precision

[%]

Recall

[%]

mAP:50

[%]

mAP:50-95

[%]

N 51,6 22,3 37,2 20,8

S 52,9 27,8 40,3 25,1

M 53,3 35,9 44,7 27,9

L 54,1 40,1 47,1 30,3

X 55,2 42,4 49,2 32,3

Table 3.3: Validation Results on VisDrone

46

CHAPTER 3. OBJECT DETECTION USING YOLOV5

3.6 Testing

Having performed the training and validation phase of the models, this section

will report the results obtained in testing on the VisDrone Dataset. The aim is

to achieve the accuracy of the models evaluated in the challenge [35] studying the

trade-off between accuracy and speed of inference. Below are the results obtained

on the 1.580 test images from each model:

YOLOv5

[size]

Th_Conf

[%]

Precision

[%]

Recall

[%]

mAP:50

[%]

mAP:50-95

[%]

Speed

[fsp]

N 25 44,6 20,4 32,3 18 104

S 25 47 28,1 37,3 21,7 95

M 25 46,9 33,6 39,7 23,9 57

L 25 48,3 36,3 41,5 25,7 32

X 25 49,4 37,7 43,3 27,4 18

X 45 66,3 28,6 45,8 29,9 18

Table 3.4: Test Results on VisDrone

Checking the results of the challenge shown in Table 3.4, the first place win-

ner shows a mAP:50-95 = 29.6%. The tests show that with the thresholds set

in the validation phase (Th_conf = 0.25 and Th_IoU = 0.5), the model is com-

parable with the first runners-up in the challenge. By increasing the confidence

threshold we can see that our mAP:50-95 = 29.9%, exceeds that of the DPNet

model (first runner-up) penalising the recall of the model. Particular attention

should be paid to the model’s inference speed, which is three times faster than

that of DPNet (6 fps), despite the fact that the GPU they use is much more

powerful than the NVIDIA Quadro P4000 used. A further test to increase ac-

curacy by reducing the speed was done by increasing the image resolution from

(640x640) to (1028x1028) achieving a 2% increase in mAP:50-95 but doubling

the inference time. The speed evaluated in fps is the sum of three times evaluated

47

CHAPTER 3. OBJECT DETECTION USING YOLOV5

in ms:

speed =
1000

t_PreProcess+ t_inference+ t_NMS
(3.11)

t_PreProcess is the time to resize the input image, the t_inference is the

actual detection time while t_NMS is the time taken by the NMS algorithm

3.1.2 to evaluate the boxes.

(a) Label (b) Prediction

Figure 3.12: Prediction on the test frame

As shown in Figure 3.12 the greatest difficulty is the detection of small objects

in the background that represent less 1% of whole image.

3.7 Optimization

The objective of this section is to seek a solution to reduce the model’s inference

time while maintaining constant accuracy. For this reason, the technique used is

the quantization of weights through the TensorRT framework. Quantization is

a technique used to reduce the memory and computational requirements of deep

learning models by representing the model’s parameters and activations with

fewer bits. TensorRT is a library developed by NVIDIA that optimizes models

for deployment on NVIDIA GPUs. The library includes support for quantiza-

tion, allowing developers to quantize their models and run them on devices with

reduced memory and computational requirements. This can help to speed up

the performance of deep learning models and make them more suitable for de-

ployment on embedded. In particular, a Post Training Quatisation was used,

which uses a calibration dataset to determine the quantisation parameters, such

48

CHAPTER 3. OBJECT DETECTION USING YOLOV5

as the scale factor and zero point, and does not require re-training, making it

easier to include in a pipeline. The goal of quantisation is to reduce the mem-

ory footprint and computational requirements of a model without sacrificing too

much accuracy. This technique is one of the most widely used to reduce the

memory and computational requirements of neural networks, making it possi-

ble to implement them on devices with limited resources, such as smartphones

and embedded systems. TensorRT applies post training quantization to compute

quantization elements for each layer and utilizes the KL divergence (Kullback-

Leibler divergence), is a measure of the difference between two probability dis-

tributions. The process of training involves using FP32 precision for parameters

and activations. Optimizing these results by converting them to FP16 or INT8

precision not only reduces latency, but also gives a significant decrease in the size

of the model.

Dynamic Range Min. Positive Value

FP32 [−3, 4 · 1038,+3, 4 · 1038] 1, 4 · 10−45

FP16 [−65.540,+65.504] 5, 96 · 10−8

INT8 [−128,+127] 1

As the activity diagram 3.13 shows, the models were first exported as graphs

in ONNX (Open Neural Network Exchange), allowing to be trained and deployed

with any framework, using any hardware, and in any language, then converted

to FP32 (Floating Point 32 bit) engine with TensoRT and then performed a

quantization, first in FP16 (Floating Point 16 bit) and then in INT8 (Integer 8

bit), finally the testing phase to study the trade-off between speed and accuracy

achieved.

49

CHAPTER 3. OBJECT DETECTION USING YOLOV5

Figure 3.13: Diagram for quantization of models

As explained in the article [38], converting some of our weights to FP16 (a

lower precision) can cause overflow due to the lower dynamic range of FP16 com-

pared to FP32 (Table 3.5). However, experiments have demonstrated that this

does not have a major effect on accuracy. In general, weights and activation val-

ues are robust to noise. Training a model involves preserving the features needed

for prediction, which is something the model does naturally. This approach of

limiting exceeding weights won’t be successful when changing to INT8 precision.

Since INT8 values are very limited [-127 to +127], most of the weights will be

adjusted and overflow when using a lower precision, leading to a large decrease

in accuracy of the model (Table 3.5).

YOLOv5 TensorRT
Size

[Mb]

mAP:50

[%]

mAP:50-95

[%]

Speed

[fps]

N FP32 10 32,3 18,1 157

N FP16 10 31,7 17,6 181

N INT8 4 24,3 12,6 227

S FP32 34,6 37,3 21,7 98

S FP16 34,4 36,6 20,9 105

S INT8 9,4 29,4 15,9 169

Table 3.5: Quantization Results (MOD)

The models YOLOv5n and YOLOv5s in PyTorch had a speed of 104 fps and

50

CHAPTER 3. OBJECT DETECTION USING YOLOV5

95 fps, respectively (Table 3.4), after export and quantization with TensorRT;

from the table 3.5 it can be seen that the representation with FP32 also increases

the speed while leaving the accuracy (evaluated in mAP) unchanged. Quanti-

zation in INT8 is very fast but not suitable as a solution as it greatly decreases

accuracy, while quantisation of the weights in FP16 shows a good trade-off be-

tween speed and accuracy. Quantisation was only performed for the first two

simpler models, as the other three were composed of larger layers and matrices

are restricted by their bandwidth (memory limitations). This implies that their

execution devotes most of its time to reading and writing data, thus making it

impossible to reduce their overall runtime by decreasing computation time.

51

Chapter 4

Object Tracking adding

strongSORT

In section 2.3, we explain the importance of Multi Object Tracking (MOT) in the

military sector and beyond. This is also an open challenge that many researchers

are working on. Doing reconnaissance from UAV means being able to detect and

track objects at the same time. Therefore, the goal of this chapter is to look for

a solution that can perform tracking with detection using the YOLOv5 model

seen in Chapter 3.

4.1 Architecture

Therefore, the proposed architecture is as shown in figure 4.1

Figure 4.1: Multi Object Tracking Architecture

Let us look in detail at the blocks into which it is composed:

52

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

• Input, is a video sequence frames

• YOLOv5, the network is that explain in chapter 3, it deals with Multi

Object Detection, and its output consisting of the co-ordinates of the boxes

and the predicted classes enters the strongSORT algorithm

• reID (Re-Identification) is used to match the tracked objects over mul-

tiple frames, which helps to maintain the identity of an object even if it

has moved away or disappeared in some frames. It is a technique used to

identify objects in multiple frames of video footage. It works by comparing

the features of the objects, such as color, shape, and texture, and assigning

them a score to decide if they are the same object. This helps to keep track

of the identity of an object even when it moves out of sight or is occluded,

so that they can still be monitored. A convolutional network called OSNet

(Omni-Scale Network) was used for this task.

• Kalman Filter, it propagates the detections from the current frame to

the next which is estimating the position to appraise the condition of a

system based on the data currently accessible. It is used to minimize the

disturbance in the measurement data by using a weighted mean of the

preceding measurement and the existing measurement. The Kalman filter

is made up of two equations: the forecast equation, which is used to predict

the state of the system, and the update equation, which is used to adjust

the assessment of the system state based on the new measurement data.

• Hungarian Algorithm, it is an efficient method of solving assignment

problems, by means of finding the ideal pairing between two sets of ele-

ments. It works through associating the lowest possible cost to each ele-

ment, based on a cost matrix. This cost matrix is derived from the expense

of assigning each element to its counterpart.

• Output, it is represented by the previously detected bounding box coor-

dinates and assigned tracking id.

53

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

4.1.1 Re-Identification

The task of reidentification, also known as re-ID, is a problem of recognizing indi-

viduals at the instance level. It requires features that are discriminative and can

capture various spatial scales, as well as combinations of multiple scales. These

features, known as omni-scale features, can be of both homogeneous and hetero-

geneous scales. In the study by Zang et al. [39], a deep re-ID CNN called the

omni-scale network (OSNet), was designed. It is used for learning omni-scale

features, to improve efficiency and prevent overfitting. The OSNet utilizes point-

wise and depthwise convolutions. Despite its small size, the OSNet has achieved

state-of-the-art performance on six person re-ID datasets and outperforms many

larger models by a significant margin.

Figure 4.2: OSNet Architecture by Zhou et al. [39]

The CNN incorporates multiple scale features within each building block

using dynamic channel-wise weights that allow it to learn various multi-scale

combinations. As a result, the OSNet has the ability to learn omni-scale features,

with each channel potentially identifying distinctive features of a single scale or a

combination of multiple scales. The fundamental parameters (called Max_Age)

54

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

that must be set for this model is the maximum number of missing frames for

each trajectory before it is deleted. it is clear that increasing the number will also

increase the speed of inference in extracting the characteristics of each bounding

box.

4.1.2 Hungarian Algorithm

The Hungarian algorithm, also known as the Kuhn-Munkres algorithm, can link

an obstacle from one frame to another based on a score. There are various scores

that can be used, such as IoU (Intersection Over Union) which compares the

overlap of bounding boxes to determine if they are the same object. Another

score is the Shape Score, which takes into account the similarity in shape or

size between two consecutive frames. Additionally, a Convolution Cost can be

used, which involves running a CNN on the bounding box and comparing it to

a previous frame. If the convolutional features are similar, it is likely the same

object, even if there is partial occlusion. This matching mechanism based on IoU

cost matrix into a mechanism of Matching Cascade and IoU matching, specifically

the core idea of Matching Cascade is to give greater priority to track matching

to the targets that appear more frequently in the long-term occluded targets. As

explained by Tithi et al. [40], the Hungarian algorithm is used in a matrix format.

Given a non-negative matrix with dimensions of n × m, where each element

represents the cost of assigning a predicted object to a measured object, the

Hungarian algorithm finds the best assignment of predictions to measurements

such that each prediction is matched to one measurement and each measurement

is matched to one prediction, while minimizing the total cost of the assignment.

The algorithm works by subtracting the minimum value of each row and column,

and then identifying the unique [i, j] entries with a value of 0, which are then

assigned as a match between prediction j and measurement i. If there are multiple

0s in a row or column, the process is repeated by subtracting the global minimum

from all remaining entries.

For example [41], we have 3 detections and need to associate these detections

to the 3 tracks based on IoU score. A detection will belong to a track that has the

55

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

maximum IoU. We will solve the assignment optimization problem between the

detections and tracks using the Hungarian algorithm by finding the maximum

IoU.

Track1 Track2 Track3

Detection1 80 20 35

Detection2 30 15 19

Detection3 60 48 78

To solve the maximization problem, it was converted into a minimization

problem by finding the maximum value in the matrix and subtracting it from

each cell.

Track1 Track2 Track3

Detection1 0 40 45

Detection2 50 65 61

Detection3 20 32 2

Now we apply the Hungarian algorithm to the grid step by step:

1. Step 1: Subtract row minima

Track1 Track2 Track3

Detecion1 0 40 45

Detecion2 0 15 11

Detection3 18 30 0

2. Step 2: Subtract column minima

Track1 Track2 Track3

Detection1 0 40 45

Detection2 0 15 11

Detection3 18 30 0

56

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

3. Step 3: Cover all of the zeros in the matrix using the minimum

number of lines, Draw lines through the row and columns that have the

0 entries such that the fewest lines possible are drawn.

4. Step 4: Create Additional Zeros, To find the optimal solution using

the Hungarian algorithm, the first step is to locate the smallest entry that

is not covered by any line. Then, this entry is subtracted from each row

that is not crossed out and added to each column that is crossed out. This

process is repeated until each row and column only has one zero selected.

This final solution is the one that associates detections with tracks using

the maximum IoU.

Track1 Track2 Track3

Detecion1 80

Detecion2 30

Detection3 78

Then the IoU threshold set (in our case 0.5) will be checked to see if it is a

true positive.

4.2 Evaluation Metrics

New metrics were used to evaluate the multi object tracking model in addition

to the traditional ones [24]. Let us explain some acronyms that will be used by

the metric, as IDTP (True Positive ID trajectory), it is the longest associated

trajectory matching to a ground truth trajectory is regarded as the gt’s true ID.

Then other trajectories matching to this gt is regarded as a IDFP (False Positive

57

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

ID trajectory) or IDFN (False Negative ID trajectory). GT is the number of

reference (GroundTruth) trajectories and MT is the number of trajectories that

have over 80% target tracked. FM is the Number of Fragmentations, ID switch

is the special case of fragmentation when ID jumps.

• ID Precison, it shows the precision in tracking the trajectories of objects

IDP =
IDTP

IDTP + IDFP
(4.1)

• ID Recall, it shows the precision in tracking the trajectories of objects

IDR =
IDTP

IDTP + IDFN
(4.2)

• Recall, it shows the recall in detection

R =
TP

TP + FN
(4.3)

• Precision, it shows the precision in detection

P =
TP

TP + FP
(4.4)

• PT, the number of trajectories that have 20% to 80% target tracked

PT = GT −MT −ML (4.5)

• ML, the number of trajectories that have less than 20% target tracked.

Total false positive number among all frames

FP =
∑︂
t

∑︂
i

fpi,t (4.6)

• FN, total false negative number among all frames

FN =
∑︂
t

∑︂
i

fni,t (4.7)

• IDs, ID switch number, indicating the times of ID jumps

IDs =
∑︂
t

idsi,t (4.8)

58

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

• MOTA (Multiple Object Tracking Accuracy), is a metric reflects the track-

ing accuracy. It has intergrated consideration of FN, FP, and IDs

T =
∑︁

t

∑︁
i gti,t

MOTA = 1− FN + FP + IDs

T
(4.9)

• MOTP, (Multiple Object Tracking Precision), is a metric reflects the

tracking precision

MOTP =

∑︁
i,t IoUt,i

TP
(4.10)

4.3 Testing

Various tests were performed on different video sequences, like P-Destre Dataset

[42]. Two tests inherent to our challenge for images from drones are reported

in this section. In the first case we will analyse a video sequence with a single

person to see how the algorithm works in the case of single object tracking, then

we will analyse a video from the VisDrone Tracking 2019 dataset. In the first

test of Single Object Tracking the detection’s model was limited to predict

only one box for each frame.

(a) Tracking predicted t = 0 (b) Tracking predicted t = 6

Figure 4.3: Single Object Tracking

As shown in Figure 4.3, the same person, the one with the highest confidence

score assigned by YOLOv5, is detected in both frames with the same ID (1)

assigned by the strongSORT algorithm for its entire trajectory To evaluate the

accuracy of this algorithm was calculated:

59

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

Models GT MT
Speed

[fps]

P

[%]

R

[%]

IDP

[%]

IDR

[%]

YOLOv5N + OSNet 1 1 37 91,7 86,7 90,6 87,5

YOLOv5S + OSNet 1 1 39 93,8 89,9 91,7 88,9

YOLOv5X + OSNet 1 1 14 96,2 92,4 93,2 89,9

Table 4.1: Single Object Tracking Results

The results on the table 4.1 show that the GroudTruth trajectory is only one

(GT) and the algorithm tracks one for more than 80% of its duration. The P

(Precison), R (Recall) metrics indicate the accuracy of the detection model while

IDP and IDR indicate the accuracy of the tracking algorithm. The results are

satisfying, which is attributed to the analysis of the pedestrian class where both

the detection and re-identification models exhibit high accuracy.

The most important test is the following, which shows how the algorithm

behaves in the MOT task when analysing several classes. The figure 4.4 shows

the two frame of one sequence video taken to VisDrone Tracking 2019. You can

see how YOLOv5 manages to detect all objects present and also to distinguish

the van class from car, while keeping the tracking IDs unchanged.

(a) Tracking predicted t = 0 (b) Tracking predicted t = 2

Figure 4.4: Multi Object Tracking

Subsequently, the frames pick up a much larger number of objects and the

network makes some errors. Table 4.2 summarizes the obtained results.

60

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

Models GT MT PT
Speed

[fps]

P

[%]

R

[%]

MOTP

[%]

MOTA

[%]

YOLOv5N + OSNet 122 80 36 15 83,5 81,2 85,3 59,2

YOLOv5S + OSNet 122 82 37 13 85,3 82,3 85,8 61,9

YOLOv5X + OSNet 122 98 16 4 90,1 85,8 85,9 61,8

Table 4.2: Multi Object Tracking Results

As we can see from the results obtained, taking the last line describing the

results obtained using YOLOv5x as detector, out of 122 trajectories we find 98

more than 80% of their actual length, 16 are partially detected and 3 are not

detected. This time the MOTP and MOTA [sec.4.2] were considered to evaluate

the tracking algorithm, and it can be seen that by changing the YOLOv5 model

we only succeed in increasing the P and R of the detection but the tracking

metrics remain unchanged.

4.3.1 Optimization

We saw from table 4.2 that the algorithm for the MOT has a high computational

cost, so both models (YOLOv5 [3.1] and OSNet [4.1.1]) were optimised inde-

pendently. A quantization of the tensor weights of the networks was performed

using tensorRT as seen in sec 3.7. The speed this time was calculated by adding

the tracking time of the strongSORT algorithm to the sum in the equation 3.11,

which is generally 3 times longer than the detection time.

61

CHAPTER 4. OBJECT TRACKING ADDING STRONGSORT

Models tensorRT GT MT PT
Speed

[fps]

P

[%]

R

[%]

MOTP

[%]

MOTA

[%]

YOLOv5N + OSNet FP32 122 80 36 18 83,5 81,2 85,3 59,2

YOLOv5N + OSNet FP16 122 80 36 19 83,3 81,3 85,1 58,9

YOLOv5N + OSNet INT8 122 60 14 29 58,1 45,8 55,9 29,3

YOLOv5S + OSNet FP32 122 82 37 16 85,3 82,3 85,8 61,9

YOLOv5S + OSNet FP16 122 82 37 17 85,1 82,2 85,4 61,3

YOLOv5S + OSNet INT8 122 63 15 25 59,2 47,8 56,2 30,6

Table 4.3: Quantization Results (MOT)

As we saw in the optimisation results in Chapter 3, for this task too, the

FP32 and FP16 quantisation shows an increase in speed without reducing the

accuracy of the models, unlike the cast at INT8, which is still the fastest but the

least accurate.

62

Chapter 5

Deploy

In this chapter i will be described how to deploy object detection models on

NVIDIA Jetson TX2 and the results of the models on the VisDrone test

dataset performed on this board will be compared. In addition, some tests done

in real time through the camera on the board will be reported. For OS installation

on Jetson TX2 card, Linux Ubuntu 18.04LTS on host machine is required to be

able to download and install NVIDIA SDK Manager [43] which offers an end-

to-end development environment configuration solution for the NVIDIA DRIVE

SDKs. After installation is complete, the board will use a custom distribution

called Linux For Tegra (L4T) derived from Ubuntu 18.04. SDK Manager allows

you to choose the frameworks to be installed, in our case PyTorch, TensorRT

and DeepStream were selected. Subsequently, object detection models exported

in ONNX universal format (graphs) were deployed in the board via SSH (Secure

Shell Protocol).

Figure 5.1: Secure Shell Protocol

63

CHAPTER 5. DEPLOY

5.1 NVIDIA Jetson TX2

The NVIDIA Jetson TX2 is a computer on a single board that is specifically built

to handle artificial intelligence and machine learning tasks. It boasts of powerful

GPU, CPU, memory and other components that are optimized to deliver top-

notch AI performance, with support for multiple AI development frameworks and

programming languages, as well as a range of connectivity options for sensors and

other peripherals, the Jetson TX2 is a versatile AI solution. The main modules

that make it very power are [44]:

• 256 core NVIDIA Pascal GPU, supports all the same features as dis-

crete NVIDIA GPUs, including extensive compute APIs and libraries in-

cluding CUDA.

• ARMv8 (64-bit) Multi-Processor CPU: two cluster connected, the

Denver 2 (Dual-Core) CPU clusters is optimized for higher single-thread

performance while the ARM Cortex-A57 (Quad-Core) clusters is better

suited for multi-threaded applications and lighter loads.

• Memory, 8GB LPDDR4 integrated on the module.

• Storage, 32 GB eMMC memory integrated on the module.

• Camera, recording of 4K ultra-high-definition video at 60fps.

5.2 Testing

After installation of the operating system and the necessary frameworks, a virtual

environment was prepared containing all the libraries required for testing the

networks. The first tests were performed on the VisDrone dataset, as done in

sec.3.6, using the two models with the shortest inference time (YOLOv5n and

YOLOv5s) in order to analyze their execution speed on the board.

64

CHAPTER 5. DEPLOY

YOLOv5 TensorRT
mAP:50

[%]

mAP:50-95

[%]

GPU

[fps]

N FP32 32,1 18 39

N FP16 31,6 17,6 42

N - 32,2 18,1 26

S FP32 37,1 21,4 24

S FP16 37,1 20,8 29

S - 37,2 21,4 21

Table 5.1: Test Results on Jetson TX2

It can be seen from the 5.1 table that the mAP results are unchanged, but we

experience an increase in inference speed due to lower GPU power on the card.

In the results seen in table 3.5 performed with a P4000 GPU, the optimised

YOLOv5n analysed between 150 and 220 frames per second, in this case we

arrive at a maximum of 40. It should be noted that NVIDIA Jetson TX2 does

not support quantisation in INT8 so the results of the models with weights in

FP32, FP16 in TensorRT and those of the original PyTorch model in FP32 have

been reported. This is the maximum power the board can achieve by putting it

in MAXN mode, i.e. turning on all CPU and GPU clusters without saving on

battery efficiency.

5.3 Real-Time Testing

First the camera on board was configured with GStreamer, a framework for

creating multimedia pipelines. Then a GStreamer pipeline was created which

captures a video from the camera by executing the commands v4l2src to capture

the video, decodebin to decode the video and xvimagesink to display the out-

put. After checking the operation, the GStreamer pipeline has been inserted in

the YOLOv5 code to acquire images in real time. For the first real-time test,

a YOLOv5n [sec.3.1] model trained on COCO dataset was used, the one from

which we started for the development. A real-time inference rate of 40 fps was ob-

65

CHAPTER 5. DEPLOY

tained using the COCO optimized model by filming a laboratory room where the

measured classes were: chair, TV, bottle and person. A real time inference rate

of 40 fps was achieved using the COCO-optimised model by filming a laboratory

room in which the classes measured were: chair, TV, bottle and person.

To test our networks trained on visdrone in real time, it would be necessary to

mount the board on a drone, the DeepStream framework was used to solve this

problem. The NVIDIA DeepStream SDK is a high-performance and scalable

AI framework for video and image analysis. Developed by NVIDIA, it is designed

for multisensor processing and streaming analytics. With a unified API between

Python and C, DeepStream offers a flexible development environment for build-

ing efficient video analytics pipelines on NVIDIA GPUs. The framework features

a plugin-based architecture for integrating various video and image analysis algo-

rithms, including object detection, classification, segmentation, and optical flow.

Figure 5.2: DeepStream SDK Architecture

The DeepStream SDK is rooted in the GStreamer multimedia framework

and includes a GPU-accelerated plugin pipeline, with plug-ins for video inputs,

decoding, preprocessing, TensorRT-based inference, object tracking, and display

included to simplify the application development process. These capabilities

allow for the creation of versatile multistream video analytics solutions. The

Decode Block decodes data from a URI into unprocessed media, Streammux

Block forms a batch of frames from multiple input sources while Inference and

Tracker Block are executed by models with PyTorch or TensorRT frameworks.

To test our fastest model (YOLOv5n) with this framework, the on board

camera was used to record another display which showed a video taken by a

drone, while another locally downloaded video was sent in the streammux block

66

CHAPTER 5. DEPLOY

to create a second dummy camera and get a multi-stream architecture.

(a) Real-Time prediction at t = 0 (b) Real-Time prediction at t = 5

Figure 5.3: Real-Time Object Detection with DeepStream

Figure 5.3 shows the output of the two cameras, at the top the objects de-

tected by the dummy camera (the locally downloaded video) while at the bottom

the on board camera which detects objects on another display. We can see from

the two frames how object detection is also robust to camera rotations, although

it is analyzing a screen and not real objects. The inference rates of the YOLOv5n

model trained on VisDrone are shown in Table 5.2.

Model TensorRT
Top-Stream

[fsp]

Bottom-Stream

[fps]

YOLOv5n - 24 23

YOLOv5n FP32 30 28

YOLOv5n FP16 31 30

Table 5.2: Real-Time Detection Results

67

Chapter 6

Conclusion

The aim of this work was to study the Multi Object Detection and Multi

Object Tracking tasks with Deep Learning approaches, paying particular at-

tention to the trade-off between accuracy and inference speed. In conclusion,

it can be said that for the first part of the project (Multi Object Detection),

we achieved a good accuracy of the YOLOv5 models on the VisDrone-2019

Dataset, comparable to the first runners-up in the challenge, with a remarkable

improvement on the speed of inference, they are able to triple the number of

frames analyzed per second despite using a GPU with lower capabilities than the

first runner-up. For the second part of the work (Multi Object Detection), the

choice of this new architecture proved to be an excellent solution. The cascaded

use of the YOLOv5 for detection and the strongSORT algorithm for tracking

showed excellent results. In the last VisDrone-2021 Challenge, the new version

of DPNet, the first classified algorithm, achieved 39% accuracy (mAP), but we

are still a long way from a possible application in reality.

6.1 Future works

From my point of view, greater attention should be directed towards resolving the

issues of the VisDrone dataset rather than searching for and implementing new

architectures in order to improve the training of existing algorithms. I thought

of two future solutions, one for the MOT task and one for the MOD task:

68

CHAPTER 6. CONCLUSION

1. Balancing the VisDrone dataset, is a very tough challenge, but doing

an initial test run, in which i cut out all the boxes containing the class to

be increased, and then applied transformations to increase the number of

instances.

Figure 6.1: Workflow to increase instances of a class

Re-training the model (YOLOv5n) with the class ’van’ increased from

about 25,000 instances to 67,000, we are able to increase the AP (Average

Precision) of the respective class by almost 2% on validation; by repeat-

ing the same process for each class we could improve the accuracy of the

network. Obviously the basic idea is not to create an image with only one

instance cropped, but to overlay them on the other original images.

2. Fine-Tuning OSNet, the other future development is about the MOT

task, in this case in the tests performed we obtain good results, but it can

be seen in table 4.2, that the tracking metric (MOTA) does not increase

even when using the most accurate YOLOv5 model for detection, this is

because the Re-ID network (OSNet) used was pre-trained on Market1501,

a dataset containing only people filmed from above. Therefore, a dataset

would need to be created from VisDrone to retrain the network to extract

features on the classes of interest to create more accurate tracks.

69

Chapter 7

Sommario

Il lavoro presentato è stato svolto durante un tirocinio curricolare presso l’azienda

MBDA Italia s.p.a, leader in Europa per la progettazione e produzione di mis-

sili e sistemi missilistici. In particolare è stato svolto nella divisione di Missile

Design Italia, nel reparto di guida, navigazione e controllo. Lo scopo della tesi era

studiare soluzioni per il rilevamento e l’inseguimento di oggetti ripresi da droni

con approcci di deep learning. Particolare attenzione è stata volta allo studio

del rapporto tra accuratezza e velocità di inferenza dei modelli, al fine di poterli

eseguire su schede embedded e testarne i benefici in Real Time. Il dataset scelto

per questo lavoro è VisDrone 2019, un dataset pubblico con 10 categorie di

oggetti (pedestrian, people, car, van, bus, truck, motor, bicycle, awning-tricycle,

and tricycle). Esso rappresenta una sfida, ancora oggi del tutto aperta, in cui i

maggiori ricercatori cercano di trovare modelli più adatti a rilevare e classificare

piccoli oggetti ripresi da droni. Dai correlogrammi riportati sul dataset si possono

intuire le sue due enormi difficoltà, la prima derivata dall’elevato sbilanciamento

delle classi e la seconda derivata dalla dimensione degli oggetti all’interno delle

immagini, in cui molto spesso sono meno dell’1% dell’immagine stessa. La rete

scelta per essere addestrata su VisDrone, per studiarne la capacità di rilevamento

di piccoli oggetti, è la YOLOv5 (You Only Look Once), una rete a single-step

progettata da Ultralytics [22] e pre-allenata sul dataset COCO, ampiamente sfrut-

tata per la sua leggerezza e velocità di esecuzione. Nella prima parte del pro-

70

CHAPTER 7. SOMMARIO

getto sono stati utilizzati i 5 modelli di YOLOv5 (Nano, Small, Medium, Large,

X-Large) classificati in ordine di profondità e quindi del numero di layer utilizzati.

E’ intubile dai risultati sulla validazione dei modelli utilizzando il dataset COCO,

effettuata dai creatori delle rete, che all’aumentare del numero di layer la rete

risulta più accurata a discapito della velocità di inferenza. Dopo avere preparato

un container Docker contente tutte le librerie necessarie all’implemetazione e al

testing, è stato eseguito l’allenamento di tutte e 5 le reti utilizzando gli stessi

paramentri, descritti nel capitolo 3. I modelli sono stati validati utilizzando le

metriche necessarie per questo tipo di sfida (mAP [sez. 4.2]), come richiesto

nel paper della challenge VisDrone 2019 [35]. Da una prima valutazione delle

metriche potrebbe sembrare che i modelli non siano adatti a risolvere questo tipo

di task, in realtà nel paper vengono menzionati i primi 33 algoritmi classificati

in ordine di mAP, 29,62% per il primo. La rete utilizzata in questo lavoro rag-

giunge perfettamente i risultati (29,9%), triplicando il numero di frame analizzati

al secondo, nonostante l’utilizzo di una GPU NVIDIA Quadro P4000, con

prestazioni inferiori rispetto alla Titan XP utilizzata dai vincitori della chal-

lenge. Un aspetto importate abbiamo detto essere il tempo di inferenza, dunque

è stata applicata una tecnica di quantizzazione dei tensori della rete per ottimiz-

zare la velocità. I risulti ottenuti sono sorprendenti per la quantizzazione in FP32

e FP16, ottenuta attraverso il framework TensorRT, riuscendo a mantentere le

metriche di valutazione pressochè identiche e quasi raddoppiando la velocità di

esecuzione.

La seconda parte del progetto si concentra a risolvere il problema del trac-

ciamento di più oggetti ripresi da droni. Per questo obiettivo si è pensati ad un

approccio a cascata tra due algoritmi, il primo appena descritto (YOLOv5) che si

occupa di effettuare il rilevamento degli oggeti, mentre il secondo (strongSORT)

prende in input l’uscita della YOLOv5 e crea delle tracce per ogni oggetto ril-

evato. StrongSORT è un algoritmo complesso, composto da una rete per la

re-identificazione ID degli oggetti, in questo caso è stata utilizzata una OSNet

(Omni-Scale Network) pre-addestrata sul dataset Market1501, che si occupa di

estrapolare delle caratteristiche fondamentali da ogni box (come la dimensione,

71

CHAPTER 7. SOMMARIO

la forma dell’oggetto, i colori, ecc..), poi passa l’informazione ad un Fitro di

Kalman il quale stima la posizione futura degli n oggetti presenti nel frame e

attraverso l’Algoritmo Ungherese viene creata una matrice di costo per asso-

ciare ogni oggetto rilevato la rispettiva traccia, dopo avere aggiornato il filtro di

Kalman, in uscita avremmo sia le coordinate del box predetto ,la classe e l’ID

assegnato dall’algoritmo di strongSORT. Questo approccio è stato testato prima

su un task di inseguimento di una singola persona ripresa da drone, e successiva-

mente su sequenze video del dataset VisDrone Tracking. Nel primo caso i risul-

tati sono sorprendenti, raggiungendo il 90% di precisione sia nel rilevamento che

nell’inseguimento, questo è dovuto dal fatto che entrambi i modelli che formato

il nostro algoritmo completo (YOLOv5 e OSNet) sono stati ampiamenti allenati

sulla classe "persona". Successivamente nel secondo test mostrato [sez.4.1], su

una sequenza video con 122 oggetti e tracce, sono state introdotte nuove met-

riche di valutazione, ma anche in questo caso i risultati sono buoni, arrivando a

tracciare 98 tracce su 122 con una precisione nel rilevamento del 90% e una pre-

cisione nel tracciamento dell’85%. Ovviamente i tempi di inferenza aumentano

dato che dobbiamo aggiungere alla somma dei tempi anche quello dell’algortimo

di strongSORT, notevolmente più lento rispetto al precendete, e più aumentano

le tracce e il numero di oggeti più diminuisce la velocità di esecuzione. Anche in

questo caso sono stati mostrati i risultati eseguendo una quantizzazione indipen-

dente anche nel modello OSNet, riuscendo raddoppiare la velocità senza alterare

le metriche.

La parte finale del progetto è incentrata sul deploy degli algoritmi di ril-

evamento sulla scheda NVIDIA Jetson TX2, al fine di confrontare i tempi

di esecuzione e studiare il comportamento delle reti in Real-Time. Come pre-

visto eseguendo i due modelli più semplici (YOLOv5n e YOLOv5s), la veloc-

ità diminuisce notevolmente anche spingendo la scheda alla massima potenza di

calcolo a discapito dell’efficienza energetica. Succesivamente è stata settata la

telecamera disponibile sulla scheda testando la velocità in Real-Time del mod-

ello più semplice allenato sul dataset COCO, notando che lavora a circa 40fps.

Purtroppo per l’impossibilità di eseguire dei test in Real-Time da drone è stato

72

CHAPTER 7. SOMMARIO

utilizzato il framework DeepStream di NVIDIA che consente di analizzare più

flussi di stream in Real-Time contemporaneamte utilizzando delle reti neurali.

Dunque è stata utilizzata la telecamera a bordo scheda per riprendere un’altro

monitor, il quale mostrava una video ripreso da drone, e contemporaneamente è

stata creata una seconda telecamera fittizia attraverso un video già registrato. I

risulti sono molto buoni e per entrambi i video si riesce a raggiungere una ve-

locità di 30 fps in contemporanea. Possiamo concludere affermando che seppur

i risultati ottenuti siano buoni da un punto di vista teorico, c’è ancora molto

da lavorare per questo tipo di sfida. Nell’ultima challenge di VisDrone 2021 il

primo algoritmo classificato ha raggiunto il 39% di accuratezza, ma siamo an-

cora molti lontani da una possibile applicazione nella realtà. Secondo me i futuri

sviluppi che andrebbero portati avanti sono due, uno per ogni challenge. Dal

mio punto di vista bisognerebbe concentrarsi più nel risolvere le problematiche

del dataset VisDrone piuttosto che cercare e implementare nuove architetture,

al fine di migliorare l’allenamento degli algoritmi già esistenti. Bilanciare tutte

le classi è una sfida molto dura, ma facendo un primo test di prova, in cui ho

ritagliato tutte i box che contenevano la classe da aumentare, e successivamente

applicato della trasformazioni per aumentarne il numero di istanze. Riallendo il

modello con la classe "van" aumentata da circa 25.000 istanze a 65.000, riusciamo

ad aumentare l’Avarege Precision della rispettiva classe di quasi il 2%; ripetendo

lo stesso procendimento per ogni classe potremmo migliore l’accuratezza della

rete. Ovviamente l’idea di fondo non è quella di creare un’ immagine con una

sola istanza ritagliata, ma saperebbe quella di andare a sovrapporle sulle altre

immagini originali. L’altro sviluppo per migliorare l’inseguimento di oggetti è

quello di preparare un dataset VisDrone per riaddestrare il modello OSNet, at-

tualmente specializzato nel rilevamento di persone.

73

List of Figures

1.1 Computer Vision Challenges [5] 10

2.1 Basic CNN Architecture [6] . 14

2.2 Object Detection [7] . 16

2.3 A road map of object detection [8] 17

2.4 Samples of tracking . 19

2.5 MOT Functional Architecture by Xie et al. [11] 21

2.6 Docker Architecture [18] . 23

2.7 Deep Learning Software NVIDIA [19] 27

3.1 Comparison between the object detection models 29

3.2 Types of YOLOv5 models [22] . 30

3.3 Architecture YOLOv5 (Kim et al., 2021 [28]) 31

3.4 Intersection Over Union . 34

3.5 Flowchart to evaluate the boxes predicted 38

3.6 Average Precision . 39

3.7 Instances of VisDrone . 41

3.8 Labels Correlogram VisDrone . 42

3.9 Transfer Learning . 44

3.10 Precision and Recall as the confidence changes 45

3.11 Validation YOLOv5n . 45

3.12 Prediction on the test frame . 48

3.13 Diagram for quantization of models 50

75

LIST OF FIGURES

4.1 Multi Object Tracking Architecture 52

4.2 OSNet Architecture by Zhou et al. [39] 54

4.3 Single Object Tracking . 59

4.4 Multi Object Tracking . 60

5.1 Secure Shell Protocol . 63

5.2 DeepStream SDK Architecture 66

5.3 Real-Time Object Detection with DeepStream 67

6.1 Workflow to increase instances of a class 69

76

List of Tables

3.1 Challenge Results VisDrone 2019 42

3.2 Validation Results on COCO . 44

3.3 Validation Results on VisDrone 46

3.4 Test Results on VisDrone . 47

3.5 Quantization Results (MOD) . 50

4.1 Single Object Tracking Results 60

4.2 Multi Object Tracking Results 61

4.3 Quantization Results (MOT) . 62

5.1 Test Results on Jetson TX2 . 65

5.2 Real-Time Detection Results . 67

77

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classi-

fication with deep convolutional neural networks. Communications of the

ACM, 60(6):84–90, 2017.

[2] Òscar Lorente, Ian Riera, and Aditya Rana. Image classification with classic

and deep learning techniques, 2021.

[3] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

[4] Thomio Watanabe and Denis Wolf. Instance segmentation as image seg-

mentation annotation, 2019.

[5] Computer vision. https://desupervised.io/computer-vision.

[6] MK Gurucharan. Cnn architecture. https://www.upgrad.com/blog/

basic-cnn-architecture.

[7] How to detect people using computer vision. https://learn.alwaysai.co/

object-detection.

[8] Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye.

Object detection in 20 years: A survey, 2019.

[9] Ch Murthy, Mohammad Farukh Hashmi, Neeraj Bokde, and Zong Woo

Geem. Investigations of object detection in images/videos using various

78

https://desupervised.io/computer-vision
https://www.upgrad.com/blog/basic-cnn-architecture
https://www.upgrad.com/blog/basic-cnn-architecture
https://learn.alwaysai.co/object-detection
https://learn.alwaysai.co/object-detection

BIBLIOGRAPHY

deep learning techniques and embedded platforms—a comprehensive review.

Applied Sciences, 05 2020.

[10] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-

cnn: Towards real-time object detection with region proposal networks. In

Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and

Roman Garnett, editors, NIPS, pages 91–99, 2015.

[11] Daniel Izadia Sean Bangera Thayne Walkera Ryan Ceresania Christopher

Guaglianoa Henry Diaza Wanlin Xiea, Jaime Idea and Jason Twedta. Multi-

object tracking with deep learning ensemble for unmanned aerial system

applications. 10 2021.

[12] Julie Dequaire, Peter Ondrúška, Dushyant Rao, Dominic Wang, and Ingmar

Posner. Deep tracking in the wild: End-to-end tracking using recurrent neu-

ral networks. The International Journal of Robotics Research, 37(4-5):492–

512, 2018.

[13] Ricardo Pereira, Guilherme Carvalho, Luís Garrote, and Urbano J. Nunes.

Sort and deep-sort based multi-object tracking for mobile robotics: Evalu-

ation with new data association metrics. Applied Sciences, 12(3):1319, Jan

2022.

[14] Matt Rabinovitch. Comparing state of the art region of interest track-

ers. https://medium.com/teleidoscope/comparing-state-of-the-art-region-

of-interest-trackers, 2019.

[15] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100

fps with deep regression networks. 04 2016.

[16] Nvidia quadro p4000 documentation. https://www.nvidia.com/.

[17] Ubuntu 20.04 lts documentation. https://releases.ubuntu.com/focal/.

[18] Dirk Merkel. Docker: lightweight linux containers for consistent development

and deployment. Linux journal, 2014(239):2, 2014.

79

https://www.nvidia.com/
https://releases.ubuntu.com/focal/

BIBLIOGRAPHY

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,

high-performance deep learning library. In Advances in Neural Information

Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[20] Venkatesh Wadawadagi. Tensorflow vs pytorch: Deep learning frameworks.

01 2023.

[21] Docker-hub yolov5 image. https://hub.docker.com/r/ultralytics/yolov5/

dockerfile.

[22] Yolov5 github repository. https://github.com/ultralytics/yolov5.

[23] strongsort github repository. https://github.com/mikel-brostrom/Yolov5_

StrongSORT_OSNetforStrongOSNettracking.

[24] Evaluation mot github repository. https://github.com/shenh10/mot_

evaluationforevaluatetrackingmodel.

[25] Model quantization github repository. https://github.com/Wulingtian/

yolov5_tensorrt_int8_toolstensorrtquantizationint8.

[26] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection, 2015.

[27] Amitabha Banerjee. Yolov5 vs yolov6 vs yolov7. https://www.

learnwitharobot.com/p/yolov5-vs-yolov6-vs-yolov7, 2022.

[28] Munhyeong Kim, Jongmin Jeong, and Sungho Kim. Ecap-yolo: Efficient

channel attention pyramid yolo for small object detection in aerial image.

Remote Sensing, 13:4851, 11 2021.

[29] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement,

2018.

80

https://hub.docker.com/r/ultralytics/yolov5/dockerfile
https://hub.docker.com/r/ultralytics/yolov5/dockerfile
https://github.com/ultralytics/yolov5
https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet for StrongOSNet tracking
https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet for StrongOSNet tracking
https://github.com/shenh10/mot_evaluation for evaluate tracking model
https://github.com/shenh10/mot_evaluation for evaluate tracking model
https://github.com/Wulingtian/yolov5_tensorrt_int8_tools tensorrt quantization int8
https://github.com/Wulingtian/yolov5_tensorrt_int8_tools tensorrt quantization int8
https://www.learnwitharobot.com/p/yolov5-vs-yolov6-vs-yolov7
https://www.learnwitharobot.com/p/yolov5-vs-yolov6-vs-yolov7

BIBLIOGRAPHY

[30] Laurens van der Maaten Kilian Q. Weinberger Gao Huang, Zhuang Liu.

Densely connected convolutional networks. 10 2020. https://arxiv.org/pdf/

1608.06993.pdf.

[31] Ge H Zhang Z Zang X. Xu Q, Zhu Z. Effective face detector based on yolov5

and super-resolution reconstruction. Comput Math Methods Med, 2021.

[32] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. JSTOR:

Applied Statistics, (1):100–108.

[33] Apurva Badithela, Tichakorn Wongpiromsarn, and Richard M. Murray.

Evaluation metrics for object detection for autonomous systems, 2022.

[34] Dataset visdrone 2019 download. https://github.com/VisDrone/

VisDrone-Dataset.

[35] Dawei Du and et. al Zhu. Visdrone-det2019: The vision meets drone object

detection in image challenge results. pages 213–226, 2019.

[36] Quan Zhou, Huimin Shi, Weikang Xiang, Bin Kang, Xiaofu Wu, and Lon-

gin Jan Latecki. Dpnet: Dual-path network for real-time object detection

with lightweight attention, 2022.

[37] Keshav Ganapathy. A study of genetic algorithms for hyperparameter opti-

mization of neural networks in machine translation, 2020.

[38] Abhay Chaturvedi. Understanding nvidia tensorrt for deep learning model

optimization. 11 2020.

[39] Andrea Cavallaro Tao Xiang Kaiyang Zhou, Yongxin Yang. Omni-scale

feature learning for person re-identification. 12 2019.

[40] et al. Jesmin Jahan Tithi, Sriram Aananthakrishnan. Online and real-time

object tracking algorithm with extremely small matrices. 03 2021.

[41] Renu Khandelwal. Hungarian algorithm. 03 2022.

81

https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://github.com/VisDrone/VisDrone-Dataset
https://github.com/VisDrone/VisDrone-Dataset

BIBLIOGRAPHY

[42] S. V. Aruna Kumar, Ehsan Yaghoubi, Abhijit Das, B. S. Harish, and Hugo

Proença. The p-destre: A fully annotated dataset for pedestrian detection,

tracking, and short/long-term re-identification from aerial devices. IEEE

Transactions on Information Forensics and Security, 16:1696–1708, 2021.

[43] Nvidia sdk manager. https://developer.nvidia.com/drive/sdk-manager.

[44] Data sheet nvidia jetson tx2. https://download.kamami.pl.

[45] Robertson SJ. Robertson SJ. Disarthria Profile. Winslow Press, 1982. Ver-

sione italiana a cura di Fossi F. e Cantagallo A. Ediz. Omega(1999).

[46] Liyao Wu Wenying Chen Lu Tan, Tianran Huangfu. Comparison of reti-

nanet, ssd, and yolo v3 for real-time pill identification. 10 2020.

[47] Metrics - average precision and map. https://innerpeace-wu.github.io/2018/

03/22/Metrics-Average-Precision/.

82

https://developer.nvidia.com/drive/sdk-manager
https://download.kamami.pl
https://innerpeace-wu.github.io/2018/03/22/Metrics-Average-Precision/
https://innerpeace-wu.github.io/2018/03/22/Metrics-Average-Precision/

	Introduction
	Problem Definition
	Project Steps
	Glossary

	Materials and Methods
	Convolutional Neural Network
	Multi Object Detection
	Multi Object Tracking
	Materials
	Docker
	GitHub
	PyTorch

	Object Detection using YOLOv5
	YOLOv5
	Architecture
	Non Maximum Suppresion Algorithm (NMS)
	Loss Function
	Anchors Box

	Evaluation Metrics
	VisDrone Dataset
	DPNet

	Implementation
	Training
	Testing
	Optimization

	Object Tracking adding strongSORT
	Architecture
	Re-Identification
	Hungarian Algorithm

	Evaluation Metrics
	Testing
	Optimization

	Deploy
	NVIDIA Jetson TX2
	Testing
	Real-Time Testing

	Conclusion
	Future works

	Sommario
	Bibliography

