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ABSTRACT
Hemiplegia is a pathology caused by a neurological disorder and is quite frequent in children with  

cerebral palsy. A lot of methods have been proposed to perform gait analysis in order to understand 

how muscles activate during walking activity, so that it is possible to  understand how hemiplegia 

affects muscular recruitment. To this aim, there are techniques based on the use of classi sensors, 

but the most recent approaches consist in using machine/deep learning techniques. In the present 

work, artificial neural network was employed with the aim of classifying the two main gait phases 

(stance and swing periods) and to predict foot-floor contact signals from surface electromyographic 

(sEMG) signals in hemiplegic children. To this purpose, sEMG signals from the main leg muscles 

and foot-floor-contact signals were acquired during walking at self-selected pace of 20 hemiplegic 

children. These data were then fed as input to a feed-forward multi layer perceptron (MLP) neural 

network.  Successively, prediction evaluation was performed to assess the goodness of the chosen 

model for the neural network. Sensitivity analysis of classification and prediction performances to 

the processing parameters was also performed. Results show as acceptable levels of accuracy in 

gait-phases classification and gait-event prediction were reached both for learned and unlearned 

subjects. Although there is still work to be done, deep learning approach was proved to be a reliable 

tool for gait analysis, also in this preliminary attempt. The fact that with deep learning approach gait 

events are extractable from sEMG signals is useful because in this way it is possible to avoid the 

use of foot-switch sensors and, consequently, to perform gait analysis with a smaller number of 

sensors and thus with reduced costs, time-consumption, and patient invasiveness. 
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1 - INTRODUCTION

Hemiplegia is a pathology that can be congenital or develop as a consequence of a stroke: in both 

cases it is caused by a cerebral dysfunction that is due to brain damages. These damages are located 

in one of the two hemispheres and the consequence is that the contralateral part of the body is 

paralyzed while the other one keeps well functioning  [1]. This disorder provokes a really serious 

asymmetry which prevents subjects to perform easily all common tasks of everyday life, above all  

walking.

Hemiplegia  occurs in  different  shapes,  for  example  it  can  be  characterized  by  an  anatomical 

deformity, like drop foot and equinism. Since this pathology can affect, besides adults, 2 per 1000 

children since birth, scientists are working very hard on research in order to understand how to 

develop more and more efficient rehabilitation programs so that adults who have experienced stroke 

can come back as earlier as possible to live a normal life and children with congenital cerebral palsy 

can grow like the other ones[2]. Among these rehabilitation programs, for example there is  the 

electrical  stimulation  of  muscles,  which  is  a  method  consisting  in  stimulating  electrically  the 

activity of those muscles that are not sufficiently innervated by the nervous system and thus cause 

the anatomical deformity [3]. 

The  development  of  these  programs  was  possible  only  by  using  methods  that  could  analyze 

efficiently the neuromuscular system activity because it is necessary to understand how and when 

muscles  activate  both  in  normal  and  pathological  conditions  in  order  to  treat  the  pathology 

successfully. One of these methods is the electromyography (EMG) which consists in recording the 

electrical activity of muscles: this method is largely used first of all because it is non-invasive so it 

is absolutely safe for the patient; moreover during experiments, this technique often showed very 

reliable results that gave a good explanation of the electrical activity of muscles  during different 

motor tasks. By applying this approach in laboratory with healthy and hemiplegic subjects who are 

requested to walk, it is possible to get useful information for the rehabilitation program.

During walking it  is fundamental to correlate EMG signals to  kinematic parameters in order to 

reach a reliable spatial-temporal identification of muscle activation patterns. This kind of approach 

appears particularly important to characterize and interpret potential disorders’ functional effects. 

Thereby, gait cycle is commonly divided in a 0-100% scale to correctly partition each of sub-phase. 

Every single of them, characterized by a synergic movement schema, has a specific role in walking 
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activity. Overall, the full sequence can be divided in two macro-stages: stance and swing phases 

that, respectively, occupy 60% and 40% of the whole gait cycle. The stance phase identifies the 

whole time frame when the foot is in contact with the ground, while the swing phase comprehends 

the remaining period when the foot is suspended in the air. In order to identify correctly gait phases 

it  is  important  to  individuate  transitions  between  a  stance  and  the  following  swing  phase  and 

viceversa: the transition between a swing and a stance is called heel-strike (HS) while the other one 

is called toe-off (TO).

A lot of methods have been proposed in order to  identify gait phases. In [4] force platforms and 

pressure  measurement  systems  have  been  used  to  perform gait  analysis:  by measuring  ground 

reaction forces and pressure under each foot, researchers have succeeded in identifying stance and 

swing phases. In another study [5] a pressure sensor and an inertial measurement unit (IMU) sensor 

were  used  for  the  measurement  of  the  angle  variation  of  the  ankle  joint;  with  this  procedure, 

researchers have succeeded in identifying transitions phases (heel-strike and toe-off) and also stance 

and swing periods. In last decades researchers focused their efforts trying to use machine and deep 

learning approach to improve the reliability of gait analysis. 

In [6], acceleration sensors have been applied on ankles, knees and hips, and then recorded data 

have  been  processed  by  utilizing  assembled  classifiers  in  combination  with  a  deep  learning 

algorithm in order to classify gait phases with the highest accuracy: once the best classifier was 

found, it was combined with the deep learning algorithm. 

In [7] researchers tried to classify gait types by recording gait data with pressure, acceleration and 

gyro sensors installed in a smart insole.  After acquisition,  a multiple deep convolutional neural 

network has been constructed and consequently gait features were extracted: the final classification 

has given very good results. All these methods have been proposed in order to perform gait analysis  

as more accurately as possible, so that researchers can elaborate rehabilitation protocols which vary 

depending on the type of pathology affecting walking, like hemiplegia.

Machine learning approaches were also satisfactorily implemented for the estimation of gait events 

from both kinematic data [8,9,10,11] and electromyographic (EMG) signals [11,12,13,14] during 

walking. The success of machine learning approaches has opened a novel perspective for reducing 

the complexity of experimental set-up. Predicting gait events from only EMG signals could remove 

the  need  of  further  sensors  or  systems  (foot-switch  sensors,  pressure  mats,  IMUs,  stereo-

photogrammetry) for the direct measurement of temporal data. This would be particular suitable for 

specific fields where measuring myoelectric signals is strongly recommended, such as the analysis 
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of neuromuscular pathologies such as hemiplegic cerebral palsy.

In the present work, a new method based on deep learning approach has been proposed: an artificial 

neural network for classification of the two main gait phases in children affected by hemiplegic 

cerebral palsy, by using only sEMG signals. Further aim was the prediction of basographic signals, 

i.e.  those  signals  which  contain  the  sequences  of  gait  events  (including heel-strike  and toe-off 

timing).
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2 - MUSCLE RECRUITMENT DURING 
WALKING

Walking is a very common activity in normal life of all people but the way in which it works and it 

is possible from an anatomically point of view is not so easy to understand. 

First of all walking is defined as a repetitive sequence of movements of the lower limbs (legs) that 

allow the advancement of the body without losing the maintenance of the balance; every sequence 

of movements from the heel contact on the ground until the following heel contact of the same foot 

identifies the so called “gait cycle”. During the advancement, one limb acts as a support for the 

body while the other one moves forward until it touches the ground; in this precise moment both 

feet are in contact with the ground but one of them is going to detach from it; when the rear limb is  

lifted up, body weight is transferred on the leaning foot until the other foot finishes its progress 

coming in contact with the ground; then another cycle can begin.  

So gait cycle can be subdivided in two big phases: the stance, which identifies the time frame in 

which the foot is in contact with the ground; the swing, that is referred to the remaining part of the 

gait cycle where the foot is suspended in the air. The precise moment in which stance begins is 

called “heel strike” while the corresponding moment to swing beginning is called “toe off”. 

Gait cycle begins when both feet lean on the ground, that is a very short gait period known as 

“double initial stance” and for each foot is equivalent approximately to the 10% of the gait cycle, so 

the total lean is equal to the 20%; the resting part of the cycle is constituted by single lean (40%) 

and swing (40%).[15]

Walking activity is made possible by a complex organization of muscles activity and bones in legs 

and feet. Bones are kept united by joints that play a fundamental role in allowing the performance 

of all movements which are very important for the gait cycle. Muscles are attached to bones through 

tendons and thanks to their continuous activation, movements can be performed.

In the present section, firstly a description of ankle-joint and knee-joint muscles is provided, then 

gait cycle and gait analysis methods are explained in details. 

2.1 - ANKLE-JOINT MUSCLES
The ankle is a joint that connects the leg and the foot: it is subdivided into two smaller joints that 

are the talocrural joint (also called tibio-talar joint), which connects tibia and talus, and the subtalar 
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joint which connects talus and calcaneus. 

The talocrural joint can generate two movements of the foot that are dorsiflexion and plantarflexion: 

the first is intended as the upward movement of the foot while the second represents the downward 

movement  of  the foot.  These two movements  are  very important  during walking because they 

permit the advancement of the body and the correct impact absorption when the foot has to sustain 

body weight. Dependently on the phase of the gait cycle, the talocrural joint produces different 

movements.[16][17]     

When the heel contact occurs, the talocrural joint is in a neutral position or at most it shows a 

plantarflexion of only 3-5 degrees; after that, there is the real first plantarflexion movement which is 

caused by the response to the transfer of body weight (phase known as loading response). 

Then, when also the forefoot comes in contact with the ground, plantarflexion is substituted by 
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Figure 1: The main joints of the foot: in particular the talocrural joint between the talus  
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dorsiflexion; for a small second fraction, the foot is in a stationary position while the tibia moves 

forward producing dorsiflexion movement which continues for all time the foot remains completely 

leaned on the ground: in this brief phase the maximum angle is reached, that is 10° and is kept until  

the end of the single stance.

After  that,  when  also  the  other  foot  comes  in  contact  with  the  ground,  there  is  a  sudden 

plantarflexion movement of the talocrural joint that can reach a maximum angle of 30° at the end of 

the  stance;  then  with  the  beginning  of  the  swing  phase,  the  talocrural  joint  performs  its  last 

movement during the gait cycle, that is the dorsiflexion. After that, in the central part of the swing, 

the dorsiflexion angle decreases until it reaches the neutral position (0°) which will be maintained 

for the resting part of the swing phase. 

So,  as  it  is  possible  to  notice,  the  talocrural  joint  performs  dorsiflexion  and  plantarflexion 

movements that alternate each other during gait cycle. These two movements are generated by two 

kinds of muscles, which are plantar flexion and dorsal flexion muscles. 

Anteriorly with respect to the talocrural joint there are three main dorsal flexor muscles: tibialis 

anterior,  the  extensor  digitorum longus  and the  extensor  hallucis  longus.  Here  below,  a  figure 

showing dorsal flexor muscles of the foot is reported:

The  tibialis  anterior  has  a  larger  section  with  respect  to  the  other  two  muscles  and,  as  a 

consequence, it has a greater mass, so it is more efficient in exerting a dorsiflexion action.
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Dorsal flexor muscles activate at the end of the stance: the first muscle that begins its action is the 

extensor hallucis longus. After that, in the central part of swing phase, the tibialis anterior and the 

extensor digitorum longus activate; the intensity of the activity of both muscles grow continuously 

also  during  the  final  part  of  the  swing  in  which  tibialis  anterior  plays  a  fundamental  role  in 

positioning the foot for the stance.

All  three muscles reach a high level  of  activity with the initial  contact  and they all  deactivate 

temporarily before the ending of the loading response. They reach their peak of intensity during the 

first part of the swing and the loading response phase.   

Posteriorly with respect to the talocrural joint, there are 7 muscles that are responsible of the plantar 

flexion movement so they are named plantar flexion muscles. These muscles are the soleus, the 

gastrocnemius  and  5  perimalleolar  muscles:  tibialis  posterior,  flexor  hallucis  longus,  flexor 

digitorum longus, peroneus longus and peroneus brevis; among them the first two have a bigger 

section so they contribute together to the execution of plantar flexion movements in a way that is  

much more considerable than the other ones. 

Perimalleolar muscles surround the medial and lateral malleoli but are much smaller than the soleus 

and  the  gastrocnemius  so  they  give  a  much  lower  contribution  to  plantar  flexion  movements. 

Among them, the flexor hallucis longus gives the greatest contribution to these movements.[19]

In the following page, a figure showing plantar flexor muscles is reported.

10



Soleus activates after the end of the loading response (8% of the gait cycle) and keeps its activity 

steady for all the central part of the stance; when the final part of the stance phase begins (45% of 

the gait cycle), soleus increases rapidly and importantly its activity, after that its action decreases 

quickly until the beginning of the double stance phase in which it stops completely.

Gastrocnemius  activates  immediately after  soleus  (12% of  the  gait  cycle)  but  its  action  grows 

slowlier and less. During the final part of the stance, the gastrocnemius increases suddenly its action 

intensity and finally, as the soleus, it decreases quickly its activity until the end of the stance, in 

which it stops definitely. However during electromyographic recordings it is frequent to notice an 

activation of the gastrocnemius also during the central part of the swing but nowadays it's still not  

clear the reason of this activation.  

For what concerns the other plantar flexor muscles, the perimalleolar ones, they activate differently 

from soleus and gastrocnemius: actually one of them, the tibialis posterior, activates immediately 

with the intial  stance (0% of the gait cycle) and remains active during the entire single stance; 
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Figure 3: Plantar flexor muscles [20]



immediately after the end of the tibialis posterior activity, the flexor digitorum longus begins its 

action (10% of the gait cycle) and subsequently flexor hallucis longus does the same (25% of the 

gait cycle).  

Peroneus longus and peroneus brevis muscles activate in the final part of the stance, and terminate 

their action in the  central part of the swing (55-58% of the gait cycle). From electromyographic 

recordings it is possible to notice that peroneus longus and peroneus brevis muscles activate with 

similar intensity and modality.[21]   

So the action of all these muscles, dorsal and plantar flexors, is fundamental for the modulation of 

the talocrural joint movements, actually their activation during gait cycle generate those movements 

that are very important so that walking activity can be performed correctly. 
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2.2 - KNEE-JOINT MUSCLES

The knee is the joint which connects femur and tibia, i.e. two long bones that represent (with the 

foot) the segments of the lower limb. The knee plays a fundamental role in locomotion during both 

stance and swing: during stance it maintains the stability of the lower limb, while during swing it 

allows through its flexion the advancement of the limb.

Like the ankle, also the knee can perform two movements in order to favor the stability and the  

advancement of the body during walking: flexion and extension.  These two movements can be 

performed thanks to the action of 14 muscles which regulate knee movements by contracting at 

precise instants during gait cycle in order to allow progression. 

During  stance,  extensor  muscles  activate  to  slow  the  knee  flexion,  while  during  swing  firstly 

extensor muscles and then flexor muscles activate in order to favor the correct progression of the 

limb.

For what concerns extensor muscles of the knee, there are 4 muscles which act exclusively on the 
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knee  joint:  vastus  intermedius,  vastus  lateralis,  vastus  medialis  longus,  and  vastus  medialis 

obliquus. A fifth muscle, the rectus femoris, contributes to knee extension but differently from the 

other  ones  it  doesn't  act  only on  the  knee  but  also  on the  hip.  These  5 muscles  compose  the 

quadriceps.  

The activity of all vasti muscles begins in the final part of the swing and increases rapidly in the 

following stance period when body weight is loaded on the leaning foot. Their action intensity 

remains high until the central part of the stance where it decreases very quickly going to zero. 

Rectus femoris activates much differently from vasti muscles: its action is quite short, actually it is 

comprised between the end of  the  stance and the  beginning of  the  swing;  moreover  its  action 

intensity is lower with respect to vasti muscles, so rectus femoris gives a smaller contribution to 

locomotion.

For what concerns flexor muscles of the knee,  there are two mono-articular muscles which act 

uniquely on the knee and determine directly its flexion: the short head of the biceps femoris and the 

popliteus. 

The short head of the biceps femoris activates at the beginning of the swing and continues its action 

until 2/3 of the swing period; in some cases, it can activate also in the final part of the stance period. 

The popliteus is active for all gait cycle phases, except the part of the swing period in which the  

short head of the biceps femoris is active; the popliteus action reaches its maximum intensity during 

the final part of the swing; another period of the gait cycle, in which popliteus activity is quite 

intense, is the final part of the stance.   

Besides  the  two  mono-articular  muscles  just  described,  there  are  the  hamstring  muscles 

(semimembranosus, semitendinosus and the long head of the biceps femoris) which are located in 

the posterior  part  of the thigh but  contribute significantly to  the knee flexion.  All  3  hamstring 

muscles reach the maximum intensity of their action in the final part of the swing: their activity start 

decreasing with the beginning of the following stance and cease when body weight begins to be 

transferred on the limb.   

Another important muscle that contributes to knee flexion is the gastrocnemius. This muscle acts 

principally on the talocrural joint but it exerts also a flexion action on the knee and begins its action 

when the foot has just leaned completely on the ground. Gastrocnemius increases its action intensity 

during stance until the heel is lifted up and terminates its activity just before the beginning of the 

swing.[23] 

So thanks to the activity of these muscles, the knee can perform three important tasks during gait.  
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Two of  these  tasks  are  performed  during  stance:  the  impact  absorption  when  body  weight  is 

transferred on the front limb and the stability during extension in order to sustain body weight. The 

third task is performed during swing: the knee must flex rapidly to favor the progression of the 

limb. 
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2.3 - GAIT PHASES

Gait cycle is constituted by two big phases, stance and swing, but by analysing in detail walking 

phases, it is possible to define 8 phases. 

The first 5 are comprehended in the stance period and are: 

• Initial contact

• Loading response

• Mid-stance

• Terminal stance

• Pre-swing

The other 3 phases are included in the swing period and are: 

• Initial swing

• Mid-swing

• Terminal swing

In the following a figure showing all gait cycle phases is reported:
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Figure 6: the eight phases of the gait cycle [24]



In the following pages a brief description of the 8 gait phases is reported.

2.3.1 - INITIAL CONTACT
Initial contact begins when the heel of the front foot comes in contact with the ground. Once the 

contact has occurred, the so called “body vector” is generated: this vector represents the reaction 

force of the ground to the stance. In this initial phase, body vector is behind the talocrural joint and 

this is very important for the following loading response in order to keep the progression. 

The talocrural joint forms a right angle with the foot so that the forefoot is turned upward and in this 

way the calcaneus can support the load and then roll in the following phase. For the support funtion 

the dorsal flexion action exerted by pretibial muscles is fundamental.

Sometimes  the talocrural  joint  can be  subjected  to  a  very little  plantar  flexion (3°-5°)  but  this 

doesn't  affect  the walking activity.  Simply it  follows that  the calcaneus will  perform a smaller 

rolling movement.   

Initial contact is the shortest phase of the entire gait cycle and its period corresponds to the 0-2% of 

the total cycle.[15] 
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2.3.2 - LOADING RESPONSE
Loading response (2-10% of the gait cycle) begins when the load is transferred on the front foot: 

this implies that not only the heel but also the forefoot is in contact with the ground.  

When body weight is transferred on the front foot, the talocrural joint performs a plantar flexion 

movement and the calcaneus begins to roll so that the forefoot moves downward on the ground and 

load can be successfully supported. The rolling of the calcaneus is very important because it also 

allows the correct advancement of the body; in the same way, also the plantar flexion movement of 

the talocrural joint is fundamental because if the angle between the tibia and the foot remained 

equal to 90° then the tibia would follow the foot in its complete movement and finally body weight 

wouldn't be supported and the subject would fall down.         

In order to have the correct progression in this  phase, it's  necessary the action of two pretibial 

muscles (tibialis anterior and extensor digitorum longus) which control and slow the plantar flexion 

movement of the talocrural joint. In this way, while the foot is leaning completely on the ground, 

the tibia advances normally (not too quickly) without any risk of falling for the subject. 

So at  the beginning of the loading response (2% of the gait  cycle),  there is a rapid movement 

downward  of  the  foot  which  is  favored  by the  talocrural  joint  flexion;  then  pretibial  muscles 

activate and slow the plantar  flexion movement so that  the forefoot comes in contact  with the 
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ground more slowly and the impact can be absorbed correctly. 

When the forefoot has finished to move downward, the movement of the talocrural joint changes 

radically becoming dorsal flexion movement; so in order to allow the progression of the body, the 

foot stays motionless on the ground and the tibia moves forward by means of the rotation of the 

tibio-talar joint.

For what concerns the end of the loading response, there isn't a precise moment in which this phase 

finishes: its end depends on walking speed of the subject.[15]

2.3.3 - MID-STANCE 
Mid-stance (10-30% of the gait cycle) begins when the rear foot detaches from the ground with the 

consequent total transfer of the body weight on the other foot: with the support of the load on only a 

foot, it's  possible to have the progression. In this phase of the gait cycle, the talocrural joint is 

subjected to a dorsal flexion movement that allows the tibia to rotate and to advance with respect to 

the foot. 

During the progression of the tibia, it is fundamental the action of the soleus which performs the 

task of controlling the rapid dorsal flexion that occurs at the beginning of the phase and to slow the 
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advancement  of  the  tibia  which  initially  is  quite  quick;  this  is  important  in  order  to  maintain 

stability  during  walking,  actually  if  soleus  doesn't  activate  correctly  (due  to  a  pathology  for 

example) the tibia advances so rapidly that the subject could fall down. The soleus activates at the 

beginning of mid-stance and increases its activity progressively until it reaches its maximum at the 

25% of the gait cycle and continues till the end of the phase.

Also other muscles activate during mid-stance: these are all  dorsal flexion muscles and are the 

gastrocnemius, the tibialis posterior and the two peronei muscles. The gastrocnemius doesn't act 

directly on the tibia because it departs from the distal femur and so it contributes more to the knee 

flexion.  For  what  concerns  the  other  muscles,  they are  behind  the  malleolus  so  they can't  act  

importantly on the tibia in order to modulate its movement.

Conversely the soleus binds tibia and calcaneus, and is also greater than the other upper mentioned 

muscles, so its action is much more considerable.[15] 
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2.3.4 - TERMINAL STANCE
The terminal stance (30-50% of the gait cycle) begins when the heel of the rear foot rises up and 

terminates when the other foot comes in contact with the ground. In this phase the body vector has 

reached  the  forefoot  and  the  talocrural  joint  doesn't  move  anymore,  actually  its  movement  is 

blocked by the soleus and the gastrocnemius. 

The advancement of the body produces, as already said, a displacement of the body vector which 

arrives to the metatarsal heads of fingers and, as a consequence, it  provokes the rotation of the 

forefoot that results in the calcaneus raising and in a further dorsal flexion of the talocrural joint: 

this moves just a little because it is subjected to the action of the soleus and the gastrocnemius 

which reach both a very high level of activity that is more or less 3 times greater with respect to the  

mid-stance phase.

The talocrural joint is then controlled by plantar flexor muscles and thanks to their action the foot 

and the tibia can rotate correctly and the progression of the body can occur in good conditions 

without the risk that walking stability is lost. This stability is favored by the fact that the rotation 

center is fixed on the metatarsal phalangeal articulations of fingers.[15][26] 
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2.3.5 - PRE-SWING
Pre-swing (50-60% of the gait cycle) represents the beginning of the second half of the gait cycle. 

This phase begins when the second foot comes in contact with the ground and lasts until the first 

foot doesn't begin to swing.   

At the beginning of pre-swing, the body weight is quickly transferred on the anterior foot:  this 

means that the posterior foot doesn't need to be stabilized at the level of the talocrural joint, so 

consequently both the soleus and the gastrocnemius decrease very quickly their intensity action that 

previously reached a  very high  level;  also  the  other  plantar  flexion muscles  (the  perimalleolar 

muscles) reduce their action and this generates a rapid plantar flexion of the talocrural joint of circa 

20°. However the quick transfer of the body weight to the anterior foot doesn't mean that the other 

foot isn't anymore subjected to a weight force, actually during double stance period the body weight 

is supported by both feet but not equally: the major part of body weight is supported by the anterior 

foot.

With the reduction of soleus and gastrocnemius activity, the posterior foot can perform the plantar 

flexion movement thank also to the fact that the body vector has its application point at the level of 

the metatarsal phalangeal articulations. The remaining action of plantar flexor muscles provokes a 

forward displacement of the tibia while fingers rest in contact with the ground and knee undergoes a 

rapid flexion so that it is ready for the imminent beginning of the swing.

At the end of the pre-swing, tibialis anterior and the extensor digitorum longus start activating in 

order to prepare the control of the talocrural joint for the moment in which swing will take place.

[15]      
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2.3.6 - INITIAL SWING
The initial  swing (60-73% of the gait  cycle)  begins when the posterior  foot  detaches from the 

ground and terminates when the suspended foot is parallel to the other one. In the precise moment 

in  which swing starts,  the talocrural  joint  is  in  a  plantar  flexion position of  20°.  Initially,  this 

position  is  not  impairing  for  walking  progression,  but  very  soon  the  tibialis  anterior  muscle 

activates and controls the talocrural joint which must perform a dorsal flexion movement because 

otherwise the correct advancement of the body is not possible, actually fingers would creep on the 

ground in the following phase, the mid-swing.

For this reason, pretibial muscles increase immediately their action intensity (at 5% of the initial 

swing) provoking the raising of the foot with a plantar flexion angle of 5°; when tibialis anterior and 

extensor  digitorum muscles  are  both  active,  fingers  perform a dorsal  flexion movement  which 

allows the normal progression of the body.[15]
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2.3.7 - MID-SWING
Mid-swing (73-87% of the gait cycle) begins when the swinging limb passes in front of the other 

one and terminates when the tibia of the advancing limb is in vertical position with respect to the 

ground.  During  mid-swing the  most  important  thing  is  that  the  foot  performs a  dorsal  flexion 

movement because the knee extends due to the progression, so the foot must move in this way in 

order to avoid the contact with the ground that would destabilize the subject.

In  the  first  part  of  mid-swing,  the  tibialis  anterior  and  the  extensor  hallucis  longus  increase 

sensitively their activity: in this way they favor the dorsal flexion movement of the talocrural joint  

until the foot forms a right angle with the tibia. 

In the second part of this phase, muscles reduce their activity because it's not necessary a great 

action in order to keep the talocrural joint in the neutral position in which the foot is at right angle 

with the tibia.[15] 
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2.3.8 - TERMINAL SWING
The terminal swing is the last phase of the gait cycle (87-100%): it begins when the tibia is in 

vertical position and terminates when the heel touches the ground. 

During this phase it's very important that the right angle between the foot and the tibia is kept in 

order to favor the following initial contact with which another gait cycle can start: so it's necessary 

that the pretibial muscles increase again their activity (their action was reduced in the second part of 

the mid-swing) but they don't succeed in maintaining the talocrural joint in the neutral position, 

actually it's frequent that it is subjected to a plantar flexion movement between 3° and 5°.

Pretibial muscles keep high their action intensity not only at the beginning of terminal swing but 

also in the final part because they must be prepared to face the load that after the initial contact will 

be transferred on the advancing foot.[15] 
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2.4 - METHODS FOR GAIT ANALYSIS 
Human gait study began some thousands of years ago: according to historical documentations, it 

seems that Aristotle (the philosopher of the ancient Greece) was one of the first pioneers of gait 

analysis.[27] 

Successively a lot of other scientists tried to study human gait attempting to explain how it works 

from a  bio-mechanical  point  of  view, the  phases  that  compose  it  and what  are  the differences 

between the gait of a normal subject and the gait of a pathological one, but only with the arrival of 

photography and cinematography it was possible to notice some aspects of human gait sequences 

that  earlier  were  not  noticeable  with  naked  eyes;  so  the  development  of  film cameras,  at  the 

beginning of 1900s, represented an important progress step. 

Another fundamental improvement occurred in the 1970s with the development of video camera 

systems which were able to provide much detailed images regarding the gait of every subject with  

the advantage of a great reduction of costs and time constraints. The development of these new 

technologies was very important in order to analyze successfully also gait of pathological subjects 

like those affected by cerebral palsy, Parkinson's disease and other neuromuscular disorders and to 

make a comparison with healthy subjects' gait.

Then in the early 1980s new progresses were made for what concerns analysis instrumentation, 

actually researchers began to use computer based systems in their laboratories; in the mid-1980s 

also infrared camera systems were developed in order to improve further the efficiency of the gait  

analysis.[28] 

Successively also machine learning approach began to be used in the clinical context. Now the 

discussion  will  be  focused  on  the  presentation  of  the  main  gait  analysis  methods: 

stereophotogrammetry,  floor  sensors,  surface  electromyography,  inertial  measurement  units  and 

objective analysis techniques. 
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2.4.1 - STEREOPHOTOGRAMMETRY 

Stereophotogrammetry is a technique that permits to estimate the 3-Dimensional position of a point 

from images obtained by means of two or more cameras. This method is used in order to determine 

the three spatial coordinates of points that are moving in space in any instant: in this way it is  

possible to have a representation of the path of all points.

There must be at least two cameras which have to be placed in precise points of the laboratory with 

a definite orientation dependently on the path of the object under observation. The position and the 

orientation  of  cameras  are  fixed  and  represent  the  so  called  “calibration  parameters”  that  are 

fundamental  to  determine  the  spatial  coordinates  of  points.  Each camera  has  an  own cartesian 

reference system which is used to compute image coordinates, i.e. points coordinates with respect to 

the camera system. 

   

 

Once calibration parameters and image coordinates are known, their values are fed in input to a 
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system of equations: the resolution of these equations gives the three spatial coordinates of points 

for each instant in which cameras have acquired images.

Stereophotogrammetry has proved to be a good method in computing the coordinates of points in 

space and for this reason it is largely used to perform gait analysis. For this purpose it's necessary to 

place markers on ankles, knee and hips according to a standard protocol. After that the protocol has 

been chosen and markers have been correctly placed on the subject, gait analysis can be performed. 

So the subject walks and at each instant cameras acquire images of all markers that change position 

and orientation: in this way it is possible to recognize linear and angular movements of leg joints  

and to understand when these movements occur and how large they are. 

Nowadays stereophotogrammetry is one of the most used methods to perform gait analysis.[29]  

2.4.2 - ANALYSIS WITH FLOOR SENSORS
This analysis method consists in placing electrical sensors on the floor, precisely on the so called 

“force platforms” in which gait information are recorded by force or pressure sensors and moment 

transducers that activate when subjects under examination pass on them. 

For this analysis technique it is possible to use two kinds of floor sensors: force platforms and 

pressure measurement  systems.  Force platforms perform the task of  measuring ground reaction 

forces  (GRF)  produced  by  body  force  vectors  applied  on  them,  while  pressure  measurement 

systems  are  used  to  detect  the  center  of  pressure  under  each  foot  and  to  quantify  pressure 

components generated by normal forces but not those ones produced by shear forces.   

In the following page a figure showing two force platforms is reported :
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Floor sensors were used in a lot of studies and often gave very reliable and accurate information 

about gait parameters and for this reason researchers carry on using them. These devices measure 

ground reaction force and, moreover, monitor the way in which the pressure of the foot varies from 

the initial contact to the end of the stance; in this way, if the analysis is focused on a pathological  

subjects, it is possible to understand from the foot pressure evolution which is the impairment of the 

patient and to make diagnosis.[4]

2.4.3 - SURFACE ELECTROMYOGRAPHY
Surface  electromyography  (sEMG)  is  a  non-invasive  procedure  that  consists  in  recording  the 

electrical  activity of muscles by means of surface electrodes  that  are  applied on patient's  skin. 

Muscles activation is the result of the nervous system action which emits electrical signals that,  

after passing through the spinal cord, arrive to motor neurons which provoke muscles contraction; 

when muscles activate, their cells produce an electric potential. 

Muscular activity is recorded through surface electrodes that catch electrical potentials generated by 

muscle cells. In order to record signals in the correct way, first of all it's necessary to dry skin and 

removing hairs which create an electrical impedance that decreases the signal-to-noise ratio; after 

that a conductive gel layer must be applied on the skin surface where electrodes are then placed, so 

that electrical impedance between the skin and the electrodes is decreased and signal quality is less 
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Figure 17: Two force platforms (one for each foot) used for posture  
and gait analysis[39]



affected. 

Then it is possible to apply electrodes on the skin: they must be made of a conductive material, like 

silver chloride, so that signal-to-noise ratio is high and consequently the recording is more accurate. 

Here below a figure showing electrodes placed on the lower limbs is reported: 

Once  the  skin  has  been  adequately  treated  and  the  electrodes  have  been  correctly  placed,  the 

electrical activity of muscles can be recorded: electrical signals are caught by electrodes, then are 

amplified and converted in digital signals in order to generate on a monitor the electromyographic 

track, i.e. the graphical representation of the electrical activity of muscles. In this graph the vertical 

axis  represents  the  amplitude  of  the  electrical  potential  measured  in  millivolt  (mV),  while  the 

horizontal axis represents the time in seconds of muscles activity.

But the quality of electrical signals can be affected by some noise sources, like movement artifacts 

and electromagnetic noise. Movement artifacts are caused by the fact that when muscles activate, 

their length decreases, so a movement of electrodes with respect to the skin is generated and, as a  

consequence,  the  signal-to-noise  ratio  is  lowered.  Electromagnetic  noise  is  caused  by 
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electromagnetic sources (for example mobile phones or other electrical devices) which are too close 

to the subject under examination and thus affect signals quality.      

Because of the frequent presence of noise artifacts, it's necessary to process acquired signals by 

means of numerical filters in order to remove noisy components; the processing procedure allows to 

clean signals quite well.

Thus, with surface electromyography it is possible to obtain a quite reliable explanation of muscles 

activity, i.e. how and when they activate. For this reason, this analysis method is also used in the 

medical field on unhealthy subjects (like for example those having walking problems) in order to 

make diagnoses of pathologies.[30]

2.4.4 - INERTIAL MEASUREMENT UNITS

Inertial measurement units (IMU) are electronic devices composed by a combination of one or more 

accelerometers and one or more gyroscopes in order to detect the acceleration and the angular rate 

of a specific body. These devices are very useful to perform gait analysis, actually with them it is  

possible to compute gait parameters, like velocity that is calculated by integrating the acceleration; 

with a further integration, displacement can be obtained. Thank to the presence of gyroscopes, it is 

also possible to measure the angular velocity of joints then, with integration, angle variations are 

computed.  

Inertial measurement units can be used in different ways to perform gait analysis: it is possible to 

detect gait phases by placing a single device on the knee or on the ankle or even on the subject's  

back if it is put sufficiently close to the center of mass; in this last case gait events can be detected  

by computing the vertical acceleration of the center of mass with reliable results. 

These devices are good also because with them it is possible to find gait abnormalities that permit to 

diagnose pathologies, like hemiplegia.[31]

2.4.5 - OBJECTIVE ANALYSIS TECHNIQUES 
Objective  gait  analysis  methods consist  in  using  different  devices  for  the  measurement  of  gait 

parameters. There are two main objective analysis methods for gait: image processing and wearable 

sensors.[32]  
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2.4.5.1 - IMAGE PROCESSING
This method is typically constituted by a system of many analog or digital cameras with lens which 

are used to take information about gait: data can be acquired for example by converting images into 

black and white and then calculating the number of light and dark pixels; this technique gives very 

good results for what concerns gait recognition, so it is largely used to identify people from the way 

they walk. 

Image processing can be applied in different ways and one of them is based on depth measurement 

(also called range imaging) with which it is possible to get important details from an image with an 

optimal  and  quick  real-time  process.  Depth  measurement  can  be  performed  by using  different 

techniques, like Time-of-Flight method and infrared thermography. 

Time-of-Flight method consists in using a system of cameras that illuminate the observed scene (i.e. 

the  walking  subject)  with  near  infrared  light  which  after  reflection  is  projected  onto  a 

complementary metal oxide semiconductor sensor that, by using signal modulation, measures the 

phase-shift in order to quantify the distance covered by the subject; in this way it is possible to get  

information about gait.[33] 

Infrared thermography is based on the process of creating visual images from surface temperatures. 

Thanks to the very high skin emissivity (close to 1), which doesn't depend on pigmentation, the 

great  absorptivity (close  to  1)  the  low reflectivity (close  to  0)  and the  null  transmissivity it  is 

possible to measure the infrared thermal intensity of the human body; in this way, who uses infrared 

thermography can, for example, analyze muscles activation and obtain important information about 

gait.[34]   

2.4.5.2 - WEARABLE SENSORS  
Wearable sensors, as suggested by the name, are sensors that are placed on the human body: to 

perform gait analysis, these devices are located on feet, knees and hips and are largely used by 

clinicians. The main devices that are included in this category of sensors are: force sensors, inertial 

sensors and goniometers.    

2.4.5.2.1 - FORCE SENSORS 
Force sensors are located beneath each foot and measure the ground reaction force that is generated 

during  the  stance  period  of  the  gait.  These  devices  are  composed  by  force  transducers,  like 
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piezoelectric and capacitive transducers:   

– piezoelectric sensors: these sensors are constituted by 3 deformation meters that measure 

orthogonal deformations in 3 different directions. 

– capacitive sensors: these devices are used to measure forces and pressures. These sensors 

can't work singularly but need to be coupled with another capacitive sensor.

2.4.5.2.2 - INERTIAL SENSORS
Inertial sensors are electrical devices used to measure the acceleration, velocity and orientation of 

an object. The main sensors included in this category are accelerometers and gyroscopes. 

The accelerometer measures acceleration along its sensitive axis. It is composed by a proof mass 

which is attached to a spring; when the accelerometer undergoes an acceleration, the mass moves 

causing a compression or an elongation of the spring and this displacement gives the acceleration 

experienced by the sensor. Accelerometers can measure acceleration only along one direction, so in 

order to have complete spatial characterization, it's necessary to use 3 accelerometers. 

The gyroscope is used to measure the angular velocity; for what concerns gait analysis gyroscopes 

can be used to measure quite well angular variations and angular velocity of lower limb joints, so 

that  it  is  possible  to  detect  gait  phases.  Gyroscopes  are  often  used  in  combination  with 

accelerometers to perform gait analysis.

2.4.5.2.3 - GONIOMETERS
These devices are used to measure angle variations for hips, knees, ankles and metatarsals. One of 

them is the strain gauge-based goniometer which gives the measure of the angle dependently on 

how its resistance varies due to the flexion experienced. A flexion causes an increase of resistance, 

actually  current  takes  more  time  to  travel  along  the  sensor;  this  resistance  enhancement  is 

proportional to the flexion angle. 
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3 - HEMIPLEGIC WALKING

Hemiplegia is a pathology that causes the paralysis of one whole half of the body (“hemi” is a 

Greek word that means “half”, while “plegia” means “weakness”). This paralysis is caused by brain 

damages which are located in one of the two cerebral hemispheres (left and right) and that provoke 

the total inability to execute correctly movements with the contralateral half of the body: this means 

that if damages affect the left cerebral hemisphere, then paralysis involves the right half of the body 

and viceversa.    

This pathology sometimes develops during pregnancy (or birth) but in most of cases it is caused by 

a stroke with symptoms that are sudden and unexpected: recovery time can change dependently on 

the entity of the pathology and on the patient's age. The main symptom is a reduced or even null  

ability to move the body parts involved due to the malfunctioning of the upper motor neurons that 

transmit a too weak electrical potential to the spinal cord and thus also to lower motor neurons; as a 

consequence,  muscles  aren't  correctly  innervated  and  even  the  most  common  movements  are 

inhibited, actually their preparation and coordination is strongly affected. 

Another  important  symptom  is  a  considerable  change  of  the  sensitivity  which  is  another 

consequence of brain damages, actually it is provoked by a malfunctioning of proprioceptors and 

nociceptors: proprioceptors, also known as sensory receptors, are responsible of the monitoring of 

limbs position in space; nociceptors are receptors mostly located under the skin that activate when 

an external stimulus is potentially harmful for tissues. In hemiplegic patients both proprioceptors 

and nociceptors don't work in the right way, so the consequence is that patients don't realize in 

which position their limbs are and they could feel pain even with a small contact or conversely they 

couldn't perceive anything if they are touched or hit.

Sometimes subjects affected by hemiplegia have also other symptoms like language difficulties, 

lower view capability and even respiratory problems.[35][36]   

As already said, hemiplegia can also be congenital, so in this case it affects children since birth 

causing a lot  of problems to their  physical and psychological development.  Winters et  al.  have 

proposed a classification of this pathology in 4 types: Winters' type 1 in which there is a lower  

innervation of ankle dorsiflexors in the hemiplegic side, resulting in a difficulty in pulling up the 

foot with the consequence that stance phase is much shorter.

Winters'  type  2  is  more  serious  than  the  first  one,  actually  is  characterized  by  the  so  called 
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“clubfoot” that is a foot which is rotated inward and downward;[4] what can happen during walking 

is a hyperextension of the knee in stance phase. Winters' type 3 in addition to the previous ones 

presents a decreased knee flexion during swing phase, while Winters' type 4 is characterized by a 

lower motion of the hip.[37]    

Even if a classification of hemiplegia types has been provided, there are still  a lot of questions 

without any answers for what concerns this pathology. Scientists, nowadays, are still working very 

hardly  by  means  of  research  and  experiments  with  newer  and  more  efficient  measurement 

instrumentation in order to understand as much as possible when and how leg muscles activate 

during gait cycle with the aim to develop new rehabilitation protocols.

In last decades researchers have tried also to look for new solutions against this highly impairing 

pathology: they didn't simply think about the rehabilitation based only on physiotherapy, but they 

also tried to project a particular instrumentation that can stimulate electrically those muscles which 

aren't sufficiently innervated by motor neurons due to the neurological dysfunction provoked by 

hemiplegia. 

But researchers have still a lot of work to do, actually nowadays even if this pathology has already 

been classified by Winters et al. there are some studies which have pointed out that two hemiplegic 

subjects who belong to the same Winters' class could show different gait and muscle activation 

patterns.[38] 

The  most  frequent  hemiplegic  forms  are  Winters'  type  1  and 2  which,  as  previously said,  are  

characterized respectively by drop foot and equinus foot.[39] 

Drop foot is among the most recurrent anatomical abnormalities in hemiplegic children: scientific 

studies have pointed out that drop foot is caused by a reduced force of ankle dorsiflexor muscles 

which is provoked by a lesion or an insufficient maturation of the motor cortex of the corticospinal 

tract. The consequence of this physical deformity is that the subject can't raise upward the foot 

because dorsiflexion muscles can't activate with enough intensity in order to control the talocrural 

joint which can't perform the dorsal flexion movement:  so the foot remains in a plantar flexed 

position and is turned downward.

In the following page, a figure showing the drop foot is reported:
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Due to the low activity of dorsiflexor muscles, particularly the tibialis anterior, the talocrural joint is 

not controlled in its movements, so the subject can't walk normally and the effects on the gait cycle 

are easily visible: for the subject it's quite difficult to lift up the toe, so the swing period is very 

short; moreover there is another important consequence that is the difficulty in beginning a new gait 

cycle, actually without dorsal flexion movements of the talocrural joint, the heel-strike can't occur 

and so gait cycle doesn't begin regularly.[40]     

Another common physical deformity that is largely diffused among hemiplegic subjects is the so 

called equinus foot (or clubfoot): according to researchers, this congenital deformity is the most 

frequent among hemiplegic subjects, actually statistic data show that it concerns unless 1 over 1000 

newborns.[41]

Clubfoot is a foot which is rotated inward and downward and it doesn't lose its deformity without 

treatment;[42] besides the abnormal rotation, the foot sometimes can be also smaller than the other 

one.[43]   

In the following page, a figure showing the difference between a normal foot and a clubfoot is 

reported:
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The clubfoot deformity is mainly caused by a limited ankle motion which is due to the tightness of  

calf muscles (soleus and gastrocnemius) or of the Achilles tendon. Sometimes it could also happen 

that a fragment of a broken bone (derived for example from an injury) can block the ankle motion; 

other times, but it is less frequent, clubfoot can also be provoked by spasms of the two calf muscles 

which are probably due to neurological disorder.

This deformity induces the patient to load a lot of weight on the other foot in order to compensate  

the  limits  of  the  hemiplegic  foot:  these  compensation  trials,  unfortunately,  can  cause  the 

development of problems in the healthy foot, like heel pain, inflammation of the Achilles tendon, 

ankle pain and arthritis of the midfoot.[44]

The presence of the clubfoot and the associated effects, including pain, affect heavily the gait cycle 

of the subject that can't be regular.

During walking the most evident and frequent effects of the ankle-foot complex dysfunction are a 

longer cycle time, a shorter stride length and a shorter swing phase. The differences are particularly 
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Figure 20: comparison between a normal foot and a clubfoot



evident for the cycle time and the stride length: actually cycle time can be twice longer with respect 

to normal conditions, and the stride length can be also less than the half. For what concerns the 

swing phase, differences are not so evident.  

The talocrural joint is subjected to a lower dorsiflexion action during stance period;also for what 

concerns plantar flexion movement, the angles variation is reduced.[45]

Among children, there is also a particular form of hemiplegia that is quite diffused: the spastic 

hemiplegia. This pathology is a kind of cerebral palsy which is characterized by a neuromuscular 

disorder that provokes a continuous and uninterrupted contraction of muscles of one half of the 

body: this is due to the fact that brain damages cause a continuous transmission of action potentials 

to neuromuscular junctions on the unhealthy half of the body.[46] 

Here below is reported a figure of a subject with spastic hemiplegia:

Obviously the constant stimulation of muscles has important consequences on gait performance: 

first of all gait cycle is longer, walking speed is smaller and there is also a longer support phase, i.e.  

the healthy lower limb must support body weight for more time; since the healthy lower limb must 

compensate for the other limb, it shows a shorter swing period.      

Moreover  there  a  lot  of  differences  from  healthy  subjects  also  for  what  concerns  the  angle 
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Figure 21: Subject with spastic cerebral palsy



variations of the hip, knee and the ankle joints at the moment of the initial contact and during foot  

extension. During walking, subjects with spastic hemiplegia must incline their upper body a little 

backward in order to compensate their inability to lift up the affected lower limb and the reduced 

capacity  to  flex  the  hip;  moreover  they also  contract  their  abdominal  muscles  continuously to 

compensate their inability to flex the hip. 

Another important aspect that it is possible to notice from the spastic hemiplegic subject walking is 

that when the ankle terminates its extension, the knee starts extending immediately: this is much 

different from healthy subjects.[47]   

Since anatomical deformities caused by hemiplegia are not so rare and can't be corrected without 

any treatment,  researchers  have  elaborated  different  rehabilitation  techniques:  one  of  the  most 

important is the functional electrical stimulation.

Functional electrical stimulation (FES) is a rehabilitative technique which was elaborated to correct 

foot drop deformity in hemiplegic subjects classified as Winters' type 1. This rehabilitative method 

can be applied correctly only by knowing well gait parameters of normal people, actually it was 

thought to relearn gait patterns of healthy subjects.

First of all, it's necessary to apply pressure sensors under shoes and inertial sensors on feet, shanks 

and hips in order to get immediately information about the gait of the hemiplegic subject: data are 

sent to a computer that elaborates them and, after  having identified the beginning of the swing 

phase, it  activates a wireless inertial sensor placed on the foot which stimulates electrically the 

tibialis anterior and dorsiflexor muscles. The stimulation occurs by generating an electrical current 

which excites motor neurons, weakly activated because of brain damages, so that muscles can be 

correctly innervated to perform dorsiflexion movement.

This rehabilitative technique, together with voluntary effort, showed very good results in correcting 

drop foot during walking.[3]   
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Figure 22: Functional electrical stimulation



4 - ARTIFICIAL NEURAL NETWORK

An artificial neural network (ANN) is a computational system that is inspired to biological neural 

networks, i.e. those organizations of neurons that are connected each other by synapses; biological 

neurons receive external stimuli (mechanical, thermal, chemical ecc.) in form of electrical signal, 

then elaborate information and after that they transmit it to the other neurons which perform another 

elaboration in order to generate a response to stimuli.[48]

Artificial neural networks functioning is similar to biological ones, actually they are constituted by 

an interconnection of little units, called artificial neurons; these units receive signals, process them 

and finally transmit to the other units, in a way that is similar to biological neurons. But artificial  

neural networks are much simpler than biological ones: for this reason these models can't be used in 

order to represent and understand biological neural networks.[49][50] 

Originally,  ANNs were thought by scientists  in  order  to develop mathematical models  that  can 

explain  the  information  processing  activity  of  biological  neurons;  but  very  soon  researchers 

understood  that  these  models  couldn't  be  applied  to  biological  nerve  cells  for  the  previously 

exposed reason. So they decided to try to use artificial neural networks in order to perform tasks 

which don't concern biology. In this way they discovered that there were a lot of contexts in which 

these revolutionary models could be utilized successfully. Some of them are for example computer 

vision, speech recognition, machine translation and even something that has always been considered 

performable only by humans, like painting.[51]    

Here below a figure showing the structure of an ANN is reported:
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In this figure every circle represents an artificial neuron (also said node) and arrows represent all 

connections between the output and the input of a couple of neurons. Each of these links allows 

signals to travel from a neuron to the next one: each neuron can receive more input signals and give  

more output ones.[52] 

So ANNs are typically organized in three principal neurons layers: the first one is called “input 

layer” and receives information from the outside; the second one is called “hidden layer” and is 

responsible for the major part of internal processing and performs the task of patterns extraction; the 

third one is called “output layer” and produces ANN outputs.[53] 

There is great quantity of different artificial neural networks and their complexity varies above all 

on the base of the number of neurons layers which compose them. This means that an ANN can be 

constituted by more neurons layers that are located between the input and the output one and are all 

comprised in the hidden layer. 

The complexity of an ANN doesn't depend uniquely on the quantity of neurons layers but also on 

the type. Sharma and Copra[54] provided an important description of the two main types of ANN 

which are the feed-forward neural networks (FFNN) and the recurrent neural networks (RNN). 

In the figure below, there is the schematic representation of both networks:  
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Figure 24: Feed forward and recurrent neural networks



FFNNs  can  have  a  unique  layer  or  multiple  ones  but  in  both  cases  the  information  flow  is  

unidirectional, i.e. data are transferred only from the input layer to the hidden one (that, as already 

said, can be composed by multiple layers) and finally to the output one: this means that signals can't 

in any way be transmitted in the opposite direction; moreover neurons of each layer can transmit 

signals only to neurons of the following layer: so in a single layer, neurons don't communicate and 

thus they don't exchange data in any way.

RNNs work in a totally different manner,  in fact information are not processed only once.  For 

example hidden layer neurons can send back data for a further processing and in this case neurons 

of the inputs layer receive the so called “feedback inputs”; in the same way, as it is possible to 

notice from the previous figure, information can be transmitted back also from output layer neurons 

to the hidden layer and then they can come back even to input layer for a new processing.[55]     

Whatever kind of ANN is used, it's necessary to perform repetitively a training procedure in order to 

find the best configuration. 

The training of an ANN consists in giving continuously data in input to the network, so that unit 

connections can be optimized: in this way errors in prediction phase can be sensitively reduced and 

it can be possible to reach an optimal level of accuracy.[7]     

If we consider the simplest ANNs, i.e. with a single hidden layer, training process can be divided in 

six steps: firstly data are passed to the input layer which, after the elaboration, passes the output to 

the  hidden layer  and,  during the  transfer,  all  data  are  multiplied  by the first  set  of  connection 

weights; secondly, when signals arrive to the hidden layer, they are summed, are elaborated again 

and, after having been multiplied by the second set of connection weights, are transferred to the 

output layer; thirdly, signals arrive to the output layer, are summed and undergo the last elaboration, 

so that the network output is generated; fourthly the output is compared with the expected value and 

the difference between them is computed; fifthly,  after the difference entity has been evaluated, 

connection  weights  are  opportunely  modified;  lastly  the  modification  of  connection  weights  is 

saved for a new training, in which new data are given in input to the network.[56]      

By applying the training process, and so by correct appropriately connection weights, ANNs can 

perform quite well a lot of tasks and thus can be very useful. Actually for their great efficiency, they 

are  used  also  for  medical  diagnosis,  and  researchers  continue  to  work  with  them in  order  to 

elaborate more and more efficient models.  
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5 - MATERIALS AND METHODS
5.1 - DATASET
Gait data regarding hemiplegic children were provided by retrospective studies  performed at the 

Laboratory of Gait Analysis, Ospedale Santa Croce, Moncalieri(TO), Italy. The database included a 

total of 20 subjects: 10 Winters’ group I (W1, 6 females and 4 males), of age ranging from 5 to 13 

years, mean height (± SD) = 129 ±14 cm, mean mass = 28.7 ±8.4 kg; and 10 Winters’ group II (W2, 

5 females and 5 males), of age ranging from 4 to 10 years, mean height (± SD) = 120 ±18 cm, mean 

weight 22.7±11.8 kg.

All subjects who presented another pathology, although they had however difficulties in walking, 

were excluded from experiments.    

For the present work hemiplegic children classified as Winters' type 1 and as Winters' type 2 were 

recruited because these two forms of hemiplegia are not so serious that subjects aren't able to walk.  

The present study respects all regulations and ethical principles decided by the Helsinki Declaration 

and has been approved by an institutional committee. Moreover all subjects' parents have given 

their consent to the execution of the test.

5.2 - SIGNAL ACQUISITION
In  order  to  do  experiments  of  classification  and  prediction,  surface  electromyographic  and 

basographic signals of all 20 hemiplegic were acquired: the acquisition was performed by means of 

sEMG probes (5 for each lower limb, which record the activity of 5 different muscles) and 3 foot-

switches sensors that were applied under each foot, one beneath the heel and the others under the 

first  and the  fifth  metatarsal  heads;  these  sensors  activate  continuously during  subject  walking 

giving  information  about  gait  cycle  and  the  temporal  duration  of  each  phase.  Both  for 

electromyographic  and  basographic  signals  acquisition,  a  multichannel  recording  system  (with 

resolution: 12 bit; sampling rate: 2kHz) has been used.   

All sEMG probes were allocated on both lower limbs skin in order to record the electrical activity 

of  5  muscles:  tibialis  anterior,  gastrocnemius  lateralis,  vastus  medialis,  rectus  femoralis  and 

hamstring. 

Signals  recording has been performed by respecting specific  rules which were provided by the 
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European concerted action  SENIAM (surface EMG for a non invasive assessment of muscles): 

these regulations regard the placement of electrodes which have to be located in some precise points 

of the skin by considering some important aspects like motor points of the limb and muscular fiber 

orientation.[57]

After the correct positioning of probes and foot-switch sensors, all 20 hemiplegic children were 

requested to start walking on the floor for 2 minutes and 30 seconds with their own pace without 

requiring them to accelerate or slow in any moments,  so walking was performed in absolutely 

natural conditions by all young subjects.

5.3 - PRE-PROCESSING
After acquisition, electromyographic and basographic signals were submitted to a pre-processing 

procedure in  order  to  remove electrical  noise  which would affect  the reliability of  data  giving 

distorted results. 

Electromyographic signals were processed by means of two linear-phase FIR filters: a high-pass 

and a low pass filters with cut-off frequency respectively equal to 20 Hz and 450 Hz. After that, all 

surface electromyographic signals were further processed with a second-order Butterworth low-pass 

filter with cut-off frequency equal to 5 Hz in order to extract the envelope.

In the following page, two figures putting in comparison an acquired signal and an envelope one 

obtained with pre-processing are reported: 
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Figure 25: Tibialis anterior signal not processed

Figure 26: Tibialis anterior signal processed with envelope extraction



For what concerns basographic signals they have been processed in order to identify the start and 

the end of each gait cycle, and also to detect stance and swing phases that are identified by means of 

two binary numbers: 0 for stance and 1 for swing. This purpose was reached by applying an anti-

causal  anti-bounce  filter  so  that  spurious  spikes,  which  were  caused  by  switch  bounces,  are 

removed.

With this procedure it was possible to individuate also the beginning of the stance (heel-strike)  and 

the swing (toe-off).      

        

5.4 - DATA PREPARATION 
After that pre-processing has been correctly performed, data regarding each muscle need only to be 

normalized  in  order  to  have  values  comprised  in  the  [0-1]  interval.  After  the  normalization 

procedure, data are structured in this way: for each of the 20 subjects there is a file that is composed 

by 5 columns, each of which contains values (that are rational numbers between 0 and 1) that 

represent the electrical activity of a specific leg muscle which was recorded by means of probes; 

from the first to the fifth column, muscles are reported in the following order: Tibialis anterior, 

gastrocnemius lateralis, vastus medialis, rectus femoralis and hamstring.

Every file contains also a 6th column reporting integer values (0 and 1) which were derived from 

ground  truth  signals,  i.e.  basographic  signals  recorded  with  foot-switch  sensors.  These  values 

identify the phase of the gait cycle: 0 represents the stance phase, i.e. the time frame in which the 

foot is in contact with the floor, while 1 represents the swing phase, that is the period in which the  

foot is suspended in air. This last label is the one on which the analysis is focused in order to predict  

gait events (heel-strike and toe-off).    

Once data are acquired, they need to be prepared adequately before being given in input to the 

neural network for the training procedure. First of all it's necessary to divide each signal in windows 

of samples in order to obtain vectors of elements which will be used to feed the classifier. 

In order to understand with which windows gait phases classification and gait events prediction are 

optimized, experiments have been performed on windows of 20, 50, 100 and 200 samples. So if for 

example we choose to produce 100 samples windows, what we get is a big vector that is composed 

by 100 sequences, each of which contains 5 elements. So in total this vector has 500 elements and is 

structured in this way: the first 5 elements represent the sample values of the 5 muscles in the first  
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time-sample; the following group of 5 elements constitutes the values of the second sample and so 

on until the hundredth sample.

After that samples windows have been generated, it's possible to go on with folds creation, that is a 

procedure  with which  20 folds,  each  of  which  contains  windowed data  of  19  subjects  for  the 

network training and 1 for the test. For each fold it is possible to distinguish two categories of 

subjects: learned subjects who are used to perform the training of the neural network; unlearned 

subjects  who are  utilized  for  the  test  of  the  neural  network  in  which  gait  events  prediction  is  

performed. 

So, in few words, every fold is composed by windowed data regarding 19 learned subjects (LS set) 

and 1 unlearned subject (US set). Moreover for each fold there is a different subject for the test: this  

means that a subject is used as test subject in a fold, while in all the other folds it is used as training  

subject.

Since  the  purpose  is  to  measure  the  phase  classification  performances  not  only  for  unlearned 

subjects but also for learned ones, the LS set has been divided into training set (LS-train) and test 

set  (LS-test).  LS-train  contains  the  90% of  the  windowed of  each  train  subject,  while  LS-test 

includes the remaining 10%. 

Once all 20 folds have been created, it is possible to proceed with the following step of the work: 

the network training. 

5.5 - NEURAL NETWORK
There are a lot of types of artificial neural networks that can be used in order to classify gait phases 

and to predict foot-floor contact signal. As already said in the previous chapter, the main types of 

artificial neural network are two: the feed-forward neural network (FFNN) and the recurrent neural 

network (RNN). 

In the present work,  all  experiments have been performed by using a feed-forward  multi  layer 

perceptron neural network with 3 hidden layers (FF5 model). Each of these layers is composed by a 

set of units (the first one has 512 units, the second one has 256 units, the third one has 128 units), 

called artificial neurons, which perform the task of elaborating incoming signals from the previous 

layer. After the entire elaboration, the output signals was fed to a sigmoid function and then a 0.5 

threshold is utilized in order to get a binary output: if the output has a value that is lower than 0.5  

the label 0 is assigned; otherwise the label 1 is assigned.
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For  what  concerns  experiments,  a  stochastic  gradient  descent  (SGD) was  used as  optimization 

algorithm so that connection weights between two neurons layers are optimized; moreover a binary 

cross entropy (BCE) has been utilized as the loss function. 

For what regards the choice of the learning rate, the value 0.01 was experimentally considered the 

best learning rate for FF5 model and for this reason it was used in all experiments of the present  

work. After that the learning rate has been chosen, it is possible to proceed with the ANN training 

that was performed by means of an early stop technique which consists in training the network for 

at most 100 epochs: if the accuracy on the validation set didn't increase for 10 consecutive epochs, 

then the network training is stopped. 

At the end of the procedure, the best learned parameters were taken for the following evaluation of 

the neural network performance over LS-test and US sets with the basographic signal that is used as 

ground truth signal.

5.6 - GAIT EVENTS TIMING DETECTION
After that the neural network training has been performed, it's possible to proceed with the test 

procedure, which consists in testing the neural network by predicting the basographic signals and 

comparing them with the original ones in order to verify the efficiency and the precision of the 

selected model. 

With prediction, 20 basographic signals were obtained, one for each subject: so for every subject 

there is an array containing sequences of 0 and 1 that represent respectively the stance and the 

swing period. These sequences allow to identify easily HS, i.e. the transition from 1 to 0, and TO, 

that is the transition from 0 to 1.

After predicted basographic signals have been obtained, it's necessary to perform the cleaning of 

each one. Actually these signals, after prediction, can show very short phases (short sequences of 0 

or 1) that absolutely can't represent correctly the stance and the swing period: in order to optimize 

the performance in gait events prediction, it's necessary to clean as much as possible every signal by 

choosing an adequate threshold so that  superimposition  of  phase  transitions  on some tolerance 

intervals can be avoided. This cleaning procedure allows to cancel  false HS inside each swing 

period (every 0 between two 1) and false TO inside each stance period (every 1 between two 0).

So, in order  to understand which threshold allows to obtain the best gait  events  prediction,  all 

predicted basographic signals have been cleaned with 5 different thresholds: 25, 50, 150, 250 and 
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300 milliseconds (ms).

If  for  example  you choose a  threshold  equal  to  300  ms,  the first  HS is  detected  and then  the 

following 600 samples are scanned to find and, eventually, remove those having value equal to 1; 

when  the  600th sample  has  been  reached,  the  successive  HS  is  identified  and  then  the  same 

procedure is repeated until the last sample is reached.

For what concerns toe-off events, the procedure is identical: initially the first toe-off is identified 

and then the following 600 samples are scanned in order to individuate and take off those samples 

assuming the value of 0;  after  that the 600th sample has been scanned, the following toe-off is 

identified and then the same process is repeated and so on. 

5.7 - PREDICTION EVALUATION
After that signals have been cleaned, it's possible to proceed with the last step of the work: the 

evaluation of the basographic signal prediction. This is the final part of all experiments and it's 

crucial in order to understand the reliability of phase transitions prediction. For that purpose, since 

signals prediction was performed by a classifier of EMG signals segments, it's necessary to evaluate 

the performance of the machine in assigning the right value to every EMG segments (0 for stance 

and 1 for swing).  

This purpose is reached through the computation of 4 statistical parameters: accuracy, precision, 

recall and F1 score. Unfortunately this procedure is not so easy and rapid as it can seem, actually 

the calculation of these parameters doesn't give reliable information about the evaluation of the 

basographic signal prediction: for example if errors are located in proximity of phase transitions, 

also a high accuracy could give unsatisfactory results for what concerns the time error of transition 

instants. 

For this reason, predicted basographic signals given by the classifier were further processed (after 

the cleaning process) with the aim to remove imprecise prediction information and to improve the 

performance quality. 

So in order to perform another signals processing it's necessary to introduce an important statistical 

parameter:  the tolerance.  This is  a temporal parameter  that allows to  classify all  predicted gait 

events  as  true  positives  or  false  positives.  For  that  purpose,  after  having  consulted  scientific 

literature, tolerance was set to 600 milliseconds. 

This means that, by comparing signals acquired by means of foot-switches sensors (ground truth 
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signal) with basographic predicted ones, if a predicted HS (or TO) event is sufficiently close (less 

than  600  milliseconds)  to  the  corresponding  gait  event  in  the  ground  truth  signal,  it  will  be 

considered  a  true  positive.  More  precisely  a  true  positive  will  be  found  if,  by  taking  into 

consideration the instant at which a gait event has been predicted and the instant at which the same 

event appears in the ground truth signal, the absolute value of the difference between these two 

instants is lower than the chosen tolerance; otherwise, the predicted gait event is considered a false 

positive.

After that, precision, recall and F1 score can be measured; for all true positives, also the mean 

average error (MAE) was computed: this value is defined as the average time difference between 

the predicted gait event and the one, of the same type, in the ground truth signal.

Precision, recall, F1 score and MAE are so defined:

– precision = tp/(tp+fp)

– recall = tp/tp+fn

– F1 score = 2*(precision*recall)/(precision+recall)

where:

– tp = true positives

– fp = false positives

– fn = false negatives

In  the  present  work,  basographic  signals  prediction  evaluation  was  performed  by  using  other 

tolerance values: 100, 200 and 300. 

Then the corresponding values of the computed parameters are compared among them in order to 

understand at which tolerance gait events prediction gives the most reliable results. 

53



6 - RESULTS 

In  the  present  work,  experiments  have  been  performed  in  order  to  optimize  classification  and 

prediction  performances  of  the  used  neural  network.  Firstly,  gait  phases  classification  was 

performed both for learned and unlearned subjects; then gait events prediction was performed on 

unlearned subjects and so basographic signals were obtained. 

After  that,  these  signals  were  cleaned  with  5  different  thresholds:  25,  50,  150,  250  and  300 

milliseconds. Then the prediction performance was evaluated by processing predicted signals in 

order to remove false prediction. For that purpose, 4 different tolerance values were tested in the 

experiments: 100, 200, 300 and 600 milliseconds. At the end, signals prediction was evaluated by 

computing precision, recall, F1 score and mean average error both for HS and TO. 

In  the  following  pages,  there  are  some  tables  and  graphical  representations  reporting  results 

obtained from experiments.
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GAIT PHASES CLASSIFICATION RESULTS 
Here below there is a table showing the average values, calculated over the 20 folds, of accuracy 

(acc), precision (P), recall (R)  and F1 score (F1) regarding the classification of stance (0) and 

swing (1) performed for learned (L) and unlearned (U) subjects, considering windows with 20, 50,  

100  and  200  samples  (spw means  “samples  per  window”).  For  each  of  these  parameters,  the 

corresponding standard deviation (SD) is reported on the right side. 

Table 1: Gait classification results
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Acc_U 76,79 9,79 79,39 8,93 80,09 10,47 80,89 9,68

Acc_L 84,10 1,92 82,05 0,68 82,35 0,88 82,35 0,78

P_0_U 76,59 16,12 78,81 16,05 81,17 16,21 81,59 16,28

R_0_U 75,62 19,42 79,50 17,35 78,49 21,54 79,71 19,36

F1_0_U 72,62 14,77 76,10 13,04 75,62 18,31 77,17 14,89

P_1_U 80,04 15,99 82,65 15,47 82,93 16,24 83,34 16,18

R_1_U 81,05 12,12 82,36 12,00 84,68 12,00 85,00 11,32

F1_1_U 78,64 9,71 80,69 9,31 81,80 9,73 82,38 9,67

P_0_L 83,92 2,62 81,61 1,98 82,56 1,32 83,52 1,53

R_0_L 80,33 2,99 78,10 2,58 77,26 2,46 76,64 2,00

F1_0_L 82,05 2,25 79,76 0,92 79,79 1,21 79,90 0,97

P_1_L 84,31 2,00 82,50 1,56 82,27 1,45 81,55 1,27

R_1_L 87,20 2,39 85,35 2,14 86,53 1,53 87,17 1,56

F1_1_L 85,71 1,72 83,86 0,69 84,33 0,79 84,25 0,75

FF5 
model 

Avg 
(spw=20)

SD   
(spw=20)

Avg 
(spw=50)

SD   
(spw=50)

Avg 
(spw=100)

SD  
(spw=100)

Avg 
(spw=200)

SD 
(spw=200)



RESULTS FOR WINDOWS WITH 20 SAMPLES  

In the table below, it is possible to see the mean values of precision, recall, F1 score and MAE (with 

the corresponding standard deviation) computed by evaluating gait events prediction, considering 

windows of 20 samples at different tolerances and thresholds for HS. All these values were obtained 

by calculating the average of values of all 20 folds: for every fold, precision, recall, F1 score and 

MAE were computed, then these values were averaged and the standard deviation was calculated.    

Table 2: Results of the gait events prediction for HS considering windows of 20 samples
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Threshold Tolerance
Precision HS Recall HS F1 HS MAE HS
AVG SD AVG SD AVG SD AVG SD

25 100 29.4 17.9 52.9 26.8 37.2 21.2 45.7 12.0
50 100 31.6 20.1 50.4 26.8 38.3 22.8 46.0 12.1
150 100 33.1 25.8 39.1 27.6 35.4 26.4 43.3 13.3
250 100 34.5 27.1 35.0 27.1 34.3 26.8 43.6 17.3
300 100 35.4 27.8 33.2 27.1 33.7 27.0 43.5 17.4
25 200 44.9 16.7 80.7 19.0 56.6 17.7 80.7 32.4
50 200 47.4 18.3 75.8 19.1 57.3 18.6 79.9 33.7
150 200 50.4 25.0 60.0 26.4 54.1 25.1 80.6 34.3
250 200 51.4 27.2 52.0 27.3 51.1 26.8 80.7 36.8
300 200 52.9 27.9 49.4 27.7 50.2 27.2 80.9 37.9
25 300 54.5 16.7 98.8 18.4 69.0 17.3 108.3 43.4
50 300 57.1 18.0 92.1 16.9 69.3 17.7 106.3 46.1
150 300 60.3 24.6 71.8 24.9 64.8 24.4 108.2 46.4
250 300 60.5 25.9 61.0 26.0 60.0 25.7 107.5 51.0
300 300 61.6 26.9 57.2 27.0 58.4 26.5 105.1 48.8
25 600 75.5 16.6 100.0 28.9 86.1 17.6 198.8 64.9
50 600 77.3 17.0 100.0 24.6 87.2 17.1 193.1 68.3
150 600 80.4 20.4 95.9 20.4 86.5 19.6 195.4 91.3
250 600 78.0 20.6 77.6 20.1 77.0 20.3 185.5 93.9
300 600 77.8 20.9 70.3 22.6 72.6 21.5 179.0 94.9



In the following table, there are the mean values of precision, recall, F1 score and MAE (with the 

corresponding standard deviation) calculated for TO, over the 20 folds, considering windows of 20 

samples.

Table 3: Results of the gait events prediction for TO considering windows of 20 samples
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Threshold Tolerance
Precision TO Recall TO F1 TO MAE TO 
AVG SD AVG SD AVG SD AVG SD

25 100 26.4 15.0 47.3 23.5 33.3 17.6 51.5 10.2
50 100 28.0 16.2 44.9 23.0 33.9 18.5 49.6 13.0

150 100 34.2 21.5 40.2 23.4 36.5 22.2 50.1 15.2
250 100 38.1 23.9 36.9 21.7 37.1 22.6 46.7 17.9
300 100 38.7 23.9 33.2 19.9 35.0 21.0 45.7 16.9
25 200 42.2 21.0 75.1 29.8 53.0 23.7 89.5 23.4
50 200 44.8 23.0 71.1 29.0 54.0 25.0 90.4 25.8

150 200 54.4 28.7 63.4 28.9 57.9 28.6 93.3 31.0
250 200 59.7 30.1 57.9 27.9 58.1 28.8 92.6 31.0
300 200 61.3 30.9 53.0 27.1 55.6 28.1 93.8 31.8
25 300 50.0 21.2 90.5 29.8 63.1 23.4 118.3 43.4
50 300 52.9 22.9 85.2 27.7 64.1 24.2 118.7 46.5

150 300 64.4 27.0 75.3 25.0 68.6 26.0 120.6 51.3
250 300 70.8 27.5 68.1 25.3 68.5 26.2 119.6 52.2
300 300 72.1 28.1 61.9 25.6 65.0 26.0 120.1 53.2
25 600 67.5 17.7 100.0 35.6 80.6 19.0 202.6 84.4
50 600 70.1 18.1 100.0 28.8 82.4 18.3 197.0 88.5

150 600 81.3 19.2 96.5 14.7 87.3 17.0 183.5 92.2
250 600 86.3 19.5 83.3 16.9 83.6 17.8 173.0 88.3
300 600 87.9 19.9 75.7 19.9 79.3 18.8 171.6 90.0



RESULTS FOR WINDOWS WITH 50 SAMPLES
In  the  following  table  you  can  see  the  average  values  of  the  same  parameters  (with  the 

corresponding standard deviation) computed taking into consideration 50 samples windows for HS, 

over the 20 folds, at different tolerances and thresholds 

 
Table 4: Results of the gait events prediction for HS considering windows of 50 samples
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Threshold Tolerance
Precision HS Recall HS F1 HS MAE HS
AVG SD AVG SD AVG SD AVG SD

25 100 40.3 18.5 62.8 20.7 48.4 19.4 44.0 10.7
50 100 42.4 19.9 61.5 21.2 49.5 20.5 43.9 10.7
150 100 44.4 25.4 50.7 26.9 46.7 25.7 44.5 11.8
250 100 45.4 27.2 45.0 26.8 44.5 26.4 45.0 12.1
300 100 47.0 27.1 43.8 26.9 44.4 26.3 44.9 11.4
25 200 54.5 17.1 86.4 13.0 65.8 15.9 70.6 24.6
50 200 56.4 18.3 83.6 14.4 66.4 17.1 69.5 25.1
150 200 59.1 25.0 67.8 25.4 62.5 24.8 71.0 25.9
250 200 59.4 26.6 58.5 26.6 58.1 26.0 70.5 26.8
300 200 61.9 26.3 56.7 27.4 57.9 26.3 70.8 26.9
25 300 62.1 17.0 99.6 12.4 75.3 15.5 92.2 36.2
50 300 63.4 18.0 95.0 13.8 74.9 16.5 88.8 37.7
150 300 66.2 24.5 76.2 23.6 70.0 23.8 91.9 38.6
250 300 65.7 25.2 64.5 25.4 64.2 24.7 90.8 42.5
300 300 67.9 24.6 61.8 26.6 63.3 25.2 90.0 43.1
25 600 81.0 15.7 100.0 23.1 89.5 15.6 174.9 60.6
50 600 81.7 16.0 100.0 20.8 89.9 15.1 169.2 64.2
150 600 84.6 17.6 97.2 14.2 89.5 15.7 169.7 98.9
250 600 82.1 17.6 79.2 17.6 79.6 17.2 161.4 102.2
300 600 80.8 17.4 71.5 21.6 74.1 19.0 145.5 94.9



Here below there is the table reporting the mean values of the same parameters calculated for TO, 

over the 20 folds, considering again 50 samples windows. 

Table 5: Results of the gait events prediction for TO considering windows of 50 samples
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Threshold Tolerance
Precision TO Recall TO F1 TO MAE TO 
AVG SD AVG SD AVG SD AVG SD

25 100 27.9 15.9 45.0 24.8 34.0 19.0 52.0 12.3
50 100 29.4 17.2 44.4 25.0 34.9 20.0 51.4 11.8

150 100 37.2 23.3 42.0 25.1 39.1 24.1 52.7 15.3
250 100 40.2 25.9 38.8 24.6 39.0 25.1 48.2 15.7
300 100 40.4 25.8 35.8 24.2 37.2 24.7 48.1 15.9
25 200 45.2 21.1 72.0 27.6 54.7 23.6 89.6 26.2
50 200 47.6 22.7 71.0 28.0 56.2 24.8 90.2 27.0

150 200 59.4 28.3 66.8 27.5 62.2 28.0 91.1 29.8
250 200 63.6 30.3 60.9 28.6 61.4 29.2 91.0 29.4
300 200 64.4 30.7 56.1 29.0 58.6 29.2 90.8 28.2
25 300 54.0 19.9 86.5 22.0 65.4 20.7 117.6 44.0
50 300 56.5 21.1 84.7 22.4 66.8 21.6 117.6 46.4

150 300 69.8 25.1 78.9 21.5 73.3 23.6 116.5 48.9
250 300 75.8 25.4 72.0 23.2 72.9 23.9 118.1 50.4
300 300 77.7 25.6 66.6 24.8 69.9 24.1 119.3 50.1
25 600 68.8 17.1 100.0 23.0 81.5 16.8 187.0 74.7
50 600 71.1 17.5 100.0 20.9 83.1 16.7 181.8 76.8

150 600 82.8 19.3 94.8 13.6 87.4 16.7 164.1 81.5
250 600 87.6 20.1 83.4 17.7 84.4 18.4 157.2 78.8
300 600 89.3 20.1 77.1 22.2 80.7 20.1 157.2 77.6



RESULTS FOR WINDOWS WITH 100 SAMPLES
Here below there is a table reporting mean values of precision, recall, F1 score and MAE regarding 

HS: these values were computed at each tolerance and threshold, over the 20 folds, considering 

windows of 100 samples. 

 
Table 6: Results of the gait events prediction for HS considering windows of 100 samples
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Threshold Tolerance
Precision HS Recall HS F1 HS MAE HS
AVG SD AVG SD AVG SD AVG SD

25 100 40.9 18.8 60.3 23.0 47.8 20.5 45.7 8.0
50 100 44.4 20.8 58.1 23.3 49.4 22.0 45.2 8.1
150 100 46.4 24.2 50.4 25.3 47.6 24.7 46.1 8.5
250 100 47.7 25.0 46.3 25.7 46.3 25.3 46.8 10.2
300 100 49.9 24.6 45.5 25.8 46.6 25.3 46.4 9.5
25 200 57.0 17.3 84.1 19.5 66.3 17.5 74.2 23.3
50 200 60.6 19.1 79.5 19.9 67.3 19.1 72.3 23.8
150 200 63.4 23.5 69.0 24.4 65.0 23.7 73.1 23.8
250 200 64.5 23.3 62.3 25.4 62.2 24.3 72.9 24.9
300 200 67.0 22.8 60.9 26.3 62.4 25.0 72.6 24.8
25 300 65.3 18.0 96.5 18.7 76.0 17.6 95.4 35.2
50 300 68.3 19.4 90.0 19.0 75.9 18.9 91.3 36.3
150 300 71.2 23.3 77.7 23.6 73.1 23.3 92.4 36.5
250 300 72.2 22.4 69.5 25.0 69.7 23.8 92.0 38.4
300 300 75.0 21.1 67.7 26.1 69.6 24.4 91.9 39.3
25 600 81.3 16.4 100.0 26.4 89.7 18.4 164.9 56.6
50 600 83.3 16.7 100.0 21.4 90.9 17.5 156.1 62.7
150 600 85.6 16.9 93.3 17.4 87.9 16.8 153.0 84.7
250 600 83.7 15.9 79.5 20.5 80.1 18.4 138.7 77.9
300 600 84.6 15.4 74.9 22.7 77.4 19.8 128.7 68.7



Here below there is the table reporting the average values, calculated over the 20 folds, of precision, 

recall, F1 score and MAE concerning TO . 

Table 7: Results of the gait events prediction for TO considering windows of 100 samples
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Threshold Tolerance
Precision TO Recall TO F1 TO MAE TO 
AVG SD AVG SD AVG SD AVG SD

25 100 30.4 17.3 45.1 25.4 35.6 20.3 51.9 12.9
50 100 32.9 19.8 43.5 25.8 36.8 22.2 51.6 13.1

150 100 39.6 24.8 42.3 25.6 40.3 25.1 52.0 14.3
250 100 42.0 26.9 39.2 24.8 39.7 25.3 48.6 17.2
300 100 42.5 26.9 36.7 24.0 38.3 24.6 48.7 17.1
25 200 48.1 23.1 71.1 29.7 56.3 25.8 87.5 28.6
50 200 52.0 25.6 68.6 29.9 58.1 27.5 88.6 29.5

150 200 61.1 30.1 65.7 29.8 62.4 30.0 88.3 30.7
250 200 64.2 31.7 60.6 30.4 61.3 30.7 88.9 32.7
300 200 65.1 31.8 56.7 29.9 59.0 30.2 88.7 31.9
25 300 56.6 22.8 84.6 27.4 66.4 24.5 113.9 44.7
50 300 60.8 24.6 81.1 27.0 68.2 25.6 114.6 48.9

150 300 70.9 27.7 76.9 26.4 72.8 27.2 113.6 50.9
250 300 74.9 28.5 70.5 28.0 71.3 28.0 114.1 52.8
300 300 76.0 28.4 66.1 28.3 68.8 27.9 114.3 52.8
25 600 71.0 18.1 100.0 26.8 83.1 18.4 182.9 81.4
50 600 74.5 18.8 99.7 22.7 83.2 18.2 174.6 85.8

150 600 83.7 20.4 90.5 18.4 85.5 19.0 162.6 89.2
250 600 87.4 20.7 81.7 21.9 82.7 20.9 158.9 89.9
300 600 88.3 20.8 76.5 24.0 79.7 22.2 158.1 89.4



RESULTS FOR WINDOWS WITH 200 SAMPLES
In the following table there are the average values of precision, recall, F1 score and MAE computed 

over the 20 folds, considering windows of 200 samples. These values concern HS.

 
Table 8: Results of the gait events prediction for TO considering windows of 200 samples

62

Threshold Tolerance
Precision HS Recall HS F1 HS MAE HS
AVG SD AVG SD AVG SD AVG SD

25 100 44.1 17.1 56.1 17.1 48.7 17.2 47.8 3.8
50 100 44.1 17.1 56.0 17.1 48.6 17.2 47.8 3.8
150 100 47.3 19.6 51.9 19.0 48.9 19.3 48.2 4.2
250 100 48.7 20.6 48.5 19.4 48.1 19.9 48.0 5.3
300 100 51.3 20.7 45.9 20.0 47.7 20.2 48.4 6.0
25 200 62.0 19.0 79.5 17.2 68.6 18.0 76.3 13.2
50 200 62.0 19.0 79.5 17.2 68.6 18.0 76.3 13.2
150 200 66.9 22.2 73.8 20.9 69.3 21.2 77.5 13.8
250 200 69.4 22.8 69.3 21.8 68.6 21.9 77.9 14.7
300 200 73.6 26.6 65.6 30.3 68.1 23.4 78.5 29.8
25 300 68.7 19.0 88.5 15.3 76.1 17.3 93.4 25.0
50 300 68.7 19.0 88.4 15.3 76.1 17.3 93.4 25.0
150 300 73.4 22.0 81.3 19.7 76.2 20.6 93.4 25.4
250 300 76.2 22.4 76.2 21.1 75.3 21.4 94.0 26.4
300 300 80.8 34.2 71.7 32.4 74.6 35.4 94.4 40.9
25 600 83.5 15.7 100.0 15.0 91.0 13.9 154.9 64.1
50 600 83.6 15.7 100.0 15.0 91.1 13.9 155.0 64.1
150 600 87.2 15.8 96.8 10.6 90.6 12.8 147.7 77.2
250 600 89.8 15.1 89.3 11.6 88.6 13.0 144.4 78.5
300 600 91.3 39.7 80.0 33.7 83.7 27.5 129.9 77.1



Here below there is the table reporting the average values, computed over the 20 folds, of the 4 

parameters obtained for TO. 

Table 9: Results of the gait events prediction for TO considering windows of 200 samples
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Threshold Tolerance
Precision TO Recall TO F1 TO MAE TO 
AVG SD AVG SD AVG SD AVG SD

25 100 30.3 16.2 39.2 19.5 33.7 17.5 50.7 5.2
50 100 30.3 16.2 39.2 19.5 33.8 17.6 50.7 5.2

150 100 34.3 19.6 37.7 19.9 35.5 19.6 50.6 5.1
250 100 36.3 20.7 36.1 20.2 35.7 20.2 50.7 5.3
300 100 37.1 22.1 32.9 20.7 34.2 20.8 51.3 5.4
25 200 51.7 23.6 66.7 25.6 57.5 24.7 91.8 18.2
50 200 51.7 23.6 66.7 25.6 57.5 24.7 91.8 18.2

150 200 58.3 27.7 63.8 26.4 60.2 27.2 92.2 17.9
250 200 61.3 28.7 60.8 27.0 60.4 27.8 92.7 18.6
300 200 62.4 36.7 54.8 34.4 57.2 30.2 93.1 37.2
25 300 62.4 23.0 81.2 23.6 69.6 23.4 122.1 32.6
50 300 62.4 23.0 81.2 23.6 69.6 23.4 122.1 32.7

150 300 70.0 26.6 77.1 24.2 72.5 25.6 122.7 34.3
250 300 73.4 27.0 73.0 24.9 72.4 25.7 122.7 35.8
300 300 75.0 33.9 65.7 34.8 68.7 31.7 123.0 59.6
25 600 77.5 18.1 100.0 18.6 87.3 16.5 184.2 77.4
50 600 77.6 18.2 100.0 18.6 87.4 16.5 184.2 77.4

150 600 84.3 19.6 93.3 14.6 87.4 16.7 176.1 83.1
250 600 87.4 13.0 86.4 15.9 86.0 17.8 171.3 82.7
300 600 89.3 44.1 77.6 20.5 81.4 37.4 171.2 101.4



PRECISION 
Here below there are graphical representations of precision values for HS and TO, so that it  is 

possible to see how this parameter changes by varying the threshold used to clean predicted signals. 

All graphs show mean precision computed over the 20 folds with a tolerance of 600 milliseconds. 

Figure 27: Precision values for different window size with tolerance of 600ms
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In the following there are the graphical representations of mean precision values, obtained over the 

20 folds, varying with tolerance at the fixed threshold of 300 ms.

Figure 28: Precision values for different window size with threshold of 300ms
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RECALL 
Here below graphical representations of mean recall values for HS and TO are reported.

All  graphs  show  mean  recall  values  computed,  over  the  20  folds,  with  a  tolerance  of  600 

milliseconds.

Figure 29: Recall values for different window size with tolerance of 600ms
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In the following, there are the graphical representations of mean recall values varying, computed 

over the 20 folds, with tolerance at the fixed threshold of 300 ms.

Figure 30: Recall values for different window size with threshold of 300ms
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F1 SCORE
Here below there are graphical representations of mean F1 score values, computed over the 20 

folds, for HS and TO,.

All graphs show F1 score computed with a tolerance of 600 milliseconds.

Figure 31: F1 Score values for different window size with tolerance of 600ms
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In the following there are the graphical representations of mean F1 score values, computed over the 

20 folds, varying with tolerance at the fixed threshold of 300 ms.

Figure 32: F1 Score values for different window size with threshold of 300ms
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MEAN AVERAGE ERROR (MAE)
Here below, graphical representations of MAE values for HS and TO were reported.

All graphs show MAE computed, over the 20 folds, with a tolerance of 600 milliseconds.

Figure 33: MAE values for different window size with tolerance of 600ms
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In the following, there are the graphical representations of MAE values,  computed over the 20 

folds, varying with tolerance at the fixed threshold of 300 ms.

Figure 34: MAE values for different window size with threshold of 300ms
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MEAN AVERAGE ERROR AND TOLERANCE
Here below there are a table and a graphical representation showing how mean average errors, 

calculated  over  the  20  folds,  change  with  tolerance  both  for  HS and  TO.  Data  were  reported 

considering windows with 200 samples and a threshold of 300.

Table 10: MAE for HS and TO considering windows of 200 samples
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Threshold Tolerance MAE HS MAE TO 
200 300 100 48,40 51,31
200 300 200 78,46 93,06
200 300 300 94,37 123,01
200 300 600 129,93 171,15

Samples per 
window

Figure 35: MAE computed for different tolerances
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FALSE POSITIVES AND TOLERANCE
In this  page there are a table  and a graphical representation showing how the number of false 

positives changes with tolerance both for HS and TO. Data were reported considering windows with 

200 samples and a threshold of 300.

Table 11: False positives for HS and TO considering windows of 200 samples
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Threshold Tolerance FP-HS FP-TO
200 300 100 52,00 67,29
200 300 200 28,71 40,75
200 300 300 21,25 27,88
200 300 600 10,29 13,33

Samples per 
window

Figure 36: False positives found for different tolerances
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7 - DISCUSSION

In the present work, basographic and sEMG signals of 20 hemiplegic children, previously acquired, 

were used to reach a precise purpose, i.e. classifying gait phases (stance and swing) and predicting 

with the highest reliability transitions between these phases, i.e. heel strike and toe off, by using the 

deep learning approach. 

In order to get the most accurate gait phases classification and gait events prediction from sEMG 

signals of hemiplegic children, many experiments have been performed in order to obtain the best 

performances by the artificial neural network. 

Experiments were performed each time considering windows composed by a different number of 

samples (20, 50, 100, 200) in order to see when the neural network gives the best results. Sensitivity 

of the performances to the threshold of the procedure for cleaning the predicted basographic signals 

and to the tolerance to identify true positives were also tested.

After having performed the training and the test of the neural network, results about the accuracy of 

gait phases classification were obtained both for learned and unlearned subjects. The first thing that 

it is possible to notice immediately is that classification accuracy in learned subjects is higher than 

unlearned subjects' one, as expected Table 1). However, there is not a great difference between the 

two subjects categories (except for the case of windows with 20 samples), and this induces to think 

that the chosen neural network, a feed-forward multi layer perceptron neural network with 3 hidden 

layers (FF5), is able to learn signal patterns that generalize well to unlearned subjects. The best 

accuracy for what concerns unlearned subjects was obtained with 200 samples windows, while on 

learned subjects  the  best  accuracy was  found with  20  samples  windows (that  gave  the  lowest 

accuracy for unlearned subjects). Moreover, it is easily noticeable that on unlearned subjects the 

standard deviation is higher. This is partly due to the fact that gait patterns can change importantly 

from subject to subject. Also for what concerns precision, recall and F1 score learned subjects show 

better results than unlearned ones, as expected, both for stance and swing periods. As in the case of 

accuracy, unlearned subjects show again a much higher standard deviation, i.e. a greater variability. 

By looking at table 1, it is possible to notice also that swing phases show better results than stance 

ones both for learned and unlearned subjects.

The present approach allows also to predict foot-floor-contact signals and thus the transition timing 

between phases, i.e. HS and TO. Four different tolerances to identify true positives in the predicted 
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foot-floor-contact  signal  were  evaluated.  For  each  of  these  tolerances,  five  different  increasing 

thresholds for leaning the predicted foot-floor-contact signals were tested (Tables 2-9). Moreover, 

by  observing these  tables,  it  is  possible  to  see  how prediction  performance varies  considering 

windows with a different number of samples. First of all, it is easy to notice that precision, recall 

and F1 score increase, reaching a higher accuracy level, by setting the temporal tolerance to 600 

milliseconds: this happens for both gait events, HS and TO (see tables 2-9). Also the mean average 

error increases for HS and TO but it is simply due to the fact, that with a higher temporal tolerance 

there are less false positives (see table 11 and figure 36) and more true positives which then will be 

considered for the prediction evaluation. This is due to the fact that in predicted signals a gait event 

is considered as a true positive if it is temporally less distant than 600 ms from the corresponding 

gait event in the ground truth signal.

By considering parameters obtained at each experiment, it is evident that, globally, all parameters 

improve  by increasing  the  number  of  samples  per  window;  improvements  are  visible  also  by 

increasing  tolerance  for  all  parameters,  except  the  mean  average  error.  For  what  concerns  the 

threshold  by  increasing  its  value,  both  for  HS  and  TO,  precision  improves,  recall  worsens; 

conversely F1 score and MAE remain more or less constant, except the case in which the tolerance 

is set to 600 ms (see tables 2-9 and figures 27-35).   

At the end, the best performance in classifying gait phases and predicting gait events in hemiplegic 

children was obtained by creating 200 samples windows to feed in input to the neural network and 

by post processing predicted signals setting the threshold to 300 ms and the tolerance to 300 ms. 

Thus, this configuration was proposed by the present work as approach to classify stance and swing 

and to predict basographic signals with the highest reliability: the classification accuracy was 82.4% 

for learned subjects and 80.9 for unlearned subjects; for what concerns prediction the mean absolute 

error was 94.4 ± 40.9 ms for HS and 123.0 ± 59.6 ms for TO. 

In order to estimate the goodness of these results it's necessary to compare them with what reported 

in literature. In [64] gait analysis was performed on healthy adult subjects walking on a treadmill: in 

this study a classification accuracy of 87.5% for learned subjects and of 77% for unlearned ones 

was accomplished; mean average errors, computed by means of a neural network, were 35 ± 25 ms 

for HS and 49  ± 15 ms for TO; in [56] gait  analysis  was performed on healthy adult  subjects 

walking in natural conditions: classification accuracy was 94.8% for learned subjects and 93.4 for 

unlearned ones; mean average errors were computed through a neural network and were 21.6 ± 7.0 

ms for HS and 38.1 ± 15.2 for TO.
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By analyzing results obtained by these two studies, it is possible to notice that they are quite better 

than results achieved in the present work. This difference could be explained by the fact that in 

children  affected  by  hemiplegia  there  is  a  great  variability  in  gait  parameters  due  to  walking 

difficulties caused by neuromuscular disorder; this variability wasn't found in the other two studies 

probably because gait analysis was performed on adult healthy subjects.  

However the present work can be proposed as an innovative approach used to classify and predict 

stance and swing phases from sEMG of hemiplegic subjects and in the future it could be quite 

improved,  so  that  it  will  become  possible  to  get  very  good  performances  in  classifying  and 

predicting basographic signals not only for healthy subjects but also for unhealthy ones.  
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8 - CONCLUSIONS

The present work proposed a gait analysis method based on deep learning approach in order to 

classify gait phases (stance and swing) and to predict transitions between these phases, i.e. heel 

strike and toe off, in hemiplegic children; this work has also proposed a good technique for pre-

processing sEMG signals that consists in extracting linear envelopes in order to train better the 

neural network and to improve its performances.

To the best of our knowledge, this is one of the first studies to estimate HS and TO from sEMG 

signals  of  hemiplegic  subjects.  Results  about  classification  and  prediction  performances  are 

preliminary and thus promising for future: in this work actually by modifying some parameters 

(number of samples per window, tolerance and threshold) it was possible to get better performances 

(higher  precision,  recall,  F1  score  and  lower  MAE)  for  what  concerns  both  classification  and 

prediction.  So  by  changing  parameters  at  each  experiment,  new  better  performances  can  be 

obtained. 

For future works, other experiments can be performed, like trying to use a different type of neural 

network, creating superimposed windows and increasing the number of subjects recruited for gait 

analysis; in this way the goodness of classification and prediction can be easily increased.     

The approach proposed by the present work is well promising for future also because it allows to 

predict HS and TO directly from sEMG signals, so if this method will be adequately improved, in 

future probably it will be possible to perform gait analysis without using foot-switch sensors. This 

would represent a good advantage for analysis performance because a lower number of sensors will  

be necessary and thus time-consumption and costs will be reduced.  
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