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Abstract

Lung cancer is one of the most common malignancies worldwide, responsi-

ble for a great number of cancer deaths due to late-stage diagnosis, which

is typical of the asymptomatic nature of the disease in its early course. It

is diagnosed in conjunction with Computed Tomography (CT) to generate

high-resolution images that are able to outline tumors. Manual segmentation

and analysis of the lung nodules in CT images, on the other hand, is a very

time-consuming process and susceptible to subjective error. Recently, deep

learning methods, mostly convolutional neural networks (CNN), have had

much success in biomedical image segmentation with architectures such as

U-Net and 3D U-Net. This thesis will mainly focus on a new approach using

a 2D U-Net architecture for automatic segmenting of lung nodules within

CT images. This is followed by post-processing continuity analysis, which

constructs 3D models of the cancerous regions in a way that clinically rele-

vant tumor delineation can be obtained without more complex and resource-

consuming models that work with heavier 3D data and features. The model

is trained and tested on the NSCLC-radiomics reference dataset of lung can-

cer segmentation, which contains CT images and their corresponding man-

ual cancer delineation. The performance of the model evaluated using stan-

dard metrics to make sure it is clinically viable on the test set shows promis-

ing results. In fact, it provided a very good performance on the test set with

a high segmentation accuracy (0.9608) of the lung nodules and a Dice Co-

efficient (DC) of 0.9315. On the entire dataset, for clinical evaluation, the

model provides DCs of 0.7997, 0.9123, and 0.9590 for small, medium, and

large tumors, respectively. Lastly, DC in 3D reconstruction tests increased

from 0.8448 to 0.8850 after post-processing application, hence appropriate

volume delineation and cleaning. To our knowledge, this thesis presents a

pioneering approach for lung cancer delineation, which for the first time uses

the faster and less consuming 2D network to reconstruct data on the 3D level,

which provide more clinically relevant information than single-slice imaging.

Therefore, also according to the promising results, this work could be consid-

ered a forerunner in this line of research, marking a significant advancement

in automated medical image analysis.
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Introduction

Lung cancer is one of the most prevalent malignancies worldwide and among

the leading causes of cancer-related deaths, accounting for approximately 1.8

million deaths annually. As with all the other cancers, it is lumps of tissue

created by abnormal or damaged cells that have grown and multiplicated

uncontrollably. In particular, lung cancers arise through a multistep process

involving the development of multiple genetic and epigenetic alterations, the

particular activation of growth promoting proteins, and the inhibition of tu-

mor suppressor genes. The disease is usually classified into two major sub-

types, which differ in terms of treatment and prognosis: non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC); among them, NSCLC

represents the most common type.

Signs and symptoms vary depending on tumor type and presence of metas-

tases; however, the disease is detectable, and survival rates are high when

treated early. The main problem is that over half of lung cancer cases are

diagnosed at stage IV, due to the non-specificity of most of the symptoms.

There exist different diagnostic techniques for lung cancer, conventional and

emerging, but, traditionally, lung cancer diagnosis is done through Com-

puted Tomography (CT). CT generates high-resolution images of the lungs

that unrestrictedly capture minute changes in the lung tissue and are there-

fore able to detect potential tumors. However, manual interpretation of such

scans is usually subjective and prone to error, so automated systems are

needed for enhancing accuracy and objectivity in tumor detection and de-

lineation.

Recent deep learning (DL) achievements, mainly in the scope of convolu-

tional neural networks (CNN), have altered medical image analysis by pow-

erful methods of feature extraction and pattern recognition, outperforming

the state-of-the-art in many visual recognition tasks. Among the many DL ar-

chitectures, Fully Convolutional Network (FCN), U-Net, and 3D U-Net have

shown great success in medical imaging segmentation tasks. These mod-

els learn intricate patterns in images through large and annotated datasets

(in supervised learning settings) that enable them to differentiate between
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cancerous and non-cancerous tissues. These recent improvements don’t ex-

clude challenges linked to the necessity of high-quality training data, overfit-

ting, and generalization of the models across populations and modalities. In

the last years, a lot of studies tried to improve lung cancer segmentation by

adding to the state-of-the-art network new algorithm, obtaining good perfor-

mances and promising results.

This thesis proposes a deep learning model based on 2D U-Net for the

segmentation of lung nodules in CT images, with a subsequent postprocess-

ing technique for the 3D cancer volume reconstruction, introducing a new

approach to obtain clinically relevant results even with a less complex and

resource consuming model.
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Chapter 1

Clinical Background

1.1 Anatomy and Phisiology of Respiratory Sys-

tem

The respiratory system provides us with the fundamental ability to breathe:

inhale and exhale air from our lungs. The respiratory system consists of two

divisions: upper airways and lower airways, shown in Figure 1.1.

The upper airway system comprises the nose and the sinuses, the phar-

ynx, and the larynx. The lower airway system consists of the trachea, the

bronchi-stem, and all the airways that branch extensively within the lungs

[1].

FIGURE 1.1: The Respiratory System Anatomy.
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The nose, Figure 1.2a, is the primary entrance to the respiratory tract and

consists of an external and internal part. The internal portion has nasal cav-

ities separated by a septum and lined with structures called nasal conchae

that increase the efficiency of airflow for cleaning, warming, and humidify-

ing the air [1, 2].

The pharynx, Figure 1.2b, is the muscular tube following the nose subdi-

vided into three areas: the nasopharynx, a passageway that connects to the

nasal cavity involved, together with tonsils, in immunity; the oropharynx,

where both air and food travel; and the laryngopharynx, which forms the

lower part through which food goes after separating from airways [1, 2].

The larynx, Figure 1.2c, is a tube conducting the airways and a sound-

producing organ below the pharynx, consisting of various cartilages, of which

the most prominent is the thyroid cartilage with the attached epiglottis, which

guards against food entering the airways during swallowing [1, 2].

The next one, trachea, Figure 1.2d, extends from larynx to lungs, sup-

ported by the ring of the C-shaped cartilage reinforced along its length, and

lined with ciliated epithelium for trapping debris [1, 2]. The trachea divides,

at the end, into the right and left main bronchi, further dividing into smaller

bronchi and eventually into bronchioles, facilitating air distribution to the

lungs and leading to alveoli where gas exchange occurs [3].

FIGURE 1.2: The Airway of the Respiratory System Anatomy.
a. Nose; b. Pharynx; c. Larynx; d. Trachea and Bronchi
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1.1.1 Lungs Structural Organization

The lungs are simple organs within the human respiratory system, which

contain air and are principally accountable for exchanging gases, adding oxy-

gen, and removing carbon dioxide from the blood.

Included in the human thoracic cavity, the right and left lungs are en-

closed by a slimy membrane known as the pleura [1, 2]. There are two lay-

ers within the pleura: the visceral pleura, which covers the surface of the

lung directly and extends into the fissures between the lobes, and the pari-

etal pleura, which lines the thoracic wall and mediastinum. This structure

allows for smooth movement during breathing, whereas the pleural cavity,

which is between the two pleural layers, houses pleural fluid that lubricates

the membrane and also maintains a negative pressure that keeps the lungs

expanded against the thoracic wall [1, 3].

The right lung is larger and wider anatomically compared to the left lung.

This is fully attributed to the presence of the heart that presses the airfield of

the left lung; otherwise, this lung is dented by a concavity referred to as the

cardiac notch [2, 3]. The lobes of the right lung are three: superior, middle,

and inferior. In between, there are two fissures: the horizontal and oblique

fissures. The left lung is constructed of two lobes separated by the oblique fis-

sure [1, 3]. Each further divides into bronchopulmonary segments, with the

right lung having ten compared to the left, which has between eight and ten,

depending on classification. Each of these segments is supplied by an indi-

vidual bronchial and arterial system, which in turn permits localized surgical

interventions during the management of disease [1, 2, 4]. They are shown in

Figure 1.3.

The connective tissue structure of the lungs supports their elasticity and,

therefore, their integrative function in the respiratory process, which occurs

about 16 times per minute. The lungs are mechanically coupled to the tho-

racic cavity; at the base lies the diaphragm, which is a dome-shaped muscle

that mechanically couples with it and has a quite important role in ventila-

tion [3, 4]. When the diaphragm contracts, it enlarges the thoracic cavity, thus

creating a negative pressure that pulls air into the lungs, which fill not only

their lobes but also, most importantly, the pleural recesses, spaces that enable

the lungs to expand during deep breaths [1, 3].

The lungs are also dual in terms of blood circulation: the low-pressure

pulmonary circulation and the bronchial circulation for the nutritional needs

of lung tissues with oxygenated blood [1, 2]. The pulmonary arteries trans-

port deoxygenated blood from the right ventricle to the lungs, where they
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FIGURE 1.3: Lungs Anatomy.

branch extensively to form the pulmonary capillary network around the alve-

oli, enabling gaseous exchange [2, 4], while, through small pulmonary veins

that drain into the left atrium of the heart, oxygenated blood is collected [1,

3].

Lymphatic drainage from the lungs is equally important in fluid balance

and in immune function. This includes superficial and deep lymphatic ves-

sels that converge about the bronchial and vascular structures before drain-

ing into hilar and mediastinal lymph nodes [1, 2]. Fluid from mesothelial

cells is known as pleural fluid, providing lubrication of the pleural surfaces

and thereby reducing friction during respiratory movements [2, 3].

Neural control of the lungs is shared by both divisions of the autonomic

nervous system, including sympathetic and parasympathetic. Parasympa-

thetic input from the vagus nerve leads to broncoconstriction, whereas sym-

pathetic input favors broncodilation, allowing airflow to be adjusted accord-

ing to changing physiological requirements. This complex neural input con-

trolling respiratory reflexes, such as coughing, comes from the pulmonary

plexus, being built around the stem bronchi [1, 2].

Such information will enable the identification of possible pathological
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changes very quickly, as will often require surgical interventions that specif-

ically affect individual lung segments without causing damage to the neigh-

boring tissues. Anatomy is also very important to understand how structural

changes or anomalies may result in functional impairment, pointing out the

dynamic nature of the lungs in the respiratory system [1, 2, 4].

1.1.2 Respiratory System Physiology

The physiology of the respiratory system incorporates neural control, pres-

sure differentials, and muscular mechanics, interplaying to ensure efficient

gas exchange for the sustenance of cellular metabolism.

The neural control centers in breathing are essentially found in the pons

and the medulla oblongata of the brainstem. This coordination results in an

automated process of breathing, allowing for inspiration and expiration by

means of controlled pressure fluctuations within the thoracic cavity [1].

In inspiration, the diaphragm contracts and descends downward toward

the abdominal cavity. At the same time, the external intercostal muscles con-

tract to pull the ribs upward and outward. As the volume of the thoracic

cavity increases through this combined action, the pressure inside the alve-

oli falls below the atmospheric pressure. This pressure gradient is instan-

taneously equalized by air flowing into the lungs. The physics behind it,

however, adheres to Boyle’s Law, which states that pressure in a gas is in-

versely related to volume. Thus, with the increase in lung volume during

inspiration, there is a transient decrease in pressure within the alveoli such

that atmospheric air rushes in. In contrast to inspiration, expiration is nor-

mally a passive process because of the elastic recoil of the lung tissue when

the diaphragm and intercostal muscles relax. The recoil causes the lung vol-

ume to decrease and the intra-alveolar pressure to increase, becoming larger

than the atmospheric pressure, which allows the air to be expelled out of the

lungs [2]. However, during forced expiration, such as in vigorous exercise or

blowing hard, other accessory muscles, such as the abdominal muscles and

internal intercostals, actively contract to further compress the thoracic cav-

ity, thereby further reinforcing the process of exhalation. The inspiration and

expiration are shown in Figure 1.4.

Ventilation also must increase its activity continuously in response to changes

in the metabolic demands. This is achieved by means of highly developed

feedback mechanisms involving various types of sensory receptors that are

located throughout the body. Chemoreceptors monitor blood concentrations
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FIGURE 1.4: The Respiratory System Physiology: Pulmonary
Ventilation.

of CO2 and O2, while mechanoreceptors provide information about lung ex-

pansion and the resistance encountered in the airways to breathing. The res-

piratory centers receive this information and allow the body to make changes

to the ventilation pattern that are appropriate for exercising or resting. For

instance, when the oxygen content of the blood is low (hypoxia), the respira-

tory system increases the rate and depth of respiration to enhance the intake

of oxygen while removing more carbon dioxide [3].

Besides the basic changes in pressure, the mechanics of ventilation in-

clude a huge number of muscle groups working to augment the action of the

diaphragm and intercostals. For example, during times of intense exercise,

accessory muscles such as the scalene and sternocleidomastoid can also make

quite a contribution, giving increased lung capacity for intake of oxygen. Be-

yond these, vocal and pharyngeal muscles change resistance in the upper

respiratory tract during breathing, an example of how structures involved in

respiration often tend to serve multiple purposes [1].

With such mechanisms at work, the respiratory system is then very flexi-

ble and resistant. Hence, it maintains all the necessary gas exchanges in the

face of changing physical demands and environmental changes. This ensures

sufficient oxygen for metabolism and, in turn, the efficient removal of carbon

dioxide formed during the metabolic process as a waste product[3].
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1.1.3 Gas Exchange

It is the basic activity of the respiratory system, taking place primarily at the

level of the alveoli in the lungs. For oxygen-rich air to be inhaled and the

carbon dioxide produced from cellular metabolism to be removed, this vital

exchange has to take place for the proper supply of tissues in the body.

This exchange occurs in the respiratory membrane, where the walls of the

alveoli come into contact with the capillary walls of the pulmonary capillar-

ies. Here, the movement of the gases takes place through simple diffusion [1,

2]. Thus, the structure of the lungs is suited to ensure maximum efficiency

in exchanging gases; this is made possible by a huge surface area of about

160 square meters in adults. The respiratory membrane is very thin, about

0.5 micrometers, which increases the rate of gas diffusion. Thus, due to the

large surface area and high membrane permeability, gas diffusion happens

rapidly [1]. As the blood flows through the capillaries, oxygen from the alve-

oli diffuses into the blood, and carbon dioxide from the blood diffuses into

the alveoli, out of the body during exhalation [2].

The partial pressure principle, however, is what drives the movement of

gases; independent of other gases’ concentrations, a gas will diffuse from an

area of higher partial pressure to that with lower partial pressure [1]. Actu-

ally, this means that, during external respiration, there is a far greater partial

pressure in the oxygen within the alveoli, about 104 mmHg, compared to

the 40 mmHg of oxygen present in capillary blood. This large gradient gives

a rapid rate of diffusion of the oxygen into the blood. On the other hand,

the partial pressure of carbon dioxide is higher in blood, approximately 45

mmHg, than in the alveoli, about 40mmHg. Therefore, carbon dioxide will

diffuse down this gradient into the alveolar space from the blood. However,

this does not suggest that the partial pressure gradient is the only determi-

nant of gas exchange efficiency; also, the different solubilities in blood of car-

bon dioxide and oxygen play an important role. Although the solubility of

oxygen in plasma is poor, essentially, oxygen complexes with hemoglobin in

red blood cells to increase by several times the volume of oxygen to be borne.

This hemoglobin-oxygen binding is a critical adaptation that allows blood to

carry enough oxygen to meet metabolic demands. In contrast, carbon diox-

ide is more readily soluble in blood and can be transported in several forms:

dissolved in plasma, bound to hemoglobin, or changed into bicarbonate ions

in the blood plasma.

Moreover, gas exchange has to take place at two sites: within the lungs,

which is the external respiration, and at the tissues, which is the internal
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respiration (Figure 1.5). While external respiration happens at the alveolar

level with the intake of oxygen and the release of carbon dioxide, internal

respiration happens at the cellular level in tissues of the body. In other words,

the oxygen is released from the hemoglobin at the tissue level and diffuses

into cells whose partial pressure of oxygen is typically low, about 40 mmHg,

enough for cellular respiration. This is simultaneously diffused out of the

cells into the blood with carbon dioxide, which is produced as a byproduct

of metabolic processes, where its partial pressure is lower than that in the

tissues, hence closing the cycle of gas exchange [2].

Additionally, pulmonary ventilation has an important role in providing

air to the alveoli to maintain appropriate pressure gradients for both oxygen

and carbon dioxide exchange. While ventilation takes place in a cyclical man-

ner, blood flow through the pulmonary circulation is continuous and there-

fore allows nearly all the blood passing through the lungs to participate in

efficient gas exchange. In healthy lungs, the relationship between ventilation

and perfusion is regulated; proper distribution leads to optimum exchange

of gases between them [1].

FIGURE 1.5: a. External respiration; b. Internal Ventilation.
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Chapter 2

Lung Cancer

2.1 Epidemiology and Pathogenesy

The human body is made up of trillions of cells. Normally, they grow and

multiply to form new cells to take place of those cells that grow old or become

damaged. Sometimes, this process breaks down, and abnormal or damaged

cells grow and multiply, creating tumors or lumps of tissue. If these tumors

can spread or invade nearby tissues and can travel to distant places in the

body to form new tumors, they are called cancerous tumors. Thus, cancer is

a disease in which some of the body’s cells grow uncontrollably and spread

to other parts of the body. It can start almost anywhere in the human body

[5]. In particular, lung cancers arise through a multistep process involving

the development of multiple genetic and epigenetic alterations, particularly

activation of growth-promoting proteins and inhibition of tumor suppressor

genes. There is great genetic diversity in lung cancer due to the fact that

lung cancers have a highly complex genome. Genomic studies have con-

firmed previously well known alterations in lung cancer (KRAS, EGFR, and

BRAF) and have also identified low-frequency but recurrent mutations that

are novel in lung cancer, including potentially targetable alterations in JAK2,

ERBB4, and RET [6]. Nowadays, lung cancer is the leading cause of global

cancer-related mortality [7].

2.1.1 Lung Cancer Statistic

According to the latest GLOBOCAN estimates, Figure 2.1, 2,480,675 new

cases of lung cancer were diagnosed globally in 2022, making the lung can-

cer the most frequently diagnosed cancer in 2022, responsible for one in eight

cancers worldwide (12.4% of all cancers globally). Specifically, in men, lung

cancer remains the most frequent one with 1,572,045 cases (15.2% of all can-

cers in males), followed by prostate cancer, while, in women, it is in second
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FIGURE 2.1: a. New cases in global population; b. New cases
in male population; c. New cases in female population; by

GLOBOCAN 2022.

place with 908,630 cases (9.4% of all cancers in females), following breast can-

cer. [7].

Lung cancer is also the leading cause of cancer mortality worldwide, among

both men and women separately, as shown in Figure 2.2. Globally, lung can-

cer is responsible for 1,817,172 deaths (18.7% of the total cancer deaths), in

men of 1,233,241 deaths (22.7% of the total cancer deaths in males), being at

the top, while in women of 584,228 deaths (13.5% of the total cancer deaths

in females), second only to breast cancer [7].

In 2022, five-year survival from lung cancer tends to be below 20% in most

countries, with little differences according to human development, with fac-

tors like treatment, health care systems, and the extent of comorbidity play-

ing important roles in survival rate. Such a low survival rate is linked to

the fact that most lung cancers are diagnosed at a later stage, when curative

treatment is not anymore possible [7].

2.1.2 Risk Factors

The factors that increase the risk of developing lung cancers could be divided

into two macro-categories: non-modifiable risk factors and modifiable risk

factors. Among the first group we can find:
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FIGURE 2.2: a. Deaths in global population; b. Deaths in male
population; c. Deaths in female population; by GLOBOCAN

2022.

• Age. With biological aging, the cells lose their ability to withstand and

repair DNA damage as well as surveil for aberrant cells. Young pa-

tients are more likely to receive aggressive treatment and report better

survival too [8].

• Gender. As we can see from the data above, men are over double more

than twice as likely to be diagnosed with, and die of, lung cancer. This

disparity is mainly due to the higher tendency of men to smoke to-

bacco, thus is not completely related to gender. But, in non-smoking

people, there is a higher rate of lung cancer in women due to hormonal

influence [8].

• Race/ethnicity. There are some variations of race and ethnicity in the

association between the main three susceptibility loci (chromosomes

involved in the development of lung cancer) and lung cancer risk [9].

• Family history. A positive family history increases the risk of lung cancer

by 1.7 times, according to meta-analyses from Central and Eastern Eu-

rope. If the history is among first-degree relatives, the risk is increased

to 2-4 times, even after careful adjustment for smoking [8].

Among the modifiable risk factors, there are:
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• Tobacco (and Cannabis) smoking. Tobacco smoking is the major cause of

all major histological types of lung cancer. A carcinogenic effect of to-

bacco smoke on the lung was demonstrated in epidemiological stud-

ies conducted since the early 1950s [9]. More than 80% of lung cancer

cases in the Western world are attributable to cigarette smoking. The

combustion of tobacco produces over 60 known carcinogens. Second-

hand smoke exposure likewise has shown a dose-dependent relation-

ship with lung cancer risk. Certain carcinogens in second-hand smoke

are inhaled in higher concentrations than by the smoker due to the fil-

ters on the user end of cigarettes. For what concern cannabis smoking,

the combustion of marijuana is known to produce carcinogenic sub-

stances, with levels of some higher than those in tobacco [8].

• Diet. There is evidence from case–control studies that a diet rich in

vegetables and fruits, especially cruciferous vegetables, may exert some

protective effect against lung cancer. High intake of fried or well-done

red meat may increase the risk of lung cancer, and this may be related to

the formation of nitrosamines during cooking. There is evidence from

observational studies that low levels of vitamin D are associated with

lung cancer risk [9].

• Chronic inflammations and infections. COPD is the most common inde-

pendent factor, other than smoking, that increases the risk of lung can-

cer [8]. Patients with pulmonary tuberculosis have been found to be

at increased risk of lung cancer [9]. HIV also increases the risk of lung

cancer by up to 2.5 times, considering that lung cancer has also become

the leading cause of death among HIV patients [8].

• Ionizing radiation. Exposure to ionizing radiation increases the risk of

lung cancer, reported in atomic bomb survivors, in patients treated with

radiotherapy, and in underground miners exposed to radioactive radon

and its decay products [9]. Residential radon exposure (basements in

geographic regions with high Uranium concentrations) is the second

greatest risk factor for lung cancer in the Western world, accounting for

an estimated 10% of cases [8].

• Occupational exposures. The risk of lung cancer is increased among work-

ers employed in industries and occupations. The most important occu-

pational lung carcinogens are reported to be asbestos (a naturally occur-

ring mineral used in construction [8]), silica, heavy metals (like arsenic,
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chromium, high nickel, and cadmium), and polycyclic aromatic hydro-

carbons (chemicals formed during combustion of organic material) [9].

• Air pollution. There are risk factors for lung cancer related to air quality:

carcinogens from the combustion of fossil fuels and particular matter

suspended in the air. Indoor air pollution from combustion products,

wood and charcoal, commonly used for cooking and heating. Studies

have found that ventilation of such cooking areas can reduce lung can-

cer risk by up to 50% [8].

2.2 Histopathology

The histopathological classification is helpful in defining the prognosis, fa-

cilitating the treatment, and predicting of successful results. The main cate-

gories are two: small cell lung carninoma (SCLC) and non-small cell carci-

noma (NSCC) [10].

The NSCC tumors account for 80% of the cases, and they are managed

by a combination of surgery and adjuvant therapy. A subclassification of

the NSCC tumors defines three main types: Adenocarcinoma, Squamos cell

carcinoma, and Large cell carcinoma.

The SCLC tumors account for the remaining 20% of the cases and are

treated non-surgically in most cases [11].

2.2.1 Adenocarcinoma

Adenocarcinoma is the most common type of lung cancer, accounting for

more than 40% of lung cancers and 60% of the NSCC [11]. It is considered

the commonest subtype in young women and nonsmokers [10].

It is defined as a malignant epithelial tumor with glandular differentiation

or mucin production, showing acinar, papillary, bronchioloalveolar, or solid

mucin growth patterns or a mixture of these patterns. Adenocarcinomas are

most frequently peripheral nodules under 4.0 cm in size, with the most fre-

quent pleura and chest involvement. The recognized patterns of adenocar-

cinoma are solid nodules (solid density), ground glass opacities (non-solid,

air-containing), and mixed solid/ground glass (part solid, subsolid) opaci-

ties. The borders of cell clusters are typically sharply delineated, and the

cytoplasm is usually abundant, varying in volume. It is typically cyanophilic
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and translucent, and it may be single or arranged in three-dimensional moru-

lae, acini, pseudopapillae, and true papillae with fibrovascular cores and/or

sheets of cells [12].

This tumor frequently causes metastasis to the liver, bone, and nervous

system within the same lung or the contralateral lung and adrenal glands.

The prognosis of this type of tumor is significantly better than other lung

cancers [10].

The major individual histologic patterns/subtypes are lepidic acinar, pap-

illary, micropapillary, and solid adenocarcinoma, shown in Figure 2.3. The le-

pidic growth pattern denotes tumor cells spreading along preexisting alveo-

lar structures. Acinar adenocarcinoma is a common type of adenocarcinoma

with tumor cells arranged in a classic glandular structure on a fibroelastic

stroma. The papillary pattern is formed by tumor cells lining the surface of

branching fibrovascular cores; the presence of fibrovascular cores separates

this tumor type from micropapillary adenocarcinoma. Solid adenocarcino-

mas form any other recognizable patterns with a poorly carcinoma expres-

sion [11].

2.2.2 Squamos Cell Carcinoma

Squamous cell carcinoma represents 30% of all lung cancers. It arises from

altered bronchial epithelium and growths in situ [10]. Over 90% of squamous

FIGURE 2.3: a. Lepidic Adenocarcinama; b. Acinar Adenocar-
cinoma; c. Papillary Adenocarcinoma; d. Micropapillary Ade-

nocarcinoma; e. and f. Solid Adenocarcinoma. [11]
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cell lung carcinomas occur in cigarette smokers.

It is defined as a malignant epithelial tumor showing keratinization and/or

intercellular bridges that arises from the bronchial epithelium. The tumors

are usually white or gray and may grow to a large size and may cavitate.

Central, segmental, or subsegmental tumors can extend into regional lymph

nodes and appear as hilar, perihilar, or mediastinal masses with or without

lobar collapse. Peripheral tumors present as solitary pulmonary nodules,

smaller than 3 cm, or masses, bigger than 3 cm [12]. The tumor cells usually

have hyperchromatic nuclei, visible to inconspicuous nucleoli, and moderate

to abundant cytoplasm with delineated intercellular bridges [11]. They fre-

quently cause segmental or lobar lung collapse due to their central location

[10]. Figure 2.4 shows a Squamos cell carcinoma with and without kera-

tinizazion.

2.2.3 Large Cell Carcinoma

Large cell carcinoma is strongly associated with smoking [10] and represents

a minority of NSCC cases (approximately 9%) [11].

It is an undifferentiated non-small cell carcinoma that lacks the cytologic

and architectural features of small cell carcinoma and glandular or squamous

differentiation. Large cell carcinomas typically present as large, peripheral

masses and often invade the visceral pleura, chest wall, or adjacent struc-

tures. It is frequently formed by cellular aggregation in prominent nuclei

with round or extremely irregular shapes [12]. It is usually peripherally lo-

cated, bulky, and necrotic in appearance [11]. An example is shown in Fig-

ure 2.5.

FIGURE 2.4: a. Squamos Cell Carcinoma; b. Squamos Cell Car-
cinoma with keratinization. [12]
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FIGURE 2.5: Large Cell Carcinoma. [12]

2.2.4 Small Cell Lung Carcinoma

SCLCs comprise slightly more than 10% of all lung cancers [11]. It is among

the most aggressive primary lung cancers. More than 70% of patients show

evidence of extrathoracic metastatic disease at the time of diagnosis [10].

It is a malignant epithelial tumor consisting of small cells with scant cy-

toplasm, not defined cell borders, finely granular nuclear chromatin, and ab-

sent or inconspicuous nucleoli. They are typically white-tan, soft, friable per-

ihilar masses that show extensive necrosis and frequent nodal involvement.

Tumor cells are usually less than the size of three small resting lymphocytes

and have round, ovoid, or spindled nuclei and scant cytoplasm. The SCLC

is combined with an additional NSLC component, usually adenocarcinoma,

squamous cell carcinoma, or large cell carcinoma. Both tumors are shown in

Figure 2.6.

FIGURE 2.6: a. Central SCLC; b. Peripheral SCLC; c. Combined
SCLC and Adenocarcinoma. [12]
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2.3 Prognosis and Staging

The prognosis of lung cancer is critically dependent on appropriate staging

[13]. The fundamental purpose of stage classification is to provide a nomen-

clature about the anatomic extent of disease that is used consistently around

the world to enable reliable communication about a particular patient.

Staging of NSCLC utilizes three anatomical extents of tumors: T for ex-

tent of the primary tumor, N for involvement of lymph nodes, and M for

distant metastases, such as brain, bones, adrenal glands, liver, the pleural

fluid, or the other lung. Each category is then divided into subgroups by

other characteristics, named descriptors [14]. Specific combinations of T, N,

and M categories are grouped together into stage groups, summarized in

Figure 2.7 and in Table 2.1 [15]. In Figure 2.8 is shown a visual explanation

of the different stages. SCLC is biologically distinct from NSCLC; thus, its

staging schema is simpler, divided into limited and extensive stages. Limited

stage is defined as disease confined to one hemithorax, including ipsilateral

FIGURE 2.7: TNM Tumor Classification. [14, 15]
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TABLE 2.1: Correlation between TNM Classification and Stag-
ing.

Stage TNM Grouping

T N M

Occult (hidden) cancer TX N0 M0
0 T0, Tis N0 M0
IA1 T1a(mi) N0 M0

T1a N0 M0
IA2 T1b N0 M0
IA3 T1c N0 M0
IB T2a N0 M0
IIA T2B N0 M0
IIB T1a, T1b, T1c N1 M0

T2a, T2b N1 M0
T3 N0 M0

IIIA T1a, T1b, T1c N2 M0
T2a, T2b N2 M0
T3 N1 M0
T4 N0, N1 M0

IIIB T1a, T1b, T1c N3 M0
T2a, T2b N3 M0
T3 N2 M0
T4 N2 M0

IIIC T3 N3 M0
T4 N3 M0

IVA AnyT AnyN M1a
AnyT AnyN M1b

IVB AnyT AnyN M1c
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FIGURE 2.8: Stages of Lung Tumors.

mediastinal and/or supraclavicular disease, excluding malignant pleural ef-

fusion. All other tumors are characterized as extensive [13].

2.4 Diagnosis

Over half of lung cancer cases are diagnosed in stage IV. This high percentage

of late diagnoses is largely due to the non-specificity of most of the symp-

toms (no clearly predominant lung cancer symptom), to the fact that they

are not as frequent as would be expected, or to patients’s delay in consult-

ing their physician [16]. Patients may present with the nonspecific systemic
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symptoms of fatigue, anorexia, and weight loss, or with direct signs and

symptoms caused by the primary tumor (chest discomfort, cough, dyspnea,

and hemoptysis), intrathoracic spread (laryngeal nerve paralysis, Pancoast’s

tumor, pleura effusions and pain, and superior vena cava obstruction), or

extrathoracic spread (metastatic sites include bones, liver, adrenal glands,

lymph nodes, brain, and spinal cord) [17].

According to a new nationwide study [16], the most frequent symptom

in NSCLC in the early stages is cough, followed by chest pain, while in stage

IV they are reversed. Generally, the presence of symptoms increases across

stages; however, some patients could have only one or two, or even none,

symptoms in stage IV too. There is no difference between smokers and never

smokers in the presence of symptoms. This study highlighted that approxi-

mately 30% of all patients diagnosed in stages III and IV had no lung cancer

symptoms at diagnosis.

For what concern SCLC, the patients with extended SCLC showed cough,

dyspnea and pain as the most occuring symptoms, while patients with lim-

ited SCLC are mostly asymptomatic.

Thus, the clinicians should not rule out the presence of lung cancer in

cases where no symptoms are present, due to the lack of specificity of lung

cancer symptoms. There exist different diagnostic techniques for lung cancer,

both conventional and emerging:

• Biopsy. It is a highly invasive technique based on the removal of a part

of a tissue or a whole nodule or lump, as a sample, with the use of a

needle and a small incision. The most common one in lung cancer de-

tection is the needle biopsy, used if the nodule is bigger than 2 cm. It is

used to determine the tumor present in the lung pleura, mediastinum,

or in the lung parenchyma [18].

• Bronchoscopy. A flexible tube, with a camera to the end, let the visual-

ization of the air passages. The tumors are usually less refractive hence

are black in color and shown as a disruption in the white part of the

tissue (higher refractive) [18].

• Sputum Citology. Sputum cytology involves the examination of sputum,

mucus coughed up from the lungs, which is induced by artificial tech-

niques or naturally produced. It is a non-invasive technique used for

early detection of lung cancer [18].

• Biomarkers and Biosensors. Biomarkers are naturally occurring molecules,

genes, or other biological entities that undergo certain changes during



2.4. Diagnosis 23

a disease condition. The most important biomarker for lung cancer de-

tection is neuron-specific enolase (NSE), considering that the levels of

NSE increase in patients with lung cancer. A biosensor is an analytical

tool that converts chemical signals into electronic response and is used

to detect and quantify the biomarkers [18].

• Medical Imaging. It is a technique within which it is possible to obtain a

2D, or even 3D, representation of an internal anatomical structure or its

functional processes. There exist a lot of imaging techniques with dif-

ferent quality and outcomes in detecting and characterizing lung can-

cer. These techniques are chest radiography (CXR), computer tomog-

raphy (CT), magnetic resonance (MR), position emission tomography

(PET), and endobronchial ultrasound (EBUS). They are better discussed

in the following subsections.

CXR represents the first line of investigation in cases suspected to have

cancer, considering that it is a simple, relatively inexpensive technique

and very accessible [19, 10]. It is excellent for the delineation of lung

lesions into either benign or malignant; it furnishes staging descriptive

features, such as the size of the lesion and resultant complications, but it

cannot adequately detect chest wall or mediastinal invasion and nodal

involvement [20]. Recent innovations, like digital radiography, have

enhanced image quality and the accuracy of nodule detection while al-

lowing dose reduction and cost-benefit efficiency [19]. An example of

CXR used to detect lung cancer is shown in Figure 2.9a.

CT will be explored in the Section 2.4.1, as it is the imaging technique

on which this thesis is focused.

MRI is uniquely useful for diseases of the central nervous and muscu-

loskeletal systems but faces serious difficulties in the lungs because of

motion artifacts (due to breathing), low proton density in lung parenchyma,

and attenuation by air-soft tissue interfaces [19, 21]. It does comple-

ment CT in determining tumor invasion of the chest wall, evaluating

diaphragmatic abnormalities, and in mediastinal lymphoma; however,

practical use awaits further acquisition speed and spatial resolution

improvement [19]. An example of MRI used to detect lung cancer is

shown in Figure 2.9b.

PET represents a very sensitive and specific modality for in vivo imag-

ing of metabolic pathways. The main tracer used is FDG, which un-

derlines the enhanced glucose metabolism of the neoplastic cells [19,
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20]. When this technique is combined with CT, diagnostic accuracy

significantly improves, determining important data about TNM stag-

ing, mediastinal infiltration, and nodal metastasis. It also allows for the

detection of small neoplastic lymph nodes, ensuring an accurate delin-

eation of the tumor from surrounding structures [22]. An example of

PET used to detect lung cancer is shown in Figure 2.9c.

Finally, EBUS revolutionized bronchoscopy by facilitating the assess-

ment of airway walls, enabling guided biopsies of lymph nodes and tu-

mors, and allowing for real-time transbronchial needle aspiration [23].

The technique has proven superior compared to conventional methods

in lung cancer staging with improved cost savings and enhanced pa-

tient outcomes [24]. An example of EBUS used to detect lung cancer is

shown in Figure 2.9d.

FIGURE 2.9: Lung Cancer in Imaging techniques. a. CXR; b.
MRI [19]; c. PET [22]; d. EBUS [23]
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2.4.1 Computed Tomography (CT)

CT is the imaging technique with the highest sensitivity for the detection

of pulmonary nodules [19]. When the CXR raises the suspicion for malig-

nancy, CT with contrast should be performed for complete staging. CT as-

sists in finding abnormalities, highlights signs of disease, monitors the re-

sponse to treatment, and supports the planning therapy [10]. Increased use

of CT has led to improved identification of small peripheral nodules, many of

which prove to be adenocarcinomas; adenocarcinoma is often distinct from

the other histologic subtypes of lung cancer [12].

A fan-shaped X-ray beam irradiates a narrow section of the body, and the

transmitted radiation is giving the X-ray attenuation in one dimension along

a projection through the body. Many sets of attenuation data are acquired

at different angles by rotating the X-ray tube, and a two-dimensional image

of a slice through the body can then be reconstructed [20]. This is the con-

ventional method, while recently new CT methods were introduced. With

helical CT, a single volumetric dataset while the patient is moved through

the CT gantry is produced, increasing drastically the thoracic image quality.

More recently multi-detector CT (MDCT) uses multiple rows of detectors, in-

creasing temporal resolution, fastening the scanning, and increasing spatial

resolution. The main reconstruction methods used in MDCT are multipla-

nar reconstruction (MPR), which improved the image quality and provided

a supplementary staging tool; maximum intensity projection (MIP), which

reduced the number of overlooked small cancers and increased the sensitiv-

ity; and 3-dimensional reconstruction (3DR), which provided more accurate

information on the shape, length, and severity. MPR converts the thin ax-

ial plan slices acquired in non-axial plane images, such as oblique, sagittal,

and coronal; MIP projects the pixels with the highest attenuation values in a

2D format; and 3DR is like CT bronchography with external rendering and

bronchoscopy with internal rendering. Finally, MDCT may help reduce the

radiation dose: low-dose CT (LDCT) can identify small lung cancers in an

at-risk population [19].

Generally, CT scan is the most used imaging modality for T staging, char-

acterized by sensitivity between 38% and 87%, and a specificity between 40%

and 90% for chest wall invasion and accuracy of 56-89% for predicting me-

diastinal invasion. For N staging, which consists of the evaluation of medi-

astinal disease, CT is not considered the optimal modality; however, it has a

sensitivity of 60-83%, specificity of 77-82%, and accuracy of 75-80%. In the
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end, in M staging, CT can detect intrathoracic metastases, even with a de-

gree of uncertainty [25]. An example of CT showing lung cancer is shown in

Figure 2.10.

2.5 Treatments

Treatment differs according to the histologic type of cancer, the stage at pre-

sentation, and the patient’s functional evaluation, as shown in Table 2.2.

For NSCC, surgery or resection is the treatment for patients with stage I

until resectable stage IIIA, with adjuvant chemotherapy for those undergoing

complete resection [17]. Some patients presenting with stage III disease, par-

ticularly those with stage IIIA, may be offered preoperative chemotherapy

or chemoradiotherapy to downstage the disease to render the disease surgi-

cally resectable. In addition, comorbid conditions, especially those caused

by tobacco smoking, namely coronary artery disease and COPD, may make

surgical resection technically difficult or impossible [13]. For unresectable

and higher NSCC may involve radiotherapy and chemotherapy [17]. In

particular, radiation therapy is an excellent palliative option for control of

pain, hemoptysis, and bronchial obstruction with post-obstructive pneumo-

nia [13]. Chemotherapy (combined with radiotherapy in limited stage dis-

ease) is the main treatment for SCLC [17].

FIGURE 2.10: Lung Cancer in CT.
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Chapter 3

Deep Learning

3.1 Introduction to Machine Learning

Artificial intelligence (AI) refers to the capability of machines to simulate cog-

nitive functions typically associated with human minds, such as learning and

problem-solving. The AI research includes reasoning, knowledge, planning,

learning, communication, perception, and object manipulation [26]. Today,

AI is integrated into our daily lives in many forms, starting to be also incor-

porated into medicine, improving patient care via earlier detection and di-

agnosis, improved workflow, reducing medical errors, costs, morbidity, and

mortality. It’s not meant to replace human physicians but rather assists or

augments the medical care [27].

Machine learning (ML) is a subfield of AI based on the ability of a com-

puter system to adapt its processing based on newly acquired information

learned from experience [27]. This technology powers many aspects of mod-

ern society: they are used to identify objects in images, transcribe speech in

text, match new items, and even to select results of searches. Anyway, con-

ventional ML techniques were limited in their ability to process natural data

in their raw form; thus, these applications started and increased to use a class

of techniques called deep learning (DL), a human-brain-like processing [27,

28].

DL are representation-learning methods with multiple levels of repre-

sentation, composed of simple but non-linear modules. Each one of these

modules transforms the representation at one level, starting with the raw in-

put, into a representation at a higher, slightly more abstract level. If enough

transformations are considered, even complex functions can be learned. It

has turned out to be very good at discovering intricate structure in high-

dimensional data and to be applicable to various science domains [28]. DL

algorithms can be based on “supervised”, “unsupervised” and “reinforce-

ment” learning, better discussed in Section 3.2.2. The DL architectures have
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been applied to fields like computer vision, automatic speech recognition,

natural language processing, audio recognition, and bioinformatics [26]. Rel-

evant clinical-ready successes obtained in health care as well, such as cancer

classification in biomedical imaging [29]. It is demonstrated that DL algo-

rithms have an ability to outperform other ML algorithms [26].

3.2 Artificial Neural Network

Artificial neural networks (ANN) are inspired by the 1959 biological model

proposed by Nobel laureates David H. Hubel & Torsten Wiesel, who found

two types of cells in the primary visual cortex: simple cells and complex cells.

Many artificial neural networks can be viewed as cascading models of cell

types inspired by these biological observations [26]. Thus, we can say that a

neural network is a type of artificial intelligence that attempts to imitate the

way a human brain works.

A biological brain is a huge collection of neurons, which take electrical

and chemical signals as input, elaborate on them, and transmit the output

through connections, called synapsis. ANN works analogously: a collection

of connected units, called artificial neurons. Each connection carries a real

number value, which determines the weight/strength of the signal [30]. Each

neuron computes a weighted sum, called pre-activation, whose strength re-

flects the overall strength of the input and the match between the input pat-

tern and the weight pattern. The pre-activation forms the input to the unit’s

activation function, discussed in Section 3.2.1 [31]. The weight can be posi-

tive (excitation) and negative (inhibition), and the higher it is, the higher will

be the influence of one unit on another [30]. Each neuron adds to the pre-

activation a bias, enabling the unit to shift its activation function horizontally

[31]. A representation of an artificial neuron is shown in Figure 3.1.

Units can be assembled into networks in many different configurations

[31], arriving even to thousands or millions of artificial neurons arranged in

a series of layers, each of which connects to the layers on either side. Some

units, called input units, are specialized to receive different forms of infor-

mation from the outside, while others, called output units, are designed to

respond to the information it’s learned. In the middle, one or more layers of

hidden units are present, which just process the input received. Most neural

networks are fully connected, which means each hidden unit and each out-

put unit is connected to every unit in the layers on either side [30]. This type

of architecture is known as a feed-forward network, as shown in Figure 3.2,
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FIGURE 3.1: Representation of an Artificial Neuron.

for the reason that successive layers feed into one another in the forward

direction from input and output.

Thus, an ANN is typically defined by three types of parameters: the in-

terconnection design, the learning method for updating the weights, and the

activation function [32].

3.2.1 Activation Function

In an ANN, activation functions are very important as they help in learning

and making sense of non-linear and complicated mappings between the in-

puts and corresponding outputs. Without an activation function, the ANN

FIGURE 3.2: Architecture of a Feed-Forward network.
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acts as a linear regression model, where the output would simply be a linear

function, which is just a polynomial of degree one. Then, even if a linear

equation is easy to solve, its complexity is limited, and it does not have the

ability to learn and recognize complex mappings from data. Thus, we need

to apply an activation function to make the network dynamic, add the ability

to it to extract complex and complicated information from data, and repre-

sent non-linear convoluted random functional mappings between input and

output [33].

There exist a lot of types of activation functions in literature, going from

the simplest ones, such as the binary step function and the linear one, to the

most complex ones with learnable parameters, used in deep learning. The

main advantage of these more complex activation functions is that they can

better learn the abstract features through nonlinear transformations, but, as

disadvantages, they need large datasets for training [34].

Next, the commonly used activation functions in deep learning will be

analyzed.

• Sigmoid function. It is one of the most common forms of activation func-

tion, and it transforms the values in the range 0 to 1 [33]. It is defined

by Eq. 3.1.

g(x) =
1

1 + e−x
(3.1)

The sigmoid is a continuous function, which means that it is differen-

tiable everywhere. The derivative is defined by Eq. 3.2.

g(x) =
e−x

(1 + e−x)2 (3.2)

It is commonly used in shallow neural networks, mainly employed on

the output level since its soft saturation. This soft saturation results in

the difficulties of training a deep neural network, generating the van-

ishing gradient [35]. Also, the sigmoid function is not symmetric about

zero, which means that the signs of all output values of neurons will be

the same. This issue can be improved by scaling the function [33]. The

Figure 3.3 shows the function plot.

• Hyperbolic Tangent. Hyperbolic tangent is similar to a sigmoid function,

and it can be easily defined as the ratio between the sine and the cosine
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FIGURE 3.3: Sigmoid Function (blue) and its derivative (red).

functions, as shown by Eq. 3.3.

tanh(x) = 2sigmoid(2x)− 1 =
ex − e−x

ex + e−x
=

sinh(x)

cosh(x)
(3.3)

The hyperbolic tangent is symmetric about the origin; thus, the outputs

could have different signs with values ranging between −1 and 1. Its

derivative is defined by Eq. 3.4.

tanh′(x) = 2sigmoid′(2x)− 1 =
4e−2x

(1 + e−2x)2 (3.4)

It has the same soft saturation as the sigmoid function, which also has

the vanishing gradient problem [35]. The Figure 3.4 shows the function

plot.

• Rectified Linear Unit (ReLU). In sigmoid and hyperbolic tangent func-

tions, almost one half of the neuron units are activated at the same time,

FIGURE 3.4: Hyperbolic Tangent Function (blue) and its
Derivative (red).
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which is inconsistent with neuroscience research that indicates only 1%

to 4% of neurons in the brain can be activated simultaneously. ReLU

helps the hidden layer obtain the sparse output matrix, improving the

efficiency. It is defined by Eq. 3.5, while its derivative is by Eq. 3.6.

g(x) = max(0, x) =







x, x g 0

0, x < 0
(3.5)

g′(x) =







1, x g 0

0, x < 0
(3.6)

The main advantages of ReLU can be summarized as:

– Cheaper computation because there is no need for computing the

exponential functions;

– The ANN converges faster, being a non-saturated function;

– ANN obtains easy sparse representation;

– The constant value of the derivative avoids resolves the vanishing

gradient effect [35];

The Figure 3.5 shows the function plot.

• ReLU Variants. The compulsive operation of letting g(x) = 0 when x <

0 with ReLu uses the death of some neuron units. Thus, to alleviate this

problem, it was introduced the Leaky Rectified Linear Units (LReLU)

function, which allows for a small, non-zero gradient when the unit is

saturated and not active. The function and its derivative are defined by

FIGURE 3.5: Rectified Linear Unit Function (blue) and its
Derivative (red).
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Eq. 3.7 and Eq. 3.8.

g(x) = max(0, x) =







x, x g 0

0.01x, x < 0
(3.7)

g′(x) =







1, x g 0

0.01, x < 0
(3.8)

The main disadvantage of the LReLU is the loss of the sparse.

Another variant of the ReLu is the Parametric Rectified Linear Unit

(PReLU), which is obtained by replacing the constant 0.01 with a learn-

able parameter a. This means that PReLU can learn the parameter from

the data, resulting in faster convergence and lower train error. It seems

also that the use of the PReLU solves the overfitting problem. The

PReLU is defined by Eq. 3.9.

g(x) =







x, x g 0

ax, x < 0
(3.9)

Another improvement of ReLU is the Randomized Rectified Linear Unit

(RReLU), where the slopes are randomized in a given range of train-

ing, sampled from a uniform distribution U(A, B), and then fixed in

the testing as the average of all parameters taken during the training:

(A + B)/2. The RReLU is defined as the PReLU by Eq. 3.9, considering

a random number and not a learnable parameter [35]. The Figure 3.6

shows these functions plot.

FIGURE 3.6: Rectified Linear Unit Variants.
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• Exponential Linear Unit (ELU). ELU is also a variant of ReLU, which

pushes the activation means closer to zero to decrease the bias shift

effect of ReLU. It is defined by Eq. 3.10, while its derivative is Eq. 3.11.

Both have α > 0.

g(x) =







x, x > 0

α(ex − 1), x f 0
(3.10)

g′(x) =







1, x > 0

αex, x f 0
(3.11)

The parameter α manages the value to which an ELU saturates for neg-

ative network inputs. The layers of the deep neural network with ELU

can enable faster learning and better generalization performance than

ReLU and LReLU [35]. The Figure 3.7 shows this function plot.

• Swish function. The Swish function is a relatively new activation func-

tion that is not monotonic. This means that the value of a function may

decrease even though the values of inputs are increasing. It can outper-

form even the ReLU [33]. It is defined by Eq. 3.12.

g(x) =
x

1 + e−x
(3.12)

The Figure 3.8 shows its plot.

• SoftMax function. It is a combination of multiple sigmoid functions;

thus, it can be used for multiclass classification problems, while the

sigmoid function is only for binary classification. Softmax returns the

probability for every data point of all the individual classes [33]. It is

FIGURE 3.7: Exponential Linear Unit Function.
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FIGURE 3.8: Swish Function.

defined by Eq. 3.13.

σ(z)j =
ezj

∑
K
k=1 ezk

(3.13)

The Figure 3.9 shows its plot.

3.2.2 Learning and Training

Learning is a comprehensive term: the system changes itself to adapt. A

neural network can learn by developing or deleting connections, changing

connections weight and neurons’ threshold values, varying the activation

function, and developing or deleting new neurons [36].

There exist three main learning methods:

• Unsupervised. The training set only consists of unlabeled data; the net-

work tries by itself to detect similarities and to generate pattern classes

[36]. Data has no labels, and the “right answer” is not known [26].

FIGURE 3.9: SoftMax Function .
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• Reinforcement. The training set consists of input data, and, after com-

pletion of a sequence, a logical or real value is returned to the network

indicating whether the result was right or wrong and, possibly, how

right or wrong it was [36].

• Supervised. The training set consists of input labeled data so that the

network can directly compare its own output with the correct solution.

The network weights can be changed according to their differences. It

is not always biologically plausible, as the unsupervised one, but it is

extremely effective. The procedure on which the supervised learning is

based is: entering the input data, forward propagation of the input and

generation of the output, comparing it with the desired one, computing

the error vector, and applying corrections based on this vector [36].

Supervised learning is the most used learning method for DL. It is useful to

divide the set of training samples into a training set, used to train the model,

and a testing set, with a proportion of 70/30% randomly chosen.

The difference between the predicted and the true value is computed and

measured by the loss function or objective function. A lot of loss functions

can be found in literature, and their choice is critical in defining the outputs

in a way that is sensitive to the application at hand [37].

The learning curve indicates the progress of the error, thus, whether the

network is progressing or not. A perfect learning curve looks like a negative

exponential function (Figure 3.10) [36]. This is because the training procedure

is just an iterative computation that must minimize the loss function.

The training of a neural network specifically contains two phases: for-

ward and back propagation, as shown in Figure 3.11. The forward propaga-

tion phase was already partially described with the supervised learning. It

FIGURE 3.10: Learning Curves.
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FIGURE 3.11: Forward and Back Propagation Network Archi-
tecture.

consists in feeding the inputs for the training into the network, resulting in

a forward cascade of computations across the layers using the current set of

weights. The loss function, its derivative with respect to the output, and its

derivative with respect to the weights on each layer are computed.

The back propagation phase has the main goal of learning the gradient of

the loss function with respect to the different weights by using the chain rule

of differential calculus. These gradients are then used to update the weights

and biases [37]. The back propagation, also known as the back propagation of

errors, was introduced in 1986 by Rumelhart et al. (1986). In the DL context,

it is a gradient descent optimization algorithm [38]. Gradient descent means

to go downhill in small steps from any starting point of our function towards

the gradient g, with the size (learning rate) of the steps being proportional

to |g|. There are three main problems sources of error on gradient descent

procedure (Figure 3.12):

• Get stuck within a local minima;

• Descent stop when passing a flat plateau;

• Miss a good minima due to too large step size;

• Oscillations due to a strong positive and negative gradient alternation

[36].
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FIGURE 3.12: a. Detecting bad minima;b. Quasi-standstill with
small gradient; c. Osscillation in canyons; d. Leaving the good

minima. [36]

3.2.3 Generalization and Optimization

Training neural networks is a complex procedure; thus, several issues could

occur. The most important ones are the overfitting and underfitting, related

to the concept of generalization.

Generalization is the ability to perform well on previously unobserved

inputs. Typically, during the training, as described before, it is computed

the training error, and it is applied the optimization problem to minimize

it. The distinction between ML and simple optimization lies in the focus on

minimizing generalization error or test error. It is defined as the expected

value of the error on an unseen input, the test set. The factors determining

how well a model will perform are its ability to make the training error small

and make the gap between training and test error small. They are connected

to the two problems mentioned at the beginning.

Underfitting occurs when the model is not able to obtain a sufficiently

low error value on the training set. Underfit networks are not suitable mod-

els with poor performance. This issue could be solved by redesigning the

network.

Overfitting occurs when the gap between the training error and test error

is too large [38]. This means that the model trained on a particular dataset

does not guarantee that it will provide good performance on unseen test data,

even if the model predicted the target in the training set perfectly [37].

Typically, training error decreases until it asymptotes to the minimum
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possible error value as model capacity (ability to fit a wide variety of func-

tions) increases, while, typically, generalization error has a U-shaped curve

as a function of model capacity, as shown in Figure 3.13. The objective is to

find the case of optimal capacity. The strategies used to reduce the test error,

possibly at the expense of increased training error, are known as regulariza-

tion [38]. The widely used ones are:

• Dataset Augmentation. Create fake data and add it to the training set to

augment the limited amount of starting data. It is very effective for the

object recognition classification problem because the images contain a

lot of factors of variation that are easy to simulate [38].

• Validation. The starting dataset is not anymore divided into training and

testing sets, but in three different sets. Two of them remain the training

(build the model) and the test (test the accuracy of the tuned model),

while the third one is a subset of the training set, called the validation

set. It is used for model selection and parameter tuning. The validation

data can be viewed as a kind of test data set to tune the parameters or

to select the best design choice [37].

• Early Stopping. It uses the concept of validation. It evaluates at each

epoch the training and the validation errors. Even if the training error

is still decreasing, when the validation error starts to increase, it means

that further training will cause overfitting. This point is called “early

stopping”. Before it, the training error is too high, thus the network

is underfitted, while after it it’s overfitted. The early point is the right

point to stop training [37, 38]. Figure 3.13 shows the early stopping

principle, coinciding with the point of optimal capacity.

• Ensemble methods. Bagging or Bootstrap aggregation is based on sam-

pling the training dataset with replacement. The idea is to train several

models separately, then apply to each model the test set, obtaining as

many predictions as the number of models. Finally, the predictions are

then averaged to yield a single prediction [37, 38].

Subsampling is based on sampling the training dataset without replace-

ment. Then act exactly like in the bootstrap. The only constraint is to

select the number of samples in each model that is mandatory lower

than the dimension of the starting dataset; otherwise, all the training

sets of the models will be the same [37].
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FIGURE 3.13: Relationship between Error and Capacity. [38]

Another issue in training a neural network is the vanishing and exploding

gradient. They occur in networks with many layers, affecting their stability,

and it is caused by the chain-rule product computation. In particular, the

updates in earlier layers can either be really small (vanishing gradient), pre-

venting the updating of the weights, or they can be really large (exploding

gradient), causing a big update of the weights.

A method to address these two problems is batch normalization (BN). It

causes activation gradients in successive layers to either increase or reduce

in magnitude. Basically, it reparametrizes the model to make some units

always be standardized by definition. It could be used just before or after an

activation function, and it is applied as a layer in the architecture so that the

input of this layer is normalized with a fixed mean and a fixed variance.

Another issue is the convergence difficulties: the loss function does not

converge to the best result due to the “resistance” to the training process of

the deep networks.

The last issue discussed is the local optima. It occurs when the optimiza-

tion converges not in the global optima but in a local one. Lots of local optima

are present due to the non-linearity of the neural network. A possible solu-

tion is the pretraining, so improving the initialization of the model [37].

3.3 Convolutional Neural Network

The CNN functions much like a feed-forward neural network, except that

the operations in its layers are spatially organized with sparse connections
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between layers [37].

The training of a CNN is based on finding the kernel size and the fully

connected layer weights, discussed below [39]. The overall network (Fig-

ure 3.14) is built stacking in repetition of three types of layers:

• Convolution Layer. The convolution layer is fundamental. It performs

feature extraction, which typically consists of a combination of linear

(convolution) and non-linear (activation function) operations [39]. The

convolution is an operation on two functions of a real-valued argument

[38]. A small array of numbers, called a kernel, is applied across the ar-

ray of numbers in input, called a tensor, to compute an element-wise

product at each location of the tensor, then summed to obtain the out-

put value, called a feature map. The usual step movement of the ker-

nel, called a stride, is 1 (Figure 3.15). This procedure can be repeated

with different kernels, obtaining different feature maps that represent

different characteristics of the tensor (Figure 3.16). Fundamental is to

define the size (3x3, 5x5, 7x7) and the number of kernels to determine

the depth of output feature maps. A zero padding on each side of the

tensor could be applied to allow the center of the kernel to overlap the

outermost element of the tensor (Figure 3.17). The linear output of the

convolution passed through a non-linear activation function, typically

ReLU, discussed previously [39]. The role of the convolutional layer is

to detect local conjunctions of features from the previous layer [28].

• Pooling Layer. A pooling layer performs a downsampling operation that

reduces the in-plane dimensionality of the feature maps to introduce a

FIGURE 3.14: CNN Architecture. [39]
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FIGURE 3.15: a-c. An example of convolution operation with a
kernel size of 3 × 3, no padding, and a stride of 1. [39]

translation invariance to small shifts and distortions and decreases the

number of learnable parameters. There exist two types of pooling. The

Max Pooling is the most popular one. It subdivides the feature maps

into patches, and from each patch select the maximum value and dis-

card the others. It reduces the height and width of the images but not

the depth dimension (Figure 3.18). The Global Average Pooling is an

extreme operation, applied only once before the fully connected layer.

It downsamples a feature map into a 1x1 array, taking the average of the

elements (the depth remains the same as before). It reduces the number

FIGURE 3.16: A convolution operation with zero padding. [39]
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FIGURE 3.17: A convolution operation with zero padding. [39]

of learnable parameters and enables the CNN to accept variable size in-

puts [39]. The role of the pooling layer is to merge semantically similar

FIGURE 3.18: a. An example of max pooling and (b.) an exam-
ple of max pooling applied on the same images of Figure 3.16.

[39]
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features into one [28].

• Fully Connected Layer. The output of the previous layer is flattened,

reduced to a 1D vector, and connected to one or more fully connected

layers, which work exactly as a feed-forward network. They map the

features extracted before in the final outputs, such as the probabilities

for each class in classification tasks. Each layer is followed by a ReLU,

while the last one has an appropriate activation function for the task.

In multiclass classification is often used a softmax [39].

The discussion and the images above refer to a CNN with a 2D tensor, but it

could be extended simply also to a CNN with volumetric 3D inputs.

The CNN can be applied in healthcare to facilitate the classification, seg-

mentation, or detection of anatomical structures in biomedical images. In

particular, following the aim of this study, the segmentation field will be dis-

cussed in more detail.

3.4 Biomedical Image Segmentation

Segmentation of organs or anatomical structures is a fundamental image pro-

cessing technique for medical image analysis. It is the process of partitioning

the digital images into multiple segments, used to identify the object of inter-

est or the related information. It could be performed manually by clinicians,

but it could be used as a less-consuming process thanks to the CNN, which

will reduce the time and the personnel needed.

To train a segmentation network, the training data consists of the medical

images of the organ of interest and the segmentation masks. The process

is based on predicting the probability of each pixel or voxel belonging to a

specific anatomical structure using a CNN. Firstly, the probability map was

constructed, and then the global context of the images was used to refine the

output [39]. An example of the segmentation is shown in Figure 3.19. In

the following subsection, some state-of-teh-art CNNs for segmentation are

discussed.

3.4.1 Fully Convolutional Network

The Fully Convolutional Network (FCN) was proposed by Long et al. in 2015

[40], who wanted to build a network that takes input of arbitrary size and

produces correspondingly sized output with efficient inference and learning.
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FIGURE 3.19: Biomedical Image Segmentation.

It was trained end-to-end, pixels-to-pixels on semantic segmentation, and

it exceeded the at-time state-of-the-art, thus the CNN. This model transfers

recent success in classification to dense prediction by reinterpreting classifi-

cation nets as fully convolutional and fine-tuning from their learned repre-

sentations.

The fully connected layers of typical recognition nets were “transformed”

into convolution layers, seeing them as convolutions with kernels that cover

their entire input regions, to preserve spatial information. Then the introduc-

tion of upsampling layers in substitution of some pooling operators increases

the image resolution of the output. Finally, the output will be a dense pre-

diction map, with the same size of the input but with the desired number of

output channels, thus the classes in the segmentation problem. The FCN is

shown in Figure 3.20

FIGURE 3.20: Fully Convolutional Network. [40]
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3.4.2 U-Net

The U-Net (Figure 3.21) was proposed by Ronneberg et al. in 2015 [41], in-

troducing one of the most widely used network architectures for biomedical

image segmentation.

This architecture consists of a contracting path to capture context infor-

mation and a symmetric expanding path that enables precise localization and

can be trained end-to-end from very few images. It was an extension of the

FCN [40] such that it works with very few training images and yields more

precise segmentation; the main modification was the adding of feature chan-

nels in the up-sampling part, which allow the network to propagate context

information to higher resolution layers.

The input images and their corresponding segmentation maps are used

to train the network with the stochastic gradient descent implementation. To

reach the training with few images, it is necessary the data augmentation to

teach the network the desired invariance and robustness. Especially, random

elastic deformations of the training samples are the key concept to training a

segmentation network with very few annotated images.

The architecture is composed of a contracting path, which follows the tra-

ditional CNN architecture, and an expansive path. The contracting path is

FIGURE 3.21: U-Net Architecture. [41]
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the repetition of two 3x3 convolutions, each one followed by a ReLU, and

a 2x2 max pooling as down sampling. At each down sampling, the feature

channels are doubled. The expansive path consists of an upsampling fol-

lowed by a 2x2 convolution, where the number of feature channels is halved,

a concatenation with the correspondingly cropped feature map from the con-

tracting path, necessary for the border pixels loss in every convolution, and

two 3x3 convolutions, each one followed by a ReLU. A final 1x1 convolution

maps each 64-component feature vector to the desired number of classes.

3.4.3 3D U-Net

The 3D U-Net was proposed by Cicek et al. in 2016 [42] and introduced an

extension of the U-Net by replacing all 2D operations with their 3D coun-

terparts (3D convolutions, 3D max pooling, 3D up-convolution layers), and

adding a BN before each ReLU.

This network learns to generate dense volumetric segmentations only re-

quiring some annotated 2D slices for training; it aims on densification of

a sparsely annotated dataset, or it learns from multiple sparsely annotated

datasets to generalize to new data. The two different ways the network can

be used are shown in Figure 3.22.

FIGURE 3.22: Volumetric segmentation with the 3D U-Net. a.

Semi-automated segmentation; b. Fully-automated segmenta-
tion. [42]
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Chapter 4

Literature Review

4.1 Introduction

In the last years, DL techniques have changed the approach to medical imag-

ing analysis. A lot of studies focused their work on creating a DL model for

lung nodule segmentation in CT images.

Most recent works started to apply CNN to that task, introducing the

numerous advantages of these types of networks. However, this field is not

without challenges, due mainly to the heterogeneity of the CT images and

acquisition protocol and to the high dimension of data for the training.

Since this study aims to create a deep learning model for lung nodule seg-

mentation in CT images, this literature review will provide a review focused

on the most recent works in this field.

4.2 Methods

The literature review was conducted using a query-searching strategy on

three electronic bibliographic databases, namely, PubMed, Scopus, and Web

of Science.

The root ‘lung cancer’ was used to search for studies related to that spe-

cific tumor; the root ‘deep learning’ was used to search for studies using

machine learning techniques; the roots ‘ct’ and ‘computed tomography’ were

used to focus the search on studies with computed tomography image datasets;

and the root ‘segmentation’ was used to search for studies concerning the

segmentation of lung nodules. All these roots were limited in the ‘Title and

Abstract’ fields of search; terms within each concept were combined with the

boolean operator ‘OR’ and then combined with the boolean operator ‘AND’.

Moreover, two roots (‘classification’ and ‘extraction’) were used to exclude
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the studies that do not focus only on segmentation techniques. Free access

and English papers were the only ones considered.

The papers were collected and managed in the Zotero reference manage-

ment system; the duplicates were removed, and title and abstract analyses

were performed to select only the interesting documents.

4.3 Results

Overall, 89 articles were identified in the bibliographic databases. 40 were

duplicated, 21 were excluded after the title analyses, and 13 after the abstract

one. At the end, 15 studies were selected. The study inclusion procedure is

shown in Figure 4.1

FIGURE 4.1: Performed literature search and study selection
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4.3.1 Shuo Wang et al. (2017)

This study [43] proposed a data-driven model, named Central Focused Con-

volutional Neural Network (CF-CNN), to perform lung nodule segmenta-

tion on heterogeneous CT images, capturing a set of nodule-sensitive fea-

tures from 3D and 2D CT images simultaneously.

The architecture, shown in Figure 4.2a, includes two identical deep branches,

composed of six convolutional layers (C1 to C6), subdivided in three blocks,

with each block including two 3x3 convolutional layers and aPReLU after

each convolutional layer. Between two blocks is present a central pooling

layer, while after the last a fully connected layer (F7) is applied and com-

bined with the fully connected layer of the other branch through another

fully connected layer (F8). The two parallel branches are relative to 3D and

2D CNN, respectively. The central pooling layer is proposed by the study

and shown in Figure 4.2c. The main characteristics are that the kernel size

varies according to the pooling position and is non-uniformly distributed on

the input image, while in traditional max pooling the kernels are of the same

size and uniformly distributed, as in Figure 4.2b.

FIGURE 4.2: The network architecture proposed by Shuo Wang
et al. (2017); a. Architecture; b. Tradtional pooling process; c.

Central pooling process. [43]
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The network was tested with the public dataset LIDC, which includes

893 nodules, and an independent dataset from Guangdong General Hospital,

which includes 74 nodules. The first dataset was divided into 350 nodules for

the training set, 50 for the validation set, and 493 for the testing set, while the

second dataset was completely used as the testing set.

The results suggest that the CF-CNN achieved superior segmentation

performance in the two datasets compared to several widely used lung nod-

ule segmentation methods. It has high-performance segmenting nodules at-

tached to pleura.

4.3.2 Zisha Zhong et al. (2018)

In this paper [44], it was proposed a novel approach for the segmentation

of lung tumors. It combines the 3D U-Net, applied separately to PET and

CT images to extract high-level discriminative features and generate tumor

masks and probability maps, and the graph-cut-based co-segmentation model

to obtain the final segmentation result. This combination gives the advantage

of automatized localization of tumors.

The architecture is composed of two 3D U-Nets, which take as inputs

pre-processed images. The encoder contains four 3x3x3 convolutional and

2x2x2 max pooling layers with 32, 64, 128, and 256 feature maps, while the

decoder contains four deconvolutional, with factor 2, and convolutional lay-

ers with 256, 128, 64, and 32 feature maps. After each deconvolutional layer,

the map is concatenated with the corresponding features in the encoder. At

the end, the probability maps are obtained with a Softmax classifier, and a

co-segmentation model generates the output as described in [45]. This archi-

tecture is shown in Figure 4.3.

The network was tested with a private dataset composed of 32 co-registered

PET-CT scans, split into 20 for the training set and 12 for the testing set.

The quantitative results showed a better performance than the previous

semi-automatic approach, using or not the co-segmentation model, demon-

strating the learning ability of the 3D U-Net. The segmentation performance

is however better in CT images than PET images. When combined with the

co-segmentation model, the performance improves.
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FIGURE 4.3: The network architecture proposed by Zisha
Zhong et al. (2018) [44]

4.3.3 Liang Zhao (2020)

This paper [46] proposed a 3-dimensional densely connected convolution

neural network for the segmentation of lung parenchyma in CT images, con-

sidering this type of deep learning approach better in accuracy results than

those based on 2-dimensional segmentation. This is due to the CT images,

which are a kind of 3D image with a lot of 3D information, lost and not used

by the 2D segmentation network.

The architecture proposed, shown in Figure 4.4a, is a 3D FCN with three

densely connected blocks. The first one, DenseBlock1, is composed of 4

densely connected layers, where, in each layer, there are a BN, a ReLU, and a

3x3x3 convolutional layer, with a growth rate of 16. DenseBlock2 and Dense-

Block3 are similar to DenseBlock1, but with 8 and 16 dense layers, respec-

tively. Their dense connectivity is represented by Figure 4.4b, showing that

each layer has as inputs all the features extracted from all the previous lay-

ers. The input of the first dense block is a 64 convolutional filter 3x3x3 and a

Max Pooling, while between two consecutive dense layers there are a BN, a

ReLU, a convolutional layer 1x1x1 and a 2x2x2 max pooling layer. The down-

sampling path is formed by a BN, a ReLU, 2 convolutional layer 1x1x1 and

3 deconvolutional layer 3x3x3, to have the output images sized as the input

ones.

The network was tested with the public dataset LIDC-IDRI, composed of
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FIGURE 4.4: The network architecture proposed by Liang Zhao
(2020); a. Architecture; b. DenseBlock structure. [46]

888 samples, divided into 708 for the training set and 90 for the validation

and testing sets.

The results obtained were compared to those obtained with a 3D U-Net

on the test set, showing that the network proposed can generally achieve

better performance, despite the fact that the number of parameters is half.

4.3.4 Boris Shirokikh et al. (2021)

This paper [47] proposed a new accelerated segmentation method with a

human-like technique to segment a 3D study. It is based on a rough anal-

ysis of the whole images to identify firstly the area of interest, lung nodules,

and then locally segment each small part independently.

The architecture, LowRes, shown in Figure 4.5, is a 3D implementation

of U-Net, with a residual block (ResBlocks), a BN, and a ReLu after each

convolution, except the output one. It includes a low-resolution segmenta-

tion, a CNN segmentation model to predict the 8x8x8 times down sampled

probability map, and a detailed segmentation, which iteratively and locally

aggregates features from the first stage and predicts, in the original solution,

the segmentation map.

The model was tested with the public dataset LIDC-IDRI, including 888

3D chest scans, divided into 534 for the training set, 178 for the validation set

and 174 for the testing set.
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FIGURE 4.5: The network architecture proposed by Boris Shi-
rokikh et al. (2021) [47]

The results indicate that this architecture achieves an inference speed close

to that of mobile networks and simultaneously preserves or even increases

the performance of the state-of-the-art segmentation network.

4.3.5 Wei Chen et al. (2021)

This paper [48] presented a novel deep learning-based approach for lung

cancer segmentation from CT images, called Multiple Attention 3D U-Net

(MAU-Net).

The architecture is based on a base U-Net, shown in Figure 4.6a, which

has four levels in both encoder and decoder. In each level, a stride convo-

lution reduces the feature’s map resolution starting from 160x256x40, while

the number of channels increases at a ratio of 2 starting from 32. At the end

of the encoder is placed the Dual Attention Module (DAM). Firstly, a 3x3x3

convolution layer with 128 channels is applied, generating two compressed

feature maps, which are fed one into a spatial attention block (SAB) and one

into a channel attention block (CAB). The first block applies three 1x1x1 con-

volutions in parallel and reshapes them. The first, after their multiplication,

are fed into a Softmax layer to generate the attention map, then multiplied

with the third reshape, and finally multiplied with the starting feature map.

The CAB models the relationship between different channels, performing

the same model as SAB without the staring convolution. The output of the
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FIGURE 4.6: The network architecture proposed by Wei Chen
et al. (2021); a. Architecture b. DAM c. MAGM. [48]

two blocks is combined for the global output. The DAM is added only be-

tween the encoder and decoder for computational reason; thus, to alleviate

the noise, a Multiple Attention Gated Module (MAGM) is introduced be-

tween each layer of the decoder. It combines, after a 1x1x1 convolution, three

feature information: the ones corresponding to the decoder layer, the ones

corresponding to the encoder layer, and the feature of dual attention. After

a ReLU activation function and another 1x1x1 convolution, the output is fed

into a Sigmoid function to obtain the final feature maps. The architecture of

the DAM and MAGM is shown in Figure 4.6b and Figure 4.6c.

The network was tested with a private dataset composed of 322 patients’

images collection with tumor contouring performed by radiologists with soft-

ware. The dataset was divided with a ratio of 7:1:2 in training, validation, and

testing sets.

The results showed an improvement in segmentation accuracy than the

base 3D U-Net.
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4.3.6 Syeda Furruka Banu et al. (2021)

This study [49] proposed an end-to-end encoder-decoder deep learning ap-

proach to accurately segment lung nodules in CT images, called WEU-Net.

The overall architecture is shown in Figure 4.7. It is an encoder-decoder

model, where the encoder part is composed by a collection of layers. Each

layer includes a weight excitation-based CNN (WE-CNN) [50] and ReLU ac-

tivation to capture the contextual features from the input image, followed by

a Max Pooling layer. The size of the feature map gradually decreases while

going deeper. The decoder is a collection of transposed WE-CNN with an

increasing size of feature map with the decreasing of the depth. At the final

layer, a 1x1 WE-CNN is used to map the final feature vector to the segmen-

tation classes.

This network was tested with the public dataset LIDC-IDRI, composed of

CT scans of 888 patients with a total of 1166 CT images with corresponding

ground truth masks, split in 922 for the training set and 244 for the testing

set.

The results showed that the weight excitation-based CNN significantly

improved the performance of U-Net for lung nodule segmentation. Then, the

proposed model can also segment the tiny region precisely when the other

networks fail.

FIGURE 4.7: The network architecture proposed by Syeda Fur-
ruka Banu et al. (2021) [49]
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4.3.7 Shoji Kido et al. (2022)

In this paper [51], it was proposed a method for robust and accurate three-

dimensional segmentation of lung nodule regions using deep learning.

The architecture is composed of a single encoder network that extracts

the image features, and it is shown in Figure 4.8a. The outputs include the

deepest encoder network (e_1 to e_5), the deepest decoder network (d_5-1

to d_5-4) and the region map created by o_4. The loss function used all the

created region maps (o_1 to o_4) to calculate the loss value. The different

structures of the layer are shown in the 4.8a legend. The encoder and the

decoder are connected by concatenation. The residual unit, Figure 4.8b, has

a skip connection where the input does not pass through the convolutional

layer.

The network was tested with a private database from Saiseikai Yamaguchi

General Hospital, composed of 330 lung nodules. It was split in five parts:

four of them, augmented (96 lung nodule images were generated from one

lung nodule image) were used as the training set, and the remaining one

as the testing set. This process was performed five times for a 5-fold cross-

validation.

The results showed that the proposed method is significantly superior

to well-known deep learning models for the lung nodule segmentation and

significantly superior to conventional image processing methods for the lung

nodule detection. This means that it may be useful for accurate and robust

segmentation of lung nodules to assist radiologists in the diagnosis.

FIGURE 4.8: The network architecture proposed by Shoji Kido
et al. (2022); a. Architecture; b. Residual Unit. [51]
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4.3.8 Sundaresan A. Agnes et al. (2022)

In this paper [52], a multiscale fully convolutional three-dimensional U-Net

(MF-3D U-Net) was proposed for automatic segmentation of lung nodules in

CT images. It fuses a multiscale feature, a Maxout aggregation, and trainable

down sampling. To retain the most important features and suppress the low-

contribution ones.

The architecture uses four customized encoder blocks along the down

sampling path to increase the efficiency of the traditional U-Net. The first

convolutional block starts with 16 filters, while the subsequent blocks will

double the number of these filters. The overall network is shown in Fig-

ure 4.9a, while the inside of each convolutional layer is shown in Figure 4.9b.

Each convolutional layer uses a multiscale convolution of kernels, applying

two different filter sizes (3x3x3 and 5x5x5), and is followed by BN and a

ReLU non-linear activation operation. Then, a Maxout approach is applied to

aggregate multiscale features; it joins the obtained features from both 3x3x3

and 5x5x5 convolutions, preserving the highly competitive feature maps.

The aggregate maps are then subsampled to half-resolution with a learnable

down sampling process performed by a large stride convolution operation.

The expansion comprises a stack of deconvolution layers, using the feature

FIGURE 4.9: The network architecture proposed by Sundaresan
A. Agnes et al. (2022); a. Architecture; b. Encoder. [52]
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maps produced by the Maxout block through a skip connection. At the end,

the Softmax layer computes the classification over the final expanded feature

map.

The network was tested with the public dataset LIDC-IDRI, which con-

tains 926 CT scans, added to the 84 CT scans from the previous LIDC dataset.

For the training and the testing dataset, 300 CT scans were randomly se-

lected.

The results were divided into a quantitative analysis that showed an accu-

rate segmentation of different types of nodules, including solitary pulmonary

and non-solid nodules, and a comparative analysis, which showed good reli-

ability in terms of segmentation with respect to other, widely used, methods.

4.3.9 Yifan Wang et al. (2022)

In this paper [53] it was proposed a hybrid deep learning model (H-DL) for

the segmentation of lung nodules with a wide variety of sizes, shapes, mar-

gins, and opacities.

The network is based on the redesign of the architectures of the encoders

and decoders of a deep convolutional neural network (DCNN) in two sep-

arately trained U-shaped networks, combined then into an H-DL model to

improve the learning capabilities for segmentation. Each of the two U-DL

models consisted of six levels of nine convolution layers in both the contract-

ing and expanding paths. In one it is used a shallow DCNN structure with

16 convolutional layers, while in the other a deep DCNN structure with 200

layers organized in five dense blocks as in a DenseNet. Then, the decoder

was reduced to only one convolution layer at each level to reduce computa-

tional and memory costs. Both the encoding and the decoding paths used

a 3x3 convolution, followed by a ReLU and a 2x2 max pooling with stride

2. It was also added a series of nests and dense skip structures to provide

alternative pathways. At the end, the probabilities predicted by the two U-

DL networks were combined into the H-DL model with an ensemble layer

followed by a 3x3 convolutional layer with the sigmoid activation function.

The overall architecture is shown in Figure 4.10.

The network was tested with a public dataset, LIDC, which contains 847

cases, randomly split into 683 for the training and validation sets, and 164 for

the testing set.
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FIGURE 4.10: The network architecture proposed by Yifan
Wang et al. (2022). [53]

The results showed that the proposed model outperformed the individual

shallow or deep U-DL models and achieved a segmentation accuracy com-

parable to radiologists’ segmentation for nodules.

4.3.10 Dechuan Lu et al. (2022)

In this study [54], a novel network for pulmonary nodule segmentation from

CT images based on U-Net was proposed. It uses a dense connection that

enhances the transmission and the utilization of the features and mitigates

the class imbalance problem due to the small size of pulmonary nodules,

and a new loss function, which is tolerance on the pixels near the borders of

the nodule.

The architecture is a Dense U-Net, a new network that uses dense connec-

tions to combine the features of the current layer with those of all previous

layers and transmit them to all the subsequent ones. Each dense connection

has two 3x3 convolution layers, two BN, two ReLU, and two feature fusion

operations, which fuse the generated feature graph with the original one, be-

coming the input of the next dense connection. This is shown in Figure 4.11a,

while in Figure 4.11b is the whole architecture, composed of an encoder, a

decoder, a classifier, and a skip connection. The encoder contains 4 dense
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FIGURE 4.11: The network architecture proposed by Dechuan
Lu et al. (2022); a. Dense Connectio structure b. Architecture.

[54]

connection, and a maximum pooling layer, generating a 4x4 feature map.

The decoder is composed of a dense connection and a deconvolution layer,

which generates the final feature map with the same size as the input image.

The encoder and the decoder are linked by a dense connection. The classifier

is a 1x1 convolutional layer and a sigmoid activation layer. The loss function

introduced is tolerant on the pixels near the borders of the nodule, measur-

ing the loss between one pixel and all the pixels around the corresponding

one in the ground truth and selecting the minimum value.

The network was tested with the public dataset LIDC-IDRI. 4000 images

were used as the training set, 500 as the validation set, and 200 as the test-

ing set. The test set was taken from another dataset from Jiangdu People’s

Hospital.

The results say that the Dense U-Net has a stronger learning ability for the

small or fuzzy boundary pulmonary nodules, can alleviate the gradient dis-

appearance problems, and obtains more accurate segmentation results than

the other networks.
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4.3.11 Chandra Sekhara Rao Annavarapu et al. (2023)

This study [55] proposed an end-to-end deep learning approach for lung

nodule segmentation, which incorporates a bidirectional feature network (Bi-

FPN) between an encoder and a decoder architecture. It introduced a Mish

activation function and class weights of masks to enhance the efficiency of

the segmentation.

The architecture is an encoder-decoder U-Net backbone combined with

a Bi-FPN; thus, it is composed of three sections: contraction, Bi-FPN, and

expansion. The first section applies two 3x3 convolutions followed by a

non-linear Mish activation function, proposed by [56], to perform a strong

regularization and a 2x2 max pooling. At the end, a dropout layer per-

forms the regularization and feeds the second section, the Bi-FPN. This one

is based on conventional top-down Feature Pyramid Networks (FPN) [57],

which fuse features at different resolutions to obtain an efficient feature ex-

traction, thanks to bidirectional cross-scale connections and weighted feature

fusion. For improving efficiency, separable convolution, followed by a BN

and a ReLU, was implemented. The output of the Bi-FPN is fed into the ex-

pansion section, where each step consists of a 2x2 up-convolution followed

by two 3x3 convolutions and a Mish activation function. At the end, a 1x1

convolution block and a Sigmoid activation function were applied. The ar-

chitecture is shown in Figure 4.12.

The network was tested on the public dataset LUNA-16, derived from the

LIDC-IDRI dataset. After a pre-processing phase, the dataset was composed

of 1166 CT images, divided into 922 for the training set and 244 for the testing

set, applying a K-fold cross-validation of 4-folds.

FIGURE 4.12: The network architecture proposed by Chandra
Sekhara Rao Annavarapu et al. (2023). [55]
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The results showed that the proposed architecture outperformed existing

deep learning models as U-Net, demonstrating precision in segmentation of

lung nodules and also achieving efficient performance of segmentation in

daunting cases such as cavitary nodules and small nodules of less than 6

mm.

4.3.12 Junyoung Park et al. (2023)

This paper [58] proposed a two stage U-Net architecture to enhance the per-

formance of lung cancer segmentation using PET/CT images.

The model architecture is composed of two stages:

• Stage 1, shown in Figure 4.13a, is a global 3D U-Net that receives the

images as inputs and extracts the preliminary tumor area, generating

a 3D binary volume as output. Each convolution block has a 3x3x3

convolution layer, a BN, and a leaky ReLU with a negative slop of 0.2

as the activation function, with a 2x2x2 max pooling after.

• Stage 2, shown in Figure 4.13b, is a regional U-Net based on DenseNET

[59]. It receives as input eight consecutive slices centered on the one

predicted to have lung cancer in stage 1 and generates a 2D binary im-

age as output. The max pooling is a two-dimensional 2x2.

The network was tested with a private dataset composed of 887 sample

images, divided into 730 for the training set, 81 for the validation set, and 76

for the testing set. The ground-truth volume of interests was drawn semi-

automatically.

The results showed that this network outperformed the one-stage 3D U-

Net in segmentation of primary lung cancer and predicted correctly the de-

tailed margin of the tumors. The quantitative analysis confirmed the advan-

tages of using a two-stage U-Net: the proposed method reduces the time and

the effort required for lung cancer segmentation in PET/CT images.

4.3.13 T. Weikert et al. (2023)

In this paper, [60] proposed a Retina U-Net algorithm for the detection of

primary lung tumors and associated metastasis stages on PET/CT images.

The architecture is based on a Retina U-Net, a state-of-the art approach

in medical detection [61], characterized by additional branches in the lower

decoder levels for end-to-end object classification (CL) and bounding box
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FIGURE 4.13: The network architecture proposed by Junyoung
Park et al. (2023); a. Global Architecture; b. Regional Architec-

ture. [58]

regression (BB). The network is an encoder-decoder structure that resembles

a U-Net, complemented by CL and BB at the lower levels of the architecture

to exploit object level features. It is shown in Figure 4.14.

FIGURE 4.14: The network architecture proposed by T. Weikert
et al. (2023). [60]
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The network was tested with two private datasets with the images ac-

quired at the authors institution. The first is called the internal dataset, com-

posed of 364 samples and divided into the testing set (216), the validation set

(74) and the testing set (74). The second is the external dataset composed of

20 samples as an external testing set.

The results revealed a good detection rate of lesions, with higher perfor-

mance on larger tumors with respect to smaller ones, due to the fact that the

small are affected by the partial volume effect.

4.3.14 Tenzin Kunkyab et al. (2024)

In this paper [62], it was proposed a novel deep learning architecture based

on CNN, residual blocks, and transformers (Co-ReTR) to auto-segment the

gross tumor volume (GTV) in CT images. This combination was introduced

to overcome the CNN limitations in learning long-range spatial dependen-

cies due to the locality of the convolutional layer.

The architecture, shown in Figure 4.15a, has three key components:

• Encoder. It is composed of two CNNs, a deep 3D network and a shal-

low 3D network, and its main function is extracting features. The low-

resolution images are processed by the deep CNN, while the high-

resolution images are processed by the shallow one to reduce the com-

putational complexity. The shallow CNN has five 3D convolutional

layers (Conv), interleaved with instance normalization (IN) and ReLU,

complemented by six stages of 3D residual blocks, which incorporate

Conv-IN-ReLU units. The output of the first onvolutional layer under-

goes two convolution filters, 1x1x1 and 3x3x3. The deep CNN is similar,

but with nine residual blocks. This structure is shown in Figure 4.15b.

• Transformer. It is composed by an inputs-to-sequence layer and a se-

ries of stacked deformable transformer layers (DeTrans), and it must

capture and model the long-range contextual information. The posi-

tional encoding reintroduces the spatial information into the flattened

sequence, while the DeTrans enhances the representation learning pro-

cess by incorporating a combination of deformable self-attention (scan

the feature maps to find all the possible locations around a reference

one), a feed-forward network (introduce non-linearities and let the model

catch more complex data relationships), and a layer normalization (stan-

dardize the activations within layers). Each DeTrans has a skip connec-

tion, facilitating the challenges with gradient vanishing.
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FIGURE 4.15: The network architecture proposed by Tenzin
Kunkyab et al. (2024); a. Architecture; b. Shallow and deep

CNN. [62]

• Decoder. It is a CNN block to upsample the feature maps back to the

original image resolution. Through deconvolution. Then it uses resid-

ual blocks to capture details and enhance the segmentation quality out-

put.

The architecture was tested with 676 CT images, taken from three public

datasets: NSCLC radiomics, NSCLC radio genomics, and the paper authors

clinical database. The first two, composed of 563 samples, were used as train-

ing and validation sets; instead, the third one, 113 samples, was used as the

test set.
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The results were compared against five other auto-segmentation tech-

niques: U-Net, Att-U-Net, ResNet-U-Net, CoTr, and U-NetR, showing a higher

segmentation accuracy by capturing local and global information. Other re-

sults were conducted to evaluate the ability of the proposed network to con-

tour both single and multiple tumors, still resulting in a higher accuracy than

the other five networks.

4.3.15 Fuli Zhang et al. (2024)

This study [63] proposed a unique two-stage deep learning method for lung

cancer segmentation. The first stage is a coarse network of segmentation to

detect the harsh region of lesions, while the second stage involves two dis-

tinct segmentation networks, trained separately, for two categories of images

containing large-sized and small-sized tumors.

The architecture, as already said, is divided into two steps:

• Coarse segmentation network. It uses a U-Net with four convolution and

down sampling operations and four up sampling and convolution op-

erations to obtain the segmentation outcomes. Each convolution layer

exhibits the same number of convolutions with an equally sized kernel.

To well connect the output obtained to the second step, a processing

phase is necessary, and it is shown in Figure 4.16a.

• Fine segmentation network, Figure 4.16b. It is used a TransU-Net, which

combines transformers and U-Net. The transformer encodes tokenized

image patches for capturing global context, while, simultaneously, the

decoder carries the up sampling of the encoded features, then fused

with the high-resolution CNN feature maps. To enhance the feature

extraction capability, residual convolution blocks were used. In par-

ticular, a great number of these blocks and convolution channels were

employed in the initial layer, with a decreased number for further lay-

ers.

The network was tested with the public dataset NSCLC, considering 200

cases for the training set, 40 cases for the validation set, and 60 cases for the

testing set.

The quantitative results showed that the proposed method has a higher

accuracy and efficiency in tumor segmentation than the other methods, which

have under and over segmentation issues. Then, the model demonstrated
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FIGURE 4.16: The network architecture proposed by Fuli
Zhang et al. (2024); a. Processing of the first step’s results.;

b. Fine segmentation network. [63]

also good performance in CT images with small GTVs, which have poor per-

formance in other methods, but generally, thanks to the training in two dif-

ferent groups of images, the network has exhibit significance enhancement

in segmentation on both types of CT images.
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4.3.16 Comparison Tables

Table 4.1, Table 4.2, Table 4.3, Table 4.4 summarize both the general and the

specific information about each article resulted from this literature review.

It is possible to notice that most of the studies used the same databases but

different preprocessing techniques, even if some of them are the same. The

most used ones are: rescaling, resizing, and cropping the images and center-

ing them to the nodule position; and the intensity range resizing according

to the Hounsfield scale (HU), followed by a normalization.

As expected, each paper added different characteristics and features to

the base network models to study the possible upgrade and improvements

for the state-of-the-art model already discussed (FCN, U-Net, and 3D U-Net).

Some studies started even from the simple CNN.

As it is possible to notice, each paper bases the evaluation of the perfor-

mances of the proposed networks on the use of different metrics, but all of

them except [60] used the Dice Similarity Coefficient (DSC). All the other

evaluation metrics are not used by more than three studies. Table 4.5 shows

the comparison of the evaluation metrics results obtained from the proposed

articles. For proper knowledge, all the metrics are reported, even if the DSC

is the best and the only one useful for the comparison.

List of the Evaluation Matrix:

• Dice Similarity Coefficient (DSC);

• Symmetric Average Surface Distance (ASD);

• Sensitivity (SEN);

• Positive Predictive Value (PPV);

• Inference Time (IT);

• Hausdorff Distance (HD);

• Relative Absolute Volume Difference (RAVD);

• Accuracy (ACC);

• Intersection over Union (IoU);

• Precision (PRE);

• False Positive Rate (FPR);

• True Positive Rate (TPR);
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Chapter 5

Deep learning lung cancer

detection

5.1 Introduction

Early diagnosis of the lung cancer is important in making positive changes to

the patient’s condition and in deciding on an appropriate treatment strategy.

The current standards of oncology ensure that an accurate diagnosis largely

depends upon the availability of good-quality medical images such as CT

scans, which give clear visual details of abnormalities in lung tissues. Clin-

icians must deal with the reading and interpretation of complicated imag-

ing data, where factors like anatomical structures overlaying the region of

interest and poor image quality may often obscure the identification of ma-

lignant lesions. Various traditional methods of image processing have been

considered for the detection of lung cancer; however, these usually lack suf-

ficient sensitivity and specificity that would enable the reliable diagnosis of

lung cancer. The recently considered deep learning algorithms, especially the

ones using CNNs in the analysis of medical images, have shown high perfor-

mance in the segmentation and classification of lung cancer-related lesions.

This chapter will present a proposed deep learning model, based on a 2D

U-Net architecture, for the segmentation of lung cancer in CT images, with a

subsequent 3D reconstruction of the cancer volume.

5.2 Materials and methods

The model and its evaluation has been implemented in Python Code on the

Google Colab environment, using the L4 GPU runtime with high RAM.
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5.2.1 Dataset

The data used for this project comes from the NSCLC-Radiomics dataset

available online on the “The Cancer Imaging Archive” database. The dataset

contains images from 422 NSCLC patients. For each patient, pretreatment CT

scans and manual delineation by a radiation oncologist of the 3D volume of

the gross tumor volume and of the lungs are available. Also, clinical outcome

data and other organ manual delineation (heart, exophages, and spinal cord)

are present but not considered for the purpose of this study. In Figure 5.1, an

example of the data present in the chosen dataset is shown.

5.2.2 Preprocessing

The above dataset was preprocessed to prepare it for the training and evalu-

ation of the model. The entire preprocessing pipeline and an example of the

resulting preprocessed images are shown in Figure 5.2. The dataset consists

of 422 subject CT DICOM files along with their related segmentation DICOM

file, except for one subject. In the remaining 421 segmentation files, 11 lacked

lung segmentation masks. First, those CT files from DICOM format were

converted to NIfTI format to make the imaging data easy to manipulate and

analyze. 19 failed due to lack of missing slices. The subsequent steps were

FIGURE 5.1: Example of data presents into the NSCLC-
Radiomics dataset
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FIGURE 5.2: Preprocessing pipeline
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the re-arrangement, so that their dimensions were consistent in the depth,

width, and height orientations of all data entries, and the grayscale pixel in-

tensity values windowing of the CT images in the range of -1000 and +1000

Hounsfield Unit (HU), which is good to intensify the voxels within the lung

region [52]. Further, the data was normalized into the range of 0 to 1, en-

hancing suitability for further analysis. Then, the segmentation files were

analyzed and only those segments that corresponded to lung and cancerous

regions were extracted. These segmentation files were used to extract the

lung from the CT slices with a targeted analysis that removed all the pixels

of the slices that did not contain lung or cancer related information. Then,

completely black slices without informative data were removed to further

refine the data. Slices from each subject were cropped to create an optimal

square window, which minimized the number of non-informative black pix-

els in the final images. To standardize the input dimensions, all slices were

resized to 256x256 pixels, through an interpolation algorythm. After this,

however, a renormalization between 0 and 255 was necessary in order not to

introduce possible changes due to the resizing algorithm, important for the

final conversion to JPEG format. The very last steps were the final normal-

ization between 0 and 1 of the CT images and the binarization of the ground

truth cancer masks to be used in the training and testing processes. After

these preprocessing steps, the dataset was finally reduced to 391 scans.

5.2.3 Model Architecture

The proposed U-Net, Figure 5.3, consists of an encoder-decoder architecture

that is able to capture the contextual information while maintaining spatial

accuracy for the execution of precise segmentation tasks.

The encoder path is made up of five blocks. Each block comprises two

convolutional layers, with LReLU as the activation function, followed by BN.

Remarkably, LReLU allows a small gradient when the unit is assumed to be

inactive; this aids in training the model by preventing the vanishing gra-

dient problem that generally arises in deeper networks. All convolutional

blocks employ a kernel size of (3,3) with "same" padding to preserve the spa-

tial dimensions of the feature maps. The BN of the second convolution of

each block is followed by a spatial dropout (SD), set experimentally at 0.2

after trials, through which a fraction of neurons is dropped out temporarily

while training to help reduce overfitting and improve generalization. The
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FIGURE 5.3: Architecture of the proposed U-Net

MaxPooling layers are added to the end of the convolutional blocks to fur-

ther downsample the feature maps, reducing the spatial dimensions by half,

from 256x256 to 16x16. This contraction helps to model higher states of ab-

straction since the network will be made deeper. This forms the bottleneck

layer, where the size of the feature maps is the smallest, and from which

the Grad-CAM will be computed. The bottleneck uses 2D convolution lay-

ers with a greater filter size of 256, thus increasing the model’s capacity to

learn more complex patterns associated with lung cancer. Next, the trans-

posed convolutions mark the beginning of the expansive path to upsample

the feature maps, concatenating them with the corresponding encoder out-

puts using the skip connections. In this manner, fine-grained spatial infor-

mation that may be lost through downsampling is preserved, which is pretty

important for high-resolution segmentation. The final output layer is a 2D

convolution with kernel size (1, 1) followed by a sigmoid activation function.

Those multi-channel feature maps are converted to a single-channel output

map representing the presence of the tumor as a binary mask.
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5.2.4 Training

After preprocessing, the dataset was divided into three sets: training, val-

idation, and testing datasets. Firstly, the dataset was split into the train-

ing/validation set, which contains 80% of the subjects (312) that were used

to train the implemented model, and the testing set, which contains 20% of

the subjects (79), used to evaluate it. Lastly, the initial training/validation set

was split again into a training set, which contains 80% of those subjects (249),

and a validation set, which contains 20% of those subjects (63), used to deter-

mine when to stop the training process to avoid overfitting and guaranteeing

generalization. In conclusion, the training set includes 20961 2D images, the

validation 5271, and the testing 6679. The data splitting described above is

shown in Figure 5.4.

A data generator was implemented with a batch size of 128 and a ran-

dom shuffle of the training and validation sets. The described choice of the

batch size allows finding the optimal balance between computational effi-

ciency and stability of convergence.

The optimizer used in this work is Adam with a set learning rate of 0.001,

with a learning rate scheduler that will reduce the learning rate with a 0.5

factor in case of stalls in progress. All choices were made experimentally.

Besides that, the early stopping concerning the best validation loss and the

restoration of the best weights are implemented to further enhance the train-

ing. All that let the model not overfit and to learn as much as possible from

the given data.

Dice Coefficient loss was chosen as loss function. It is based on the com-

putation of the Dice Coefficient (DC), used to evaluate the similarity of two

FIGURE 5.4: Data splitting
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sets. It is mathematically defined by Eq. 5.1:

DC =
2|A ∩ B|

|A|+ |B|
(5.1)

where A is the set of pixels in the predicted segmentation mask, B the

set of pixels in the ground-truth mask. Here, |A ∩ B| is the number of pixels

correctly predicted as positive, i.e., tumor pixels; |A| and |B| are the total

number of pixels in the predicted and ground truth masks, respectively. For

implementation of this in a loss function format suitable for training, we take

the complement of the Dice Coefficient as represented by Eq. 5.2:

LossDC = 1 − DC (5.2)

This provides a measure of similarity between two objects based on deter-

mining a ratio between the overlap versus the sum of all pixels in two masks.

A Dice Coefficient of 1 reflects perfect agreement between the predicted and

true segmentation, while a score of 0 indicates no overlap. By using the Dice

Coefficient as a loss function, we concentrate the training process on maxi-

mizing the overlap of the predicted segmentation and actual tumor pixels.

The Dice Coefficient loss is good segmentation tasks, especially within

medical imaging, for its sensitivity for small and irregular structures, its ro-

bustness to class imbalance, where background pixels outnumber the tumor

pixels by a large margin, and its gradient behavior, smoother and more in-

formative compared to the standard losses, which helps in smooth training

and better convergence in hard segmentation tasks.

5.2.5 Testing and Evaluation Procedures

After the preprocessing and the following data splitting, the U-Net was trained

and then tested. The procedure of the testing followed two routes. The first

one is the simplest, consisting in the simple testing and the subsequent eval-

uation of the results in two different approaches: 2D analysis and 2.5 analysis

for the final 3D evaluation and volume reconstruction. Here, the 2.5D analy-

sis involves evaluating slices of data in a way that takes into account contex-

tual information from adjacent slices. This approach bridges pure 2D and 3D

analyses. The second route was based on including the gradient-weighted

class activation mapping (Grad-CAM), where the most important input ar-

eas for the classification are detected [64]. The Grad-CAMS were obtained
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from the bottle neck layer of the starting U-Net, Figure 5.5, and then concate-

nated to their correspondent CT image to create a new 2-channel input. The

same U-Net architecture was then retrained on the new datasets and retested

with the same analysis of the first route. Finally, the two procedures are then

re-evaluated on a 3D level after a postprocessing step, consisting of a conti-

nuity analysis of the mask predictions. This analysis removed all those slices

that were isolated in one of the three dimensions: if a mask prediction does

not have any precedent and successive slice, that slice was removed; and if

a mask prediction has successive or precedent slice with a different located

in space mask prediction, the slice not connected to the continuity structure,

or the smaller one, was removed. The testing and evaluation procedures are

summarized in Figure 5.6.

FIGURE 5.5: Grad-CAM computing process
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FIGURE 5.6: Pipeline for the testing and the evaluation. The
postprocess (red) is applied on a second evaluation and only

on the 3D prediction

5.2.6 Evaluation metrics and methods

The 2D U-Net has been evaluated on two different levels: the 2D level, eval-

uating directly the performances on single images, and the 3D level, evalu-

ating the performances on the volumes reconstructed after the single slices’

predictions.

For the 2D evaluation, the metrics used were the DC and the Intersection

over Union (IoU). The DC is the metric used also for building the loss function

of the model, and it is represented by Eq. 5.1. IoU is one of the commonly

used metrics for the performance evaluation of segmentation models because

it essentially tells how well the predicted segmentation overlaps with the

ground truth segmentation, similarly to the DC. IoU takes both false positives

and false negatives into account; therefore, it gives a better insight into model

performance in the case of imbalanced classes. IoU is more informative in

tasks requiring object localization, as it puts great stress on the correct pixel

prediction. Mathematically, IoU is defined by Eq. 5.3.

IoU =
|A ∩ B|

|A ∪ B|
(5.3)

where A is the set of predicted pixels in a class, B is the set of true pix-

els in that class, |A ∩ B| is the number of pixels in the intersection correctly

predicted as positive, and |A ∪ B| is the number of pixels in the union of all

predicted and true positive pixels. IoU values range from 0 to 1. When it

is 1, it gives the perfect overlap, which is a very important metric for seg-

mentation results in terms of exact and fine quality. Together with these two

metrics, for the 2D evaluation, other performance indexes were used. Sen-

sitivity (SEN) or Recall (REC) is the ratio of the true positive (TP) cases that
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have been correctly caught by the model. This is defined by Eq. 5.4.

SEN =
TP

TP + FalseNegative
(5.4)

This metric is essential in applications that require the identification of posi-

tive instances where a failure to do might be extremely costly, such as in med-

ical diagnosis. Specificity (SPE) or True Negative Rate, defined by Eq. 5.5, is the

measure of the proportion of true negatives (TN) that are correctly identified.

SPE =
TN

TN + FalsePositive
(5.5)

Accuracy (ACC) is the overall ratio of the sum of correctly predicted positive

and negative cases to the total cases, and it is defined Eq. 5.6.

ACC =
TP + TN

TotalCases
(5.6)

ACC is a general performance measure; thus, it can be highly misleading

in imbalanced datasets since it doesn’t discriminate among the types of er-

ror. Therefore, SEN, SPE and ACC together are most likely to convey a de-

tailed level picture of model performance. Finally, the 2D evaluation was

performed from a statistical point of view, through the computing of the True

Area of the cancer mask and the Predicted Area, and the performing of the

Wilcoxon test and Bland-Altman (difference between ground truth and pre-

diction distribution) on general data, on each independent set, and on each

pixel surface set. This last analysis focuses on dividing the whole dataset

into three sets based on the pixel dimension of the ground truth cancer mask

for obtaining a sort of clinical analysis evaluating the ability of the model to

predict small, medium, and large cancer areas. The sets were divided into

smaller than 200 pixels, between 200 and 1000 pixels, and larger than 1000

pixels, without a clinical reference considering that the cancer size classifica-

tion takes into account the volumes of the tumors and not the single surfaces

of each slice.

For the 3D evaluation, the same two metrics were used, sensitivity as the

only performance index, and, instead of the statistical analysis, a volume 3D

reconstruction was performed. The 3D evaluation was then re-performed

after the implementation of the postprocessing step.
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5.3 Results

Table 5.1 and Table 5.2 report the 2D evaluation metrics and performance in-

dexes of the proposed method, related to general segmentation performance

and clinical utility performance, respectively. Figure 5.7, Figure 5.8, Fig-

ure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12 show some examples of 2D

lung cancer segmentation prediction performed by the proposed method. In

each one the CT image and the ground truth used for testing, and the model

prediction are reported. Figure 5.13, Figure 5.14, Figure 5.15 and Figure 5.16

show the Bland Altman plots obtained from the general segmentation per-

formance and the clinical utility performance of the implemented model.

Table 5.3 reports the 3D evaluation metrics of the proposed method, com-

puted before and after the implementation of the postprocess. Figure 5.17

and Figure 5.18 show some examples of the 3D volume reconstruction of the

lung nodules from the 2D prediction output of the model, before and after

the application of the postprocess technique. Table 5.4 report the compari-

son of the DC obtained as results from the proposed method and the others

present in literature

TABLE 5.1: 2D performance according dataset split

Model Split DC IoU P-Value SEN SPE ACC

U-Net TRAIN 0.9306 0.8883 6.77e−163 0.8628 0.9901 0.9648
VAL 0.9193 0.8742 6.28e−85 0.8711 0.9700 0.9491
TEST 0.9315 0.8902 1.23e−57 0.8619 0.9835 0.9573
OVERALL 0.9289 0.8864 2.88e−240 0.8640 0.9856 0.9608

Grad-CAM TRAIN 0.9220 0.8730 1.41e−152 0.8389 0.9892 0.9593
VAL 0.9217 0.8714 3.75e−32 0.8365 0.9736 0.9446
TEST 0.9127 0.8626 1.76e−72 0.8414 0.9828 0.9522
OVERALL 0.9203 0.8703 7.66e−252 0.8391 0.9855 0.9555

TABLE 5.2: 2D performance according to tumor surface

Model Tumor Surface (pixels) DC IoU P-Value

U-Net SMALL (<200) 0.7997 0.7303 3.32e−112

MEDIUM (200><1000) 0.9123 0.8597 1.90e−75

LARGE (>1000) 0.9590 0.9283 1.30e−70

Grad-CAM SMALL (<200) 0.7735 0.6931 2.19e−115

MEDIUM (200><1000) 0.9021 0.8412 3.34e−56

LARGE (>1000) 0.9489 0.9109 5.52e−101
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FIGURE 5.7: Example of the prediction of a small surface lung
nodule by the proposed U-Net

FIGURE 5.8: Example of the prediction of a medium surface
lung nodule by the proposed U-Net

FIGURE 5.9: Example of the prediction of a large surface lung
nodule by the proposed U-Net
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FIGURE 5.10: Example of the prediction of a small surface lung
nodule by the proposed Grad-CAM U-Net

FIGURE 5.11: Example of the prediction of a medium surface
lung nodule by the proposed Grad-CAM U-Net

FIGURE 5.12: Example of the prediction of a large surface lung
nodule by the proposed Grad-CAM U-Net
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FIGURE 5.13: Bland Altman plot by dataset type for the pro-
posed U-Net

FIGURE 5.14: Bland Altman plot by dataset type for the pro-
posed Grad-CAM U-Net
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FIGURE 5.15: Bland Altman plot by nodule surface dimension
for the proposed U-Net

FIGURE 5.16: Bland Altman plot by nodule surface dimension
for the proposed Grad-CAM U-Net



94 Chapter 5. Deep learning lung cancer detection

T
A

B
L

E
5.

3:
3D

P
er

fo
rm

an
ce

A
na

ly
si

s
w

it
h

p
er

ce
nt

ag
e

in
cr

em
en

ta
ft

er
p

os
tp

ro
ce

ss
in

g

S
ta

n
d

a
rd

P
o

st
p

ro
ce

ss
e
d

M
od

el
Sp

lit
D

C
Io

U
SE

N
D

C
Io

U
SE

N

U
-N

et
T

R
A

IN
0.

85
04

0.
77

50
0.

82
29

0.
87

45
(+

2.
83

%
)

0.
80

05
(+

3.
30

%
)

0.
83

68
(+

1.
69

%
)

V
A

L
0.

80
83

0.
72

03
0.

80
38

0.
82

62
(+

2.
21

%
)

0.
74

20
(+

3.
01

%
)

0.
81

23
(+

1.
06

%
)

T
E

ST
0.

84
48

0.
77

02
0.

82
78

0.
88

50
(+

4.
76

%
)

0.
81

23
(+

5.
47

%
)

0.
85

48
(+

3.
26

%
)

O
V

E
R

A
L

L
0.

84
23

0.
76

53
0.

82
07

0.
86

85
(+

3.
11

%
)

0.
79

30
(+

3.
62

%
)

0.
83

62
(+

1.
89

%
)

G
ra

d
-C

A
M

T
R

A
IN

0.
82

24
0.

73
57

0.
80

12
0.

85
67

(+
4.

17
%

)
0.

77
40

(+
5.

20
%

)
0.

81
83

(+
2.

14
%

)
V

A
L

0.
79

98
0.

70
89

0.
80

47
0.

84
70

(+
5.

89
%

)
0.

75
91

(+
7.

10
%

)
0.

83
13

(+
3.

31
%

)
T

E
ST

0.
83

77
0.

75
30

0.
81

73
0.

86
45

(+
3.

20
%

)
0.

78
32

(+
4.

01
%

)
0.

83
46

(+
2.

12
%

)
O

V
E

R
A

L
L

0.
82

18
0.

73
49

0.
80

50
0.

85
67

(+
4.

25
%

)
0.

77
35

(+
5.

26
%

)
0.

82
36

(+
2.

31
%

)



5.3. Results 95

FIGURE 5.17: Example of the 3D volume reconstruction with
the proposed U-Net prediction and the subsequent postprocess
application; (red) True 3D volume, (green) Predicted 3D vol-

ume, (fucsia) Postprocessed 3D volume
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FIGURE 5.18: Example of the 3D volume reconstruction with
the proposed Grad-CAM U-Net prediction and the subsequent
postprocess application; (red) True 3D volume, (green) Pre-

dicted 3D volume, (fucsia) Postprocessed 3D volume
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TABLE 5.4: Comparison with the other literature methods

Type Method DC

2D [49] 0.8283
[54] 0.7442
[55] 0.8282
[62] 0.9200
[63] 0.8000

2D and 3D [43] 0.8215
[53] 0.7500

3D [44] 0.8690
[46] 0.9720
[47] 0.7500
[48] 0.8667
[51] 0.8450
[52] 0.8300
[58] 0.7800
[60] NaN

Proposed Method U-Net 0.9315
3D U-Net Reconstruction 0.8448
3D U-Net Reconstruction + Postprocess 0.8850
2D Grad-CAM 0.9127
3D Grad-CAM Reconstruction 0.8377
3D Grad-CAM Reconstruction + Postprocess 0.8645
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5.4 Discussion

In this project, a 2D U-Net model is proposed for the segmentation of the

lung cancer in CT images. The architecture is based on a five-layer encoder-

decoder structure that guarantees the effective extraction of contextual infor-

mation and the spatial accuracy of precise segmentation. The idea of includ-

ing the Grad-CAM block into the model architecture comes from trying to

help the model focus on the right spot in the image to detect and then seg-

ment the cancer. Even though, as it has been seen, the results from the single

U-Net model were good as well. From the comparison of all the evalua-

tion methods included in the work, it can be noticed that the introduction of

Grad-CAM did not improve the performance of the U-Net in absolute terms.

However, the Grad-CAM model reduced the difference between the perfor-

mances on the training and validation datasets, indicating that the model

had less overfitting than the simple U-Net. The lack of improvements due to

the introduction of Grad-CAM could be related to the fact that the activation

maps were computed from the bottleneck layer of the same U-Net model on

which they were used as a second channel for its training. Thus, their use did

not provide any additional information. Focusing on the first level of evalua-

tion, which is 2D, it is possible to see that the performances on all the dataset

types and the entire dataset are similar, suggesting that the model was well-

trained to avoid the overfitting. One important aspect to highlight is the dif-

ferences between sensitivity and specificity. Sensitivity is much lower than

specificity in all datasets, indicating that the model finds more false nega-

tives than false positives. This means that the cancer not detected by the

model has a higher percentage than the cancer detected where there is none.

It’s as if, when the model is in doubt, it doesn’t take risk. This consideration

is further supported by the clinical results. In both cases, the model’s per-

formance is much lower, but still acceptable, when it must find small surface

cancers compared to medium and large ones. This means that the model is

strong enough to handle various cancer dimensions but has more difficulty

with those that have small surfaces. However, in all three cases, the correct

cancer detection shows some distortions at the segmentation borders, while

the shape and the location are quite good. This could be attributed to the pre-

processing pipeline. The images were originally 512x512, and after cropping,

they were resized with an interpolation algorithm to 256x256. This resiz-

ing could have distorted the segment borders of the CT images, forcing the

model to follow this distortion. The statistical analysis, using the Wilcoxon,
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shows that the difference between true and predicted tumor areas is statisti-

cally significant within each dataset and each size category. This consistency

across datasets is a good sign, suggesting that the goodness of the model’s

performance is not limited to a specific subset of the data. The significant

p-values across all tumor sizes reinforce the previous findings that there is a

general difference between true and predicted tumor areas. The Bland Alt-

man analysis shows that there is a slight systematic bias between the true and

the predicted area, but most samples remain within the limits of agreement.

By combining the statistical information within the metrics, it can be said that

the model is capable of detecting the shape and the location of the cancer to

segment but is not perfect in matching its actual dimensions and borders.

Regarding the 3D evaluation, the metrics and indices used report good but

lower results with respect to the 2D analysis. This is understandable given

that the 3D evaluation was derived from the reconstruction of the 3D vol-

umes based on slice-by-slice predictions. In particular, the comparison of

metrics before and after the continuity analysis post-process indicates an im-

provement in the overlap of the 3D cancer prediction with the ground truth.

This improvement is due to the removal of isolated false positive slices that

were not connected to the volume. This analysis improved the segmentation

of cancers that were quite well predicted, while volumes that were already

poorly predicted, such as some small cancer volumes, did not provide valid

improvements. However, considering the significant improvements that the

post-process provides for a clearer 3D cancer volume reconstruction, it could

be clinically valuable, especially with enhancements to the U-Net model re-

garding its hyperparameter tuning, loss functions, or architecture, to achieve

better delineated 2D segmentation and a higher detection rate for small sur-

face 2D cancers, which will help with 3D volume reconstruction. Compared

to the methods in literature, both the single 2D U-Net and the Grad-CAM

achieved similar results, even higher in some cases. Most important is the

performance on 3D reconstruction; it seems to be on par with the other 3D

methods presented in literature. Thanks to the results obtained, it is possible

to reconstruct the 3D volume of the lung cancer from the CT images effec-

tively, even after utilizing a less resource consuming and computational 2D

deep learning model instead of performing a more complex 3D analysis.
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Conclusion

In this thesis, a 2D U-Net model for the segmentation of lung cancer in CT

images was implemented and evaluated. More importantly, it has sought

to establish an effective method for 3D reconstruction. The proposed model

architecture, based on a five-layer encoder-decoder structure, demonstrated

effective performance and computationally efficient in segmenting lung can-

cer by capturing spatial details and contextual features. Despite the attempt

to incorporate Grad-CAM into the model in order to improve it by focusing

attention on parts of the image relevant for segmentation, the model’s per-

formance did not improve at all. The incorporation of Grad-CAM helped,

however, reduce overfitting by bridging performance between the training

and validation sets. This finding underlines the necessity of carefully in-

corporating additional modules, especially those providing no new infor-

mation to the network. The results showed that the model was returning

very strong 2D segmentation, maintaining consistent performance across the

training and validation datasets into the test dataset with very minimal over-

fitting. However, sensitivity always remained lower than specificity because

the model seems to adopt a conservative attitude in making segmentation

decisions, leading to small areas that might remain undetected. This bias

has shown a very important direction for enhancement, especially regarding

how to improve the model’s ability to detect smaller nodules, which in most

cases prove crucial in the diagnosis of early-stage cancers. Also, the model

is capable of underlining the general shape and the location of the cancer,

but with some issues on the perfect overlapping and precision of the bor-

ders. The 3D evaluation, obtained by reconstructing the volumes of cancer

from 2D slice predictions, had promising results, though a bit limited com-

pared to the 2D analysis. Post-processing further improved the accuracy of

volumes reconstructed from cancers by eliminating isolated false positives

and highlighting the importance of continuity analysis for the derivation of

a more realistic 3D representation. However, this post-processing step pro-

vided limited improvements for poorly segmented cases-mostly those with

small cancer surface areas-while it was refining well-predicted volumes. In
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conclusion, this work has proved that effective 3D reconstruction of lung can-

cer volumes can be obtained from a 2D model, thus offering a computation-

ally efficient alternative to full 3D models. This technique is also clinically

useful, especially with further improvements in the detection of small lesions

and border precision. These results suggest that targeted improvements in

hyperparameters, loss functions, and model architecture can make the 2D

U-Net an effective tool for segmenting lung cancers and thereby enable 3D

volume analysis with reduced computational resource use.
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