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Abstract 

Nowadays, Alzheimer’s disease is becoming a major public health issue worldwide. Thus, a 

higher knowledge yet early diagnosis of it may be fundamental to both slow down the 

development of symptoms and enable better therapeutic interventions. 

Clinically, neuroimaging techniques such as magnetic resonance imaging are available for the 

Alzheimer’s disease diagnosis. Through magnetic resonance imaging, volumetric scans can 

be obtained, helping in the detection of structural abnormalities and tracking of the evolution 

of brain atrophy.  

Deep learning algorithms for Alzheimer’s disease diagnosis applied to volumetric scans are 

increasingly used in medical field, but they are still not trusted by clinicians because they lack 

interpretability.  

This thesis has a dual purpose. Firstly, it has been performed a review of state-of-the-art 

studies which applied interpretability algorithms for Alzheimer’s disease diagnosis in order to 

understand the current trends. Then, it has been conducted an analysis of volumetric magnetic 

resonance scans by exploiting two convolutional neural networks and comparing their 

performance: a pre-trained 3D convolutional neural network (C3DKeras) and an end-to-end 

time-distributed one. To fulfil the first task, a descriptive literature review has been performed, 

whereas for the second one, a Python-based implementation was conducted. 

According to the literature outcomes, there is still uncertainty concerning the best 

interpretability technique to be applied for Alzheimer’s disease diagnosis, even though 

attribution map approaches seem to produce the most coherent interpretations. For what 

concerns convolutional neural networks for volumetric data processing, the end-to-end time-

distributed one resulted to be the best approach because of its higher performance and lower 

computational cost.  

A future development of this thesis could be the addition of an interpretability module to the 

end-to-end time-distributed convolutional neural network in order to make a step forward in 

the direction of an interpretable Alzheimer’s disease diagnosis. 
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Introduction 

Nowadays, with population aging, neurodegenerative diseases such as Alzheimer’s disease 

(AD) are becoming a major public health issue worldwide. However, at this point of life, 

there is still lack of understanding of AD by patients and their families, mostly missing the 

optimal intervention stage. Hence, a better characterisation of this disease and early diagnosis 

of AD might be fundamental in order to allow a better management of patients and to slow 

down the development of AD. In fact, while there is no cure for AD, early diagnosis and 

accurate prognosis may enable therapeutic interventions that strive to improve symptoms, or 

at least slow down mental deterioration, thereby improving the quality of life. 

Clinically, there are different forms of neuroimaging techniques available for AD diagnosis, 

including magnetic resonance imaging (MRI), from which volumetric data can be obtained 

and it is considered as a marker of AD progression since it can help to detect the structural 

abnormalities and track the evolution of brain atrophy. However, at present, the AD 

identification process is still performed manually by specialists in clinical practice, which is 

expensive and time-consuming. To solve this issue, thanks to the rapid development and 

application of artificial intelligence in the medical field, computer-aided diagnosis of AD 

using neuroimaging may be an auxiliary method to assist physicians in the clinical decision-

making. In fact, several attempts based on deep learning techniques have been employed to 

analyse the MRI data by constructing models in order to avoid manually extracting features 

and deep learning methods have proved to be effective in the feature extraction from images. 

Although models based on deep learning have achieved great classification performance for 

AD diagnosis, have yet to achieve full integration into clinical practice mainly because deep 

learning models are ‘black-box’ algorithms, meaning that they still lack interpretability, 

which is a fundamental aspect. Nowadays, much attention has been given in order to try to 

solve this issue and so different interpretability algorithms have been proposed in literature. 

However, since it is a novelty, only a few studies have been published, especially regarding 

3D applications which are the ones of relevance for this work. Nevertheless, still there 

appears to be confusion about which the most accurate and reliable interpretability technique 

is for an AD interpretable diagnosis. 

This thesis has a dual purpose because it has been firstly performed an analysis of the studies 

already published in literature which apply interpretability algorithms to AD diagnosis, in 

order to understand the state-of-the-art. On the other hand, an analysis of the volumetric data 
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(MRI images) with two different convolutional neural networks has been conducted to 

highlight which the best approach is. In particular, these two different approaches are the 

implementation of a 3D convolutional neural network and of a time-distributed convolutional 

neural network.  

In the following, the reader will find some chapters to be introduced to the main notions 

necessary to understand this research topic. In order to give some information about the 

physiology of the part of the body and the pathology of interest for this work, the first two 

chapters are dedicated to the nervous system (Chapter 1) and the Alzheimer’s disease 

(Chapter 2). In Chapter 3, there are some details related to image basics and bioimages, 

whereas Chapter 4 is about the importance of interpretable Alzheimer’s disease diagnosis. 

Then the reader will receive more in-depth information about the current situation in literature. 

In fact, a literature review was performed and presented in Chapter 5 in order to understand 

the state-of-the-art of the interpretability of deep neural networks for AD early diagnosis. 

Chapter 6 reports the details relative to the research part of this work. In fact, there is 

information about the dataset used, the environmental setup, it can be found the description of 

the two different convolutional neural network analysed and their evaluation. In Chapter 7, 

instead, all the results related to the two different neural networks are reported, which are then 

discussed in Chapter 8 in order to give an answer to the aim of this work, which is then 

underlined in the conclusion in Chapter 9. 
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1. The nervous system 

The nervous system is a very complex organ system. In Peter D. Kramer’s book Listening to 

Prozac, a pharmaceutical researcher is quoted as saying, “If the human brain were simple 

enough for us to understand, we would be too simple to understand it” (1994) [1].  

In order to understand the structure of the nervous system, it is good to start with the large 

divisions and work through to a more in-depth understanding. However, for the purpose of all 

this work, only the main concepts of interest will be treated. 

1.1 Basic structure of the nervous system 

In order to make this complex organ system easily understandable, biologists have divided the 

nervous system as whole into two large portions: the Central Nervous System (CNS) and the 

Peripheral Nervous System (PNS). The former includes the brain and the spinal cord, while 

the latter is made up of the nerve tissues located in the periphery of the CNS [2], meaning 

beyond the brain and spinal cord (Figure 1). However, it is important to note that the concept 

of CNS (or neuroaxis) as a separate entity from the PNS is a purely didactic distinction, since 

the PNS consists mainly of the extensions of the nerve cells that are part of the CNS [3]. 

 

Figure 1. Nervous system - The major anatomical structures of the human nervous system include the brain, spinal cord, and 

each of the individual nerves. The brain and spinal cord form the central nervous system (CNS), while all the nerves with 

their branches make up the peripheral nervous system (PNS) [2]. 
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Furthermore, nervous tissue, present in both the CNS and PNS, contains two basic types of 

cells: neurons and glia cells. A glial cell is one of a variety of cells that provide a framework 

of tissue that supports the neurons and their activities, and they usually do not conduct 

information [2], while the neuron is the more functionally important of the two, in terms of 

the communicative function of the nervous system [1].  

Before describing the functional divisions of the nervous system, it is fundamental to know 

the structure of the neuron. The structure of a typical neuron can generally be divided into 

four distinct domains: the cell body, the dendrites, the axon and the presynaptic terminals 

(Figure 2) [5]. Since neurons are cells, they are formed by a cell body (also called perikaryon, 

or soma) [2, 4], which is much like that of other cells as it contains the nucleus [2, 6], but they 

also have extensions of the cell; each extension is generally referred to as a process [1] and 

there are at least two processes: an axon (or neurite or cylindrass [4]) and one or more 

dendrites [2]. The axon is perhaps the most remarkable feature of every neuron, and it arises 

from the cell body, like the dendrites, and its point of origin is a tapered region known as the 

axon hillock and, just distal to the cone-shaped hillock, is an untapered, unmyelinated region 

known as the initial segment [5]. Axon may also extend very much (even more than a meter) 

and it is the message-sending portion of the neuron as it is the fibre that connects a neuron 

with its target, such as another neuron or a muscle [1, 5]. Some axons have a special electrical 

insulation, called myelin, that consists of the coiled cell membranes of glial cells that wrap 

themselves around the nerve axon making the action potential jump from one node of Ranvier 

(the space between adjacent myelin segments) to another in a process called saltatory 

conduction, which makes the conduction faster with respect to the case of an axon not 

covered with myelin [5]. On the other hand, the dendrite is another type of process that 

branches off from the soma and they are responsible for receiving most of the input from 

other neurons [1]. Finally, the axon terminates in multiple endings, which are the presynaptic 

terminals, where there are usually several branches extending toward the target cell, each of 

which ends in an enlargement called a synaptic end bulb, which is what makes the connection 

with the target cell at the synapse [1]. 

Moreover, looking at nervous tissue, there are regions that predominantly contain cell bodies 

and regions that are largely composed of just axons. These two regions within nervous system 

structures are often referred to as gray matter (the regions with many cell bodies and dendrites) 

or white matter (the regions with many axons) [1]. In particular, the gray matter is not 

necessarily gray, but it can be pinkish because of blood content, while the white matter is 

white because axons are insulated by myelin, which is a lipid-rich substance [1]. Nevertheless, 
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the cell bodies of neurons or axons can be located in discrete anatomical structures which take 

different names depending on whether the structure is central or peripheral. Precisely, a 

localized collection of neuron cell bodies in the CNS is referred to as a nucleus while, in the 

PNS, a cluster of neuron cell bodies is referred to as a ganglion [1]. Lastly, there is also a 

different terminology applied to bundles of axons (or fibres) still depending on location: in the 

CNS, it is called a tract whereas the same thing in the PNS would be called a nerve [1]. 

 

 

Figure 2. Morphology of a typical neuron [6]. 
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1.2 Function of the nervous system 

The nervous system is a complex network that enables an organism to interact with its 

surroundings [7]. The organism has sensors (sensitivity receptors), mostly located on the 

surface, which have the task of "feeling" the world around us and informing the centres which 

constitute the nervous system. The information occurs by sending electrical signals that will 

be encoded by the centres themselves and finally perceived as "sensations" [3]. In general 

terms, it can be said that the nervous system is involved in receiving information about the 

environment around us (sensation) and generating responses to that information (motor 

responses), thus the nervous system can be divided into regions that are responsible for 

sensation (sensory functions) and for the response (motor functions) [1]. However, there is a 

further function that needs to be included, which is the integration. In fact, the nervous system 

is characterized by sensory components which detect environmental stimuli, and motor 

components which provide skeletal, cardiac, and smooth muscle control, as well as control of 

glandular secretions, which are coordinated in a system to compel appropriate motor 

responses to the stimuli or sensory inputs that have been received, stored, and processed [7]. 

This means that stimuli that are received by sensory structures are communicated to the 

nervous system where that information is processed [1]. In fact, stimuli are compared with, or 

integrated with, other stimuli, memories of previous stimuli, or the state of a person at a 

particular time and this leads to the specific response that will be generated [1]. Thus, CNS 

and PNS work in such a way that the PNS, of which the previously mentioned sensitivity 

receptors are part, is responsible for perceiving environmental and visceral stimuli and for 

sending them to the CNS, and for carrying the responses generated at the level of the CNS to 

all the organs of the body. The CNS is instead responsible for decoding the information 

received from the periphery, for their processing and for the genesis of the responses [3]. 

Nevertheless, the nervous system is composed of vast neural networks [7]; signalling within 

these circuits enables thinking, language, feeling, learning, memory, and all function and 

sensation [7]. Thus, the nervous system (together with the endocrine system) is responsible 

for a vital function for the human organism: the communication [2]. 

1.3 The action potential 

The functions of the nervous system – sensation, integration, and response – depend on the 

functions of the neurons underlying these pathways. To understand how neurons are able to 

communicate, it is necessary to describe the role of an excitable membrane in generating these 
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signals. The basis of this communication is the action potential, which demonstrates how 

changes in the membrane can constitute a signal.  

At the end of the IXX century Waldeyer and Ramon y Cajal expressed the theory of the 

neuron, which is the foundation of modern neurophysiology, that is the anatomical and 

functional individuality of these cells of the CNS [4], and it can be seen as a first attempt to 

consider the nerve tissue as composed of distinct structural units: the neurons [3]. In fact, the 

CNS can be considered as a machine composed of elements (neurons) specialized for the 

detection, transmission and processing of information [4] and so the principal function of a 

neuron is to process and communicate information [8]. Therefore, the neuron is the specific 

anatomical unit of the nervous system, and the CNS is constituted of separated cellular 

elements with different shapes, dimensions and morphological characteristics, which are 

connected to each other by highly specialized contact zones, represented by the synapses [3]. 

Precisely, in order to achieve its goals of communication, each neuron integrates information 

across thousands of its synaptic inputs [8]. Moreover, neurons are very particular cells, since 

they have the ability to originate and propagate nerve impulses, which means that they have 

both the characteristics of excitability and conductivity [2]. The nerve impulse is nothing 

more than an action potential [4], which is the membrane potential of an active neuron and so 

of a neuron which is conducting an impulse [2]. The production of the action potential is 

governed by the law of all or nothing, which propagates irresistibly, that is, without 

decrement, up to the extremity of the excited fiber, a real electrical message which travels 

quickly and with constant amplitude [4].  

This is just a general overview about the topic of interest of this paragraph. In fact, in the 

following of the current paragraph, more in-depth information will be given about this. 

A potential is a distribution of charge across the cell membrane, and it is measured in 

millivolts (mV). The standard is to compare the inside of the cell relative to the outside, so the 

membrane potential is a value representing the charge on the intracellular side of the 

membrane based on the outside being zero, relatively speaking [1]. The resting membrane 

potential is measured at about -70 mV, and it describes the steady state of the cell, which is a 

dynamic process balanced by ion leakage and ion pumping, where leakage channels allow 

Na+ to slowly move into the cells or K+ to slowly move out, and the Na+/K+ pump restores 

them [1]. However, without any outside influence, the resting membrane potential will not 

change and so, in order to get an electrical signal started, the membrane potential has to 

change. 
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Excitatory input to a neuron usually generates an inward flow of positive charge (i.e., an 

inward current) across the dendritic membrane, which makes the membrane voltage more 

positive (i.e., less negative) and so it is said to depolarize the cell [9]. So, due to the higher 

concentration of Na+ ions outside the cell than inside, there is an inflow current of Na+ which 

increases the membrane potential. As the membrane potential reaches +30 mV, there is the 

opening of K+  channel allowing the exiting of these ions due to a concentration gradient, 

making the membrane potential do move back towards its resting voltage and thus 

repolarizing the cell [1]. Repolarization returns the membrane potential to the -70 mV value 

that indicates the resting potential, but it actually overshoots that value because potassium 

ions reach equilibrium when the membrane voltage is below -70 mV, so a period of 

hyperpolarization occurs while the K+  channels still open and they are slightly delayed in 

closing (Figure 3) [1]. All of this takes place within approximately 2 milliseconds and while 

an action potential is in progress, another one cannot be initiated, which is an effect referred 

to as the refractory period [1]. There are two phases of the refractory period: the absolute 

refractory period, during which another action potential will not start, and the relative 

refractory period [1]. 

 

 

Figure 3. Stages of an action potential - Plotting voltage measured across the cell membrane against time, the events of the 

action potential can be related to specific changes in the membrane voltage. (1) At rest, the membrane voltage is -70 mV. (2) 

The membrane begins to depolarize when an external stimulus is applied. (3) The membrane voltage begins a rapid rise 
toward +30 mV. (4) The membrane voltage starts to return to a negative value. (5) Repolarization continues past the resting 

membrane voltage, resulting in hyperpolarization. (6) The membrane voltage returns to the resting value shortly after 

hyperpolarization [1]. 
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If the neuron receives its input from a neighbouring cell through a chemical synapse, 

neurotransmitters trigger currents by activating ion channels. If the cell is a sensory neuron, 

environmental stimuli (e.g., chemicals, light, mechanical deformation) activate ion channels 

and produce a flow of current [9]. The change in membrane potential (Vm) caused by the flow 

of charge is called a postsynaptic potential (PSP) if it is generated at the postsynaptic 

membrane by a neurotransmitter, and a receptor potential if it is generated at a sensory nerve 

ending by an external stimulus [9]. In particular, PSP is the graded potential in the dendrites 

of a neuron that is receiving synapses from other cells, and it can be depolarizing (excitatory 

postsynaptic potential – EPSP) or hyperpolarizing (inhibitory postsynaptic potential – IPSP) 

[1]. The synaptic (or receptor) potentials generated at the ends of a dendrite are communicated 

to the soma, but not usually without substantial attenuation of the signal (Figure 4A) [9]. As 

an EPSP reaches the soma, it may also combine with EPSPs arriving by other dendrites on the 

cell and this behaviour is a type of spatial summation and can lead to EPSPs that are 

substantially larger than those generated by any single synapse (Figure 4B, 4C) [9]. On the 

other hand, temporal summation occurs when EPSPs arrive rapidly in succession: when the 

first EPSP has not yet dissipated, a subsequent EPSP tends to add its amplitude to the residual 

of the preceding EPSP (Figure 4D) [9]. Thanks to this summation, if the Vm change in the 

soma is large enough to reach the threshold voltage, the depolarization may trigger one or 

more action potentials between the soma and axon, as shown in Figure 4B to 4D, which are 

fixed in amplitude, not graded, and have uniform shape [9].  

In conclusion, neurons are “excitable” cells [2, 6] conducting impulses which make all 

functions of the nervous system possible [2]. In fact, they are cells specialized in the rapid 

transmission of electrical signals which release chemical substances (neurotransmitters or 

neurohormones) through which the neuron communicates with other cells [3] and so they 

communicate via a combination of electrical and chemical signals [6]. In other words, 

neurons form the "conduction wires" of the information circuits of the nervous system [2]. 

Figure 5 illustrates the different functional regions of neurons, distinguished on the basis of 

their role in the reception and conduction of nerve signals. The dendrites and the cell body 

mainly act as an entrance area, receiving the nerve stimulus and generating the response nerve 

impulses [2]. The cone of emergence of the axon acts as a summation area, integrating all the 

nerve impulses coming from the soma and the dendrites and deciding whether to continue 

propagating the impulse along the neuron [2]. The axon, on the other hand, is the conduction 

area, since its primary purpose is to conduct the nerve impulse from the emergency cone of 

the axon, along its entire length, to the end of the neuron [2]. Whether the axon is myelinated 
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Figure 4. Spatial versus temporal summation of excitatory postsynaptic potentials (EPSPs) [9]. 

 

or not affects the speed of impulse conduction in the axon [2]. In particular, in axons with 

myelin sheaths, the propagation of the nerve impulse occurs in a saltatory way, from one 

Ranvier node to another [3]. Therefore, the axon has an efferent function, as it conducts the 

signals transmitted by the soma [4]. Finally, the distal ends of the axons form branches, the 

so-called telodendrites, each of which ends with a synaptic button [2], which constitute the 

distal end of two contiguous neurons [4]. Thus, the telodendrites, together with the synaptic 

buttons, act as an exit area [2]. Neuronal synapses are contact sites where signals between two 

neurons (pre and postsynaptic) are transferred [10]. There are two general categories of 

synapses: electrical synapses and chemical synapses [2, 10]. 

 

 

 



9 

 

 

Figure 5. Functional regions of the neuronal plasma membrane [2]. 

1.4 The central nervous system: the brain 

The CNS or neuroaxis, defined as the set of nerve formations contained within the cranial 

cavity and the vertebral canal, consists of the brain and spinal cord [3]. Hence, the CNS is the 

main integrator of sensory input and motor output, therefore it is able to analyse the incoming 

information and activate responses to changes that threaten the homeostatic balance of the 

organism [2]. 

The brain is one of the largest organs in an adult [2] and is also the most voluminous part of 

the CNS, the one contained in the cranial cavity [4]. To describe it with rounded numbers, it is 

estimated that the human brain contains about 100 billion neurons (about 10% of the total 

number of nervous system cells present in the brain), and 900 billion glia cells [2]. 

Furthermore, the average brain weight of an adult is about 1250g (1308g for males and 1171g 

for females - Chiarugi 1917) [4]. 

Figure 6 shows the six major divisions of the brain, named from bottom to top, are: medulla 

oblongata, pons, midbrain, cerebellum, diencephalon, and cerebrum [2]. Very often the term 

brain stem is used to indicate medulla oblongata, pons and midbrain [4]. 
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Figure 6. Division of the brain - Midsagittal section of the brain showing the characteristics of its main compartments [2]. 

1.4.1 The cerebrum 

The iconic gray mantle of the human brain, which appears to make up most of the mass of the 

brain, is the cerebrum (Figure 7) [1]. The cerebrum, the largest and highest portion of the 

brain, is constituted of two halves: the left and right cerebral hemispheres [2], which are 

separated by a deep hemispherical longitudinal fissure, called the cerebral sickle [4]. The 

surface of the hemispheres, called cerebral cortex [2, 4], is wrinkled and the rest of the 

structure is beneath that outer covering [1]. Deep within the cerebrum, the white matter of the 

corpus callosum provides the major pathway for communication between the two 

hemispheres of the cerebral cortex [1]. 

 

Figure 7. The cerebrum - The cerebrum is a large component of the CNS in humans, and the most obvious aspect of it is the 

folded surface called the cerebral cortex [1]. 
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In mammals, the cerebrum comprises the outer gray matter that is the cortex and several deep 

nuclei that belong to three important functional groups: the basal nuclei (responsible for 

cognitive processing, the most important function being that associated with planning 

movements), the basal forebrain (it contains nuclei important in learning and memory) and the 

limbic cortex (the region of the cerebral cortex that is part of the limbic system, a collection of 

structures involved in emotion, memory, and behaviour) [1]. 

The cerebrum is covered by a continuous layer of gray matter that wraps around either side of 

the forebrain - the cerebral cortex [1]. This thin, extensive region of wrinkled gray matter is 

responsible for the higher functions of the nervous system [1]. Moreover, the folding of the 

cortex maximises the amount of gray matter in the cranial cavity. During embryonic 

development, as the telencephalon expands within the skull, the brain goes through a regular 

course of growth that results in everyone’s brain having a similar pattern of folds. The surface 

of the brain can be mapped on the basis of the locations of large gyri (the ridge of one of those 

wrinkles) and sulci (the groove between two gyri) [1]. In particular, the cerebral cortex is 

furrowed by numerous fissures which delimit gyri [4], such as the precentral gyrus, the 

postcentral gyrus, the cingulate gyrus and the hippocampal gyrus [2]. Using these landmarks, 

the cortex can be separated into five regions, or lobes: four of them are named after the bones 

which cover them: frontal lobe, parietal lobe, temporal lobe and occipital lobe (Figure 8) [2]. 

A fifth lobe, the insula (Reil's island), is hidden from view in the lateral fissure. 

 

Figure 8. Left brain hemisphere, lateral surface - Note the highlighted lobes of the brain [2]. 
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Figure 8 also shows the two most important fissures, which are the central fissure (Rolandic 

fissure) and the lateral fissure (Sylvian fissure): the former delimits the frontal lobe from the 

parietal lobe, while the latter the temporal lobe from the lower portion of the frontal lobe and 

the parental lobe [4]. Moreover, also the longitudinal fissure and the parietooccipital fissure 

are reported. 

In literature, it is commonly known that certain areas of the cortex in each hemisphere mainly 

perform a certain function, therefore we speak of cerebral localization. Instead, brain 

plasticity means that the localization of functions varies from person to person and, when the 

brain is damaged, even according to the different stages of an individual's life [2]. 

In the early 1900s, a German neuroscientist named Korbinian Brodmann subdivided the 

cerebral cortex into numerous areas based on regional differences in the distribution, density, 

shape, and size of cell bodies, i.e., the cytoarchitecture [11] and divided the cortex into 52 

separate regions on the basis of the histology of the cortex [1]. His work resulted on a system 

of classification known as “Brodmann’s areas”, which is still used today to describe the 

anatomical distinctions within the cortex. Generally speaking, it is possible to distinguish 

sensory and motor functions of the cerebral cortex and also about integrative functions of the 

cerebral cortex, which include consciousness and mental activities of all kinds [2]. Among all 

the integrative functions, particular attention will be devoted to memory.  

1.4.1.1 The memory 

Memory is one of the main activities carried out by the human mind and it is defined as the 

ability to fix, preserve and recall states of consciousness [4]. The cortex is capable of storing 

and retrieving both short-term and long-term memories [2] and thus the memory trace is 

formed through these two stages. As it is clear from the name itself, the short-term memory is 

the ability to store information for a few seconds or minutes [2]. In fact, in the process of 

short-term memory, which is of limited capacity and of limited duration, after a few minutes, 

if the process of fixation or consolidation of the memory (learning) has not intervened, it 

disappears forever [4]. On the other hand, the second stage (long-term memory) is what 

remains after the first stage of short-term memory has completed. Moreover, short-term and 

long-term memories are both functions which involve many parts of the cerebral cortex, 

especially the temporal, parietal, and occipital lobes [2]. In particular, the temporal lobe is 

associated with primary auditory sensation, known as Brodmann’s areas 41 and 42 in the 

superior temporal lobe but, because regions of the temporal lobe are part of the limbic system, 

memory is an important function associated with that lobe [1]. Thus, memory is essentially a 
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sensory function; memories are recalled sensations such as the smell of Mom’s baking or the 

sound of a barking dog, even memories of movement are really the memory of sensory 

feedback from those movements, such as stretching muscles or the movement of the skin 

around a joint [1]. Structures in the temporal lobe are responsible for establishing long-term 

memory, but the ultimate location of those memories is usually in the region in which the 

sensory perception was processed [1]. 

Another important aspect is the evocation of the memory, which occurs through the 

reactivation of the Papez circuit, whose repeated reactivations improve the consolidation of 

the memory over time [4]. This explains, whatever the cause of a possible decline in memory, 

the better preservation of the most ancient memories (Ribot's law) [4]. 

1.4.1.2 Subcortical structures: the hippocampus 

Beneath the cerebral cortex are sets of nuclei known as subcortical nuclei that augment 

cortical processes. The nuclei of the basal forebrain serve as the primary location for 

acetylcholine production, which modulates the overall activity of the cortex, possibly leading 

to greater attention to sensory stimuli [1]. Alzheimer’s disease is associated with a loss of 

neurons in the basal forebrain [1]. The hippocampus (via Latin from Greek ἱππόκαμπος, 

seahorse) and amygdala are medial-lobe structures that, along with the adjacent cortex, are 

involved in long-term memory formation and emotional responses [1]. Before giving more in-

depth information, the hippocampi of the temporal lobes are so named because of their curled 

shape, which early anatomists thought resembled a seahorse (Figure 9). In general terms, the 

hippocampal region takes new experiences and turns them into memories that can be stored 

and accessed later. Individuals who have damage to the hippocampal regions, in both 

temporal lobes display severe to profound deficits in short-term memory because they cannot 

crease new memories, and long-term memory abilities might be destroyed as well [12]. 

The hippocampus develops in the foetal brain by a process of continuing expansion of the 

medial edge of the temporal lobe in such a way that the hippocampus comes to occupy the 

floor of the temporal horn of the lateral ventricle [13]. In the mature brain, therefore, the 

parahippocampal gyrus on the external surface is continuous with the concealed hippocampus 

[13]. The hippocampus is C-shaped in coronal section and since its outline bears some 

resemblance to a ram's horn, the hippocampus is also called the cornu ammonis [13]. The 

ventricular surface of the hippocampus is a thin layer of white matter called the alveus, which 

consists of axons that enter and leave the hippocampal formation [13]. These fibres form 
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Figure 9. The temporal lobe, with hippocampus and amygdala. 

the fimbria of the hippocampus along its medial border and then continue as the crus of the 

fornix after the hippocampus ends beneath the splenium of the corpus callosum (Figure 10). 

Continued growth of the cortical tissue composing the hippocampus is responsible for 

the dentate gyrus, which occupies the interval between the fimbria of the hippocampus and 

the parahippocampal gyrus [13]; its surface is toothed or beaded, hence the name. Although 

the parahippocampal gyrus is included in the limbic lobe as defined anatomically, most of its 

cortex is of the six-layered type or nearly so [13]. In the region of the gyrus known as 

the subiculum, there is a transition between neocortex and the three-layered archicortex of the 

hippocampus and the anterior end of the parahippocampal gyrus, medial to the rhinal sulcus, 

is the entorhinal area [13]. 

   

(A)                                                                       (B) 

Figure 10. The hippocampus – (A) Magnification of the position of the hippocampus in the brain. (B) Opening of the brain 

with clear view of the hippocampus 
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Psychologists and neuroscientists agree that the hippocampus is of relevant importance in the 

formation of new memories. In particular, there have been recognized different types of long-

term memory that are processed differently in the brain. Starting from the declarative (or 

explicit) memory, it is the knowledge and recall of facts or events that can be recalled to 

consciousness and the acquisition of an item into declarative memory typically occurs on a 

single occasion [13]. As previously mentioned, any fact or event is initially held in short-term 

memory, but it may be forgotten during the course of the next hour or so, otherwise it is 

moved into long-term storage. If declarative memories are not recalled from time to time, the 

process of recall will require mental effort, or the memories may be 

forgotten. Procedural (or implicit) memory is for learned skills, including regularly performed 

motor tasks and mental activities such as using the common vocabulary and grammatical 

rules of a language [13]. The learning occurs gradually, and recall is improved with repetition 

and practice. The best understood functions of the hippocampal formation are the retention of 

information in short-term memory and its transfer into long-term declarative memory [13]. 
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2. Alzheimer’s disease 

Dementia is a syndrome – usually of a chronic or progressive nature – which leads to 

deterioration in cognitive function (i.e. the ability to process thought) beyond what might be 

expected from the usual consequences of biological aging [14]. This degeneration can 

progress to worsening memory, attention span, intellectual capacity, personality, and motor 

control [2], but consciousness is not affected [4]. The impairment in cognitive function is 

commonly accompanied, and occasionally preceded, by changes in mood, emotional control, 

behaviour, or motivation [14]. Moreover, progressive loss of cognitive functions can be 

caused by cerebral disorders like Alzheimer’s disease (AD) or other factors such as 

intoxications, infections, abnormality in the pulmonary and circulatory systems, which causes 

a reduction in the oxygen supply to the brain, nutritional deficiency, vitamin B12 deficiency, 

tumours, and others [15]. 

Pathological cognitive impairment is a highly disabling and continuously increasing condition 

all over the world, both in industrialized and developing countries, by virtue of the aging of 

populations [4]. According to the World Health Organization (WHO), worldwide, around 55 

million people have dementia, with over 60% living in low- and middle-income countries [14]. 

Moreover, as the proportion of older people in the population is increasing in nearly every 

country, this number is expected to rise to 78 million in 2030 and 139 million in 2050 [14]. 

According to a report by WHO, dementia is currently the seventh leading cause of death 

among all diseases and one of the major causes of disability and dependency among older 

people worldwide [14]. In fact, dementia has physical, psychological, social and economic 

impacts, not only for people living with dementia, but also for their carers, families and 

society at large [14]. 

It is possible to distinguish many different types of dementia but, in this work, the attention 

will be devoted to the Alzheimer-Perusini disease (Alzheimer Disease), named after the 

German psychiatric Alois Alzheimer [15]. In particular, AD is the most frequent form of 

dementia (60%) [4] and it is considered one of the progressively more frequent diseases in 

Western countries due to the dramatic increase in the elderly population [4] and can be 

defined as a slowly progressive neurodegenerative disease characterized by neuritic plaques 

and neurofibrillary tangles (Figure 11) as a result of amyloid-beta peptide’s (Aβ) 

accumulation in the most affected area of the brain, the medial temporal lobe and neocortical 

structures [15].  In fact, the prevalence of AD increases progressively with age (5% and 20% 

over 65 and 80 years, respectively) [4]. At present, there are around 50 million AD patients 
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worldwide and this number is projected to double every 5 years and will increase to reach 152 

million by 2050 [15]. 

AD has been considered a multifactorial disease associated with several risk factors such as 

increasing age, genetic factors, head injuries, vascular diseases, infections, and environmental 

factors [15]. Nevertheless, it is not yet known what exactly causes this disease, however there 

are strong signs that it has a genetic basis, at least in some families [2]. Moreover, at present, 

there is no cure for AD, although there are available treatments that just improve the 

symptoms [15]. 

2.1 Neuropathology of Alzheimer’s disease 

The brain of people affected by AD appears to be reduced in volume, with a marked and 

widespread atrophy in the frontal and temporal cortex (Figure 12), with loss of large neurons, 

numerically returning in the order of 30-40%, neurons of the nucleus basalis of Meynert show 

a particularly high numerical reduction, in the order of 70-80% [4]. The primary cortical areas, 

the cerebellum, the basal ganglia and several thalamic nuclei, on the other hand, have less 

impairment [4]. 

 

Figure 11. The physiological structure of the brain and neurons in (A) healthy brain and (B) Alzheimer’s disease brain [15]. 
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Figure 12. Brain atrophy in advanced Alzheimer’s disease: a healthy brain (normal) and an Alzheimer’s disease brain (AD). 

The pathological process initially manifests itself at the level of the medial temporal regions 

and then spreads almost symmetrically in the two hemispheres, towards the neocortex and 

towards the subcortical and catecholaminergic cholinergic nuclei of the trunk [4]. Moreover, 

the involvement of the hippocampus and amygdala in the early stages of the disease causes a 

particular pathological condition, known as limbic deafferentation, characterized by 

deficiencies, not only in terms of memory, but also of motivation and affect, because the 

sensory information transmitted from the primary cortical areas to the associative ones can no 

longer be integrated through the passage in the limbic circuit [4]. 

The key pathological hallmarks – extracellular plaques and intracellular neurofibrillary 

tangles (NFTs) – described by Alois Alzheimer in his seminal 1907 article are still central to 

the post-mortem diagnosis of Alzheimer’s disease (AD), but major advances in the 

understanding of the underlying pathophysiology as well as significant progress in clinical 

diagnosis and therapy have changed the perspective and importance of neuropathologic 

evaluation of the brain [16]. The notion that the pathological processes underlying AD already 

start decades before symptoms are apparent in patients has brought a major change reflected 

in the current neuropathological classification of AD neuropathological changes [16]. 

There are two types of neuropathological changes in AD which provide evidence about 

disease progress and symptoms and include: positive lesions (due to accumulation), which are 

characterized by the accumulation of neurofibrillary tangles, amyloid plaques, dystrophic 
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neurites, neuropil threads, and other deposits found in the brains of AD patients, in addition to 

negative lesions (due to losses), that are characterized by large atrophy due to a neural, 

neuropil, and synaptic loss (Figure 13) [15]. Besides, other factors can cause 

neurodegeneration such as neuroinflammation, oxidative stress, and injury of cholinergic 

neurons [15]. 

 

Figure 13. Tissue changes in Alzheimer’s Disease. 
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The characteristic elements of AD are senile plaques (SP), neurofibrillary tangles (NFTs) and 

synaptic loss. However, some of these elements are also found in the normal senescent brain, 

varying in the pathological condition in terms of density and distribution [4].  

First of all, the SP are extracellular deposits of beta-amyloid protein (Aβ) [15]. The 

identification of Aβ as a central component of extracellular plaques, as well as genetic 

evidence linking the amyloid precursor protein (APP) and its processing by beta- and gamma-

secretase to autosomal-dominant forms of AD, has led to the formulation of the amyloid 

cascade hypothesis which endures as the favoured pathophysiological framework to 

understand AD [16]. Multiple different forms of Aβ deposits can be identified in the AD brain, 

ranging from diffuse, or “lake-like” amyloid over compact, coarse grained, cotton-wool to 

cored- or senile plaques [16]. The importance of each of these types of Aβ deposits has been 

studied extensively, and it seems to be more and more evident that diffuse Aβ plaques are 

probably more benign in nature, as they can be seen in cognitively normal subjects with 

minimal to no co-existing tau pathology (termed “pathological aging”), while cored plaques, 

which are often identical to neuritic plaques, are associated with cognitive decline [16]. These 

Aβ plaques are found predominantly in the cortex of the associative areas [4] and spread 

through the brain in a predictable fashion, which is summarized in five distinct phases [16]: 

- Phase 1: early deposits can be seen in the neocortex; 

- Phase 2: Aβ plaques appear in limbic regions including entorhinal cortex, subiculum, 

amygdala, and cingulate gyrus; 

- Phase 3: Aβ deposits in subcortical areas including basal ganglia and thalamus; 

- Phase 4: structures of the brainstem including midbrain, pons, and medulla oblongata 

are affected; 

- Phase 5: Aβ plaques can also be found in the cerebellar cortex. 

Phases 4 and 5 were associated with the presence of dementia, while phases 1 and 2 were 

mostly seen in asymptomatic individuals [16]. Aβ plays a major role in neurotoxicity and 

neural function, therefore, accumulation of denser plaques in the hippocampus, amygdala, and 

cerebral cortex can cause stimulation of astrocytes and microglia, damage to axons, dendrites, 

and loss of synapses, in addition to cognitive impairments [15].  

NFTs, the second major pathological finding in AD, are formed by aggregates of the 

microtubule associated protein tau [16]. NFTs are particularly present in the deeper layers of 

the cortex [4] and they are abnormal filaments of the hyperphosphorylated tau protein that in 

some stages can be twisted around each other to form paired helical filament [15]. This 

protein is the major constituent of NFTs in the brains of AD patients, and its evolution can 
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reflect NFTs morphological stages, which include pre-tangle phase, mature NFTs and 

extracellular tangles (or the ghost NFTs stage) which results from a neuronal loss due to large 

amounts of filamentous tau protein [15]. Also in this case, different stages can be 

distinguished. The very first NFTs were noted in the transentorhinal region of the 

hippocampal formation (stage I) from which the density of aggregates progresses and also 

involves the subiculum region of the hippocampal pyramidal cell layer (stage II) [16]. This 

early presentation of NFT pathology is referred to as “transentorhinal stages”. As the disease 

progresses, NFTs start to impact the entorhinal cortex and the hippocampal pyramid cell layer 

(stage III), with a further spread of NFT pathology into the adjacent inferior temporal cortex 

and other neocortical areas such as superior temporal cortex and frontal cortex (stage IV) [16]. 

These intermediate stages are often referred to as “limbic stages” since the hippocampal 

formation is most severely affected. In later phases of the disease, the changes intensify in the 

hippocampal formation but also affect other areas of the neocortex, including secondary 

association areas and ultimately primary cortical areas and these late disease stages (V and VI) 

are therefore called “isocortical stages”, where pathology in the peristriate area defines stage 

V, while intraneuronal aggregates in striate area define stage VI [16]. There is also a 

correlation between these NFTs stages and observed clinical symptoms: the Braak stages V 

and VI show the strongest association with clinically observed dementia, while stages I and II 

are encountered not unfrequently in clinically asymptomatic individuals [16]. 

Lastly, a synaptic damage in the neocortex and limbic system causes memory impairment and, 

generally, is observed at the early stages of AD [15]. Synaptic loss mechanisms involve 

defects in axonal transport, mitochondrial damage, oxidative stress, and other processes that 

can contribute to small fractions, like the accumulation of Aβ and tau at the synaptic sites [15]. 

These processes eventually lead to a loss of dendritic spines, pre-synaptic terminals, and 

axonal dystrophy [15]. 

Nevertheless, the underlying cause of pathological changes in Alzheimer’s disease (Aβ, NFTs, 

and synaptic loss) is still unknown [15]. 

2.2 The stages of Alzheimer’s disease 

The onset of clinical symptoms of AD is usually insidious and the slowly progressive course 

can be divided into several phases. First of all, there is the pre-clinical or the pre-symptomatic 

stage (may last several years or more), which is characterized by mild memory loss and early 

pathological changes in cortex and hippocampus, with no functional impairment in the daily 

activities and absence of clinical signs and symptoms of AD [15]. Subsequently, in the mild 
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or early stage of AD, several symptoms start to appear, such as a decline in interest, 

indifference and short-medium term memory deficit [4] or a trouble in the daily life of the 

patient with a loss of concentration and memory, disorientation of place and time and a 

change in the mood [15]. In particular, awareness of the memory deficit and the difficulties it 

entails can lead to a depressive reaction [4]. Then, in the moderate AD stage, the disease 

spreads to cerebral cortex areas [15] resulting in the fact that the cognitive deficit becomes 

more and more evident and changes in the personality appear, the memory function is further 

compromised, the attention, criticism and judgment are reduced, there is an evident decline in 

work performance and participation in life familiar [4], and difficulties arise in reading, 

writing, and speaking [15]. Lastly, the severe AD or late-stage involves the spread of the 

disease to the entire cortex area with a severe accumulation of neuritic plaques and NFTs [15]. 

In this last stage, the patient needs constant assistance in carrying out daily activities [4] 

because the patients cannot recognize their family at all and may become bedridden with 

difficulties in swallowing and urination, and eventually leading to the patient’s death due to 

these complications [15]. 

2.3 Diagnosis 

In 1984, a study group was established under the aegis of the National Institute of 

Neurological and Communicative Disorders (NINCDS) and the Alzheimer Disease and 

Related Disorder Association (ADRDA) to formulate diagnostic criteria for AD [4]. Building 

upon the original 1984 diagnostic criteria, the National Institute on Aging–Alzheimer’s 

Association (NIA–AA) revised the clinical criteria for the diagnosis of mild cognitive 

impairment (MCI) and the different stages of dementia due to AD in 2011 [17]. The newer 

criteria allow for the use of current and future biomarkers in the diagnosis of degenerative 

brain disease [17]. 

The diagnosis of AD is clinical. Except for brain biopsy, there are currently no laboratory 

tests for a definite diagnosis of the disease [4]. However, some instrumental investigations 

can be used, according to the NINCDC-ADRDA criteria, to support the clinical diagnosis [4]. 

In particular, the development of non-invasive diagnostic imaging recently resulted in a test 

which increases the diagnostic accuracy in AD [17]. In fact, neuroimaging techniques, in 

particular computerized axial tomography (CAT) and brain magnetic resonance imaging 

(MRI) constitute a fundamental step in the diagnostic iter of AD [4]. With these methods, it is 

possible to evaluate the degree of cerebral atrophy as there is a significant correlation between 

this parameter and the severity of dementia [4]. In particular, neuroimaging studies (CAT and 
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MRI) do not show a single specific pattern with AD and may be normal early in the course of 

the disease. As AD progresses, more distributed but usually posterior-predominant cortical 

atrophy becomes apparent, along with atrophy of the medial temporal memory 

structures (Figure 14 A, B) [18]. The main purpose of imaging is to exclude other disorders, 

such as primary and secondary neoplasms, vascular dementia, diffuse white matter disease, 

and normal-pressure hydrocephalus; it also helps to distinguish AD from other degenerative 

disorders with distinctive imaging patterns such as frontotemporal dementia or Creutzfeldt-

Jakob disease [18]. Functional imaging studies in AD reveal hypoperfusion or 

hypometabolism in the posterior temporal-parietal cortex (Figure 14 C, D) [18].  

Both positron emission tomography (PET) and single-photon emission computerized 

tomography (SPECT) provide information on metabolism and regional blood flow. In patients 

with probable AD these techniques often show a picture of biparietal and temporal reduction 

of metabolism and cerebral blood flow, even if these findings are to be considered non-

specific [4].  

 

 

Figure 14. Alzheimer’s disease - Axial T1-weighted MR images through the midbrain of a normal 86-year-old athlete (A) 

and a 77-year-old man with AD (B). Note that both individuals have mild sulcal widening and slight dilation of the temporal 
horns of the lateral ventricles. However, there is a reduction in hippocampal volume in the patient with AD (arrows) 

compared with the volume of the normal-for-age hippocampus (A). Fluorodeoxyglucose positron emission tomography (PET) 

scans of a normal control (C) and a patient with AD (D). Note that the patient with AD shows decreased glucose metabolism 

in the posterior temporoparietal regions bilaterally (arrows), a typical finding in this condition. 
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Electroencephalographic examination (EEG) in AD shows a significant decrease in the 

frequency of the alpha band with an increase in power of the theta and delta bands [4]. 

However, these alterations are present only in the full-blown stages of the disease, while in 

the initial stages the pattern may still be normal [4]. Quantitative EEG studies have 

highlighted the existence of a correlation between the severity of the disease and the 

slowdown of the underlying activity. 

Finally, it is essential that patients with suspected AD are subjected to an adequate battery of 

neuropsychological tests but, as already mentioned, among the most significant tests there are 

CAT and MRI, where the latter is of particular interest for this work. 
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3. Image basics and bioimages 

Digital image signals are typically represented as two-dimensional (2D) arrays of discrete 

signal samples [19]. In mathematical terms, an image is a 2D light-intensity function denoted 

by 𝑓(𝑥, 𝑦), where the value or amplitude of 𝑓 at spatial coordinates (𝑥, 𝑦) gives the intensity 

(brightness) of the image at that point. In other words, digital images are composed of 

individual pixels (this acronym is formed from the words “picture” and “element”) (Figure 

14), to which discrete brightness or colour values are assigned [20]. In general terms, an 

image is an array, or a matrix, of square pixels arranged in columns and rows: 

total number of pixels = number of rows ∙ number of columns 

For example, by considering 8-bit greyscale image, each picture element has an intensity 

ranging from 0 to 255 (28 = 256 values), where values close to 0 indicate darker regions, while 

values near 255 represent brighter regions, with many shades of grey in the middle.  

Instead, the voxel (volumetric pixel or volumetric picture element) is the volume element 

representing a value on a regular grid in 3D space and so it can be seen as the 3D counterpart 

of the 2D pixel (Figure 15). For imaging techniques like computed tomography (CT) and 

MRI, a volume is acquired slice by slice, and each slice is reconstructed from several 

measures in different angulation allowing voxel assignment [20]. 

There are several types of images, such as binary images, greyscale images, colour images 

and videos. The latter is a collection of images in a proper sequence at a certain frame 

frequency. Contextualising to the case of medical imaging, CT and MRI scans are relatively 

short videos composed by slices, collected in the right spatial sequence. 

 

 

Figure 15. Pixel and voxel. 
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3.1 Biomedical imaging 

Medical imaging plays a key role in modern medicine as it allows for the non-invasive 

visualization of internal structures and metabolic processes of the human body in detail. This 

aids in disease diagnostics, treatment planning, and treatment follow-up by adding potentially 

informative data in the form of patient-specific disease characteristics [21]. The science and 

engineering behind the sensors, instrumentation and software used to obtain biomedical 

imaging has been evolving continuously since the x-ray was first invented in 1895 [22] and so 

the amount of healthcare imaging data is rapidly increasing [21]. In fact, biomedical imaging 

has developed from early, simple uses of X-rays for diagnosis of fractures and detection of 

foreign bodies into a compendium of powerful techniques, not only for patient care but also 

for the study of biological structure and function, and for addressing fundamental questions in 

biomedicine [23]. Technological developments in digital radiography, X-ray computed 

tomography (CT), nuclear (including positron emission tomography (PET)), ultrasound, 

optical and magnetic resonance imaging (MRI) have produced a spectrum of methods for 

interrogating intact 3-dimensional bodies non-invasively [23]. 

Imaging can provide uniquely valuable information about tissue composition, morphology 

and function, as well as quantitative descriptions of many fundamental biological processes. 

In recent years, biomedical imaging science has matured into a distinct and coherent set of 

ideas and concepts, and it has attained a position of central importance in much medical 

research [23]. Continuing developments in imaging technology have expanded the application 

of imaging to new areas, such as the study of gene expression or the functional organization 

of the brain, and it is important to highlight that imaging science develops applications that 

use information derived from images for both research and clinical use (e.g., using fMRI to 

differentiate sub-classes of neuropsychiatric disorders, or to guide surgical procedures) [23].  

Nevertheless, major technical advances continue to be made in all modalities, while the 

development of faster, more powerful computers has led to advanced methods of image 

analysis and processing algorithms that can be used to extract valuable, quantitative 

information from images [23]. In fact, the ability to detect, diagnose and monitor pathological, 

physiological and molecular changes by imaging is of fundamental importance for the 

management of disease, for personalized interventions, and in basic biological research. 

However, it has been experienced an increasing difficulty for radiologists and clinicians to 

cope with the mounting burden of analysing the large amounts of available data from 

disparate data sources, and studies have highlighted sometimes considerable inter-observer 
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variability when performing various clinical imaging tasks, thus it follows that there is an 

evolving need for tools that can aid in diagnosis and decision-making [21]. 

As it is commonly known, there are many different types of imaging techniques in medicine, 

among which attention will be devoted to MRI for the scope of this work. However, it is 

worth to mention that the basic principles of all imaging techniques are the same: a beam of 

wave passes through the body/area under diagnosis, transmits or reflects back the radiation 

which will be captured by a detector and processed to get an image pattern, but the type of 

wave differs depending on the imaging modality (e.g., radio frequency waves are used for 

MRI) [24]. 

3.1.1 Magnetic resonance imaging 

Magnetic Resonance Imaging (MRI), now widely known for its usefulness as a medical 

diagnosis tool (it is a powerful diagnostic technique for soft tissues [24]) and for the variety of 

clear pictures of the body’s interior obtained in a harmless and non-invasive manner, had its 

foundations laid more than 60 years ago in physics experiments designed to measure 

properties of the nuclear spins of hydrogen atoms [25]. 

MRI system implies strong and uniform magnetic field together with radiofrequency waves. 

Suitable resonant radiofrequency is applied to the patient from the scanner, the waves pass 

through the tissues or any region that hold hydrogen atoms in the body, viz., water molecules, 

which get excited and return back to the equilibrium state using the energy from oscillating 

magnetic field which will be captured by the scanner and digitally processed [24]. Hence MRI 

is best suited for visualization of soft tissues, tendons and ligaments, but it is also applicable 

in detection of some lesions in brain as shown in Figure 16. The major advantage of using 

MRI is to vary the contrast of the image. In fact, minute alteration in the radio wave 

frequency and the magnetic field can alter the contrast of the image which highlights different 

types of tissues [24]. Another advantage of MRI is that it can construct images in any plane 

(axial/horizontal) which is unfeasible in CT. More generally, the MRI scans constitute 3D 

data (thus, volumetric data) given by the spatial sequence of the slices.  

There are different types of MRI. MRI exploited in the measurement of diffusion of water 

molecules inside the body is known as Diffusion MRI, which is valuable in diagnosis of 

neurological disorders like multiple sclerosis and in stroke [24]. Instead, the change in neural 

activity can be diagnosed using functional MRI (fMRI), hence widely applied is neurological 

disorders, while other application would be the real time MRI, which monitors the moving 
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objects in real time, as indicated by the name itself [24]. At this point, it is worth to remind 

that MRI technique is also one of the mostly used for the AD diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. MRI Image of a brain showing lesions [24]. 
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4. The importance of interpretable 

Alzheimer’s disease diagnosis 

Image interpretation may be understood in the sense of analysing an abstract scene that 

corresponds to the ambiguous goal of developing a ‘visual sense for machines’, which is as 

universal and powerful as that of humans [20]. Recent advances in artificial intelligence (AI) 

have started permitting into healthcare, among those the so-called Deep Learning (DL) 

methods, which consist of non-linear modules that can learn multiple levels of representations 

automatically from high dimensional data without any need of explicit feature engineering by 

humans [21]. 

Focusing on the topic of this work and so devoting the attention to MRI images for the 

identification of AD, it is worth to say that the cerebral changes (i.e., hippocampal and 

parietal lobe atrophy) visible from MRI images are considered to lack specificity for imaging-

based AD diagnosis, but advanced machine learning paradigms such as DL offer ways to 

derive high accuracy predictions from MRI data [26].  

There are DL approaches such as convolutional neural networks (CNNs), which may be 

implemented for MRI and multimodal data-based classification of cognitive status. However, 

despite the promising results, these models have yet to achieve full integration into clinical 

practice for several reasons. Briefly, the main reasons are the lack of external validation of DL 

algorithms, since most models are trained and tested on a single cohort, and the growing 

notion in the biomedical community that DL models are ‘black-box’ algorithms, which means 

that they neither elucidate the underlying diagnostic decision nor indicate the input features 

associated with the output predictions [26]. So, considering all these aspects, it is easy to 

realise the clinical potential of DL whose diffusion is slowed down by all these drawbacks, 

the overcoming of which would be crucial to harness the potential of DL algorithms to 

improve patient care and to pave the way for explainable evidence-based machine learning in 

the medical imagining community [26]. 

The primary purpose of AI tools for medical imaging is to aid (not replace) clinicians in their 

decision-making by combining multiple factors into a model that returns an actionable output 

but, without any explanation of this output, the utility of the model is limited as it does not 

unveil the reasoning process, limitations, and biases [21]. Interpretability of DL systems 

cannot only unravel any faulty processes within the algorithms, but also enables the discovery 

of other important information in the imaging data that otherwise might go unnoticed [21]. 
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Nevertheless, unravelling the black-box nature of the DL systems is not only a legal and 

ethical requirement but is also essential for fostering clinical trust and for troubleshooting 

systems. Moreover, interpretability methods can also reveal new imaging biomarkers to 

understand the specifics of the DL model [21]. 

Overall, interpretability of DL networks can be defined as an attempt to explain the decision-

making process of the model in a way that is understandable for the end-uses, and it refers to 

any technique that attempts to answer the question why the model is making a certain 

prediction for the medical image analysis tasks.  

4.1 Most used interpretability techniques applied to deep 

learning algorithms 

So far it has been said that AI solutions have the purpose to aid clinicians in performing their 

work more efficiently and accurately, and not to replace them, but this requires understanding 

on the side of the clinical experts and so interpretability can be incorporated during the design 

process of the deep neural network [21].  

In this chapter there is the description of interpretation methods for neural networks and these 

methods, in general terms, visualize features and concepts learned by a neural network, 

explain individual predictions and simplify neural networks [27]. 

DL has been very successful, especially in tasks that involve images and texts such as image 

classification and language translation. The success story of deep neural networks began in 

2012 and, since then, we have witnessed a Cambrian explosion of deep neural network 

architectures, with a trend towards deeper networks with more and more weight parameters 

[27]. 

To make predictions with a neural network, the data input is passed through many layers of 

multiplication with the learned weights and through non-linear transformations [27]. A single 

prediction can involve millions of mathematical operations depending on the architecture of 

the neural network, thus there is no chance that we humans can follow the exact mapping 

from data input to prediction because we would have to consider millions of weights that 

interact in a complex way [27]. To interpret the behaviour and predictions of neural networks, 

we need specific interpretation methods, which are described in the current chapter. 

Especially, there are two main reasons why it makes sense to consider interpretation methods 

developed specifically for neural networks instead of using model-agnostic methods (i.e., 

local models or partial dependence plots). First of all, neural networks learn features and 
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concepts in their hidden layers, and we need special tools to uncover them [27]. Secondly, the 

gradient can be utilized to implement interpretation methods that are more computationally 

efficient than model-agnostic methods that look at the model “from the outside” [27].  

Post-hoc attribution-based techniques provide interpretation of model output and are most 

relevant during model training and at model deployment [28]. Since these post-hoc 

interpretability methods provide explanations for the predictions after the DL modes has been 

trained, they can offer local or global explanations. The former case identifies the attributes 

and features of a particular image that the DL model considers important for prediction, while 

the latter aim at identifying the common characteristics that the DL model considers when 

associating images with that particular class [21].  

Figure 17 shows an overview of interpretability methods for DL solutions in medical image 

analysis. The black-box DL solution can be made more desirable for clinical use by 

incorporating interpretability during the design or execution phase. 

In the following subparagraphs, there is the description of some of the most common 

interpretability methods found in literature.  

4.1.1 Concept learning model 

Concept representation learning can be carried out, amongst others, at concept level in which 

each feature representation is labelled with the concept that owns the feature. In particular, 

nowadays, DL models are trained to infer the label 𝑦  directly from the input image 𝑥 . 

However, it is usually not possible for radiologists to understand the reason behind the 

prediction of the DL models using the same high-level concepts 𝑐 used to arrive at a diagnosis, 

hence, it is advantageous to explain the outputs of the model in terms of human-interpretable 

concepts [21]. This problem can be solved by first predicting these high-level concepts (such 

as semantic features) from the input image and then using these concepts to predict the label 

[21]. In other words, we approach this problem by revisiting the simple idea of first predicting 

an intermediate set of human-specified concepts 𝑐, then using 𝑐 to predict the target 𝑦 [29]. 

These models are trained on data points (𝑥, 𝑐, 𝑦), where the input 𝑥 is annotated with both 

concepts 𝑐 and target 𝑦. At test time, they take in an input 𝑥, predict concepts �̂� and then use 

those concepts to predict the target �̂� (Figure 18) [29]. 

These models require concepts generated by experts as input during training time along with 

the image and label. Conceptual alignment deep neural networks (CADNNs) utilize some 

hidden neurons to learn human-interpretable concepts while other neurons are trained freely, 

and they achieve performance comparable to deep neural networks trained without 
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interpretability constraints [21]. There has been published many studies about this and it has 

been seen that the clinicians can intervene at test time to change the predicted value of the 

clinical concept to observe the effect on the final prediction and this intervention resulted in a 

performance improvement (Figure 19) [21]. 

  

 

Figure 17. An overview of interpretability methods for DL solutions in medical image analysis. The black-box DL solution 

can be made more desirable for clinical use by incorporating interpretability during the design or execution phase [21]. 

 

 

Figure 18. Concept models first predict an intermediate set of human-specified concepts 𝒄, then use 𝒄 to predict the final 

output 𝒚. Two applications are here illustrated: knee x-ray grading and bird identification [29]. 
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Figure 19. Concept Learning Models first predict clinical concepts, and the final prediction is made using these human 
interpretable concepts. The final prediction is based either only on the clinical concepts or a combination of clinical concepts 

and other deep features (dashed line) [21]. 

Capsule networks encode information (e.g. pose, scale, etc.) about each feature using 

vectorized representation in contrast to scalar features maps used in CNN [21]. In this case, 

low-level features extracted from CNN layers can be combined with predicted clinical 

concepts for diagnosis and the Hierarchical Semantic Convolutional Neural Network 

(HSCNN) consists of three modules for the extraction of generalised low-level features which 

are fed to the second module, which in turn classifies the presence or absence of five nodule 

semantic characteristics that reflect diagnostic features relevant for radiologists (e.g., texture, 

margin) and then third module predicts nodule malignancy based the low-level features from 

the first module and high-level visual attributes from the second module [21]. It has been 

shown that 2D explainable capsule network outperforms HSCNN [21]. 

4.1.2 Case-based model 

Case-based models are another kind of network architecture for deep learning that naturally 

explains its own reasoning for each prediction, by comparing the features extracted from an 

input image against class discriminative prototypes [21]. In this case, the network architecture 

is chosen first, and afterwards one aims to interpret the trained model or the learned high-level 

features [30]. Prototype classification is a type of case-based reasoning that is inherently 

interpretable because the final predictions are made by taking a weighted sum of similarity 

scores between features extracted from input and prototypes [21]. 

The word “prototypes” is overloaded and has various meanings. In fact, in some cases, a 

prototype is very close or identical to an observation in the training set, and the set of 

prototypes is representative of the whole data set, while in other contexts, a prototype is not 

required to be close to any one of the training examples, and could be just a convex 
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combination of several observations [30]. In addition, in few-shot and zero-shot learning, 

prototypes are points in the feature space used to represent a single class, and distance to the 

prototype determines how an observation is classified [30]. For example, Prototypical Part 

Network (ProtoPNet) consists of a convolutional layer, followed by a prototype layer and then 

a fully connected layer (Figure 20) [21] and utilizes the mean of several embedded “support” 

examples as the prototype for each class in few-shot learning [30]. The convolutional layer 

consists of a trimmed standard CNN pipeline that acts as a feature extractor, the prototype 

layer takes patches from the convolution layer as input and learns class discriminative 

prototypes during training [21]. A similarity score is computed after comparison against each 

prototype and a fixed-size feature map is used for comparison with prototypes and then the 

fully connected layer then makes predictions based on these similarity scores [21]. These 

convolutional and prototype layers are trained first and the loss function comprises 

misclassification loss, cluster cost, and separation cost and then, in the second step, the fully 

connected layer is trained [21]. It is worth to mention the fact that Mohammadjafary et al. 

utilized ProtoPNet with DenseNet121 architecture for Alzheimer’s disease classification [31]. 

4.1.3 Counterfactual explanation 

A counterfactual explanation describes a causal situation in the form: “If X had not occurred, 

Y would not have occurred” [27]. For example: “If I hadn’t taken a sip of this hot coffee, I 

would not have burned my tongue”. Event Y is that I burned my tongue; cause X is that I had 

a hot coffee. Thinking in counterfactuals requires imagining a hypothetical reality that 

contradicts the observed facts (for example, a world in which I have not drunk the hot coffee), 

hence the name “counterfactual” [27]. More specifically, in deep learning, a counterfactual 

explanation is an image that is produced by applying minimal perturbations to the original 

image to bring a maximum change in the classifier’s prediction and switch the predicted class 

of the original image [21, 27]. Moreover, counterfactual explanation not only helps in 

identifying the diseased area but also aids in understanding the changes that need to be made 

to switch the classifier’s prediction (Figure 21) [21].  

A simple and naive approach to generate counterfactual explanations is searching by trial and 

error and this approach involves randomly changing feature values of the instance of interest 

and stopping when the desired output is predicted [27]. However, there are better approaches 

than trial and error. First, we define a loss function, which takes as input the instance of 

interest, a counterfactual and the desired (counterfactual) outcome, then we can find the 

counterfactual explanation that minimizes this loss using an optimization algorithm [27]. 
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Many methods proceed in this way but differ in their definition of the loss function and 

optimization method. 

Generative Adversarial Networks, consisting of a generator and a discriminator working in an 

opposing manner, are widely used for counterfactual images synthesis because of their ability 

to model target data distribution, but they can be difficult to train due to loss function 

instability and high sensitivity to hyper-parameters [21]. On the other hand, counterfactual 

images can by synthetized by perturbing the latent space of an autoencoder, but the resolution 

of the generated images is limited [21].  

4.1.4 Concept attribution 

Concept attribution provides global explanations for the deep neural network in terms of high-

level image concepts [21]. In particular, Testing with Concept Activation Vectors (TCAVs) 

was proposed to generate global explanations for neural networks but, in theory, it should also 

work for any model where taking directional derivative is possible [27]. TCAVs method 

quantifies the influence of a high-level image feature on the decision of the model and a linear 

classifier is trained to differentiate between examples containing the concept of interest and 

random examples [21] and so, for any given concept, TCAV measures the extent of that 

concept’s influence on the model’s prediction for a certain class [27]. Since TCAV describes 

the relationship between a concept and a class, instead of explaining a single prediction, it 

provides useful global interpretation for a model’s overall behaviour [27]. 

Concept Activation Vector (CAV) is simply the numerical representation that generalizes a 

concept in the activation space of a neural network layer [27] and is orthogonal to the 

classification boundary of the linear classifier [21]. TCAV method utilizes CAV and 

Figure 20. ProtoPNet architecture [32]. 
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directional derivative to determine the importance of a particular concept for classification in 

terms of TCAV score [21]. 

After all, a CAV is trained by user-selected concept and random datasets. If datasets used to 

train the CAV are bad, the explanation can be misleading and useless and thus, a simple 

statistical significance test is performed to help TCAV become more reliable [27]. That is, 

instead of training only one CAV, multiple CAVs can be trained using different random 

datasets while keeping the concept dataset the same [27]. A meaningful concept should 

generate CAVs with consistent TCAV scores. Moreover, it is also suggested to apply a 

multiple testing correction method in case of multiple hypotheses [27]. 

It can be challenging to create a labelled dataset for different concepts to obtain the CAVs 

especially in the field of medical imaging. In particular, Automated Concept-based 

Explanation can be seen as the automated version of TCAV because it goes through a set of 

images of a class and automatically generates concepts based on the clustering of image 

segments [27]. 

4.1.5 Attribution map 

Some approaches to model interpretation try to attribute the model output to different parts of 

the image input. In general, they produce heatmaps that describe the importance of different 

parts of an image to the model decision on a pixel-by-pixel basis [28], but these heatmap-

based explanations do not offer any information on how these salient regions contribute to the 

prediction [21]. The available approaches generally fall into three groups: perturbation-based 

approaches, backpropagation- or gradient-based approaches and decomposition-based 

approaches [28].  

Starting from the perturbation-based approaches to model interpretation, they involve altering 

different parts of an image and seeing how those perturbations change the output of the model 

[28]. The commonality of the approaches is the underlying idea that when important parts of 

Figure 21. Counterfactual explanation for breast mass prediction in an image patch from a mammogram. The DL model 

predicts the label of the input image patch as normal, and the counterfactual explanation is obtained by applying minimal 

perturbation to the input image to change the model’s prediction [21]. 
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an image are perturbed, the output of the model is strongly affected, and when unimportant 

parts of an image are perturbed, the output of the model is unaffected [28]. 

The occlusion method as a means of performing model interpretation was first introduced in 

2014 by Zeiler and Fergusfor the interpretability of deep neural networks [21] and this 

technique consists of systematically occluding parts of an image and monitoring how strongly 

the perturbation influences model output [28]. Image parts that, when occluded, strongly 

affect the output of the model are assigned high importance, while image parts that have little 

effect on model output when occluded are of low importance [28]. In general, multiple 

inferences need to be performed for the same input image, it can be computationally 

expensive to generate occlusion attribution maps if small portions of the image are perturbed 

and the resolution of the attribution map is constrained by the choice of the patch size that is 

altered at a time [21]. For the purpose of this work, it is of high relevance to mention that 

Tang et al. utilized occlusion maps for the interpretability of a model developed for the 

diagnosis of AD [21].  

Local Interpretable Model-agnostic Explanations (LIME) was introduced by Ribeiro et al. in 

2016 and it can be used to explain the prediction of any classifier, but for this review we only 

consider LIME in the context of image models [28]. LIME for images works by first 

identifying groups of contiguous pixels with similar intensities called superpixels and the 

image is then perturbed by turning subsets of superpixels “off” by replacing the value of all 

pixels in the superpixel with the mean intensity value of that superpixel [28]. In particular, 

each superpixel corresponds to an input feature and the model’s predictions for these 

perturbed images are the target values [21]. Each perturbed image is weighted by its similarity 

with the input image using the cosine distance metric and a weighted regression model is 

trained to estimate the feature importance [21]. Nevertheless, like occlusion, changes in the 

model output due to the perturbation are used to identify how important each superpixel is to 

model output, and a heatmap highlighting the important superpixels is produced [28]. 

An advantage of LIME over occlusion is that LIME uses superpixels that are more likely to 

correspond to semantically different parts of an image, while occlusion perturbs image 

patches in a systematic, uniform way, ignoring possible semantic similarity between adjacent 

pixels [28]. LIME also uses fewer extreme perturbations than occlusion, as the intensities in 

the perturbed image region are replaced by the mean intensity instead of zeroes, however, 

there is nothing to prevent modification of either method to remove this difference [28]. 

Perturbation-based methods can alter parts of the image that are not understandable in clinical 

term, therefore, there is a need for meaningful perturbations [21]. In literature, there has been 
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proposed Guideline-based Additive eXplanation that mitigates this problem by first 

generating features using rule-based segmentation and anatomical irregularities according to 

the set guidelines and then a perturbation-based analysis is performed to obtain 

understandable explanations in terms of feature importance [21]. 

The second approach mentioned above is the backpropagation- or gradient-based method, 

which is the method by which weights in a neural network are updated during the model 

training process [28]. Model interpretation methods do not actually update model weights as 

occurs during training, yet they rely on backpropagation to compute gradients, and these 

gradients are combined in different ways to visualize salient parts of an image [28]. In fact, 

gradient-based methods generate post-hoc attribution maps by utilizing gradients of 

backpropagation to identify the important parts of the input image for the prediction [21].  

Saliency maps were introduced in 2013 by Simonyan et al. and they use gradients to visualize 

the classification of an image evaluated by a deep convolutional network [28]. In particular, 

these saliency maps highlight regions of the input image that the deep neural network 

considers important for prediction by computing the gradient of the output concerning the 

input pixels using backpropagation [21]. In the introductory paper, the authors offer two uses 

for saliency maps: class maximization visualization and image-specific class saliency maps. 

Class maximization uses gradient ascent to produce an image that maximizes the activation of 

that class, and therefore can be interpreted as being most representative of that class [28]. 

Formally, class maximization finds an image 𝐼  of class 𝑐  for which a class score 𝑆𝑐  is 

maximised: 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑆𝑐(𝐼) − 𝜆‖ 𝐼 ‖2
2 

where 𝜆 is a regularization parameter. 

Image-specific class saliency maps are image- and class-specific heatmaps that represent the 

importance of individual pixels to the assignment of the image to a class, providing an 

assessment of which parts of an image are most important to the model [28]. Saliency 

mapping is sometimes also referred to as “sensitivity analysis”, but it should be noted that it is 

a separate technique from the perturbation-based methods. Here, the heatmap 𝑆𝑎𝑙𝑐(𝑥) for a 

class 𝑐 is computed directly as the derivative of the model output score 𝐹𝑐(𝑥) with respect to 

each pixel in the input image 𝑥 through backpropagation [28]: 

𝑆𝑎𝑙𝑐(𝑥) =
𝑑𝐹𝑐(𝑥)

𝑑𝑥
 

Because of its simplicity, saliency mapping is one of the most widely implemented methods 

for model interpretation in medical imaging to date [28]. 
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In 2018, an expansion of class saliency maps was proposed with the introduction of iterative 

saliency maps, whose objective is to identify less discriminative image regions that may have 

been ignored in the initial saliency map [28]. The method works by iteratively computing a 

saliency map, inpainting the most salient image regions identified, and computing the saliency 

map again, and this process repeats until the perturbed image is no longer classified as 

containing an abnormality, or a maximum number of iterations is reached [28]. Then, the final 

iterative saliency map is computed as a weighted sum of the saliency maps computed at each 

step. 

Despite their popularity, saliency mapping has the drawback that it provides no indication as 

to whether a pixel provides evidence for or against a class, only that the classification is 

sensitive to that pixel [28]. Several authors have also noted that in binary classification 

settings, saliency maps lose their class specificity, because if a feature is important for 

distinguishing between two classes, it may be highlighted by a saliency map for both classes 

[28]. 

Guided Backpropagation (GBP) is an extension to saliency maps and the DeConvolution 

approach (DeConvNet) and it works by computing the gradient and setting the negative 

gradient to zero during backpropagation [21]. The difference between these approaches lies in 

how backpropagation through Rectified Linear Unit (ReLU) – an activation function 

commonly used in CNNs – activation layers of the network is handled. In general, during the 

forward pass, neurons with negative output are clamped to zero by ReLU by definition 

(ReLU(x) = max(0, x)). This idea was then extended to computing gradients in the backward 

pass by clamping to zero negative gradients [28]. Finally, GBP combines these two ideas, 

zeroing out signal through neurons that have either negative output during the forward pass or 

negative gradient during the backward pass and this produces a heatmap that highlights only 

pixels that provide positive evidence for a classification [28]. 

GBP was evaluated as a method for visualizing AD diagnosis on brain MRI, but it was found 

that the visualizations produced by guided backpropagation are less discriminative than those 

produced by other methods [28]. 

Class Activation Maps (CAMs) were first introduced in 2016 and they localize class-specific 

image regions that the model considers important for classification [21]. To generate CAMs, a 

global average pooling layer is added after the last convolutional layer and the output of the 

global average pooling layer is then linearly combined to produce class predictions [21]. 

CAM for each class is then obtained by taking a weighted sum of the last convolutional layer 

activations [21]. The class activation map CAMc(𝑥) for a class 𝑐 and image 𝑥 is defined as: 
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CAMc(𝑥) = ∑ 𝑤𝑘
𝑐 𝑓𝑘(𝑥)

𝑘

 

where 𝑤𝑘
𝑐 are the weights for class 𝑐 in the final network layer, and 𝑓𝑘(𝑥) is the corresponding 

feature map prior to global average pooling [28]. Thus, CAMc(𝑥) is a class-specific heatmap 

that indicates discriminative image segments [28]. Multi-Layer Class Activation Maps 

(MLCAM) is an extension of CAM that can be incorporated at different CNN layers [21]. 

A drawback of class activation mapping is that it places some restrictions on network 

architecture as it requires a global pooling layer, followed by a fully connected layer as the 

last layers before the output layer [28]. However, in order to address this limitation of CAM, 

gradient-weighted class activation maps (grad-CAM) were introduced such that they produce 

visual explanations that do not require re-training or changes to the architecture like CAMs 

and they allow to explain activations in any layer of the network [21]. In grad-CAM, the 

weights are the gradients of the class score with respect to each feature map, instead of 

requiring that the weights be taken from a fully connected layer [28]. 

The Integrated Gradient mitigates the saturation problem of gradients [21]. In this method, it 

is critical to select a baseline that corresponds to a near-zero score, thus a complete black 

image is a suitable choice for a baseline [21]. The gradients are aggregated for all the points 

occurring in small steps between the input and baseline [21].  

The third approach previously mentioned is the decomposition-based method for model 

interpretation, which seeks to decompose the prediction of the model to a heatmap that 

describes how much each pixel contributes to the prediction [28]. Whereas perturbation- and 

gradient-based methods for interpretation highlight parts of the image that, if altered, affect 

the prediction of the model, decomposition-based methods identify parts of the image that 

directly provide evidence for the model decision [28]. 

Layer-wise relevance propagation (LRP) was introduced in 2015 and it does not rely on 

gradients to generate the heatmap, but work by computing relevance scores that distribute the 

output of the final layer amongst nodes in the previous layer [28]. This process continues 

recursively until the input layer of the network is reached, producing a relevancy score 

heatmap that can be overlaid over the input image [28]. LRP is a method based on pixelwise 

decomposition of non-linear classifiers that generates a heatmap by evaluating a relevance 

score [21]. LRP ensures that the total relevance for all the layers starting from the 

classification output 𝑓(𝑥)  to the input layer is the same [21]. Under these constraints, a 

neuron is highly relevant if it has a high activation and a high contribution for a neuron of the 

next layer that have a high relevance score [21].  
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LRP has been used in some medical imaging applications, among which it is important to 

mention its use to interpret CNN-based AD diagnosis on MRI. The authors find that LRP 

heatmaps from their trained model highlight the hippocampal volume, which has been used to 

diagnose AD and predict disease progression (Figure 22) [28]. They also compared LRP to 

guided backpropagation and concluded that LRP may be more valuable than guided 

backpropagation for their task because the difference in heatmap scores between Alzheimer’s 

disease and healthy controls was more evident for LRP [28]. 

4.2 Most used interpretability techniques applied to 

Alzheimer’s disease 

The purpose of this paragraph is to describe the interpretability techniques mainly used in the 

application field of AD starting from medical images and, mainly, from MRI images. 

However, since this research topic is quite innovative, it is difficult to find a considerable 

number of studies about it. Nevertheless, according the recent and general review of 

interpretability methods applied to medical images by Salahuddin et al., it appears that 

Mohammadjafari et al. utilized ProtoPNet with DenseNet121 architecture (a case-based 

model) for AD classification [21]. Instead, Baumgartner et al. proposed an attribution method 

based on Wasserstein Generative Adversarial Networks (WGAN – counterfactual explanation) 

Figure 22. Layerwise relevance propagation for model interpretation in visualizing evidence for AD on brain MRI [28]. 
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that requires a baseline class 𝑦 and a class of interest 𝑥. WGAN estimates a function 𝑀(𝑥𝑖) 

such that when it is added to the image from class 𝑥𝑖, it becomes indistinguishable from class 

𝑦. This attribution technique was validated on a synthetic dataset and MRIs from patients with 

AD and mild cognitive impairment [21]. In addition, Tang et al. utilized occlusion maps for 

interpretability of a model develop for the diagnosis of AD, while Boehle et al. demonstrated 

that LRP can be used to explain AD classification in 3D CNNs with high inter-patient 

variability and quantitatively showed that LRP relevance maps correlate with clinical 

knowledge [21]. Moreover, it is important to mention that Eitel and Ritter carried out a 

quantitative comparison of four attribution methods for Alzheimer’s disease classification and 

showed that LRP and GBP produce the most coherent explanations. 

4.2.1 Literature review 

In this section, there is a review and summary of the different studies based on DL, 

anatomical MRI for AD classification and interpretability techniques. 

First of all, it has been searched for articles on PubMed and Scopus published up to date and 

the flowchart of the whole literature research is reported in Figure 23. In particular, the query 

contains words linked to the following concepts: Alzheimer’s disease, deep learning, 

interpretability / explainability, MRI and, in a second moment, also the concept of 3D was 

added. The words matching these concepts were identified in the abstract and titles of the 

documents and so the queries were the following: 

 

PubMed query: 

("Alzheimer’s disease" [Title/Abstract] OR "Alzheimer’s" [Title/Abstract] OR "Alzheimer" 

[Title/Abstract]) AND (“magnetic resonance” [Title/Abstract] OR “MR” [Title/Abstract] OR 

“magnetic resonance imaging” [Title/Abstract] OR “MRI” [Title/Abstract]) AND ("Deep 

Learning" [Title/Abstract] OR "Convolutional Network" [Title/Abstract] OR “CNN” 

[Title/Abstract] OR "Neural Network" [Title/Abstract]) AND ("interpretability” 

[Title/Abstract] OR “explainability" [Title/Abstract]) 

 

Scopus query: 

TITLE-ABS("Alzheimer’s disease" OR "Alzheimer’s" OR "Alzheimer") AND  TITLE-

ABS(“magnetic resonance” OR “MR” OR “magnetic resonance imaging” OR “MRI”) AND 

TITLE-ABS("Deep Learning" OR "Convolutional Network" OR "CNN" OR "Neural 

Network") AND TITLE-ABS("interpretability” OR “explainability") 
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Figure 23. Flowchart of the literature research. 

Typing just the first four concepts, 7 results were obtained from PubMed, while 11 results 

from Scopus, thus a total of 18 documents were found.  

Instead, also adding the last concept, the queries were the following: 

 

PubMed query: 

("Alzheimer’s disease" [Title/Abstract] OR "Alzheimer’s" [Title/Abstract] OR "Alzheimer" 

[Title/Abstract]) AND ("magnetic resonance" [Title/Abstract] OR "MR" [Title/Abstract] OR 

"magnetic resonance imaging" [Title/Abstract] OR "MRI" [Title/Abstract]) AND ("Deep 

Learning" [Title/Abstract] OR "Convolutional Network" [Title/Abstract] OR CNN 

[Title/Abstract] OR "Neural Network" [Title/Abstract]) AND ("interpretability" 

[Title/Abstract] OR "explainability" [Title/Abstract]) AND ("3D" [Title/Abstract] OR “three-

dimensional” [Title/Abstract]) 
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Scopus query: 

TITLE-ABS("Alzheimer’s disease" OR "Alzheimer’s" OR "Alzheimer") AND TITLE-

ABS(“magnetic resonance” OR “MR” OR “magnetic resonance imaging” OR “MRI”) AND 

TITLE-ABS("Deep Learning" OR "Convolutional Network" OR "CNN" OR "Neural 

Network") AND TITLE-ABS("interpretability” OR “explainability") AND TITLE-ABS("3D" 

OR “three-dimensional”) 

 

In this case, only 3 results from PubMed and 4 results from Scopus were obtained, thus a total 

of 7 documents were found. In order to make the search more focused on this work, as a first 

attempt, only the results including the 3D concepts were used. However, it has been noticed 

that, among the 7 articles, there were some duplicates, which were removed and so 5 records 

were identified. However, one more document was discarded because, although the abstract 

and title included all the concepts of the query, that method was a “black box”, lacking 

sufficient interpretability to explain the exact reason for better or worse results in a particular 

case (Figure 23). Tables 1 and 2 show an overview of the 4 records with their characteristics. 

Study Dataset Modality Task Section 

Shahamat et 

al., 2020 

ADNI, 

ABIDE 
MRI AD and autism classification 4.2.1.1 

Dyrba et al., 

2020 
ADNI 

T1-weighted 

volumetric 

MRI 

Comparison of algorithms for 

generating heatmaps to visually 

explain the learned patterns of AD 

classification 

4.2.1.2 

Guan et al., 

2021 

ADNI-1, 

ADNI-2 
MRI Early MRI-based diagnosis of AD 4.2.1.3 

Turkan et 

al., 2021 
ADNI MRI, PET AD identification 4.2.1.4 

Table 1. Overview of the 4 studies found in PubMed and Scopus. ADNI stands for Alzheimer’s Disease Neuroimaging 

Initiative. ABIDE is Autism Brain Imaging Data Exchange. GAMB method is the Genetic Algorithm based Brain Masking. 

sMRI is the structural MRI. SHAP stands for Shapley Additive exPlanations.  
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Study 
Neural 

Network 

Interpretability 

method 
Accuracy 

Area under 

the curve 

(AUC) 

Section 

Shahamat 

et al., 2020 
3D CNN GABM method 85% N.A. 4.2.1.1 

Dyrba et 

al., 2020 
3D CNN 

Deep Taylor 

decomposition, 

LRP, Grad-CAM 

and guided back-

propagation 

75.2% 0.93 4.2.1.2 

Guan et al., 

2021 

3D CNN 

(ResNet) 
score-CAM 87.18% 0.94 4.2.1.3 

Turkan et 

al., 2021 

3D CNN 

(VoxCNN8, 

VoxCNN16, 

VoxATT) 

Occlusion, 3D 

Ultrametric 

Contour Map, 3D 

Gradient-

Weighted CAM, 

SHAP 

83%, 87%, 

92% 

(VoxCNN8, 

VoxCNN16, 

VoxATT, 

respectively)  

0.87, 0.91, 

0.94 

(VoxCNN8, 

VoxCNN16, 

VoxATT, 

respectively) 

4.2.1.4 

Table 2. Overview of the 4 studies found in PubMed and Scopus. CNN stands for Convolutional Neural Network. GAMB 

method is the Genetic Algorithm based Brain Masking. MRI is the structural MRI. SHAP stands for Shapley Additive 

exPlanations.  

4.2.1.1 Shahamat et al., 2020 

As it is clear from the Table 1, the task of this paper was the AD classification and the autism 

classification. However, for the purpose of his work, only the parts connected to the AD are 

summarised. First of all, an overview of the whole proposed framework is proposed in Figure 

24, and it consists of four major steps: (1) pre-processing, (2) classification, (3) genetic 

algorithm based brain masking (identification of knowledgeable brain regions), and (4) 

experimental results. 

Regarding the AD, in this paper, a set of 140 MRI scans (70 normal control subjects and 70 

AD) has been downloaded from AD Neuroimaging Initiative (ADNI) site and used for the 

experiments. All these MRI scans were pre-processed, registered and normalised and then 

cropped to an 80 × 80 × 80  voxels sub-volume with the brain centred. Then, a 3D-CNN 

model (Figure 25) was designed and trained from scratch for classification and the input layer 
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has size 80 × 80 × 80  to accept pre-processed MRI scans, which is then followed by a 

dropout layer with keep probability of 50% to reduce over fitting. The first convolutional 

layer consists of 8 filters with size 5 × 5 × 5. After applying a ReLU activation function to 

the convolution’s results, a max-pooling operator is used with window size 2 × 2 × 2 and it 

reduces the input scan size to 40 × 40 × 40. The second convolutional layer has 16 filters 

with size 3 × 3 × 3 and, after applying ReLU function and max-pooling operator, the data 

size is reduced to 20 × 20 × 20 . The third convolutional layer has 32 filters with size 

3 × 3 × 3 and, after applying ReLU and pooling on the results, the data size is reduced to 

10 × 10 × 10. Subsequently, two fully connected layers are used for data classification: the 

first fully connected layer has 32000 input and 1024 output neurons, and it is followed by a 

dropout layer with keep probability 50%; The second fully connected layer has 1024 input 

and 2 output neurons (same as the number of classes). Finally, a softmax layer and a 

classification layer are used to provide labels for the input MRI scans. Regarding the ADNI 

dataset, in a 5-fold cross validation mode, the accuracy was 0.85, thus acceptable. 

For identification of knowledgeable brain regions, in this paper, the Genetic Algorithm based 

Brain Masking (GABM) method was proposed and all the brain regions were involved in 

model training, but only a number of them were selected by the GABM method. By changing 

the GABM parameters, 4 different experiments were performed to each dataset, but just the 

ones regarding ADNI are of interest for the purpose of this work. Nevertheless, any change in 

the parameters will affect the number of involved brain regions in the final mask. In fact, the 

proposed GABM method is applied to discover most important brain regions and discarding 

the redundant part of the brain MRI scans to the disease under study. Precisely, the test 

accuracy of 3D-CNN + GABM method on the ADNI dataset was 0.85 when the parameters of 

the GABM method were α = 0.03 and β = 0.97 and this accuracy was obtained using only 

41 brain regions, which is equal to the obtained accuracy using all 96 brain regions. Finally, 

the proposed GABM method has found 6 to 65 brain regions in ADNI dataset with respect to 

the model parameters. This experiment proved that some brain regions may be redundant and 

the proposed GABM can find them properly. 

Overall, the results shown that besides the model interpretability, the proposed GABM 

method has increased the final performance of the classifier in some cases. 
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Figure 24. Overview of the proposed framework [33]. 

 

Figure 25. The proposed 3D-CNN architecture for MRI classification [33]. 
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4.2.1.2 Dyrba et al., 2020 

The purpose of this study was to make a comparison of algorithms for generating heatmaps to 

visually explain the learned patterns of AD classification. Also in this case, the MRI data 

were obtained from the ADNI and, in total, the sample included 662 cases consisting of 198 

patients with AD dementia, 219 patients with amnestic MCI, and 254 cognitively normal 

controls. After having segmented the MRI scans into grey and white matter, having 

normalised and modulated them, the images were taken as input for the CNN (Figure 26), 

which has become the state-of-the-art technique for various image classification tasks. In this 

case, it is important to highlight that CNN model achieved excellent diagnostic accuracy for 

separating AD dementia from controls, comparable to other approaches from the literature, as 

well as for separating MCI patients from controls. Moreover, as computational complexity is 

considerably higher for 3D CNN models compared to 2D CNN models used for general 

purpose image detection tasks, there is a high potential of model overfitting, in contrast to a 

very limited number of MRI scans available for training. This problem was addressed by 

applying image pre-processing, by reducing the number of layers resulting in a shallower 

network, including three convolutional layers, with in total approximately 6400 parameters, 

and by using data augmentation to multiply the data available for training and to improve the 

stability and robustness of the model. 

Various visualization methods were tested and approximately the same image regions were 

highlighted across them and, as expected, the hippocampus are showed the highest relevance 

for the AD and MCI patients. In conclusion, for clinically oriented research, deep Taylor 

decomposition and LRP with parameters α = 1 and β = 0 rule showed the most promising 

relevance maps (network activation patterns) with strongest focus and less scatter and these 

approaches mainly showed positive relevance scores for the AD class and suppressed the 

negative relevance against AD.  

 

 

Figure 26. Convolutional neural network model layout proposed by Dyrba et al. (2020). 
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4.2.1.3 Guan et al., 2021 

In this paper, a deep learning framework for sMRI-based AD diagnosis was proposed and this 

framework accepts 3D sMRI scans as input and outputs diagnostic labels (Figure 27). The 

framework was evaluated on two independent datasets from ADNI (ADNI-1, ADNI-2) for 

AD classification and MCI conversion prediction. As a primitive feature extractor, a light-

weight 3D CNN (based on ResNet) is used and, in order to tackle the trade-off between better 

representation learning and increased risk of overfitting, a parallel attention-augmented 

bilinear network is devised. Specifically, the parallel attention-augmented blocks model long-

range interdependencies and asymmetrically project the learned features to lower dimensions. 

Finally, the compressed features of the parallel branches are combined using bilinear pooling 

to model localized feature interactions.  

 

 

Figure 27. Architecture of the proposed parallel attention-augmented bilinear network, where ‘pA’ refers to the parallel 

attention-augmented blocks [34]. 
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Taking a 3D brain image as input, a backbone network first extracts primitive features, which 

are then passed to parallel attention-augmented blocks for extracting long-range interactions. 

The network architecture consists of a root convolutional layer and three residual units. The 

root convolutional layer accepts the 3D images, with 3D kernel of size 3 × 3 × 3 and 16 

output channels. The next three residual units have the same structure except for the output 

channels. To cover regions of interest with a sufficiently large receptive field, we choose to 

use a large kernel size for convolutions. In addition, we use strided convolutions to down-

sample the features. Feature down-sampling is achieved via strided convolutions. No average-

pooling or max-pooling layer is used. Specifically, each residual unit has two convolutional 

layers: the first layer has kernels of size 4 × 4 × 4 with stride 2; the next layer has kernels of 

size 1 × 1 × 1 with stride 1. The number of output channels is doubled for the first layer 

while unchanged for the second layer. The layer with kernel size 4 × 4 × 4 symmetrically 

applies zero paddings to ensure that the output feature map is exactly half the size of the input 

feature map. Before each convolutional layer, a batchnorm (BN) layer and a ReLU are 

cascared. After three residual units, the feature map is down-sampled eight times to 18 ×

22 × 18. Then, another combination of BN and ReLU is inserted before the next parallel 

attention-augmented blocks. 

Score class activation mapping (score-CAM) was used to visualize the discriminative areas 

where the network focused on. The heat maps are obtained by a linear combination of 

activation maps and weights, which are forward passing scores on target class. In practice, an 

image is fed into the fully trained network and use the feature maps output by the pA-blocks 

to generate two different 3D heat maps. Then, the heat maps are upscaled to the same size as 

the input image.  

Although the proposed framework achieved competitive diagnostic results, there is still room 

for improvement. 

4.2.1.4 Turkan et al., 2021 

In this paper, the purpose is the identification of AD by using ADNI dataset. In this study, the 

Koorolev’s 3D VGG model (VoxCNN8) was taken as base model and it was extended by 

using more filters, resulting in VoxCNN16, in which the feature filter channels were doubled, 

and in VoxATT, in which is Dot Attention block was added to the VoxCNN16 after the 

convolution blocks and so a 3D dot attention mechanism was applied, inspired by the 2D dot 

attention. These architectures are represented in Figure 28. 
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Figure 28. (A) VoxCNN8 is a standard VGG architecture that starts with 8 Channels. It uses two 2Conv3D Blocks, followed 
by two 3Conv3D Blocks. (B) VoxCNN16 architecture starts with 16 channels and uses four 3Conv3D Blocks. (C) VoxATT 

architecture is designed by adding Attention Block to the VoxCNN16 model [35]. 

Regarding the interpretation aspect, four different interpretability methods are compared in 

order to explain the predictions of the proposed models: occlusion, 3D Ultrametric Contour 

Map (3D-UCM), 3D Gradient-Weighted Class Activation Mapping (3D-Grad-CAM) and 

SHAP. The occlusion method failed to express the difference between target classes, 3D-

UCM gave more detailed regions, while the results of the 3D-Grad-CAM method were not 

interpretable in the deep network models. Lastly, SHAP results showed more distinctive 

regions compare to the other methods. With attention, visual interpretability results became 

sharper and distinctive. 

4.2.2 Discussion 

In the previous chapters, an overview of the most useful concepts related to this work has 

been given and it has been understood that AD is one of the main leading causes of death 

worldwide and it is going to grow due to the increased life expectancy. Moreover, because of 

a lack of understanding of AD by patients and their family members, most patients suffer 

from moderate and severe stages of AD at the time of diagnosis and have missed the optimal 

intervention stage [36]. Hence, early diagnosis of AD might be fundamental in order to slow 

down the development of AD. In fact, while there is no cure for AD, early diagnosis and 

accurate prognosis may enable or encourage lifestyle changes, neurocognitive enrichment, 
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and therapeutic interventions that strive to improve symptoms, or at least slow down mental 

deterioration, thereby improving the quality of life [37].  

Clinically, there are different forms of neuroimaging techniques available for AD diagnosis, 

including MRI. As a matter of fact, the structural MRI (sMRI) measurement is considered as 

a marker of AD progression, which can help to detect the structural abnormalities and track 

the evolution of brain atrophy, typical of AD [36, 38]. However, nowadays, to my knowledge, 

the AD identification process is still performed manually by specialists, which is expensive 

and time-consuming. To solve this issue, recently, with the rapid development and wide 

application of AI in the medical field, computer-aided diagnosis (CAD) of AD using 

neuroimaging may be an auxiliary method to assist physicians [36]. More precisely, with the 

continuous development of DL, several attempts based on DL have been employed to analyse 

the MRI data by constructing models avoiding manually extracting features. In fact, DL, in 

particular CNNs, has proved to be an effective method of feature extraction from images and 

has provided state-of-the-art solutions in different image understanding and recognition tasks 

[36]. Thus, it is well known that DL helps to solve such a complex diagnostic problem by 

leveraging hierarchical extraction of input data features to improve classification [39]. 

Although DL-based models have achieved great classification performance for AD diagnosis, 

it is still an undetermined since subjects’ MRIs have relatively small differences in anatomic 

abnormalities, and it is necessary to dig out moderately subtle changes in disease progression 

from high denominational of MRI sequences data [39].  

CNNs (DL method) are widely used for image analysis and analysis of complex data and so, 

among the available machine learning methods, CNNs have been increasingly used in the 

Alzheimer’s biomarker identification task, given its power to learn discriminative 

representations hierarchically in an automated fashion [37, 40]. According to the literature, 

most of the proposed studies related to AD used 2D inputs, while studies that used 3D inputs 

focused basically on binary classifications and, with their work, Folego et al. in 2020 released 

one of the first models ready to use, encouraging open science and reproducible research and 

also setting a starting point for researchers working with 3D MRIs [40]. This is noticeable 

also from Table 2, in which is it clear that all the found studies concerning AD and 3D inputs 

used CNNs, even though of different types. In particular, for MRI classification, Shahamat et 

al. (2020) and Dyrba et al. (2020) proposed the 3D CNNs reported in Figure 25 and Figure 26, 

with an accuracy of about 85% (AUC not available) and 75.2% (AUC of 0.93), respectively. 

Furthermore, Guan et al. (2021) used another type of 3D CNN based on ResNet to first 

extract primitive features, which are then passed to a parallel attention-augmented bilinear 
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network for extracting fine-grained representations, giving an accuracy of 87.18% and an 

AUC of 0.94. Finally, Turkan et al. (2021) proposed different improvements of the 3D VGG 

model (VoxCNN8), which are the VoxCNN16 and the VoxATT. With an accuracy of 92% 

and AUC of 0.94, VoxATT model focused more on distinctive regions than the other models.  

In recent years, several approaches have been introduced exploiting MRI data for 

distinguishing AD and its prodromal dementia stage and they can be categorized in four main 

categories: voxel-based methods, methods based on Regions-of-Interest (ROI), patch-based 

methods, and approaches that leverage features from whole-image-levels [41]. In literature, a 

few machine learning studies used extracted brain structures or cortical thicknesses, and some 

used 3D patches from predetermined locations across the brain, but not whole-brain MRI data, 

to predict mild cognitive impairment MCI to AD conversion and it seems that there a no 

published studies on DL to this prediction using longitudinal and whole-brain 3D MRI, with 

the only exception for the one of Ocasio et al., 2021 [37]. 

DL approaches CNNs, which may be implemented for MRI and multimodal data-based 

classification of cognitive status, despite the promising results, have yet to achieve full 

integration into clinical practice mainly because DL models are ‘black-box’ algorithms, which 

means that they still lack interpretability. Nowadays, much attention has been given in order 

to try to solve this issue and so different interpretability algorithms have been proposed in 

literature. However, since it is a novelty, only a few studies have been published, which are 

the ones reported in the previous subchapters. By analysing them, it is possible highlight that 

they are quite different one another since different interpretability techniques are described 

and discussed, thus direct comparison between them it is hard to be made. Because of that, it 

can be said that still there appears to be confusion about which the most accurate and reliable 

interpretability technique is. In fact, as it is summarised in Tables 1 and 2, many different 

methods have been proposed, providing different result. So far, according to what reported in 

literature (Tables 1 and 2), it seems that one of the best methods applicable to AD is the LRP 

technique, which can be used to explain AD classification in 3D CNNs with high inter-patient 

variability and these LRP relevance maps correlate with clinical knowledge. In fact, according 

to Dyrba et al. (2020), Grad-CAM and guided backpropagation methods showed more 

scattered activations or random areas, which is something confirmed by Turkan et al. (2021) 

in which it is reported that the results of the 3D Grad-CAM method were not interpretable in 

the deep network models, while SHAP results showed more distinctive regions compared to 

the other proposed techniques. Instead, Guan et al. (2021) used score-CAM to generate the 

heatmaps, which only highlighted discriminative regions, but this interpretation is still too 
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coarse to make DL techniques enter into clinical practice to support decision-making 

procedures. Thus, as mentioned above, according to Dyrba et al. (2020) it seems that the best 

technique applicable to AD is the LRP because the clinical maps correlate with clinical 

knowledge.  

Obviously, an interpretable AD diagnosis using DL techniques is an extremely new research 

topic and this is highlighted also by the fact that, during the literature research, just a few 

documents were found.  
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5. Convolutional neural networks applied 

on volumetric magnetic resonance scans  

Before going into the details of what has been performed in the experimental part of the thesis, 

after having introduced all the theoretical concepts and having understood the current 

situation in literature, it is also good to make a brief overview of the technologies and tools 

used to carry out this work. 

5.1 Data and methodology 

5.1.1 Data selection 

OASIS-3 dataset is the most recent subset of the OASIS database and it is the one which has 

been used in this work. Since only one raw T1w 3D sMRI scan was considered for each 

subject, this dataset is characterized by 275 scans: 145 AD and 130 CN. Each scan contains 

256 stacked slices, having an original resolution of 176 pixels × 256 pixels, a thickness of 1 

mm and a pixel size of 1 mm.  

AD scans belong to 74 anonymized women and 71 anonymized men ranging from 52 to 95 

years in age, whereas CN scans belong to 81 anonymized women and 49 anonymized men 

ranging from 45 to 86 years in age. In particular, all the scans were acquired with 1.5 T and 

3.0 T Siemens scanners and stored as Digital Imaging and Communications in Medicine 

(DICOM) files, then converted to compressed Neuroimaging Informatics Technology 

Initiative (NIFTI) files and finally to NumPy arrays.  

5.1.2 Environmental setup 

Google Colab, or "Colaboratory", allows writing and running Python in your browser making 

available to anyone (with certain limitations) free access to GPUs for a maximum of 12 

consecutive hours [42]. Colab notebooks are saved on your Google Drive account and are 

accessible and executable by anyone with permission to access them, facilitating code sharing. 

In the free version, a Colab notebook provides a CPU with 12 GB of RAM and 97 GB of disk 

space on the instance of the virtual machine to which you connect (of which 31 GB already 

occupied by the entire Colab environment and libraries already pre-installed) and also a GPU 

with 12 GB of RAM and 60 GB of disk space (of which always 31 GB already occupied). 

Using a Colab Pro account you can keep an instance active for up to 48 consecutive hours and 
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you have access to more resources: 225 GB of disk space for the CPU with 12 GB of RAM, 

147 GB of disk space for the GPU and always 12 GB of RAM and 225 GB of disk space for 

the TPU with 33 GB of RAM, in addition to a higher "priority" in accessing the required 

resources and a longer time required before being disconnected due to inactivity (about 2-3 

hours from the experiments carried out). 

As already understood, Goodle Colab allows writing and executing code in a multitude of 

languages, including mainly Python code. Python is a high-level object-oriented programming 

language widely used in numerical computing, data analysis, distributed applications and 

scripting and it is continuously updated and has many libraries that make it suitable for the 

most varied uses [43]. In particular, the focus is on this language since the whole code of the 

current thesis was implemented in Python.  

NumPy is an open-source library written for the Python programming language (hence the 

name of the library) and is one of the fundamental and most used libraries for scientific 

computation of data in Python [44]. In the field of ML and above all image analysis, NumPy 

is practically universally used for the representation of images through n×m matrices, where 

n×m are the dimensions of the image, and many other types of data. 

Keras is another open-source library written for Python specifically for ML and neural 

networks. The aim of Keras is to provide a clear and easily usable interface by a human 

operator for the creation and development of deep neural networks, providing clear and 

concise APIs and trying to minimize the number of operations required to develop a neural 

network, from its creation to its training up to the final phase of testing and fine-tuning of the 

parameters [45].  

The ones illustrated are the two main libraries used for the implementation of the code for this 

work and they are already pre-installed and ready for use in the Colab environment as well as 

being automatically and constantly updated to their most recent version. 

5.1.3 3D convolutional neural network 

5.1.3.1 Pre-trained C3DKeras 

The 3D convolutional neural network (3D CNN) model used is called C3D for Keras which, 

as the name suggests, is an adaptation of a convolutional 3D network model originally 

developed for Caffe in the paper by Du et al. [46] in order to make it compatible with Keras. 

It is in turn a modification of the BVLC caffe model which was trained on the Sports-1M 

dataset which contains video clips of various sports in order to recognize the type of sport 



57 

 

contained in each video clip. In this work, the same pre-trained C3DKeras network provided 

was adapted to the case of the AD in order to then be able to apply interpretability techniques. 

Figure 28 shows the model summary. 

The C3D has been trained to take 16 slices as input, where each slice consists of a 112×112 

pixel RGB image, thus the dimensions required by this network are 16×112×112×3. It was 

therefore necessary to adapt the original dimensions of the dataset to these dimensions. 

The feature extractor of the network is composed of 5 layers of 3D convolution to which as 

many levels of MaxPooling3D are alternated, in order to reduce the amount of data to be 

processed while trying to lose as little information as possible. At that point, through a layer 

called Flatten, all the features obtained are flattened into a vector of dimensions 8192×1. 

 

Figure 28. Model summary of the C3DKeras adapted to the case of Alzheimer’s disease. 
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At this point, since it is a binary and not multiclass classification, the number of nodes of the 

fully connected layers has been reduced and, above all, the number of output layers has been 

reduced to 2 in order to obtain, as output from the network, the probability of a sample 

belonging to the two classes to be evaluated. 

Furthermore, the weights of the pre-trained network have not been changed, otherwise the 

training of the network is carried out from scratch and the previously learned features are lost. 

To do this it is possible to "freeze" certain layers, so that their weights are not updated during 

the training phase. In this way, it is possible to load into the model the weights obtained from 

a previous training and be sure that those weights will never be modified, while during the 

training the weights of the new layers to be trained for the new task to be performed will be 

updated. 

5.1.3.2 Data preparation 

The first step to be performed was build the dataset according to the shape required by 

C3DKeras. In fact, first of all the slices were resized to 112×112, which are the 𝑥  and 𝑦 

needed by C3DKeras, leaving an intra-slice distance of 1 mm. Then, a zero padding was 

executed to add black slices in order to match the dimensions (16×112×112×3) required by 

the C3DKeras. So, in order to extract blocks of 16 slices, the zero padding was performed. In 

particular, if the number of slices in the array is 16 or a multiple of 16, the algorithm takes 

blocks of 16. Otherwise, if the number of slices is not 16 or its multiple, but it is lower, the 

algorithm adds the remaining slices through the zero padding. In this way, blocks of 16 are 

obtained. Finally, in order to match the dimension relative to the channels, the conversion 

from 1 channel (gray scale) to 3 channels RGB. In fact, since the C3DKeras is pre-trained on 

sport’s video, it works on coloured videos, thus it was necessary to perform also this kind of 

conversion. In this way, the original dataset has been adapted to the dimensions of 

16×112×112×3 required by the C3DKeras. In fact, it was obtained an array divided in 4 

groups of 16 slices each (4×16×112×112×3). 

Moreover, while preparing the dataset, only the 50 slices centred on the hippocampus were 

used mainly for two reasons. First of all, according to the neurologists, the right and left 

hippocampal areas are the ones mainly hit by the AD especially in the beginning stages of the 

disease. Thus, the idea was that also our algorithm should mainly focus on that part of the 

brain. On the other hand, while selecting the 50 most significant slices, the load of the dataset 

was lowered in order to better manage the memory. 

All this procedure was performed both on AD and CN data. 
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The whole dataset was split into training set, validation set and test set. In particular, for the 

training set 176 scans were obtained, each of them with dimensions of 4×16×112×112×3. 

Instead, for the validation set, there are 44 scans because the 20% of the training set was used. 

Finally, the test set is composed of 55 scans because it is the 20% of the whole dataset. 

At this point, it was necessary to fit the input shape to the C3DKeras from 4×16×112×112×3 

to 16×112×112×3, for the training, validation and test sets.  

5.1.3.3 Neural network classification 

The hyper-parameter selection has high influence on the model performance and so they need 

to be investigated and tuned. In particular, the following hyper-parameters were used: 

- Loss function: binary crossentropy;  

- Adam optimizer; 

- Dropout rate: 0.5; 

- 50 epochs; 

- Patience: 5; 

- Batch size: 1; 

Usually, these hyper-parameters are changed in case of over-fitting or under-fitting. In the 

former case, the validation performance is significantly higher than the training performance, 

while the latter case is the opposite. Nevertheless, in both cases, the model does not correctly 

work, and it does not make a good generalization.  

In the case of this work, the values are quite acceptable. 

5.1.4 Time-distributed convolutional neural network 

5.1.4.1 End-to-end VGG16 + ConvLSTM 

The second convolutional network model used is the VGG16 + ConvLSTM (Figure 29). First 

of all, this is not a pre-trained neural network like the C3DKeras, thus it does not require a 

fixed input shape of the data. Moreover, in its architecture, the VGG16 2D CNN passes the 

image through a stack of convolutional layers and spatial pooling is performed by five max-

pooling layers, which follow some of the convolutional layers. On top of the features 

extracted by VGG16, Convolutional Long Short-Term Memory (ConvLSTM) is used for 

classification. At this point, a ConvLSTM layer is characterised by 8 convolutional filters 

with a kernel of 3×3 and it was chosen because both spatial and temporal AD features are 

involved in the classification. In addition, there is a Dropout layer, thanks to which a few 
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unites are randomly removed from the model during the training phase, reducing the overall 

complexity of the neural network. Then, a Flatten layer is present in order to flatten all the 

extracted features into a big mono-dimensional tensor. This layer is followed by a Dense layer 

with 256 neurons and ReLU as activation function, which helps the model consider non-linear 

effects. The next layer is another Dropout followed by another Dense layer with 2 neurons 

and Softmax as activation function. 

 

Figure 29. Model summary of the end-to-end VGG16 + ConvLSTM. 
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5.1.4.2 Data preparation 

The first step to be performed was the loading of the data and their preparation. Like in the 

C3DKeras case, the 50 most significant slices per scan centred in the hippocampal region 

were selected. Moreover, in order to have a dimensionally uniform dataset, all the scans were 

reshaped to 147 pixels × 192 pixels per slice. Furthermore, there was no need to change the 

dimension of the channel, which is 1 (not 3 as the RGB case), because this neural network in 

not pre-trained, thus it does not require any fixed shape of the input data. Since we are not 

dealing with coloured images, the channel dimension was left to 1. So, the resulting shape 

was (275×50×147×192×1). 

The whole dataset was split into training set, validation set and test set. In particular, the 80% 

of the whole set is used for the training set, while the remaining 20% constitutes the test set. 

Instead, the 20% of the training set is reserved as validation set.  

5.1.4.3 Neural network classification 

Since it is known that hyper-parameter selection has high influence on the model performance, 

the following hyper-parameters were used: 

- Loss function: binary crossentropy;  

- SGD optimizer; 

- Dropout rate (first Dropout layer): 0.5; 

- Dropout rate (second Dropout layer): 0.7; 

- 50 epochs; 

- Patience: 5; 

- Batch size: 10; 

Usually, these hyper-parameters are changed in case of over-fitting or under-fitting. However, 

in this case, it is not necessary a further tuning of the parameters.  

5.1.5 Neural network evaluation 

In order to evaluate the model performance, the following classification metrics were taken 

into account, both for the C3DKeras and the VGG16 + ConvLSTM: precision (PR), 

sensitivity (SE), F1-Score (F1-S), accuracy (ACC), Receiver Operating Characteristic (ROC) 

curve and Area Under the Curve (AUC). Specifically, a 0.5 discrimination threshold was 

chosen to compute the following metrics: 
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•  Precision: 𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

•  Sensitivity: 𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

•  F1-Score: 𝐹1 − 𝑆 =
𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 (3) 

•  Accuracy: 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

where 𝑇𝑃  stands for True Positive and it is the case in which AD subjects are correctly 

classified as affected by AD; 𝑇𝑁 stands for True Negative and it is when CN subjects are 

correctly classified as healthy subjects; 𝐹𝑃  stands for False Positive and it is when CN 

subjects are wrongly classified as subjects affected by AD; 𝐹𝑁 stands for False Negative and 

it is when AD subjects are wrongly classified as healthy subjects. 

5.2 Results 

In this part of the thesis, the results obtained from the two different CNNs analysed are 

reported. In particular, in the following, it will be possible to read the numerical results related 

to AD because they are those of interest for the purpose of this work. 

5.2.1 3D convolutional neural network 

Table 3 reports the performance in classifying AD of the C3DKeras neural network. Instead, 

Figure 30 focuses on the ROC curve and AUC values, which are of great interest in the 

biomedical engineering field. 

 

Precision (%) Sensitivity (%) F1-Score (%) Accuracy (%) 

59 100 74 64 

Table 3. C3DKeras neural network evaluation results.  
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Figure 30. Receiver Operating Characteristic (ROC) curve of the C3DKeras neural network. 

5.2.2 Time-distributed convolutional neural network 

Table 4 shows the performance in classifying AD of the second neural network analysed in 

this work and so of the VGG16 + ConvLSTM neural network. Figure 31 is the ROC curve 

and AUC values. 

 

Precision (%) Sensitivity (%) F1-Score (%) Accuracy (%) 

82 90 86 84 

Table 4. VGG16 + ConvLSTM neural network evaluation results.  

 

Figure 31. Receiver Operating Characteristic (ROC) curve of the VGG16 + ConvLSTM neural network. 
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5.3 Discussion 

This study proposed a comparison between two different neural networks. In particular, the 

first one was a 3D CNN (C3DKeras) pre-trained on Sports-1M dataset containing video clips 

of various sports in order to recognize the type of sport contained in each video clip. Instead, 

the second neural network was a time-distributed CNN without any pre-training and, thus, 

trained from scratch. Due to the fact that the C3DKeras is a pre-trained neural network, it 

requires a fixed shape of the input data, which is not needed in the time-distributed case. This 

implies also that the input to the time-distributed CNN has a higher resolution if compared to 

the resolution of the input data of the 3D CNN under consideration. In fact, the input data of 

the time-distributed CNN has a resolution of (147×192), while the C3DKeras needs an input 

resolution of (112×112).  

Moreover, from Table 3 and Table 4, it is possible to notice that the accuracy is much higher 

for the time-distributed CNN (84%) with respect to the 3D CNN (64%). However, the fact 

that the accuracy value of the C3DKeras would not have been so good was something 

expected, since this neural network was pre-trained on sport video clips. Furthermore, it can 

be highlighted that also the precision of the time-distributed CNN (82%) is higher than that of 

the 3D CNN (59%) and the same can be said for the F1-Score (86% and 74%, respectively). 

Since in biomedical field sensitivity and AUC are of great importance, it is of great 

importance to discuss about them. Firstly, the sensitivity should be as high as possible 

because it means that there are a few false positive and so an AD case is diagnosed as such. In 

particular, from the results, it is noticeable that the sensitivity of the 3D CNN is 100%, which 

is an optimal value, while the one of the time-distributed CNN is 90%. The latter has a lower 

sensitivity than the 3D CNN, but it is still a very good value. Thus, in both cases, it can be 

said that the neural network is sensitive to correctly classify the AD scans. Instead, regarding 

the AUC, it is important to be discussed because it is independent of the threshold used to 

evaluate the metrics, which is at 0.5 in this case. From Figure 30, it is possible to see that the 

AUC value is at 72%, which means that the classifier in the 3D CNN can correctly 

discriminate between AD and CN at 72%, which can be considered an acceptable value. On 

the other hand, Figure 31 highlights that the time-distributed approach can better discriminate 

between AD and CN because the AUC is 89%.  

A further remark is about the computational cost, which is lower for the time-distributed CNN 

because it manages streams of slices and not whole 3D blocks like in the 3D CNN. 
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Table 5 reports a summary of the overall comparison between the two different neural 

networks under consideration, with their characteristics. 

Considering everything has been discussed so far, it can be stated that the time-distributed 

approach is preferable to the 3D CNN because it is trained from scratch, the input data have 

not a fixed shape to be respected and thus the resolution of the input data can be enhanced. 

Moreover, the computational cost is lower because the time-distributed CNN manages 

streams of slices, it is able to correctly classify the AD scans with high sensitivity and it can 

also better discriminate between AD and CN. 

 

Type of 

CNN 

Type of 

training 
Input type Input shape 

Computational 

cost 

Sensitivity 

(%) 

AUC 

(%) 

3D CNN Pre-trained 
Volumetric 

scans 
16×112×112×3 High 100 72 

Time-

distributed 

CNN 

From 

scratch 

Volumetric 

scans 
50×147×192×1 Low 90 89 

Table 5. Overall characteristics of the 3D CNN and time-distributed CNN.  

 

 

 

 

 

 

 



III 

 

Conclusion 

This thesis had a dual purpose. On one hand, it has been firstly performed a state-of-the-art 

analysis of the studies which applied interpretability techniques to AD diagnosis in order to 

have a clear idea about the current trends. On the other hand, two CNNs have been compared 

in order to realise which is the best in analysing volumetric MRI scans in terms of both 

classification performance and required computational effort. In particular, for this latter task, 

a pre-trained 3D CNN (C3DKeras) and an end-to-end time-distributed CNN were exploited.  

To conclude, it can be said that both purposes have been pursued. On one hand, it has been 

realised that in literature there is still uncertainty concerning the best interpretability technique 

to be applied to the AD case, even though it is clear that attribution map approaches, such as 

LRP and GBP, seem to produce the most coherent interpretations. On the other hand, an end-

to-end time-distributed CNN resulted to be the best approach between the exploited CNNs 

because of its higher classification outcomes and also lower computational cost.  

Once realised that a time-distributed CNN is more suitable for the computerized AD 

diagnosis with respect to a 3D CNN, a future development of this thesis could lead to the 

application of an interpretability module to the time-distributed CNN in order to make a step 

forward in the direction of an interpretable AD diagnosis, which is crucial in the medical field.  
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