

Università Politecnica delle Marche Dipartimento Scienze della Vita e dell'Ambiente Corso di Laurea in Scienze Biologiche

Effetto dell'acido perfluorononanoico sulla regolazione dei geni Hox e ParaHox nel fegato di topo

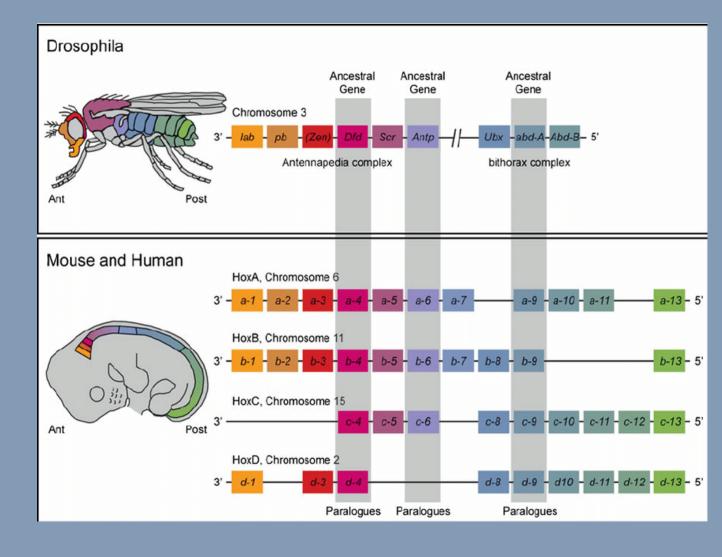
Effect of PFNA on the regulation of Hox and ParaHox genes in mouse liver

Laureando:

Caterina Tomassetti

Relatore:

Dott. Francesca Maradonna


Sessione autunnale Anno Accademico 2019/20

Geni Hox

- Geni omeotici
- Codificano per proteine omeodominio con ruolo nello sviluppo dell'asse antero-posteriore.
- Contribuiscono alla rigenerazione del fegato.
- Hox A, B, C e D

Geni ParaHox

- Geni omeotici paraloghi ai geni Hox
- GS homeobox (GSX)1, GSX2, Pdx1 (Pancreatic and Duodenal homeobox) e
 Caudal Related homeobox CDX1, CDX2, CDX4.

Composti perfluorurati (PFC)

I PFC, tra cui l'acido perfluoronanoico (PFNA), sono composti chimici derivati dai fluorocarburi. Vengono utilizzati in ambito industriale e domestico costituendo una fonte importante di contaminazione ambientale.

- L'esposizione prenatale a tali composti provoca una serie di anomalie nello sviluppo dei roditori;
- Tali composti producono una serie di effetti sul fegato, causando alterazioni nella proliferazione dei perossisomi e nel metabolismo di zuccheri e lipidi, agendo sui recettori PPAR α e CAR.

Scopo dello studio

Tale studio si pone l'obbiettivo di valutare l'impatto di PFCs, in particolare del PFNA, sull'espressione dei Geni Hox e ParaHox nel fegato di topo, e di valutare il ruolo di PPAR α , CAR e/o Nrf2 nel caso di alterazioni della loro espressione causata dall'esposizione ai PFC.

Materiali e Metodi

Sono stati utilizzati topi C57BL/6 adulti, maschi, di 8 mesi.

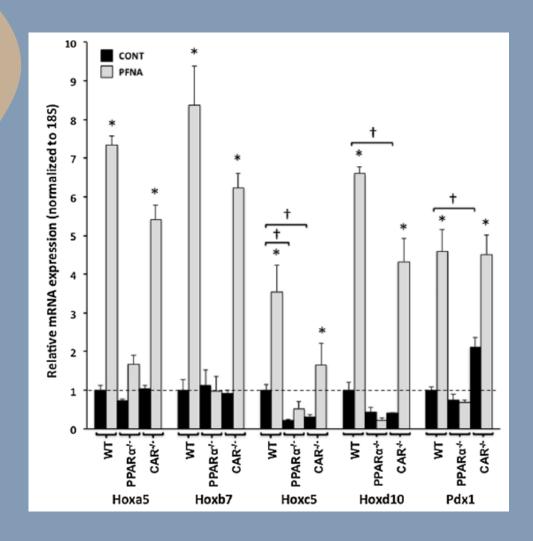
GRUPPI SPERIMENTALI	TRATTAMENTO
TOPI C57BL/6 WILD TYPE (WT) TOPI PPARα -/- (PPARα-NULL) TOPI CAR -/- (CAR NULL)	Sia i topi WT che i mutanti sono stati trattati con: • Una singola iniezione intraperitoneale (i.p.) di PFNA (46,4 mg/kg of body weight); • 50% propylene glycol:water (1:1, v/v), come controllo. I topi sono stati sacrificati dopo 5 giorni dal trattamento.
TOPI C57BL/6 WT TOPI Nrf2 -/- (Nrf2 NULL)	 Sono stati trattati una volta al giorno per 4 giorni: Oralmente con PFNA (46,4 mg/kg of body weight); 50% propylene glycol water (1:1, v/v), come controllo. I topi sono stati sacrificati dopo 5 giorni dal trattamento.
TOPI C57BL/6 WT	Sono stati trattati una volta al giorno per 4 giorni: Oralmente con PFNA (4,64 e 46,4 mg/kg of body weight); 50% propylene glycol water (1:1, v/v), come controllo. I topi sono stati sacrificati dopo 5 giorni dal trattamento.

Metodi

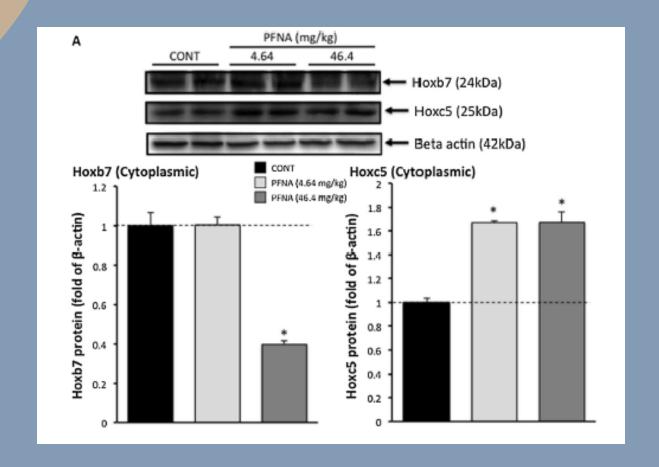
- Estrazione di RNA totale e retrotrascrizione dell'mRNA;
- Real time PCR per i geni Hoxa5, b7, c5, d10 e Pdx1;
- Western blot con anticorpi anti-Hoxb7 e antiHoxc5.

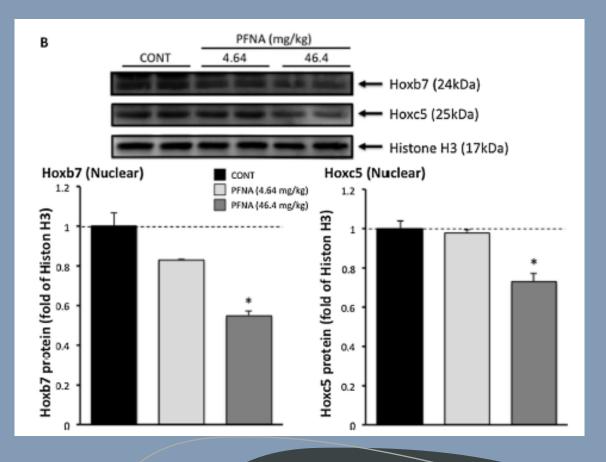
Risultati

1. Regolazione dell'espressione dei geni Hox e ParaHox da parte di PFNA nel fegato di topi wild-type.

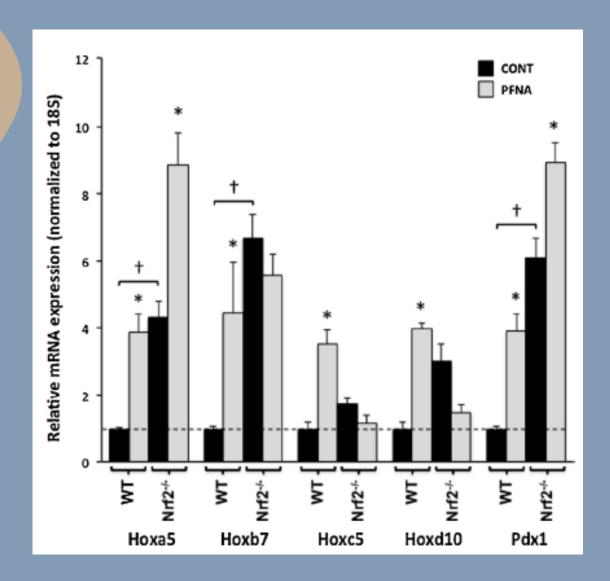

Gene	Fold	Average Ct value in the control group
Pdx1	3.46	25.06
Cdx1	N/A	No Ct value
Cdx2	N/A	No Ct value
Cdx4	0.65	38.19
Gsx1	1.12	31.64
Gsx2	N/A	No Ct value

Gene	Fold	Average Ct value in the control group
Hoxa1	1.40	29.51
Hoxa2	2.08	32.21
Hoxa3	2.31	26.82
Hoxa4	2.10	27.62
Hoxa5	5.17	28.70
Hoxa6	0.85	36.00
Hoxa7	1.44	33.11
Hoxa9	0.70	33.95
Hoxa10	1.27	29.72
Hoxa11	0.60	29.94
Hoxa13	0.80	32.35


Gene	Fold	Average Ct value in the control group
Hoxb1	1.64	29.38
Hoxb2	1.27	28.39
Hoxb3	N/A	No Ct value
Hoxb4	1.31	29.19
Hoxb5	1.59	29.83
Hoxb6	1.52	28.68
Hoxb7	5.13	31.85
Hoxb8	N/A	No Ct value
Hoxb9	1.93	32.59
Hoxb13	N/A	No Ct value


Gene	Fold	Average Ct value in the control group
Hoxc4	1.03	29.02
Hoxc5	4.82	33.84
Hoxc6	1.05	32.43
Hoxc8	2.68	33.81
Hoxc9	1.71	31.10
Hoxc10	0.84	32.22
Hoxc11	2.14	33.96
Hoxc12	0.82	29.38
Hoxc13	1.53	33.72

Gene	Fold	Average Ct value in the control group
Hoxd1	0.45	31.32
Hoxd3	1.00	30.19
Hoxd4	0.72	36.69
Hoxd8	1.73	33.40
Hoxd9	0.93	31.39
Hoxd10	6.60	31.12
Hoxd11	1.14	34.83
Hoxd12	0.82	30.44
Hoxd13	N/A	No Ct value



2. Regolazione dell'espressione dei geni Hox e ParaHox da parte di PFNA nel fegato di topi wild-type, PPARα-null e CAR-null. 3. Livelli citoplasmatici e nucleari, delle proteine Hoxb7 e c5 da parte di PFNA nel fegato di topi wild-type.

^{*}Sono stati trattati oralmente, una volta al giorno per 4 giorni, con PFNA (4,64 e 46,4 mg/kg of body weight)

4. Regolazione dell'espressione dei geni Hoxa5, b7, c5, d10 e Pdx1 da parte di PFNA in fegato di topi wild-type e Nrf2-null.

^{*} Sono stati trattati oralmente, una volta al giorno per 4 giorni, con PFNA (46,4 of body weight)

Conclusioni

- PFNA induce l'espressione dei geni Hox a5, b7, c5, d10 e Pdx1 nel fegato di topi Wild Type e CAR-null, ma non in topi PPAR-α null;
- PFNA induce l'espressione dei geni Hoxa5 e Pdx1, ma non di Hoxb7,c5 e d10 nel fegato di topi Nrf2-null.

	WT		PPARα-null		CAR-null		Nrf2-null	
	CONT	PFNA	CONT	PFNA	CONT	PFNA	CONT	PFNA
Hoxa5	1	†††	-	-	-	††	†	† † †
Hoxb7	1	111	-	-	-	† †	† †	† †
Hoxc5	1	1	↓	-	Į.	-	-	-
Hoxd10	1	† †	-	-	Į.	↑	-	-
Pdx1	1	1	-	-	-	↑	† †	111

- PFNA diminuisce i livelli delle proteine Hoxb7 e c5 nel nucleo, ma allo stesso tempo induce l'espressione dei geni Hoxb7 e Hoxc5.
- L'alterazione dell'espressione di tali geni comporta l'insorgenza di malattie nel topo e nell'essere umano;
- Non è ancora noto se PPAR α , CAR e Nrf2 possano sinergicamente indurre l'espressione dei geni Hoxb7, c5 e d10.

Fonti

Toxicology 441 (2020) 152521

Contents lists available at ScienceDirect

Toxicology

journal homepage: www.elsevier.com/locate/toxicol

Regulation of Hox and ParaHox genes by perfluorochemicals in mouse liver

Yue Zhang^a, Yuan Le^a, Pengli Bu^b, Xingguo Cheng^{a,*}

^a Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States

^b Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, Chicago, IL, 60064, United States

Riassunto esteso

I geni omeotici (geni Hox) codificano per proteine omeodominio che hanno un ruolo fondamentale nello sviluppo morfologico di numerosi organismi e nella rigenerazione del fegato. I composti perfuorurati (PFCs), tra cui l'acido perluorononanoico (PFNA), derivano dai fluorocarburi e sono conosciuti per essere composti inquinanti molto diffusi a livello industriale e domestico. I PFCs possono avere un ruolo nello sviluppo di numerose malattie a livello epatico.

Il presente studio si è occupato di determinare l'impatto dei PFCs, ed in particolare del PFNA, sull'espressione dei geni Hoxa5, b7, c5, d10, e Parahox, nello specifico Pdx1.

Lo studio si è inoltre occupato di valutare il ruolo dei recettori PPAR α , CAR e del fattore di trascrizione Nrf2 nel caso di alterazioni della loro espressione causata dall'esposizione ai PFC.

A tale scopo sono stati utilizzati diversi gruppi sperimentali: topi Wild Type, topi PPAR α -null(-/-), CAR-null (-/-), Nrf2-null(-/-), trattati con una singola iniezione intraperitoneale di PFNA oppure oralmente per 4 giorni con PFNA, in quantità 46,4 mg/kg of body weight di PFNA.

Dai risultati si può dedurre che 46,4 mg/kg di PFNA induce l'espressione dei geni Hoxa5, b7, c5, d10 e Pdx1 nel fegato di topi WT e CAR-null, ma non in topi PPAR α -null.

Inoltre PFNA aumenta i livelli di proteine Hoxb7 nucleari e citoplasmatiche, mentre per quanto riguarda la proteina Hoxc5, PFNA ne aumenta il livello nel citoplasma e ne diminuisce nel nucleo.

Per concludere si può affermare che i PFCs inducono l'espressione dei geni Hox a5, b7, c5, d10 e Pdx1, probabilmente previa attivazione del segnale di PPAR α e/o Nrf2.