
UNIVERSITA’ POLITECNICA
DELLE MARCHE

FACOLTA’ DI INGEGNERIA
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica e
dell’Automazione

Intelligenza Artificiale on the Edge: sviluppo di
un’architettura per riconoscimento di attività
umane indoor da stream video multi-camera

Artificial Intelligence on the Edge: development
of an architecture for Indoor Human Activity
Recognition from multi-camera video streams

Relatore:

Prof. Emanuele FRONTONI

Correlatori:

Sara MOCCIA, PhD

Tesi di Laurea Magistrale di:

Morris CAPPARUCCINI

Matr. 1090958

Anno Accademico 2020-2021



Sommario

La recente disponibilità di una sempre più elevata potenza di calcolo, abbinata
all’evoluzione costante delle tecnologie ed al continuo progresso nel campo della
ricerca, sta determinando un interesse sempre maggiore della comunità scientifica
verso il campo dell’Intelligenza Artificiale (IA). Fra i vari task di questa disciplina
spicca la Human Activity Recognition (HAR) la quale, grazie alla sua versatilità,
sta prendendo sempre più piede in svariati ambiti applicativi come la domotica,
i sistemi di sorveglianza e l’assistenza sanitaria verso gli anziani. Il progresso
tecnologico, abbinato ad una maggiore disponibilità di risorse hardware, ha anche
permesso lo sviluppo di nuovi paradigmi di computazione, tra i quali spicca l’Edge
Computing, in grado di supportare al meglio l’esecuzione di questo tipo di task e di
introdurli all’interno della vita di tutti i giorni.

Lo scopo di questo lavoro è la realizzazione di un framework di Deep Learning che
si basa sul paradigma di elaborazione dell’Edge Computing in grado di classificare
in tempo reale azioni umane in ambienti indoor di alto livello tramite l’utilizzo
di reti neurali convoluzionali e ricorrenti che permettano di analizzare immagini
provenienti da molteplici stream video real-time. In particolare è stata proposta
una architettura di rete neurale per il riconoscimento di attività umane il cui
modello realizzato è stato distribuito su hardware con risorse limitate, la Nvidia
Jetson Nano, facente parte di una ampia rete di dispositivi edge. Gli stream video
catturati dalle telecamere che compongono questa rete, inoltre, sono stati gestiti
mediante due diverse configurazioni multi-threading al fine di ottimizzare l’uso
delle limitate risorse hardware disponibili.

Questo lavoro di tesi è articolato come di seguito riportato:
Nel capitolo 1 verrà introdotta l’intera pipeline di lavoro, presentando le

tematiche trattate e gli obiettivi che il progetto si pone.
Nel capitolo 2 verrà data una panoramica in merito al paradigma di computa-

zione Edge Computing ed alla problematica relativa al task di HAR, ponendo un
focus anche sui molteplici ambiti applicativi di entrambe le tematiche.

Nel capitolo 3 verranno presentati i diversi utilizzi dell’Edge Computing presenti
in letteratura, concentrandosi anche sulle diverse strutture realizzative di questo
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paradigma di computazione, e gli approcci di Deep Learning più performanti atti
alla risoluzione del task di HAR.

Nel capitolo 4 verrà discussa l’architettura di Deep Learning proposta per
il riconoscimento di attività umane, l’hardware su cui ottimizzare ed eseguire il
modello di rete neurale addestrato e le differenti configurazioni di gestione delle
telecamere che fanno parte della rete di dispositivi edge per la realizzazione del
framework.

Nel capitolo 5 verranno mostrati i risultati ottenuti sia dal modello di rete neu-
rale proposto, sia le performance delle varie configurazioni adottate per la gestione
dei molteplici stream video al variare del numero di telecamere che compongono la
rete.

Nel capitolo 6 saranno discussi nel dettaglio i risultati mostrati nel capitolo
precedente, ponendo enfasi sui pregi e difetti del modello e delle configurazioni
adottate.

Infine, nel capitolo 7 saranno esposte le conclusioni tratte da quanto detto
nei capitoli precedenti, sottolineando i risultati raggiunti e gli sviluppi futuri che
potrebbero migliorare quanto realizzato in questo lavoro di tesi.
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Summary

The recent availability of an increasing computing power, combined with the con-
stant evolution of technologies and the continuous progress in the research field, is
determining an increasing interest of the scientific community in Artificial Intelli-
gence (AI). Among the various tasks of this discipline, Human Activity Recognition
(HAR) stands out, which, thanks to its versatility, is becoming increasingly popular
in various application areas such as home automation, surveillance systems and
health care for the elderly. Technological progress, coupled with the increased
availability of hardware resources, has also led to the development of new computing
paradigms, including the Edge Computing, which can better support the execution
of Artificial Intelligence tasks and introduce them into everyday life. The aim of this
work is the realization of a Deep Learning framework based on the Edge Computing
paradigm able to classify high-level indoor human activities in real-time through
the use of Convolutional and Recurrent Neural Networks that will analyze images
coming from multiple video streams. In particular, a neural network architecture
have been proposed for Human Activity Recognition, whose trained model has been
distributed on hardware with limited resources, the Nvidia Jetson Nano, which is
part of a wider edge devices network. Furthermore, the video streams captured
by the cameras that belong to the network were managed through two different
multi-threading configurations in order to optimize the limited available hardware
resources.

This thesis work is structured as follows:
In chapter 1 the entire work pipeline will be introduced, presenting the subjects

dealt with and the objectives of the project.
In chapter 2 will be given an overview of the Edge Computing paradigm and

the Human Activity Recognition task, focusing also on the multiple application
fields of both topics.

In chapter 3 will be presented the different Edge Computing usages available
so far in the literature, focusing also on the different structures of this computation
paradigm, and the most performing Deep Learning approaches to solve the Human
Activity Recognition task.
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In chapter 4 the proposed Deep Learning architecture for the recognition of
human activities, the hardware on which to optimize and execute the trained neural
network model and the different handling configurations of the cameras that belong
to the edge devices network will be discussed.

In chapter 5 the results obtained from the proposed neural network model and
the performances of the various configurations adopted to manage the multiple
video streams varying the number of cameras in the edge devices network will be
shown.

In chapter 6 the results shown in the previous chapter will be discussed in
detail, with emphasis on the strengths and weaknesses of the model and of the
adopted configurations.

Finally, in the chapter 7 the conclusions derived from what has been discussed
in the previous chapters will be exposed, highlighting the results achieved and
future developments that could improve what has been achieved in this thesis
work.
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Chapter 1

Introduction

Artificial Intelligence (AI) is a very broad discipline with many different application
domains that, in recent years, has become increasingly important and present
in people’s daily lifes. This is due to various factors such as, for example, the
technological progress and the greater availability of computational resources that
are enabling its great growth. It is therefore natural that the scientific community
is interested in this branch of computer science and, as a result, more and more
applications, which are able to exploit the different tasks that AI allows to perform,
are being created.

The Human Activity Recognition (HAR) is one of the AI tasks that is emerging
the most and which is becoming more and more central in many sectors such
as, for example, domotics, video-surveillance, health assistance to the elderly and
the monitoring of physical activities. The goal of HAR is to detect and classify
high-level human activities from different types of data that allow the extraction
and analysis of spatial and temporal features [1].

There are two main types of approaches for this type of activity and they are
distinguished by the type of data used: the first type, on which this thesis work is
based, includes all those methods that exploit optical data, such as, for example,
images from camera streams, while the second type includes all those methods
that, instead, use non-optical data like all those data extracted from sensors such
as, for example, accelerometers, gyroscopes and motion sensors.

Due to the fact that most of the applications that perform the HAR task involve
the real-time analysis of the above mentioned data and due to their nature and
significance, one of the most appropriate paradigms for their development is Edge
Computing: a computation model that foresees the processing of the data close to
the place where them are collected. Using Edge Computing it is possible to reduce
or eliminate latency times and guarantee real-time results by using small data
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Introduction

centers located near to the sensors1. These features have made this computation
model one of the most widely used in several sectors, such as communication and
security, and have allowed the realization and diffusion of technologies such as IoT.

The aim of this thesis is to use the Edge Computing paradigm for the realiza-
tion of a Deep Learning framework that implements real-time Human Activity
Recognition on a resource-limited hardware based on RGB images extracted from
multiple camera streams. The entire work was carried out in collaboration with
Inim Electronics S.r.l., a company based in Monteprandone (AP) that offers nu-
merous solutions in the security field, which allowed the purchase and provision of
all the necessary technologies to achieve the set objective.

1https://www.criticalcase.com/it/blog/che-cose-edge-computing-definizione-e-
vantaggi.html
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Chapter 2

Edge Computing and HAR

2.1 Edge Computing
The term Edge Computing refers to a distributed computational model in which
data processing takes place close to the place where the data are collected1. The
principle on which this computation model is based is to keep data collection and
processing physically close, as opposed to the Cloud Computing computation model
which instead aims to perform processing in a single central data center to which
all data must be sent, as represented in figure 2.12.

Thanks to the increasing presence of smart devices, sensors and the decreasing
cost of hardware components, Edge Computing is becoming more and more popular
in everyday life, allowing the realization of a large number of applications in the
fields of AI, home automation, healthcare, communication and security.

2.1.1 Edge Computing properties
Through the use of many small data centers located close to the sensors or the use
of devices capable of collecting and analyzing data autonomously, Edge Computing
computation model allows to handle a network composed of multiple nodes, i.e.
the devices, guaranteeing a considerable reduction in network costs and bandwidth
constraints, the decrease or elimination of delays in data transmission, the limitation
of service errors and a better control of sensitive data transfers. In addition to all
these advantages, there is also a reduction in loading times, greater closeness of

1https://www.stratus.com/it/edge-computing/
2https://www.kalrayinc.com/the-edge-computing-and-intelligent-systems-

revolution
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Edge Computing and HAR

Figure 2.1: Computation model types

service delivery to users and simpler and more immediate control of the data3.
Thanks to its decentralized structure and proximity to the data sources, Edge

Computing can guarantee the following properties4:

• Velocity: a low response time is essential to complete certain types of tasks in
many applications, such as the real-time video streams analysis. The use of
Edge Computing, in these cases, is the best choice to carry out these types
of tasks. Indeed, the presence of local mini data centers connected directly
to the same network of sensors and cameras makes possible to greatly reduce
latency and data transmission times.

• Reliability: Edge Computing systems make possible to guarantee different
levels of reliability and alarm mechanisms in case of a malfunction in the
various data centers. In fact, it is easy to detect a device that is not working
properly and to repair or to replace it without affecting the operations of the
others. Edge computing allows to keep active the several services offered by
the various systems even in case of Internet connection problems, since all
processing takes place locally.

• Efficiency: thanks to the proximity of the processing devices to the sensors, it
is possible to obtain many advantages in terms of computational efficiency.
This is the case both if the processing of the collected data is entirely carried

3https://www.redhat.com/it/topics/edge-computing/what-is-edge-computing
4https://en.wikipedia.org/wiki/Edge_computing
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out within the local node, and if the considered node is part of a more complex
system where this pre-processed data must then be further sent to a larger
centralized data center for further analysis.

• Scalability and modularity: Edge Computing allows an easy extension of the
processing capacity and variety of tasks that can be performed due to the
wide availability of IoT devices and small perimeter data centers that will
constitute additional nodes to be added to the existing network5.

• Security and privacy: Having several decentralized processing devices has the
great advantage that a potential attacker would not be able to obtain, in case
of a security breach on one device, all the data coming from all sensors, as
would happen in the case of Cloud Computing where such data must reach
the single central data center. A protection policy must be implemented for
each small data center in the local network or directly on the data collecting
and processing device, if the latter is capable of performing both tasks. It is
therefore necessary to use different protection mechanisms from those of Cloud
Computing, where the central data center where all the processing takes place
must be protected.

Due to its structure, however, Edge Computing entails some disadvantages:
having many small data centers does not provide a lot of computing capacity to
perform resource demanding tasks such as neural networks training and inference.
It is therefore essential to make trade-offs between the task to be performed and
the computational capacity of the edge devices. In case of particularly demanding
tasks it is possible to consider the hybrid approach between Edge and Cloud
computing by delegating the computation of the resource demanding operations to
the centralized data center.

2.1.2 Edge Computing applications
Edge Computing is the optimal computation model for all those applications and
tasks that cannot be efficiently managed by a centralized approach. Many of
the limitations of this second approach, in fact, lie in the network requirements
necessary for its operations or in the impossibility of satisfying the time constraints
needed for the realization of the considered task.

5https://www.cybersecurity360.it/soluzioni-aziendali/edge-computing-in-
crescita-ecco-vantaggi-e-fronti-critici-per-le-aziende/
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Among the variety of applications that can be realized using this distributed
model there are6:

• Computer Vision applications: real-time image analysis extracted by video
streams using Artificial Intelligence algorithms. Examples of this applications
are Classification, Face Recognition and Object Detection. Images are ex-
tracted from cameras located at the edge of the network and the common
measurement unit used to evaluate the speed of the analysis are Fps (Frames
per second) [2]. These tasks are widely used in several areas, such as the
security field where image analysis must be completed in the shortest possible
time to ensure that, in the event of anomalies occurring, the alarm is triggered
and the necessary action taken. Having several data centers located near the
cameras reduce the transmission time and latency.

• Self-driving cars: autonomous driving applications for vehicles. The data
collected from all the sensors located on board of the car must be analyzed in
real-time in order to be able to promptly perform various vehicle operations
such as changing the trajectory and stopping. These are life concerning tasks
so respecting time constraints is imperative and using edge devices helps to
save time.

• Financianl Transactions: real-time analysis of financial transactions made via
POS in dedicated micro data centers within bank branches. This is done in
order to find anomalous transactions that need to be intercepted and blocked.
Edge devices, in this case, performs the action before sending data to the
central data center avoiding the overloading of requests.

• Augmented Reality: Use of an Edge computing platform to support augmented
reality services by providing highly localized data specific to the user’s point
of interest such as the retail sector7.

2.2 Human Activity Recognition (HAR)
The term Human Activity Recognition defines the discipline that deals with the
recognition of activities, both simple and complex, of one or more agents in different

6https://www.internet4things.it/edge-computing/edge-platform/edge-computing-
cosa-e-benefici/

7https://www.internet4things.it/edge-computing/edge-platform/edge-computing-
ecco-i-casi-concreti-di-applicazione/

6

https://www.internet4things.it/edge-computing/edge-platform/edge-computing-cosa-e-benefici/
https://www.internet4things.it/edge-computing/edge-platform/edge-computing-cosa-e-benefici/
https://www.internet4things.it/edge-computing/edge-platform/edge-computing-ecco-i-casi-concreti-di-applicazione/
https://www.internet4things.it/edge-computing/edge-platform/edge-computing-ecco-i-casi-concreti-di-applicazione/


Edge Computing and HAR

contexts of the real world starting from a series of observations based on the agents
actions extrapolated from multiple nature sensorial data8.

To understand this type of task and to better comprehend the difficulties which
surround it, it is necessary to better define the concepts of activity and action.
Among the various terminologies found in the literature [3], for this thesis work
the following definitions for the concepts defined above were adopted:

• Primitive (of an action): atomic movement that can be described at limb
level such as bending or stretching a leg.

• Action: set of different primitives that form a complex and possibly cyclic
movement of the body. An example of an action is the jump, an action
composed of the primitives of bending and stretching of the legs and ending
with the landing of the subject’s body back to the neutral starting position.

• Activity: set of sequential actions that give an interpretation of the movement
performed by the agent. With reference to the previous example, an activity
is therefore that of jumping, composed of several jumps each representing a
single action.

2.2.1 Types of Human Activity Recognition approaches
As already mentioned in the introduction of this thesis, the main approaches to
Human Activity Recognition belong to one of the following two main categories:

• Image-based approaches: this type of approach is based on the use of RGB or
RGBD cameras capable of capturing the actions carried out by agents in a
non-invasive and continuous manner. The data streams collected will therefore
be image streams from which it will be necessary to remove information not
necessary to recognize the activity, such as the surrounding environment, by
means of appropriate pre-processing operations.

• Sensor-based approaches: This category of approaches includes all methods
that use non-optical data for HAR. Some of the most used devices for this
type of task are the wearable sensors, i.e. sensors that are directly worn by
the agent performing the action such as, for example, smartphones, fitness
trackers and smartwatches9. These types of devices use sensors inside them
such as accelerometers and gyroscopes that allow them to collect information
about the movement and rotation carried out by the agent from which the

8https://en.wikipedia.org/wiki/Activity_recognition
9https://madoc.bib.uni-mannheim.de/49914/1/thesis_compressed.pdf
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Edge Computing and HAR

activities he or she is performing can be deduced. Also in this case, it is
necessary to eliminate the noise produced by the sensors themselves through
a pre-processing phase of the data obtained.

2.2.2 Human Activity Recognition phases
In the context of automatic methods for solving complex tasks, the one utilized in
this thesis work is based on Deep Learning, in particular on the realization of a
neural network model able to analyze the input data and to recognize the action
performed.

For this type of methods, the HAR task consists of three different phases [4]:

1. Data Collection: in this phase, all the data necessary for training the neural
network model responsible for carrying out the recognition task are collected.

2. Model Training: In this phase, the network model is trained on the basis of
the data collected in the previous step.

3. Activity Recognition: In this phase the model trained in the previous phase
is used on new data collected by the sensors in order to perform activity
recognition.

All these steps are shown in figure 2.2 and will be described in detail below.

Data Collection

In order to train a neural network model, a large quantity of data is necessary since
the greater the number of examples of a certain activity is submitted to the model
in the training phase, the greater will be the capacity of the model to recognize
that activity once trained. All data that can be used for training can come from
different sensor types and are known as Raw data. Once the Raw data have been
collected, they need to be cleaned of noise generated, by the sensor itself or by
other types of noises, and saved in an easier form for the model to train. All these
activities are included, as shown in fig. 2.2, in the Pre-processing sub-phase (1)
and, once performed, it will be possible to use the pre-processed data for the actual
training of the model. Subsequently, in the case in which the training of the model
is of supervised type, it is then necessary to label these data with the type of
activity that they represent. This activity is carried out in the second sub-phase of
the Data Collection and is called, with reference to fig.1, Activity labels (2). After
preparing all the necessary data, it is possible to train the model.

8



Edge Computing and HAR

Figure 2.2: Human Activity Recognition phases.
Image taken from [4]

Model Training

There are two main types of training for neural network models:

• Supervised Learning: learning type that allows the model to make predictions
based on ideal examples consisting of the input data to be analyzed and the
expected output10.

• Unsupervised Learning: learning type that allows the model to make predic-
tions based on ideal examples classified according to common characteristics11.

Usually, for the HAR task, the supervised learning is adopted. During this
process, the model decomposes the input data provided in smaller sets of features
(3) that will be exploited to modify the model parameters (4) in order to classify in
the best way the represented activities. This operation will be carried out several

10https://it.wikipedia.org/wiki/Apprendimento_supervisionato
11https://it.wikipedia.org/wiki/Apprendimento_non_supervisionato
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times until certain performances are reached, evaluated through appropriate metrics
such as Precision, Recall and Accuracy. Once the optimal parameters (5) have
been achieved, it will be possible to use the model to carry out the classification of
the human activities starting from new data flows.

Activity Recognition

Since the analysis of continuous data streams is quite expensive in terms of compu-
tational resources, it is necessary to find techniques to reduce the complexity of
the task. One of these techniques is the Segmentation technique (7), that allows
to divide the input signal in smaller temporal segments [4]. Starting from these
segments it is possible to carry out operations of pre-processing and feature extrac-
tion, in order to finally carry out the classification of the data and obtain in output
the activity predicted by the model.

2.3 Human Activity Recognition applications
Nowadays, there are many applications that exploit this type of AI related task
and most of them belong to one of the following three application domains [1]:

• Smart-home Ambient Assisted Living: this application domain encompasses
all those technologies that make the living environment more interactive and
intelligent as well as providing support, well-being and safety in everyday life12.
An example of this are all those smart home applications that allow to learn,
using Human Activity Recognition, the habits of residents to adjust different
settings and provide them with additional comfort independently.

• Health care: this application domain includes all those applications that,
by recognizing the activities performed, allow the monitoring of people’s
health conditions and that, in case of danger, are able to alert medical staff
autonomously. An example of application in the health domain is the Fall
Detection, which allows to detect the fall of the subject under consideration,
typically an elderly person, in order to guarantee rapid assistance.

• Monitoring and Surveillance: the applications related to this application
domain, of which the one presented in this thesis work is an example, make
it possible to use the Human Activity Recognition task to detect potential
harmful and/or illegal actions in the environment to be controlled and to
activate the corresponding alarms. Currently, all these activities are carried

12http://www.foritaal2012.unipr.it/ambient-assisted-living
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out by human operators who can make mistakes. Automated applications, on
the other hand, make it possible to constantly monitor these places and avoid
potential distraction errors by ensuring the highest level of vigilance.

2.4 Aim of the thesis
The aim of the following thesis is to create a Deep Learning framework based
on Edge Computing computation paradigm in order to solve the task of Indoor
Human Activity Recognition optimized for the execution on hardware with limited
computational resources. This hardware, specifically the Nvidia Jetson Nano board,
will represent a single node in a wider network of devices which will make inference
on multiple video streams retrieved from fixed cameras. A neural network model
will be realized, composed of a portion of a Convolutional Neural Network called
backbone used for the features extraction, and of a Recurrent Neural Network Bi-
LSTM (Bidirectional Long-Short Term Memory) with Dense layers for the feature
analysis, both spatial and temporal. Three different backbones will be taken into
account that are MobileNetV2, MobileNetV3Small and MobileNetV3Large. Once
trained, the model will then be optimized to run on Nvidia Jetson Nano where it
will be used for inference on data coming from multiple video streams. The whole
framework will be managed through two different multithreading configurations,
of which each available in two different versions, in order to find the one with the
best performance evaluated both in terms of Time and Fps.
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Chapter 3

State of the Art

In this chapter the different approaches available in literature useful to solve the
Human Activity Recognition task using the Edge Computing computation paradigm
are described and it is divided in two main sections: in section 3.1 both the main
efforts to use Deep Learning (DL) techniques using Edge Computing paradigm and
examples of complex DL applications that exploit this computation paradigm are
described, while in section 3.2 the most performing approaches to solve the HAR
tasks are presented, both for sensor-based activity recognition and image-based
activity recognition.

3.1 Edge Computing and Deep Learning
Since the last few years researchers are focusing on the development of applications
which, while exploiting the potential of Deep Learning techniques, are based on
the Edge Computing paradigm, so to take advantage of the positive aspects of
both. The biggest obstacle in the combined use of Artificial Intelligence and
Edge Computing lies in the low availability of computational resources that edge
computing devices make at disposal. This limitation poses inevitably a strict upper
bound on the complexity of the DL models to use to address a certain task, affecting
the effectiveness of the whole approach. In order to overcome this limitation, to
enable the scientific community to develop AI applications on the edge, part of the
research focused on the development of architectures that allow to realize Deep
Learning applications even in resource-constrained settings. According to Chen et
al. [2], three main architecture categories can be identified, as shown in figure 3.1,
each of which includes architectures aimed at obtaining a higher overall speed in
the models execution, i.e. the inference phase, and a more efficient management of
the devices hardware resources:

1. On-device computation
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2. Edge server computation

3. Computing across edge devices

Figure 3.1: Taxonomy of DNN inference speedup methods on the edge
Image taken from [2]

More in details, the on-device computation category contains all the available
methodologies, which can be used alone or in combination, for the optimization of
the network model used within the edge device. Such methodologies are oriented
mainly to the model design, model compression and hardware optimization.

As regards the model design, in order to avoid the use of hardware accelerators
to run DL models on a single device, researchers effort focused on the optimization
of these models, which must be as light as possible, to run on edge devices. There
are several studies in the literature that allow the development of different types
of network architectures with a reduced number of parameters that are, therefore,
particularly suitable for devices with low computational performance. Among
the others, [5] developed a lightweight CNN called MobileNet which is able to
decompose the standard convolution operations for kernel-based features extraction
into factorized convolution operations that greatly reduce the computational cost,
[6] designed YOLO, a CNN model which is able to perform the objects classification
and detection tasks in an image at the same time, and [7] developed the Squeezenet,
a CNN able to maintain excellent Precision by reducing the dimensionality of the
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input data and decreasing the filters size of the convolution operations. These
networks can run on a single device but they have a great limitation caused by
their lightweight structure, in fact the lighter is the model and the lower are the
performances achieved, especially for complex tasks such as HAR.

Among the studies in the literature dealing with model compression there are
approaches such as AdaDeep [8], a framework designed by Yao et al. able to
choose the right combination of compression methods and to offer the best trade-
off between dimensionality reduction and model Accuracy loss, DeepIoT [9], a
unified compression method designed by Liu et al. for all common Deep Learning
architectures suitable for IoT devices such as Intel Edison, and DeepMoon [10], a
framework for running neural network models with multiple optimizations such as
caching the results of convolutional layers combined with parameters quantization
and more efficient matrix operations.

Hardware optimization-related works aim at exploiting all the optimizations
made available by hardware boards manufacturers and by all the producers of
Application-Specific Integrated Circuits (ASICs), i.e. special processing circuits
that allow a substantial acceleration of the operations performed by certain types
of applications. As an example, Zhang et al. (2020) [11] focused on the realization
of a HAR as a Service (HARaaS) model using WiFi Signal in IoT-enabled edge
computing environment. In Zhang et al. work, an IoT system has been implemented
using a Raspberry Pi, connected to a WiFi network, that performs inference on
data collected from IoT devices. In particular, the performances of a CNN model
were tested first only using the Raspberry Pi resources, then using the Raspberry
Pi and the Intel Neural Compute Stick 2 resources combined, which is a particular
device developed by Intel that able to accelerate the execution of the neural models.
Thanks to the use of this accelerator, it was possible to obtain more accurate results
with a large performance boost and latency times reduction but, on the other hand,
the cost of multiple computational devices has to be considered in the realization
of this application.

Focusing on the edge server computation, instead of performing inference directly
on the edge devices, it is possible to delegate the computation to the edge servers,
possibly using security protocols for data exchange. In this way, the different
nodes will send their data to a nearby server that will take care of their processing,
returning the obtained results to them. Therefore, this category contains all
the methods that make the sending and receiving of data to edge servers more
efficient. An example of pre-processing aimed at sending data to a server is
Glimpse [12], a real-time object detection system that allows the processing of
the various frames both on the edge server and the edge device, balancing their
number according to latency times. In [13], the authors developed Mainstream, a
system where an optimal trade-off between Accuracy and latency time is calculated
in order to choose which layers of the network models to share, using transfer
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learning techniques, between the various requests. Despite the results obtained
by the presented approaches, the main limitation of the edge server computation
methodology regards the high requirements in terms of hardware resources to be
realized. Thus, this type of computation is difficult to adapt for certain types of
domain such as home automation.

The last category introduced in [2], namely Computing across edge devices,
includes all the several methods that provide a more efficient management of the
computational load between edge devices and edge servers. Indeed, instead of
performing all the computation inside the device or the server, it is possible to
perform the computation partially on both types of devices, using also an edge
Cloud where possible. In [14], the authors developed a framework that allows to
execute Deep Learning tasks both locally and remotely with the aim of balancing
Accuracy, computational complexity and execution time, determining each time
the best strategy to follow. In [15], a hierarchical approach to the computation
partitioning between devices and servers is presented. In particular, the authors
implemented a system with several DDNN (i.e., Distributed Deep Neural Networks)
which allow inference with different levels of Precision and speed from edge devices
to Cloud data centers as needed. One the other hand, this type of approach does
not suite so much real-time applications cause the sending time to the Cloud is not
negligible.

Taking advantage of the literature dealing with the presented architectures,
researchers in the last years started to use the above mentioned Edge Computing
approaches to develop Deep Learning applications, even for complex tasks such
as Human Activity Recognition. Different types of DL structures were born to let
complex AI tasks to be solved on low capabilities hardware. An example is the Li
et al. [16] work, that proposed a structure composed by two layers, the Edge layer
and the Cloud layer, to enable video recognition on an IoT application. Li et al.
used the Cloud layer to train the model that was splitted among both several edge
devices and edge servers. The division of the neural network layers was scheduled
by a specific algorithm that splitted the lower layers of the model near the input
data, i.e. on the edge devices, and the higher layers near the output data, i.e. on
the edge servers, in order to reduce the data sending overhead among the servers.
This approach reduced the network traffic from IoT devices to the edge servers
and to the Cloud servers but it has the limitation that high resources devices are
necessaries to execute the neural network model.

Another work that aimed to realize an Edge computing platform to perform
complex AI tasks was made by Zhang ed al. (2018) [17]. In this work they proposed
a scalable, consistent and low cost Edge computing platform for activity recognition
in smart home applications. In particular, they realized a system composed of three
layers, i.e. the Cloud layer, the Edge layer and the sensor layer, able to reduce the
amount of data sent to the Cloud and to execute a CNN model on low cost devices.
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Data collected from the sensor layer, which is composed by different sensors such as
motion sensors, water sensors and phone sensors, are sent to the Edge layer where
several Raspberry Pi devices share the execution of a complex Convolution Neural
Network to analyze data. Finally, the Cloud layer is responsible for managing those
Edge nodes and for the initial training of the CNN. This structure, showed in figure
3.2, is able to reduce the amount of data sent through the network and to reduce
latency times and privacy issues and is also scalable and easily adaptable to the
various sensors of the related layer. The CNN developed in this work achieved also
good results on activity recognition. A great limitation of this approach, however,
is that the CNN model can not be executed on a single Edge device, requiring the
distribution of the different layers of the model among different devices and also
requiring coordination efforts for its parallel execution.

Figure 3.2: Three layer Edge computing platform representation
Image taken from [17]

Finally, the last work related to the execution of complex neural network models
on edge devices cited in this thesis work is the one of Aishwarya et al. [18], which
realized a light CNN based architecture able to analyze inputs captured from
cameras and elaborated by a low complex foreground extraction algorithm and to
classify and localize from them base human activities, such as walking, pushing
and pulling. To reduce the complexity of the inputs to be passed at the CNN
model, Aishwarya et al. used a background subtraction technique able to remove
background pixels from images acquired by the cameras, which have to be fixed,
to avoid unnecessary elaboration. Despite the lightness of this approach, it has
two main issues regarding the above mentioned technique: the first is that the
model can recognize only low level activities and the second is that the foreground
extraction algorithm is particularly exposed to errors made by environment changes
such as illumination variations.
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3.2 Human Activity Recognition

Human Activity Recognition, given the growing interest in the scientific community,
is object of many studies in the literature that aim to develop a performing neural
network model able to solve this task. Over the years, various architectures that
produced interesting results have been proposed. In this section, several examples
of this architectures will be given, divided according to the type of used approach:
sensor-based or image-based.

Sensor-based approach

The HAR task can be associated with the classification task, in fact the first
approaches that aimed to solve it used Machine Learning techniques such as the
Naive Bayes and Random Forest classification algorithms. These methods, however,
do not consider temporal features and are quite limited. More elaborate methods,
instead, involve the use of Deep Learning models that are able to analyze both
spatial and temporal features for a more accurate and precise classification of the
detected actions. Liciotti et al. [1] propose a comparison of different architectures
based on Long Short-Term Memory (LSTM) neural networks, both monodirectional
and bidirectional, to solve the Human Activity Recognition task in an Ambient
Assisted Living scenario, using data collected by several types of typical smart
homes sensors. The peculiarity of the LSTM networks is that they use a particular
principle called Constant Error Carousel (CEC) which, through memory cells
managed by a gating mechanism, allow to learn the temporal dependencies between
the data.

All these models were tested on five annotated datasets among those available
in CASAS and all the obtained results were then compared with those obtained by
one-dimensional Convolutional Neural Networks and by the main Machine Learning
techniques used in the literature and tested on the same datasets. The tests showed
that LSTM networks lead to a substantial increase in Accuracy with respect to both
traditional Machine Learning techniques, with an increase of almost six percentage
points, and one-dimensional Convolutional Neural Networks, with an increase of
over seven percentage points. In addition, among all the LSTM architectures
tested, the most performing one was the bidirectional version, which allows time
dependencies to be analyzed in both directions rather than in a single direction.
Despite the results obtained by proposed approach, instead, a main limitation is
the reduced number of activities on which the models were trained. Indeed, with an
increasing number of activities, the use of sensor data could generate confusion for
human activities sharing the same low level movements, e.g. dry hair and brushing
teeth.
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Image-based approach

Among the many works in the literature that solve the task of the Human Activity
Recognition through the use of images that have influenced the following thesis
work, it is mentioned the study of Baccouche et al. [19] who have created a
sequential Deep Learning model composed of a Convolutional Neural Network
(CNN) 3D, which allows the features extraction from videos, and a Recurrent
Neural Network (RNN), composed of an LSTM layer which allows the learning of
spatio-temporal features extracted by the previous part of the model to classify
the action performed.

Both the training and testing of this network model were carried out on the KTH
dataset, which contains videos of six different types of actions, i.e. walking, jogging,
running, boxing, hand-waving and hand-clapping, performed in four different
scenarios by 25 different people. The network model was tested on two different
versions of this dataset: the first version, called KTH1, is composed of the original
videos of the dataset containing actions repeated three or four times by the same
person separated by some empty frames, while the second version, called KTH2, is
composed of shorter videos where the action is performed once by a single person.

The outcomes showed that the proposed network model produced results com-
parable to those found in the literature on both versions of the dataset. The
introduction of the LSTM layer also increases the Accuracy of the model compared
to the use of a majority voting system on video sequences combined with the
3D CNN by about three percentage points. This confirms the validity of the
proposed model and the use of LSTM networks for solving the HAR task. The
main limitation of this approach is that the model still uses 3D convolutions, which
are complex matrix operations, that makes the entire model too much resource
demanding for the execution on low capabilities hardware such as edge devices.
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Chapter 4

Materials and Methods

This chapter will discuss all the materials and methods used to solve the Human
Activity Recognition task using the Edge Computing computation paradigm and it
is divided into seven main sections: in section 4.1 the neural network architecture
used for HAR is presented; in section 4.2 is described the training of the model,
the parameters used to train it and the dataset on which it was trained; section
4.3 describes the Nvidia Jetson Nano board, that is the hardware on which the
neural network model was be used to solve the Human Activity Recognition task;
in section 4.4 TensorRT is presented, an SDK that allows the optimization of neural
network models to be executed on Nvidia architectures; in section 4.5 is reported
the configuration procedure of the operating environment and the deployment of
the neural network model on the Jetson Nano board; section 4.6 describes the
video cameras used to capture the video streams from which human activities
can be recognized; section 4.7, that is the last section of this chapter, describes
the functioning of the framework created using the above-mentioned tools and all
the different configurations adopted for management of the several video streams
collected by the cameras on which inference has to be made.

4.1 Proposed Architecture
The neural network architecture proposed in this thesis to solve the Human Activity
Recognition task is the composition of the first part of a Convolutional Neural
Network used for the features extraction, called backbone, and a Bi-LSTM Recurrent
Neural Network linked to fully connected layers for the classification of the performed
action represented in the input data. Three different backbones were used, for which
the model architecture differ, which are MobileNetV2 [20], MobileNetV3Small and
MobileNetV3Large [21]. The choice of this first part of the model architecture was
made taking into account the computational capacities of the board on which they
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have to be executed. In particular, the MobileNet architectures were chosen because
they are particularly lightweight and because they ensure good performances even
on hardware with limited resources. It is also pointed out that, in order to be
able to use the Bi-LSTM network and the classifier presented in the following
subsection, the default fully connected layers of all MobileNet neural networks have
been removed.

4.1.1 Backbones
MobileNetV2

MobileNetV2 is a CNN based on the MobileNetV1 architecture whose working
principle is founded on a layer module called Inverted residual with linear bottleneck
[20]. Sandler et al., for the realization of this architecture, kept the simplicity
of the MobileNetV1 structure, increasing at the same time the performances
thanks to the introduction of this innovative type of module and replacing the
standard convolution operators with two different layers that allow a reduction of
the computational complexity. The final architecture of MobileNetV2 is shown in
figure 4.1.

Figure 4.1: MobileNetV2 complete layers architecture

In a CNN, the main operation that allows feature extraction is convolution. In
this type of networks, the convolutions are operations that compare a filter with
the input images to return an output based on the similarity between the portion
of image under examination and the used filter. An example of output obtained
from the comparison between an input image and two different filters is shown in
figure 4.21.

Standard convolutions, realized through appropriate matrix products, are how-
ever computationally onerous, therefore in this architecture they have been replaced
by Depthwise convolutions, which are composed of a factorized operator that can be

1https://www.nonteek.com/it/machine-learning-parte-iii-reti-neurali-
convoluzionali/
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Figure 4.2: Neural networks convolution

realized through two distinct layers: the Depthwise convolution layer, which applies
a single filter for each input channel, and the Pointwise convolution layer, which
uses 1× 1 convolutions in order to build new features using linear combinations of
the input channels. Sandler et al. have shown that this type of operator achieves a
computational cost that is about 8-9 times lower than using Standard convolutions
at the cost of a small reduction in Accuracy. As can be seen in figure 4.1, the
central blocks of MobileNetV2 architecture are the Inverted residuals with linear
bottlenecks, realized by previously mentioned layers. To describe them, however, it
is first necessary to introduce what Residual blocks are: Residual blocks, in general,
are blocks that allow to connect, by means of skip connections, the beginning and
the end of a Convolutional layer block2, as shown in figure 4.3.

This type of structure is adopted mainly for two reasons: to avoid the Vanishing
Gradient problem and to limit the saturation of Accuracy (Degradation)3.

The blocks used in the MobileNetV2 architecture are called Inverted residual
blocks because, instead of connecting blocks with a large number of parameters
bypassing the blocks with a small number of parameters, they connect through a
skip connection the blocks with a small number of parameters bypassing the others,
as shown in Figure 4.4.

In order to increase the number of parameters in the intermediate layers, a 1
convolution is used, followed by a 3 × 3 Depthwise convolution, which allows to

2https://towardsdatascience.com/mobilenetv2-inverted-residuals-and-linear-
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Figure 4.3: Residual block
Image taken from [20]

Figure 4.4: Inverted residual block
Image taken from [20]

reduce these parameters again. Finally, in order to implement the skip connection
between the input of the Convolutional block and the output, a further 1 × 1
convolution is introduced. To avoid losing information during this last operation,
it is necessary to introduce a linear activation function, called linear bottleneck,
which allows a correct transmission of the information. The final architecture of
the MobileNetV2 is therefore described in the table shown in figure 4.5.

This architecture is more advantageous than the previous one because the total
number of parameters in the network is reduced, so that the total dimensionality of
the network is lower, and at the same time the performance in terms of Accuracy
are comparable.

bottlenecks-8a4362f4ffd5
3https://en.wikipedia.org/wiki/Residual_neural_network
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Figure 4.5: MobileNetV2 complete structure
Image taken from [20]

MobileNetV3

MobileNetV3 is a network architecture that evolved from that of MobileNetV2 and
MnasNet [21]. What has been done in the MobileNetV3 architectures is to replace
the initial and final layers of the MobileNetV2, which are the most computationally
onerous, and to introduce the non-linear Hard swish activation function which
provides several advantages including, among others, a greater processing speed.
The modifications made to the initial layer, containing the first set of 32 3×3 filters,
include to change the nonlinear activation function used by MobileNetV2 with the
Hard swish activation function and to reduce the initial number of convolutional
filters from 32 to 16. This made possible to speed up the operations of the first
part of the network and to reduce its computational complexity. The changes to
the last block, on the other hand, are even more substantial: first of all, the last
layer of 1× 1 convolutions has been positioned after the 7× 7 Average pooling layer
in order to reduce latency times. This also removes the 3× 3 Depthwise convolution
layers and the subsequent Normalization layer. These changes are shown in figure
4.6.

The latest changes to the structure of the original MobileNetV2 involve the
introduction of the non-linear Hard swish or h-swish activation function. This
particular activation function replaces the ReLU6, i.e. Rectified Linear Unit 6 used
in MobileNetV2, in the second part of the model. Since the output of the ReLU6
had values contained in the range [0 - 6] in order to achieve good performance in
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Figure 4.6: MobileNetV3 last layer optimization
Image taken from [21]

terms of Accuracy, the h-swish function was formally defined as:

h-swish[x] = x
ReLU6(x+ 3)

6
The use of this activation function maintains the Accuracy levels of the ReLU6

activation function but introduces great advantages in terms of computational
efficiency and in future quantization perspective.

There are two main neural network architectures based on the previous mentioned
changes described in [21]: MobileNetV3Large and MobileNetV3Small. The complete
structures of this networks are shown in figures 4.7 and 4.8.

Compared to the previous MobileNetV2 architecture, these networks are faster
and they have more efficient execution performances. MobileNetV3 Large has also
similar Accuracy values compared to those of MobileNetV2, while MobileNetV3Small
has a greater Accuracy loss but gains a lot in terms of lightness and execution
speed.

4.1.2 Bi-LSTM and Classifier
The second part of the proposed model consists of a Bidirectional Long Short Term
Memory (Bi - LSTM) neural network and a classifier, made up of Dense layers
able to determine which action is performed on the basis of the features extracted
from the previous layers of the model. Figure 4.9 shows the complete composition
of this second part of the model.

Excluding the Pooling, Batch Normalization and Dropout layers, which are
responsible respectively for reducing the size of the feature maps, normalizing the
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Figure 4.7: MobileNetV3Large complete structure
Image taken from [21]

output of the Bi-LSTM layer and deactivating a percentage of the neurons that
make up the network in order to obtain a better generalization of the model, in this
second part of the model there are two main layers: the Bi-LSTM and the Dense.

Bidirectional Long Short-Term Memory

The Long Short Term Memory networks [22], or LSTM, are a type of RNN able
to learn the temporal dependencies that exist among the input data4. As it was
reported in Chapter 3, this type of RNNs are widely used for the resolution HAR
task, as it is necessary to take into account the dependencies and the interconnec-
tions between the primitives that compose the various actions. Since these relations
can continue for very long times, this type of network is particularly suitable for
their memorization since, unlike the standard Recurrent Neural Networks, it does
not struggle to learn the long term dependencies.

The operating principle of LSTM networks is based on the concept of State cells,
whose concatenation gives the network itself. Each state cell is composed of four

4https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 4.8: MobileNetV3Small complete structure
Image taken from [21]

Figure 4.9: Bi-LSTM and Classifier

layers, coloured in yellow in figure 4.10, which allow the realization of a mechanism
based on three gates, i.e. the Input gate, the Output gate and the Forget gate,
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which allows the manipulation of the state of the single cell and the information
that is forwarded to the other State cells. The complete representation of a LSTM
cell is shown in figure 4.105, while the caption for the symbols used within it is
shown in figure 4.116.

Figure 4.10: Representation of a LSTM Cell

Figure 4.11: LSTM Cell representation legend

The first gate through which information passes, called Forget gate and high-
lighted in green in figure 4.10, allows to define which information to keep and which
to forget in their flow from one cell to another. This gate, composed of a layer
with a sigmoid σ activation function, evaluates whether an information is useful
or not in the current cell and returns in output a number from 0 to 1 according
to how much it is necessary to forget or remember the information. This value

5https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-
accurate-conceptual-guide-with-keras-2a650327e8f2

6https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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is multiplied, in fact, to the information by means of a floating point operation,
making sure that it is taken into account or not.

The second gate, called Input gate and highlighted in blue in figure 4.10, allows
instead the insertion of new information and the updating of the cell state. This is
done through two layers: one with a tanh activation function, which is in charge
of creating new information to be added to the state, and one with a sigmoid σ
activation function, which takes care of deciding how much to update each piece of
information. The output from these two layers is then combined to create a global
update of the cell state.

Finally, the last gate, called Output gate and highlighted in red in Figure 4.10,
defines the information to be passed to the next cells. Not all the information
stored in the previous state are passed on, but only a portion. The information
collected is therefore processed through the tanh operation, to regularize the values
from -1 to 1, and filtered by the layer with a sigmoid σ activation function that
decides, according on the returned output, which information have to be passed
to the next cell. The final representation of a LSTM Recurrent Neural Network
composed by three cells is shown in figure 4.12.

Figure 4.12: LSTM Recurrent Neural Network representation

In this thesis work is used a Bidirectional LSTM network, whose main feature is
that the information is not only flowed in one direction through the cells but also
in the opposite direction. This allows this type of network to learn the temporal
dependencies between data both forwards and backwards, a characteristic that in
the HAR task increases the overall performance of the network.
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Dense layer

Dense layers are particular layers of a neural network whose neurons have con-
nections with all those belonging to the previous layer7. This causes that each
neuron of the dense layer elaborates all the inputs, that are the features, coming
from the previous layer. The name Dense derives from the fact that the number of
connections in this type of layer is very high. This type of layer allows, therefore, to
analyze both the spatial and temporal features extracted from the previous layers
and to obtain an output from its own neurons based on a particular activation
function thus solving the classification task.

The final output of the model, in fact, is constituted by the label of the action
associated to the neuron that has been most activated, that is the one that identifies
the action to which, with greater probability, belongs the set of features detected
in the previous portions of the network.

4.2 Model training
The training of the model deriving from the previously proposed architecture, one
for each of the backbones presented in the previous section, was carried out on
Google Colab, a platform made available by Google that allows the execution of
Python code on the Cloud and that offers considerable hardware resources that
made the training process easy. The model training is a learning process that
allows the updating of the internal parameters of the neural network, i.e. the
weights, on the basis of a special function, called loss function, which evaluates the
improvement or worsening of the performance of the network in carrying out its
task calculated on a chosen metric.

To make the model be able to recognize human activities, its training was
carried out on the Kinetics dataset using the technique of Fine Tuning, a practice
that allows the use of models already trained on other datasets in order to have
initial weights already set. This technique allows the training process to be more
efficient, compared to that of untrained models, as randomly set initial weights
require a greater number of training epochs, i.e. the number of times the model
examines the entire training dataset at its disposal, to obtain good results. In
particular, the pre-trained weights on the Imagenet dataset of the three backbones
were used, which are already available in the Keras API and can be set through
the appropriate parameter8.

7https://heartbeat.fritz.ai/classification-with-tensorflow-and-dense-neural-
networks-8299327a818a

8https://keras.io/api/applications/mobilenet/
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Kinetics

Kinetics is a set of datasets containing up to 650,000 high-quality videos comprising
400, 600 or 700 classes of human actions9. Each video contains a human action
performed by one or more people for about 10 seconds.

For the training of the neural network model carried out in this thesis work, a
subset of Kinetics comprising a total of 20 classes was selected and divided into two
parts: a first part equal to 92% of its size, which was further divided into 80% for
the training set and 20% for the test set, and a second part equal to 8% of its size
entirely dedicated to the validation set. Since the proposed network architecture
requires a set of images as input, a number of frames equal to 10 were extracted
from each video in the dataset at regular time intervals. These frames will be then
processed by the network together with the label of the action that is carried out
within them in the Supervised learning process. Some examples of extracted frames
from Kinetics dataset are shown in figure 4.13.

Training parameters

The proposed network model, regardless of the type of backbone adopted, uses as
input a set of 10 frames of size 224× 224× 3 called batch and was trained with
parameters having Floating Point 32 (FP32) precision for a number of epochs equal
to 80 using the Adagrad optimizer, whose Learning rate, i.e. the update rate of the
weights, was set to 0.001.

The optimizer is a particular algorithm that determines how the weights of
the model should be updated during training in order to reduce a cost function,
called Loss Function which in this thesis work corresponds to Validation Accuracy,
specifically chosen to monitor the progress of the model’s performance10. For
the HAR task, given the large variety of actions to be recognized, the Adagrad
optimizer was chosen. Adagrad, whose name is an abbreviation of Adaptive gradient,
is an optimizer based on gradient descent principle that performs smaller updates
on parameters corresponding to very frequent features and larger updates on
parameters corresponding to less frequent features. This allows better detection of
key features for recognizing certain types of actions and greater robustness in the
presence of heterogeneous data.

Further training parameters include the use of the activation function ReLU,
which stands for Rectified Linear Unit, used to manage the activation of neurons,
and a Batch Size of 16, i.e. 16 sets of 10 images (frames) of size 224× 224× 3 were

9https://deepmind.com/research/open-source/kinetics
10https://towardsdatascience.com/optimizers-for-training-neural-network-

59450d71caf6
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Figure 4.13: Kinetics extracted frames examples
Image taken from [23]
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processed by the model at each training iteration. This was possible thanks to the
high hardware resources provided by Google Colab, which made possible to train
the model in an acceptable time.

Performance metrics

In the literature, there are several metrics that can indicate how effective a neural
network is in solving the task for which it is adopted. These metrics, for classification
tasks, are calculated as ratios between the different types of prediction made by
the classifier, which can be distinguished into four types on the basis of whether
they belong to a given class or not: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN).

The most commonly used metrics to evaluate the classifiers performances are11:

• Accuracy (Acc): result of the ratio of all correct predictions made by the
classifier to the total number of predictions. In this thesis, Accuracy is
computed as a global metric so it is calculated as the average Accuracy per
class, which is the ratio of the number of correct predictions to the total
number of predictions. With reference to the prediction types listed above, it
is calculated as:

Acc =
∑

i
(T Pi+T Ni)

T Pi+T Ni+F Pi+F Ni

|C|
(4.1)

• Precision (Prec): probability of correctly assigning a certain element to a class.
It is calculated as:

Prec = TP

TP + FP

• Recall (Rec): Probability of correct recognition of the elements of a given class
by the network. It is calculated as:

Rec = TP

TP + FN

• F1-Score (F1): harmonic mean between Precision and Recall calculated as12:

F1 = 2 · Precision ·Recall
Precision+Recall

11http://www.ce.unipr.it/~medici/geometry/node118.html
12https://it.wikipedia.org/wiki/F1_score

32

http://www.ce.unipr.it/~medici/geometry/node118.html
https://it.wikipedia.org/wiki/F1_score


Materials and Methods

In this thesis work, all these metrics gave a complete assessment of the perfor-
mances achieved after the training process by the model and, for every adopted
backbone, they were evaluated for each of the 20 classes that composes the previ-
ously chosen Kinetics subset. In addition to these metrics, Support was also added,
i.e. the number of examples of each class that was submitted to the model during
testing, to make better considerations on the obtained results.

4.3 Nvidia Jetson Nano

Figure 4.14: Nvidia Jetson Nano board

The Nvidia Jetson Nano is a mini computer designed and built by Nvidia that
allows the execution of different neural network models for solving different types of
tasks, such as classification and object detection. The discrete hardware resources
that this board provides, shown in figure 4.1513, allow the execution of all the most
famous libraries used for Deep Learning, such as Tensorflow, Pytorch and Caffe,
allowing the realization of a wide range of applications.

The initial setup of the Jetson Nano is done by flashing an SD Card where to
install the JetPack SDK14, which includes the Linux operating system with the
related drivers for the board, the CUDA-X libraries for hardware acceleration and
the main libraries and APIs for AI related tasks. Once the initial setup of the

13https://developer.nvidia.com/embedded/jetson-nano-developer-kit
14https://developer.nvidia.com/embedded/jetpack#install
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Figure 4.15: Nvidia Jetson Nano technical specifications

board has been completed, for which reference has to be made to the complete
guide written by Nvidia15, it is possible to start working with the device in two
different modalities:

• desktop mode: mode that allows to work directly with the Jetson Nano, i.e.
without the use of an auxiliary PC, simply by connecting a display and input
devices such as keyboard and mouse to the board.

• headless mode: mode that allows the Jetson Nano to work and to be managed
by connecting it to the computer and establishing a connection via SSH
protocol.

Given the huge versatility of the Jeston Nano and its accessible price, this device
is followed and supported not only by Nvidia, but also by a very active community
that contributes continuously by inserting new tutorials, videos and open-source

15https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#
intro
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projects16 that contribute to making this device a valid solution for the realization
of increasingly innovative applications.

4.4 TensorRT
TensorRT is a support development kit for inference acceleration designed and
developed by Nvidia that enables the optimization of deep neural networks to
achieve reduced latency times and faster execution of Deep Learning tasks, both
on high-performance devices and on devices with low computational resources17.
TensorRT is based on CUDA technology, acronym of Compute Unified Device
Architecture, which is the parallel programming model developed by Nvidia for its
hardware architectures. Given its effectiveness, many Deep Learning frameworks,
including Tensorflow which was used to implement the network model presented
earlier in this chapter, have integrated TensorRT within them, allowing it to be
used just as a normal library. Given an already trained neural network model,
TensorRT allows to perform different types of operations, as shown in figure 4.16,
that allow the creation of an Optimized inference engine, which allows a faster
inference and a more efficient management of the available hardware resources.

The operations performed by TensorRT, with reference to the enumeration
shown in figure 4.16, are:

1. Reduce mixed precision: quantization operation that reduces the bit number
used to represent the model’s internal parameters in order to speed up the
related calculation operations and to reduce the overall size of the model.

2. Layer and tensor fusion: merge of the neural network nodes (referred to the
graph representation of the model) in order to save the use of GPU resources.
Some graph representation nodes of the initial model, in fact, are used only for
training and are no longer useful during the inference phase, so this operation
allows to remove them and save hardware resources during the inference with
the engine.

3. kernel auto-tuning: choice of the best algorithms and layers to execute on the
available hardware architecture. Depending on the power and characteristics
of the board, appropriate layers are chosen to optimize execution.

4. Dynamic tensor memory: optimized management of the memory used by the
tensors during engine execution.

16https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-
nano/

17https://developer.nvidia.com/tensorrt
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Figure 4.16: TensorRT Optimized inference engine creation

5. Multi-stream execution: use of a scalable design for the engine that allows it
to be used in parallel with multiple input data streams.

6. Time fusion: operation that optimizes time steps of Recurrent Neural Networks
used by the engine.

Thanks to the Optimized inference engine created by this process, it is possible
to get the maximum performance for data inference out of the graphics card based
on the chosen model type.

4.5 Model deploy on Jetson Nano
Environment configuration

Before deploying and optimizing the trained model inside the Nvidia Jetson Nano,
it was necessary to install the several software components needed for its use and
for the development of the Deep Learning framework used to solve the HAR task.

After the initial setup of the Nvidia Jetson Nano, made through the official
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Nvidia guide18, the next step was the installation of Python programming language
and Tensorflow platform. Python 3 was installed using the linux terminal command:

~$ sudo apt install python3-pip

while for Tensorflow, two different versions were installed: Tensorflow 1.15.4 and
Tensorflow 2.4.0. With reference to the guide19, in order to install several versions
of Tensorflow within the same device, a special tool for virtualizing environments
was used: virtualenv.

The used proceeding to install and to create a virtual environment, called
venvtf2.4 on which Tensorflow 2.4.0 was installed, was composed by three steps:
the first step was the installation of virtualenv on Nvidia Jetson Nano. This has
been done with the following command:

~$ sudo apt-get install virtualenv

The second step was the creation of a virtual environment to install other
packages without compromising the ones already installed. The used environment
creation command was:

~$ python3 -m virtualenv -p python3 venvtf2.4

Finally, the third step was used to activate the virtual environment and to start
working in it has been accomplished with the following activation command:

~$ source venvtf2.4/bin/activate

At this point, it was possible to install the several software components within the
virtual environment that has just been activated, independently of those installed
outside it. To install Tensorflow 2.4.0 within the virtual environment were also
needed all the associated packages required for its operations. These packages have
been installed using the following commands:

~$ sudo apt-get install libhdf5-serial-dev hdf5-tools
libhdf5-dev zlib1g-dev zip libjpeg8-dev liblapack-dev
libblas-dev gfortran

~$ pip3 install -U pip testresources setuptools==49.6.0

18https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
19https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/

index.html?fbclid=IwAR0zkN8bmvXZwr8hF58faofoUp1DmjhRhEQSEjHu_BwreRC65Cv6RQx4NYE
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~$ pip3 install -U numpy==1.19.4 future==0.18.2
mock==3.0.5 h5py==2.10.0 keras_preprocessing==1.1.1
keras_applications==1.0.8 gast==0.2.2 futures protobuf
pybind11

The h5py component was quite problematic to install as it required a wheel
build which failed. To solve this issue it was used the deprecated legacy installation
method to install it. This installation method was called automatically with the
previous command once the wheel build failed.

Once all the previous packages (including h5py) have been installed, it was
finally possible to install Tensorflow using the following command:

~$ pip3 install -extra-index-url
https://developer.download.nvidia.com/
compute/redist/jp/v45 tensorflow==2.4.0+nv21.02

In order to work with the .ipynb files created and/or downloaded from Google
Colab, it was necessary to install the jupyter-notebook program within the virtual
environment, as well as the pandas and natsort libraries needed for certain operations
used within these files.

All these programs and libraries were installed in the same way as the previous
software components using the following terminal commands:

~$ pip3 install jupyter

~$ pip3 install pandas

~$ pip3 install natsort

The same procedure was followed for the installation of Tensorflow 1.15.4 and
all its dependencies, paying close attention to the selection of the correct version
of Tensorflow when writing the installation command, as described in the Nvidia
guide.

Once the configuration of the working environment and the installation of all the
previously mentioned components have been completed, it was possible to deploy
the model on the board.

Model optimization

The optimization of the pre-trained model using TensorRT, or the corresponding
version already pre-implemented within Tensorflow called TF-TRT which was used
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in this thesis work, can be done in two different ways depending on the format in
which the model was saved once the training was completed20:

• SavedGraph: This first modality uses the saved model in SavedGraph format
from which it is possible, after a series of proper intermediate steps, to create a
Frozen graph, i.e. a data structure containing both the graph representing the
model and the parameters obtained from the training process21, from which it
will be possible to create the Optimized inference engine.

Figure 4.17: TensorRT optimization from SavedGraph format

• SavedModel: This second modality uses the saved model in SavedModel
format, which can be optimized directly using a special procedure. This
format involves saving a directory containing a file in .pb format, i.e. Protocol
Buffers format, which stores the actual Tensorflow model, a subdirectory called
assets which contains files useful for the Tensorflow graph, and a subdirectory
called variables which contains the training checkpoints, i.e. the exact values
of the model parameters22.

Figure 4.18: TensorRT optimization from SavedModel format

Since the model was created using Tensorflow version 2.4.1 on Google Colab
and, once trained, it was saved in SavedModel format, the modality used for the
creation of the Optimized inference engine was the second one, whose Python code
is available online23. Since this procedure, however, was carried out within the

20https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.
html

21https://cv-tricks.com/how-to/freeze-tensorflow-models/
22https://www.tensorflow.org/guide/saved_model
23https://colab.research.google.com/github/vinhngx/tensorrt/blob/vinhn-tf20-

notebook/tftrt/examples/image-classification/TFv2-TF-TRT-inference-from-Keras-
saved-model.ipynb?hl=en
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previously created venvtf2.4 virtual environment, in order to be able to use all the
hardware resources of the Nvidia Jetson Nano without visibility problems, it was
necessary to export the values of some determined environment variables using the
following three commands to be executed on the linux terminal just after activating
the virtual environment using the source command:

~$ export LD_LIBRARY_PATH=/usr/local/cuda/lib64:
$LD_LIBRARY_PATH

~$ export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/
libgomp.so.1

~$ export CUDA_VISIBLE_DEVICES=0

Thanks to these export commands, it was possible to solve the problems of
visibility of environment variables caused by the use of virtualenv and to carry out
the conversion procedure successfully.

4.6 Cameras

Figure 4.19: IP Bullet and IP Eyeball network cameras

The cameras used to capture video for inference are the IP Bullet Network
Camera and the IP Eyeball Network Camera, created by Dahua Technology and
both shown in figure 4.19. Both camera types have a maximum resolution of
2560× 1440 pixels, are equipped with H265 and H264 encoding standards, have a
secondary stream and are powered by PoE technology, i.e. Power over Ethernet
technology. In this thesis work, two IP Bullet cameras and two IP Eyeball cameras
were used, for a maximum of four different video streams, and connected to the
same network as the Jetson Nano. The configuration of each camera, which is the
same for all the camera types, is:
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• Codec: H264

• Resolution: 1280× 720 pixels

• Fps: 25

• Bit Rate: 2048

Since the neural network model uses input images of size 224 × 224 × 3, the
native resolution of the camera was lowered in order to occupy less memory, as well
as the number of Fps was reduced since there is no advantage in analyzing images
too close together for the Human Activity Recognition task. Further settable
parameters not mentioned in the previous list were left with their default values.
Finally, the frames captured by the cameras were retrieved during the execution by
means of the RTSP protocol, an acronym for Real Time Streaming Protocol, which
uses port 554 as a standard for communication and using different management
configurations that are described in the next section.

4.7 Multi-camera handling with thread-based in-
frastructure

In the previous sections of this chapter, all the hardware devices and software tools
used in this thesis work for the realization of a Deep Learning framework that
solves the HAR task on edge devices have been presented. In this section it is
described in detail the functioning of the developed framework and the different
ways of managing the components previously introduced. Specifically, two main
multi-threading configurations have been identified, which both allow different
interactions with the Optimized inference engine, of which there will be only one
loaded in RAM memory due to the limited hardware resources available, and
different managements of the inputs created from the video streams transmitted by
the cameras. Each of these configurations, moreover, has been implemented in two
different versions that differ according to the retrieval method of the video streams
frames. Thereafter, for each configuration will be described the operating principle
on which it is based and the types of threads that compose it, comprehending all
the functions they perform. The evaluation of the performance obtained by each
configuration will be discussed, instead, in chapter 6.

4.7.1 Configuration 1
The first implemented configuration is based on the use of a single thread associated
to a single camera, both for the inference and for the acquisition of the input from
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the video stream, which includes all the procedures for the creation of the input
batch to be analyzed by the model, starting from the single captured frames. The
first version of this configuration, named CF1v1, is composed of three main types
of threads, namely the Main thread, the Acquisition and Inference thread and
the Capturing thread, which allow the execution of all the necessary operations
to fulfill the Human Activity Recognition task. A first representation of how this
configuration works is shown in figure 4.20, where the main interactions between all
the main types of threads and the software objects are present with the exception
of the Main thread, which has been omitted from the workflow representation as
it only has functions that concern the initialization of the other threads and the
on-screen results display, thus being of minor relevance in the explanation of the
workflow that leads to the resolution of the task. A second representation is also
shown in figure 4.21, which reports the operations sequence and all the interactions
between the several threads and the software objects of this configuration.

Figure 4.20: Multi-camera handling configuration 1 version 1

The main functionalities of all these components, or actors, are:

• Main thread: this thread is the starting point of the whole workflow and
takes care of the initialization of all the other actors. First of all, it loads
the Optimized inference engine in RAM memory and runs a test on a default
input batch to allow the initial loading of all the libraries needed for inference.
Once the engine is loaded, this thread allows the user to input all the access
information about the cameras connected to the same network of the Jetson
Nano, in order to establish a communication for accessing the video streams.
For each camera, if the access data are correct, a Camera object will be
instantiated and a dedicated Acquisition and Inference thread will be created
to interact with it. Finally, once all these components have been created, the
Main thread will be in charge of displaying the results produced on screen.
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Figure 4.21: Multi-camera handling CF1v1 sequence diagram

• Optimized inference engine: copy of the engine in RAM memory that is in
charge to make predictions on the input data. In this particular configuration,
it is used by every single Acquisition and Inference thread in an asynchronous
way to analyze each time the related single batch of input acquired by that
thread, and to return the label associated to the prediction.

• Camera object: this object represents the camera and contains all the attributes
and methods for interacting with it. When it is created, this object also takes
care of creating a corresponding Capturing thread, which retrieves the frames
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captured by the associated camera.

• Capturing thread: thread created by the Camera object that plays the role of
updating the attribute of the last captured frame where the image is stored.
This thread runs continuously in the background and works in a completely
transparent manner to all other threads.

• Acquisition and inference thread: this type of thread is the one that contains
the founding principle of this configuration and performs two particular types
of functions: the first is the acquisition of the various frames from the Camera
object and the creation of the input batch to be analyzed; the second, instead,
concerns the use of the engine to make the prediction on the created batch.
Each frame taken from the Camera object is normalized in order to standardize
the values of the pixels and is inserted into an array. Once the ten frames that
make up an entire batch have been collected, the array containing all of these
images is sent to the engine to be inferred.

In this first version of configuration 1, therefore, for each camera connected to
the network are created two threads in addition to the Main thread. The second
version of this first configuration, named CF1v2, does not use Capturing Threads
instead. The frame capture function that the Capturing threads are in charge
to perform, with the relative updating of the related Camera object attribute, is
carried out within the Acquisition and Inference thread. A representative diagram
of this second version of configuration 1 is shown in figure 4.22 and, as can also be
seen from the figure, for each camera connected to the network there is a single
thread, in addition to the Main thread, associated with it. In figure 4.23 is shown,
instead, the operations sequence of this second version to better comprehend the
entire workflow of this multi-threading configuration.

Figure 4.22: Multi-camera handling configuration 1 version 2
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Figure 4.23: Multi-camera handling CF1v2 sequence diagram

4.7.2 Configuration 2

The second configuration implemented is based on the use of two types of threads
that make it possible to separate the acquisition and inference functions seen in the
previous configuration, with the aim of performing the prediction of the batches
collected by the various cameras in a synchronous manner. Thanks to this second
multi-threading structure it is possible, in fact, to analyze the various batches
collected in block, thus solving some of the management problems of the engine,
which is no longer contended by the several threads.
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Figure 4.24: Multi-camera handling configuration 2 version 1

The main actors of this second configuration are the Main thread, the Acquisition
threads, the Inference thread and the Capturing threads. All these components
are represented in figure 4.24, with the exception of the Main thread for the same
reason mentioned in the previous configuration. A complete sequence diagram of
this second configuration is also reported, as for the previous one, in figure 4.25.
The functionalities performed by each actor are described below with the exception
of the Capturing thread and the related Camera object as they have already been
listed in the previous configuration:

• Main thread: as in configuration 1, this thread takes care of the creation and
initialization of all the other actors. The main difference compared to the one
presented previously is that it creates an Acquisition thread for each camera
connected to the network and a single Inference thread that will take care of
the interaction with the engine. It is also responsible for the creation of a list,
called Batch List, in which all the Acquisition threads will insert their batches.

• Batch List: list used by each Acquisition thread to store its own created input
batch while waiting for it to be analyzed by the engine. Only one batch for

46



Materials and Methods

Figure 4.25: Multi-camera handling CF2v1 sequence diagram

Acquisition thread is stored within this list, so that if an Acquisition thread had
already stored an input batch that has not yet been analyzed by the engine, it
can not insert another.

• Acquisition thread: thread that carries out the function of frames acquisition
from the camera object, which also includes the normalization process, in order
to create the input batch to be submitted to the engine. Since the interaction
with the engine is managed by the Inference thread, the acquisition function
is suspended until the created batch, saved in the Batch List, is examined by
the engine. To notify the Inference thread that the captured input has been
saved into the dedicated list, each Acquisition thread will notify the Inference
thread each time it stores an input batch in the Batch List.
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• Inference thread: thread in charge of the communication with the engine for
the inference on the input batches saved inside the Batch List, which will be
analyzed in block. The Inference thread analyzes all the input acquired by
means of the engine only when all the Acquisition threads have added an input
batch to the Batch List. Each time an Acquisition thread inserts an input
batch, the Inference thread receives a notification followed by a check of the
number of elements in the Batch List. If the number of batches saved in the
list matches with the number of the Acquisition threads, i.e. if all of them have
inserted their own batch, the Inference thread starts the prediction procedure
and, once accomplished, empties the list in order to start again the process of
new frames acquisition of the Acquisition threads.

The first version of configuration 2 just analyzed, named CF2v1, has a total
number of threads running in parallel of two, i.e. Main thread and Inference
thread, plus another two for each camera in the network. A second version was
also implemented for this configuration, named CF2v2 and shown in figure 4.26,
where the Capturing threads were removed and their functionalities were added to
the Acquisition threads, thus reducing the total number of running threads by one
thread per camera. Even for this version, finally, the entire operations sequence
diagram is reported in figure 4.27.

Figure 4.26: Multi-camera handling configuration 2 version 2
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Figure 4.27: Multi-camera handling CF2v2 sequence diagram
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Chapter 5

Results

In this chapter are listed the results obtained from the training of the model for all
the adopted backbones, as well as the performances of the different configurations
presented in section 4.7, varying the used backbone and the number of cameras in
the edge devices network. To evaluate the performances achieved by the model after
the training process, Precision, Recall, F1-score and Accuracy metrics were used,
as reported in section 4.2. To analyze the effectiveness and the efficiency of the
multi-camera handling configurations, instead, Fps, Inference time and the Total
time required to analyze a single input batch were used. All the obtained results
will be discussed in Chapter 6, where all the evaluations about the implemented
solutions will be reported.

5.1 Model performances
A complete evaluation of all the model performances achieved after the training
process using MobileNetV2, MobileNetV3Small and MobileNetV3Large backbones
respectively, are shown in tables 5.1, 5.2 and 5.3. All these results were obtained on
a dedicated test set, extracted from Kinetics dataset, composed by a total of 2140
videos. The number of video submitted to the model for each class is reported in
the Support column of each table.

In table 5.1 are shown the performances achieved by the model adopting Mo-
bileNetV2 backbone, which is the one with the best performances among the three.
The resulting average Prec is 0.76, the average Rec is 0.74 and the average F1 is
0.75, while the weighted averages of this metrics, as well as the global Acc, reach
the value 0.77.

In table 5.2 are shown the performances achieved by the model adopting Mo-
bileNetV3Small backbone. Among all the three models, it has the lowest perfor-
mances since it has 0.68 average Prec, 0.66 average Rec and 0.66 average F1, while
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the global accuracy and the weighted values of the above mentioned metrics are
0.69.

Finally, in table 5.3 are shown the performances achieved by the model with
MobileNetV3Large backbone, which are slightly worse than the performances
achieved by MobileNetV2 backbone. All the average values of Prec, Rec and F1 are
0.74, while the weighted Prec is 0.77 and the weighted Rec, as well as the weighted
F1 and the global Acc are 0.76.

Table 5.1: Model performances achieved with the MobileNetV2 backbone. For each class, the
corresponding Precision, Recall and F1-score values are reported. On the bottom of the table,
instead, the average value of Precision and Recall and the global Accuracy value are reported.

MobileNetV2 model performances
Class Precision Recall F1-Score Support

brushing_teeth 0.78 0.80 0.79 183
cleaning_floor 0.75 0.88 0.81 128
cleaning_toilet 0.90 0.86 0.88 70

cleaning_windows 0.80 0.81 0.81 95
crawling_baby 0.83 0.90 0.87 183

dining 0.75 0.86 0.80 95
doing_nails 0.81 0.80 0.80 129
drinking 0.64 0.47 0.54 77
hugging 0.47 0.36 0.41 64
ironing 0.79 0.82 0.81 66
kissing 0.56 0.80 0.66 59

making_bed 0.85 0.74 0.79 91
opening_bottle 0.65 0.55 0.60 98
playing_cards 0.95 0.93 0.94 102
reading_book 0.84 0.77 0.80 177
setting_table 0.84 0.69 0.76 55

using_computer 0.94 0.93 0.93 135
washing_dishes 0.71 0.83 0.77 157
washing_hair 0.67 0.50 0.57 44
washing_hands 0.61 0.60 0.61 132

accuracy 0.77 2140
macro avg 0.76 0.74 0.75 2140

weighted avg 0.77 0.77 0.77 2140

51



Results

Table 5.2: Model performances achieved with the MobileNetV3Small backbone. For each
class, the corresponding Precision, Recall and F1-score values are reported. On the bottom of
the table, instead, the average value of Precision and Recall and the global Accuracy value are
reported.

MobileNetV3Small model performances
Class Precision Recall F1-Score Support

brushing_teeth 0.59 0.73 0.66 183
cleaning_floor 0.71 0.81 0.76 128
cleaning_toilet 0.74 0.79 0.76 70

cleaning_windows 0.81 0.75 0.78 95
crawling_baby 0.78 0.85 0.81 183

dining 0.70 0.85 0.77 95
doing_nails 0.81 0.81 0.81 129
drinking 0.33 0.34 0.33 77
hugging 0.38 0.36 0.37 64
ironing 0.70 0.59 0.64 66
kissing 0.63 0.53 0.57 59

making_bed 0.83 0.71 0.77 91
opening_bottle 0.49 0.44 0.46 98
playing_cards 0.88 0.91 0.89 102
reading_book 0.74 0.72 0.73 177
setting_table 0.75 0.65 0.70 55

using_computer 0.94 0.83 0.88 135
washing_dishes 0.66 0.69 0.67 157
washing_hair 0.45 0.34 0.39 44
washing_hands 0.58 0.47 0.52 132

accuracy 0.69 2140
macro avg 0.68 0.66 0.66 2140

weighted avg 0.69 0.69 0.69 2140
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Table 5.3: Model performances achieved with the MobileNetV3Large backbone. For each
class, the corresponding Precision, Recall and F1-score values are reported. On the bottom of
the table, instead, the average value of Precision and Recall and the global Accuracy value are
reported.

MobileNetV3Large model performances
Class Precision Recall F1-Score Support

brushing_teeth 0.76 0.79 0.77 183
cleaning_floor 0.81 0.81 0.81 128
cleaning_toilet 0.87 0.79 0.83 70

cleaning_windows 0.81 0.79 0.80 95
crawling_baby 0.89 0.87 0.88 183

dining 0.81 0.92 0.86 95
doing_nails 0.89 0.78 0.83 129
drinking 0.64 0.45 0.53 77
hugging 0.42 0.55 0.47 64
ironing 0.78 0.80 0.79 66
kissing 0.53 0.68 0.59 59

making_bed 0.77 0.82 0.80 91
opening_bottle 0.56 0.53 0.54 98
playing_cards 0.90 0.90 0.90 102
reading_book 0.77 0.77 0.77 177
setting_table 0.75 0.69 0.72 55

using_computer 0.96 0.92 0.94 135
washing_dishes 0.70 0.80 0.75 157
washing_hair 0.55 0.52 0.53 44
washing_hands 0.68 0.58 0.62 132

accuracy 0.76 2140
macro avg 0.74 0.74 0.74 2140

weighted avg 0.77 0.76 0.76 2140
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5.2 Multi-camera configurations performances
The performances evaluation of the two different configurations described in section
4.7 for the management of multiple video streams was carried out on two different
execution modes: the execution with the on-screen display of the images collected
by the cameras comprehending the prediction result, called camera visualization
mode, and the execution without the images screen display, i.e. without camera
visualization mode where only the label of the prediction produced by the engine
was shown.

This distinction was made because in a resource-limited environment such as
Jetson Nano, the sub-processes in charge of displaying the video streams on the
screen can not be assumed to be computationally negligible. These sub-processes,
in fact, lead to a much greater performances decay, for the same number of cameras,
compared to those obtained from the execution of the same configuration without
video stream visualization.

To evaluate all these performances three different metrics were used:

• Average inference time (AIT): average time required to perform inference on
a single batch using the Optimized inference engine.

• Total time (TotT): sum of the time needed to acquire the ten frames that
compose a single batch and the inference on them. This type of time is only
calculated in without camera visualization execution mode because the number
of Fps can not be calculated in this execution mode as the number of frames
showed on the screen. Indicating with AcqT the single frame Acquisition time,
the Total time is calculated as:

TotT = AIT + 10 · AcqT

• Fps: acronym for Frame per second, this metric defines the number of frames
that can be processed per second. In the case of using the camera visualization
execution mode the calculation of Fps was carried out on the basis of the
number of frames shown in the window dedicated to the single camera, while
in the case of without camera visualization mode, a mathematical calculation
was used based on the frame Acquisition time, i.e. the time needed to save
the image on the Camera Object, and the AIT of a single batch. The number
of Fps, in this second case, can in fact be calculated as the reciprocal of one
tenth of the TotT or, similarly, by making the reciprocal of the sum of the
AcqT and one tenth of the AIT, i.e. the time that it would theoretically take
the model to infer a single frame:
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Fps = 1
T otT

10
= 1

AIT
10 + AcqT

All those metrics values are reported in the following tables, denoting with the
× symbol the impossibility of the framework execution using the related model
and number of cameras.

The results obtained from the two versions of configuration 1 are shown in tables
5.4 and 5.5.

Table 5.4: Multi-camera configuration 1 version 1 performances achieved using the Optimized
inference engine obtained from all the three model variants and for a number of cameras varying
from 2 to 4.

Configuration 1 version 1
Camera visualization Without camera visualization

Model N. of
cameras

Average
inference
time

Fps Average
inference
time

Total
time

Fps

MobileNetV2 2 × × ~0.48s ~0.56s ~18
MobileNetV2 3 × × ~0.73s ~0.86s ~12
MobileNetV2 4 × × × × ×
MobileNetV3

Small
2 ~0.10s ~18 ~0.17s ~0.26s ~39

MobileNetV3
Small

3 ~0.25s ~11 ~0.30s ~0.46s ~23

MobileNetV3
Small

4 ~0.36s ~8 ~0.37s ~0.59s ~17

MobileNetV3
Large

2 ~0.38s ~16 ~0.40s ~0.49s ~20

MobileNetV3
Large

3 ~0.60s ~12 ~0.60s ~0.77s ~13

MobileNetV3
Large

4 × × ~0.76s ~0.97s ~10

For the two versions of the configuration 2, since the inference was carried out in
block on all the batches memorized by the Acquisition threads in the Batch List, the
previous metrics vary slightly in meaning since the AIT, although it corresponds
to a single call of the Optimized inference engine by the Inference thread, no longer
corresponds to the analysis of a single batch but corresponds to the analysis of a
number of batches equal to the number of cameras in the edge devices network.
The results obtained from the two versions of configuration 2 are shown in tables
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Table 5.5: Multi-camera configuration 1 version 2 performances achieved using the Optimized
inference engine obtained from all the three model variants and for a number of cameras varying
from 2 to 4.

Configuration 1 version 2
Camera visualization Without camera visualization

Model N. of
cameras

Average
inference
time

Fps Average
inference
time

Total
time

Fps

MobileNetV2 2 ~0.36s ~4 ~0.35s ~0.43s ~23
MobileNetV2 3 × × ~0.68s ~0.78s ~13
MobileNetV2 4 × × × × ×
MobileNetV3

Small
2 ~0.09s ~17 ~0.09s ~0.17s ~58

MobileNetV3
Small

3 ~0.22s ~13 ~0.21s ~0.31s ~32

MobileNetV3
Small

4 ~0.33s ~7 ~0.30s ~0.43s ~23

MobileNetV3
Large

2 ~0.38s ~15 ~0.25s ~0.33s ~30

MobileNetV3
Large

3 × × ~0.54s ~0.65s ~15

MobileNetV3
Large

4 × × × × ×

5.6 and 5.7.
Since the neural network model with MobileNetV3Small backbone adopted,

which was the lightest, was well supported by all the different configurations even
with four cameras, the performances with the limit number of cameras that the
board could handle with this model were tested. Considering also that, in a real
video surveillance use case, all those configurations have to be executed in without
camera visualization mode in order to save computational resources, for this test
were considered only the performances achieved with this execution modality by
the best version of each configuration. The obtained results are shown in table 5.8.
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Table 5.6: Multi-camera configuration 2 version 1 performances achieved using the Optimized
inference engine obtained from all the three model variants and for a number of cameras varying
from 2 to 4.

Configuration 2 version 1
Camera visualization Without camera visualization

Model N. of
cameras

Average
inference
time

Fps Average
inference
time

Total
time

Fps

MobileNetV2 2 × × × × ×
MobileNetV2 3 × × × × ×
MobileNetV2 4 × × × × ×
MobileNetV3

Small
2 ~0.18s ~24 ~0.18s ~0.27s ~37

MobileNetV3
Small

3 ~0.26s ~15 ~0.26s ~0.39s ~26

MobileNetV3
Small

4 ~0.38s ~10 ~0.42s ~0.61s ~16

MobileNetV3
Large

2 ~0.42s ~13 ~0.39s ~0.49s ~20

MobileNetV3
Large

3 × × ~0.60s ~0.74s ~13

MobileNetV3
Large

4 × × × × ×
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Table 5.7: Multi-camera configuration 2 version 2 performances achieved using the Optimized
inference engine obtained from all the three model variants and for a number of cameras varying
from 2 to 4.

Configuration 2 version 2
Camera visualization Without camera visualization

Model N. of
cameras

Average
inference
time

Fps Average
inference
time

Total
time

Fps

MobileNetV2 2 × × ~0.52s ~0.59s ~17
MobileNetV2 3 × × × × ×
MobileNetV2 4 × × × × ×
MobileNetV3

Small
2 ~0.17s ~22 ~0.15s ~0.23s ~43

MobileNetV3
Small

3 ~0.27s ~20 ~0.24s ~0.34s ~29

MobileNetV3
Small

4 ~0.36s ~19 ~0.40s ~0.52s ~19

MobileNetV3
Large

2 ~0.40s ~19 ~0.42s ~0.49s ~20

MobileNetV3
Large

3 × × × × ×

MobileNetV3
Large

4 × × × × ×

Table 5.8: Best configuration versions limit performances without camera visualization

Best configuration versions limit performances
Configuration

version
Model Number

of
cameras

Average
inference
time

Total
time

Fps

Configuration
1 version 1

MobileNetV3
Small

9 ~1.18s ~1.52s ~6

Configuration
2 version 2

MobileNetV3
Small

7 ~0.93s ~1.21s ~8
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Chapter 6

Discussion

In this chapter are reported all the evaluations made on the proposed solutions,
focusing on the obtained results and possible improvements regarding the trained
neural network model and the several multi-camera handling realized configurations.

6.1 Proposed architecture evaluation
As it can be noticed from the tables 5.1, 5.2 and 5.3, the best performances were
achieved by the model that uses MobileNetV2 backbone, which reach a global
Accuracy of 77% as well as weighted Precision, Recall and F1-score. The model
trained with MobileNetV3Large backbone had comparable performances with
the one trained with MobileNetV2 while the last type of model, the one with
the MobileNetV3Small backbone adopted, had the worst performances, reaching
the 69% of global Accuracy as well as weighted Precision, Recall and F1-score.
This was due to the number of trainable parameters of the different architectures,
which are a measure of how much a neural network can learn. The model trained
with MobileNetV2 had, in fact, 2,257,984 total parameters, the one that uses Mo-
bileNetV3Large had 2,667,688 parameters and the one that uses MobileNetV3Small
had 1,031,848 parameters. Since the architectures with MobileNetV2 and Mo-
bileNetV3Large had a comparable number of these indicators, their performances
looked similar, while the model that have used the MobileNetV3Small backbone,
which had less than the half of the other two architectures trainable parameters,
had not reached the same metrics score with the same training modalities.

There was also a considerable difference between the several classes, for example
the hugging class and the using_computer class, in the model recognition capabilities
regardless of the backbone used. This may be due to the video composition of
the Kinetics subset and to the chosen optimizer. Several classes, in fact, were
easily identified when certain features were detected from the network, such as
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the presence of a keyboard for the using_computer class, while some other classes
did not have specific features and were more difficult for the neural network to
identify. Since the Adagrad optimizer enhanced specific features parameters updates
compared to those of more common features during the training process, in order
to increase the recognition performances of certain types of classes some additional
examples could be included in the training set.

In addition to this, there was also another problem relating to the recognition
of the human activities in large environments. As it is shown in figure 6.1, which
represents an example of a correct prediction made by the model during the
execution of the Deep Learning framework using the camera visualization mode,
the trained model worked well in recognizing activities on which the camera was
focused, while if the images showed a wider overview of the surrounding environment,
as it is shown in figures 6.2 and 6.3, the Accuracy of the model significantly dropped.

Figure 6.1: Correct prediction example in the framework’s camera visualization execution
mode

This happened because most of the videos of the Kinetics dataset were focused
directly on the performed action without considering the surrounding environment.
This leaded to significant inference errors in all the cases where the cameras captured
wide spaces beyond the performed action, such as in figure 6.2 where the presence
of the windows, correctly identified by the neural network model, prevailed on the
performed action that was, instead, focused on the keyboard.

In order to avoid the previously mentioned problem, more videos with a wider
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Figure 6.2: First wrong prediction example in the framework’s camera visualization
execution mode

Figure 6.3: Second wrong prediction example in the framework’s camera visualization
execution mode
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camera range could be utilized for training the model, giving to it a better compre-
hension of which portion of the captured frames contains the performed action.

6.2 Multi-camera handling configurations
evaluation

As it can be noticed from tables 5.4, 5.5, 5.6 and 5.7 the performances of the various
configurations varied drastically depending on which type of visualization mode
was adopted, i.e. whether the results of the predictions were to be presented with
the camera images also displayed on screen or not.

Of all the backbones that have been used, the only one that worked correctly
for all configurations and for a number of managed cameras ranging from two to
four, was MobileNetV3Small. This backbone, in fact, was lighter than the others
and requires less RAM memory as well as being faster in the inference of the input
batches. The use of the other backbones, with reference to the camera visualization
execution mode, did not allow the execution of the entire framework for a number
of managed cameras equal to three for the MobileNetV3Large backbone or even
with two cameras in the case of the MobileNetV2 backbone, which resulted as
being the most onerous backbone from the computational point of view.

Of all the tested configurations, the one that provided the greatest stability with
respect to varying the number of cameras was CF1v1, whose performance is shown
in table 5.4. This type of configuration allowed, in fact, the execution of almost all
the different architectures of the network model in the without camera visualization
execution mode, the only exception of which was the case in which there were
four cameras and the model used the MobileNetV2 backbone, while in the camera
visualization execution mode it was the only one that manages to execute the entire
framework using three cameras and the MobileNetV3Large backbone.

On the other hand, the second version of configuration 1, i.e. CF1v2, with
reference to table 5.5, did not manage to achieve the stability of the first version
even though it achieved a considerable performance boost in terms of Fps, especially
when using the model with MobileNetV3Small backbone. This was due to the lower
number of threads that constitute the infrastructure, which entailed a reduction
of the context switch times between the various sub-processes, given that the
Capturing threads that competed for hardware resources were no longer present. At
the same time this second version leaded to a weighting of the functions carried out
by the Acquisition and Inference threads that justifies the lower number of cameras
that have been managed.

Configuration 2, instead, was the heaviest configuration in terms of compu-
tational cost for the Jetson Nano and also the most performing as far as the
Inference times were concerned. In this configuration, in fact, the AIT was relative
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to the analysis of multiple input batches (one for each single Acquisition thread)
therefore, the times reported in tables 5.6 and 5.7 were much lower than those
of the configuration 1. Among the two versions of this second configuration, the
most performing was CF2v2, since it allowed a slight increase in the number of Fps
compared to the first version and a smaller analysis TotT. Given the large number
of sub-processes that this second configuration had to manage, the model that
used the MobileNetV2 backbone could almost never be used, except in a single
case corresponding to the without camera visualization execution mode and with a
maximum of two cameras identified in CF2v2. The neural network architecture
that used the MobileNetV3Large backbone was rather problematic to execute as
the one with MobileNetV2 as shown in the previously mentioned tables.

The best infrastructures identified were, therefore, CF1v1 for its stability of
execution and CF2v2 for the achieved performances. A test was carried out for
both this multi-threading configurations on the maximum number of cameras
that they could manage in the without camera visualization execution mode using
the MobileNetV3Small backbone architecture, the results of which are shown in
table 5.8. As expected, CF1v1 managed a greater number of cameras, i.e. nine,
although the inference and acquisition times increased drastically not allowing,
therefore, to maintain the time constraints defined by the real-time use of this
framework. CF2v2, on the other hand, maintained much lower times compared to
the previous one, also considering the fact that the AIT relates to the analysis of
the seven different batches collected, which made it the best configuration of all
those identified within this thesis work.

63



Chapter 7

Conclusions and future
work

Human Activity Recognition is an Artificial Intelligence task that is becoming
more and more popular in everyday life and that can bring numerous advantages
in various fields such as security, health care and home automation. Today, more
and more techniques are being developed to ensure that this type of task can be
performed in any environment, acquiring data from different types of sensors. In
this context, the use of the Edge computing computation paradigm is particularly
suitable, as it allows all these data to be processed in real-time near the place from
which they are collected.

In this thesis work, a Deep Learning framework that makes use of this com-
putation paradigm has been realized to solve the task of Indoor Human Activity
Recognition through the real-time analysis of images captured by cameras. In
particular, a neural network architecture has been proposed to solve this task,
realized with three different backbones used for feature collection, and has been
distributed and optimized on hardware with limited computational capacity that is
the Nvidia Jetson Nano. In addition, two different multi-threading configurations
were identified, each available in two different versions, for the management of
the video streams captured from cameras connected to the edge network. Of the
three used backbones, the most accurate was MobileNetV2, while the lightest was
MobileNetV3Small, which had even the lowest data inference time. The neural
network model with all these different backbones was tested within the Jetson
Nano to analyze images captured from different cameras, ranging from two to four,
for all the two different configurations, both with and without display of captured
images on screen. The tests showed that the architectures with MobileNetV2
and MobileNetV3Large backbones were very resource demanding, allowing the
correct management of a low number of cameras, which varies according to the
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configuration adopted, that is smaller than the maximum limit chosen for the tests.
The model that used the MobileNetV3Small backbone, on the other hand, allowed
the correct management and analysis of all data sent by the cameras regardless of
the configurations used.

Of all the configurations tested, the most stable was CF1v1, which allowed the
management of a maximum of nine cameras using the model with MobileNetV3Small
backbone and the without camera visualization execution mode, while the best
performing was CF2v2, which reached a maximum of seven cameras using the same
settings but keeping acceptable inference times for a real-time application unlike
the previous one.

Further developments of this thesis work, as far as the improvement of the
neural network model is concerned, include the choice of a more specific dataset
for the training of the model in order to recognize activities belonging to a specific
application domain, for example the fall detection in elderly care or the detection
of break-ins and violence in the security field, and the use of a training dataset
containing videos with a large environment view in order to allow the model to
better recognize the activity carried out also in wide spaces. It would also be
possible to vary the training parameters, such as the optimizer used or the number
of training epochs, to obtain better results in Accuracy.

As regards the use of Edge computing by deploying the model on the Jetson
Nano, it would be possible to lower the model complexity by lowering its parameters
precision from Float Point 32 to Float Point 16, in order to reduce its size and
increase the inference speed at the cost of a Precision and Accuracy loss. It would
also be possible to use the H265 codec standard for videos captured by the cameras
in order to reduce the RAM memory occupied by the images acquired by the
different acquisition threads.

As a final consideration, it would be possible to examine other and more powerful
boards than the Nvidia Jetson Nano on which to deploy the neural network model.
Having greater computational resources, in fact, would allow to process more video
streams transmitted through the edge devices network and to deploy more complex
models able to solve the Human Activity Recognition task.

These remarks can be a good starting point for the development of a more
specific and better performing framework for real-time Indoor Human Activity
Recognition based on the Edge Computing computation paradigm.
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