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Abstract 

 

Alzheimer’s Disease (AD), considered as the most widespread form of dementia, is a neurological 

condition that results in a progressive brain atrophy and mental deterioration. Even though an 

effective treatment for AD still not exists, an early detection of this pathology may help in slowing 

down the disease progression. Among all available neuropsychological data, T1-weighted structural 

magnetic resonance images, which stress the difference between white and grey matter, appear to be 

the best choices to recognize the disease. In recent years, an increased interest in AD detection from 

magnetic resonance images using artificial intelligence algorithms have emerged. Specifically, many 

deep learning approaches, which integrates the feature step in the learning one, have been proposed, 

most of them involving 3D convolutional neural networks. This work is intended to investigate the 

effects of registration, brain extraction and data augmentation of magnetic resonance scans, together 

with the parameter tuning of a Convolutional Long-Short Term Memory (ConvLSTM)-based neural 

architecture, on the model performance for AD classification. To this aim, 275 scans were selected 

from the OASIS-3 dataset (145 AD and 130 cognitively-healthy patients). Pre-processing consisted 

in linear affine registration with three different templates, brain extraction and data augmentation 

(horizontal flipping and rotation). Nine experiments were conducted: each experiment, expect for the 

first, started from the previous experiment and added something new. First, the performance of the 

proposed framework was quantified on the raw data. Then, the impact of the registration step using 

three different templates was evaluated, leading to the identification of the best one. Brain extraction, 

data augmentation and, finally, parameter tuning were gradually added till the last experiment. 

Results show how the model performance tend to increase step by step until the parameter tuning, 

which lead to an accuracy of 85%, a sensitivity of 88% and an area under the curve of 92%. In 

conclusion, the work hereby presented demonstrates the crucial importance of pre-processing steps 

such as registration and brain extraction, data augmentation and parameter tuning in enhancing the 

AD classification performance of the ConvLSTM-based framework.   
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Introduction 

 

Alzheimer’s disease, the most common form of dementia, is an incurable neurological condition that 

results in a progressive brain atrophy and mental deterioration. The diagnosis of Alzheimer’s disease, 

which is still very difficult in clinical practice, is largely based on clinical history and 

neuropsychological data including magnetic resonance images. In recent year, an increased interest 

in deep learning-based approaches for Alzheimer’s disease detection have emerged.  

This work is intended to investigate the effects of registration, brain extraction and data augmentation 

of magnetic resonance scans, together with the parameter tuning of a convolutional long-short term 

memory-based neural architecture, on the model performance for Alzheimer’s disease classification.  

In the first chapter, a general overview of the anatomy and physiology of the human brain is provided. 

In the second chapter, an accurate description of the Alzheimer’s disease and the possible causes that 

can lead to the disease are reported. 

In the third chapter, magnetic resonance imaging is introduced with a deeper focus on structural T1-

weighted magnetic resonance images.  

In the fourth chapter, after a brief comparison between machine learning and deep learning in 

Alzheimer’s disease detection, an overview about typical deep learning architecture for Alzheimer’s 

disease classification is reported. Follows a state of art review of 3D convolutional neural network 

for Alzheimer’s disease classification.  

The fifth chapter constitutes the methodological part of this work. The description of the main pre-

processing tools adopted, the data augmentation techniques involved, and the structure of the 

proposed neural network are provided along with the list of experiments conducted.  

In the sixth chapter, after a brief explanation of the metrics involved in the quantification of the neural 

network performance, the results of each experiment are reported. 

Finally, in the seventh chapter, the results are discussed, and conclusions are given.  
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1. Human brain anatomy and physiology  

 

The nervous system is commonly divided into the Central Nervous System (CNS) and the Peripheral 

Nervous System (PNS) [1]. CNS is composed by the brain and the spinal cord, while the PNS is made 

up of nerves and ganglia that connect the spinal cord with the rest of the body. The PNS can be further 

divided in somatic nervous system, associated with the voluntary control of body movements via 

skeletal muscles, and autonomic nervous system, which exert involuntary control over smooth muscle 

and gland.  

For what concern this work, we focus specifically on the brain, providing a broad overview of it from 

the histological and structural point of view [1-2].  

The brain is involved in the control of body movements, thoughts, memory, and speech and in the 

regulation of many organs within the body. Moreover, through the five senses of sight, smell, hearing, 

touch, and taste, it receives information about the world surrounding us. 

Two types of cells constitute the brain: neurons and glia cells [2]. Neurons are electrically excitable 

cells, which can communicate between them thanks to specific structures called synapses. A typical 

neuron is composed by three main parts: the cell body, also called soma, the axon, a slender projection 

of the neuron responsible of delivering action potentials away from the cell nerve body, and finally 

dendrites, branched protoplasmic extensions of the neurons which gather synaptic inputs coming from 

different nerve cells. On the other hand, glia cells are non-neuronal cells which maintain homeostasis 

in the nervous system, also providing protection and support to the neurons.  

In the brain we can distinguish between grey and white matter (Fig. 1) [2]. The white matter, which 

forms the bulk of the deep parts of the brain, is composed by neuronal axons and oligodendrocytes; 

the latter are a type of glia cell that speed up the axonal conduction wrapping the axons with myelin 

sheets. Contrarily, the grey matter, distributed instead on the surface of the brain, consists of neuronal 

cell bodies, synapses, glia cells and capillaries.  

Protection for the human brain comes from the skull, meninges, and cerebrospinal fluids [2]. The 

latter is a clear, watery substance that helps to cushion the brain and spinal cord from injury. Indeed, 

the nervous tissue is extremely delicate and can suffer damage by the smallest amount of force. 
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Finally, the so-called blood-brain barrier prevents the interaction between the brain and any 

potentially harmful substance floating in the blood.  

 

 

Figure 1 - White and grey matter [3]. 

 

From a structural point of view (Fig. 2), the human brain can be differentiated in five main parts: the 

brainstem, the diencephalon, the cerebellum, the cerebrum and finally the ventricular system [2].  

 

 

Figure 2 - Brain structure [4]. 

 

The brainstem is the lower extension of the brain, located in front of the cerebellum and connected to 

the spinal cord. It consists of three structures: the midbrain, pons, and medulla oblongata. It serves as 
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a relay station, passing messages back and forth between various parts of the body and the cerebral 

cortex. Many simple or primitive functions that are essential for survival are located here. 

The diencephalon includes two structures, namely the thalamus and the hypothalamus. The thalamus 

can be considered as a relay center of the brain. It receives afferent impulses from sensory receptors 

and distributes the processed information to the appropriate cortical area. It is also responsible for 

regulating consciousness and sleep. The hypothalamus is a small structure that handles information 

coming from the autonomic nervous system. It plays a role in controlling functions such as eating, 

sexual behavior and sleeping and it regulates body temperature, emotions, secretion of hormones and 

movement.  

The cerebellum, composed by two specular cerebellar hemispheres, lies behind the pons. It has a 

major role in tuning motor activity and movements, helping to maintain posture, sense of balance or 

equilibrium. The cerebellum may also be involved in the regulation of some cognitive function,  

from language to emotional response, but its movement-related functions are the most solidly 

established.  

The cerebrum, the uppermost part of the CNS, is the largest part of the brain: it is composed of two 

structurally identical cerebral hemispheres, each of them containing the cerebral cortex on the surface, 

as well as many subcortical structures like the hippocampus, basal ganglia and olfactory bulbs. The 

cerebral cortex, a folded structure characterized by the presence of ridges (gyri) surrounded by one 

or more furrows (sulci), is generally classified into five lobes. The frontal lobe, placed at the front of 

each hemisphere, is important for cognitive function and has a role in the control of voluntary 

movements and activity; the parietal lobe, immediately behind the frontal one, processes information 

about temperature, taste, touch and movements; the occipital lobe is the visual processing center and 

it’s placed in the back part of the brain; the temporal lobe, placed laterally, contains regions dedicated 

to processing sensory information, particularly important for hearing, recognizing language, and 

forming memories; finally, the limbic lobe is an arc-shaped region of cortex on the medial surface of 

each cerebral hemisphere considered to be the epicenter of emotional and behavioral expression (the 

hippocampus, a region of particular interest for this work, it’s included by many authors in the limbic 

lobe). 

The ventricular system is a set of communicating cavities within the brain. These structures are 

responsible for the production, transport, and removal of cerebrospinal fluid, which bathes the central 

nervous system. The left and right lateral ventricles (the first and the second) are located within their 

https://en.wikipedia.org/wiki/Language
https://en.wikipedia.org/wiki/Emotion
https://en.wikipedia.org/wiki/Cerebral_cortex
https://en.wikipedia.org/wiki/Cerebral_hemisphere
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respective hemispheres of the cerebrum. They both communicate, thanks to a small opening, with the 

third ventricle through the so-called Foramen of Munro. The third ventricle, located in the center of 

the brain close to the thalamus and hypothalamus, connects with the fourth ventricle through a long 

tube called the Aqueduct of Sylvius. 

The CNS may be affected by many different neurodegenerative disorders, in which a progressive loss 

of structure or function of neurons hampers the normal functioning of the brain. This work is focused 

on a particular form of dementia that goes under the name of Alzheimer’s disease.  

  

https://en.wikipedia.org/wiki/Neurons
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2. Alzheimer’s disease 

 

Around the world, around fifty million people suffer from dementia [5]. Dementia is a chronic or 

persistent disorder of the mental processes that may be caused by brain disease or injury. People with 

this syndrome show a deterioration in memory, thinking, behavior and in the ability to perform 

everyday activities.  

Alzheimer’s Disease (AD) is deemed as the most common form of dementia, contributing to 60-70% 

of the cases as reported by the World Health Organization [5].  This pathology has a non-negligible 

psychological, physical, social, and economic impact, not only on patients, but also on the so-called 

caregiver and on the society at large. From a clinical perspective, AD manifests in most cases as an 

insidiously progressive decline in functional and cognitive status, with major influences on memory 

and intellectual functions [6]. Pathologically, AD is mostly characterized by an excessive density of 

amyloid β-protein plaques and neurofibrillary tangles, as demonstrate by postmortem brain 

microscopy [6].  

Even though the real causes leading to AD development are not still clear, many hypotheses have 

been formulated in past years. According to the cholinergic hypothesis [7], AD may be caused by a 

reduction in the acetylcholine production, but this idea has lost widespread support mainly due to the 

ineffectiveness of drugs intended to treat acetylcholine deficiency. On the other side, many studies 

give credit to amyloid beta (Aβ) deposits [8-9] and tau protein [10] abnormalities as the fundamental 

causes of the disease. Finally, a small number of patients (probably fewer than 1%) have early-onset 

AD because they have inherited autosomal dominant genetic mutations [11]. 

In AD, as neurons are injured and die throughout the brain, connections between networks of neurons 

may break down, and many brain regions begin to shrink (Fig 3). By the final stages of AD, this 

process, called global brain atrophy, is widespread, causing significant loss of brain volume. Some 

studies asserted that AD atrophy targets the anterior hippocampal regions and the temporo-parietal 

cortical areas, even relatively early in the clinical expression of the dementia syndrome [12].  

Ageing is considered as the most important risk factor for AD [12].  Young people show better energy 

metabolism, higher levels of growth factors and more efficient mechanisms for clearing misfolded 

proteins and repairing cells. Lack of these protective mechanisms may contribute to the development 

of AD [13]. Moreover, studies have tried to find the possible link between age and AD demonstrating 
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that, even though they exert independent gray matter atrophy patterns, there is a substantial 

overlapped in the hippocampus and entorhinal cortex [14]. 

 

 

Figure 3 - Standard brain (left) vs. brain with Alzheimer disease (right) [15]. 

 

Effective treatments to reverse, arrest, or prevent AD have not been identified yet. Nevertheless, given 

the disproportionate aging of the population, the impact of AD on society and economy will continue 

to rise [16]. For this reason, the early detection of AD development is still a hot topic in the scientific 

community. Indeed, an immediate therapeutic intervention during the initial stages of the syndrome 

appears to have a positive impact on the disease progression [17].  

During the last decades, interest in neuroimaging for the study and diagnostic support of 

neurodegenerative diseases has been rapidly rising. Magnetic resonance imaging (MRI) is widely 

utilized in hospitals for AD identification because of its extraordinary resolution, good contrast, and 

high availability [18]. 
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3. Magnetic resonance imaging 

 

MRI is a medical imaging process, based on the phenomenon of Nuclear Magnetic Resonance 

(NMR), which is nowadays widespread accepted for many medical explorations. It uses magnetic 

fields and Radio Frequency (RF) signals to obtain anatomical information about the human body as 

cross-sectional images in any desired direction [19]. In radiology, MRI is commonly used to visualize 

body soft tissue with great contrast, including of course the brain, and this permit to easily 

discriminate between healthy and diseased tissue [19-20]. 

MRI counts many positive aspects:  

• It is a noninvasive imaging technique; 

• It is harmless thanks to the use of RF wave, which are non-ionizing radiation; 

• It has an optimal spatial resolution, and it provides anatomical, functional, and physiological 

data about tissues; 

• It is a very flexible imaging tool thanks to a variety of pulse sequences that can easily be tuned 

to offer specific visualizations. 

On the other side: 

• MRI machines are quite expensive; 

• It usually requires long scan times;  

• It is not comfortable for patient with claustrophobia; 

• Patients with non-MRI-compatible implants cannot receive a scan. 

Let spend few words on the working principle behind the MRI technology.  

The patient is inserted inside the MRI machine, in which a strong and homogenous magnetic field is 

generated. An equilibrium state is immediately reached: indeed, the magnetic moments of patient’s 

body atomic nuclei become aligned with the external magnetic field. What follows take the name of 

excitation: the RF coils, electromagnetic coils able to generate and receive electromagnetic waves, 

perturb the nuclei equilibrium state, by sending electromagnetic waves that resonate at a particular 

frequency know as Larmor frequency. At this point, patient’s nuclei absorb the RF waves and, when 

the pulse ends, they return to the equilibrium condition, releasing the previously stored energy. This 

energy, which represent the raw MRI signal, can be detected with the same RF coil in a process called 

reception. Finally, complex algorithms permit to compose an MRI image from the recorded signals. 
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There are several different types of MRI procedures, but for what concern this study, we are going to 

describe structural MRI (sMRI) only.  

The sMRI has a high spatial resolution and provides mostly information on the anatomical structure 

[20]. Indeed, it makes use of the small differences between voxels (the unitary element of the recorded 

3D volume) to differentiate neighboring types of tissue.  

The type, number, relaxation, and resonance properties of atomic nuclei within a voxel deeply 

influence the MR signal: we define as contrast, the signal difference between any two types of tissue. 

To emphasize one specific property of the tissues of interest, we “weight” the image, choosing 

between a vast repertory of pulse sequences i.e., programs that tells the scanner what to turn on and 

turn off and when.  So, tuning the relevant time parameters of the sequence, we may obtain Proton 

Density (PD), T1 or T2 images (Fig. 4) [20].  

Proton-density images, as the name implies, provide contrast based on the sheer number of protons 

in a voxel, which of course differs in different tissue types. 

T1-contrast images are useful to analyze the structure of the brain from the anatomical point of view, 

reliably differentiating between grey matter and white matter. Moreover, strong T1 contrast is 

present between fluid and more solid anatomical structures, making T1 images suitable for 

morphological assessment of the normal or pathological anatomy e.g., AD.  

T2-contrast images have maximal signal in fluid-filled regions, which is important for many clinical 

applications. Many tumors, arteriovenous malformations, and other pathological conditions show up 

most readily under T2 contrast. 

 

 

Figure 4 - Proton density (a), T1-weighted (b) and T2-weighted (c) axial scans [21]. 

https://en.wikipedia.org/wiki/Grey_matter
https://en.wikipedia.org/wiki/White_matter
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The current work is focused on T1-weighted brain volumes. In fact, structural imaging based on 

magnetic resonance is an integral part of the clinical assessment of patients with suspected AD [22]. 

The presence of brain and hippocampal atrophy is a sensitive index of neurodegeneration, and it can 

be easily appreciated from a T1-contrast scan. 
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4. Alzheimer’s disease classification with deep learning 

 

4.1 Machine learning vs. deep learning 

In past years, medical imaging has been shown to be of great importance for the early detection, 

diagnosis, and treatment of diseases [23]. In clinical practice, the interpretation of medical images 

has been always performed by human experts such as radiologists and physicians. Nevertheless, 

nowadays, researchers and doctors have started to benefit from computer-assisted interventions: large 

variations in pathology and potential fatigue of human experts underline the importance of novel 

computer-based technologies to support diagnosis [23].  

 

For what concern AD, a definitive diagnosis of dementia is still something very difficult to achieve 

[24]. Machine Learning (ML) techniques, mainly Support Vector Machine (SVM) classifiers and 

Artificial Neural Network (ANN), and Deep Learning (DL) techniques have been found to be very 

useful for the diagnosis of AD from MRI scans [25].  

 

Classification studies using ML-based approaches usually require four fundamental steps: feature 

extraction, feature selection, dimensionality reduction, and feature-based classification algorithm 

selection [26]. These procedures normally require very precise knowledges and several stages of 

optimization, which is expensive from temporal point of view [26]. Moreover, meaningful, or task-

related features were mostly designed by human experts based on their knowledge, which in turn 

make the use of ML techniques challenging for nonexperts [23]. Many studies and competitions have 

also demonstrated that ML approaches are not suitable for investigating such complex pathologies as 

AD: successful classification require a strong ability to discriminate specific feature among similar 

brain image patterns [27]. 

 

To overcome these difficulties, DL, which uses raw neuroimaging data to generate features through 

“on-the-fly” learning, is attracting considerable attention [26].  DL integrates the feature step in the 

learning one, requires minor pre-processing and discover informative feature in a self-taught manner 

[25]. The recent success of DL is mostly due to three reasons: advancements of high-tech Central 

Processing Units (CPUs) and Graphics Processing Units (GPUs), the availability of a huge amount 

of data and finally the continuous developments of learning algorithms [23]. For these reasons, many 
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researchers are currently focusing on novel DL algorithms to improve the classification accuracy for 

AD [25]. Following this tendency, we also decided to focus this work on a DL-based approach. 

 

An overview of the state of art of AD classification with DL is now provided.  

 

4.2 Typical deep learning architecture for Alzheimer’s disease 

classification 

Among all the possible existing DL architectures, Convolutional Neural Networks (CNNs) have been 

proposed to assist diagnosis of AD in many recent studies [28]. In CNN, an image is usually taken as 

input and learnable weights with biases are assigned to different aspects in the image subsequently 

differentiating one picture from the other [29].  

Based on the type and dimensionality of input of the network, we can distinguish between [24]: 

• 2D slice-level CNNs; 

• 3D patch-level CNNs; 

• Region Of Interest (ROI)-based CNNs; 

• 3D subject-level CNNs. 

In 2D CNN, 2D slices extracted from the 3D MRI volumes are given as input to the network. Well-

established 2D CNNs, optimal for natural images classification, already exist and many AD 

classification studies borrowed them, adapting their structure [28]. Even tough, working with a 3D 

volume provides huge 2D slices training dataset, the main limitation of 2D CNN is that convolutional 

filters analyze each slice separately, loosing completely the spatial information of the 3D volume 

[29]. 

To compensate the lack of 3D information, 3D patch-level CNNs provide, as input to the network, a 

series of 3D patches directly extracted from the 3D brain volumes [28]. The main drawbacks of this 

approach are the overall complexity of the architecture and the variable nature of the patch definition 

step [28]. 

The patch definition problem is partially overcome in ROI-based CNN studies, in which patches were 

extracted from portion of the brain which are known to be informative (especially the hippocampus) 

[28]. 
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Recently, also thanks to the boost in computer performance, many researchers started to follow a 3D 

subject level-oriented approach [28].  In these 3D CNNs, the whole 3D brain is taken as input to the 

network, fully integrating the spatial content of the volume. Despite the reduction of the size of the 

datasets (each brain constitutes just one dataset sample) leading to a higher risk of overfitting, 3D 

CNNs and its derivatives are currently highly investigated architecture for the AD diagnosis [28].  

Focusing on the latter category, I now report some recent studies in chronological order. 

 

4.3 3D convolutional neural networks for Alzheimer’s disease 

classification – State of art 

In all the studies I am going to report, at least one patient-level classification has been conducted: the 

whole MRI brains, not a segmented portion, are given as inputs to the 3D CNN. 

In 2017, Lou et al. [24] proposed a 3D CNN consisting of 3 convolutional layers, each followed by 

normalization and spatial max-pooling, a fully connected layer, and a classification layer. 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database was used for the training, validation 

and test phases, leading to high AD recognition accuracy with a sensitivity of 100 % and a specificity 

of 93%. Brain registration was accomplished through a series of pre-processing steps, including 

Gradwarp, B1 non-uniformity, N3, and scale. Moreover, random zooming and in and out cropping 

were used to augment the dataset.  

In the same year, Korolev et al. [30] proposed another 3D-CNN architecture, emphasizing to achieve 

better performance without incorporating feature extraction steps. In the study, a common 

feedforward network with convolutional and pooling layers named VoxCNN and a residual NN called 

ResNet, were compared. The first one, trained, validated, and tested on a subset of ADNI structural 

MRI data, that has been pre-processed with alignment and skull-stripping marked as “Spatially 

Normalized, Masked and N3 corrected T1 images”, led to an accuracy of 79% and an Area Under the 

receiver operating characteristic Curve (AUC) of 88% in discriminating control patients from AD 

patients.  

Three other studies have been conducted in 2018.  

Ullah et al. [31] came up with a 3D CNN model to detect AD and other forms of dementia from 3D 

magnetic resonance image. The neural network structure consists of total 6 layers: two couple of 

convolutional and pooling layers, followed by a fully connected layer and a classification layer. The 
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experiments were conducted on Open Access Series of Imaging Studies (OASIS) database, leading 

to an accuracy of 80.25%. 

Bäckström et al. [32] proposed a 3D CNN for automatic learning of features and detecting AD on a 

pre-processed large size MRI dataset. The 3D CNN, consisting of five convolutional layers, reached 

an accuracy of 98.73% in AD classification. The experiments were conducted on ADNI database: 

“cortical reconstruction”, including motion correction and conform, non-uniform intensity 

normalization, Talairach transform computation, intensity normalization and skull and neck removal, 

were performed by the dataset provider. This study has contributed to find the impact of hyper-

parameter assortment on the performance of the proposed AD classifier. 

Basaia et al. [33] presented an “all convolutional” 3D CNN-based model constituted by 12 repeated 

blocks of convolutional layers, an activation layer, a fully connected layer, and classification layer. 

High levels of accuracy were achieved in classification tests using both ADNI database only (99%) 

and combined ADNI + private dataset (98%). Images from both datasets were normalized to the MNI 

space using Statistical Parametric Mapping (SPM) and the Diffeomorphic Anatomical Registration 

Exponentiated Lie Algebra (DARTEL) registration method. Data augmentation strategy consisted of 

deformation, flipping, scaling, cropping and rotation of images and it was applied to both training 

and validation set. 

More recently, in 2020, Xia et al. [34] proposed a novel unified CNN framework for AD 

classification, where both 3D CNN and 3D Convolutional Long Short-Term Memory (3D CLSTM) 

are employed. The best model, trained and tested on ADNI database, achieved an accuracy of 94.19%, 

sensitivity of 93.75%, specificity of 94.57% and AUC of 96%. All MRI volume were resized, and 

horizontal flipping was used as unique data augmentation strategy on training set. 
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5. Methodology 

 

5.1 Pre-processing tools 

Nowadays, the amount of heterogeneous biomedical data is increasing more and more thanks to 

novel technologies and sensing techniques [35]. For what concern biomedical images analysis, this 

heterogeneity creates a new challenge. Image pre-processing techniques are mandatory for any 

image-based applications [35]. Although, most of the time the significance of these techniques is 

underestimated, pre-processing procedures are essential to ensure the success of the subsequent 

steps [35].  

In the context of MRI classification, a suitable pre-processing pipeline should be followed to 

increase the accuracy of the NNs [35]. Among the several pre-processing techniques, in this work 

we followed three independent pre-processing steps: brain registration, brain extraction and data 

normalization. 

Ideally, when brains are compared across individuals, positions, and sizes in one brain must 

correspond to positions and sizes in another brain. In practice, brains are so variable in shape that 

there simply may not exist a point-to-point correspondence across any two brains, or even in the same 

brain over time [36]. Brain registration consists of adapting a brain to another reference image, which 

is usually called atlas or template, seeking that the same regions of both represent the same anatomical 

structures [36]. Thanks to brain registration it is simpler for a NN to identify a certain region of the 

images as relevant since the same information would be represented in all of them. Nowadays, there 

is plenty of image registration algorithms, both for linear and non-linear registration [36]. Among the 

several registration algorithms, FMRIB's Linear Image Registration Tool (FLIRT), which performs 

linear registration, is the one chosen for this work. 

Brain extraction is considered as one of the critical pre-processing steps that helps in precise diagnosis 

of brain diseases [37]. The idea behind brain extraction is that it removes all non-brain tissue-like 

dura matter, eyes, fats, muscles, exterior blood vessels, and skull and it leaves only the brain region 

[37]. The removal of these non-brain tissues reduces the computational burden and increases the 

accuracy of various neuroimaging classification algorithms [37]. Among the several brain extraction 

procedures and algorithms, Brain Extraction Tool (BET) of the FMRIB Software Library is the one 

chosen for this work. 
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Finally, data normalization can be subdivided in voxel intensity normalization and spatial 

normalization. The former consists in adapting the pixel-values range according to a certain criterion: 

in this work, whitening, which consist in subtracting the mean from each voxel intensity and then 

dividing by the standard deviation, is performed [38]. The latter consists of adapting the voxel 

dimension to the desired one [38]. In this work, there was no need of spatial normalization because the 

employed database consisted of structural MRI volumes with voxel of dimension 1mm³ (i.e., a suitable 

spatial resolution for AD classification). 

 

5.1.1 The FMRIB Software Library 

 

The FMRIB Software Library, abbreviated FSL, is a software library containing image analysis and 

statistical tools for functional, structural and diffusion MRI brain imaging data [39]. New versions of 

FSL are yearly released by the University of Oxford, granting the presence of state of art tools. 

 

 

Figure 5 - FMRIB Software Library (FSL) logo [39]. 

 

For what concern the pre-processing pipeline of this work, FSL FLIRT tool was exploited for linear 

brain registration, while FSL BET tool was exploited for brain extraction. 

  

https://en.wikipedia.org/wiki/Functional_magnetic_resonance_imaging
https://en.wikipedia.org/wiki/MRI
https://en.wikipedia.org/wiki/Diffusion_MRI
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5.1.1.1 Algorithm for linear affine registration 

 

FLIRT is a fully automated robust and accurate tool for linear (affine) intra- and inter-modal brain 

image registration [40]. The FLIRT algorithm translates, rotates, zooms and shears one image to 

match it with another, exploiting a global optimization method that is specifically tailored to brain 

registration [41].  

It should be mentioned that FSL also provides an interesting tool for nonlinear brain registration 

called FMRIB's Nonlinear Image Registration Tool (FNIRT). This tool, exploiting local deformation, 

is particularly suitable to account for local changes due to brain atrophy and, for this reason, it is 

recommended for the registration of disease brain [42], like in AD case. Nevertheless, FNIRT requires 

too much computational burden, and this explain the usage of FLIRT in this work. 

FSL FLIRT tool allows to register brains both to a default template and a generated template. The 

latter may be obtained as an average of a portion or the totality of the dataset of interest.  

What follows is the Python code involved in linear brain registration.  

 

 

 

Once FSL is opened, os library and FLIRT are imported. 

 

 

 

In this portion of code, the registered brains are generated. The variable ‘path’ contains the path of 

the directory where all the sMRI brains are stored in ‘.nii.gz’ format. The variable ‘ref’ contains the 

path of the template that is going to be used for the registration.  In the for loop, thanks to the command 

‘os.listidir(path)’, the path of each ‘.nii.gz’ file is extracted and used to compose the output file path 

(‘output’). The ‘flirt’ command takes the template path (‘ref’) and the single MRI file path (‘src’) as 

inputs and saves the registered MRI file in the provided output path (‘out’).   
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5.1.1.2 Brain extraction tool algorithm 

 

BET (Brain Extraction Tool) deletes non-brain tissue from an MRI image of the whole head [43].  If 

good quality T1 input images are provided, it can also estimate the inner and outer skull surfaces, and 

outer scalp surface [43]. BET uses a deformable model that evolves to fit the brain’s surface by the 

application of a set of locally adaptive model forces [44]. 

 

 

Figure 6 – Brain selection exerted by Brain Extraction Tool (BET) in coronal, sagittal and axial sMRI scans (from the left to right). 

The portion highlighted in red and enclosed in the blue line is the brain, the green and yellow lines highlight the inner and outer skull 

surface respectively [43]. 

 

BET allows to tune the so-called fractional intensity threshold: smaller value gives larger brain outline 

estimated, while larger value perform a stricter brain selection. In this work a threshold of 0.3 has 

been adopted. Moreover, the ‘robust’ option was activated: a more "robust" brain centre estimation 

is involved, resulting in a better final estimate especially when the input data contains a lot of non-

brain matter (like for example neck portions).  

What follows is the Python code involved in brain extraction.  

 

 

 

Once FSL is opened, os library and BET are imported. 
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In this portion of code, the brains are extracted. The variable ‘path’ contains the path of the directory 

where all the sMRI volumes, previously registered, are stored in ‘.nii.gz’ format.  In the for loop, 

thanks to the command ‘os.listidir(path)’, the path of each ‘.nii.gz’ file is extracted and used to 

compose the output file path (‘output’). The ‘bet’ command takes the single MRI file path 

(‘os.path.join(path,input)’) as input and saves the extracted MRI brain file in the provided output path 

(‘output’). Inside the ‘bet’ command, the ‘robust’ option is activated through ‘robust=True’ and the 

fractional intensity threshold is set to 0.3 through ‘fracintensity=0.3’. 
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5.2 Data augmentation 

Deep CNN are heavily reliant on big data to avoid overfitting [45]. Overfitting refers to the situation 

when a NN perfectly models the training data, partially losing its generalization capabilities [45]. 

Unfortunately, many application domains do not have access to big data, such as medical image 

analysis [45].  

In the specific case of this study, overfitting problem is even more prominent, given the choice of 

patient level-oriented classification. Each MRI volume accounts for a single sample, thus leading to 

limited size training set. Data augmentation, a data-space solution to the problem of limited data, 

constitute one of the most powerful approaches to prevent overfitting [45].  

Data augmentation in DL is a technique used to increase the amount of available data by adding 

slightly modified copies of already existing data or newly created synthetic data from existing data 

[45].  Other than decreasing overfitting, data augmentation also increases the performance of the 

model [46].  

In the current work, affine volumes transformation has been used to increase the dimensionality of 

training set. With the affine approach, the 3D MRI volumes undergo different operations like rotation, 

zooming, cropping, flipping, or translations [47]. Horizontal flip and rotation around the brain 

dorsoventral axis are the two affine transformations specifically chosen for the augmentation of the 

training set of this study.  

It is worth mentioning that many AD classification studies suffer from data leakage because of wrong 

or late dataset split [28]. Procedures such as data augmentation must never use the test set and thus 

be performed after the training/validation/test split to avoid biasing the results [28]. What may happen 

is that, if data augmentation is performed before the training/validation split for example, then images 

generated from the same original image may be found in both sets, leading to inaccurate and biased 

performances.  

An overview of the two affine transformations exploited in this study is now provided.  
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5.2.1 Horizontal flipping 

 

Flipped volumes consisted of a mirror reflection of the original volume along one selected axis [47]. 

Given the morphology of the brain, which is constituted by two anatomically symmetrical 

hemispheres, horizontal flip appears to be the smartest choice. Indeed, in the case of vertical flip, up 

and down portions of the brain are not ‘interchangeable’, while, flipping along the horizontal axis 

swaps the left hemisphere with the right one, and vice versa. Among the possible augmentation 

techniques for MRI brain volumes, horizontal flip appears to be perfect for AD classification, given 

that AD atrophy affects each hemisphere equally [14].  

 

 

Figure 7 - One axial slice of an MRI volume after FLIRT and BET (on the left) and the same slice after the 3D horizontal flipping of 

the MRI volume (on the right). 
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5.2.2 Rotation around brain dorsoventral axis 

 

Rotating a volume by an angle α around the brain dorsoventral axis can be exploited to further 

augment the training set dimensionality. This operation is followed by appropriate interpolation to fit 

the original volume size. In this work, MRI volumes were rotated of 30° and black voxels were used 

for interpolation.  

 

 

Figure 8 - One axial slice of an MRI volume after FLIRT and BET (on the left) and the same slice after the 30° rotation of the MRI 

volume (on the right). 
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5.3 Classification 

For what concern classification, a bidirectional convolutional long short-term memory (ConvLSTM) 

neural network was used in this work. For a better understanding of the potential of this type of 

network, a brief overview of standard deep neural networks, convolutional neural networks and long 

short-term memory networks are provided. Then, the proposed architecture is presented. 

 

5.3.1 Deep neural networks 

 

An Artificial Neural Network (ANN) can be seen as a series of algorithms able to recognize 

underlying relationships in a set of data through a process that mimics the way the human brain 

operates [45]. An ANN is composed by interconnected ‘nodes’ organized in a series of layer. A dense 

net is an ANN in which each layer is densely (i.e., fully) connected to the adjacent layers. 

A classic example of dense net is the Multilayer Perceptron (MLP), which consist of an input layer, 

a hidden layer and an output layer. Except for the input nodes, each node can be considered as a sort 

of neuron, which receives a series of inputs and delivers an appropriate output to all the nodes of the 

subsequent layer [45]. 

 

 

Figure 9 – Multilayer perceptron (MLP) architecture [45]. 

 

At the level of each node (except the input nodes), a weighted sum of all the inputs is computed and 

a constant value usually equal to 1, defined as bias, is added to the result. The obtained value is then 

given as input to a proper activation function, for example a sigmoid or a rectified linear unit, which 

produces the final output that will be passed to the next layer.  

https://en.wikipedia.org/wiki/Layer_(deep_learning)
https://en.wikipedia.org/wiki/Layer_(deep_learning)
https://en.wikipedia.org/wiki/Layer_(deep_learning)
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At the beginning of the training session, all the weights have some random assignment. A generic 

MPL learns from training data through a process called back propagation [45]. In few words, thanks 

to the feed forward propagation of the input values through the architecture, output values are 

generated by the NN. Then the mismatch between the prediction made by the MPL and the actual 

output (i.e., the error) is propagated backward from the output to the input layer, while an appropriate 

optimizer algorithm, such as a gradient descent, adjusts the neural network weights trying to reduce 

the error as much as possible. An ANN is defined as a deep neural network when it is characterized 

by a significant number of hidden layers of neurons [45]. 

 

5.3.2 Convolutional neural networks 

 

CNN is a type of deep learning model inspired by the organization of animal visual cortex, mostly 

applied to analyze visual imagery [46]. The strength of CNN resides in the fact that they are designed 

to preserve the spatial locality in images and to learn via progressive levels of abstraction [46]. 

The structure of a generic CNN usually includes three types of layers: convolution, pooling, and fully 

connected layers [46]. The first two perform feature extraction, whereas the third maps the extracted 

features into final output, such as classification.  

 

 

Figure 10 – Convolutional Neural Network (CNN) architecture [46]. 

 

The convolutional layer plays a key role in a CNN [47]. In a convolution, a specialized type of linear 

operation suitable for feature extraction, a small array of numbers, defined as kernel, is applied across 

the input image. At each location of the input image, an element-wise product between each element 

of the input image patch and the kernel is computed and the sum of these products is stored in the 

corresponding position of the output image (i.e., the feature map). To extract many characteristics 

from the original image, an arbitrary number of kernels are applied to the input image and each 
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generated feature map is assigned to a neuron of the subsequent layer. The kernels, which can be 

considered as different feature extractors, are later configured based on the back propagation 

technique. 

 

 

Figure 11 - Example of how the convolution acts [47]. 

 

The convolution operation does not allow the center of each kernel to overlap the outermost element 

of the input image, leading to a reduced image dimension [47]. Padding, especially zero padding, 

may be used to have feature maps of the same dimension of the original input image [47].  

 

 

Figure 12 - Example of how the zero padding acts [47]. 

 

Pooling layers execute, instead, a down sampling operation which reduces the dimension of the 

feature maps in order to introduce a translation invariance to small shifts and distortions and decrease 

the number of subsequent learnable parameters [47]. Max pooling is the most common form of 
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pooling operation. It selects patches of the feature map and provides as outputs the maximum value 

in each patch. In most of the cases, a 2 × 2 filter with a stride of 2 is commonly employed, reducing 

the dimension of feature maps by a factor of 2 [47]. 

 

 

Figure 13 - Example of max pooling operation [47]. 

 

Finally, in the last part of a CNN, there is one (or more) fully connected layer(s). This layer flattens 

the feature maps of the previous layer, turning them in one-dimensional arrays of numbers. Many 

dense layers may follow until the output layer, usually performing classification, is reached [47].  

Thanks to this peculiar structure, CNN automatically and adaptively learn spatial hierarchies of 

features through back propagation, outperforming classical dense net in image classification [47]. 

3D CNNs, which work on volumes instead of images, share the same structure of classical CNN but 

the involve 3D convolution using 3D kernel and 3D max pooling operations [48].  
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5.3.3 Recurrent neural network: long short-term memory networks 

 

Recurrent Neural Networks (RNN) are a class of neural networks that exploit the sequential nature 

of their input [45]. They are mostly suitable for time series, where the occurrence of an element in 

the sequence is dependent on the elements that appeared before it [45].  

MLP neurons tend to consider each input as independent from the other, whereas the RNN neuron 

try to incorporate the interdependency between subsequent inputs by having a hidden state, or 

memory, that holds the essence of what has been seen so far [45].  

 

 

Figure 14 – Recurrent Neural Network (RNN) node (on the left) and its unrolled version (on the right) [45]. 

 

The hidden state value at each time instant is obtained as a function of the current input and the value 

of the hidden state at the previous time step, whereas the output of the neuron is a function of the 

computed current hidden state [45].  

1) ℎ𝑡 = tanh(𝑊ℎ𝑡−1 + 𝑈𝑥𝑡) 

2) 𝑦𝑡 = 𝑠𝑜𝑓𝑚𝑎𝑥(𝑉ℎ𝑡) 

The weight matrices U, V, and W are updated during learning thanks to a process called back 

propagation through time. Indeed, in this specific case, the gradient at each output depends not only 

on the current time step, but also on the previous ones [45]: in each time step we must sum up all the 

previous contributions until the current one.  

Unfortunately, RNNs may suffer from the vanishing or exploding gradients problems, which hampers 

learning of long data sequences [45]. In the vanishing gradient problem for example, the back 
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propagation trough time may cause the gradient to become smaller and smaller, causing the parameter 

updates to become insignificant i.e., no real learning is done.  

Long short-term memory (LSTM) NN, a particular case of RNN, have been designed to deal with the 

vanishing gradient problem and learn long term dependencies more effectively [45]. The following 

diagram shows how recurrence is implemented in a LSTM. 

 

 

Figure 15 – Long Short-Term memory (LSTM) cell diagram [45]. 

 

In LSTM, the current input and the previous instant state are combined in four different ways to obtain 

i, o, f and g. The first three parameters, computed using the same equations but with different 

parameter matrices, are respectively the input, output and forget gates. The last parameters, g, is 

identical to the state variable in the standard RNN cell. All these parameters are involved in the 

computation of the current hidden state and the current cell state, the latter a new state variable 

introduced in LSTM. The equations of interest are now reported.  

3) 𝑖 = σ(𝑊𝑖ℎ𝑡−1 + 𝑈𝑖𝑥𝑡) 

4) 𝑓 = σ(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡) 

5) 𝑜 = σ(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑥𝑡) 

6) 𝑔 = tanh(𝑊𝑔ℎ𝑡−1 + 𝑈𝑔𝑥𝑡) 

7) 𝑐𝑡 = (𝑐𝑡−1𝑓)(𝑔𝑖) 

8) ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡)𝑜 

We can notice that, thanks to this way of combining the previous memory and the new input, the 

LSTM can freely choose to ignore the old memory (setting forget gate to 0) or to ignore the newly 
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computed state (setting the input gate to 0), making the overall architecture resistant against problems 

like the vanishing gradient one [45]. 

 

5.3.4 3D convolutional long short-term memory networks 

 

Even tough LSTM shows great results in modeling long-term dependencies, it fails to model the 

spatial relationship among pixels in images when employed in image classification tasks [34]. 

Convolutional Long Short-Term Memory (ConvLSTM) NN can easily solve this problem, exploring 

the spatial information while keeping the long-term interactions [34]. ConvLSTM cell structure is 

identical to classic LSTM cell structure, but internal matrix multiplications are exchanged with 

convolution operations [49]. As a result, the data that flows through the ConvLSTM cells keeps the 

input dimension instead of being just a 1D vector with features [49]. 

 

 

Figure 16 – The Convolutional Long Short-Term Memory (ConvLSTM) cell structure [49]. 

 

In the specific case of this work, bidirectional ConvLSTM is an interesting choice to analyze the MRI 

brain volumes. Indeed, while capturing the 2D spatial information thanks to the convolution with 

several multiple kernels, the NN treats the slice sequence in its entirety, applying the information of 

the already processed slice in the analysis of the subsequent ones.  
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5.3.5 Proposed neural network architecture 

 

The structure of the proposed ConvLSTM NN [50] is graphically represented in the following image. 

 

 

Figure 17 - Proposed architecture, where AD and CN stand for Alzheimer Disease and Cognitively Normal patients, respectively 

[50]. 

 

The proposed NN is composed by 6 subsequent layers.  

The first layer is a ConvLSTM, which takes as input the whole MRI brain as a sequence of slices. 

Thanks to an improved convolution mechanism, this layer can capture and extract discriminative 

features. 

A dropout layer comes next. Dropout is a well-established regularization technique to prevent 

overfitting [51]. Basically, the dropout layer decides to randomly ignore, according to a certain 

dropout probability (defined by the designer), some neurons during the training phase [51]. Ignoring 

a neuron means temporarily removing it from the network, along with all its incoming and outgoing 

connections [51]. This makes the training process noisy, forcing neurons within a layer to 

probabilistically take on more or less responsibility for some inputs (increasing the corresponding 

weight or not) [51]. 

Then follows a flatten layer that convert the extracted feature maps into a 1D array.  
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The next layer is a standard dense layer with a Rectified Linear Unit (ReLU) function as activation 

function. A ReLU is a piecewise linear function that will output the input directly if it is positive, 

otherwise, it will output zero. This type of function should be used exclusively in the hidden layers 

and not in the output layer. This because, if a neuron turns to be 0, it is unlikely for it to recover. 

Then, another dropout layer is involved. 

The last layer is another standard dense layer. This time the Softmax activation function is used so to 

output a real number between 0 and 1. Indeed, a Softmax activation function squashes the output to 

real values between 0 and 1, thus it must be used in the output layer. The final classification is based 

on the Softmax output value.  
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5.4 Data 

In this work a dataset belonging to the OASIS database [52]. Thanks to OASIS project, which aim to 

facilitate future discoveries in basic and clinical neuroscience, neuroimaging data sets of the brain 

freely accessible by the scientific community [52].  

 

 

Figure 18 - OASIS logo [51]. 

 

From the dataset OASIS-3, one raw T1-weighted sMRI scan was selected from each patient and, in 

case of multiple scans per patient, the one acquired first was chosen so to avoid intra-patient bias. 

OASIS-3 provides scans coming from anonymized between with an age between 42 and 97. The 

resulting dataset was finally composed by 275 scans, 130 coming from controlled patients and 145 

coming from patient affected by AD. Each scan, stored as NIFTI files, has a dimension of 

176x256x256, with voxels of size 1mm³.  
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5.5 Experiments 

The present work consists of 9 experiments aimed at the quantification of the effect of registration, 

brain extraction, data augmentation and parameter tuning on the AD classification performances of 

the proposed NN architecture. Each experiment, expect for the first, starts from the previous 

experiment and adds something new.  

The pro version of Google Colaboratory (also known as Colab) [53], a free Jupyter notebook 

environment that runs in the cloud and stores its notebooks on Google Drive, was used to run the 

Python codes involved in this work. GPU hardware acceleration and high RAM were needed to work 

with such complex NN architecture as ConvLSTM. 

 

5.5.1 First experiment – raw structural magnetic resonance scans 

 

In the first experiment, the NN was trained, validated, and tested on the raw dataset. The 

preprocessing consisted just in data normalization.  

What follows is the Python code involved in this experiment.  

 

 

 

The function ‘drive’ is imported from ‘google.colab’ library to mount the drive directory in the 

current session. 

 

 

 

In this patch of code, the main involved libraries (i.e., tensorflow, sklearn, os, nibabel and numpy) 

and function are imported. 

https://en.wikipedia.org/wiki/Jupyter
https://en.wikipedia.org/wiki/Google_Drive
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In ‘img_path’, a string containing the path of the dataset directory is stored. The desired image height 

and image width are then store in ‘img_height’ and ‘img_width’ respectively. The reason why image 

height was set to 230 instead of 256 will be explained later. Finally, in ‘seq_len’ the number of slices 

selected from each volume is stored. Just 50 slices were used of the original 256 in order to avoid the 

Out Of Memory (OOM) error, given the high computational power required by such a task. 

 

 

 

Here, the ‘preprocess’ function is defined. It takes an MRI slice as input, and it executes the whitening 

of the image. Provided that ‘img’ is a Nibabel image, the mean of the voxels intensity can be 

computed with the method ‘.mean()’, while the standard deviation can be extracted with the method 

‘.std()’. The function returns the whitened version of the original image: the mean (‘mean’) is 

subtracted from each voxel intensity and then everything is divided by the standard deviation (‘std’). 

 

 

 

‘X’ and ‘Y’ are initialized as empty lists. The content of the string ‘img_path’ is stored in a new string 

‘d’, this to simplify its subsequent usage. Thanks to the function ‘os.listdir’, a list containing the 

names of the element inside the directory identified by ‘d’ is generated. Inside the OASIS-3 directory, 
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two directories, namely ‘AD’ and ‘CN’, are located. ‘classes_list’ is then sorted so to have ‘AD’ as 

first element and ‘CN’ as second one.  

 

 

 

The path of the ‘AD’ directory is obtained joining together ‘d’ and the first element of ‘classes_list’ 

in a single string ‘full_path’ thanks to the function ‘os.path.join’. Then, again with ‘os.listdir’, a list 

containing the names of all the element of the directory ‘AD’ is generated and named ‘samples’. The 

sample names are then sorted alphabetically thanks to the list method ‘.sort’. Inside a for cycle, which 

accomplish a number of iterations equal to the length of the list ‘samples’, the ‘X’ and ‘Y’ start to be 

populated.  

For each MRI file, the following operations are executed. In ‘p3’ the file path is stored joining 

together ‘full_path’ and the current sample name ‘p2’. The function ‘nib.load’ loads in ‘my_img’ the 

nifti file related to the path ‘p3’. The method ‘.get_fdata’ turns the loaded image in a numpy array, 

which is stored in ‘nii_data’. After that, my_img is removed from the cache and deleted. A new empty 

list ‘temp’ is generated. In a for cycle, 50 slices of the original MRI scan (from the 107 to the 156, 

both included) are given as input to the function ‘preprocess’ and then appended to ‘temp’ thank to 

the method ‘.append’. Of each slice, all the columns are maintained, while only 230 rows of 256 are 

selected (from the 10th to the 239th rows, both included). Indeed, each MRI volume presents an 

empty portion in the frontal part and in the posterior part, so, with this precise selection, these non-

significant portions are partially deleted. Once all the slices have been appended, ‘temp’ is appended 

to the ‘X’ list. Finally, an 1x2 array ‘y’ filled with zeros is generated, a ‘1’ is assigned in the second 

column ([0,1] is the AD label) and the ‘y’ array is appended to ‘Y’. 
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The same procedure is followed for the ‘CN’ samples. This time the assigned label in the ‘Y’ list is 

[1,0]. 

 

 

 

Thanks to the function ‘np.asarray’, ‘X’ and ‘Y’ are turned into NumPy arrays. A new axis is then 

added to ‘X’ thanks to the function ‘np.newaxis’. This is necessary to match the dimension requested 

by the training function that will be used later.  

 

 

 

Here, ‘X’ and ‘Y’ are split in training, validation, and test sets. In the first line, the function 

‘train_test_split’ is used to divide the test set from the rest of the dataset. Along with ‘X’ and ‘Y’ as 
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inputs, in the function ‘test_size’, ‘shuffle’ and ‘random state’ are specified. ‘test_size’ defines how 

to perform the split: in this case, assigning ‘0.2’, the test set will be equal to the 20% of the initial 

dataset. ‘shuffle’, set to true, shuffles the data before splitting. ‘random_state’ controls the shuffling 

applied to the data before applying the split: each assigned integer (3 in this case) is related to a 

specific shuffle.  

The remaining 80% of the original dataset is again split in training set (80%, so 64% of the original 

dataset) and validation set (20%, so 16% of the original dataset). ‘X’ and ‘Y’ are then deleted to free 

memory.  

 

 

 

The model is finally defined. ‘model’ is defined as sequential model with the function 

‘models.Sequential’. The stack of six layers will be attached to the sequential model through the 

method ‘.add’.  

The first layer is assigned thanks to the function ‘layers.ConvLSTM2D’. ‘filters’ allows to select the 

number of kernels that will be convoluted to the inputs, ‘kernel size’ specifies the desired kernel size, 

‘return sequence’ set to false impose to return the whole sequence of outputs and not just the last one, 

‘data_format’ set to ‘channels_last’ specifies that the channel is in the final part of the input and 

‘input_shape’ specifies the input shape. For this experiment, 16 kernels of dimension 3x3 were used.  

The second and the fifth layers are assigned thanks to the function ‘layers.droput’, specifying in this 

case a dropout rate of 0.5. 

The third layer is assigned thanks to the function ‘layers.Flatten’. 
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The fourth and sixth layers are assigned thanks to the function ‘layers.Dense’, specifying the 

number of nodes and the activation function with the attribute ‘activation’. In the fourth layer, 256 

nodes are assigned with a ‘relu’ activation function, while, in the sixth layer, 2 nodes are assigned 

with a ‘softmax’ activation function. 

 

 

 

In ‘opt’ a stochastic gradient descendent optimizer is assigned with the function 

‘tf.keras.optimizers.SGD’, specifying with ‘learning_rate’ a learning rate of 0.001. 

The method ‘.compile’ is used to compile ‘model’, specifying ‘loss’, ‘optimizer’ and ’metrics’. ‘loss’, 

set in this case to ‘categorical_crossentropy’, allows to select the desired objective function to 

optimize. ‘optimizer’, here equal to ‘opt’, allows the selection of the optimizer. ‘metrics’, set in this 

case to ‘accuracy’, allows the selection of the metrics to be evaluated by the model during training 

and testing.  

In ‘earlystop’, with the function ‘tf.keras.callbacks.EarlyStopping’, a training stop condition is set. 

This function stops training when a monitored metric has stopped improving. In this case imposing 

‘patience’ equal to 7, training will be stopped after 7 epochs without improvements. ‘earlystop’ is 

then assigned to ‘callbacks’. 

Finally, in the training process is executed thanks to the function ‘model.fit’. In ‘x’ the training set is 

assigned, in ‘y’ the labels of the training set are assigned, in ‘epochs’ the maximal number of epochs 

is assigned (40 in this case is assigned), in ‘batch_size’ the number of sample (MRI volume in this 

case) per gradient upgrade is specified (in this case, no more than one volume can be processed before 

each gradient upgrade due to limited memory), in ‘validation_data’ the validation set and its labels 

are assigned, in ‘callbacks’ the list of callback are specified. ‘shuffle’, if set to true, will shuffle 

training data before each epoch. 
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5.5.2 Second experiment – registration with a standard template 

 

In the second experiment, the raw sMRI scans were registered with respect to a standard template, 

directly provided by FSL (MNI152_T1_1mm.nii.gz). The registered dataset was then used to train, 

validate, and test the NN. The code of this experiment is identical to the one of the first, except for 

the line of code that stores in ‘img_path’ the path of the directory containing the registered dataset. 

 

 

 

5.5.3 Third experiment – registration with OASIS-3 average template 

 

In the third experiment, the raw sMRI scans were registered with respect to a template generated 

averaging the raw scans.  

The procedure to generate a template with FSL is now explained. From the command prompt, thanks 

to the utility ‘fslmerge’, the scans to average are concatenated into a single output. Then, with the 

utility ‘fslmath’ (a program to allow mathematical manipulation of images), the average of all the 

scans is computed so to generate a new template based on the whole dataset. 

The registered dataset was then used to train, validate, and test the NN. The code of this experiment 

is identical to the one of the first, except for the line of code that stores in ‘img_path’ the path of the 

directory containing the registered dataset. 

 

 

 

5.5.4 Fourth experiment – registration with AD / CN average templates 

 

In the fourth experiment, the raw sMRI scans were registered with respect to two separate templates. 

One template, generated averaging the AD scans, was used to register the AD scans, the other, 

generated averaging the CN scans, was used to register the CN scans.  
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The registered dataset was then used to train, validate, and test the NN. The code of this experiment 

is identical to the one of the first, except for the line of code that stores in ‘img_path’ the path of the 

directory containing the registered dataset. 

 

 

 

5.5.5 Fifth experiment – brain extraction 

 

In the fifth experiment, the raw sMRI scans were registered with respect to the two separate templates 

of the fourth experiment and brain extraction was then executed on the whole dataset.  

The preprocessed dataset was then used to train, validate, and test the NN. The code of this experiment 

is identical to the one of the first, except for the line of code that stores in ‘img_path’ the path of the 

directory containing the registered dataset. 

 

  

 

5.5.6 Sixth experiment – generator method 
 

In the sixth experiment, the preprocessing and the data augmentation were executed as in the seventh 

experiment but this time batches of training data were provided in a different way to the training 

algorithm.  

A data generator has been implemented, allowing to increase the size of the training batch from 1 

(‘batch_size’ was set to 1 in all previous experiments to avoid OOM error) to 6 volumes. A larger 

batch size should help preventing overfitting. The code involved in the design of the data generator 

is now reported.  
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First, the class ‘DataGenerator’, which will be used for real-time data feeding to the model, is defined 

as a ‘tf.keras.utils.Sequence’, a base object designed to fit a sequence of data like, such as a dataset.  
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The ‘__init__’ function, used to assign values to object (‘self’) properties, takes as inputs the training 

volumes as ‘volumes’, the training labels as ‘labels’, the desired batch size as ‘batch_size’, the size 

of the single volume as ‘dim’, the number of channels as ‘n_channels’ and a Boolean value for 

‘shuffle’. In this case, the latter four inputs are fixes according to the dataset characteristics (‘shuffle’ 

is set to true so to shuffle the training volumes order at each epoch). The ‘__init__’ assigns the 

different inputs to the ‘self’ properties and calls the ‘one_epoch_end’ function. 

The ‘__len__’ function simply counts the number of batches for each epoch. It returns an integer 

which is obtained as the floor of the division between the number of training scans and the size of the 

batch. The floor (the floor of the scalar x is the largest integer i, such that i <= x) is computed with 

the ‘np.floor’ function. 

The ‘__one_epoch_end__’ function is needed to shuffle the order of the training scans at each epoch. 

In ‘self.indexes’ is first stored a vector containing all the indexes in ascending order thanks to the 

function ‘np.arange’. Then, if ‘self.shuffle’ is set to true (as in this experiment), thanks to the function 

‘np.shuffle.random’ the ‘self.indexes’ vector of indexes is randomly shuffled. 

The ‘__get_item__’ function is the one that returns each batch, returning the batch of data ‘X’ and its 

labels ‘y’. In ‘indexes’ a number of indexes equal to the batch size is extracted. The extraction starts 

from the beginning of ‘self.indexes’ vector, then, at each iteration of the data generator, the variable 

‘index’ is incremented of 1 and the subsequent batch of indexes is extracted until the end of the 

‘self.indexes’ vector. Then, the ‘__get_item__’ function calls the ‘__data_genereation__’ function, 

providing ‘indexes’ as input.  

The ‘__data_genereation__’ function creates two empty NumPy vectors of the dimension of a batch, 

one for the scans ‘X’ and one for the labels ‘y’. Then the two vectors are populated with a for loop 

according to the indexes contained in ‘indexes’. Finally, ‘X’ and ‘y’ are returned. 

 

 

 

Once the ‘DataGenerator’ class is defined, ‘training_generator’ is initialized as a ‘DataGenerator’ 

object, providing as inputs ‘X_train’ and ‘Y_train’.  

Finally, due to the use of a data generator, also the line used to fit the model is different. 
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This time ‘model.fit_generator’ method is used. It takes the same inputs of the standard ‘model.fit’ 

method but there is no need of specifying the batch size and ‘generator’ replaces ‘x’ and ‘y’ inputs. 

Of course, ‘training_generator’ is assigned to ‘generator’. 

 

5.5.7 Seventh experiment – data augmentation with horizontal flipping 

 

In the seventh experiment, the raw sMRI scans were registered with respect to the two separate 

templates of the fourth experiment and brain extraction was then executed to the whole dataset. Data 

augmentation with horizontal flipping was adopted to increase the dimensionality of the training set.  

The portion of code involved in data augmentation with only horizontal flipping is the only difference 

with respect to the code of the fifth experiment.  

 

 

 

As already known, ‘X_train’ and ‘Y_train’, defined outside this patch of code, contain the sequence 

of the pre-processed MRI brains and the sequence of the class labels, respectively. In ‘dim’ the 

dimension of a single preprocessed MRI brain is defined. Thanks to the ‘np.empty’ function, two 

suitable empty NumPy vectors are defined to host the augmented sequence of MRI brains and labels, 

respectively ‘X_train_aug’ and ‘Y_train_aug’ (there are 176 scans in the training set so these new 

vectors must be able to contain ‘2 times 176’ elements). Inside the for loop the two empty vectors are 

populated.  

The horizontal flip is executed by the ‘np.flip’ function take takes as input the volume to flip and a 

number that identify the flip axis (in this case with ‘1’, the horizontal axis is selected).  
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The generator method was used to train the NN. 

 

5.5.8 Eighth experiment – data augmentation with horizontal flipping and 30-

degree rotation 

 

In the eighth experiment, the raw sMRI scans were registered with respect to the two separate 

templates of the fourth experiment and brain extraction was then executed to the whole dataset. Data 

augmentation with horizontal flipping and left 30-degree rotation was adopted to increase the 

dimensionality of the training set.  

The portion of code involved in data augmentation the only difference with respect to code of the 

sixth experiment.  

 

 

 

First, ‘rotate’ from ‘scipy’ library and ‘numpy’ library are imported. Also in this case, ‘X_train’ and 

‘Y_train’, defined outside this patch of code, contain the sequence of the pre-processed MRI brains 

and the sequence of the class labels, respectively. In ‘dim’ the dimension of a single MRI brain is 

defined. This time, the two empty NumPy vectors have higher dimensionality (176 times 4). Inside 

the for loop the two empty vectors are populated.  

The horizontal flip is still executed by the ‘np.flip’ function. 

The rotation is executed by the ‘rotate’ function, which requires the volume to rotate, the rotation 

angle (‘30’ in this case) and a couple of integers to identify the rotation axis (in this case with ‘(1,2)’, 

the dorsoventral axis is selected). Moreover, ‘reshape’ is set to false so to keep the brain original size 
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and ‘mode’ is set to ‘nearest’ so to interpolate the blank voxels with the same content of the image 

borders (black voxel in this case). 

Also in this case, the generator method was used to train the NN. 

 

5.5.9 Ninth experiment – parameter tuning 

 

In the last experiment, the code involved is identical to the one of the eighth experiment and the focus 

is on parameter tuning. The tunable parameters of interest are the number of filters in the ConvLSTM 

layer and the dropout thresholds in the two dropout layers. Several combinations of these parameters 

have been tried to find the one which could maximize the NN performances.  

The parameter tuning led to this NN configuration.  

• Batch size: 10 

• Number of kernels: 8 

• First dropout threshold: 0.6 

• Second dropout threshold: 0.5 
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6. Results 

 

6.1 Metrics  

To evaluate the performances of each experiment model, a series of metrics have been adopted [54].  

• Accuracy: the ratio between the predictions that the model got right (True Positive (TP) + True 

Negative (TN)) and the total number of predictions (TP + TN + False Positive (FP) + False 

Negative (FN)). 

 

9) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

• Precision:  the ratio between TP and TP + FP. The precision is intuitively the ability of the 

classifier not to label as positive a sample that is negative. 

 

10) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

TP+FP
 

 

• Recall: the ratio between TP and TP + FN. The recall is intuitively the ability of the classifier to 

find all the positive samples. 

 

11) 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP+FN
 

 

• F1-score: the ratio between 2 times the product of precision and recall and the sum of precision 

and recall. It can be interpreted as the weighted harmonic mean of the precision and recall, where 

an F1-score reaches its best value at 1 and worst score at 0. 

 

12) 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

• Support: is the number of effective occurrences of each class in the test set. 
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These metrics were evaluated using the following Python code. 

 

 

 

First ‘classification_report’ is imported from ‘sklearn.metrics’ library. The method ‘.predict’ is used 

to predict the labels of the test set ‘X_test’ according to the trained model ‘model’. Then, ‘y_pred’ 

and ‘Y_test’ are flattened into ‘n x 1’ vectors (where n is the number of test samples), using the 

function ‘np.argamx’. Indeed, ‘y_pres’ and ‘Y_test’ are ‘n x 2’ vectors where each rows represent the 

label of the test sample. The function ‘np.argamax’ return for each couple of value (lable) the index 

of the higher value (so, 0 or 1), generating a ‘n x 1’ vector. Finally, the results of 

‘classification_report’, which takes ‘Y_test’ (after ‘np.argmax’ of previous code) and ‘y_pred’ as 

inputs, are printed.  

 

Moreover, to further evaluate the model performances, the Receiver Operating Characteristics (ROC) 

curve and the Area Under the ROC Curve (AUC) have been computed [55]. The ROC curve plots 

the true positive rate ( 
TP

TP+FN
 ) (sensitivity or recall) versus the false positive rate ( 

FP

FP+TN
 ) (1 – 

specificity) at different classification thresholds. AUC measures the entire two-dimensional area 

underneath the entire ROC curve: it provides an aggregate measure of performance across all possible 

classification thresholds. 

ROC plot and AUC were obtained using the following Python code. 
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First ‘skleran.metrics’ is imported. The prediction of the model ‘model’ on the test set ‘X_test’ are 

stored in ‘probs’, while in ‘preds’ the second column of ‘probs’ is stored. Thanks to the function 

‘metrics.roc_curve’, which takes as inputs the true test labels ‘Y_test’ and the predicted one ‘preds’, 

the false positive rate (‘fpr’), the true positive rate (‘tpr’) and the thresholds at which they’re evaluated 

(‘threshold’), are computed. The AUC is then computed with the function ‘metrcis.auc’, which takes 

as inputs the ‘fpr’ and ‘tpr’. 

Finally. the ROC curve is plotted along with the corresponding AUC thanks to the functions of the 

‘matplotlib.pyplot’ library. 
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6.2 Performances evaluation 

The results, in term of classification report and ROC/AUC, are now reported for each experiment. 

 

6.2.1 First experiment results 
 

Figure 19 depicts the classification report of the first experiment. 

 

 

Figure 19 – Classification report first experiment. 

 

Figure 20 reports the ROC and the respective AUC of the first experiment. 

 

 

Figure 20 - Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for first experiment. On the X-

axis there is the false positive rate, while on the Y-axis there is the true positive rate. 

 

6.2.2 Second experiment results 
 

Figure 21 the classification report of the second experiment. 
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Figure 21 - Classification report second experiment. 

 

Figure 22 reports the ROC and the respective AUC of the second experiment. 

 

 

Figure 22 - Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for second experiment. On the 

X-axis there is the false positive rate, while on the Y-axis there is the true positive rate. 

 

6.2.3 Third experiment results 
 

Figure 23 the classification report of the third experiment. 

 

 

Figure 23 - Classification report third experiment. 

 

Figure 24 reports the ROC and the respective AUC of the third experiment. 
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Figure 24 - Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for third experiment. On the X-

axis there is the false positive rate, while on the Y-axis there is the true positive rate. 

 

6.2.4 Fourth experiment results 
 

Figure 25 the classification report of the fourth experiment. 

 

 

Figure 25 - Classification report fourth experiment. 

 

Figure 26 reports the ROC and the respective AUC of the fourth experiment. 

 

 

Figure 26 - Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for fourth experiment. On the 

X-axis there is the false positive rate, while on the Y-axis there is the true positive rate. 
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6.2.5 Fifth experiment results 
 

Figure 27 the classification report of the fifth experiment. 

 

 

Figure 27 - Classification report fifth experiment. 

 

Figure 28 reports the ROC and the respective AUC of the fifth experiment. 

 

 

 

Figure 28 - Receiver Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for fifth experiment. On the X-

axis there is the false positive rate, while on the Y-axis there is the true positive rate. 

 

6.2.6 Sixth experiment results 
 

Figure 29 the classification report of the sixth experiment. 
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Figure 29 - Classification report sixth experiment. 

 

Figure 30 reports the ROC and the respective AUC of the sixth experiment. 

 

 

Figure 30 - Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for sixth experiment. On the X-axis there 

is the false positive rate, while on the Y-axis there is the true positive rate. 

 

6.2.7 Seventh experiment results 
 

Figure 31 the classification report of the seventh experiment. 

 

 

Figure 31 - Classification report seventh experiment. 

 

Figure 32 reports the ROC and the respective AUC of the seventh experiment. 
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Figure 32 - Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for seventh experiment. On the X-axis 

there is the false positive rate, while on the Y-axis there is the true positive rate. 

 

6.2.8 Eighth experiment results 
 

Figure 33 the classification report of the eighth experiment. 

 

 

Figure 33 - Classification report eighth experiment. 

 

Figure 34 reports the ROC and the respective AUC of the eighth experiment. 

 

 

Figure 34 - Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for eighth experiment. On the X-axis 

there is the false positive rate, while on the Y-axis there is the true positive rate 
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6.2.9 Ninth experiment results 
 

Figure 35 the classification report of the ninth experiment. 

 

 

Figure 35 - Classification report ninth experiment. 

 

Figure 36 reports the ROC and the respective AUC of the ninth experiment. 

 

 

Figure 36  - Operating Characteristics (ROC) curve and Area Under the ROC Curve (AUC) for ninth experiment. On the X-axis 

there is the false positive rate, while on the Y-axis there is the true positive rate. 
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7. Discussion 

 

In this work, nine experiments have been conducted to quantify the improvements of scans 

registration, brain extraction, data augmentation and parameter tuning on the AD classification 

performances of the proposed ConvLSTM-based framework. 

In the first experiment, raw scans, on which only intensity normalization was conducted, were given 

as input to the neural network. Low performances were recorded, with an accuracy of 71%, a 

sensitivity of 64% and an AUC of 72%. 

In the subsequent three experiments, different types of registration were performed on the raw scans.  

Registration to a standard template, as done in the second experiment, led to results even worse than 

the ones of the first experiment: no improvements in the three metrics of interest are reported, with 

an accuracy of 64%, a sensitivity of 64% and an AUC of 68%. These unexpected results may be 

explained by the fact that the chosen standard template (MNI152_T1_1mm.nii.gz) may be not 

suitable for the registration of OASIS-3 scans, due to their spatial properties.   

Experiments three and four, still concerning registration, led instead to a slight improvement of the 

NN performance. An accuracy of 71%, a precision of 72% and an AUC of 72% were reported using 

the templated generated over the whole dataset. On the other side, using two separate templates for 

AD and CN scans, an accuracy of 64%, a precision of 72% and an AUC of 75% were recorded. As 

we can appreciate from these results, in both cases quite insignificant improvements were obtained. 

Nevertheless, brain registration should not be seen as a pointless operation: indeed, OASIS-3 dataset 

includes scans that are already quite similar between them thanks to a standardized acquisition 

procedure. Thus, registration, even if leading to small enhancements in this work, should be consider 

a crucial operation in brain scans pre-processing. Registration to two separate AD/CN templates was 

chosen as best one, mostly due to a higher AUC, and it was involved in all subsequent experiments.  

In the fifth experiment, brain extraction was introduced, and this led to a remarkable boost of the NN 

performances: an accuracy of 75%, a precision of 83% and an AUC of 79% were reached. The 

removal from the scans of all non-brain portion appears to significantly favour the NN ability to focus 

on the truly discriminative features which can best distinguish an AD scan from a CN one.  

The introduction of the generator method, accomplished in the sixth experiment, allowed to increase 

the training batch size from 1 to 6: an increased batch size helped preventing overfitting, enhancing 
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the ability of the NN to generalize. An accuracy of 71%, a precision of 79% and an AUC of 83% 

were reported. 

Data augmentation was firstly introduced in the seventh experiment, where, thanks to horizontal 

flipping, the size of the training set was doubled. A larger training set partially solved the problem 

linked to the small size of OASIS-3 dataset, leading to an increase of the performance: an accuracy 

of 76%, a sensitivity of 79% and an AUC of 85%. 

In the eighth experiment, the size of the training set was further expanded with scan rotation. Better 

performance was inevitably recorder, remarking the importance of having a proper size dataset to 

train the NN. Even tough rotation leads to scans that are, from the spatial point of view, very different 

from the original ones (this does not happen with horizontal flipping), the inclusion of the rotated 

scans led to an accuracy of 76%, a sensitivity of 89% and an AUC of 88%.  

In the final experiment, parameter tuning allowed to maximise the performance of the NN. Among 

all the combinations of parameters that were tried, one of them led to very satisfactory results: an 

accuracy of 85%, a sensitivity of 88% and an AUC of 92%. These results underline the importance 

of parameter tuning as final step of a NN design process. 

 

In conclusion, the work hereby presented demonstrates the crucial importance of pre-processing steps 

such as registration and brain extraction, data augmentation and parameter tuning in enhancing the 

AD classification performance of the ConvLSTM-based framework. 
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