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Abstract 
 
 

The Coupled Model Intercomparison Project Phase six (CMIP6) 

models predict that, if global temperatures keep rising and reach 2 degrees 

Celsius (3.6 degrees Fahrenheit) above the baseline pre-industrial levels, 

people worldwide could face multiple impacts of climate change 

simultaneously, with serious consequences. The study of temperature 

changes is essential in order to determine and understand how different 

climate effects might combine. The objective of this master-thesis is to 

extrapolate the down-scaled climate projections (at 0.25° x 0.25°), provided 

by the NASA/NEX/GDDP data base on the Mediterranean basin, for the 

following five key climate variables: the mean near-surface air temperature 

(tas), precipitation (pr), near-surface relative humidity (hurs), surface 

downwelling radiation (shortwave: rsds, longwave: rlds). Four of the 35 

available models participating to CMPI6, were used in this work to detect the 

crossing year in two different scenarios compared to the baseline temperature, 

namely: ACCESS-CM2, CESM2, GFDL-CM4 and EC-Earth3. The Shared 

Socio-economic Pathway (SSPs) scenarios considered in this study are SSP2-

4.5 and SSP5-8.5. The first is an intermediate scenario, in which current 

climate change trends continue without substantial deviations, leading to a 

forcing pathway of 4.5 W m-2 by 2100 (Park, et al., 2023); the second scenario 

represents the upper boundary of the range of scenarios described in the 
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literature with an additional radiative forcing of 8.5 W m-2 by the year 2100. 

Also, the historical (1950-2014) background was used to easily determine the 

baseline temperature. This thesis, with the box analysis, will provide a time 

series of the 5 variables in seven selected locations  in the Mediterranean 

Basin and it is going to highlight the urgent need for further studies focused 

on identifying the Mediterranean hotspots (Giorgi & Francisco, 2000). This 

may be helpful in suggesting region-specific actionable adaptation and 

mitigation plans. The baseline temperature over 7 locations was calculated, 

and it was 286.6750 Kelvin or 13.525 degrees Celsius. With the moving 

median method in MATLAB, we obtained 2026 as the crossing year for the 

SSP2-4.5 scenario, and 2025 for the SSP5-8.5 scenario. 
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Chapter 1. 
 
Introduction 
 
1. Introduction 

The climate of planet earth has changed in the last century, and the 

role of human influence on the climate is unquestionable (Masson-Delmotte 

et al., 2018). The Coupled Model Intercomparison Project Phase six (CMIP6: 

https://pcmdi.llnl.gov/CMIP6/ ) models show that the Earth likely will reach 

2°C of global warming by the 2040s without significant policy changes (O’ 

Neill et al., 2016). The 2°C target emerged from scientific consensus, 

particularly articulated by the Intergovernmental Panel on Climate Change 

(IPCC: https://www.ipcc.ch/). It may be seen as a threshold beyond which the 

risks posed by severe climate impacts, such as more frequent and intense heat 

waves, droughts, storms and sea-level rise increase substantially.  

In the 2015 Paris Agreement, nations around the world committed to limiting 

global warming to well below 2°C above pre-industrial levels, aiming at 

1.5°C. This agreement reflects a recognition of the need to avoid the most 

catastrophic impacts of climate change. Understanding future climatic 

changes and their spatial heterogeneity at 2°C warming is thus important for 

policy makers to prepare actionable adaptation and mitigation plans by 

https://pcmdi.llnl.gov/CMIP6/
https://www.ipcc.ch/
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identifying where and to what extent lives and livelihoods will be impacted 

(Park, et al., 2022).  

This thesis will use the recently released NASA Earth exchange Global Daily 

Downscaled Projections (NEX-GDDP) CMIP6 data 

(https://www.nccs.nasa.gov/services/data-collections/land-based-

products/nex-gddp-cmip6) to provide a box analysis of projected changes in 

the Mediterranean Basin for 5 key climate variables at a time when warming 

exceeds 2°C.  The NEX-GDDP-CMIP6 dataset is comprised of global 

downscaled climate scenarios derived from the General Circulation Models 

(GCM) runs conducted under the Coupled Model Intercomparison Project 

Phase 6 (CMIP6) and across all four “Tier 1” greenhouse gas emissions 

scenarios known as Shared Socio - economic Pathways (SSPs). The CMIP6 

GCM runs were developed in support of the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC,AR6).  

The NEX dataset includes downscaled projections from The Scenario Model 

Intercomparison Project (ScenarioMIP) model runs for which daily scenarios 

were produced and distributed with the purpose of providing a set of global, 

high resolution, bias-corrected climate change projections that can be used to 

evaluate climate change impacts on processes that are sensitive to finer-scale 

climate gradients and the effects of local topography on climate conditions. 

This dataset considers all 35 GCMs that have been utilized for the generating 

https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
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the CMIP6 climate projection as depicted in figure 1.

 

Figure 1. Description of NASA Earth global daily downscaled projections. 

Reproduced from Park et al., 2023. 

Four of the 35 available models (Figure 1) were used in this paper to detect 

the crossing year in two different scenarios compared to the baseline 

temperature, namely: ACCESS-CM2, CESM2, GFDL-CM4 and EC-Earth3, 

each of these models are explained and referenced in the following Figure1. 

The Shared Socio-economic Pathway (SSPs) scenarios considered in this 

study are SSP2-4.5 and SSP5-8.5. SSP2-4.5 is an intermediate scenario, in 

which current climate change trends continue without substantial deviations, 

leading to a forcing pathway of 4.5 W m-2 by 2100 (Park, et al., 2022). SSP5-

8.5 scenario represents the upper boundary of the range of scenarios described 



4 

 

 

in the literature with an additional radiative forcing of 8.5 W m-2 by the year 

2100. Box coordinate analysis, also known as bounding box analysis, is a 

method used to summarize and understand the distribution of data points 

within a defined area or "box" (Rizza et al., 2024). This technique is useful 

for various applications, including urban planning, environmental studies, 

and logistics. The area of interest is defined as a rectangular or square "box" 

on a map. This box can be aligned with natural or administrative boundaries. 

In this paper the analysis on a 1° squared box  was applied.  

The World Meteorological Organization considers a thirty-year period to be 

the minimum required to calculate the average climate, known as a climate 

normal. Climate normals are updated at the end of every decade (Rigal et al., 

2019). According to that, in determining the baseline temperature in this 

thesis, an average over 31-year period over 7 locations was obtained. For the 

determination of the crossing year only the mean surface-air temperature (tas) 

variable was used. To determine the crossing year the data was normalized 

by coupling the multi model data, per scenario, to the historical data and 

recalculating the values using four different methods of which moving 

median method was chosen for further calculations. 
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Chapter 2. 
 
Capitolo 2 

 
 
 
2.     Materials and methods 

 

For the determination of the crossing year, only the mean surface-air 

temperature (tas) variable was used. A baseline temperature was compared 

with the yearly averaged, calculated on 7 locations and multi-model averaged 

Shared Socio-economic Pathways (SSP2-4.5 and SSP5-8.5) data (2015 - 

2100), to determine the temperature anomaly across the timespan, and 

crossing year when the temperature anomaly reaches 2 °C (1.75 °C from our 

baseline period of 1950 - 1980) (Park, et al., 2022). To determine the crossing 

year the data was normalized by coupling the multi-model data, per scenario, 

to the historical data and recalculating the values using a moving median with 

a 30-year window, to add larger weights to older data within the window, to 

both minimize the effects of the increasing rate of heating and decreasing the 

modeled data’s rising inaccuracy while going further into the future.  Next in 

the paragraph, figure 2 presents the conceptual framework for analyzing 

climate projections in the Mediterranean Basin, focusing on several key 

components. It illustrates the use of multiple climate projection models, 
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specifically ACCESS-CM2, CESM2, GFDL-CM4, and EC-Earth3, derived 

from the NASA NEX-GDDP-CMIP6 database. This study considers two 

Shared Socio-economic Pathway (SSP) scenarios—SSP2-4.5 and SSP5-

8.5—alongside essential climate variables such as mean near-surface air 

temperature, relative humidity, precipitation, and surface downwelling 

radiation. Analysis is performed on seven representative locations within the 

Mediterranean, including Bou Saada (Algeria), Sardegna, Milano, Marche, 

Palermo (Italy), Zagreb (Croatia), and Bari (Italy). The outcomes of this 

analysis will highlight the crossing years for temperature anomalies and 

provide insights into how climate variables are expected to change in this 

region. 
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Figure 2. Flow-chart of the workflow.  

 

 

 

2.1. NEX-GDDP CMIP6 data download with MATLAB 

 

The NEX-GDDP-CMIP6 datasets offer downscaled climate 

projections derived from CMIP6 GCM simulations across four SSP 

scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. With a spatial 

resolution of 0.25° × 0.25° (~ 25×25 km), these datasets provide high-

resolution, bias-corrected, and seamless daily climate projections over land. 

The period covered includes a retrospective run from 1950 to 2014 and a 

prospective run from 2015 to 2100, blending ground observations with native 

GCM results (Thrasher et al., 2022). This methodology enhances the CMIP6 

simulations from large-scale to regional-to-local scales without altering long-

term trends (Thrasher et al., 2012). Each downscaled projection features nine 

climate variables (for details, see Thrasher et al., 2022). This thesis employs 

four GCMs and focuses on five key climate variables: mean near-surface air 

temperature (tas), precipitation (pr), near-surface relative humidity (hurs) and 

surface downwelling radiation (shortwave: rsds, longwave: rlds) (see Table 

1.). Our analysis includes two future SSP scenarios: SSP2-4.5 and SSP5-8.5 

(O’Neill et al., 2016).  

 



9 

 

 

Table 1. NEX-GDDP CMIP6 GCM 

MODELS DESCRIPTION REFERENCES 

ACCESS-CM2 Australian Community Climate and Earth system 

simulator - Coupled Model 2 (features improved fluid 

dynamics and a microphysical aerosol scheme) 

Zeih, et al., 

2022. 

CESM2 Community System Model 2 is developed by the 

National Center for Atmospheric Research (NCAR), is a 

widely used Earth system model that integrates various 

components of the Earth's climate system to simulate 

past, present, and future climate conditions. 

Gettelman, et 

al., 2019. 

EC-Earth3 Model is developed by the European Consortium for 

High-Resolution Earth System Modelling (EC-Earth), is 

a comprehensive Earth system model used for climate 

research and forecasting. 

Döscher, et al., 

2021. 
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GFDL-ESM4 Earth system model developed by the Geophysical Fluid 

Dynamics Laboratory (GFDL), a research laboratory of 

the National Oceanic and Atmospheric Administration 

(NOAA) located in the United States. It is designed to 

simulate the behavior of the Earth's climate system and 

its interactions with the atmosphere, ocean, land surface, 

and cryosphere. 

Dunne, et al., 

2020. 

SIMULATION DESCRIPTION REFERENCES 

historical Data obtained through the history between 1950 – 2014 Park, et al., 

2023. 

SSP2-4.5 Intermediate scenario, in which current climate change 

trends continue without substantial deviations, leading to 

a forcing pathway of 4.5 W m-2  by 2100. 

Park, et al., 

2023. 

SSP5-8.5 This scenario represents the upper boundary of the range 

of scenarios described in the literature with an additional 

radiative forcing of 8.5 W m-2 by the year 2100. 

Park, et al., 

2023. 

SPATIAL 

RESOLUTION 

0.25° × 0.25° (~ 25 x 25 km) Park, et al., 

2023. 
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TEMPORAL 

RESOLUTION 

Daily Park, et al., 

2023. 

Table 1.  Description of NASA Earth global daily downscaled projections 

used in this paper. 

 

On the open-source NASA's NCCS THREDDS data catalog 

(https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-

CMIP6/catalog.html) the desired model should be selected, followed by the 

selection of the variable of interest and the appropriate coordinates (min and 

max lat-lon).  

Table 1 describes the models that we have considered for the analysis 

performed in this thesis. The data was downloaded year by year, with the 

input coordinates of the Mediterranean basin, with the horizontal, vertical and 

time stride fixed at 1, in netCDF (nc4) format.  The bounding box (in decimal 

degrees) necessary to select a subset of the whole dataset is: lon [-10W:30E] 

and lat [30N:50N] (figure 3c). At the bottom of the NASA's NCCS 

THREDDS page 

(https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-

CMIP6/catalog.htm) a URL will be displayed that directly leads to the desired 

file.  Figure 3. (below) shows the necessary steps in downloading data from 

the aforementioned NASA Thredds Catalog. 

 

https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html
https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.html
https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.htm
https://ds.nccs.nasa.gov/thredds/catalog/AMES/NEX/GDDP-CMIP6/catalog.htm
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A script was created in MATLAB that iterates the variable name and the year 

for every scenario and every model and it downloads the overall time-series 

in that file. In the following text there is an example of the code used for 

downloading the data. So, the code given below contains instructions for 

downloading one specific model (CESM2), which indicates that when 

downloading data from other models, certain lines of code must be replaced. 

In the first line, the selected model and scenario are defined, indicating that 

the name of the model as well as the name of the scenario must be changed 

manually. Following the changes in the code, we also change the settings on 

the website that contains our data (https://www.nccs.nasa.gov/services/data-

https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
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collections/land-based-products/nex-gddp-cmip6). Initially, the script defines 

the base URL, which points to the location of the data files on the NASA 

server. The URL structure is critical, as it specifies the exact directory for the 

chosen model and scenario. For instance, the base URL for CESM2 in the 

SSP2-4.5 scenario is as follows: “baseURL = 

'https://ds.nccs.nasa.gov/thredds/ncss/grid/AMES/NEX/GDDP-

CMIP6/CESM2/ssp245/r4i1p1f1/';”.  

To adapt the script for different models or scenarios, users must change the 

model name (in this case, "CESM2") and the scenario name (here, "ssp245") 

in the URL. The specific variables of interest, such as near-surface relative 

humidity (hurs), precipitation (pr), longwave radiation (rlds), shortwave 

radiation (rsds), surface wind (sfcWind), and near-surface air temperature 

(tas), are then defined.  

Last, we need to define the destination folder in which we want to save our 

files, and we construct the file name in the desired format. 

 

%CESM 245 

% Define the base URL where the files are located 

baseURL = 

'https://ds.nccs.nasa.gov/thredds/ncss/grid/AMES/NEX/GDDP-

CMIP6/CESM2/ssp245/r4i1p1f1/'; 

% Define the variables you want to download 

variables = {'hurs','pr', 'rlds', 'rsds', 'sfcWind', 'tas'}; 

% Define the years you want to download 

years = 2015:2100; 

https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp-cmip6
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% Define the destination folder where you want to save the 

files 

destinationFolder = 

'C:\Users\Mia\Documents\ZAVRSNI\NEX_data\CESM2_data\ssp245_da

ta'; 

% Set timeout value (in seconds) 

timeoutValue = 30; 

 

% Loop through each variable 

for var_idx = 1:length(variables) 

    % Get the current variable 

    variable = variables{var_idx}; 

     

    % Define the URL for the current variable 

    variableURL = [baseURL, variable, '/', variable, 

'_day_CESM2_ssp245_r4i1p1f1_gn_']; 

     

    % Loop through each year 

    for year = years 

        % Construct the filename for the file of the current 

year and variable 

        filename = 

sprintf('%s_day_CESM2_ssp245_r4i1p1f1_gn_%d.nc.nc4', 

variable, year); 

         

        % Construct the full URL for the file 

        fileURL = [variableURL, num2str(year), '.nc?var=', 

variable, '&north=50&west=-

10&east=30&south=30&horizStride=1&time_start=', 
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num2str(year), '-01-01T12:00:00Z&time_end=', num2str(year), 

'-12-31T12:00:00Z&timeStride=1&vertStride=1&accept=netcdf4-

classic&addLatLon=true']; 

         

        % Download the file using websave with timeout 

        websave(fullfile(destinationFolder, variable, 

filename), fileURL, weboptions('Timeout', timeoutValue)); 

    end 

end 

 
 
 
 
 
 

2.2. Box analysis on selected locations 

 

Box coordinates analysis, often referred to in geographical and spatial 

analysis, is a method used to summarize and understand the distribution of 

data points within a defined squared area or "box." This technique is useful 

for various applications, including urban planning, environmental studies, 

and logistics. The area of interest is defined as a rectangular or square "box" 

on a map. This box can be aligned with natural or administrative boundaries. 

In this paper box analysis on a 1° scale was applied (≈100 x 100 km). Box 

analysis on a 1° scale involves dividing a geographic area into grid cells, each 

measuring 1 degree of latitude by 1 degree of longitude. A box is typically 
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defined by its minimum and maximum latitude and longitude (e.g., (lat_min, 

lon_min) to (lat_max, lon_max)). This method is often used in spatial analysis 

to study large-scale spatial patterns and distributions (Rizza et al., 2024). For 

each selected location one box was superimposed. In the following text, parts 

of the script from MATLAB is reported, which is showing how the boxes 

were defined using coordinates. 

 

longitude_al = 364.0000; % input-->lon+360 ; dx->0.25 x0--

>.00, .25, .50, .75 

lattitude_al = 35.1250; %input-->lat ; dy->0.25 y0-->.125, 

.375, .625, .875 

longitude_cr = 375.2500; 

lattitude_cr = 45.1250; 

longitude_ba = 376.5000; 

lattitude_ba = 40.6250; 

longitude_pa = 373.7500; 

lattitude_pa = 37.6250; 

longitude_ma = 373.0000; 

lattitude_ma = 43.1250; 

longitude_mi = 369.2500; 

lattitude_mi = 45.3750; 

longitude_sa = 369.0000; 

lattitude_sa = 40.125; 

 

Longitude coordinates should be corrected by adding 360° to 

real longitude, this is needed as MATLAB ….. 
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In the MATLAB script, geographical coordinates for various Mediterranean 

locations are defined in a specific format to ensure compatibility with the 

analyzed data. The longitudes require correction by adding 360° to values that 

would otherwise be outside the standard range, allowing for representation in 

degrees from 0° to 360°. For instance, the longitude for Bou-Saada, Algeria, 

is given as 364.0, which effectively corresponds to 4° east (since 364° - 360° 

= 4°). In contrast, latitude values, such as 35.1250 for Bou-Saada, are 

straightforward, indicating degrees north of the Equator without any 

transformations. The comments in the code indicate that coordinates are 

incremented by 0.25 degrees, enhancing precision in geographic 

representation. This systematic approach ensures accurate calculations of 

temperature averages and other climate variables within defined geographic 

boxes, thereby facilitating a thorough analysis of climate change impacts 

across selected locations. Overall, the chosen coordinate format is essential 

for aligning with the dataset and enabling precise data extraction and analysis 

in the context of climate modeling. 

Later in the script, code designed to calculate the yearly average temperature 

within a specific geographic box based on climate model data was created.  

 

% Calculate yearly average and store it 

indx_al = lon==longitude_al; %ordinal number of node 

corresponding to longitude 

indy_al = lat==lattitude_al; %ordinal number of node 

corresponding to lattitude 
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nlonpoint_al=find(any(indx_al>0,2)); %numerical value of the 

lon node 

nlatpoint_al=find(any(indy_al>0,2)); %numerical value of the 

lat node 

 

“indx_al” and “indy_al” identify the indices in the longitude and latitude 

arrays that match the specified coordinates (longitude_al and latitude_al). 

“nlonpoint_al” and “nlatpoint_al” find the exact numerical positions of these 

indices. 

 

nlon_al = [nlonpoint_al - 2, nlonpoint_al - 1, nlonpoint_al, 

nlonpoint_al + 1, nlonpoint_al + 2]; 

nlat_al = [nlatpoint_al - 2, nlatpoint_al - 1, nlatpoint_al, 

nlatpoint_al + 1, nlatpoint_al + 2]; 

 

Last two of the previous lines create a list of indices representing a box 

centered around the specified point, extending 2 units in all directions. 

 

%reducing dimensions of variable array,  x and y-->1, 

coordinate specific variable/time array 

ACCES245_varData_al = squeeze(ACCES245_data(nlon_al, nlat_al, 

:)); %daily temperatures at specific box 

ACCES245_tasyearavg_al= nanmean(ACCES245_varData_al, 

'all');%yearly average at box/one value 
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“squeeze” reduces the dimensions of the data array, isolating the data for the 

specific geographic box. 

“nanmean” calculates the mean temperature, ignoring any NaN values, to find 

the yearly average for the specified box. 

 

ACCES585_varData_al = squeeze(ACCES585_data(nlon_al, nlat_al, 

:)); 

ACCES585_tasyearavg_al = nanmean(ACCES585_varData_al, 'all'); 

CESM245_varData_al = squeeze(CESM245_data(nlon_al, nlat_al, 

:)); 

CESM245_tasyearavg_al = nanmean(CESM245_varData_al, 'all'); 

CESM585_varData_al = squeeze(CESM585_data(nlon_al, nlat_al, 

:)); 

CESM585_tasyearavg_al = nanmean(CESM585_varData_al, 'all'); 

ECE3245_varData_al = squeeze(ECE3245_data(nlon_al, nlat_al, 

:)); 

ECE3245_tasyearavg_al = nanmean(ECE3245_varData_al, 'all'); 

ECE3585_varData_al = squeeze(ECE3585_data(nlon_al, nlat_al, 

:)); 

ECE3585_tasyearavg_al = nanmean(ECE3585_varData_al, 'all'); 

GFDLESM4245_varData_al = squeeze(GFDLESM4245_data(nlon_al, 

nlat_al, :)); 

GFDLESM4245_tasyearavg_al = nanmean(GFDLESM4245_varData_al, 

'all'); 

GFDLESM4585_varData_al = squeeze(GFDLESM4585_data(nlon_al, 

nlat_al, :)); 

GFDLESM4585_tasyearavg_al = nanmean(GFDLESM4585_varData_al, 

'all'); 
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Previous section repeats the extraction and averaging process for various 

climate model datasets, allowing for comparison between different scenarios 

(e.g., different emission scenarios or different climate models). 

 

 

Figure 4. Analysis domain and location of boxes. From Google Satellite 

imagery processed in QGIS using doc.csv file. 

As depicted in figure 4, seven box locations are visible, and it is clear that for 

this analysis Italy was processed in the most detail (with 5 box locations 

within the country), and the rest of the Mediterranean is rounded out by box 

locations in Croatia and one in Northern Sahara Desert (Bou-Saada, Algeria). 

This methodology allows us to determine the time series of each variable in 

each box in order to be able to record individual changes in certain locations.  
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Location Latitude (o) Longitude (o) Corner 

1 Bou-Saada desert, Algeria 

 

 

35.625 4.50 NW 

  

34.625 4.5 SW 

34.625 3.5 SE 

35.625 3.5 NE 

Center coordinate 35.125 4.00 

2 Sardegna, Italy 

 

 

40.625 9.5 NW 

39.625 9.5 SW 

39.625 8.5 SE 

40.625 8.5 NE 

Center coordinate 40.125 9.00 
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3 Milano, Italy 

 

 

45.875 9.75 NW 

44.875 9.75 SW 

44.875 8.75 SE 

45.875 8.75 NE 

Center coordinate 45.375 9.25 

4 Marche region, Italy 

 

 

 

43.625 13.5 NW 

42.625 13.5 SW 

42.625 12.5 SE 

43.625 12.5 NE 

Center coordinate 43.125 13.00 

5 Palermo, Italy 

 

38.125 14.25 NW 

37.125 14.25 SW 
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37.125 13.25 SE 

38.125 13.25 NE 

Center coordinate 37.625 13.75 

6 Zagreb, Croatia 

 

 

 

45.625 15.75 NW 

44.625 15.75 SW 

44.625 14.75 SE 

45.625 14.75 NE 

Center coordinate 45.125 15.25 

7 Bari, Italy 

 

 

 

41.125 17 NW 

40.125 17 SW 

40.125 16 SE 

41.125 16.00 NE 
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Center coordinate 40.625 16.5 

Mediterranean basin 

 

 

50 -10.00 NW 

30 -10.00 SW 

30 30.00 SE 

50 30.00 NE 

Table 2. Box coordinates for each of 7 locations and for the whole 

domain. The Center coordinates of each box are highlighted in yellow. 

 

2.3. Determination of the baseline temperature 

 

For determining the baseline temperature, an average over a 31-year 

(1950 - 1980) period over 7 locations was obtained. The World 

Meteorological Organization considers a thirty-year period to be the 

minimum required to calculate the average climate, known as a climate 

normal (Morice et al., 2021). Climate normals are updated at the end of every 

decade (Rigal et al., 2019). This kind of calculation is important in order to 

be able to include extremes that do not repeat every year, as well as to make 

it easier to follow seasonal changes. This way of determining climate also 

covers deviations in climatic variables such as volcanic eruptions, floods. To 
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determine the baseline temperature the historical temperature data was 

uploaded into the MATLAB environment. Data from 1950 - 1980 was used 

(31-year period/31 files). For each year/file a yearly average per node was 

made (161x81x365 becomes 161x81x1) and then we averaged all the 31 

years/files. From the 31-year average for all nodes in the Mediterranean basin 

7 locations are extracted using the indices of coordinates that are shown in 

Table 2. Next step was extracting the modeled data. For each model/scenario 

all the files are read and all the days are averaged to obtain yearly averages. 

This data is stored in matrices for every scenario/model (8 matrices) which 

contain all the yearly averages of 86 years. Out of every of these matrices 

nodes corresponding to the 7 locations were extracted. Now for every 

model/scenario the average of locations is done to obtain a scenario time plot 

of 86 years (2015-2100). The following text contains the MATLAB code used 

to calculate the baseline temperature, in reality the code was coupled with the 

box coordinates of all locations and was used to determine the crossing year; 

that code will be shown in its entirety in the next paragraph. The code shown 

in this section has been edited to show lines needed for determining only the 

baseline temperature. 

 

histplot_prefix = 'tas_day_ACCESS-

CM2_historical_r1i1p1f1_gn_'; 

histplot_start_year = 1950; 

histplot_end_year = 2014; 
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% Initialize arrays to store yearly averages for historical 

data 

hist_yearly_averages = zeros(hist_end_year - hist_start_year 

+ 1, 1); 

hist_years = hist_start_year:hist_end_year; 

hyears = abs(hist_years); 

% Initialize matrices to store yearly averages for specific 

locations for 

% historical data 

hist_yearly_averages_al = zeros(hist_end_year - 

hist_start_year + 1, 1); 

hist_yearly_averages_cr = zeros(hist_end_year - 

hist_start_year + 1, 1); 

hist_yearly_averages_ba = zeros(hist_end_year - 

hist_start_year + 1, 1); 

hist_yearly_averages_pa = zeros(hist_end_year - 

hist_start_year + 1, 1); 

hist_yearly_averages_ma = zeros(hist_end_year - 

hist_start_year + 1, 1); 

hist_yearly_averages_mi = zeros(hist_end_year - 

hist_start_year + 1, 1); 

hist_yearly_averages_sa = zeros(hist_end_year - 

hist_start_year + 1, 1); 

% Loop over each year FOR HISTORICAL DATA 

for j = 1:length(hyears) 

% Construct filename for the current year 
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hist_filename = sprintf('%s%d%s', hist_prefix, hyears(j), 

hist_suffix); 

% Read data from the current file 

hist_data = ncread(hist_filename, var); 

%reducing dimensions of variable array,  x and y-->1, 

coordinate specific variable/time array 

hist_varData_al = squeeze(hist_data(nlon_al, nlat_al, :)); 

hist_tasyearavg_al= nanmean(hist_varData_al, 

'all');%numerical value/yearly average of box 

hist_varData_cr = squeeze(hist_data(nlon_cr, nlat_cr, :)); 

hist_tasyearavg_cr= nanmean(hist_varData_cr, 'all'); 

hist_varData_ba = squeeze(hist_data(nlon_ba, nlat_ba, :)); 

hist_tasyearavg_ba= nanmean(hist_varData_ba, 'all'); 

hist_varData_pa = squeeze(hist_data(nlon_pa, nlat_pa, :)); 

hist_tasyearavg_pa= nanmean(hist_varData_pa, 'all'); 

hist_varData_ma = squeeze(hist_data(nlon_ma, nlat_ma, :)); 

hist_tasyearavg_ma= nanmean(hist_varData_ma, 'all'); 

hist_varData_mi = squeeze(hist_data(nlon_mi, nlat_mi, :)); 

hist_tasyearavg_mi= nanmean(hist_varData_mi, 'all'); 

hist_varData_sa = squeeze(hist_data(nlon_sa, nlat_sa, :)); 

hist_tasyearavg_sa= nanmean(hist_varData_sa, 'all'); 

% Store yearly averages in matrices 

hist_yearly_averages_al(j) = hist_tasyearavg_al; 
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hist_yearly_averages_cr(j) = hist_tasyearavg_cr; 

hist_yearly_averages_ba(j) = hist_tasyearavg_ba; 

hist_yearly_averages_pa(j) = hist_tasyearavg_pa; 

hist_yearly_averages_ma(j) = hist_tasyearavg_ma; 

hist_yearly_averages_mi(j) = hist_tasyearavg_mi; 

hist_yearly_averages_sa(j) = hist_tasyearavg_sa; 

end 

% historical data Calculate the average along each row to 

create timepolot 

% of yearly averages 

hist_yearly_averages_avg = mean(hist_yearly_averages, 2); 

histplot_yearly_averages_avg = mean(histplot_yearly_averages, 

2); 

%baseline temperature per location 

baseline_al = mean(hist_yearly_averages_al) 

baseline_cr = mean(hist_yearly_averages_cr) 

baseline_ba = mean(hist_yearly_averages_ba) 

baseline_pa = mean(hist_yearly_averages_pa) 

baseline_ma = mean(hist_yearly_averages_ma) 

baseline_mi = mean(hist_yearly_averages_mi) 

baseline_sa = mean(hist_yearly_averages_sa) 

%baseline temperature medditerranean 
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baseline = mean(hist_yearly_averages_avg) 

% historical data Calculate the average along each row to 

create timepolot 

% of yearly averages 

hist_yearly_averages_avg = mean(hist_yearly_averages, 2); 

histplot_yearly_averages_avg = mean(histplot_yearly_averages, 

2); 

%baseline temperature per location 

baseline_al = mean(hist_yearly_averages_al) 

baseline_cr = mean(hist_yearly_averages_cr) 

baseline_ba = mean(hist_yearly_averages_ba) 

baseline_pa = mean(hist_yearly_averages_pa) 

baseline_ma = mean(hist_yearly_averages_ma) 

baseline_mi = mean(hist_yearly_averages_mi) 

baseline_sa = mean(hist_yearly_averages_sa) 

%baseline temperature medditerranean 

baseline = mean(hist_yearly_averages_avg) 

 

 

2.4.  Determination of the crossing year 

 

For the determination of the crossing year only the mean surface-air 

temperature (tas) variable was used.  A baseline temperature was compared 
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with the yearly average over the 7 locations and multi-model scenario (SSP2-

4.5 and SSP5-8.5) data (2015-2100), to determine the temperature anomaly 

across the timespan, and crossing year when the temperature anomaly reaches 

2oC (1.75oC from our baseline period of 1950-1980, Park, et al.,2022). To 

determine the crossing year the data was normalized by coupling the multi 

model data, per scenario, to the historical data and recalculating the values 

using four different methods; the “moving mean” with a 30-year window and 

the “square root moving mean” method with a 15-year window, to add larger 

weights to older data within the window, to both minimize the effects of the 

increasing rate of heating and decreasing the modeled data’s rising inaccuracy 

while going further into the future. Then, the “moving mean” method using a 

30-year window but this time by taking into account pure arithmetic mean - 

predicts too early years and does not match reality due to the influence of the 

increasing growth rate that raises the temperature. Finally, the last method 

was the “moving median” with a 30-year window, which we used in the 

further analysis because it matches the modeled temperature best. In the 

following text the part of the MATLAB code for determination of the crossing 

year is given. The code includes all analyzed models and scenarios, contains 

all coordinates for all seven locations, and its results will be presented further 

in this paper.  

 

% Apply a moving average filter with moving mean method 
Historical_anomaly_smoothedmedian = 

movmedian(Historical_combined_matrix,window_size); 
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SSP245combined_anomaly_smoothedmedian = 

movmedian(SSP245combined_matrix,window_size); 
SSP585combined_anomaly_smoothedmedian = 

movmedian(SSP585combined_matrix,window_size); 

 

By establishing a moving median from the historical combined matrix (that 

contained total historical data), for the SSP2-4.5 scenario and SSP5-8.5 

scenario in the same way. This created the three matrices that contain the main 

data from the plotting of the crossing year.  

 
% Find the index of the first value exceeding 1.75°C in 

SSP245combined_anomaly_smoothed 
index_SSP245median = 

find(SSP245combined_anomaly_smoothedmedian > 1.75, 1, 

'first'); 
% Find the index of the first value exceeding 1.75°C in 

SSP585combined_anomaly_smoothed 
index_SSP585median = 

find(SSP585combined_anomaly_smoothedmedian > 1.75, 1, 

'first'); 

 

To define the crossing year the first index in the matrices SSP2-4.5 and SSP5-

8.5 individually, where the temperature exceeds 1.75 Celsius degrees. 

  

% Find the value in totalyears corresponding to index_SSP245 
value_SSP245median = totalyears(index_SSP245median); 
% Find the value in totalyears corresponding to index_SSP585 
value_SSP585median = totalyears(index_SSP585median); 

 

The index of the exceeding value was then located in the total year matrix to 

identify the year associated with the exceeding value and was displayed as 

text in the next two commands.  
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% Display the results 
disp(['Value in totalyears corresponding to index_SSP245 

using moving median: ', num2str(value_SSP245median)]); 
disp(['Value in totalyears corresponding to index_SSP585 

using moving median: ', num2str(value_SSP585median)]); 

 

To plot the data the three matrices containing the moving median of all four 

models were plotted against the total year (1950-2100) in corresponding 

colors. The matrices containing the raw data were also plotted against time to 

give sense of variability and the range of the data.  

 

% Plotting moving median method 
figure; 
hold on; 
% Plot Historical_anomaly_raw data 
plot(historical_years, Historical_combined_matrix (1:66), 'k-

', 'LineWidth', 1.5); 
% Plot SSP245_anomaly_raw data 
plot(future_years, SSP245combined_matrix(66:end), 'c-', 

'LineWidth', 1.5); 
% Plot SSP585_anomaly_raw data 
plot(future_years, SSP585combined_matrix(66:end), 'm-', 

'LineWidth', 1.5); 
% Plot Historical_anomaly_smoothed 
plot(historical_years, Historical_anomaly_smoothedmedian 

(1:66), 'k-', 'LineWidth', 1.5); 
% Plot SSP245_anomaly_smoothed 
plot(future_years, 

SSP245combined_anomaly_smoothedmedian(66:end), 'b-', 

'LineWidth', 1.5); 
% Plot SSP585_anomaly_smoothed 
plot(future_years, 

SSP585combined_anomaly_smoothedmedian(66:end), 'r-', 

'LineWidth', 1.5); 
% Add a horizontal line at 1.75 degrees Celsius 
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line([1950, 2100], [1.75, 1.75], 'Color', 'g', 'LineStyle', 

'--', 'LineWidth', 1.5); 
ylim([min_value, max_value]); 
% Set plot title and labels 
title('Mediterranean Temperature Anomalies - Moving Median 

method'); 
xlabel('Year'); 
ylabel('Temperature Anomaly (°C)'); 
% Set x-axis limit to span from 1950 to 2100 
xlim([1950, 2100]); 

 

Here, minimum and maximum values for the y-axis are set to ensure that the 

plot displays the temperature anomalies within a specified range. Also, it 

labels the y-axis as "Temperature Anomaly (°C)", indicating that the vertical 

axis represents temperature anomalies measured in degrees Celsius. 

 

% Add legend 
legend('Historical Raw Data', ('SSP245 Raw Data'), ('SSP585 

Raw Data'), ... 
   'Historical Moving Median', ... 
   ['SSP245  Moving Median(' num2str(value_SSP245mean) ')'], 

... 
   ['SSP585  Moving Median(' num2str(value_SSP585mean) ')'], 

... 
   'Location', 'northwest'); 
grid on; 
hold off; 

 
 

2.5. Variable analysis 

 

For every variable a baseline value was determined (1950-1980), by 

averaging over the selected locations. This methodology is the same as that 

we have utilized in t determining the crossing year. The daily data was 
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averaged for every year (model data 2015-2100, historical data 1950-2014),  

except for precipitation where the daily data in mm/s was summed up and 

multiplied by 86400 to achieve yearly value in mm/year.   

Averaging daily data for each year is commonly used for most variables (like 

temperature or humidity). For precipitation, the approach differs slightly. For 

precipitation data, it's common to sum up daily values rather than averaging 

them, since precipitation represents cumulative amounts over time. 

Multiplying daily precipitation data by 86,400 (the number of seconds in a 

day) to convert from mm/s to mm/day is standard practice in climate 

modeling, as models often report precipitation in mm/s. Climate models often 

report precipitation as a flux (rate), which is typically in mm/s. To calculate 

the total yearly precipitation, you need to convert the daily flux into a more 

understandable unit. Multiplying by 86,400 converts from a rate (mm/s) into 

a daily amount (mm/day). Then, summing the daily values over a year gives 

you the total precipitation for that year in mm/year. This method ensures that 

the data is properly scaled to represent real-world precipitation over time. 

 

Then the data corresponding to the 7 locations was extracted and averaged to 

determine an average value for the Mediterranean for every analyzed model 

and scenario, including the historical data. All of the data was subtracted by 

the baseline value to get the values of the anomalies. Again, a mean anomaly 

was determined for each scenario by averaging the four models. A time plot 

was created including the historical data, mean modeled anomaly and ranges 
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of models within the scenario. A map of the mean anomaly that was averaged 

over a 31-year period around the crossing year was created for both scenarios. 

A graph was created containing a boxplot for each scenario and model, 

plotting the anomalies at different locations, highlighting the variability 

between models/scenarios. Time plots are made for the entire Mediterranean 

and for each location separately. Each time plot contains an average curve for 

each scenario, ranges values from each scenario and are interpolated with the 

“moving median” method to show the deviations between individual 

locations and the entire Mediterranean, and for the Mediterranean time plot 

to show the deviations of the different models and visually show the 

approximation method. Again, in the following text the MATLAB code used 

for the analysis of variables is presented. In the first two lines of the input 

parameters section variable name should be changed and corresponding to the 

variable unit should be changed, too. In continuation it is possible to 

manipulate the location of the legend. The script contains the previously 

written names of the variables, as well as their units of measurement, contains 

the box coordinates of all 7 locations, but also the coordinates of the 

Mediterranean that were agreed upon in the previous paragraphs. The code 

script was made for four variables (hurs, tas, rsds, rlds and separately, pr), 

separate script was made for the fifth variable, i.e. precipitation, and only the 

part that is different from the code presented below will be delivered at the 

very end of this paragraph.  
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All the files associated with the chosen variable were iteratively opened 

with data from chosen boxes extracted from these files by connecting the 

value of longitude and latitude with their index in the format “.nc4” files. 

 

for i = 1:length(years) 

  

   % Construct filename for the current year 

   ACCES245_filename = sprintf('%s%d%s', ACCES245_prefix, 

years(i), ACCES245_suffix); 

   ACCES585_filename = sprintf('%s%d%s', ACCES585_prefix, 

years(i), suffix); 

   CESM245_filename = sprintf('%s%d%s', CESM245_prefix, 

years(i), suffix); 

   ... 

lon = ncread(ACCES245_filename,'lon'); %read longitude vector 

lat = ncread(ACCES245_filename,'lat'); %read lattitude vector 

time = ncread(ACCES245_filename,'time'); % read time vector 

   % Read data from the current file 

   ACCES245_data = ncread(ACCES245_filename, var); 

   ACCES585_data = ncread(ACCES585_filename, var); 

   CESM245_data = ncread(CESM245_filename, var); 

   ... 

   

   % Calculate yearly average and store it 

indx_al = lon==longitude_al; %ordinal number of node 

corresponding to longitude 

indy_al = lat==lattitude_al; %ordinal number of node 

corresponding to lattitude 

nlonpoint_al=find(any(indx_al>0,2)); %numerical value of the 

lon node 

nlatpoint_al=find(any(indy_al>0,2)); %numerical value of the 

lat node 

nlon_al = [nlonpoint_al - 2, nlonpoint_al - 1, nlonpoint_al, 

nlonpoint_al + 1, nlonpoint_al + 2]; 

nlat_al = [nlatpoint_al - 2, nlatpoint_al - 1, nlatpoint_al, 

nlatpoint_al + 1, nlatpoint_al + 2]; 

%reducing dimensions of variable array,  x and y-->1, 

coordinate specific variable/time array 



37 

 

 

ACCES245_varData_al = squeeze(ACCES245_data(nlon_al, nlat_al, 

:)); %daily temperatures at specific node 

ACCES245_tasyearavg_al= nanmean(ACCES245_varData_al, 

'all');%yearly average at node/one value 

ACCES585_varData_al = squeeze(ACCES585_data(nlon_al, nlat_al, 

:)); 

ACCES585_tasyearavg_al = nanmean(ACCES585_varData_al, 'all'); 

CESM245_varData_al = squeeze(CESM245_data(nlon_al, nlat_al, 

:)); 

CESM245_tasyearavg_al = nanmean(CESM245_varData_al, 'all'); 

... 

%baseline temperature per location 

baseline_al = mean(hist_yearly_averages_al); 

baseline_cr = mean(hist_yearly_averages_cr); 

baseline_ba = mean(hist_yearly_averages_ba); 

baseline_pa = mean(hist_yearly_averages_pa); 

baseline_ma = mean(hist_yearly_averages_ma); 

baseline_mi = mean(hist_yearly_averages_mi); 

baseline_sa = mean(hist_yearly_averages_sa); 

%baseline temperature medditerranean 

baseline = mean(hist_yearly_averages_avg) 

 

A baseline value for each location and the overall baseline value has been 

calculated to illustrate the magnitude of anomaly. 

 

% Define the input matrices for SSP245 and SSP585 

SSP245_matrices = [ACCES245_anomaly, CESM245_anomaly, 

ECE3245_anomaly, GFDLESM4245_anomaly]; 

SSP585_matrices = [ACCES585_anomaly, CESM585_anomaly, 

ECE3585_anomaly, GFDLESM4585_anomaly]; 

 

For each scenario the data from all models was collected. 

 

%variable anomaly value at crossing year 

% Define the offset 

offset = -15:15; 

% Calculate the mean of values with the specified index range 
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varvalue245 = mean(SSP245combined_matrix(index_SSP245sq + 

offset)); 

varvalue585 = mean(SSP585combined_matrix(index_SSP585sq + 

offset)); 

 

An averaged value of the variable is calculated over a 30 year window, to 

minimize irregularities. 

 

window_size = 30; 

% Apply a moving average filter with square root method 

Historical_anomaly_smoothedmedian = 

movmedian(Historical_combined_matrix,window_size); 

SSP245combined_anomaly_smoothedmedian = 

movmedian(SSP245combined_matrix,window_size); 

SSP585combined_anomaly_smoothedmedian = 

movmedian(SSP585combined_matrix,window_size); 

%%%%%%%%Plotting senario averages and ranges%%%%%%%%%%% 

figure; 

hold on; 

% Fill the area between the curves 

fill([totalyears, fliplr(totalyears)], [SSP245combined_max1, 

fliplr(SSP245combined_min1)], 'b', 'EdgeColor', 'none', 

'FaceAlpha', 0.2, 'LineWidth', 0.01); 

fill([totalyears, fliplr(totalyears)], [SSP585combined_max1, 

fliplr(SSP585combined_min1)], 'r', 'EdgeColor', 'none', 

'FaceAlpha', 0.3, 'LineWidth', 0.01); 

 

A moving median is performed upon the datasets of scenarios, SSP2-4.5 and 

SSP5-8.5 with a 30 year window. The ranges are plotted for each scenario by 



39 

 

 

filling the area between the maximal and minimal data points from all models 

within a scenario. Later, raw data and moving median data was plotted as 

well. The same has been done for the Mediterranean and for each location, 

with the only difference being that more specific data points were used, 

corresponding to a certain geographic location. 

To plot differences in maps, a mean crossing year was decided to be able to 

visually compare maps from the same period.  

 

mean_crossing_year = round(mean([Crossingyear_SSP245, 

Crossingyear_SSP585])); 

% Calculate the anomaly map for 245 

Anomaly_map245 = Crossingyear_map245 - Historical_map; 

% Calculate the anomaly map for 585 

Anomaly_map585 = Crossingyear_map585 - Historical_map; 

pcolor(lon_grid1, lat_grid1, Anomaly_map245'); 

colorbar('Limits', [min_value, max_value]); 

colormap('jet'); 

%colormap(flipud(jet)); 

caxis([min_value, max_value]); % Set colormap 

limitsxlabel('Longitude'); 

ylabel('Latitude'); 

title(['Mediterranean ' var ' (' unit ') Anomaly/Difference 

for Averaged SSP2-4.5 Scenarios, Between Periods: 1950-1980 

and 30-year Average, Centered at Mean Crossing Year = ' 

num2str(mean_crossing_year)]); 

shading interp; % Interpolate colors between grid points 

axis equal; 

 

The map is simply a 2D matrix, containing 30year average values of the 

variable for each longitude, latitude pair. it is plotted with the “pcolor” 

function. 
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% Add points to the plot 

hold on; 

scatter(lon(nlonpoint_al), lat(nlatpoint_al), 75, 'ro', 

'filled', 'DisplayName', ['Bou-Saada,AL: ', 

num2str(nanmean(Anomaly_map245(nlon_al, nlat_al),'all'))]); 

scatter(lon(nlonpoint_ba), lat(nlatpoint_ba), 75, 'rs', 

'filled', 'DisplayName', ['Bari,IT: ', 

num2str(nanmean(Anomaly_map245(nlon_ba, nlat_ba),'all'))]); 

scatter(lon(nlonpoint_cr), lat(nlatpoint_cr), 75, 'bo', 

'filled', 'DisplayName', ['Zagreb,CR: ', 

num2str(nanmean(Anomaly_map245(nlon_cr, nlat_cr),'all'))]); 

scatter(lon(nlonpoint_ma), lat(nlatpoint_ma), 75, 'bs', 

'filled', 'DisplayName', ['Marche,IT: ', 

num2str(nanmean(Anomaly_map245(nlon_ma, nlat_ma),'all'))]); 

scatter(lon(nlonpoint_mi), lat(nlatpoint_mi), 75, 'ko', 

'filled', 'DisplayName', ['Milano,IT: ', 

num2str(nanmean(Anomaly_map245(nlon_mi, nlat_mi),'all'))]); 

scatter(lon(nlonpoint_pa), lat(nlatpoint_pa), 75, 'ks', 

'filled', 'DisplayName', ['Palermo,IT: ', 

num2str(nanmean(Anomaly_map245(nlon_pa, nlat_pa),'all'))]); 

scatter(lon(nlonpoint_sa), lat(nlatpoint_sa), 75, 'm^', 

'filled', 'DisplayName', ['Sardegna,IT: ', 

num2str(nanmean(Anomaly_map245(nlon_sa, nlat_sa),'all'))]); 

% Define the coordinates of the nodes 

x_nodes = [lon(nlonpoint_al); lon(nlonpoint_ba); 

lon(nlonpoint_cr);lon(nlonpoint_ma);lon(nlonpoint_mi);lon(nlo

npoint_pa);lon(nlonpoint_sa)]; % Center nodes 

y_nodes = [lat(nlatpoint_al); lat(nlatpoint_ba); 

lat(nlatpoint_cr); lat(nlatpoint_ma); lat(nlatpoint_mi); 

lat(nlatpoint_pa);lat(nlatpoint_sa)]; % Example nodes 

% Calculate the width and height of the rectangle 

width = 1; % width 

height = 1; % height 

% Plot the rectangles around the nodes 

hold on; 

for i = 1:numel(x_nodes) 

   rectangle('Position', [x_nodes(i)-width/2, y_nodes(i)-

height/2, width, height], 'EdgeColor', 'k', 'LineWidth', 1); 

end 

hold off; 

% Display legend 

legend('Location',  'northwest'); 

h = legend; 
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h.String{1} = ['Anomaly per location (', unit, '):']; 

% Adjust the y-axis limits to reduce empty space 

ymin1 = min(lat(:)); 

ymax1 = max(lat(:)); 

axis([min(lon(:)) max(lon(:)) ymin1 ymax1]); 

 

Center points and their corresponding boxes are added to the graph as well 

as the averaged variable values at location in the legend. 
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Chapter 3. 
 
Concluding Remarks 
 
 

3. Results 

 

The results indicate that in the "extreme" scenario (SSP5-8.5), which 

gave results for the year 2025 as a crossing year, the projected anomalies are 

generally slightly smaller than those in the SSP2-4.5 scenario, which projects 

conditions for the year 2028. For instance, temperature anomalies in Bou-

Saada, Algeria, and several regions in Italy show higher values under SSP2-

4.5 (Table 3). This trend is also evident in relative humidity and shortwave 

radiation anomalies, where the SSP2-4.5 scenario consistently exhibits larger 

deviations compared to SSP5-8.5. Despite SSP5-8.5 representing a higher 

greenhouse gas concentration pathway, the earlier crossing year of 2025 

compared to 2028 for SSP2-4.5 likely accounts for these differences. This 

suggests that while SSP5-8.5 projects more immediate impacts, the long-term 

anomalies may be more pronounced under SSP2-4.5 as the effects of climate 

change continue to intensify over a longer period. 

For the SSP5-8.5 scenario, the crossing year is 2025, while for the SSP2-4.5 

scenario, it is 2028. The values presented for these scenarios correspond to 

the exact data points from the respective years in the model, reflecting the 
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temperature or precipitation anomaly for that specific year. In contrast, the 

values shown on the maps represent the mean anomaly averaged over a 30-

year period centered around the crossing year. This approach ensures that 

the maps provide a more comprehensive, smoothed representation of the 

long-term climate impacts, rather than focusing on a single year's data, 

which might be subject to short-term variability. 

 

 

 

 

  

Variable 

Tas Anomaly 

(°C) 

Pr Anomaly 

(mm/y) 

Hurs 

Anomaly  

(%) 

Rsds 

Anomaly 

(W/m²) 

Rlds 

Anomaly 

(W/m²) 

Location 

SSP 

2-4.5 

SSP 

5-8.5 

SSP 

2-4.5 

SSP 5-

8.5 

SSP 

2-4.5 

SSP 

5-8.5 

SSP 

2-

4.5 

SSP 

5-

8.5 

SSP 

2-4.5 

SSP 

5-8.5 

Bou-Saada, 

Algeria (AL) 2.00 1.94 -20.46 -7.31 -1.27 -0.88 2.37 1.48 9.44 9.50 

Sardegna, 

Italy (IT) 1.61 1.55 -2.37 -17.65 -0.21 -0.35 4.93 4.56 7.62 7.25 
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Milano, Italy 

(IT) 1.99 1.89 85.67 87.46 -0.89 -0.98 4.57 4.60 8.57 7.92 

Marche, Italy 

(IT) 1.92 1.89 17.60 17.68 -1.04 -1.14 5.59 5.29 7.68 7.32 

Palermo, Italy 

(IT) 1.61 1.54 -7.17 -19.51 -0.12 -0.15 4.53 3.94 8.38 8.07 

Zagreb, 

Croatia (CR) 2.05 2.00 61.19 71.35 -1.53 -1.58 6.70 6.37 8.30 7.91 

Bari, Italy 

(IT) 1.82 1.75 -3.62 2.32 -0.70 -0.56 5.65 4.72 7.91 7.76 

Mediterranean 

Region 1.86 1.79 18.69 19.2 -0.21 -0.26 4.91 4.42 8.27 7.96 

 

Table 3 Table 3 provides a comprehensive overview of the projected 

climate anomalies under two different Shared Socioeconomic Pathway 

(SSP) scenarios: SSP2-4.5 and SSP5-8.5, for several locations within the 

Mediterranean basin. This includes temperature anomalies (Tas), 

precipitation anomalies (Pr), relative humidity anomalies (Hurs), 

shortwave radiation anomalies (Rsds), and longwave radiation 

anomalies (Rlds). 
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For Bou-Saada, Algeria (AL), the temperature anomaly is analyzed to be 

higher under SSP2-4.5 compared to SSP5-8.5. Precipitation anomalies are the 

same for both scenarios, indicating a significant decrease in rainfall. The 

relative humidity anomalies show a larger decrease under SSP2-4.5 compared 

to SSP5-8.5. Shortwave radiation anomalies are higher under SSP2-4.5, while 

longwave radiation anomalies are almost the same for both scenarios. 

 

In Sardegna, Italy (IT), temperature anomalies are slightly higher under 

SSP2-4.5. Precipitation anomalies remain consistent across both scenarios, 

showing a decrease in rainfall. Relative humidity anomalies show a small 

decrease, with SSP2-4.5 being marginally higher. Shortwave radiation 

anomalies are higher under SSP2-4.5, whereas longwave radiation anomalies 

are lower under SSP5-8.5. 

 

Milano, Italy (IT) shows similar temperature anomalies across both scenarios, 

with a slight decrease under SSP5-8.5. Precipitation anomalies indicate a 

consistent decrease in rainfall. Relative humidity anomalies are slightly 

higher under SSP2-4.5. Shortwave radiation anomalies are higher under 

SSP2-4.5, while longwave radiation anomalies are slightly lower under SSP5-

8.5. 

 

For Marche, Italy (IT), temperature anomalies are consistent across both 

scenarios. Precipitation anomalies show a moderate decrease. Relative 
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humidity anomalies are slightly higher under SSP2-4.5. Shortwave radiation 

anomalies are higher under SSP2-4.5, whereas longwave radiation anomalies 

are lower under SSP5-8.5. 

 

Palermo, Italy (IT) shows similar temperature anomalies across both 

scenarios. Precipitation anomalies indicate a decrease in rainfall. Relative 

humidity anomalies are slightly higher under SSP2-4.5. Shortwave radiation 

anomalies are higher under SSP2-4.5, while longwave radiation anomalies 

are lower under SSP5-8.5. 

 

Zagreb, Croatia (CR) shows a slight increase in precipitation anomalies, 

which is unique compared to other locations. Temperature anomalies are 

consistent across both scenarios. Relative humidity anomalies are slightly 

higher under SSP2-4.5. Shortwave radiation anomalies are higher under 

SSP2-4.5, while longwave radiation anomalies are lower under SSP5-8.5. 

 

Bari, Italy (IT) shows consistent temperature anomalies across both scenarios. 

Precipitation anomalies indicate a slight decrease in rainfall. Relative 

humidity anomalies are slightly higher under SSP2-4.5. Shortwave radiation 

anomalies are higher under SSP2-4.5, whereas longwave radiation anomalies 

are lower under SSP5-8.5. 
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The overall Mediterranean Region shows consistent temperature anomalies 

across both scenarios. Precipitation anomalies show an increase under SSP5-

8.5. Relative humidity anomalies are slightly higher under SSP2-4.5. 

Shortwave radiation anomalies are higher under SSP2-4.5, while longwave 

radiation anomalies are lower under SSP5-8.5. Precise data obtained 

throughout this thesis will be shown and explained in detail, in paragraph 

“3.3. Analysis of variables on selected locations”.  

 

 

3.1. Determination of the baseline temperature 

 

The baseline temperature, was calculated as a spatial-temporal 

average over a 31-year (1950 - 1980) period and over the seven locations. 

These two averages provided the following value:  

Tbase =  286.6750 Kelvin (13.525 degrees Celsius). 

   

 

 

3.2. Determination of the crossing year 

 

The following analysis reveals the crossing years for temperature 

anomalies using various methods and under two different SSP (Shared 
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Socioeconomic Pathway) scenarios, with the baseline temperature defined 

above.  

      

Method SSP245 Crossing Year SSP585 Crossing Year 

Square Root Method 2038 2036 

Moving Mean Method 2026 2025 

Raw Data Method 2019 2019 

Moving Median Method 2028 2025 

Table 4 This table is summarizing the crossing years for temperature 

anomalies using various methods under SSP2-4.5 and SSP5-8.5 scenarios. 

 

 The data used in this analysis was obtained from climate model projections 

and downloaded through MATLAB, following adjustments based on the 

specific model and scenario. The data was downloaded from the NASA NEX-

GDDP-CMIP6 database, accessed via the appropriate URL, which was 

customized to reflect the chosen model and scenario. The downloaded data 

was processed using several statistical methods to determine the crossing 

year, a key point in climate projections. Among the methods tested, the 

“Moving Median Method”, highlighted in yellow in Table 4, was chosen for 

further analysis due to its robustness in smoothing the data while retaining the 
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most important trends. The “Moving Median Method” is highlighted in 

yellow because this method was used in the further analysis (Table 4). 

Figure 5: This figure shows all four methods used to determine the crossing year; 

a) Moving Mean Method b) Square Root Method with a 15-year window c) 

Moving Median Method d) Square Root Method with a 30-year window 

 

Figure 5a shows the Mediterranean temperature anomalies using the “Moving 

Mean Method”. The black line represents the historical temperature 

anomalies, while the colored lines represent the projected anomalies under 

different SSP scenarios: SSP2-4.5 (blue line) projects a gradual increase in 

temperature anomalies. SSP5-8.5 (pink line) indicates a more significant 

increase in temperature anomalies. Figure 5b illustrates the Mediterranean 
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temperature anomalies using the “Square Root Method” with a 15-year 

window. Similar to panel a, the black line represents historical data, and the 

colored lines show future projections: SSP2-4.5 (blue line) projects an 

increase in temperature anomalies. SSP5-8.5 (pink line) shows a steeper 

increase in temperature anomalies. Figure 4c reports the Mediterranean 

temperature anomalies using the “Moving Median Method”. The black line 

shows historical temperature anomalies, while the colored lines represent 

future projections: SSP2-4.5 (blue line) projects a steady increase in 

temperature anomalies. SSP5-8.5 (pink line) indicates a substantial rise in 

temperature anomalies. Figure 5d shows the Mediterranean temperature 

anomalies using the “Square Root Method” with a 30-year window. The black 

line represents historical data, and the colored lines show future projections: 

SSP2-4.5 (blue line) projects an increase in temperature anomalies. SSP5-8.5 

(pink line) indicates a significant rise in temperature anomalies.  

In the graphs presented in Figure 5a-d, the green dotted line represents the 2° 

C temperature anomaly threshold above pre-industrial levels. This threshold 

is significant as it marks the point where the global temperature increase 

reaches 2° C, a critical benchmark in climate change studies. 

Exceeding this threshold is associated with severe and potentially irreversible 

impacts on global ecosystems, human societies, and weather patterns. The 

green dotted line serves as a visual reference across all the methods, allowing 

for comparison of when the temperature anomaly crosses this critical limit 

under different models and methods. 
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Figure 6 Temperature anomalies time series with the moving median 

method in the Med Basin.  

With this method, we obtained 2028 as the crossing year for the SSP2-4.5 

scenario, and 2025 for the SSP5-8.5 scenario.  

 

3.3. Analysis of variables on selected locations 
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The Mediterranean basin is a climatic hotspot, it is characterized by      

different climate and ecological zones, making it particularly sensitive to the 

impacts of climate change. This thesis analyses the projected climate 

anomalies under two different Shared Socioeconomic Pathway (SSP) 

scenarios: SSP2-4.5, which projects conditions for the crossing year on      

2028 and the SSP5-8.5 scenario with the relative crossing year on 2025. By 

analyzing key climate variables—mean daily temperature (Tas), precipitation 

(Pr), relative humidity (Hurs), shortwave radiation (Rsds), and longwave 

radiation (Rlds)—across various locations within the region, we aim to 

understand the potential future changes and their spatial implications. The 

chosen locations include Bou-Saada in Algeria, and several regions in Italy 

such as Sardegna, Milano, Marche, Palermo, as well as Zagreb in Croatia, and 

the broader Mediterranean basin. The analysis reveals that, despite SSP5-8.5 

representing a higher greenhouse gas concentration pathway, the projected 

anomalies for 2025 are generally slightly smaller than those for 2028 under 

SSP2-4.5. This counterintuitive result likely arises from the difference in the 

crossing years, suggesting that while SSP5-8.5 shows more immediate 

impacts, SSP2-4.5 may exhibit more pronounced long-term anomalies as 

climate change continues to progress. Each location displays unique 

responses to the changing climate, influenced by local geographical and 

environmental conditions. 

3.3.1. Algeria 
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In the following figure 7, it is reported the time series for the 

anomalies of the above mentioned five variables.  

 

Figure 7 Anomalies: Time plots of five variables over Algeria; a) 

temperature, b) relative humidity, c) precipitation, d) surface 

downwelling shortwave radiation, e) surface downwelling longwave 

radiation.  
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Figure 7 presents time plots for five climate variables over Algeria, 

comparing anomalies under two scenarios: SSP2-4.5 and SSP5-8.5. 

The ranges on the graphs are consistent across different locations, 

though they may vary slightly depending on the specific climate 

variable and geographic conditions. For temperature anomalies (tas) 

(fig. 7a), the y-axis typically spans from -1°C to +5°C across all 

locations, as temperature changes in the Mediterranean region tend 

to follow a similar pattern. Relative humidity anomalies (hurs) (fig. 

7b) are represented on a y-axis ranging from -7% to +7%, a uniform 

range reflecting the typical fluctuations in humidity. Precipitation 

anomalies (pr) (fig. 7c) generally range from -400 mm/year to +400 

mm/year, though local precipitation variability may cause slight 

differences between locations. Shortwave radiation anomalies (rsds) 

(fig. 7d) are shown on a y-axis ranging from -7.5 W/m² to +17.5 

W/m², indicating a consistent increase in solar radiation across all 

locations. Lastly, longwave radiation anomalies (rlds) (Fig. 7e) are 

depicted on a y-axis that spans from -10 W/m² to +30 W/m², 

reflecting the intensified greenhouse effect. The anomalies increase 

after 2020, particularly in the SSP5-8.5 scenario, reflecting the 

enhanced greenhouse effect. Overall, Figure 7 illustrates that Algeria 

will likely experience more extreme warming, drier conditions, and 

increased radiation under SSP5-8.5 compared to SSP2-4.5. 
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For the mean near-surface air temperature (tas: panel 7a), anomaly values of 

1.9963 °C for SSP2-4.5, and 1.9415 °C for SSP5-8.5 were obtained compared 

to the baseline period.  In panel 5b it is shown the near-surface relative 

humidity (hurs) anomaly of the 30-year average centered on the crossing year 

for the SSP2-4.5 scenario of -1.27 %, and for the SSP5-8.5 of -0. 87 %. The 

time plot of precipitation (pr) is shown in Fig. 7c, where the precipitation time 

plot over Algeria gives results for the SSP2-4.5 scenario of -20.4546 

mm/Year, and for the SSP5-8.5 scenario, an anomaly of -7.3079 mm/Year is 

captured compared to the baseline period. In panel 7d the shortwave surface 

downwelling radiation is shown (rsds). Anomaly of rsds is obtained, for 

SSP2-4.5 is 2.37 W/m2, and for SSP5-8.5 is 1.48 W/m2. For longwave surface 

downwelling radiation (rlds) variable (panel 7e) anomaly at crossing year, in 

SSP2-4.5 a value of 9.44 W/m2   is obtained, and for SSP5-8.5 a value of 9.45 

W/m2, both compared to the baseline period.  

 

 

3.3.2. Sardegna 

In this paragraph five variable over Sardegna were analyzed.  
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Figure 8 Time plots of each of five variables over Sardegna, Italy; a) 

temperature anomalies for Sardegna b) relative humidity anomalies for 

Sardegna c) precipitation anomalies for Sardegna d) surface 

downwelling shortwave radiation anomalies for Sardegna e) surface 

downwelling longwave radiation anomalies for Sardegna.  

Figure 8 presents time plots for five climate variables over Sardegna, Italy, 

comparing anomalies under two scenarios: SSP2-4.5 and SSP5-8.5.  
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Overall, Figure 8 demonstrates that Sardegna, like Algeria, is likely to 

experience more extreme warming, drier conditions, and increased radiation 

under the SSP5-8.5 scenario compared to SSP2-4.5. 

The historical baseline temperature is represented by the black line. For future 

projections, SSP2-4.5, shown in blue, projects a gradual increase in 

temperature anomalies, with a 30-year average centered at the crossing year 

of 2028 being 1.86 °C. The minimal and maximal anomalies at the mean 

crossing year of 2025 are 1.30 °C and 2.39 °C, respectively. SSP5-8.5, shown 

in red, indicates a more significant increase in temperature anomalies, with 

an average at the crossing year of 2025 being 1.79 °C. The minimal and 

maximal anomalies at the mean crossing year of 2025 are 1.33 °C and 2.54 

°C, respectively. The shaded areas represent the range of uncertainties for 

both SSP scenarios. The crossing years are identified as 2028 for SSP2-4.5 

and 2025 for SSP5-8.5 using the moving median method. Panel 8b depicts 

relative humidity anomalies (%) over time. The black line shows historical 

relative humidity. For future projections, SSP2-4.5, indicated in blue, shows 

a slight decline in relative humidity, with a 30-year average centered at the 

crossing year of 2028 being -0.82 %. The minimal and maximal anomalies at 

this crossing year are -2.36 % and 0.90 %, respectively. SSP5-8.5, shown in 

red, suggests a more pronounced decrease, with an average at the crossing 

year of 2025 being -0.81 %. The minimal and maximal anomalies at this 

crossing year are -2.48 % and 0.89 %, respectively. Shaded areas represent 

the uncertainty range for both SSP scenarios, with crossing years indicated 
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similarly to panel 8a. Panel 8c illustrates precipitation anomalies (mm/year) 

over time. Historical data is shown with the black line. For future projections, 

SSP2-4.5, indicated in blue, shows variability in future precipitation 

anomalies, with a 30-year average centered at the crossing year of 2028 being 

18.69 mm/year. The minimal and maximal anomalies at this crossing year are 

-104.36 mm/year and 229.16 mm/year, respectively. SSP5-8.5, shown in red, 

also shows significant variability but with a different pattern, averaging 19.19 

mm/year at the crossing year of 2025. The minimal and maximal anomalies 

at this crossing year are -97.06  mm/year and 232.93 mm/year, respectively. 

Shaded areas highlight the range of uncertainties. Figure 8d shows anomalies 

in surface downwelling shortwave radiation (W/m²) over time. Historical 

baseline is depicted with the black line. For future projections, SSP2-4.5, 

shown in blue, projects anomalies with a 30-year average centered at the 

crossing year of 2028 being +4.91 W/m². The minimal and maximal 

anomalies at this crossing year are -2.5712 W/m² and +7.83 W/m², 

respectively. SSP5-8.5, shown in red, indicates more pronounced increases, 

averaging +4.42 W/m² at the crossing year of 2025. The minimal and 

maximal anomalies at this crossing year are -2.75 W/m² and 8.22 W/m², 

respectively. Shaded areas indicate uncertainty ranges.  

Figure 8e depicts anomalies in surface downwelling longwave radiation 

(W/m²) over time. Historical data is shown with the black line. For future 

projections, SSP2-4.5, shown in blue, projects anomalies with a 30-year 

average centered at the crossing year of 2028 being 8.27 W/m². The minimal 
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and maximal anomalies at this crossing year are 4.40 W/m² and 15.12 W/m², 

respectively. SSP5-8.5, shown in red, indicates higher increases in anomalies, 

averaging 7.96 W/m² at the crossing year of 2025. The minimal and maximal 

anomalies at this crossing year are 4.72 W/m² and 15.97 W/m², respectively. 

Shaded areas highlight the uncertainties for future projections.  

Key remarks include the consistent increase in temperature anomalies for 

both scenarios, with SSP5-8.5 showing a more significant rise compared to 

SSP2-4.5. Relative humidity is projected to decline under both scenarios, with 

a more substantial decrease under SSP5-8.5. Precipitation projections show 

high variability, with both increases and decreases in different periods and 

scenarios. Both shortwave and longwave radiation anomalies are projected to 

increase, with SSP5-8.5 showing higher anomalies than SSP2-4.5.  

 

3.3.3. Milano 

In figure 9 we have reported the analysis in a box centered around Milano 

metropolitan area.  
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Figure 9: Anomalies time plots of five variables over Milano, Italy; a) 

temperature; b) relative humidity; c) precipitation; d) surface 

downwelling shortwave radiation; e) surface downwelling longwave 

radiation. 

 

Figure 9a shows the near-surface air temperature anomalies (°C) over time. 

The historical baseline temperature is represented by the black line. For future 

projections, SSP2-4.5, shown in blue, projects a gradual increase in 
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temperature anomalies with a 30-year average centered at the crossing year 

of 2028 being 1.86 °C. The minimal and maximal anomalies at the mean 

crossing year of 2025 are 1.30 °C and 2.39 °C, respectively. SSP5-8.5, shown 

in red, indicates a more significant increase in temperature anomalies with an 

average at the crossing year of 2025 being 1.79 °C. The minimal and maximal 

anomalies at the mean crossing year of 2025 are 1.33 °C and 2.54 °C, 

respectively. The shaded areas represent the range of uncertainties for both 

SSP scenarios. The crossing years are identified as 2028 for SSP2-4.5 and 

2025 for SSP5-8.5 using the moving median method.  

Figure 9b depicts relative humidity anomalies (%) over time. The black line 

shows historical relative humidity. For future projections, SSP2-4.5, 

indicated in blue, shows a slight decline in relative humidity, with a 30-year 

average centered at the crossing year of 2028 being -0.82 %. The minimal and 

maximal anomalies at this crossing year are -2.36 % and 0.90 %, respectively. 

SSP5-8.5, shown in red, suggests a more pronounced decrease, with an 

average at the crossing year of 2025 being -0.81 %. The minimal and maximal 

anomalies at this crossing year are -2.48 % and 0.89 %, respectively. Shaded 

areas represent the uncertainty range for both SSP scenarios for precipitation 

anomalies (mm/year) over time (fig.9c). Historical data is shown with the 

black line. For future projections, SSP2-4.5, indicated in blue, shows 

variability in future precipitation anomalies, with a 30-year average centered 

at the crossing year of 2028 being +18.69 mm/year. The minimal and 

maximal anomalies at this crossing year are -104.36 mm/year and 229.16 
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mm/year, respectively. SSP5-8.5, shown in red, also shows significant 

variability but with a different pattern, averaging +19.1923 mm/year at the 

crossing year of 2025. The minimal and maximal anomalies at this crossing 

year are -97.06 mm/year and 232.93 mm/year, respectively. Shaded areas 

highlight the range of uncertainties. Figure 7d shows anomalies in surface 

downwelling shortwave radiation (W/m²) over time. The historical baseline 

is depicted with the black line. For future projections, SSP2-4.5, shown in 

blue, projects anomalies with a 30-year average centered at the crossing year 

of 2028 being 4.91 W/m². The minimal and maximal anomalies at this 

crossing year are -2.57 W/m² and 7.83 W/m², respectively. SSP5-8.5, shown 

in red, indicates more pronounced increases, averaging 4.42 W/m² at the 

crossing year of 2025. The minimal and maximal anomalies at this crossing 

year are -2.75 W/m² and 8.22 W/m², respectively. Shaded areas indicate 

uncertainty ranges. Panel 9. e) presents anomalies in surface downwelling 

longwave radiation (W/m²) over time. Historical data is shown with the black 

line. For future projections, SSP2-4.5, shown in blue, projects anomalies with 

a 30-year average centered at the crossing year of 2028 being 8.27 W/m². The 

minimal and maximal anomalies at this crossing year are 4.39 W/m² and 

15.13 W/m², respectively. SSP5-8.5, shown in red, indicates higher increases 

in anomalies, averaging 7.96 W/m² at the crossing year of 2025. The minimal 

and maximal anomalies at this crossing year are 4.72 W/m² and 15.97 W/m², 

respectively. Shaded areas highlight the uncertainties for future projections.  
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3.3.4. Marche Region 

 

Figure 10: Anomalies time plots of five variables over Marche region, 

Italy; a) temperature; b) relative humidity; c) precipitation; d) surface 

downwelling shortwave radiation; e) surface downwelling longwave 

radiation.  

Figure 10 consists of five panels showing climate anomalies for 

different variables over Marche, Italy, under two SSP (Shared Socioeconomic 

Pathway) scenarios: SSP2-4.5 and SSP5-8.5.  
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The five panels of figure 10 present historical data up to the present and future 

projections with uncertainty ranges. Panel 10a presents the near-surface air 

temperature anomalies (°C) over time. The historical baseline temperature is 

represented by the black line. For future projections, SSP2-4.5, shown in blue, 

projects a gradual increase in temperature anomalies with a 30-year average 

centered at the crossing year of 2028 being 1.86 °C. The minimal and 

maximal anomalies at the mean crossing year of 2025 are 1.30 °C and 2.39 

°C, respectively. SSP5-8.5, shown in red, indicates a more significant 

increase in temperature anomalies with an average at the crossing year of 

2025 being 1.79 °C. The minimal and maximal anomalies at the mean 

crossing year of 2025 are 1.33 °C and 2.54 °C, respectively. The shaded areas 

represent the range of uncertainties for both SSP scenarios. The crossing years 

are identified as 2028 for SSP2-4.5 and 2025 for SSP5-8.5 using the moving 

median method. Panel 10b shows relative humidity anomalies (%) over time. 

The black line represents historical relative humidity. For future projections, 

SSP2-4.5, indicated in blue, shows a slight decline in relative humidity, with 

a 30-year average centered at the crossing year of 2028 being -0.82 %. The 

minimal and maximal anomalies at this crossing year are -2.36 % and 0.90 

%, respectively. SSP5-8.5, shown in red, suggests a more pronounced 

decrease, with an average at the crossing year of 2025 being -0.81 %. The 

minimal and maximal anomalies at this crossing year are -2.48 % and 0.89 

%, respectively. Shaded areas represent the uncertainty range for both SSP 

scenarios, with crossing years indicated similarly to panel 10a.  
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Panel 10c presents precipitation anomalies (mm/year) over time. Historical 

data is shown with the black line. For future projections, SSP2-4.5, indicated 

in blue, shows variability in future precipitation anomalies, with a 30-year 

average centered at the crossing year of 2028 being +18.69 mm/year. The 

minimal and maximal anomalies at this crossing year are -104.36 mm/year 

and +229.16 mm/year, respectively. SSP5-8.5, shown in red, also shows 

significant variability but with a different pattern, averaging +19.19 mm/year 

at the crossing year of 2025. The minimal and maximal anomalies at this 

crossing year are -97.06 mm/year and +232.93 mm/year, respectively. Shaded 

areas highlight the range of uncertainties. Figure 10d shows anomalies in 

surface downwelling shortwave radiation (W/m²) over time. The historical 

baseline is depicted with the black line. For future projections, SSP2-4.5, 

shown in blue, projects anomalies with a 30-year average centered at the 

crossing year of 2028 being +4.91 W/m². The minimal and maximal 

anomalies at this crossing year are -2.57 W/m² and +7.83 W/m², respectively. 

SSP5-8.5, shown in red, indicates more pronounced increases, averaging 

+4.42 W/m² at the crossing year of 2025. The minimal and maximal 

anomalies at this crossing year are -2.75 W/m² and +8.22 W/m², respectively. 

Shaded areas indicate uncertainty ranges. Figure 10e presents anomalies in 

surface downwelling longwave radiation (W/m²) over time. Historical data is 

shown with the black line. For future projections, SSP2-4.5, shown in blue, 

projects anomalies with a 30-year average centered at the crossing year of 

2028 being 8.27 W/m². The minimal and maximal anomalies at this crossing 
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year are 4.40 W/m² and +15.12 W/m², respectively. SSP5-8.5, shown in red, 

indicates higher increases in anomalies, averaging +7.96 W/m² at the crossing 

year of 2025. The minimal and maximal anomalies at this crossing year are 

+4.7174 W/m² and +15.9732 W/m², respectively. Shaded areas highlight the 

uncertainties for future projections. 

 

3.3.5. Palermo 
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Figure 11 Time plots of five variables over Palermo, Italy; a) temperature 

anomalies for Palermo b) relative humidity anomalies for Palermo c) 

precipitation anomalies for Palermo d) surface downwelling shortwave 

radiation anomalies for Palermo e) surface downwelling longwave 

radiation anomalies for Palermo.  

 

Figure 11 consists of five panels showing climate anomalies for 

different variables over Palermo, Italy, under two SSP (Shared 

Socioeconomic Pathway) scenarios: SSP2-4.5 and SSP5-8.5.  

Panel 11a presents the near-surface air temperature anomalies (°C) over time. 

The historical baseline temperature is represented by the black line. For future 

projections, SSP2-4.5, shown in blue, projects a gradual increase in 

temperature anomalies with a 30-year average centered at the crossing year 

of 2028 being 1.86 °C. The minimal and maximal anomalies at the mean 

crossing year of 2025 are 1.30 °C and 2.40 °C, respectively. SSP5-8.5, shown 

in red, indicates a more significant increase in temperature anomalies with an 

average at the crossing year of 2025 being 1.80 °C. The minimal and maximal 

anomalies at the mean crossing year of 2025 are 1.33 °C and 2.54 °C, 

respectively. The shaded areas represent the range of uncertainties for both 

SSP scenarios. The crossing years are identified as 2028 for SSP2-4.5 and 

2025 for SSP5-8.5 using the moving median method.  
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Panel 11b shows relative humidity anomalies (%) over time. The black line 

represents historical relative humidity. For future projections, SSP2-4.5, 

indicated in blue, shows a slight decline in relative humidity, with a 30-year 

average centered at the crossing year of 2028 being -0.8227 %. The minimal 

and maximal anomalies at this crossing year are -2.36 % and 0.90 %, 

respectively. SSP5-8.5, shown in red, suggests a more pronounced decrease, 

with an average at the crossing year of 2025 being -0.81 %. The minimal and 

maximal anomalies at this crossing year are -2.49 % and 0.88715 %, 

respectively. Shaded areas represent the uncertainty range for both SSP 

scenarios, with crossing years indicated similarly to panel 11a.  

Panel 11c presents precipitation anomalies (mm/year) over time. Historical 

data is shown with the black line. For future projections, SSP2-4.5, indicated 

in blue, shows variability in future precipitation anomalies, with a 30-year 

average centered at the crossing year of 2028 being +18.69 mm/year. The 

minimal and maximal anomalies at this crossing year are -104.36 mm/year 

and +229.16 mm/year, respectively. SSP5-8.5, shown in red, also shows 

significant variability but with a different pattern, averaging +19.19 mm/year 

at the crossing year of 2025. The minimal and maximal anomalies at this 

crossing year are -97.06 mm/year and +232.93 mm/year, respectively. Shaded 

areas highlight the range of uncertainties. Figure 11 d) shows anomalies in 

surface downwelling shortwave radiation (W/m²) over time. The historical 

baseline is depicted with the black line. For future projections, SSP2-4.5, 

shown in blue, projects anomalies with a 30-year average centered at the 
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crossing year of 2028 being +4.91 W/m². The minimal and maximal 

anomalies at this crossing year are -2.57 W/m² and +7.83 W/m², respectively. 

SSP5-8.5, shown in red, indicates more pronounced increases, averaging 4.42 

W/m² at the crossing year of 2025. The minimal and maximal anomalies at 

this crossing year are -2.75 W/m² and +8.22 W/m², respectively. Shaded areas 

indicate uncertainty ranges. Figure 11e presents anomalies in surface 

downwelling longwave radiation (W/m²) over time. Historical data is shown 

with the black line. For future projections, SSP2-4.5, shown in blue, projects 

anomalies with a 30-year average centered at the crossing year of 2028 being 

+8.27 W/m². The minimal and maximal anomalies at this crossing year are 

+4.40 W/m² and 15.12 W/m², respectively. SSP5-8.5, shown in red, indicates 

higher increases in anomalies, averaging +7.96 W/m² at the crossing year of 

2025. The minimal and maximal anomalies at this crossing year are +4.71 

W/m² and +15.97 W/m², respectively. Shaded areas highlight the 

uncertainties for future projections. 

 

 

 

3.3.6. Croatia 
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Figure 12 Time plots of five variables over Zagreb, Croatia; a) 

temperature anomalies for Zagreb, Croatia b) relative humidity 

anomalies for Zagreb, Croatia c) precipitation anomalies for Zagreb, 

Croatia d) surface downwelling shortwave radiation anomalies for 

Zagreb, Croatia e) surface downwelling longwave radiation anomalies 

for Zagreb, Croatia.  
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Figure 12 consists of five panels showing climate anomalies for 

different variables over Zagreb, Croatia, under two SSP (Shared 

Socioeconomic Pathway) scenarios: SSP2-4.5 and SSP5-8.5.  

Panel 12a presents the near-surface air temperature anomalies (°C) over time. 

The historical baseline temperature is represented by the black line. For future 

projections, SSP2-4.5, shown in blue, projects a gradual increase in 

temperature anomalies with a 30-year average centered at the crossing year 

of 2028 being 1.86 °C. The minimal and maximal anomalies at the mean 

crossing year of 2025 are 1.30 °C and 2.3905 °C, respectively. SSP5-8.5, 

shown in red, indicates a more significant increase in temperature anomalies 

with an average at the crossing year of 2025 being 1.79 °C. The minimal and 

maximal anomalies at the mean crossing year of 2025 are 1.33 °C and 2.54 

°C, respectively. The shaded areas represent the range of uncertainties for 

both SSP scenarios. The crossing years are identified as 2028 for SSP2-4.5 

and 2025 for SSP5-8.5 using the moving median method. Panel 12b shows 

relative humidity anomalies (%) over time. The black line represents 

historical relative humidity. For future projections, SSP2-4.5, indicated in 

blue, shows a slight decline in relative humidity, with a 30-year average 

centered at the crossing year of 2028 being -0.82 %. The minimal and 

maximal anomalies at this crossing year are -2.36 % and 0.90 %, respectively. 

SSP5-8.5, shown in red, suggests a more pronounced decrease, with an 

average at the crossing year of 2025 being -0.80 %. The minimal and maximal 

anomalies at this crossing year are -2.48 % and 0.89 %, respectively. Shaded 
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areas represent the uncertainty range for both SSP scenarios, with crossing 

years indicated similarly to panel 12a.  

Panel 12c presents precipitation anomalies (mm/year) over time. Historical 

data is shown with the black line. For future projections, SSP2-4.5, indicated 

in blue, shows variability in future precipitation anomalies, with a 30-year 

average centered at the crossing year of 2028 being 18.69 mm/year. The 

minimal and maximal anomalies at this crossing year are -104.36 mm/year 

and 229.16 mm/year, respectively. SSP5-8.5, shown in red, also shows 

significant variability but with a different pattern, averaging 19.19 mm/year 

at the crossing year of 2025. The minimal and maximal anomalies at this 

crossing year are -97.06 mm/year and 232.93 mm/year, respectively. Shaded 

areas highlight the range of uncertainties. Panel 12d shows anomalies in 

surface downwelling shortwave radiation (W/m²) over time. The historical 

baseline is depicted with the black line. For future projections, SSP2-4.5, 

shown in blue, projects anomalies with a 30-year average centered at the 

crossing year of 2028 being 4.91 W/m². The minimal and maximal anomalies 

at this crossing year are -2.57 W/m² and 7.83 W/m², respectively. SSP5-8.5, 

shown in red, indicates more pronounced increases, averaging 4.42 W/m² at 

the crossing year of 2025. The minimal and maximal anomalies at this 

crossing year are -2.75 W/m² and 8.22 W/m², respectively. Shaded areas 

indicate uncertainty ranges. Panel 10e presents anomalies in surface 

downwelling longwave radiation (W/m²) over time. Historical data is shown 

with the black line. For future projections, SSP2-4.5, shown in blue, projects 



74 

 

 

anomalies with a 30-year average centered at the crossing year of 2028 being 

8.26 W/m². The minimal and maximal anomalies at this crossing year are 

4.3993 W/m² and 15.12 W/m², respectively. SSP5-8.5, shown in red, 

indicates higher increases in anomalies, averaging 7.9582 W/m² at the 

crossing year of 2025. The minimal and maximal anomalies at this crossing 

year are 4.72 W/m² and 15.97 W/m², respectively. Shaded areas highlight the 

uncertainties for future projections. 

 

 

3.3.7. Bari 
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Figure 13 Time plots of five variables over Bari, Italy; a) temperature 

anomalies for Bari, Italy b) relative humidity anomalies for Bari, Italy c) 

precipitation anomalies for Bari, Italy d) surface downwelling shortwave 

radiation anomalies for Bari, Italy e) surface downwelling longwave 

radiation anomalies for Bari, Italy.  

 

Figure 13 consists of five panels showing climate anomalies for different 

variables over Bari, Italy, under two SSP (Shared Socioeconomic Pathway) 

scenarios: SSP2-4.5 and SSP5-8.5.  
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Panel 13a presents the near-surface air temperature anomalies (°C) 

over time. The historical baseline temperature is represented by the black line. 

For future projections, SSP2-4.5, shown in blue, projects a gradual increase 

in temperature anomalies with a 30-year average centered at the crossing year 

of 2028 being 1.86 °C. The minimal and maximal anomalies at the mean 

crossing year of 2025 are 1.30 °C and 2.39 °C, respectively. SSP5-8.5, shown 

in red, indicates a more significant increase in temperature anomalies with an 

average at the crossing year of 2025 being 1.79 °C. The minimal and maximal 

anomalies at the mean crossing year of 2025 are 1.33 °C and 2.54 °C, 

respectively. The shaded areas represent the range of uncertainties for both 

SSP scenarios. The crossing years are identified as 2028 for SSP2-4.5 and 

2025 for SSP5-8.5 using the moving median method. Panel 13b shows 

relative humidity anomalies (%) over time. The black line represents 

historical relative humidity. For future projections, SSP2-4.5, indicated in 

blue, shows a slight decline in relative humidity, with a 30-year average 

centered at the crossing year of 2028 being -0.82 %. The minimal and 

maximal anomalies at this crossing year are -2.36 % and 0.90 %, respectively. 

SSP5-8.5, shown in red, suggests a more pronounced decrease, with an 

average at the crossing year of 2025 being -0.81 %. The minimal and maximal 

anomalies at this crossing year are -2.48 % and 0.89 %, respectively. Shaded 

areas represent the uncertainty range for both SSP scenarios, with crossing 

years indicated similarly to panel 13a.  
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Panel 13c presents precipitation anomalies (mm/year) over time. Historical 

data is shown with the black line. For future projections, SSP2-4.5, indicated 

in blue, shows variability in future precipitation anomalies, with a 30-year 

average centered at the crossing year of 2028 being 18.69 mm/year. The 

minimal and maximal anomalies at this crossing year are -104.3604 mm/year 

and 229.16 mm/year, respectively. SSP5-8.5, shown in red, also shows 

significant variability but with a different pattern, averaging 19.19 mm/year 

at the crossing year of 2025. The minimal and maximal anomalies at this 

crossing year are -97.06 mm/year and 232.93 mm/year, respectively. Shaded 

areas highlight the range of uncertainties. Panel 13d shows anomalies in 

surface downwelling shortwave radiation (W/m²) over time. The historical 

baseline is depicted with the black line. For future projections, SSP2-4.5, 

shown in blue, projects anomalies with a 30-year average centered at the 

crossing year of 2028 being 4.91 W/m². The minimal and maximal anomalies 

at this crossing year are -2.57 W/m² and 7.83 W/m², respectively. SSP5-8.5, 

shown in red, indicates more pronounced increases, averaging 4.42 W/m² at 

the crossing year of 2025. The minimal and maximal anomalies at this 

crossing year are -2.75 W/m² and 8.22 W/m², respectively. Shaded areas 

indicate uncertainty ranges. Panel 13e presents anomalies in surface 

downwelling longwave radiation (W/m²) over time. Historical data is shown 

with the black line. For future projections, SSP2-4.5, shown in blue, projects 

anomalies with a 30-year average centered at the crossing year of 2028 being 

8.27 W/m². The minimal and maximal anomalies at this crossing year are 4.40 
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W/m² and 15.12 W/m², respectively. SSP5-8.5, shown in red, indicates higher 

increases in anomalies, averaging 7.96 W/m² at the crossing year of 2025. 

The minimal and maximal anomalies at this crossing year are 4.71 W/m² and 

15.97 W/m², respectively. Shaded areas highlight the uncertainties for future 

projections. 

 

3.3.8. Mediterranean basin 
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Figure 14 Time plots of the five variables averaged over the selected 

points. 

 

The figure 14 consists of multiple panels illustrating the anomalies of 

various climate variables in the Mediterranean basin 

These panels show historical data and future projections under two different 

SSP (Shared Socioeconomic Pathway) scenarios. Panel 14 a) depicts the 

Mediterranean temperature anomalies (tas in °C) over time. The historical 

baseline temperature is 286.6750°C. For SSP2-4.5, the temperature anomaly 

averaged at 7 locations with a 30-year average centered at the crossing year 

of 2028 is 1.86 °C. The minimal and maximal anomalies at the mean crossing 

year of 2025 are 1.30 °C and 2.39 °C, respectively. For SSP5-8.5, the anomaly 

averaged at the crossing year of 2025 is 1.79 °C, with minimal and maximal 

anomalies at the mean crossing year of 2025 being 1.33 °C and 2.54 °C, 

respectively. The historical data is represented by the black line, while the 

colored lines and shaded areas indicate the projected anomalies and their 

uncertainties under different SSP scenarios. Both scenarios show an 

increasing trend in temperature anomalies, with SSP5-8.5 indicating higher 

warming compared to SSP2-4.5. Panel 14 b) illustrates the Mediterranean 

relative humidity (hurs) anomalies over time. The historical baseline relative 

humidity is 73.98 %. For SSP2-4.5, the relative humidity anomaly averaged 

at 7 locations with a 30-year average centered at the crossing year of 2028 is 
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-0.82 %. The minimal and maximal anomalies at this crossing year are -2.36 

% and 0.91 %, respectively. For SSP5-8.5, the anomaly averaged at the 

crossing year of 2025 is -0.81%, with minimal and maximal anomalies at this 

crossing year being -2.48 % and 0.89 %, respectively. Historical data is shown 

in black, and future projections are depicted for SSP2-4.5 in blue and SSP5-

8.5 in red, with shaded uncertainty ranges. The relative humidity anomalies 

exhibit more variability than temperature anomalies, with both scenarios 

suggesting a potential decrease in relative humidity in the future. SSP5-8.5 

shows a more significant decline. Panel 14. c) presents the Mediterranean 

precipitation (pr) anomalies (in mm/year) over time. The historical baseline 

precipitation is 781.10 mm/year. For SSP2-4.5, the precipitation anomaly 

averaged at 7 locations with a 30-year average centered at the crossing year 

of 2028 is 18.69 mm/year. The relatively high baseline precipitation value of 

781.10 mm/year reflects the cumulative nature of precipitation data averaged 

over the selected locations, some of which may experience wetter conditions. 

Additionally, the baseline period (1950-1980) might have included regions 

with naturally higher rainfall, contributing to the overall high value. The 

precipitation anomaly of 18.69 mm/year under SSP2-4.5, centered around the 

crossing year of 2028, can be attributed to regional variations in climate 

response, where some areas may experience increased rainfall even in 

moderate climate change scenarios. 

The minimal and maximal anomalies at this crossing year are -104.3604 

mm/year and 229.16 mm/year, respectively. For SSP5-8.5, the anomaly 
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averaged at the crossing year of 2025 is 19.19 mm/year, with minimal and 

maximal anomalies at this crossing year being -97.06 mm/year and 232.93 

mm/year, respectively. The black line represents historical precipitation data, 

while future scenarios are shown in blue for SSP2-4.5 and red for SSP5-8.5, 

with shaded areas indicating uncertainties. Precipitation anomalies display 

considerable variability, with projections showing a mix of increases and 

decreases. There is a slight tendency towards more variability under SSP5-

8.5. Panel 14. d) shows the surface downwelling shortwave radiation (rsds) 

anomalies (in W/m²) over time. The historical baseline rsds is 197.07 W/m². 

For SSP2-4.5, the rsds anomaly averaged at 7 locations with a 30-year 

average centered at the crossing year of 2028 is 4.91 W/m². The minimal and 

maximal anomalies at this crossing year are -2.57 W/m² and 7.83 W/m², 

respectively. For SSP5-8.5, the anomaly averaged at the crossing year of 2025 

is 4.42 W/m², with minimal and maximal anomalies at this crossing year 

being -2.75 W/m² and 8.22 W/m², respectively. Historical data is represented 

in black, with future projections for SSP2-4.5 shown in blue and for SSP5-

8.5 shown in red, with their uncertainties shaded. Both scenarios indicate an 

increase in rsds anomalies, with SSP5-8.5 projecting a more pronounced 

increase, suggesting higher incoming shortwave radiation under this scenario. 

Panel 14. e) depicts the surface downwelling longwave radiation (rlds) 

anomalies (in W/m²) over time. The historical baseline rlds is 311.5917 W/m². 

For SSP2-4.5, the rlds anomaly averaged at 7 locations with a 30-year average 

centered at the crossing year of 2028 is 8.27 W/m². The minimal and maximal 
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anomalies at this crossing year are 4.40 W/m² and 15.12 W/m², respectively. 

For SSP5-8.5, the anomaly averaged at the crossing year of 2025 is 7.96 

W/m², with minimal and maximal anomalies at this crossing year being 4.72 

W/m² and 15.97 W/m², respectively. The historical data is shown in black, 

with future scenarios depicted in blue for SSP2-4.5 and red for SSP5-8.5, 

along with shaded uncertainty ranges. The anomalies in rlds show an 

increasing trend, with SSP5-8.5 projecting a higher increase in longwave 

radiation compared to SSP2-4.5. Overall, each panel highlights the 

differences in climate projections between SSP2-4.5 and SSP5-8.5. SSP5-8.5 

generally shows more extreme changes in all variables, indicating a higher 

impact of the higher emission scenario. Understanding these anomalies is 

crucial for climate impact assessments and developing strategies to mitigate 

and adapt to climate change in the Mediterranean region.  

Next figure (15) consists of two maps showing temperature anomalies in the 

Mediterranean region. These panels show historical data and future 

projections under two different SSP (Shared Socioeconomic Pathway) 

scenarios. 
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Figure 15 Climate differences Mediterranean map which includes 

all of 7 boxes of locations. Panel a irepresents the  SSP5-8.5 

scenario represents the upper boundary of the range of scenarios 
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described in the literature with an additional radiative forcing of 

8.5 W m-2 by the year 2100 (Park et al., 2023). Panel b represents 

the intermediate scenario, in which current climate change trends 

continue without substantial deviations, leading to a forcing 

pathway of 4.5 W m-2 by 2100 is shown.  

 

Figure 15 figure consists of two maps showing temperature anomalies in the 

Mediterranean region. The temperature anomalies shown in figure 15 for the 

Mediterranean region are calculated by comparing future temperature 

projections with a defined baseline period. Specifically, the baseline average 

temperature was established from the years 1950 to 1980, serving as a 

reference point. Climate models are then utilized to simulate future conditions 

under two different Shared Socioeconomic Pathways (SSPs): SSP 5-8.5, 

which represents a high greenhouse gas concentration scenario with a 

radiative forcing of 8.5 W/m² by 2100, and SSP 2-4.5, a moderate pathway 

leading to a forcing of 4.5 W/m². For each scenario, the projected average 

temperature for the crossing year centered 30-year mean (2012-2042) is 

calculated. The temperature anomalies are determined by subtracting the 

baseline average from the future average, resulting in values that indicate how 

much warmer (or cooler) temperatures are expected under the different 

scenarios. These anomalies are then mapped spatially across the 

Mediterranean region, using color scales to visually represent the magnitude 

of temperature changes, with blue indicating lower anomalies and red 



85 

 

 

signifying higher anomalies. These maps compare the baseline period (1950-

1980) to the crossing year centered 30-year mean (2012-2042) under two 

different SSP (Shared Socioeconomic Pathway) scenarios. The map on figure 

15a uses the SSP 5-8.5 scenario, which is the highest greenhouse gas 

concentration pathway. The color scale represents temperature anomalies in 

degrees Celsius. The anomalies range from around 1.4°C (blue) to over 2.4°C 

(red). Specific locations are marked with symbols, and their respective 

temperature anomalies are listed in the legend. In the map of figure 15b the 

SSP 2-4.5 scenario, which is a moderate greenhouse gas concentration 

pathway is shown. The anomalies for the same locations are different from 

those in the SSP 5-8.5 scenario, reflecting the different impacts of the two 

pathways, anomalies in this case range from around 1.4°C (blue) to over 

2.4°C (red).  

 

Figure 16 shows the modeled temperature data (tas) for various locations in 

the Mediterranean from 2010 to 2100, and highlights geographical variations 

in the rate of temperature increase. Locations with larger bubbles are 

experiencing faster rates of warming.  
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Figure 16 The provided figure consists of two parts, each 

illustrating different aspects of temperature anomalies, best fit 

lines a) and their rates of increase b) in the Mediterranean region. 

 

Figure 16a shows the modeled temperature data (tas) for various locations in 

the Mediterranean from 2010 to 2100. Each line represents a best fit for the 

temperature trend over this period. The legend provides the slope values for 

each location, indicating the rate of temperature increase per year. The slopes 

in the legend indicate the annual increase in temperature for each location. 

For instance, Bou-Saada, Algeria is showing a higher slope, implying a faster 

rate of temperature increase compared to other locations. The linear rate in 

figure 16a shows a clear upward trend in temperatures for all locations, with 

varying rates of increase. The Mediterranean average (black dashed line) 

provides a benchmark for comparing individual locations. Figure 16b) 

highlights geographical variations in the rate of temperature increase. 

Locations with larger bubbles are experiencing faster rates of warming. This 

visual representation helps identify hotspots of climate change impact within 

the region. The combination of best fit lines and bubble maps offers a 

comprehensive view of both temporal and spatial variations in temperature 

anomalies.  

 

Figure 17, next in the paragraph shows the relative humidity anomalies under 

the SSP5-8.5 scenario, which represents a high greenhouse gas concentration 

pathway. The color scale represents relative humidity anomalies, with red 

indicating a more significant decrease and blue indicating an increase. 
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Figure 17 This figure consists of two panels illustrating the relative 
humidity anomalies (%) in the Mediterranean region for the baseline 
period (1950-1980) compared to the crossing year centered 30-year 
mean (2012-2042) under two different SSP (Shared Socioeconomic 
Pathway) scenarios: SSP5-8.5 and SSP2-4.5. Each panel shows the spatial 
distribution of these anomalies, with specific locations marked and their 
respective anomalies listed.  

 

The relative humidity anomalies presented in Figure 17 are calculated by 

comparing future projections of relative humidity (hurs) to a defined baseline 

period (1950-1980). First, the average relative humidity for the baseline 

period is established using historical climate data. Climate models then 

simulate future conditions under two Shared Socioeconomic Pathways SSP5-

8.5 and SSP2-4.5. For the future years centered around 30-year means (2012-

2042), relative humidity data is generated, allowing for the calculation of 

anomalies using the formula: Anomaly = hurs_future - hurs_baseline. This 

calculation is performed for each grid point across the Mediterranean region, 

where specific locations are marked on the map. The resulting anomalies are 

mapped spatially, revealing areas of significant decrease (indicated in red) or 

increase (indicated in blue) in relative humidity, with the magnitude of 

changes represented by a color scale. Figure 17a shows the relative humidity 

anomalies under the SSP5-8.5 scenario. The color scale represents relative 

humidity anomalies. The range of anomalies is from -2.0% to +0.5%. Specific 

locations and their respective anomalies are Bou-Saada, Algeria with -1.43 

%, Sardegna (Italy) with -0.40 %, Milano (Italy) with -1.25 %, Marche (Italy) 

with -0.94 %, Palermo (Italy) with -1.07 %, Zagreb (Croatia) with -1.17 %, 
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and Bari  (Italy) with -0.33 %. The map shows that most of the Mediterranean 

region, especially the areas marked with specific locations, is projected to 

experience a decrease in relative humidity under the SSP5-8.5 scenario. Panel 

17b presents the relative humidity anomalies under SSP2-4.5. The color scale 

is the same as in panel a, representing relative humidity anomalies ranging 

from -2.0 % to +0.5 %. Specific locations and their respective anomalies are 

Bou-Saada, Algeria with -1.17 %, Sardegna with -0.10 %, Milano with -0.66 

%, Marche with -0.38 %, Palermo with -0.61 %, Zagreb with -1.15 %, and 

Bari with -0.60 %. The map indicates that under the SSP2-4.5 scenario, the 

Mediterranean region is also projected to experience a decrease in relative 

humidity, though the anomalies are generally less pronounced compared to 

the SSP5-8.5 scenario. Both scenarios show a general trend of decreasing 

relative humidity across the Mediterranean region, with SSP5-8.5 showing 

more significant decreases compared to SSP2-4.5. There is spatial variability 

in the magnitude of relative humidity anomalies, with some areas 

experiencing larger decreases than others. Decreasing relative humidity can 

have significant impacts on agriculture, water resources, and ecosystem 

health in the Mediterranean region. The more pronounced decreases under 

SSP5-8.5 highlight the greater potential impact of higher greenhouse gas 

emissions. These observations emphasize the importance of considering 

different emission scenarios in climate projections and the need for adaptive 

strategies to mitigate the impacts of decreased relative humidity in the 

Mediterranean region.  
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In figure 18 (next in the paragraph) the relative humidity anomalies (%) in 

the Mediterranean region are presented, providing insights into the projected 

changes in humidity levels over time using modeled data.  
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Figure 18 consists of two panels illustrating the relative humidity 

anomalies (%) in the Mediterranean region using modeled data and their 
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rates of decrease over time; a) Best Fit Lines for Modeled Data, b) Rate 

of Decrease. 

In figure 18, the relative humidity anomalies (%) in the 

Mediterranean region are presented, providing insights into the 

projected changes in humidity levels over time using modeled data. 

The figure is divided into two panels: figure 18a focuses on the best 

fit lines for the modeled data, while figure 18b details the rates of 

decrease in relative humidity. 

In figure 18a, the best fit lines represent the trends in relative 

humidity (hurs) from 2010 to 2100 for various locations within the 

Mediterranean region. These lines are calculated through linear 

regression, a statistical method used to fit a straight line to the data 

points. This process involves taking historical relative humidity data 

and future projections obtained from climate models under specific 

scenarios, such as higher greenhouse gas concentration pathways. 

The slope of each line indicates the rate of change in relative 

humidity for the corresponding location, with a negative slope 

signifying a decrease in humidity levels over time. The legend 

accompanying the plot identifies each location, providing its specific 

slope, which quantifies how much relative humidity is expected to 

decrease annually. The analysis reveals that most locations are 

projected to experience a decline in relative humidity, suggesting a 

potential shift towards drier conditions in the region. 
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Figure 18b complements the first by visually depicting the 

geographical variability in the rate of decrease. The map highlights 

specific locations marked with circles, where the size of each circle 

correlates to the magnitude of the decrease in relative humidity. 

Larger circles indicate a more significant decline, while smaller 

circles represent lesser reductions. The accompanying table provides 

numerical details, including the slopes derived from the best fit lines 

for each location, showcasing the rates of decrease in relative 

humidity. For example, specific locations may show decreases of 

around 0.064% per year, illustrating the varying impacts of climate 

change across the region. 

 

 

Figure 19, consists of two panels illustrating precipitation anomalies (pr in 

mm/year) in the Mediterranean region for the baseline period (1950-1980) 

compared to the crossing year centered 30-year mean (2012-2042) under two 

different SSP (Shared Socioeconomic Pathway) scenarios: SSP5-8.5 and 

SSP2-4.5. Each panel shows the spatial distribution of these anomalies, with 

specific locations marked and their respective anomalies listed.  
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Figure 19 consists of two panels illustrating the precipitation anomalies 

(mm/year) in the Mediterranean region for the baseline period (1950-

1980) compared to the crossing year centered 30-year mean (2012-

2042) under two different SSP (Shared Socioeconomic Pathway) 

scenarios: SSP5-8.5 and SSP2-4.5. Each panel shows the spatial 
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distribution of these anomalies, with specific locations marked and their 

respective anomalies listed. 

 

Figure 19a shows the precipitation anomalies under the SSP5-8.5 scenario. 

The color scale represents precipitation anomalies, with red indicating a 

decrease and blue indicating an increase. The range of anomalies is from -

100.00 mm/year to +200.00 mm/year.  Specific locations and their respective 

anomalies are: Bou-Saada, Algeria (AL) with -45.96 mm/year, Sardegna with 

-31.79 mm/year, Milano with -37.90 mm/year, Marche with -12.32 mm/year, 

Palermo with -29.44 mm/year, Zagreb with 22.84 mm/year, and Bariwith -

1.40 mm/year. The map shows that most of the Mediterranean region is 

projected to experience a decrease in precipitation under the SSP5-8.5 

scenario, with some areas, such as Zagreb, Croatia, experiencing an increase. 

Figure 19b presents the precipitation anomalies under the SSP2-4.5 scenario, 

which represents a moderate greenhouse gas concentration pathway. The 

color scale is the same as in Figure 17a, representing precipitation anomalies 

ranging from -100.00 mm/year to +200.00 mm/year. Specific locations and 

their respective anomalies are: Bou-Saada, Algeria (AL) with -15.18 

mm/year, Sardegna with -7.51 mm/year, Milano with 1.00 mm/year, Marche, 

with 12.38 mm/year, Palermo with -2.03 mm/year, Zagreb with 10.13 

mm/year, and Bariwith 0.05 mm/year. The map indicates that under the SSP2-

4.5 scenario, the Mediterranean region shows a mix of decreases and 

increases in precipitation, with less pronounced decreases compared to the 

SSP5-8.5 scenario. Both scenarios reveal a general trend of decreasing 
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precipitation across much of the Mediterranean region, with the SSP5-8.5 

scenario showing more significant decreases. There is spatial variability in 

the magnitude of precipitation anomalies, with some areas experiencing 

increases in precipitation under the SSP2-4.5 scenario. The more pronounced 

decreases under the SSP5-8.5 scenario highlight the greater potential impact 

of higher greenhouse gas emissions on precipitation patterns. These 

observations emphasize the importance of considering different emission 

scenarios in climate projections. Understanding these trends is crucial for 

developing effective adaptation measures to cope with the anticipated 

changes in precipitation, which can significantly impact water resources, 

agriculture, and ecosystem health in the Mediterranean region.  

 

Figure 20 consists of two panels illustrating precipitation anomalies (pr in 

mm/year) in the Mediterranean region using modeled data and their rates of 

decrease over time. 
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Figure 20 consists of two panels illustrating precipitation anomalies (pr 

in mm/year) in the Mediterranean region using modeled data and their 

rates of decrease over time; a) Best Fit Lines for Modeled Data, b) Rate 

of Decrease. 

Figure 20a shows the best fit lines for precipitation (pr) for various locations 

from 2010 to 2100. Each line represents the modeled data for a specific 

location, with the legend providing the slope values, indicating the rate of 

decrease in precipitation per year. Specific locations and their slope values 

are: Mediterranean average with a slope of -1.4685, Bou-Saada with a slope 

of -1.585, Sardegna with a slope of -1.125, Milano with a slope of -1.470, 

Marche with a slope of -1.176, Palermo with a slope of -1.573, Zagreb with a 

slope of -1.570, and Bari with a slope of -1.579. The graph shows a general 

downward trend in precipitation across all locations, with Bou-Saada, , 

exhibiting the steepest decline, indicating the fastest rate of decrease in 

precipitation, while Sardegna shows the slowest rate of decrease. Figure 20b 

provides a geographical representation of the rate of decrease in precipitation 

(mm/year) across the Mediterranean region. The size of the red circles 

indicates the magnitude of the decrease, with larger circles representing a 

faster rate of decrease. The rate of decrease in precipitation across the selected 

locations varies significantly over different timescales. In Bou-Saada, Algeria 

(AL), the rate of decrease ranges from -151.85 mm/year over 10 years to -

1518.46 mm/year over 1000 years. Sardegna (SA) shows a similar trend, with 

a decrease ranging from -154.85 mm/year over 10 years to -1548.54 mm/year 
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over 1000 years. Milano (MI) experiences a decrease from -117.66 mm/year 

over 10 years to -1176.60 mm/year over 1000 years, while Marche, Italy 

(MA) shows a rate of decrease from -118.72 mm/year over 10 years to -

1175.38 mm/year over 1000 years. In Palermo, Italy (PA), the rate of decrease 

ranges from -157.20 mm/year over 10 years to -1575.24 mm/year over 1000 

years. Zagreb, Croatia (ZG) sees a decrease from -111.64 mm/year over 10 

years to -1116.45 mm/year over 1000 years, and Bari, Italy (BA) exhibits a 

rate of decrease from -157.83 mm/year over 10 years to -1578.25 mm/year 

over 1000 years. These values highlight the significant reduction in 

precipitation projected across the Mediterranean region over time. The map 

visually highlights the spatial variability in the rate of decrease in 

precipitation, with larger circles indicating areas experiencing more 

significant reductions. This visual representation helps identify hotspots of 

climate change impact within the region. The analysis in Figure 20a shows a 

consistent downward trend in precipitation across all locations, with varying 

rates of decrease. Bou-Saada, Algeria, exhibits the fastest rate of decrease, 

while Sardegna shows the slowest rate. The geographical representation in 

Figure 20b highlights the spatial variability in the rate of decrease in 

precipitation, with some areas experiencing more significant reductions than 

others. This comprehensive view of both temporal and spatial variations in 

precipitation anomalies emphasizes the need for region-specific adaptation 

strategies to mitigate the impacts of decreasing precipitation in the 



101 

 

 

Mediterranean region. Understanding these trends is crucial for developing 

effective adaptation measures to cope with the anticipated climate impacts. 

Figure 21, consists of two panels illustrating the anomalies in surface 

downwelling shortwave radiation (rsds in W/m²) in the Mediterranean region 

for the baseline period (1950-1980) compared to the crossing year centered 

30-year mean (2012-2042) under the SSP5-8.5 scenario. Each panel shows 

the spatial distribution of these anomalies, with specific locations marked and 

their respective anomalies listed. 
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Figure 21 consists of two panels illustrating the anomalies in surface 

downwelling shortwave radiation (rsds in W/m²) in the Mediterranean 
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region for the baseline period (1950-1980) compared to the crossing 

year centered 30-year mean (2012-2042) under the SSP5-8.5 scenario. 

Figure 21 illustrates the anomalies in surface downwelling shortwave 

radiation (rsds in W/m²) in the Mediterranean region, comparing projections 

for the crossing year centered 30-year mean (2012-2042) under the SSP5-8.5 

scenario against a baseline period of 1950-1980. The anomalies are calculated 

by subtracting the baseline average shortwave radiation from the projected 

values obtained from climate models for the specified future period. Panel (a) 

shows that most locations exhibit positive anomalies, indicating an increase 

in surface downwelling shortwave radiation, with specific values such as 

Bou-Saada at 2.03 W/m² and Zagreb at 6.91 W/m². Panel (b) reaffirms these 

findings, indicating similar increases in radiation across the Mediterranean 

region, with values ranging from -2.0 W/m² to +8.0 W/m². 

Figure 21a shows the surface downwelling shortwave radiation anomalies 

under the SSP5-8.5 scenario. The color scale represents rsds anomalies, with 

red indicating an increase and blue indicating a decrease. The range of 

anomalies is from -2.0 W/m² to +8.0 W/m². Specific locations and their 

respective anomalies are: Bou-Saada with 2.03 W/m², Sardegna with 4.60 

W/m², Milano with 5.68 W/m², Marche with 5.54 W/m², Palermo with 4.14 

W/m², Zagreb with 6.91 W/m², and Bari with 5.80 W/m². The map shows that 

most of the Mediterranean region is projected to experience an increase in 

surface downwelling shortwave radiation under the SSP5-8.5 scenario. 

Figure 21b presents another set of surface downwelling shortwave radiation 
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anomalies under the SSP5-8.5 scenario. The color scale is the same as in 

Figure 21a, representing rsds anomalies ranging from -2.0 W/m² to +8.0 

W/m². Specific locations and their respective anomalies are: Bou-Saada with 

2.03 W/m², Sardegna with 4.60 W/m², Milano with 5.68 W/m², Marche with 

5.54 W/m², Palermo with 4.14 W/m², Zagreb with 6.91 W/m², and Bari with 

5.80 W/m². Similar to Figure 21a, the map indicates an increase in surface 

downwelling shortwave radiation across the Mediterranean region under the 

SSP5-8.5 scenario. Both panels in figure 21 reveal a general trend of 

increasing surface downwelling shortwave radiation across the 

Mediterranean region under the SSP5-8.5 scenario. There is spatial variability 

in the magnitude of rsds anomalies, with some areas experiencing more 

significant increases than others. These observations highlight the potential 

impact of higher greenhouse gas emissions on radiation patterns, emphasizing 

the need for region-specific adaptation strategies to mitigate the effects of 

increasing shortwave radiation in the Mediterranean region. Understanding 

these trends is crucial for developing effective adaptation measures to cope 

with the anticipated climate impacts. 

 

Next in this paragraph, figure 22 consists of two panels illustrating the 

anomalies in surface downwelling shortwave radiation (rsds in W/m²) in the 

Mediterranean region using modeled data and their rates of increase over time 

is shown. 
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Figure 22 consists of two panels illustrating the anomalies in surface 

downwelling shortwave radiation (rsds in W/m²) in the Mediterranean 

region using modeled data and their rates of increase over time; a) Best 

Fit Lines for Modeled Data, b) Rate of Decrease. 

 

Figure 22a shows the best fit lines for surface downwelling shortwave 

radiation (rsds) for various locations from 2010 to 2100. Each line represents 

the modeled data for a specific location, with the legend providing the slope 

values, indicating the rate of increase in rsds per year. The best fit lines are 

calculated using linear regression, which involves fitting a straight line to the 

modeled data points for each location to estimate the trend in rsds over the 

specified period. The slope of each line indicates the rate of change in surface 

downwelling shortwave radiation, where a positive slope suggests an increase 

in radiation levels over time. The values of these slopes can be interpreted as 

the annual increase in rsds, with specific slopes provided in the legend for 

each location. Specific locations and their slope values are: Mediterranean 

average with a slope of 0.03987, Bou-Saada with a slope of 0.01848, 

Sardegna with a slope of 0.02522, Milano with a slope of 0.02252, Marche 

with a slope of 0.04529, Palermo with a slope of 0.05459, Zagreb with a slope 

of 0.05476, and Bari with a slope of 0.04514. The graph shows a general 

upward trend in rsds across all locations, with Palermo and Zagreb, exhibiting 

the steepest increases, indicating the fastest rate of increase in surface 

downwelling shortwave radiation, while Bou-Saada, shows the slowest rate 

of increase. Figure 22b provides a graphical representation of the rate of 
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increase in surface downwelling shortwave radiation (W/m²) across the 

Mediterranean region. The size of the red circles indicates the magnitude of 

the increase, with larger circles representing a faster rate of increase. Specific 

locations and their rate of increase values are: Bou-Saada with a rate of 

increase ranging from 1.85 W/m² over 10 years to 18.48 W/m² over 100 years, 

Sardegna with a rate of increase ranging from 2.52 W/m² over 10 years to 

25.22 W/m² over 100 years, Milano with a rate of increase ranging from 2.25 

W/m² over 10 years to 22.52 W/m² over 100 years, Marche with a rate of 

increase ranging from 4.53 W/m² over 10 years to 45.29 W/m² over 100 years, 

Palermo with a rate of increase ranging from 5.46 W/m² over 10 years to 

54.59 W/m² over 100 years, Zagreb with a rate of increase ranging from 5.48 

W/m² over 10 years to 54.76 W/m² over 100 years, and Bari with a rate of 

increase ranging from 4.51 W/m² over 10 years to 45.14 W/m² over 100 years. 

The map visually highlights the spatial variability in the rate of increase in 

surface downwelling shortwave radiation, with larger circles indicating areas 

experiencing more significant increases. This visual representation helps 

identify hotspots of climate change impact within the region. The analysis in 

Figure 22a shows a consistent upward trend in rsds across all locations, with 

varying rates of increase. Palermo and Zagreb exhibit the fastest rates of 

increase, while Bou-Saada shows the slowest rate. The geographical 

representation in Figure 22b highlights the spatial variability in the rate of 

increase in rsds, with some areas experiencing more significant increases than 

others. This comprehensive view of both temporal and spatial variations in 
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rsds anomalies emphasizes the need for region-specific adaptation strategies 

to mitigate the impacts of increasing shortwave radiation in the Mediterranean 

region. Understanding these trends is crucial for developing effective 

adaptation measures to cope with the anticipated climate impacts.  

 

Figure 23 consists of two panels illustrating the anomalies in surface 

downwelling longwave radiation (rlds in W/m²) in the Mediterranean region 

for the baseline period (1950-1980) compared to the crossing year centered 

30-year mean (2012-2042) under two different SSP (Shared Socioeconomic 

Pathway) scenarios: SSP5-8.5 and SSP2-4.5. Each panel shows the spatial 

distribution of these anomalies, with specific locations marked and their 

respective anomalies listed. 
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Figure 23 consists of two panels illustrating the anomalies in surface 

downwelling longwave radiation (rlds in W/m²) in the Mediterranean 

region for the baseline period (1950-1980) compared to the crossing 
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year centered 30-year mean (2012-2042) under two different SSP 

(Shared Socioeconomic Pathway) scenarios: SSP5-8.5 (upper panel)and 

SSP2-4.5 (lower panel). Each panel shows the spatial distribution of 

these anomalies, with specific locations marked and their respective 

anomalies listed; a) SSP5-8.5 Scenario, b) SSP2-4.5 Scenario. 

 

This figure illustrates the anomalies in surface downwelling longwave 

radiation (rlds in W/m²) across the Mediterranean region, comparing a 

baseline period (1950-1980) with future projections for the crossing year 

centered 30-year mean (2012-2042) under two different Shared 

Socioeconomic Pathways (SSPs): SSP5-8.5 and SSP2-4.5. Figure 23a shows 

the surface downwelling longwave radiation anomalies under the SSP5-8.5 

scenario, which represents a high greenhouse gas concentration pathway. The 

color scale represents rlds anomalies, with red indicating an increase and blue 

indicating a decrease. The range of anomalies is from 5.00 W/m² to 15.00 

W/m². Specific locations and their respective anomalies are: Bou-Saada with 

9.29 W/m², Sardegna with 7.53 W/m², Milano with 6.63 W/m², Marche with 

7.43 W/m², Palermo with 8.84 W/m², Zagreb with 8.44 W/m², and Bari with 

7.34 W/m². The map shows that most of the Mediterranean region is projected 

to experience an increase in surface downwelling longwave radiation under 

the SSP5-8.5 scenario. Figure 23b presents the surface downwelling 

longwave radiation anomalies under the SSP2-4.5 scenario, which represents 

a moderate greenhouse gas concentration pathway. The color scale is the 

same as in figure 23a, representing rlds anomalies ranging from 5.00 W/m² to 
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15.00 W/m². Specific locations and their respective anomalies are: Bou-Saada 

with 9.29 W/m², Sardegna with 7.53 W/m², Milano with 7.84 W/m², Marche 

with 7.42 W/m², Palermo with 8.34 W/m², Zagreb with 8.21 W/m², and Bari 

with 7.78 W/m². The map indicates that under the SSP2-4.5 scenario, the 

Mediterranean region shows a consistent increase in surface downwelling 

longwave radiation across the area. Both panels in figure 23 reveal a general 

trend of increasing surface downwelling longwave radiation across the 

Mediterranean region under both SSP5-8.5 and SSP2-4.5 scenarios. There is 

spatial variability in the magnitude of rlds anomalies, with some areas 

experiencing more significant increases than others. These observations 

highlight the potential impact of higher greenhouse gas emissions on radiation 

patterns, emphasizing the need for region-specific adaptation strategies to 

mitigate the effects of increasing longwave radiation in the Mediterranean 

region. Understanding these trends is crucial for developing effective 

adaptation measures to cope with the anticipated climate impacts. 

 

The following figure 24 will explain anomalies in surface downwelling 

longwave radiation (rlds in W/m²) using modeled data and their rates of 

increase over time.  
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Figure 24 consists of two panels illustrating the anomalies in surface 

downwelling longwave radiation (rlds in W/m²) in the Mediterranean 
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region using modeled data and their rates of increase over time; a) Best 

Fit Lines for Modeled Data, b) Rate of Decrease. 

Figure 24a shows the best fit lines for surface downwelling longwave 

radiation (rlds) for various locations from 2010 to 2100. Each line represents 

the modeled data for a specific location, with the legend providing the slope 

values, indicating the rate of increase in rlds per year. Specific locations and 

their slope values are: Mediterranean average with a slope of 0.04262, Bou-

Saada with a slope of 0.24756, Sardegna with a slope of 0.17757, Milano with 

a slope of 0.21225, Marche with a slope of 0.19091, Palermo with a slope of 

0.19569, Zagreb with a slope of 0.20567, and Bari with a slope of 0.20356. 

The graph shows a general upward trend in rlds across all locations, with Bou-

Saada, exhibiting the steepest increases, indicating the fastest rate of increase 

in surface downwelling longwave radiation, while the Mediterranean average 

shows the slowest rate of increase. Figure 24b provides a geographical 

representation of the rate of increase in surface downwelling longwave 

radiation (W/m²) across the Mediterranean region. The size of the red circles 

indicates the magnitude of the increase, with larger circles representing a 

faster rate of increase. Specific locations and their rate of increase in surface 

downwelling longwave radiation (rlds) are as follows: Bou-Saada shows a 

rate of increase ranging from 24.80 W/m² over 10 years to 247.95 W/m² over 

1000 years. Sardegna has a rate of increase ranging from 17.58 W/m² over 10 

years to 175.77 W/m² over 1000 years. Milano exhibits a rate of increase from 

21.20 W/m² over 10 years to 212.04 W/m² over 1000 years, while Marche 
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shows an increase ranging from 19.09 W/m² over 10 years to 190.91 W/m² 

over 1000 years. Palermo experiences a rate of increase from 19.96 W/m² 

over 10 years to 199.58 W/m² over 1000 years. Zagreb shows an increase 

ranging from 20.57 W/m² over 10 years to 205.96 W/m² over 1000 years, and 

Bari demonstrates an increase ranging from 20.35 W/m² over 10 years to 

203.50 W/m² over 1000 years. The map visually highlights the spatial 

variability in the rate of increase in surface downwelling longwave radiation, 

with larger circles indicating areas experiencing more significant increases. 

This visual representation helps identify hotspots of climate change impact 

within the region. The analysis in Figure 24a shows a consistent upward trend 

in rlds across all locations, with varying rates of increase. Bou-Saada, Algeria, 

exhibits the fastest rate of increase, while the Mediterranean average shows 

the slowest rate. The geographical representation in figure 24b highlights the 

spatial variability in the rate of increase in rlds, with some areas experiencing 

more significant increases than others. This comprehensive view of both 

temporal and spatial variations in rlds anomalies emphasizes the need for 

region-specific adaptation strategies to mitigate the impacts of increasing 

longwave radiation in the Mediterranean region. Understanding these trends 

is crucial for developing effective adaptation measures to cope with the 

anticipated climate impacts. 
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4. Discussion 

  

The Mediterranean region is particularly vulnerable to climate change 

due to its unique geographical and climatic characteristics. The region already 

experiences hot, dry summers and mild, wet winters, but climate change is 

expected to exacerbate these conditions, leading to more extreme 

temperatures, changes in precipitation patterns, and altered humidity and 

radiation levels. Policymakers and legislators must navigate these complex 

and often uncertain projections to develop effective strategies for mitigating 

and adapting to climate impacts. One critical aspect of climate change 

analysis is determining the "crossing year," that is defined as the point in time 

when a significant rise in climate variables is expected to occur compared to 

a given threshold. This concept is crucial for understanding when the impacts 

of climate change will become more pronounced and for planning appropriate 

interventions. However, the crossing year varies widely depending on the 

methods and variables used in the analysis, making it a challenging metric for 

policymakers to rely on. For instance, different climate models might project 

different rates of temperature increase or changes in precipitation patterns, 

leading to different estimates of when a significant change will occur. 
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Additionally, methods like the moving mean, moving median, or raw data 

analysis can produce different results for the crossing year. The detailed 

analysis of climate variables across various locations in the Mediterranean 

basin under different Shared Socioeconomic Pathway (SSP) scenarios 

provides insights into the region's future climate trends and their implications. 

Figure 14a, in the previous paragraph, illustrates the projected temperature 

anomalies (tas) from 2010 to 2100 for several locations. Both SSP2-4.5 and 

SSP5-8.5 scenarios show a consistent upward trend in temperatures, 

indicative of ongoing climate warming. The variability in slopes among 

locations indicates different rates of temperature increase, with some areas 

experiencing more rapid warming than others. For instance, locations like 

Bou-Saada, exhibit steeper slopes, suggesting faster rates of temperature rise 

compared to locations with shallower slopes. In Figure 5b, the relative 

humidity anomalies (hurs) represent a decline over time under both SSP 

scenarios. SSP5-8.5 shows a more pronounced decrease compared to SSP2-

4.5. This reduction in humidity levels has implications for agriculture, water 

resources, and ecosystems, potentially exacerbating drought conditions in the 

region. Figure 12c presents precipitation anomalies (pr) under SSP2-4.5 and 

SSP5-8.5 scenarios. The projections indicate variability in precipitation 

patterns across the Mediterranean basin. While some areas may experience 

increases in precipitation, others are projected to face significant decreases. 

This variability underscores the challenge of predicting future precipitation 

trends in a region known for its climatic diversity. Figures 12d and 12e 
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represent anomalies in surface downwelling shortwave (rsds) and longwave 

(rlds) radiation. Both scenarios show increases in these radiation components, 

with SSP5-8.5 generally projecting higher anomalies compared to SSP2-4.5. 

These changes influence the Earth's energy balance (Eq. 1) and contribute to 

the overall warming observed in temperature anomalies, proved in equations 

2 and 3 below. The energy balance in the planetary boundary layer (PBL) 

describes the transfer of energy in the lower part of the atmosphere. Changes 

in the parameters within this balance influence vertical mixing and, 

consequently, pollutant dispersion and air quality. Its key components include 

net radiation, which is often divided into shortwave and longwave radiation. 

Shortwave radiation accounts for the portion of solar radiation that reaches 

the earth’s surface, approximately 30% of the total, while longwave radiation 

pertains to the infrared radiation emitted by the earth’s surface and 

atmosphere. Sensible heat flux refers to the transfer of heat from the earth’s 

surface to the atmosphere through convection and conduction. Latent heat 

flux involves the transfer of heat associated with phase changes, such as 

evaporation and condensation. Lastly, soil heat flux, shown in the Equation 

1, represents the energy gained or lost during the warming or cooling of the 

ground below the surface (Purdy et al., 2016). 

 

𝐻 +  𝜆𝐸 + 𝐺 = 𝑅𝑛 → 𝐻 =
0.9𝑅𝑛

(1+
1

𝐵𝑜
)
    

 (1) 
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Equation 1 Ground heat flux equation for the Convective Boundary Layer 

(CBL), where; H – Sensible heat flux [W m-2] 

λE – Latent heat flux (λE=H/Bo; Bo-Bowen ratio) [W m-2] 

G – Soil heat flux (assumed G=0.1*Rn) [W m-2] 

Rn – Net radiation [W m-2], (EPA, 2023). 

 

 

These energy components are influenced by a variety of surface and 

atmospheric conditions, as well as temporal changes, such as day and night 

cycles. Factors including albedo, surface roughness, humidity, cloud cover, 

wind speeds, insolation, and the length of insolation play significant roles. In 

convective conditions, the Convective Boundary Layer (CBL), these 

parameters are generally positive, on the contrary in stable conditions (Stable 

Boundary Layer; SBL), they tend to be negative, with the exception of latent 

heat flux, which typically exhibits lower positive values, partly due to water 

anomalies (Mauder et al., 2020). The Bowen ratio (Bo) is a parameter that 

represents the ratio between sensible and latent heat flux. A Bo value less than 

1 indicates a wet surface, while a Bo value greater than 1 signifies a dry 

surface. Higher values of the Bowen ratio result in greater updrafts and more 

intense buoyancy fluxes, which in turn enhance convective fluxes (Kang, 

2016). The Bowen ratio is negatively related to surface air temperature, and 

this effect is more pronounced in less vegetated areas (Cho et al., 2012). It 

depends on the underlying surface characteristics, such as dominant land use, 
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soil type, latitude, elevation, continental location, and drainage basin, as well 

as the time of year (Friedrich et al., 2000).  

The solar shortwave radiation (rsds) is determined using the following 

formula: 

 

𝑅𝑠 = 0.16√𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 ∗ 𝑅𝑎    (2) 

Equation 2 The solar shortwave radiation equation.  Ra (MJ m2   

per day−1) is the solar radiation above the atmosphere 

(extraterrestrial radiation, it is a function of the latitude, Julian 

day, and solar time (i.e., solar hour angle) (Raoufi, et al., 2017). 

The net longwave radiation is determined by: 

 

𝑅𝑛𝑙 =  𝜎 (
(𝑇𝑚𝑎𝑥 + 273.15)4  +  (𝑇𝑚𝑎𝑥 + 273.15)4

2
) 

(0.34 − 0.14√𝑒𝑎) (1.35
𝑅𝑠

𝑅𝑠𝑜
 − 0.35) 

Equation 3 The solar longwave radiation equation., where σ is the 

Stefan–Boltzmann constant (4.903x10-9 MJ K-4 M-2 per day-1). Rso is the 

clear-sky solar radiation (MJ m2 day-1).   

 

The projections show a consistent increase in temperature anomalies for both 

scenarios, with SSP5-8.5 showing a more significant rise compared to SSP2-
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4.5. Relative humidity is projected to decline under both scenarios, with a 

more substantial decrease under SSP5-8.5. Precipitation projections show 

high variability, with both increases and decreases in different periods and 

scenarios. Both shortwave and longwave radiation anomalies are projected to 

increase, with SSP5-8.5 showing higher anomalies than SSP2-4.5. These 

projections underscore the importance of considering both scenarios for 

future planning and mitigation strategies, as they show potential changes in 

climate variables that can significantly impact the region's environment and 

socio-economic conditions. Understanding these projections is crucial for 

developing effective adaptation measures to cope with the anticipated climate 

impacts in the Mediterranean region. 

The temperature anomalies show a consistent upward trend across both 

scenarios, with SSP5-8.5 indicating higher increases compared to SSP2-4.5. 

Rising temperatures have a cascading effect on other climate variables. As 

temperatures increase, the capacity of the air to hold moisture also increases, 

often leading to a decrease in relative humidity (Eq. 3) This is evident in the 

projections where relative humidity declines more significantly under SSP5-

8.5, which has higher temperature anomalies. Higher temperatures can lead 

to increased evaporation rates, potentially reducing soil moisture and 

affecting precipitation patterns. The variability in precipitation anomalies 

under both scenarios reflects the complex interplay between temperature and 

the hydrological cycle, with some regions experiencing decreases and others 

increases in precipitation. Increasing temperatures can enhance the absorption 
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of solar radiation by the Earth's surface. The projected increase in shortwave 

radiation anomalies under both scenarios suggests a feedback loop where 

higher temperatures lead to more absorption of solar energy, further driving 

temperature increases. As the surface temperature rises, the emission of 

longwave radiation from the Earth’s surface increases. The upward trend in 

longwave radiation anomalies under both scenarios indicates a stronger 

greenhouse effect, with higher temperatures leading to more longwave 

radiation being emitted and trapped by greenhouse gasses.  Relative humidity 

shows a declining trend under both scenarios, with a more substantial 

decrease under SSP5-8.5. Changes in relative humidity interact with other 

variables such as temperature, precipitation, and cloud cover. For example, a 

decline in relative humidity can reduce cloud formation, allowing more solar 

radiation to reach the surface, which further increases temperatures. 

Additionally, lower humidity can enhance evaporation, leading to drier soil 

and exacerbating drought conditions, particularly in regions already 

vulnerable to water scarcity. As discussed, rising temperatures lead to a 

decrease in relative humidity due to the increased moisture-holding capacity 

of warmer air. Changes in relative humidity can influence cloud formation 

and precipitation patterns. Lower relative humidity might reduce cloud cover 

and precipitation, particularly in regions already experiencing reduced 

rainfall. Decreased relative humidity can affect the radiation balance by 

altering cloud cover. Fewer clouds can lead to increased shortwave radiation 

reaching the surface, further warming the surface and enhancing longwave 
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radiation emissions. Precipitation patterns influence soil and surface 

moisture, affecting longwave radiation emissions. Dry soils emit more 

longwave radiation compared to moist soils. Changes in cloud cover due to 

varying precipitation patterns can affect shortwave radiation. Less cloud 

cover leads to increased solar radiation reaching the surface. Higher surface 

temperatures lead to increased emission of longwave radiation. The feedback 

loop between temperature and longwave radiation is crucial in understanding 

the enhanced greenhouse effect. The interconnected trends among 

temperature, relative humidity, precipitation, shortwave radiation, and 

longwave radiation highlight the complex dynamics of climate change in the 

Mediterranean region. The SSP5-8.5 scenario, with higher greenhouse gas 

emissions, consistently shows more extreme changes in all variables 

compared to SSP2-4.5. These changes underscore the importance of 

considering multiple climate variables and their interactions when assessing 

future climate impacts. The Penman-Monteith equation (Eq. 4), further in the 

paragraph, is showing how these higher temperatures, combined with other 

factors like radiation and wind speed, increase actual evapotranspiration rates. 

As a result, increased evaporation leads to reduced soil moisture, which can 

affect local precipitation patterns. This provides a mathematical basis for the 

correlation between higher temperatures, increased evaporation, and changes 

in soil moisture and precipitation patterns (Raoufi, et al., 2017). 

 

𝐸𝑇 =
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
𝑢2(𝑒𝑠+𝑒𝑎)

∆+𝛾(1+0.32𝑢)
    (4) 
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Equation 4 The Penman-Monteith equation shows that 

evapotranspiration increases with higher net radiation, higher 

temperature, and higher wind speed, and it decreases with higher actual 

vapor pressure. 

 

ET is the evapotranspiration (mm/day), Δ is the slope of the vapor pressure 

curve (kPa/°C), Rn is the net radiation at the crop surface (MJ/m²/day), G is 

the soil heat flux density (MJ/m²/day), γ is the psychrometric constant 

(kPa/°C), T is the mean daily air temperature (°C), u2 is the wind speed at 2 

meters height (m/s), es is the saturation vapor pressure (kPa) and ea is the 

actual vapor pressure (kPa).  

 

Following the collected data from the results, in the rest of this paragraph, we 

will discuss each variable separately.    The temperature anomaly values, 

down in the paragraph correspond to the crossing year values because they 

were derived from the moving median method over a 30-year window, 

aligning with the process described for determining the crossing year. 

 

Temperature anomalies across the Mediterranean region indicate a consistent 

upward trend under both SSP2-4.5 and SSP5-8.5 scenarios. The temperature 

anomaly values provided for Bou-Saada, Algeria (1.99°C under SSP2-4.5 and 

1.94°C under SSP5-8.5) suggest a specific point in time when the average 

temperature increase compared to pre-industrial levels is nearly the same for 

both scenarios. This suggests significant warming, likely exacerbating 
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evaporation rates and reducing soil moisture. Sardegna has temperature 

anomalies of 1.86 °C for SSP2-4.5 and 1.79 °C for SSP5-8.5, indicating a 

similar warming trend that could lead to higher evaporation and lower 

precipitation. Milano exhibits temperature anomalies of 1.79 °C and 1.86 °C 

for SSP5-8.5 and SSP2-4.5, respectively. The urban heat island effect may 

intensify these temperature increases, further impacting local climate 

conditions. Marche shows a moderate temperature increase with anomalies 

of 1.86 °C for SSP2-4.5 and 1.79 °C for SSP5-8.5. This warming could affect 

local agriculture and water resources. Palermo has temperature anomalies of 

1.88 °C under SSP2-4.5 and 1.79 °C under SSP5-8.5, indicating significant 

warming that could reduce local water availability. Zagreb shows temperature 

anomalies of 1.86 °C for SSP2-4.5 and 1.79 °C for SSP5-8.5, suggesting that 

increased temperatures may enhance precipitation through localized weather 

patterns. Bari exhibits temperature anomalies of 1.86 °C and 1.79 °C for 

SSP2-4.5 and SSP5-8.5, respectively. The warming trend could slightly affect 

local precipitation patterns.  

 

Precipitation anomalies exhibit significant variability, reflecting the complex 

interactions with temperature, humidity, and radiation. Under SSP5-8.5, 

precipitation anomalies range from -97.06 mm/year to 232.93 mm/year at the 

crossing year of 2025, indicating potential for both increased and decreased 

rainfall in different regions. Below in this paragraph there is a detailed 

analysis specifying the anomalies for each location and what is happening at 
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these specific sites. Bou-Saada shows a precipitation anomaly of -45.96 

mm/year. Bou-Saada is projected to experience a significant decrease in 

precipitation. This reduction could be due to increased evaporation rates 

driven by higher temperatures and lower relative humidity, which reduce soil 

moisture and hinder local precipitation processes. Sardegna has a 

precipitation anomaly of -31.79 mm/year. Sardegna is also expected to see a 

decrease in precipitation. This decrease may be influenced by similar factors 

affecting Bou-Saada, such as higher temperatures and decreased relative 

humidity, leading to less cloud formation and reduced rainfall. Milano 

exhibits a precipitation anomaly of -37.90 mm/year. Milano is projected to 

face a reduction in precipitation. The urban heat island effect combined with 

higher regional temperatures could enhance evaporation rates, further 

reducing soil moisture and precipitation. Marche has a precipitation anomaly 

of -12.32 mm/year. Marche shows a moderate decrease in precipitation. This 

region might experience less severe impacts compared to others, but the 

reduction is still significant enough to affect local agriculture and water 

resources. Palermo has a precipitation anomaly of -29.44 mm/year. Palermo 

is expected to see a decrease in precipitation. The reduction could affect local 

water availability and agricultural productivity, necessitating adaptation 

measures to manage water resources effectively. Zagreb shows a precipitation 

anomaly of 22.84 mm/year. Zagreb is projected to experience an increase in 

precipitation. This could be due to localized weather patterns or increased 

atmospheric moisture content from adjacent regions, enhancing rainfall. 
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However, this increase may also lead to issues such as flooding or soil erosion 

if not managed properly. Bari exhibits a precipitation anomaly of -1.40 

mm/year. Bari shows a slight decrease in precipitation. While the reduction 

is relatively small compared to other locations, it still highlights the variability 

and complexity of precipitation patterns in the region.  

 

Relative humidity anomalies decline under both scenarios, with a more 

substantial decrease under SSP5-8.5. Bou-Saada shows a relative humidity 

anomaly of -1.27 % under SSP2-4.5 and -0.88 % under SSP5-8.5, indicating 

lower moisture levels that could reduce precipitation. Sardegna has relative 

humidity anomalies of -0.82 % for SSP2-4.5 and -0.81 % for SSP5-8.5, 

reflecting a decrease that could lead to reduced cloud formation and rainfall. 

Milano exhibits relative humidity anomalies of -0.8227% and -0.8050% for 

SSP2-4.5 and SSP5-8.5, respectively. Lower humidity may enhance 

evaporation rates, reducing soil moisture and precipitation. Marche shows 

relative humidity anomalies of -0.8227% under SSP2-4.5 and -0.8050% 

under SSP5-8.5, indicating moderate decreases that could affect local water 

resources. Palermo has relative humidity anomalies of -0.8227% for SSP2-

4.5 and -0.8050% for SSP5-8.5, suggesting lower moisture levels that could 

impact agricultural productivity. Zagreb shows relative humidity anomalies 

of -0.8227% and -0.8050% for SSP2-4.5 and SSP5-8.5, respectively. 

Decreased humidity might slightly affect precipitation patterns. Bari, Italy 

(IT) exhibits relative humidity anomalies of -0.8227% for SSP2-4.5 and -
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0.8050% for SSP5-8.5, indicating a slight decrease that could impact local 

precipitation.  

 

Surface downwelling shortwave radiation (rsds) anomalies show an 

increasing trend. Bou-Saada shows an rsds anomaly of 2.37 W/m² under 

SSP2-4.5 and 1.48 W/m² under SSP5-8.5, indicating increased solar energy 

absorption that could enhance warming. Sardegna has rsds anomalies of 4.91 

W/m² for SSP2-4.5 and 4.42 W/m² for SSP5-8.5, suggesting increased 

shortwave radiation that could drive temperature increases. Milano exhibits 

rsds anomalies of 4.91 W/m² and 4.42 W/m² for SSP2-4.5 and SSP5-8.5, 

respectively, reflecting higher solar energy absorption that could intensify 

local warming. Marche shows rsds anomalies of 4.91 W/m² for SSP2-4.5 and 

4.42 W/m² for SSP5-8.5, indicating increased radiation that could affect local 

climate conditions. Palermo has rsds anomalies of 4.91 W/m² and 4.42 W/m² 

for SSP2-4.5 and SSP5-8.5, respectively, suggesting higher solar energy 

levels that could enhance warming. Zagreb shows rsds anomalies of 4.91 

W/m² for SSP2-4.5 and 4.42 W/m² for SSP5-8.5, indicating increased 

radiation that could drive temperature increases. Bari exhibits rsds anomalies 

of 4.91 W/m² for SSP2-4.5 and 4.42 W/m² for SSP5-8.5, reflecting higher 

solar energy absorption that could intensify local warming.  

 

Surface downwelling longwave radiation (rlds) anomalies indicate an upward 

trend. Bou-Saada shows an rlds anomaly of 9.44 W/m² under SSP2-4.5 and 
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9.45 W/m² under SSP5-8.5, indicating increased longwave radiation that 

could enhance the greenhouse effect. Sardegna has rlds anomalies of 8.27 

W/m² for SSP2-4.5 and 7.96 W/m² for SSP5-8.5, suggesting increased 

longwave radiation that could contribute to warming. Milano exhibits rlds 

anomalies of 8.27 W/m² and 7.96 W/m² for SSP2-4.5 and SSP5-8.5, 

respectively, reflecting higher longwave radiation that could intensify the 

greenhouse effect. Marche shows rlds anomalies of 8.27 W/m² for SSP2-4.5 

and 7.96 W/m² for SSP5-8.5, indicating increased longwave radiation that 

could enhance warming. Palermo has rlds anomalies of 8.27 W/m² and 7.96 

W/m² for SSP2-4.5 and SSP5-8.5, respectively, suggesting higher longwave 

radiation that could drive temperature increases. Zagreb shows rlds anomalies 

of 8.27 W/m² for SSP2-4.5 and 7.96 W/m² for SSP5-8.5, indicating increased 

radiation that could enhance the greenhouse effect. Bari exhibits rlds 

anomalies of 8.27 W/m² for SSP2-4.5 and 7.96 W/m² for SSP5-8.5, reflecting 

higher longwave radiation that could intensify local warming.  

The variability in precipitation anomalies under the SSP5-8.5 scenario 

illustrates the complex interplay between temperature, humidity, and 

radiation. While some regions like Zagreb may experience increased rainfall, 

most locations, including Bou-Saada, Sardegna, Milano, Marche, Palermo, 

and Bari, are projected to see a decrease in precipitation. These changes 

underscore the importance of understanding local climate dynamics to 

develop targeted adaptation strategies that address the specific needs of each 

region. Reducing greenhouse gas emissions and enhancing resilience to 
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changing precipitation patterns are crucial steps to mitigate the adverse 

impacts of climate change in the Mediterranean region. 

 

 

 

5. Conclusion 

 

  The comprehensive examination of climate projections for the 

Mediterranean basin under SSP2-4.5 and SSP5-8.5 scenarios highlights 

significant future climate changes across multiple variables. The region is 

expected to experience continued warming throughout the 21st century, with 

some areas warming faster than others. This trend poses risks to ecosystems, 

agriculture, and human health, necessitating adaptive strategies to mitigate 

these impacts. Decreasing relative humidity and variable precipitation 

patterns pose challenges for water availability and ecosystem resilience. 

Regions dependent on agriculture may face increased vulnerability to 

droughts and shifts in growing seasons. Increasing shortwave and longwave 

radiation anomalies indicate shifts in energy dynamics within the atmosphere. 

These changes contribute to enhanced warming and alter regional climate 

patterns. The spatial variability illustrated in Figures 13 and 14 emphasizes 

the need for localized climate adaptation strategies. Different regions within 

the Mediterranean basin exhibit diverse climate responses to global warming, 

requiring tailored approaches to resilience building. To address these 
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challenges, policymakers, stakeholders, and communities must prioritize 

climate adaptation and mitigation efforts. Strategies such as sustainable water 

management, resilient agriculture practices, and urban planning that 

integrates climate resilience considerations are essential. Continuing 

scientific research and monitoring are critical to refining climate projections 

and informing adaptive strategies that promote sustainability and resilience 

across the Mediterranean region.  
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Appendix A. 

 

Titolo dell’Appendice 

 
 
 
A.1. For the full MATLAB code, please see the attached file: 
[MATLAB codes.zip]; 
 

 

MATLAB codes.zip

 

A.2. For the full-size figures, directly obtained from MATLAB 
please see the attached file: [Figures_final.zip]; 
 

Figures_final.zip

 
 

 


