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ABSTRACT 

Breast cancer is the leading cause of cancer-related death in women world-wide. Among all the 

malignant diseases, it accounts for 23% of all cancer deaths. The highest incidence occurs in women 

over age 50. The heterogeneity of breast carcinoma can arise from neoplastic transformations in 

myoepithelial or epithelial cells, or even from a stem cell that has the ability to change its nature. 

Breast cancer can be classified by different criteria regarding histopathological type, grade, stage 

and receptor status. 

It is generally diagnosed through screening or in response to the presence of symptoms that prompt 

further diagnostic examinations. Imaging techniques are the most used for tumor detection and the 

principal ones are: mammography, ultrasound, positron emission tomography and magnetic 

resonance imaging. Specifically, tumor identification in breast MRI images relies on the different 

contrast enhancement between normal tissues and breast lesions. 

Among all different types of tumors treatments, surgical resection and chemoradiotherapy are often 

the principal ones. Recently, new therapies that reactivate immune responses against cancer, have 

discovered the presence of specific killing lymphocytes in the tumor microenvironment, the so 

called tumor-infiltrating lymphocytes (TIL). The presence of TIL in breast cancer prior to treatment 

can predict the response to therapy and it is associated with a better prognosis.  

In recent years, there has been significant progress in Deep Learning (DL) techniques, particularly in 

the automatic analysis of radiological images for tumor detection and the prediction of therapeutic 

efficacy. The aim of this study is to assess TIL from breast cancer MRIs, acquired from the Cancer 

Genome Atlas Breast Invasive Carcinoma data collection. The study relies on three experiments 

performed using three different classifiers: the VGG-16 and two simpler CNNs, one with a single 

convolutional layer and the other with four convolutional layers. 

All these models were fed with MRIs pre-processed with the following customized pipeline: 

normalization, bias field correction and inter-slice distance modification. Afterward, the hyper-

parameter tuning was utilized to find the best parameters to train, validate and test the models. 

The performances of the three model architectures were compared in terms of accuracy, sensitivity, 

specificity, area under (AUC) the curve and F1-score. It turned out that the model of intermediate 

complexity reached better performances with AUC of 0.943, 0.962, 0.990, 0.985 and 0.988 in 

different splits. 

The achieved results demonstrate that the classifier used in the third experiment is able to 

accurately discriminate among low TIL and high TIL tumors from radiological images. This is a very 



promising starting point for the development of a clinically useful computer aided system to assess 

TIL levels from radiological images. 
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INTRODUCTION 

Breast cancer is one of the principal leading cause of cancer-related deaths and the most diagnosed 

cancer in women across the world, with an estimated 55,720 cases of non-invasive carcinoma and 

297,790 cases of invasive disease in 2023. Its incidence and death rates have increased over the last 

three decades due to the change in risk factor profiles, better cancer registration and detection.  

Currently, about 80% of breast cancer patients are individuals aged over 50. Several procedures 

such as screening programs are potentially reducing breast cancer incidence rate. There are specific 

factors that increase the risk of breast cancer development including: advancing age, obesity, use 

of alcohol, breast cancer family history, radiation exposure, reproductive history (such as age at first 

menstrual period and age at first pregnancy), smoking and postmenopausal hormone therapy. 

Approximately half of breast cancers develop in women who have no identifiable breast cancer risk 

factor other than gender (female) and age (over 40 years). Furthermore, specific inherited gene 

mutations significantly elevate the risk of breast cancer, with BRCA1, BRCA2, and PALB-2 gene 

mutations being the most prevalent. Among the various diagnostic techniques, imaging plays a 

central role in the identification and assessment of breast cancer. In particular, techniques as 

mammography, magnetic resonance imaging, positron emission tomography, single-photon 

emission computed tomography, breast specific gamma imaging and ultrasound have been 

emerged as powerful tools for detection and monitoring of response to therapy. All of these 

techniques are currently digitized, enabling the possibility to implement deep learning in breast 

imaging. Deep learning is nowadays applied to different tasks, such as lesion classification and 

segmentation, image reconstruction, cancer risk evaluation and prediction and assessment of 

therapy response. Breast cancer is commonly treated by various combinations of surgery, radiation 

therapy, chemotherapy, hormone therapy and immunotherapy. Recently, new therapies that 

reactivate anticancer immune responses, have entered clinical practice and got an improved 

outcome. Several clinical studies have evaluated the prognostic and predictive importance of tumor-

infiltrating lymphocytes (TILs) in breast cancer. TILs are the core of an experimental cell therapy for 

the treatment of solid tumors. Lymphocytes, made up of T cells and B cells, are part of the immune 

system and are constantly controlling the body, identifying modified cells, including cancerous ones. 

As tumors progress, lymphocytes discern these abnormal cells and infiltrate the tumor to build a 

defence against their presence.  

In scientific literature, there are few sources regarding the prediction of therapy outcomes 

combined with deep learning applications, especially concerning TILs.  
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This is largely due to the fact that TILs are not still officially recognized as a biomarker. Studies 

exploring the use of TIL as a predictive parameter for the effectiveness of breast anti-tumor 

therapies are still in experimental phase.  

Thus, the aim of this study is to use different DL models for the assessment of TIL from breast MRI 

cancer images.
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1. BREAST CANCER  

Breast cancer is the leading cause of cancer-related death in women world-wide [1]. Among all the 

malignant diseases, it accounts for 23% of all cancer deaths. The incidence of breast cancer rises 

after age 40. The highest incidence (approximately 80% of invasive cases) occurs in women over age 

50 [2].  

1.1 ANATOMY OF THE BREAST 

The breast of an adult woman is a milk-producing, tear-shaped gland. It is supported by and attached 

to the front of the chest wall on either side of the breast bone or sternum by ligaments. The skin of 

the breast is thin and contains hair follicles, sebaceous glands, and sweat glands. Two fascial layers 

are present within the breast. The posterior surface of the breast rests on segment of the fasciae of 

the pectoralis major, rectus abdominis muscles, external abdominal oblique and serratus anterior 

[1]. The superficial fascia lies deep to the dermis and the deep fascia lies anterior to the pectoralis 

major muscle. The breast has no muscle tissue and a layer of fat surrounds the glands and extends 

throughout the breast. The breast is responsive to a complex interplay of different hormones that 

cause the tissue to develop, enlarge and produce milk. The three major hormones affecting the 

breast are estrogen, progesterone and prolactin, which are responsible for changes of glandular 

tissue in the breast and of the uterus during the menstrual cycle [3]. 

The breast is composed of approximately 15 to 20 lobes and these lobes are further divided into 

lobules. The lobules are made up of branched alveolar glands. Each lobe drains into a major 

lactiferous duct (Figure 1.1).  

Figure 1.1: Anatomy of the breast 

https://api.seer.cancer.gov/rest/glossary/latest/id/546e2fa6e4b0d965832b2a61
https://api.seer.cancer.gov/rest/glossary/latest/id/550ed539e4b0c48f31dad4bb
https://api.seer.cancer.gov/rest/glossary/latest/id/5507736be4b0c48f31d7b80e
https://api.seer.cancer.gov/rest/glossary/latest/id/5507736be4b0c48f31d7b80e
https://api.seer.cancer.gov/rest/glossary/latest/id/550b5441e4b0c48f31d9addf
https://api.seer.cancer.gov/rest/glossary/latest/id/55a2f6f8e4b05cd0cdd94531
https://api.seer.cancer.gov/rest/glossary/latest/id/55097ed2e4b0c48f31d89a03
https://api.seer.cancer.gov/rest/glossary/latest/id/546e0451e4b0d965832afed2
https://api.seer.cancer.gov/rest/glossary/latest/id/546f5df6e4b0d965832bb537
https://api.seer.cancer.gov/rest/glossary/latest/id/546f5e1de4b0d965832bb56a
https://api.seer.cancer.gov/rest/glossary/latest/id/55035691e4b0c48f31d6a438
https://api.seer.cancer.gov/rest/glossary/latest/id/5558f5bde4b031c70bba2512
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The lactiferous ducts dilate into a lactiferous sinus beneath the areola, a spherical darker-pigmented 

area, and then open through a constricted orifice onto the nipple. The space between the lobes is 

filled by connective tissue and subcutaneous adipose tissue. The fat that covers the lobes gives the 

breast its size and shape. During the development of the breasts, at the time of puberty, the ducts 

grow and divide and form terminal end buds. The terminal end buds then form new branches and 

small ductules termed alveolar buds. The alveolar buds differentiate into the terminal structure of 

the resting breast called acines or ductules [4]. Typically, there are hundreds of acinar cells within 

each breast. The Terminal Ductal Lobular Unit (TDLU) refers to the basic functional unit of the breast 

with 30 to 50 acinar cells grouped into a lobule and the associated ducts as reported in Figure 1.2. 

In the immature breast, ducts and alveoli are lined by a two-layer epithelium that consists of a basal 

cuboidal layer and flattened surface layer. In the adult breast, the epithelium proliferates and 

becomes multilayered. Myoepithelial cells are located surrounding the alveoli and are contractile 

units that are stimulated by hormones such as prolactin and oxytocin [1]. If pregnancy occurs, the 

breast lobules which are composed of epithelial lobular cells and underlying contractile 

myoepithelial cells differentiate for lactation. With the presence of prolactin hormone, the lobules 

are stimulated to produce and secrete milk. 

 

 

 

 

Figure 1.2: (a-c) Terminal Ductal Lobular Unit (TDLU) composed of Intralobar Terminal Duct (ITD) and 
Extralobar Terminal Duct (ETD). The inner secretory luminal epithelial cells (LEP) is shown at cellular level 
lining the acini (ductules). The outer layer is made of myoepithelial cells (MEP) which are the contractile units. 
The basement membrane (BM) is deep to the myoepithelial cell layer. 
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1.2 CARCINOGENESIS AND CAUSES 

Breast cancer is a malignant disease that initiates in breast cells. In the breast, the stratified 

epithelium is composed of two dissimilar cell populations, myoepithelial and epithelial. The 

heterogenicity of the breast carcinoma might happen from the neoplastic change of either 

myoepithelial or epithelial cells, or yet from a stem cell that has the ability to develop into 

myoepithelial or epithelial cell [5]. According to the oncology of breast cancer, neoplastic cells differ 

from the normal body cells. Normal tissues of the body have limited growth promotion and 

regulation which helps to keep the structure and functions of tissues in normal conditions. Instead, 

cancerous cells have prolonged and chronic proliferation without any external stimuli [6] by 

overcoming the growth suppressor genes.  There are numerous causes that can increase the 

possibility of developing breast cancer. For example, injuries to the deoxyribonucleic acid (DNA) and 

hereditary alteration can guide to breast cancer and they have been associated with the exposure 

to estrogen. Some patients inherit fault in the deoxyribonucleic acid (DNA) and genes like the P53, 

BRCA1 and BRCA2 and the ones with a family history of breast or ovarian cancer have more 

possibility of developing breast cancer [7]. The immune system usually tries to find out cancer cells 

and cells with injured deoxyribonucleic acid (DNA) in order to demolish them. But, if there is a 

malfunctioning of the immune defence and surveillance system, breast cancer might develop. 

Moreover, breast cancer commonly occurs due to an association between genetic and 

environmental factors: usually, RAS/MEK/ERK pathway and PI3K/AKT pathway defend normal cells 

from cell suicide. When mutation occurs in genes that are involved in encoding these protective 

pathways, the cells become unable of committing suicide when they are no longer required leading 

to cancer. These mutations were confirmed to be experimentally associated with estrogen exposure 

[8]. Modifications or mutations can occur spontaneously or they may be induced by other factors 

such as nuclear radiation, electromagnetic radiation (microwaves, X-rays, Gamma-rays, Ultraviolet-

rays etc.), viruses, bacteria and fungi, parasites, heat, chemicals in the air, water and food, 

mechanical cell-level injury, free radicals and ageing of DNA and RNA. In addition, deformity in the 

growth factors signalling or over expression of leptinin breast adipose tissue, enhances proliferation 

of cell [9]. In fact, in cancer cells, enzyme telomerase turns away the chromosomal shortening and 

allows the extensive replication of cells [10]. Moreover, tumour cells get their nutrients and oxygen 

supply by angiogenesis, the physiological process through which new blood vessels are born from 

pre-existing vessels: they break their boundaries and can enter into the blood, lymphatic tissues and 

other tissues of the body to produce a secondary tumour [1]. 

https://biolres.biomedcentral.com/articles/10.1186/s40659-017-0140-9#ref-CR70
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1.3 BREAST CANCER CLASSIFICATION 

Breast cancer can be classified by different criteria regarding histopathological type, grade, stage 

and receptor status [7]. 

The grading of breast cancer depends on the microscopic similarity of cancer cells to normal breast 

tissue and, classifies the cancer as well differentiated (grade 1), moderately differentiated (grade 2) 

and poorly differentiated (grade 3 or grade 4). 

According to site, breast cancer is divided into invasive and non-invasive: non-invasive breast cancer 

is a cancer that has not extended away from the lobule or ducts where it situated [12], as Lobular 

carcinoma in situ (LCIS) and Ductal carcinoma in situ (DCIS). Instead, invasive breast cancer exists 

when abnormal cells from within the lobules or milk ducts split out into close proximity of breast 

tissue, as Infiltrating lobular carcinoma (ILC) and Infiltrating ductal carcinoma (IDC). 

Less common types of breast cancer include [3]: 

  Inflammatory breast cancer: it diffuses brawny infiltration; the breast appears red or 

inflamed and tends to spread quickly 

  Medullary carcinoma: it originates in central breast tissue 

  Mucinous carcinoma: it is invasive and usually occurs in postmenopausal women 

  Paget disease of the nipple: it originates in the milk ducts and spreads to the skin of the 

nipples or areola 

  Phyllodes tumor: it is a tumor with a leaf-like appearance that extends into the ducts and 

that rarely metastasizes 

  Tubular carcinoma: small tumor that is often undetectable by palpation 

 

1.4 BREAST CANCER STAGES 

Breast cancer staging is based on tumour size and it describes if and where the cancer has spread. 

The international standard for classifying the malignancy of a tumor is the TNM Classification of 

Malignant Tumors (TNM) system: it describes the anatomic extent of cancer and determines its 

stage based on a list of factors involving tumor (T), node (N) and metastases (M) [13]. The T category 

refers to the cancer size and describes the original primary tumor: 

  TX: the tumor can't be assessed. 

  T0: there isn't any evidence of the primary tumor. 
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  Tis: the cancer is in situ (the tumor has not started growing into healthy breast tissue). 

  T1, T2, T3, T4: These numbers are based on the size of the tumor and how it has grown into 

the surrounding breast tissue. The higher the T number, the larger the tumor and its spread 

thrown the breast tissue. 

The N category refers to lymph node involvement and describes whether or not the cancer has 

reached nearby lymph nodes: 

  NX: nearby lymph nodes can't be assessed. 

  N0: nearby lymph nodes do not contain cancer. 

  N1, N2, N3: These numbers are based on the number of lymph nodes involved and how the 

cancer has been spread between them. The higher the N number, the greater the extent of 

the lymph node involvement. 

The M category express whether or not there is evidence of diffusion of the cancer in other parts of 

the body: 

  MX: metastasis can't be assessed. 

  M0: there is no distant metastasis. 

  M1: distant metastasis is present. 

Once the T, N, and M categories have been determined, it is possible to assess the cancer overall 

stage. 

 

1.4.1 STAGE 0 

This is the non-invasive stage of tumour which indicates that both cancerous and non-cancerous 

cells are within the boundaries of that part of the breast in which the tumor begins to grow [14]. 

Stage 0 is used to describe non-invasive breast cancers, such as Ductal carcinoma in situ (DCIS). 

 

 

1.4.2 STAGE 1 

This stage describes the invasive breast carcinoma as when the microscopic invasion is possible [15] 

and it is divided into two subcategories known as IA and IB. In general, stage IA describes invasive 

breast cancer in which the tumor measures up to 2 cm and the cancer has not spread outside the 

breast (no lymph nodes are involved). Instead, stage IB describes invasive breast cancer in which  

small groups of cancer cells (larger than 0.2 mm but not larger than 2 mm) are found in the lymph 

nodes and there may be or not tumor in the breast. 
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1.4.3 STAGE 2 

Stage 2 describes that the tumour can be found in axillary lymph nodes or in sentinel lymph nodes 

and is referred to as early breast cancer. This stage is divided into two subcategories: IIA and IIB. 

In general, stage IIA describes invasive breast cancer in which: no tumor can be found in the breast, 

but cancer (larger than 2 mm) is found in one to three axillary lymph nodes (the lymph nodes under 

the arm) or in the lymph nodes near the breastbone. In other cases, the tumor measures 2 cm or 

smaller and has spread to the axillary lymph nodes or the tumor is larger than 2 cm but smaller than 

5 cm and it has not spread to the axillary lymph nodes. 

Stage IIB refers to invasive breast cancer in which the tumor is larger than 2 cm but smaller than 5 

cm and small groups of breast cancer cells (larger than 0.2 mm but smaller than 2 mm) may be found 

or not in the lymph nodes or in one to three axillary lymph nodes or into lymph nodes near the 

breastbone. 

 

 

1.4.4 STAGE 3 

Stage 3 is referred to as locally advanced breast cancer. This is an invasive breast cancer that may 

be large (typically bigger than 5 cm) or has spread to several lymph nodes in the underarm area or 

other areas near the breast. Stage III is divided into subcategories known as IIIA, IIIB, and IIIC. 

In general, stage IIIA describes invasive breast cancer in which no tumor is found in the breast but 

is found in four to nine axillary lymph nodes or in the lymph nodes near the breastbone. In other 

cases, the tumor in the breast is larger than 5 cm and small groups of breast cancer cells are found 

in the lymph nodes or, cancer has spread to one to three axillary lymph nodes or to the lymph nodes 

near the breastbone.  

Stage IIIB describes invasive breast cancer in which the tumor may be any size and it has spread to 

the chest wall and/or skin of the breast and caused swelling or an ulcer and may have spread to up 

to nine axillary lymph nodes or lymph nodes near the breastbone. 

Stage IIIC refers to invasive breast cancer in which there may be no sign of cancer in the breast or, 

if there is a tumor, it may be any size and may have spread to the chest wall and/or the skin of the 

breast and the cancer has spread to 10 or more axillary lymph nodes or lymph nodes above or below 

the collarbone or breastbone. 
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1.4.5 STAGE 4 

This is the advanced and metastatic stage of cancer and this stage describes the spread to other 

organs of the body that could be lungs, bones, liver, brain etc [16]. 

 

1.5 TUMOR INFILTRATING LYMPHOCYTE 

Maintenance of tissue homeostasis by continuous immunosurveillance and initiation of 

inflammatory reactions is a fundamental role of the immune system that involve the coordinated 

activation of innate and adaptive immune cells [17]. Neoplastic transformation alters the structure 

of tissues and induces immune responses that can eliminate incipient tumors. In situations where 

elimination is incomplete, neoplastic transformation of cells is able to escape immune control and 

as a consequence, a cancer can develop.  

Among all different types of tumors treatments, surgical resection and chemoradiotherapy are often 

the principal ones. These traditional treatments focus on the tumor cells, without taking into 

account the complex tumor microenvironment (TME). TME denotes the complex internal 

environment generated by tumor cells, including cell components, such as tumor cells, fibroblasts, 

immune cells, and extracellular components such as cytokines, growth factors and extracellular 

matrix. There is an interactive relationship between tumors and TME. A tumor can influence its 

microenvironment by producing cell signalling molecules to enhance tumor angiogenesis and trigger 

immune tolerance. Immune cells in the microenvironment can influence the growth as well as the 

development of cancerous cells. Recently, new therapies that reactivate immune responses aganist 

cancer, have discovered the presence of specific killing lymphocytes in the tumor 

microenvironment, the so called tumor-infiltrating lymphocytes (TIL) [18]. 

TIL can affect TME through the interaction between different cells, thus influencing the occurrence 

and the development of the tumor exerting an anti-tumor effect directly or indirectly. In addition, 

TIL establishes a complex network of intercellular interactions that help to maintain the 

immunosuppressive microenvironment, promoting immune escape and triggering tumors.  

So, TIL are associated with cancer immune regulation and TME, and play a fundamental role in 

tumor genesis, development, metastasis and prognosis. 

On this basis, scientists use in vitro culture methods to enrich some of the tissue lymphocytes and 

then transfuse them to patients in order to improve the anti-tumor immunological response. 
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Compared to other types of cellular immunotherapies, TIL is derived from patients themselves, 

without genetic modification and so, it has a specific improved killing effect on tumor cells [19]. 

TIL mainly consists of T-cells, B-cells and Natural killer cells (NK) and it acts differently in different 

subtypes of breast cancer. 

In general, Intratumoral lymphocytes (iTu-Ly) are defined as intraepithelial mononuclear cells within 

tumor cell nests or in direct contact with tumor cells and are reported as the percentage of the 

tumor epithelial nests that contain infiltrating lymphocytes (Figure 1.3). Instead, Stromal 

lymphocytes (str-Ly) are defined as the percentage of tumor stroma area that contains a 

lymphocytic infiltrate without direct contact to tumor cells [20]. 

 

 

Figure 1.3: Representative pictures of tumor-infiltrating lymphocytes: (A) High density of inflammatory cell 

infiltration. (B) Low density of inflammatory cell infiltration.20 
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1.5.1 TUMOR INFILTRATING LYMPHOCYTE AS A MEASURE OF IMMUNOTHERAPY EFFICACY 

PREDICTION 

Several recent clinical studies have evaluated the prognostic and predictive importance of tumor-

infiltrating lymphocytes. 

Infiltration of immune cells, particularly infiltration of anti-tumor lymphocytes, is associated to an 

improved prognosis in many different tumor types including colon, ovarian, lung and breast cancer. 

Historically breast cancer was not thought to be immunologically active, particularly when 

compared to tumors such as melanoma. However recent studies have demonstrated that the 

presence of TILs in breast cancer prior to treatment can predict the response to therapy and 

moreover, it is associated with a better prognosis [21]. Not only the amount of lymphocytic 

infiltration but also the phenotype of that infiltrate is able to determine clinical outcome. 

Histological as well as molecular data indicate that immunological parameters, including stromal 

TILs are associated with higher rates of pathological complete remission (pCR), independent of other 

clinico-pathological prognostic factors or of the chemotherapy regimen [18]. It has been shown that 

B-cells and T-cells markers besides chemokines and their receptors are expressed in the stromal 

infiltrate and are linked to therapy response. 

It may be speculated that the destruction of tumor cells by therapeutic agents may release tumor-

associated antigens. This could trigger an immune response against the tumor cells, which will be 

particularly strong in those patients who have a sensitization of the immune system against some 

tumor antigens prior on the onset of therapy. Therefore, the combination of the therapeutic 

destruction of tumor cells and an increased immune response could result in a pCR.  

Some studies explored the effect of TIL in primary tumors on the efficacy of radiotherapy after 

breast-conserving surgery.  The results showed that high density of TIL was associated with a lower 

risk of recurrence in patients with ipsilateral breast cancer. Other studies pointed out that the 

increased TIL density in HER2-positive and triple-negative breast cancer (TNBC) patients often 

means a longer survival time. However, for patients with HER2-negative ductal breast cancer, the 

density of TIL was negatively correlated with prognosis. This suggests that the tumor subtype has 

different immunological osmosis [19]. 

Generally, the higher expression of an immune signature reflects a greater presence of immune 

cells, that are associated with a better prognosis. Despite the immune system’s failure to contain 

the growing tumor, the presence of follicular helper T (Tfh) cells is associated with organized 

immune structures adjacent to the tumor bed that potentially participate in propagating sustainable 
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and effective long-term antitumor immunity. Leukocytes within the tertiary lymphoid structures 

(TLS) could thus dynamically respond to evolving local tumor antigens, maintain activation, and 

generate long-lived memory cells while sequestered in a protected microenvironment. The mixture 

of activation and suppression of regulators of immune responses as CD4+ TIL, may reflect the 

presence of functionally activated cells from the TLS combined with suppressed cells migrating 

through the intratumoral and peritumoral regions. Despite their imminent suppression, once they 

move from the TLS, some tumor-specific memory cells survive and maintain effective 

immunosurveillance that functions over the long-term to detect and eliminate residual tumor cells. 

Thus, patients whose immune systems have an organized response to their tumors, specifically 

detectable by the Tfh signature, would be predicted to have a better response to preoperative 

chemotherapy or post-surgery [22]. 
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2. BREAST CANCER DIAGNOSIS  

Breast cancer is the most frequent cancer and different types of diagnostic examinations are 

available, such as mammography, Magnetic Resonance Imaging (MRI), biopsy, ultrasound (US) and 

molecular imaging. Radionuclide-based imaging methods including Single Photon Emission 

Computed Tomography (SPECT) and Positron Emission Tomography (PET) are useful in diagnosis 

and treatment of the cancer. The radiolabelling of chemo drugs with nanoparticles should be 

recommended from the standpoint of an early diagnosis and effective treatment of breast cancer 

[23]. Therefore, many novel technologies are being developed for early detection of primary 

tumors, as well as distant metastases and recurrent disease. Theranostics has emerged as a new 

paradigm for the simultaneous diagnosis, imaging and treatment of cancers. It has the potential to 

provide timely and improved patient care via personalized therapy. In nanotheranostics, cell-

specific targeting moieties, imaging agents and therapeutic agents can be embedded within a single 

formulation for effective treatment [24]. 

2.1 SCREENING 

Breast cancer is generally diagnosed through either screening or the presence of symptoms (pain or 

a palpable mass) that prompt a diagnostic exam. Screening of healthy women is associated with the 

detection of tumors that are smaller, have lower odds of metastasis, are more amenable to breast-

conserving and limited axillary surgery, and are less likely to require chemotherapy [25]. This 

scenario translates to reduced treatment-related morbidity and improved survival. The only 

screening modality proven to reduce breast cancer-specific mortality is mammography [26]. The 

age at which various organizations recommend beginning screening mammography and the 

frequency at which mammography is recommended vary based on the weight given to the 

perceived risks (false-positive examinations and the possibility of over-diagnosis) and benefits of 

screening (mortality reduction and less invasive treatment options). Some groups suggest 

mammography screening for all women starting at age 50 as an annual or biennial examination. 

Based on a review of subsequent meta-analyses, the American College of Radiology (ACR) 

recommends annual screening beginning at 40 years of age [27]. According to the Italian Ministry 

of Health, breast cancer screening programs involve women between 50 and 69 years old and 

consist of a free mammography examination every two years.  In some regions, different screening 

programs involving a wider age range are being experimented, including women between 45 and 

49 years old, invited to perform mammography every year. Instead, for women between 50 and 74 
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years old it is recommended a mammography every two years. The addition of digital breast 

tomosynthesis to a conventional full-field digital mammography examination reduces false-positive 

results and increases cancer detection. Further, the use of MRI as an adjunct to mammography had 

a higher sensitivity for malignancy (92.7%) than the use of ultrasound as an adjunct to 

mammography (52%). As a result, for women with a lifetime risk of breast cancer of greater than 

20%, breast MRI as an adjunct to mammography is recommended [28]. 

 

2.2 DIAGNOSTIC IMAGING TECHNIQUES FOR BREAST CANCER DETECTION  

Early detection and monitoring of patients in response to various types of therapies are important 

aspects of breast cancer therapy. The utilization of imaging techniques is one of main approaches 

for tumor detection and assessment response to therapy in patients with breast cancer. Multiple 

studies indicated that these techniques could provide effective information on breast tumor 

morphology and functional and metabolic processes within the tumor at various levels [27]. The 

principal types of diagnostic imaging techniques actually used for breast cancer detection are: 

Mammography, Digital Breast Tomosynthesis, Contrast Enhanced Spectral Mammography, 

Magnetic Resonance Imaging, Dynamic Contrast Agent Enhanced breast MRI, Diffusion Weighted 

Imaging, Magnetic Resonance Elastography, Magnetic Resonance Spectroscopy, Positron Emission 

Tomography, Single-photon Emission Computed Tomography, Breast Specific Gamma Imaging and 

Ultrasound. However, further improvements of these medical imaging techniques are needed in 

order to overcome current limitations and to increase their effectiveness in detecting breast cancer. 

 

2.2.1 MAMMOGRAPHY 

Mammography is a dedicated radiographic technique for imaging the breast and the resultant 

images are known as mammograms. The images are obtained by applying a small dose of radiation 

(x-ray) through the breast post compression between two plates [29]. It is considered to be the gold 

standard for early detection of breast cancer and it has the ability to detect very small lesions (less 

than 1 cm size) such as microcalcifications or architectural distortions that can be a signal of a non-

symptomatic breast tumor. The predictive diagnostic value of mammography largely depends on 

breast density: glandular tissue appears white and opaque on the mammograms, such as 

calcifications or tumor lesions (Figure 2.1). Thus, the efficiency of tumor detection is higher in fatty 
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breasts (up to 90%) that look darker on mammogram while it decreases with very dense breasts (80-

85%). 

 

 

Figure 2.1: Mammograms related to different types of breast tissue according to their density, from fatty 

breast to fibrous and dense breast. 

 

 

2.2.2 DIGITAL BREAST TOMOSYNTHESIS (DBT) 

Digital Breast Tomosynthesis (DBT) is an advanced imaging technique that allows a volumetric 

reconstruction of the whole breast from an arbitrary number of low-dose two-dimensional (2D) 

images (projection) obtained by different X-ray tube angles, with a geometric principle very similar 

to that applied by stratigraphic technique (Figure 2.2). In addition to planar images, DBT allows to 

create and view thin-section reconstructed images that may decrease the lesion-masking effect of 

overlapping normal tissue and reveal the true nature of potential false-positive findings without the 

need for recall [30]. 
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Figure 2.2: Digital Breast Tomosynthesis image 

 

2.2.3 CONTRAST ENHANCED SPECTRAL MAMMOGRAPHY (CESM) 

Contrast Enhanced Spectral Mammography (CESM) is an advanced imaging technique combining 

conventional mammography principles with an intravenous contrast agent injection, that allows a 

contrast enhancement evaluation of the breast. It highlights breast areas with contrast which is 

typical of cancer neo-angiogenesis. It is a bilateral examination that works with a double exposure 

(low and high energy acquisitions) in a single breast compression from which 4 standard projections 

are obtained (Figure 2.3). 
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Figure 2.3: Bilateral CESM breast image 

 

2.2.4 MAGNETIC RESONANCE IMAGING (MRI) 

Breast MRI is a non-invasive and non-ionizing diagnostic imaging tool that employs low-energy radio 

frequency waves and a magnetic field to obtain detailed images of structures within the breast [30]. 

MRI can be used to measure the size of the cancer and look for metastasized tumors in women who 

have been previously diagnosed with breast cancer. Tumors with size less than or equal to 2 cm 

have been accurately identified and measured using MRI. It has the ability to detect neo-

angiogenesis and suspected breast malignancies that often escape clinical, mammographic and 

ultrasound detection [31]. Breast MRI provides more detailed images because of its high spatial 

resolution (Figure 2.4) but, by another hand, it has too low specificity that results in further tests or 

biopsies, being expensive and not standardized [32]. 

 

Figure 2.4: Breast MRI image 
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2.2.5 DYNAMIC CONTRAST ENHANCED MRI (DCE-MRI) 

Dynamic Contrast Agent Enhanced breast MRI (DCE-MRI) works by analysing the temporal 

enhancement pattern of a tissue following the intravenous injection of a paramagnetic contrast 

agent. This non-invasive imaging technique quantitatively determines the extent of tissue 

vascularization, interstitial space composition, and differentiation of lesions [31]. This imaging 

modality is useful to depict tumour angiogenesis with overall recurrence and overall survival of 

breast cancer patients [32]. As a result, lymph node metastasis that occurs due to greater 

angiogenesis in breast cancer can also be predicted using this imaging modality. DCE-MRI is a non-

invasive and three-dimensional (3D) technique, not limited by breast tissue density but, it has low 

specificity. 

 

2.2.6 DIFFUSION-WEIGHTED IMAGING (DWI) 

Diffusion Weighted Imaging (DWI) is a form of unenhanced MRI that uses the diffusion of water 

molecules to generate contrast in MR images to address additional information to the classical 

outcomes from regular breast MRI [33]. The potential benefits of DWI techniques include improved 

differentiation of benign and malignant breast lesions and assessment and prediction of therapeutic 

efficacy [34]. DWI has enabled the identification of breast cancer particularly in dense breasts. 

 

2.2.7 MAGNETIC RESONANCE ELASTOGRAPHY (MRE) 

Magnetic Resonance Elastography (MRE) can be used to obtain useful information about tissue 

mechanical properties in vivo [35]. After an application of an external stress, breast MRE, a non-

invasive, non-ionizing, and cross-sectional imaging modality, can quantitate the viscoelastic 

properties of breast tissues. Breast cancers often have a higher stiffness due to the large number of 

cells, collagen and proteoglycans compared to the normal surrounding tissues and benign lesions 

[36]. 

2.2.8 MAGNETIC RESONANCE SPECTROSCOPY (MRS) 

Magnetic Resonance Spectroscopy (MRS) can measure a chemical spectrum in the interested region 

using high magnetic field strengths, typically of 11–14 T, on body fluids, cell extracts, and tissue 

samples, providing additional information about the chemical content in the region [37]. MRS of the 

breast can be used to measure the level of choline, a metabolite elevated in breast malignancies 

and used as a diagnostic biomarker. 
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2.2.9 POSITRON EMISSION TOMOGRAPHY (PET) 

PET imaging has been widely adopted as an important clinical modality for oncology. Even though 

many types of PET radiotracers have been developed to non-invasively interrogate in vivo tumor 

metabolism, deoxy-fluoro-D-glucose (FDG) is the most widely used because it takes the advantage 

of the enhanced glucose metabolism of cancer cells [24]. In fact, cancerous cells are highly 

proliferative and have a higher glucose metabolism rate than normal cells. FDG PET radiotracers 

enter cells via the glucose transporter and are, thus, taken up in greater amounts by tumor cells 

than by healthy cells. Both a PET and CT scan can be done simultaneously so that CT gives a detailed 

picture of that area which is highly radioactive by the PET analysis [38]. 

Actually, Positron Emission Mammography (PEM) is a newly developed imaging method for breast 

cancer detection similar to PET able to detect small clusters of cancer cells. 

 

2.2.10 SINGLE-PHOTON COMPUTED TOMOGRAPHY (SPECT) 

SPECT is a nuclear medicine method that generates images as three-dimensional reconstructions of 

rotating planar images acquired over a 180° or 360° arc around the patient. It also determines the 

three-dimensional radioactivity distribution resulting from the radiopharmaceutical uptake inside 

the patient. Typical radiopharmaceuticals used for breast cancer imaging include 99mTc-

diphosphonates, thallium chloride, 99mTc-tetrofosmin and 99mTc-methoxyisobutylisonitrile [39]. 

 

2.2.11 BREAST SPECIFIC GAMMA IMAGING (BSGI) 

Breast Specific Gamma Imaging (BSGI), also known as scintimammography, is a molecular breast 

imaging approach and a specialized nuclear medicine imaging test that allows detection of sub-

centimeter and mammographically occult breast cancer with a sensitivity and specificity 

comparable to MRI [24]. In BSGI, a radiotracer such as Technetium Tc99m Sestamibi is injected into 

the patient’s bloodstream. After injection, the radiotracer eventually accumulates in the breast, 

where it gives off energy in the form of gamma rays. This energy is detected by a gamma camera 

that measures the amount of radiotracer absorbed by the body and produces detailed pictures of 

organs and tissues structures and functions. Unlike mammography, BSGI is unaffected by breast 

density [40]. 

 

 

https://www.radiologyinfo.org/glossary?modal=1&id=e0VFMDYxOTM1LUVBNTUtNEU1Ny1CNTJDLThEOEMxMEJEM0MyNX0=
https://www.radiologyinfo.org/glossary?modal=1&id=ezZBRTcyOTNDLTVGMTctNDRBRC1BNjIyLUE3MThDNEM4OTUzOX0=
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2.2.12 ULTRASOUND 

Ultrasound is a supplemental tool that may be utilized to analyse some breast changes in women 

with dense breast tissues, as well as suspicious areas not seen on a mammogram [30]. A handheld 

device called transducer is put on the breast’s upper skin, where a gel must be applied, and moved 

across the breast showing the structure of the underlying tissue. Thus, the sound waves are emitted 

though tissues and the generated echoes must be picked up by the transducer which bounces off 

the body tissues. The echoes are then converted into an image (Figure 2.5) where it is possible to 

see the internal structure of the breast according to specific orientation and location [40].  It is a 

non-invasive and safe exam because the patient is not exposed to ionizing radiations, but it has 

several limitations: it may fail to detect microcalcifications, it may miss some early signs of cancer, 

it has poor resolution, it depends upon the quality of the transducer used, skills or experience of the 

operator that is doing the scan and on his image interpretation. 

 

 

Figure 2.5: Breast ultrasound image 

 

The characteristics of the principal imaging techniques for breast cancer detection are shown in 

Table I. 
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Table I: Principal breast cancer detection techniques 

 MAMMOGRAPHY ULTRASOUND PET MRI 

DESCRIPTION X-ray examination 
for evaluation and 

detection of the 
breast 

abnormalities 

Sound waves are 
introduced into 

body and the 
echoes are used to 
produce the image 

Based on glucose 
metabolism to detect 

cancer, a picture is 
obtained by the 

detection of 
radioactive areas of 

body from special PET 
scanner 

Radio waves and 
a magnetic field 
are applied to 

alter the 
alignment of 

protons of 
hydrogen nuclei 

of cells in order to 
produce very 

detailed, cross-
sectional image 

ADVANTAGES Low execution time, 
Good resolution, 
easily portable 

device 
 

Wide availability, 
Non-invasive, 
lower costs, 

painless 
 

Provides anatomical or 
functional 

information, 
good contrast 

 

High spatial 
resolution, 

no radiation 
exposure, 

can better detect 
the intraductal 

spread of cancer 
 

LIMITATIONS Limited dynamic 
range, ionizing 

radiations are used, 
poor contrast, 

not good for young 
women 

 

Poor resolution, 
poor contrast, 

dependent upon 
the 

skills/experience of 
physician 

 

Non-portable, 
slow imaging time, 

uses ionizing 
radiations, 
expensive 

 

Slow imaging 
time, 

non-portable, 
only lateral view 

is available, 
expensive, 
complex 

interpretation 

SENSITIVITY Low (women < 40 
years old) 

 
High (women > 40 

years old) 
 

Low High Very High 

SPECIFICITY High Moderate Moderate Low 

 

 

2.3 BREAST CANCER DIAGNOSIS FROM MAGNETIC RESONANCE IMAGING 

The role of MRI in the detection of breast cancer and the evaluation of breast lesions has become 

better defined in the last few years. Major improvements in MR technology and imaging techniques, 

coupled with the increased interest in developing ways that supplement mammography, as well as 

the ability to noninvasively differentiate benign from malignant lesions, resulted in a surge in 
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research using breast MRI for breast cancer detection and diagnosis. Its main indications are staging 

of known cancer, screening for breast cancer in women at increased risk, and evaluation of response 

to neoadjuvant chemotherapy. As opposed to mammography and US, MRI is a functional technique 

[41]. 

 

2.3.1 PHYSICS OF MAGNETIC RESONANCE IMAGING 

Magnetic Resonance (MR) gives information on the molecular structure of the analysed tissues. It 

measures the absorption of electromagnetic radiation by molecules in the presence of a magnetic 

field. The nuclei of certain atoms such as hydrogen, phosphorus, and sodium have magnetic 

properties. If these atoms are exposed to an external magnetic field, their axes, which are normally 

randomly oriented, became aligned with the external magnetic field. Moreover, if radiofrequency 

(RF) energy is applied in a proper direction, it can be used to tip over and out of line the axis of these 

atomic magnets that start to precess. As they came back aligned with the magnetic field, they 

produce RF signals that can be collected by antennas and used to generate images of the tissues in 

which they reside. Protons can be kept precessing in a magnetic field if their precession is continually 

reinforced by pulses emitted a specific frequency, known as the resonance frequency [42]. This is 

defined by the Larmor equation, which states that the resonant frequency of the proton equals the 

strength of the magnetic field multiplied by the gyromagnetic constant of the proton. The 

gyromagnetic constant is influenced by the way the protons are organized into molecules. The 

protons in fat have a different gyromagnetic constant than the protons in water. This chemical 

difference can be used to enhance various aspects of an MR image. When a single pulse is given 

using the correct amount of energy, the protons can be tipped in different ways. If they are tipped 

of 90° respect to the direction of the main external magnetic field, this will maximize the amount of 

signal that they can return as they precess back into alignment. This realignment is called “free 

induction decay” (FID).  Repetition Time (TR) is the amount of time between successive pulse 

sequences applied to the same slice and Time to Echo (TE) is the time between the delivery of the 

RF pulse and the receipt of the echo signal. 

When the radiofrequency pulse is switched off, the magnetism relaxes with two characteristic 

relaxation times: T1 and T2. The time that it takes for the axis of the proton to return to alignment 

to the magnetic field is called T1 (actually T1 is 63% of the total time). Instead, if the protons are left 

alone, they begin to precess at different rates and, as they get out of phase, their signals begin to 
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cancel each other out. So, there is a point in time at which they will be completely out of phase and 

there will no longer be net signal from the protons. This time is measured as T2 (37% of its initial 

magnitude). 

 

2.3.2 MAGNETIC RESONANCE IMAGING MODALITIES  

There are different types of MR imaging modalities, each of which captures certain characteristics 

of the underlying anatomy. All these modalities differ in contrast and function. Three modalities of 

MR images are commonly referenced for clinical diagnosis: T1 (spin-lattice relaxation), T2 (spin-spin 

relaxation), and T2-Flair. T1-weighted images are produced by using short TE and TR times. The 

contrast and brightness of the image are predominately determined by T1 properties of tissue. They 

suppress the signal of the water and enhance the signal of different tissues as fluid (e.g. urine, 

cerebrospinal fluid) with low signal intensity (black), muscle with intermediate signal intensity (grey) 

and fat with high signal intensity (white). Thus, they are favourable for observing structures (for 

example, gray matter and white matter in the brain). Conversely, T2-weighted images are produced 

by using longer TE and TR times. In these images, the contrast and brightness are predominately 

determined by the T2 properties of tissue: they enhances the signal of the water and are utilized for 

locating tumors (Figure 2.6); Another modality is the Fluid Attenuated Inversion Recovery (Flair): 

The Flair sequence is similar to a T2-weighted image except that the TE and TR times are very long. 

T2-Flair images present the location of lesions with water suppression  [43]. 

Figure 2.6: An example of breast MRI modalities: (A) T1, (B) T2 
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2.3.3 TISSUE CHARACTERIZATION AND LESION IDENTIFICATION IN MAGNETIC RESONANCE 

IMAGING 

In MRI, the signal intensity depends indirectly on particular physical and chemical characteristics of 

the tissues being imaged. These tissue properties influence the behaviour of the nuclei undergoing 

resonance and their behaviour is what directly affects the MRI signal. In particular, the relaxation 

times, would provide very specific diagnostic information on the state of tissue within the body [44]. 

The T1 signal is based on the time it takes for the proton to return to its alignment to the main 

magnetic field. Protons in more tightly bound molecules such as fat have faster relaxation times 

(greater interaction between molecules), so their T1 signal is shorter than pure water. Thus, fat has 

the shortest T1 relaxation time. By convention, tissues with short T1 are presented as bright signals 

on T1 images. 

Instead, in free water like breast cysts, the molecules and hydrogen nuclei are separated and do not 

interact rapidly with their surroundings; consequently, they lose their energy at a slower rate and 

get out of phase each other over a longer period of time. Thus, the water in breast cysts gives back 

a signal more slowly. It has a long T1 and a long T2. By convention, tissues with a long T2 are 

presented as bright signals on T2-weighted images. Thus, cysts (that contain fluid) with long T1 are 

darker on T1-weighted images and those with long T2 are brighter on T2-weighted images (Figure 

2.7). Fibrous tissues, although largely made up of water, are denser and characterized by a greater 

intermolecular interaction, so they lose their energy more quickly, giving short T2 signals and are 

shown darker on T2 images. 

 

Figure 2.7:  It is shown a cyst that has a characteristically low signal intensity (black) on the T1-weighted 

image (A) and a high signal intensity (white) on the T2-weighted image (B). 
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The strength of T1 and T2 signals can be used to evaluate some disease processes directly. However, 

in the breast it has been found that these signals are not sufficient for distinguishing malignant 

lesions from normal breast tissue and benign lesions. Thus, as in other organ systems, a contrast 

material is needed to distinguish cancers from the background breast tissue. 

Breast lesion identification on MRI images depends on contrast-enhancement within the breast 

after intravenous injection of contrast material. As both normal breast tissue and breast lesions will 

enhance after contrast administration, the detection of a malignant lesion within normal breast 

tissue is based on the earlier and stronger enhancement on images. Differences in MR enhancement 

characteristics between benign and malignant breast lesions are believed to depend on differences 

in vascularity, vessel permeability, and extracellular diffusion space [45]. Moreover, particular 

emphasis is given to patient and tumor-related factors that influence image interpretation: the 

menstrual cycle, pevious surgery, radiation therapy and chemotherapy [46]. 

Lesions are categorized as foci (<5 mm of enhancement and by definition too small), masses (space-

occupying lesions), and non-mass enhancement (NME), areas of enhancement without a clear 

space-occupying lesion. Masses are further characterized on the basis of their shape, margins and 

internal enhancement pattern [47]. Approximately two-thirds to three-quarters of cancers manifest 

as a mass, that has an irregular size and margin, heterogeneous enhancement patterns and show 

washout. Classic malignant areas of NME have a segmental distribution and a clumped or clustered 

ring pattern of internal enhancement. While most cancers are easily recognizable by their 

morphologic features alone, smaller lesions are more difficult to assess. In general, the features of 

NME are less specific than those of masses. Foci have a likelihood of malignancy of 2.9%–6% [48]. 

In general, lesions seen on MRI that are round, ovoid, or smoothly lobulated with sharply defined 

margins tend to be benign, while those that are irregular in shape or have ill-defined or spiculated 

margins tend to be malignant. Benign masses tend to have uniform enhancement, while malignant 

masses show heterogeneous enhancement and some of them exhibit brighter enhancement at 

their periphery, called rim enhancement (Figure 2.8). 
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Figure 2.8: Rim enhancement. Many cancers display contrast enhancement at their periphery soon after 

the administration of contrast. 
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3. DEEP LEARNING 

Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially 

computer systems. Capabilities currently classified as AI include successfully understanding human 

speech, self-driving cars, intelligent routing in content delivery networks, military simulations, and 

interpreting complex data. In particular, Machine Learning (ML) is a branch of AI related to 

computers that learn from data using algorithms to perform tasks without being explicitly 

programmed. 

Deep learning (DL), also known as deep structured learning, hierarchical learning or deep machine 

learning, is an AI method (Figure 3.1) that teaches computers to process data in a way that is inspired 

by the human brain. DL algorithms can be regarded both as a sophisticated and mathematically 

complex evolution of ML algorithms: they are composed of elements inspired by the structure and 

function of the brain called Artificial Neural Networks (ANN).  

DL models can recognize complex patterns in pictures, texts, sounds, and other data to produce 

accurate insights and predictions. They can be used to automate tasks that typically require human 

intelligence, such as describing images or transcribing a sound file into text. 

 

 

Figure 3.1: Hierarchical organization of AI and its sub-classes. 
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3.1 DEEP LEARNING OVERVIEW 

Conventional ML techniques were limited in their ability to process natural data in their raw form. 

For decades, constructing a pattern-recognition or machine-learning system required careful 

engineering and considerable domain expertise to design a feature extractor that transform the raw 

data (such as the pixel values of an image) into a suitable internal representation or feature vector. 

The learning subsystem, often a classifier, can detect or classify patterns in the input just from the 

feature vector [49]. 

Representation learning is a set of methods that allows a machine to be fed with raw data and to 

automatically discover the representations needed for detection or classification. DL methods are 

representation-learning methods with multiple levels of representation, obtained by composing 

simple but non-linear modules. Each of them transforms the representation at one level, starting 

with the raw input, into a representation at a higher (slightly more abstract) level.  

With the composition of enough such transformations, very complex functions can be learned. For 

classification tasks, higher layers of representation amplify aspects of the input that are important 

for discrimination and suppress irrelevant variations. 

The key aspect of DL is that these layers of features are not designed by human engineers: they are 

learned from data using a general-purpose learning procedure. 

It has turned out to be very good at discovering intricate structures in high-dimensional data and is 

therefore applicable to many domains of science, business and government. In addition, it has 

overcome other ML techniques at predicting the activity of potential drug molecules, analysing 

particle accelerator data, reconstructing brain circuits, and predicting the effects of mutations in 

non-coding DNA on gene expression and disease [50]. Perhaps more surprisingly, DL has produced 

extremely promising results for various tasks in natural language understanding, classification, 

sentiment analysis, question answering and language translation [51]. 

Some of the most successful DL methods involve ANN and related ML algorithms that contain more 

than one hidden layer [52]. 

ANN are inspired by the 1959 biological model proposed by Nobel laureates David H. Hubel & 

Torsten Wiesel, who found two types of cells in the primary visual cortex in the human brain [53]: 

simple cells and complex cells (Figure 3.2). 
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Figure 3.2: Model of cell responses proposed by David H. Hubel & Torsten Wiesel 

 

 

Many artificial neural networks can be seen as cascading models [49] of cell types inspired by these 

biological observations. 

These deep nets are part of the broader ML field of learning representations of data and use a 

cascade of many layers of nonlinear processing units for feature extraction and transformation. Each 

successive layer uses the output from the previous layer as input (Figure 3.3). 

Networks are based on the learning of multiple levels of features or representations of the data: 

higher level features are derived from lower level features to form a hierarchical representation. 

Moreover, they learn multiple levels of representations that correspond to different levels of 

abstraction; the levels form a hierarchy of concepts. The neurons are the basic units of ANN and 

they are organized in layers. Each neuron processes the received input and send it to the neurons 

of the subsequent layer by means of weighted connections. The weights are adjusted during the 

training process to enhance the performance of the model. In a deep network, there are many layers 

between the input and the output, allowing the algorithm to use multiple processing layers, 

composed of multiple linear and non-linear transformations [54].  
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Figure 3.3: Multilayer neural network 

 

 

3.2 LEARNING PROCESS 

A neural network (NN) is made up of neurons connected to each other. Each connection is 

associated to a weight and a bias which are the parameters of the network. The weight (wj) 

expresses the information being used by the net to solve a problem and the importance and the 

strength of the connection when multiplied by the input value. The Bias (bj) represents specific 

characteristics of the neuron and its function is to shift the decision boundary. In addition, each 

neuron has an activation function (a()) that defines the output of the neuron and allows the network 

to learn complex patterns in data. The activation function is used to introduce non-linearity in the 

modelling capabilities of the network. In other words, the function is applied to all the inputs by the 

neurons following   

                                                                   a(w1x1 + ⋅⋅⋅ + wnxn),                                                                    (1) 

where w1, …, wn are the weights, and x1, …, xn are the inputs (Figure 3.4). The network's weights are 

not set by the designer of the system but, instead, are learned from examples during the training 

process. In fact, the model training requires labelled data consisting of the input xi and the expected 

output yi. The training procedure starts from a non-zero random set of weights and biases. This is 

called parameter initialization of the network. The network iterates through each input example 

and computes the output ŷi based on the current weights. The loss function, also called cost  
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Figure 3.4: Basic structure of an artificial neuron 

function, is then used to determine the error between the output of the network and the target 

value. There are many types of cost functions available and, all of them are utilized in optimization 

problems. The aim is to minimize the difference between model outputs and target values by 

updating the weights. So, a proper tuning of weights and biases is required to ensure lower error 

rates, making the model reliable by increasing its generalization capability. Among all the available 

methods, backpropagation is the most used one. It aims to minimize the cost function by adjusting 

network’s weights and biases. The level of adjustment is determined by the gradients of the cost 

function with respect to those parameters [56]. 

DL can be used for supervised, semi-supervised, unsupervised as well as reinforcement machine 

learning: 

  Supervised Machine Learning: It is the ML technique in which the NN learns to make 

predictions or classify data with a labelled dataset. Both input features with and the target 

variables are given in input to the network. The neural network learns to make predictions 

based on the cost or error that comes from the difference between the predicted and the 

actual target. DL algorithms like Convolutional Neural Networks (CNN), Recurrent neural 

Neural networks Networks (RNN) are used for many supervised tasks like image 

classifications and recognition, sentiment analysis, language translations, etc. 

  Unsupervised Machine Learning: It is the ML technique in which the NN learns to discover 

the patterns or to cluster the dataset with unlabelled data. Here the model has to self-

determine the hidden patterns or the relationships within the data. Popular techniques 
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include self-organizing maps, Nearest-neighbor mapping, Kmeans clustering and Singular 

value decomposition. Algorithms like autoencoders and generative models are used for 

clustering, dimensionality reduction and anomaly detection. 

  Semi-supervised learning: It is used for the same applications as supervised learning, but it 

uses both labelled and unlabelled data for training. Typically, the amount of unlabelled data 

is higher than that of labelled data because they are less expensive and require less effort to 

be acquired. This type of learning can be used for many tasks such as classification, 

regression and prediction. Semi-supervised learning is useful when the cost associated with 

data labelling is too high to allow for a fully labelled training process [53]. 

  Reinforcement Machine Learning: It is the ML technique in which an agent learns to make 

decisions in an environment to maximize a reward signal. The agent interacts with the 

environment by taking action and observing the resulting rewards. The objective is to choose 

actions that maximize the expected reward over a given amount of time. DL can be used to 

learn policies, or a set of actions, that maximizes the cumulative reward over time [53].  

 

 

3.3 CONVOLUTIONAL NEURAL NETWORKS 

The most widely used architectures (Figure 3.5) in DL are Feedforward Neural Networks (FNNs) 

(Single Layer or Multilayer), CNNs and RNNs: 

  FNN   is the simplest type of ANN with a linear flow of information through the network. 

  CNN is specific for image and video recognition tasks. These types of networks are able to 

automatically learn features from the images, which makes them well-suited for tasks such 

as image classification, object detection, and image segmentation. 

  RNN is a type of NN that is able to process sequential data, such as time series and natural 

language. RNNs are able to maintain an internal state that captures information about the 

previous inputs. 
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Figure 3.5: Different types of NN 

CNN is a well-known DL architecture inspired by the natural visual perception mechanism of the 

living creatures, mostly used to analyse images. There are different types of structures of CNN but 

their basic components are very similar: they are mainly formed by three types of layers, namely 

convolutional, pooling, and fully-connected layers (Figure 3.6).  

The convolutional layer extracts feature representations of the inputs with a tuneable number of 

filters. This layer performs convolutional operations between the image and the filters [57]. It is 

composed of several convolution kernels used to generate different feature maps. The operation of 

convolution is mathematically a dot product between two matrices:  

 

Figure 3.6: CNN Architecture  
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-  Kernel: set of learnable parameters. 

-  Receptive Field: portion of analysed image whose dimension are tuneable. 

For example, if the image is composed of three (RGB) channels, the kernel height and width will be 

spatially small, but the depth extends up to all three channels. During the forward pass, the kernel 

slides across the height and width of the image-producing the image representation of that 

receptive region. This produces a 2D representation of the image named feature map that gives the 

response of the kernel at each spatial position. The sliding size of the kernel is called stride [58]. 

A convolution operation on small regions of input is introduced to reduce the number of free 

parameters and to improve generalization. One major advantage of CNN is the use of shared 

weights in convolutional layers, which means that for each pixel it is used the same filter; this 

reduces memory footprint and improves performance. 

The convolutional layer is to detect local conjunctions of features from the previous layer, while the 

role of the pooling layer is to merge semantically similar features into one (Figure 3.7). 

Pooling layers are used to reduce the dimensions of the feature maps: it reduces the number of 

parameters to learn and the amount of computation performed in the network. 

In fact, this type of layer summarises the features present in a region of the feature map generated 

by a convolution layer, performing feature selection. So, further operations are performed on 

summarised features instead of precisely positioned features generated by the convolution layer. 

This makes the model more robust to variations in the position of the features in the input image. 

The pooling layer works by dividing the input feature map into a set of non-overlapping regions, 

called pooling regions. Each pooling region is then transformed into a single output value, which 

represents the presence of a particular feature in that region. The most common types of pooling 

operations are max pooling and average pooling. 

In max pooling, the output value for each pooling region is simply the maximum value of the input 

values within that region. This has the effect of preserving the most salient features in each pooling 

region, while discarding less relevant information. Max pooling is often used in CNNs for object 

recognition tasks, as it helps to identify the most distinctive features of an object, such as its edges 

and corners. 

In average pooling, the output value for each pooling region is the average of the input values within 

that region. This has the effect of preserving more information than max pooling, but may also dilute 

the most salient features. Average pooling is often used in CNNs for tasks such as image 

segmentation and object detection, where a more fine-grained representation of the input is 
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 Figure 3.7: An example of schematic representation of a convolution and pooling layer in a CNN. 

 

required. The Fully Connected (FC) layer is usually placed before the output layer and form the last 

few layers of CNN. The input to the fully connected layer is the flattened output from the final 

Pooling or Convolutional Layer. In this stage, the classification process takes place [59]. 

 

 

3.4 BREAST MAGNETIC RESONANCE IMAGES CLASSIFICATION FOR TUMOR 

DETECTION 

The early detection of breast cancer is fundamental for a better prognosis. Breast MRI has been a 

very fast developing tool for the assessment of breast cancer and quickly moved from research to 

clinical settings. It offers functional methods for aid treatment response assessment that better 

reflect the viability of tumor and tumor burden versus just size changes. Understanding the 

indications for breast MRI, diagnostic criteria utilized to detect and characterize breast cancer and 

technical challenges are important in both clinical and research settings [60]. Utilizing additional 

methods to the traditional ones to increase diagnosis efficiency and reduce the false prediction rate 

is always necessary. In recent years, AI technology has made great progress in automatically 

analysing medical images for anomaly detection. In comparison with manual inspection, automated 

image analysis using AI reduces the time and effort needed for manual image screening and more 

efficiently captures valuable and relevant information from massive image collections [61]. 

Computer-aided methods have been widely applied to diagnose lesions on breast magnetic 
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resonance imaging (MRI): a key component is the selection of an appropriate classifier responsible 

for separating malignant and benign lesions. 

Computer-Aided Diagnosis (CAD) system automates and speeds up image processing and analysis 

functions, and detects breast lesions by using an enhancement threshold. In particular, signal 

intensities of DCE MRI images are analysed by a CAD system within each voxel obtained during the 

dynamic sequences. The American College of Radiology Breast Imaging Reporting and Data System 

(ACR BI-RADS) MR lexicon defined a persistent kinetic pattern in MRI images as a continuous 

increase in signal over time. A plateau is defined as a signal intensity that does not change over time, 

after an initial rise. When the signal intensity decreases by more than 10%, after its highest point 

following its initial rise, it is defined as a washout [62]. Usually, specific colours such as blue, yellow 

and red are assigned to each pixel of the image of interest for the different types of tissue 

enhancement, such as persistent, plateau and washout, respectively (Figure 3.9). This is a very 

powerful tool for tumor detection, given that the system provides both morphologic and kinetic 

features of the breast lesion, and also provides quantitative information, such as, lesion dimensions 

and maximum tumor volumes [63]. 

Moreover, CAD for MRI is used to distinguish as non-invasive and invasive breast lesions, invasive 

cancers without lymph node (LN) metastasis, and invasive breast cancers with LN metastasis. 

Most breast MR image analysis algorithms rely on the full-breast MRI protocol, including the 

temporal information from the late-phase scans and the morphological information from the early-

phase scans. 

According to CNN DL techniques, features that are extracted can describe multi-level tumour 

information from low-level (visual characteristics) to high-level (more abstract features). In a 

conventional image classification task, features are extracted locally using specific rules. Local 

texture and statistical features are universally accepted as the more important features for breast 

image classification. However, most current state-of-the-art techniques generally extract the 

features globally using kernels. In order to improve the detection efficiency of breast tumours and 

reduce the cost of detection, it’s important to observe the breast parenchyma, fibrous gland and 

Background Parenchymal Enhancement (BPE) in the structured MRI. In particular, BPE is the normal 

manifestation of enhanced fibrous gland tissue during DCE-MRI examination. Studies have shown 

that the incidence of breast cancer increases with the increase of BPE. Because breast MRI 

examination involves images with very high resolution of soft tissue, it can clearly distinguish the 

breast skin, subcutaneous fat gap, normal glands and diseased tissue. In fact, these high-resolution 
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images enable researchers to distinguish between the different types of breast lesions. In addition, 

they led to identify specific features through the analysis of multiple dynamic parameter changes in 

the regions of interest of each mammary gland background or to extract image features based on 

identification of specific pixels in the segmentation. Thus, MRI images are extremely useful for 

diagnosis and prediction of breast tumours according to the difference in the spatial morphology of 

the enhanced part of the lesion [64]. 

 

 

Figure 3.9: An example of MR images with computer-aided detection (CAD) showing an invasive ductal 

carcinoma in the left breast. (A) Axial T1-weighted MR image shows a 26-mm irregular mass (arrows). (B) 

Axial maximum-intensity-projection MR image shows CAD colour overlay over the breast mass. Areas in red, 

yellow, and blue indicate a rapid washout-type delayed enhancement, plateau-type delayed enhancement, 

and persistent-type delayed enhancement pattern, respectively. (C) Kinetic curve graph showing rapid initial 

enhancement and rapid washout-type curve. 
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3.4.1 VGG-16 

VGG-16 is a convolutional neural network model proposed by K. Simonyan and A. Zisserman from 

the University of Oxford in the paper “Very Deep Convolutional Networks for Large-Scale Image 

Recognition”. The model achieves 92.7% top-5 test accuracy in ImageNet, which is a dataset of over 

14 million images belonging to 1000 classes [65]. The creators of this model evaluated the networks 

and increased the depth using an architecture with very small 3×3 convolution filters, which showed 

a significant improvement on the prior configurations (Figure 3.10). The image given in input to the 

VGG-16 is passed through the first stack of 2 convolution layers of receptive size of 3x3, followed by 

Rectified linear unit (ReLU) activations. Each of these two layers contains 64 filters. The convolution 

stride is fixed at 1 pixel, and the padding is 1 pixel. This configuration preserves the spatial 

resolution, and the size of the output activation map is the same as the input image dimensions. 

The activation maps are then passed through spatial max pooling over a 2x2 pixel window, with a 

stride of 2 pixels. These halves the size of the activations. The activations then flow through a similar 

second stack, but with 128 filters as against 64 in the first one. This is followed by the third stack 

with three convolutional layers and a Max Pooling layer. The number of filters applied here are 256. 

This is followed by two stacks of three convolutional layers, with each containing 512 filters. The 

stacks of convolutional layers are followed by three fully connected layers with a flattening layer in-

between. The first two have 4096 neurons each, and the last fully connected layer serves as the 

output layer and has 1000 neurons corresponding to the 1000 possible classes for the ImageNet 

dataset. The output layer is followed by the Softmax activation layer used for categorical 

classification. 

Figure 3.10: VGG-16 Network Architecture 
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3.4.2 VGG-19  

VGG-19 is a variant of the VGG model that consists of 19 layers (16 convolution layers, 3 Fully 

connected layer, 5 Max Pooling layers and 1 SoftMax layer). This means that VGG-19 has three more 

convolutional layers than VGG-16 (Figure 3.11). 

The image given in input to the VGG-16 is passed through the first stack of convolution, followed by 

ReLU activations. 

It uses kernels of 3 x 3 size with a stride size of 1 pixel that enable them to cover the whole notion 

of the image and spatial padding is used to preserve the spatial resolution of the image. Moreover, 

max pooling is performed over a 2 x 2-pixel windows with stride of 2 and it is followed by Rectified 

linear unit to introduce non-linearity, to make the model classify better and to improve 

computational time. Lastly, it implements: three fully connected layers from which the first two are 

of size 4096 and after that, a layer with 1000 channels for 1000-way ILSVRC classification and the 

final layer is a Softmax function. 

 

 

                                                   

                                                   Figure 3.11: VGG-19 Network Architecture 
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3.4.3 RESNET 

Residual Network (ResNet) architecture is a type of ANN that allows the model to skip layers without 

affecting performance. It deals with the problem of vanishing gradients that often occur in very deep 

neural networks. When a neural network has many layers, the gradients can become very small, 

which makes it difficult for the network to learn. ResNet solves this problem by introducing shortcut 

connections, also known as skip connections, that allow the network to skip over certain layers and 

directly propagate the input to deeper layers. This helps to preserve the gradient and make it easier 

for the network to learn. The maximum depth of the network has reached 152 layers, breaking 

through the depth of all previous designs of convolutional neural networks. When the network 

performance drops, it promotes the deepening of the CNN network layer. Therefore, this becomes 

an important module for the convolutional neural network in the process of deepening the number 

of network layers. The purpose of the ResNet is to increase the information transmission process: 

the information of the previous layer of the network is directly transmitted to the design of the next 

layer. Part of the information will be lost, so the shortcut added by ResNet is directly transmitted to 

the current layer through the previous layer network signal, which solves the process of network 

deepening [66]. 

The problem of training very deep networks has been solved by the introduction of Residual blocks 

(Figure 3.12) in the ResNet model. Skip connections are the base of the Residual block: the output 

is not the same due to this skip connection. Without the skip connection, the input x gets multiplied 

by the weights (w) of the layer followed by adding a bias term and, with the application of the 

activation function f(), we get the output as:  

 

 

Figure 3.12: ResNet Residual block 
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                                                                   H(x)=f(w ּx + b)                                                                                  (2) 

Now, with the introduction of a new skip connection technique, the output H(x) is changed to:                                                                                                                                                               

                                                                   H(x)=f(x) + x                                                                                    (3) 

But the dimension of the input may be varying from that of the output and depends if it is working 

with a convolutional layer or pooling layers. Hence, this problem can be handled with two 

approaches: 

· Zero is padded with the skip connection to increase its dimensions. 

· 1×1 convolutional layers are added to the input to match the dimensions. In such a case,  an 

additional parameter w1 is added against the first approach and the output is [65]: 

                                                                   H(x)=f(x)+w1 ּ x                                                                                                           (4) 

Regarding the structure of the network, ResNets can have variable sizes, depending on the 

dimension of each layer of the model and how many layers it has: ResNet-18, ResNet-34, ResNet-

50, ResNet-101, ResNet-110, ResNet-152, ResNet-164, ResNet-1202 etc. Every ResNet architecture 

performs the initial convolution and max-pooling using 7×7 and 3×3 kernel sizes respectively. 

Afterward, Stage 1 of the network starts and it has 3 Residual blocks containing 3 layers each. The 

size of kernels used to perform the convolution operation in all 3 layers of the block of Stage 1 are 

64, 64 and 128 respectively. The curved arrows shown in Figure 3.13 refer to the identity connection. 

The dashed connected arrow represents that the convolution operation in the Residual Block is 

performed with stride 2, hence, the size of input will be reduced to half in terms of height and width 

but the channel width will be doubled. As we progress from one stage to another, the channel width 

is doubled and the size of the input is reduced to half. For deeper networks like ResNet50, 

ResNet152, etc, bottleneck design is used. For each residual function F, 3 layers are stacked one 

over the other. The three layers are 1x1, 3x3, 1x1 convolutions. The 1×1 convolution layers are 

responsible for reducing and then restoring the dimensions. The 3×3 layer is left as a bottleneck 

with smaller input/output dimensions. Finally, the network has an Average Pooling layer followed 

by a fully connected layer having 1000 neurons. 
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Figure 3.13: ResNet-50 network Architecture 
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4. EVALUATION OF THERAPEUTIC EFFICACY IN CANCER SUBJECTS 

THROUGH DEEP-LEARNING/MACHINE LEARNING TECHNIQUES 

ON RADIOLOGICAL IMAGES: A LITERATURE REVIEW 

In cancer subjects that are undergoing therapy, some achieve a pathologic complete response (pCR), 

some achieve a partial response and others do not respond at all, or even progress. Accurate 

prediction of treatment response has the potential to improve patient care by improving 

prognostication, enabling reduction of toxic treatment that has little benefit, facilitating upfront use 

of novel targeted therapies and avoiding delays to surgery. However, visual inspection of a patient’s 

tumor on radiological images is insufficient to predict the specific response to therapy [67]. ML and 

DL approaches, using both qualitative and quantitative features, have recently been applied to 

predict early treatment response in the course of, or even before, the start of any type of therapy. 

This is a novel field but the data published so far has shown promising results.  

 

4.1 INTRODUCTION 

The clinical response to treatment is an important indicator of the therapeutic effect of anticancer 

agents. Its value and interpretation have to be carefully considered within the context that it is used. 

In general, response assessment is combined with other indicators of the patient's condition to 

contribute to the decision-making process [68]. In clinical practice, the imaging evaluation of 

treatment response in cancer patients is based on dimensional changes of tumor lesions in 

sequential scans. Clinically relevant features, difficult to perceive for the human eye, can be 

extracted from radiological images with a novel feature transformation method called radiomics.  

Moreover, radiomics-based approaches have gained attention due to their high prediction power 

for response to chemotherapy in various types of tumors. In particular, radiological texture analysis 

is useful for diagnosing, staging and assessing therapy response in several cases. In order to facilitate 

the detection, ML and DL are increasingly investigated with the aim of improving patient diagnosis, 

treatment options and outcomes. DL models offer the opportunity to automatically extract imaging 

features to maximize model performance for the task of interest [69]. Specifically, deep neural 

networks enable the development of predictive models by performing all the processing steps 

usually involved in the design of a classic ML model, including feature extraction and learning and, 
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in contrast to supervised ML, deep learning CNN can operate on the whole images without requiring 

radiologists to manually contour the tumor on images. 

Moreover, CAD systems assist doctors in the interpretation of medical images, giving a second-

opinion and aiding the final diagnosis decision. Computerized diagnosis assesses the knowledge that 

a person or a computer has and offers an outcome to decide what kind of lesion is present and, in 

that case, if it is cancerous or not [60]. Medical imaging technology with applied CAD-based Machine 

Learning Techniques (MLTs) is becoming a powerful tool for cancer diagnosis and detection. 

Segmenting structures, detecting abnormalities and extracting characteristics of malignancies are 

some of the tasks that a standard CAD system performs.  In Figure 4.1 it is reported an example of 

the steps required in a CAD system for breast cancer segmentation, as acquisition of the image, pre-

processing, segmentation, extracting features, classification and evaluation. Firstly, the dataset 

needs to be prepared for the following phases, by means of a set of image pre-processing operations 

such as: smoothing, sharpening, noise removal and edge detection. Subsequently, the process of 

segmentation involves splitting an image into several areas that share common characteristics 

including contrast, brightness, texture, colour and grey level. Segmentation aims to perform 

manipulation of an image towards easier analysis and improved meaningful content by extracting 

Region Of Interest (ROI). In feature extraction, lesions and normal tissue that are represented by 

certain features are taken for evaluations. In particular, texture has traditionally been a significant 

diagnostic feature since its analysis is a relevant method for lesion identification and disease 

diagnosis [60]. Moreover, textural and geometric features’ values are utilized to proceed with 

classification: extracted features are categorized into classes of malignant and benign disease. 

Finally, an algorithm will be used on suspected lesions to evaluate the classified features exploiting 

relevant methodologies:  the goal is to identify those with a high likelihood of being correctly 

identified and the lowest risk of leading to diagnostic errors.  The evaluation step is critical and 

sometimes computerized systems are required in cases where the human vision is limited and 

cannot distinguish a problem. As such, any evaluation algorithms for CAD systems must consider 

sensitivity, specificity, and evaluation of positive predictions. Thus, the aim of this systematic review 

is to provide an overview of the principal ML and DL methods and techniques applied on radiological 

images that have been proposed in literature until now for the evaluation of the therapeutic efficacy 

in cancer subjects. 
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                                                    Figure 4.1: Block diagram of a CAD system 

 

4.2 METHODS 

The literature search and study selection were performed according to PRISMA guidelines for 

systematic reviews [70]. The literature search was conducted in PubMed, Scopus and Web of 

Science (WoS) during the period April 2023-May 2023.  

In order to perform the search, ‘Machine Learning’ and ‘Deep learning’ and ‘ML’ and ‘DL’ terms were 

combined as keywords in the query with the Boolean operator ‘OR’. In addition, searches for studies 

on tumor response detection on radiological images were performed using the terms ‘cancer’ and 

‘tumor’, ‘magnetic resonance’ and ‘computed tomography’ and at last, ‘therapy response’ and 

‘treatment response’ respectively, combined with the Boolean operator ‘OR’. Then, the four queries 

were combined using the Boolean operator ‘AND’. ‘Title’ and ‘Abstract’ were used to limit the search 

of field in PubMed, while ‘Title’, ‘Abstract’ and ‘Keyword’ were used to limit the search of field in 

Scopus and the search on Web of Science was limited only with ‘Abstract’. English language, Open 

Access and, in order to select the most innovative proposals, Publication year greater or equal to 

2015, were used as limits to filter the documents. The outcomes of the literature search were 

imported in Zotero reference management system to remove duplicates. Documents that were not 

available were excluded; documents that were reviews or databases were removed as well. Then, 

titles and abstracts were examined to select only documents of interest. Finally, a full-text analysis 

was carried out to discard documents according to these exclusion criteria: proposal of articles that 

not propose machine learning or deep learning techniques for prediction of therapeutic response, 



44 
 

proposal of articles that perform analysis through histological images or clinical features and 

documents that lack of evaluation of therapeutic efficacy.  

 

4.3 RESULTS 

The literature search resulted in 159 documents in PubMed, 23 in Scopus and 219 in Web of Science. 

17 documents were identified as duplicates, so from 401 articles, 384 were left for the analysis 

(Figure 4.2). After the elimination of reviews and databases and articles that were not available, 256 

documents were obtained. Moreover, analysing documents according to title and abstract, 112 

were removed because out of topic, obtaining 144 articles. Finally, performing a full-text 

examination, 10 documents were removed because machine learning or deep learning methods  

Figure 4.2: Process of literature search and study selection 
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were not proposed for treatment response prediction, 45 articles were eliminated because 

proposed studies based on histological images or clinical features and 64 documents were excluded 

due to the lack of the evaluation of the therapeutic efficacy. So, according to these exclusion criteria, 

25 articles were finally obtained [71-95]. Figure 4.2 shows the flow-chart of the entire process of 

literature search and study selection and Table II summarize and gives a general overview of the 

methods proposed in literature for the evaluation of therapeutic efficacy in cancer subjects through 

deep learning/machine learning techniques on radiological images. 

Table II: Overview of the methods proposed in literature 

STUDY AUTHORS YEAR IMAGE 
TYPE 

METHOD FEATURES SELECTED 
FOR PREDICTION 

RESULTS 

[71] S. S. Alahmari, 
D. Cherezov, 
D. B. Goldgof, 
L. O. Hall, R. J. 
Gillies and M. 
B. Schabath 

2018 CT ML (Random 
Forest) 

Conventional + 
Delta features 

Risk prediction: 
-AUC: 0.822 
-Specificity: 0.930 
-Sensitivity: 0.490 
 

[72] 
 

Davide Bellini, 
Iacopo 
Carbone, 
Marco Rengo, 
Simone Vicini, 
Nicola Panvini 
et al 

2022 MRI ML (Decision 
tree) 
 

Texture Analysis 
(TA): entropy, 
kurtosis, 
skewness and MPP 

pCR: 
-Sensitivity: 0.815 
-Specificity: 0.615 

[73] Cain, E.H., 
Saha, A., 
Harowicz, 
M.R. et al. 

2019 DCE-
MRI 

ML (Logistic 
regression+ 
Support vector 
machine) 

Tumor-based 
features and FGT 
enhancement 

64/288 
pCR,224/288 pNR: 
-AUC (LR): 0.707 
-AUC(SVM): 0.705 
 

[74] Marco 
Caballo, 
Wendelien B. 
G. Sanderink 
PhD, Luyi Han 
MSc, Yuan Gao 
MSc, 
Alexandra 
Athanasiou 
MD, MSc, 
Ritse M. Mann 
MD 

2022 MRI ML (logistic 
regression 
model): 
1.univariate 
analysis 
2.multivariate 
analysis 

Texture temporal 
variation and 
enhancement 
kinetics 
heterogeneity 

59/251 pCR: 
-AUC: 0.707 
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[75] Cha, K.H., 
Hadjiiski, L., 
Chan, HP. et 
al. 

2017 CT DL CNN, 
Random forest 
on segmented 
lesions (RF-SL) 
and Random 
forest on ROI 
(RF-ROI) 

Gray-level, Texture 
features, 
morphological 
features and 
gradient field 
features 

pCR, pNR: 
1.DL-CNN: 
-AUC: 0.730 
-Sensitivity: 0.500 
-Specificity: 0.810 
2.RF-SL: 
-AUC:0.770 
-Sensitivity: 0.500 
-Specificity: 0.79 
3.RF-ROI: 
-AUC: 0.79 
-Sensitivity: 0.67 
-Specificity: 0.55 

[76] Chang, R., Qi, 
S., Wu, Y. et al. 

2022 CT DL - 26 pCR, 27 pNR: 
-AUC: 0.940 
-Accuracy: 0.880 
-Sensitivity:0.870 
-Specificity:0.860 
-F1-score:0.880 
 

[77] Na Lae Eun, 
Daesung Kang, 
Eun Ju Son, 
Jeong Seon 
Park, Ji Hyun 
Youk, Jeong-
Ah Kim, Hye 
Mi Gweon 

2019 MRI ML (Random 
forest) 

Texture features pCR: 
-AUC: 0.820 
-Accuracy: 0.830 
-Sensitivity: 0.620 
-Specificity: 0.910 
-PPV: 0.750 
-NPV: 0.850 

[78] Jin, C., Yu, H., 
Ke, J. et al. 

2021 MRI DL - pCR: 
-AUC: 0.920 
-Sensitivity: 0.900 
-Specificity: 0.920 
-PPV: 0.830 
-NPV: 0.960 

[79] Langenhuizen, 
Patrick P. J. H., 
Zinger, 
Svetlana, 
Leenstra, 
Sieger, Kunst, 
Henricus P. 
M., Mulder, 
Jef J. S., 
Hanssens et al. 

2020 MRI Supervised ML 
(sML) 

First-order statistics 
(FOS) features, 
Minkowski 
functionals (MFs), 
gray-level  
co-occurrence matrix 
(GLCM) features, 
gray-level size zone 
matrix (GLSZM) 
features 

True tumor 
progression and 
Long-term tumor 
control: 
-AUC: 0.990 
-Accuracy: 0.830 
-Sensitivity: 0.830 
-Specificity: 0.820 

[80] Lu, L., Dercle, 
L., Zhao, B. et 
al. 

2021 CT DL Tumor burden 41 % pCR: 
-AUC: 0.760 
-OS: 18 months 
-HR: 0.490 
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[81] 
 

Ahmad 
Maaref, 
Francisco 
Perdigon 
Romero, 
Emmanuel 
Montagnon, 
Milena Cerny, 
Bich Nguyen 
et al. 

2020 CT DL (Deep CNN) Textural features pCR: 
-AUC: 0.880 
-Accuracy: 0.760 
-Sensitivity: 0.980 
-Specificity: 0.540 

[82] Mehta R, Cai 
K, Kumar N, 
Knuttinen MG, 
Anderson TM, 
Lu H, Lu Y. 

2017 PET/ 
CT 

ML 
(multinomial 
naive Bayes 
classifier) 

SUVmax (S), Tumor 
volume (V), 3D gray 
level co-occurrence 
matrix (C), WKS (W), 
3D Zernike 
descriptor (Z) 

pCR: 
-recall (PPV): 0.820 
-precision: 0.840 

[83] Moghadas-
Dastjerdi H, 
Rahman SH, 
Sannachi L, 
Wright FC, 
Gandhi S, 
Trudeau ME et 
al. 

2021 CT ML  
(AdaBoost-DT 
classifier) 

Textural and second 
derivative textural 
(SDT) features 

pCR: 
-AUC: 0.880 
-Accuracy: 0.850 
-Sensitivity: 0.870 
-Specificity: 0.750 
-precison: 0.920 
-F-score: 0.890 

[84] Noémie 
Moreau,Caroli
ne 
Rousseau,Con
stance 
Fourcade,Gian
marco 
Santini,Aislinn 
Brennan,Ludo
vic 
Ferrer,Marie 
Lacombe  et 
al. 

2022 PET/ 
CT 

DL 

SULpeak, TLG, PET 
Bone Index (PBI), PET 
Liver Index (PLI) 
 

pCR: 
-AUC: 0.890 
-Sensitivity: 0.870 
-Specificity: 0.870 
 

[85] Nasief, H., 
Zheng, C., 
Schott, D. et 
al. 

2019 CT ML Delta Radiomic 
Features (kurtosis, 
skewness, 
coarseness, NESTD, 
IDN, mean, and 
contrast) 

pCR: 
-AUC: 0.960 
-Accuracy: 0.940 

[86] Pang Xiaolin, 
Wang Fang, 
Zhang Qianru, 
Li Yan, Huang 
Ruiyan, Yin 
Xinke, Fan 
Xinjuan 

2021 MRI DL (SVM) 

Intensity, texture 
and shape features 

pCR: 
-AUC: 0.810 
-Accuracy: 0.850 
-Sensitivity: 0.50 
-Specificity: 0.930 
-F1 score: 0.650 

[87] Peng Jie, 
Huang Jinhua, 

2021 CT ML+DL 
(RF+DL) 

Gray Level Variance, 
Large Area Low Gray 

pCR: 
-AUC: 0.990 
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Huang Guijia, 
Zhang Jing 
 

Level Emphasis, 
Coarseness, Strength 

- Sensitivity: 0.930 
- Specificity: 1.000 
 
 

[88] Peng, J., Kang, 
S., Ning, Z. et 
al. 

2020 CT DL (ResNet50) - pCR(CR+PR): 
-AUC: 0.950 

[89] Peng, S.; Chen, 
L.; Tao, J.; Liu, 
J.; Zhu, W.; 
Liu, H.; Yang, 
F. 

2021 MRI ML Zone Entropy, Gray 
Level NonUniformity, 
Small Dependence 
Emphasis, 
Correlation, Cluster 
Shade 

44 pCR, 26 non-
pCR: 
-AUC: 0.919 
-Sensitivity: 0.880 
-Specificity: 0.860 
-Accuracy: 0.850 
 

[90] Lucie Petrova, 
Panagiotis 
Korfiatis,Ondr
a Petr, Daniel 
H., LaChance, 
Ian Parney, Jan 
C. Buckner, 
Bradley, J. 
Erickson 
 

2019 MRI ML (SVM) Apparent Diffusion 
Coefficient (ADC) 
and dynamic-
susceptibility 
contrast (DSC) 
perfusion 
measurements 

23 responders, 31 
non responders: 
-Accuracy: 0.820 
-Sensitivity: 0.610 
-Specificity: 0.970 
 
OS (22 long, 32 
short): 
-Accuracy: 0.780 
-Sensitivity: 0.620 
-Specificity: 0.880 
 

[91] Qu Hui, Zhai 
Huan, Zhang 
Shuairan, 
Chen 
Wenjuan, 
Zhong 
Hongshan, Cui 
Xiaoyu 

2023 CT ML (LDA) Standard discrete 
(SD) feature, 
Discrete change (DC) 
feature, Relative 
change rate (RCR), 
Relative average 
change rate (RACR), 
Ploy (P) feature 

Objective response 
(OR)= CR+PR: 
-AUC: 0.950 
-Accuracy: 0.850 
 

[92] Sharaby I, 
Alksas A, 
Nashat A, 
Balaha HM, 
Shehata M, 
Gayhart M, 
Mahmoud A, 
Ghazal M, 
Khalil A. et al. 

2023 CT ML (SVM) Shape, functionality, 
and Textural 
features 

pCR(regression ≥30
%): 
-Accuracy: 0.950 
-Sensitivity: 0.960 
-Specificity: 0.940 
-F1 score: 0.970 

[93] Yan, M., Wang 2020 CT ML (SVM) Flatness and 
Coefficient of 
variation 

Tumor response 
scores (TRS): 
-TRS 
0=“progressive 
disease” or “stable 
disease” 
-TRS 1=“partial 
response” or 
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“complete 
response”: 
-AUC: 0.910 
-Accuracy:0.880 
-Recall:0.880 
-Precision:0.890 
-F1 score:0.880 

[94] Yoo J, Lee J, 
Cheon M, 
Woo S-K, Ahn 
M-J, Pyo HR, 
Choi YS, Han 
JH, Choi JY 

2022 PET/ 
CT 
 

ML (RF) tumor 
heterogeneity, 
fractal dimension, 
tumor shape and 
proliferation 

pCR: 
-AUC: 0.970 
-Accuracy: 0.930 
-Sensitivity: 0.940 
-Specificity: 0.920 
-PPV: 0.940 
-NPV: 0.930 

[95] Zhigang Yuan, 
Marissa 
Frazer, 
Anupam Rishi, 
Kujtim Latifi, 
Michal R., 
Tomaszewski, 
Eduardo G. 
Moros et al. 

2021 CT + 
PET 

ML (Logistic 
Regression) 

LoG.5Skewness, 
LoG2CoeffVari, RL-
HGRE, RL-LRHGE, SZ-
LAE, and SZ-LIE 

Tumor regression 
grade (TRG) and 
Neoadjuvant rectal 
(NAR) score: 
1. TRG 0 vs. TRG 1–
3: 
-AUC: 0.860 
-Accuracy: 0.880 
2. TRG 0–1 vs. TRG 
2–3: 
-AUC: 0.950 
-Accuracy: 0.910 
3.low vs. 
intermediate vs. 
high NAR scores: 
-AUC: 0.810 
-Accuracy: 0.670 

 
 

 

 

4.3.1 BLADDER CANCER TREATMENT RESPONSE ASSESSMENT IN CT USING RADIOMICS WITH 

DEEP-LEARNING 

In this study, radiomics-based predictive models using pre and post-treatment computed 

tomography (CT) images are analysed to verify their ability to distinguish between bladder cancers 

with and without complete chemotherapy responses. Three unique radiomics-based predictive 

models are assessed, each of which employs different fundamental design principles ranging from 

a pattern recognition method via deep-learning convolution neural network (DL-CNN), to a more 

deterministic radiomics feature-based approach and then a bridging method between the two, 

utilizing a system which extracts radiomics features from the image patterns. The study is performed 
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with the help of two experienced radiologists as references for comparison with the three predictive 

models.  The study indicates that the computerized assessment using radiomics information from 

the pre and post-treatment CT of bladder cancer patients has the potential to assist in assessment 

of treatment response [75]. A DL-CNN is trained in order to distinguish between bladder lesions that 

were diagnosed as stage T0 post-treatment (no residual tumor) and those that were greater than 

stage T0 (any residual tumor). For predictive model, a radiomics-feature-based analysis is applied to 

the segmented lesions (RF-SL). A random forest classifier is trained to use these features to 

distinguish between lesions that fully responded to treatment and those that did not. The 

performance of the DL-CNN is compared against a radiomics feature-based method, where the 

percent change in the features extracted from the segmented lesions pre- and post-treatment is 

used (RF-SL), and against a third method extracting radiomics features from the paired region of 

interest (ROIs) used by the DL-CNN (RF-ROI). For the RF-SL, five features are consistently selected 

which included a contrast feature and four run length statistics texture features. For the RF-ROI, the 

grey-level average, the skewness of the grey-level histogram, and two run length statistics texture 

features are consistently selected. These results show that the texture, which characterizes the 

heterogeneity of the bladder lesions, is an important indicator for the estimation of full responders 

to chemotherapy. All three methods perform comparably in terms of AUC to the two expert 

radiologists. The RF-SL performs slightly better than the DL-CNN; however, the RF-ROI method 

results in worse performance compared to the DL-CNN, indicating that the DL-CNN is able to better 

characterize the paired ROIs to identify full responders compared to extracting features from the 

ROIs and using the random forest classifier. Table III shows the results obtained by the study.  

Table III: Results of the three predictive models compared to the radiologists in terms of AUC, 

Complete Response (sensitivity) and Non-Complete response (specificity). 

 DL-CNN RF-SL RF-ROI RADIOLOGIST 1 RADIOLOGIST 2 

AUC 0.730 ± 0.080 0.770 ± 0.080 0.690 ± 0.080 0.760 ± 0.080 0.770 ± 0.070 

Complete 
Response 

(Sensitivity) 

6/12 (50.0%) 6/12 (50.0%) 8/12 (66.7%) 11/12 (91.7%) 11/12 (91.7%) 

Non-Complete 
response 

(Specificity) 

34/42 (81.0%) 33/42 (78.6%) 23/42 (54.8%) 18/42 (42.9%) 16/42 (38.1%) 
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4.3.2 DEEP MULTIPLE INSTANCE LEARNING FOR PREDICTING CHEMOTHERAPY RESPONSE IN NON-

SMALL CELL LUNG CANCER USING PRETREATMENT CT IMAGES 

In this study, a deep multiple instance learning (DMIL) model is proposed to predict the 

chemotherapeutic response in non-small cell lung cancer (NSCLC) patients using pre-treatment CT 

images [76]. Two datasets of NSCLC patients treated with chemotherapy as the first-line treatment 

are collected from two hospitals. Dataset 1 (163 response and 138 nonresponse) is used to train, 

validate, and test the DMIL model and dataset 2 (22 response and 20 nonresponse) is used as the 

external validation cohort. The proposed DMIL model consists of three main modules: Pre-

processing module, Feature extraction module and Feature representation module. 

Five different pre-trained models are trained in the Feature extraction Module (AlexNet, VGG16, 

ResNet34, DenseNet, and MobileNet_v2) as the backbone module to extract features from CT slices. 

VGG16 shows better predictive performance than the other models. By comparing CT images before 

and after chemotherapy, all cases are categorized as “response” or “nonresponse.” The response 

group includes CR (complete response) and PR (partial response), whereas the nonresponse group 

includes PD (progressive disease) and SD (stable disease). 

Results shows that the model correctly predicts 27 of 30 nonresponse and 26 of 30 response 

patients in the test cohort. Performance measures as accuracy, AUC, sensitivity, specificity, and F1-

score give values of 0.883, 0.982, 0.871, 0.867, and 0.885, respectively, whereas the cut-off value 

was 0.833 

 

4.3.3 PREDICTING TREATMENT RESPONSE FROM LONGITUDINAL IMAGES USING MULTI-TASK 

DEEP LEARNING 

In this study, a multi-task deep learning approach is proposed to predict treatment response and 

test the model in multi-institution cohorts (internal and external) of rectal cancer patients.  The 

multi-task deep learning network consists of two subnetworks (Figure 4.3): one for feature 

extraction and tumor segmentation, and one for response prediction [78]. The feature extraction 

and segmentation subnetwork consists of two identical 3D U-net with shared parameters. The 

response prediction subnetwork combines the extracted image features from three different 

network layers via depth-wise convolution.  
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For response prediction, the proposed 3D RP-Net achieves consistently high accuracy across the 

training and two validation cohorts. The AUC is 0.95 (95% CI: 0.91–0.98) and 0.92 (95% CI: 0.87–

0.96) in the internal and external validation cohorts, respectively. At the optimal cut-off point, the 

3D RP-Net shows sensitivity at 93% and 91%, specificity at 94% and 92% for predicting pCR for the 

two validation cohorts. 

 

                          Figure 4.3: Schematic representation of the multi-task deep learning network 78 

 

4.3.4 DEEP LEARNING FOR THE PREDICTION OF EARLY ON-TREATMENT RESPONSE IN METASTATIC 

COLORECTAL CANCER FROM SERIAL MEDICAL IMAGING  

The DL method used in this study deploys two types of networks, the CNN and the RNN.  CNN is 

basically the type of network that is specified for image analysis and computer vision, while RNN is 

designed for doing prediction based on temporal sequence. RNN allows automated learning of time-

dependent relation between features rather than using human curate modelling (e.g. the tumor 

growth inhibition modelling). 
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For automated response assessment, CNN is utilized to extract image features from CT scan at each 

time point, while RNN is utilized to build up a time-dependent network from the image features 

extracted by CNN at the series of time points. 

The validation of prognostic performance of DL prediction score consists of four steps: First, 

reproducibility analysis; Second, classification of patients into high- or low-risk groups is determined 

according to the Youden Index on the receiver operator characteristic curve (ROC); Third, in the test 

set, Kaplan-Meier survival analysis is performed to assess the association between DL-based 

stratification (using the cut-off determined in the tuning set) and patient’s Overall Survival (OS). 

Finally, the DL prediction score was compared to the Response evaluation criteria in solid tumours 

(RECIST) and early tumour shrinkage (ETS) criteria [80]. 

Results of the study shows that the percentage of responders defined by DL criteria vs. RECIST 

criteria is 41% vs. 6.7%. The AUC (95% CI) of DL prediction score on the tuning set to classify DL-

responder/ non-responder is 0.76 (95% CI: 0.72,0.80). The DL-responders has a significant better OS 

than the DL-non-responders, with median OS 18.0 vs.10.4 months, hazard ratio (HR) (95% CI) = 0.49 

(0.40,0.61). 

 

4.3.5 PREDICTING THE RESPONSE TO FOLFOX-BASED CHEMOTHERAPY REGIMEN FROM 

UNTREATED LIVER METASTASES ON BASELINE CT: A DEEP NEURAL NETWORK APPROACH  

In this paper, a fully automated framework based on deep convolutional neural networks (DCNN) is 

proposed to differentiate treated and untreated lesions and to identify new lesions appearing on CT 

scans. Moreover, a fully connected neural network is presented to predict the response of patients 

with colorectal liver metastases (CLM) undergoing FOLFOX with Bevacizumab chemotherapy, from 

untreated lesions in pre-treatment computed tomography (CT). 

The CNN with fivefold cross-validation is trained for prediction purposes and the layer architecture 

that has been used in order to perform classification includes four convolutional 2D layers, followed 

by a rectified linear unit (ReLU), two 2D Max Pooling layers, two drop out, and a flatten layer. The 

following four experiments are performed: bounding box on the largest untreated lesion per 

patient, segmentation of the largest untreated lesion per patient, bounding box on all untreated 

lesions per patient and segmentation of all untreated lesions per patient [81]. 

The proposed deep neural network based on Inception-Inspired-CNN shows high classification 

performance discriminating treated vs untreated lesions in CT with an AUC of 0.97, sensitivity of 

90% (95% confidence interval, 86–93)‚ a specificity of 91% (95% CI, 85–94), and an overall accuracy 
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of 0.91 (95% CI, 88–93). In order to evaluate response prediction, all the four different scenarios are 

analysed. The first experiment based on the bounding box over the largest untreated lesion achieves 

an AUC of 0.66 (95% CI, 0.61–0.75), accuracy of 61% (95% CI, 54–73), sensitivity of 59% (95% CI, 53–

68), and a specificity of 65% (95% CI, 62–77). The second experiment based on the segmentation of 

the largest untreated lesion achieves AUC of 0.68 (95% CI, 0.63–0.78), accuracy of 66% (95% CI, 62–

75), sensitivity of 69% (95% CI, 62–80), and specificity of 60% (95% CI, 54–71). For the third 

experiment, bounding boxes on all lesions yield an AUC of 0.83 (95% CI, 0.78–0.87), accuracy of 78% 

(95% CI, 74–83), sensitivity of 97% (95% CI, 94–99), and specificity of 59% (95% CI, 52–68). Finally, 

an AUC of 0.88 (95% CI, 0.85–0.94), accuracy of 76% (95% CI, 71–82), sensitivity of 98% (95% CI, 96–

99), and specificity of 54% (95% CI, 50–60) are obtained with the fourth configuration, based on 

segmentations of all lesions. Results demonstrate improved performance with the third and fourth 

experiments where all lesions have been applied for training the CNN. From the 34 poor responders 

in the test set, the proposed model is able to predict response correctly in 27 cases. In conclusion, 

this study shows that fully connected neural networks are more efficient in predicting highly 

heterogeneous CLM treated with TACE compared with traditional classification methods based on 

hand-crafted texture feature analysis methods for conventional machine learning. 

 

4.3.6 AUTOMATIC SEGMENTATION OF METASTATIC BREAST CANCER LESIONS ON 18F-FDG 

PET/CT LONGITUDINAL ACQUISITIONS FOR TREATMENT RESPONSE ASSESSMENT  

The aim of this work is to propose deep learning neural networks used to segment breast cancer 

metastatic lesions on longitudinal whole-body PET/CT and extract imaging biomarkers from the 

segmentations to evaluate their potential to determine treatment response. Baseline and follow-up 

PET/CT images of 60 patients are used to train two deep-learning models to segment breast cancer 

metastatic lesions: One applied on baseline images and one on follow-up images. From the 

automatic segmentations, four imaging biomarkers were computed and evaluated: SULpeak, Total 

Lesion Glycolysis (TLG), PET Bone Index (PBI) and PET Liver Index (PLI) [84]. 

SULpeak is used to assess metabolic change between two acquisitions, Total Lesion Glycolysis (TLG) 

assesses both metabolic activity and lesion volume, PET Bone Index (PBI) indicates bone metastases 

and PET Liver Index (PLI) individuates liver metastases. 

To evaluate the potential of the biomarkers to assess treatment response, changes between the 

baseline and follow-up images are analysed with each imaging biomarker and in order to determine 

the best biomarker to assess treatment response, a Receiver Operating Characteristic (ROC) curve 
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and its Area Under the Curve (AUC) are computed. PERCIST responses assessed by medical experts 

are binarized as responders for subjects with CR and PR and non-responders for subjects with SD or 

PD. 

The ROC analysis evaluates each difference measured between baseline and follow-up acquisitions 

as a potential threshold for a binary prediction of treatment response.  

Results shows that the highest AUC score is obtained for ΔSULpeak at 0.89, followed by ΔTLG at 

0.80, ΔPBI at 0.72 and ΔPLI at 0.54. The AUCs for ΔSULpeak, ΔTLG and ΔPBI are not statistically 

different (p-values ≥ 0.001) but ΔPLI has significantly lower predictive value than the other 

biomarkers (p-value ≤ 0.001). The optimal cutoff values to classify patients as responders or non-

responders are−32%, −43%, −8% and 0% for ΔSULpeak, ΔTLG, ΔPBI and ΔPLI respectively. According 

to the Mann-Whitney U test, the responder/non-responder groups defined by each biomarker are 

statistically different (p-value ≤ 0.001) except for the ΔPLI (p-value = 0.062). 

 

 

4.3.7 A PIPELINE FOR PREDICTING THE TREATMENT RESPONSE OF NEOADJUVANT 

CHEMORADIOTHERAPY FOR LOCALLY ADVANCED RECTAL CANCER USING SINGLE MRI MODALITY: 

COMBINING DEEP SEGMENTATION NETWORK AND RADIOMICS ANALYSIS BASED ON 

“SUSPICIOUS REGION”  

This study proposes a pipeline of pCR prediction using a combination of DL and radiomics analysis. 

In order to improve the efficiency for clinical application, the pipeline only included a post-nCRT T2-

weighted MRI [86]. Unlike other studies that attempted to carefully find the ROI using a pre-nCRT 

MRI as a reference, in this case it is considered the ROI on a “suspicious region”, which is a 

continuous area that has a high possibility to contain a tumor or fibrosis as assessed by radiologists. 

A deep segmentation network, termed the two-stage rectum-aware U-Net (tsraU-Net), is designed 

to segment the ROI to substitute for a time-consuming manual delineation of the rectum region. 

This is followed by a radiomics analysis model based on the ROI to extract the hidden information 

and predict the pCR status. Patients dataset is separated into three groups: Dataset Seg-T consisted 

of patients to train deep networks for ROI segmentation; dataset Rad-T consisted of patients to 

build the radiomics model for predicting the pCR status; and dataset In-V for internal validation. In 

addition, dataset Ex-V is used as an external validation set. The “suspicious region” is defined as a 

continuous region containing 129 abnormal intensity signals compared to a normal rectal wall, 

which are highly suspected to be cancer or fibrosis according to clinical experience. The following 
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analysis extracts a great number of radiomics features, including texture, first-order statistics, and 

shape, on the ROI and its wavelet decompositions to represent certain properties. Statistical 

techniques are later applied to select the most representative features and construct a final model 

to predict the pCR status. The support vector machine (SVM) is applied to predict the pCR status 

and for the pCR status prediction evaluation, five metrics are applied: the area under receiver 

operating characteristic (ROC) curve (AUC), accuracy, sensitivity, specificity, and at least the F-score, 

that is a weighted harmonic mean that comprehensively considers sensitivity and specificity. Table 

IV shows the results of the study: the “suspicious region” is capable to be the ROI in this research, 

which means a single post-nCRT T2-w MRI has the ability to predict the pCR status without the help 

of a pre-nCRT MRI or other post-nCRT modalities. 

 

Table IV: Results of the pCR status predicted performance on datasets Rad-T, In-V and Ex-V, in 

terms of AUC, accuracy, sensitivity, specificity, F0.5-score, F1-score, F1.5-score 

DATASET AUC ACCURACY SENSITIVITY SPECIFICITY F0.5-SCORE F1-SCORE F1.5-SCORE 

Rad-T 0.924 0.860 0.861 0.859 0.860 0.860 0.860 

In-V 0.829 0.804 0.750 0.816 0.802 0.792 0.769 

Ex-V 0.815 0.853 0.500 0.929 0.793 0.650 0.583 

 

 

 

4.3.8 PREDICTING THE INITIAL TREATMENT RESPONSE TO TRANSARTERIAL 

CHEMOEMBOLIZATION IN INTERMEDIATE-STAGE HEPATOCELLULAR CARCINOMA BY THE 

INTEGRATION OF RADIOMICS AND DEEP LEARNING  

In this study, it is aimed to develop radiology-based models for the preoperative prediction of the 

initial treatment response to transarterial chemoembolization (TACE) in patients with 

hepatocellular carcinoma (HCC) with the integration of radiomics and DL. Five radiomics ML models 

(linear, logistic, GBM, SVM, and RF) and a DL model are developed to precisely predict the initial 

treatment response to TACE in the training and validation cohorts. The deep learning framework 

includes two convolutions, two max-poolings and one dense layer. The final output layer was a 

Softmax classifier [87]. According to the modified Response Evaluation Criteria in Solid Tumors, the 

initial response to TACE is classified as CR, PR, SD, or PD. Initial treatment response and non-

response are strictly defined as CR + PR and SD + PD after the first course of TACE therapy. The 
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performance of each radiomics model is evaluated in the training and validation cohorts using 

receiver operating characteristic (ROC) analysis and the optimal cutoff value for predicting 

treatment response is defined using the Youden index. A total of 1167 features are extracted from 

the hepatic-arterial 3D-CT images. A total of 457 pyradiomics features are eliminated in the 

Interclass Correlation Coefficient (ICC) analysis. To acquire robust features, the remaining 710 

features are subjected to feature selection using the Recursive Feature Elimination (RFE) algorithm. 

Based on 5-fold cross-validation, 14 radiomics features are finally selected and used to build the five 

ML models. All machine learning models have significantly high prediction in the training and 

validation cohorts (each P < 0.001). The simple linear model shows the lowest accuracy in the two 

cohorts (AUC = 0.784; 95% CI: 0.707–0.860, P < 0.001 vs AUC = 0.763, 95% CI: 0.693–0.833, P < 

0.001). The logistic model is superior to the linear model in the training and validation groups (AUC 

= 0.801 vs 0.784 and 0.781 vs 0.763, respectively). For the three nonlinear models, RF shows better 

predictive accuracy than SVM and GBM in the two cohorts (AUC = 0.967 vs 0.841 and 0.839; and 

0.964 vs 0.765 and 0.810, respectively). The three nonlinear models (SVM, GBM, and RF) have better 

predictive ability than the two linear models (linear and logistic). In the above engineered features 

analysis, the DL model demonstrates high accuracy in the training and validation cohorts (AUC = 

0.981, 95% CI: 0.964–998, P < 0.001 vs AUC = 0.972, 95% CI: 0.951–0.993, P < 0.001). 

 

4.3.9 RESNET FOR PREDICTING RESPONSE OF TRANSARTERIAL CHEMOEMBOLIZATION IN 

HEPATOCELLULAR CARCINOMA FROM CT IMAGING 

The aim of this study is to train and validate (in different cohorts) a DL model on CT images for the 

preoperative prediction of the response of patients’ cohorts with intermediate-stage hepatocellular 

carcinoma (HCC) undergoing TACE [88]. It is presented a predictive model from the outputs using 

the transfer learning techniques of a residual convolutional neural network (ResNet50). A series of 

blocks consisting of three convolutional layers (fc1000, fc1000_softmax, and classification 

layers_fc1000) are replaced by new layers (fc4, fc4_softmax, and classification layers_fc4) to extract 

deep residual features and transmit features from the front layer to the latter one. At the end of 

the network, a full-connection layer is used to perform classification. Based on the radiology 

evaluation in patients after the first TACE therapy, the different responses on hepatic-arterial CT 

images are determined by modified RECIST, including CR, PR, SD, and PD. The objective response is 

defined as CR+PR and the non-response as SD+PD. The training cohort exhibits an average accuracy 
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of 84.0% and a low error of 16% of predicting CR, PR, SD, and PD in TACE therapy. The independent 

validation cohorts 1 and 2 show an average accuracy of 85.1% and 82.8% and low errors of 14.9% 

and 17.2%, respectively. Interestingly, it is found that the accuracy for the training cohort was lower 

than for the validation cohort (84.3% vs. 85.1%). Misclassified CR patches by the deep learning 

model are more observed in PR patches than in SD and PD patches in the training cohort (1.5%) and 

validation cohorts 1 (1.7%) and 2 (1.1%). Meanwhile, misclassified PD patches are more frequently 

found in PR patches than in SD and CR patches. The precision probability of preoperatively 

predicting the four therapy responses (i.e., CR, PR, SD, and PD) via each ROI patch is calculated and 

found useful in individualized clinical treatment. 
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5. TUMOR‑INFILTRATING LYMPHOCYTES EVALUATION ON 

BREAST MRI: A REAL DEEP LEARNING APPLICATION 

Recent evidence has suggested that TILs have prognostic and predictive capabilities for breast 

cancers. TIL assessments are clinically useful for risk predictions, adjuvant and neoadjuvant 

chemotherapy decisions, and more recently, immunotherapy. TIL evaluations are being included in 

clinical trials and diagnostic assessments, which has raised concerns regarding the existence of a 

standardized methodology for its evaluation [96]. Therefore, recommendations and guidelines for 

visual TIL assessment (VTA) in invasive breast carcinoma patients have been recently developed by 

the International Immuno-Oncology Biomarker Working Group (or TILs-WG) [97]. TIL populations 

are quantified by determining how much of a demarcated area of stroma or tumor visible on a slide 

is infiltrated by immune cells (average TIL%). 

In this study it is proposed the use of three different DL models for the assessment of TIL from MRI 

breast cancer images. 

 

5.1 DATASET 

The Dataset TCGA-BH has been acquired from the Cancer Genome Atlas Breast Invasive Carcinoma 

(TCGA-BRCA) data collection. It is part of a larger effort to build a research community focused on 

connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from 

The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic 

Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging 

Archive (TCIA). Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA 

databases for correlations between tissue genotype, radiological phenotype and patient outcomes.  

Tissues for TCGA were collected from many sites all over the world in order to reach their actual 

targets, usually around 500 specimens per cancer type.  For this reason, the image data sets are also 

extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols.  

In most cases the images were acquired as part of routine care and not as part of a controlled 

research study or clinical trial. 
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5.1.1 RADIOLOGICAL DATA FROM THE CANCER IMAGING ARCHIVE 

TCIA is a service which de-identifies and hosts a large publicly available archive of medical images 

of cancer. It is funded by the Cancer Imaging Program (CIP), a part of the United States National 

Cancer Institute (NCI) and is managed by the Frederick National Laboratory for Cancer Research 

(FNLCR). The imaging data are organized as “collections” defined by a common disease (e.g. lung 

cancer, breast cancer), image modality or type (MRI, CT, digital histopathology, etc) or research 

focus. Digital Imaging and Communications in Medicine (DICOM),  a worldwide standard for the 

storage and transmission of medical imaging, is the primary file format used by TCIA for radiology 

imaging; A DICOM file consists of a header and image data sets packed into a single file. The 

information within the header is organized as a constant and standardized series of tags. By 

extracting data from these tags one can access important information regarding the patient 

demographics, study parameters, etc.  An emphasis is made to provide supporting data related to 

the images such as patient outcomes, treatment details, genomics and expert analyses. In this study, 

the NBIA Data Retriever was used to download from TCIA the radiological images that have the 

following characteristics (Table V): 

Table V: Detailed description of radiological images used in the study 

IMAGE STATISTICS RADIOLOGY IMAGING STATISTICS 

Modalities MR, MG 

Number of Participants 139 

Number of Studies 164 

Number of Series 1877 

Number of Images 230167 

Images Size (GB) 88.1 

 

 

5.1.2 TUMOR INFILTRATING LYMPHOCYTE VALUE FROM GENOMIC DATA COMMONS DATA 

PORTAL 

GDC Data Portal is an interactive data system for researchers to search, download, upload, and 

analyse harmonized cancer genomic data sets, including TCGA (The Cancer Genome Atlas) and 

Therapeutically Applicable Research to Generate Effective Therapies (TARGET). It contains 

information about projects, primary sites, cases, files, genes and mutations. This database allows to 

browse using Projects, Exploration and analysis.  

https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images
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The Exploration Page allows users to explore data in the GDC using advanced filters, which includes 

those on a gene and mutation level. Users can choose filters on specific Cases, Genes, and/or 

Mutations and it’s possible to visualize these results. The Gene or Mutation data for these 

visualizations comes from the Open-Access MAF files on the GDC Data Portal. In this study, the TIL 

percentages for each patient have been obtained from the exploration page in the slide details 

section (Figure 5.1) where the user can visualize the histological image features. There is also a 

Clinical tab with filters that apply specifically to clinical data: The Pathology Report of each case has 

been downloaded in order to assess the tumor characteristics and to identify the cancer position 

(left breast, right breast). 

 

Figure 5.1: An example of histological slide details section from which is possible to retrieve TIL percentage 

 

5.2 DATA VISUALIZATION AND SELECTION  

For the visualization of the acquired radiological images, different software have been taken into 

account and at least the MicroDicom DICOM Viewer was chosen in order to select the images that 

were more clinically relevant for the study. MicroDicom is an application supported by Windows for 

primary processing and preservation of medical images in DICOM format: it is equipped with the 

most common tools for manipulation of DICOM images and it has an intuitive user interface.  

All the images acquired from The Cancer Imaging Archive were uploaded on the software and 

displayed in order to perform a specific selection. The TCGA-BH sagittal vibrant images (Figure 5.2) 

were chosen for the study. 
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Figure 5.2: An example of one slice of the selected sagittal vibrant breast MRI 

 

Specifically, ‘vibrant’ stands for simultaneous, high-definition fat-suppressed bilateral breast 

imaging technique. The sagittal plane shows the best visualization for breast anatomy and tumor 

detection. After that, the principal characteristics as tumor location (left or right breast), extracted 

from the Pathology Report, and TIL percentage were collected for each cancer subject and saved on 

a table in Excel (Table VI). Subsequently, the obtained TCA-BH sagittal vibrant dataset, composed of 

images related to a total number of 46 patients, was split in two different datasets: one related to 

patients that have tumor on the left breast (25 patients) and one related to patients with lesion on 

the right breast (21 patients). 

In addition, the original dataset was divided in others two folders: one that has low TIL percentage, 

as TIL<=10, and one that has High TIL percentage (TIL > 10). Files related to patients that have not a 

specific value for the TIL percentage were removed as well as additional subfolders that were not 

useful for the study (8 patients). So finally, 19 files were obtained both for Low and High TIL folders. 
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5.3 DATA PRE-PROCESSING 

After data selection, all the breast MRI images were pre-processed in Colab. Colaboratory, or Colab 

for short, is an on-cloud product from Google Research. It allows anybody to write and execute 

arbitrary python code through the browser, and is especially well suited to ML and DL, data analysis 

and education. Its main advantage is the on-cloud nature. Figure 5.3 shows all the steps followed to 

perform the dataset pre-processing. 

First, all the DICOM data were uploaded from the source folder and converted into the Nifti format. 

After, all the breast MRI images were subjected to some of the most common pre-processing steps 

in radiological image analysis: normalization, bias field correction and resampling.  

 

 

 

 

Figure 5.3: Dataset pre-processing flow chart 

 

Conversion in Nifti format
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All the MRIs were first normalized between 0 and 255 to make images more comparable and 

consistent in terms of image scale, intensity values and orientation. 

Then, bias field correction, also known as intensity non-uniformity correction or shading correction, 

was used to address the problem of non-uniform intensity across each slice. Such inhomogeneity is 

caused by a combination of factors including variations in the sensitivity of the imaging equipment, 

imperfections in the magnetic field, patient-specific effects and other technical factors.  

Finally, the interslice distance modification was used as resampling technique to standardize the 

spatial representation of the MRI. The interslice distance was set to 1 mm. The dataset was then 

converted in Numpy array. 

The folders that contains tumor location data were processed and halved in order to remove slices 

that do not contain useful information for the analysis. According to the direction of the acquisition 

of the images (from left to right on the sagittal plane) data related to patients that have tumor on 

the left breast were processed so that only the first half of the data was maintained; instead, for the 

folder that contains data of patients with right breast tumor, only the second half of data was 

preserved.  

Moreover, in order to get uniform MRIs for the classification, all the images were processed to get 

the size (256,256,100): a total number of 100 slices for each MRI scan were obtained by performing 

data augmentation. 

Data augmentation is an artificial processing technique that increases the original dataset by 

creating modified copies of data using the pre-existing data. In this case only geometrical 

transformations (rotation and scaling) were applied to increase the size and diversity of the original 

set. The augmentation was made by randomly selecting different slices to augment, in order to 

avoid image redundancy that could bias the model leading to overfitting. Once obtained a pre-

processed and standardized dataset (Figure 5.4), all the images associated with tumor location were 

grouped in a single folder and finally divided into two distinct subfolders based on TIL percentage 

(High/Low), as previously outlined in section 5.2. This final step was performed to categorize patient 

data for classification purposes: the Low TIL dataset was labelled as 0, while the High TIL dataset 

was labelled as 1. 
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Figure 5.4: Pre-processed MRI images related to patients with tumor on the right breast 
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5.4   HYPER-PARAMETER TUNING 

In general, a DL model has variable parameters, called Hyper-parameters, that are not learned from 

the data but must be defined before the training process. These values affect the results of the 

model and its performance. Hyper-parameter tuning is the process of finding the optimal values for 

these hyper-parameters in order to maximize the model accuracy and efficiency on a specific task. 

It involves testing various combinations of values and returning the one that produces the best 

performance. In this study the hyper-parameters tuned are: 

  Learning Rate: It represents the step size taken by the optimization algorithm during the 

weight update process. It directly influences the convergence speed and stability of the 

training process. A higher learning rate may lead to faster convergence but risks 

overshooting the optimal solution, while a lower rate may improve stability but prolong 

training. 

  Batch Size: It determines the number of data samples processed in a single forward and 

backward pass during each training iteration. It impacts computational efficiency and 

memory usage. Smaller batch sizes introduce more frequent weight updates but may require 

more epochs for convergence, while larger batch sizes can accelerate training but might lead 

to less effective generalization. 

  Dropout Rate: It is a regularization technique that involves randomly deactivating a fraction 

of neurons during each training iteration. This helps prevent overfitting by promoting 

robustness and reducing the network's reliance on individual neurons. 

The Hyper-parameter tuning was performed using the Gaussian Prosses (GP) Minimization 

algorithm. It is a probabilistic optimization technique that is particularly useful when the evaluation 

of the objective function (in this case, the performance metric of the DL model) is expensive or time-

consuming. Instead of exhaustively searching the hyperparameter space, GP Minimization 

constructs a surrogate model, a Gaussian Process, that approximates the relationship between 

hyperparameters and the performance metric (e.g., accuracy, loss) of the DL model. The 

optimization process begins with an initial set of hyperparameter configurations. The objective 

function is evaluated for each of these configurations; this process involves training and validating 

the DL model. During the procedure, the algorithm continues to suggest new hyperparameter 

configurations based on the surrogate model's predictions and uncertainties. Thus, the optimization 

process continues for a predefined number of iterations or until a stopping criterion is met. This 
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procedure was executed through 11 trials, for 4 epochs each. The initial set of hyper-parameters 

was selected by a pre-determined range of values. Specifically, the hyper-parameters tuned were: 

two dropout rate (dropout1_rate and dropout2_rate), learning rate (learning_rate) and batch size 

(batch_size). The model was fed with 2D slices resized to dimensions (128,128) to reduce the 

computational costs. At the end of the tuning process, the optimal values for the hyper-parameters 

were obtained and selected in order to perform model training and testing. 

 

 

 

5.5 MODEL TRAINING AND TESTING 

In this study, labelled data were divided into training and testing datasets with a split ratio of 0.3. 

Since the original dataset was imbalanced, weights associated with each class were calculated and 

the resulting datasets were used for training and testing. After, K-fold cross-validation was 

performed to train and test the models. This technique was used to assess the performance and the 

generalization capabilities of the model avoiding overfitting (that might be caused by the relatively 

small dataset). 

In this study, three experiments were performed: three different models were trained and tested 

using the selected hyper-parameters. Each model’s ability to classify data in High/Low TIL was finally 

assessed based on accuracy, sensitivity, specificity, F1-score metrics and ROC curve (AUC). 

 

5.5.1 EXPERIMENT 1 

In the first experiment, the VGG-16 model was used to train and test the data. It is a 16-layer DCNN, 

with 3 fully connected layers and 13 convolutional layers. The outline of the model architecture is 

further explained in the subchapter 3.4.1. In this case, three splits of 5 epochs each were performed 

for training and testing the VGG-16 for the classification analysis. The loss function and the optimizer 

are categorical cross entropy and Stochastic Gradient Descent (SGD), respectively. 

 

5.5.2 EXPERIMENT 2 

In the second experiment, a simple CNN was tested. The network has an input layer, followed by a 

2D convolutional layer, characterized by a kernel of size (3x3). The convolutional layer is followed 

by ReLU activation function. 
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Subsequently, a Max-Pooling layer is added to reduce the spatial dimensions of the image. The 

output is then flattened into a one-dimensional vector by means of a flattening layer. 

After that, a fully connected (dense) layer with 128 units and ReLU activation is added. This layer is 

followed by two dropout layers used to prevent overfitting during training by randomly dropping 

out units. 

Finally, there is an output layer with 2 units for the binary classification and a Softmax activation 

layer. The model is compiled using categorical cross entropy. SGD is chosen as optimizer.  

The model was trained and tested three times to achieve the best performance on the specific 

classification task. 

 

5.5.3 EXPERIMENT 3 

In the third experiment, training and testing were performed using a CNN that is less complex 

respect to VGG-16 but, more sophisticated respect to the model outlined in subchapter 5.5.2. 

The model architecture (Figure 5.5) presents an input layer, followed by two consecutive 

convolutional layers, each characterized by 32 filters, a (3x3) kernel size and a ReLU activation. Batch 

normalization is applied after each convolutional layer, enhancing both convergence and 

generalization of the model. Subsequently, a Max-Pooling layer with a (2x2) pool size is introduced 

to down sample the spatial dimensions of the data. Dropout, set at a rate of 0.25, is employed after 

the Max-Pooling layers to reduce the risk of overfitting. Moreover, two additional convolutional 

layers are introduced, featuring 64 and 128 filters, respectively, both with a (3x3) kernel size, ReLU 

activation and batch normalization. Max pooling and dropout layers are added again to enhance the 

model's learning capabilities. The output from these convolutional layers is flattened into a one-

dimensional vector, transitioning to a dense layer with 512 units and a ReLU activation. Following, 

batch normalization and dropout are implemented. Subsequently, another dense layer with 128 

units is introduced, followed by ReLU activation, batch normalization, and dropout. The final layer 

is a dense layer with 2 units for binary classification and utilizes the Softmax activation for 

probability distribution over the two classes. The model uses SGD as optimizer. Categorical cross 

entropy is chosen as the loss function and accuracy is the selected metric for model evaluation. Five 

splits were performed for this model. 
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Figure 5.5: Experiment 3 CNN Architecture 
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6. RESULTS 

Once performed all the steps required for the classification analysis and after having trained and 

tested different models in three experiments, results obtained to classify the processed data into 

High/Low TIL are as follows. 

 

6.1 RESULTS OF EXPERIMENT 1 

Results related to Hyper-parameter tuning are shown in Table VII and the optimal values are 

reported in Table VIII. Weights associated with each class obtained to get a balanced dataset were 

0.863 for Low TIL and 1.187 for High TIL. Model’s ability to classify data in all the three splits based 

on accuracy, sensitivity, specificity and F1-score metrics are reported in Table IX, while ROC curve 

(AUC) is shown in Figure 6.1. 

Table VII: Hyper-parameter tuning results for each trial and evaluation in terms of validation 

accuracy 

 

Table VIII: Hyper-parameters optimal values 

 Dropout1_rate Dropout2_rate Learning_rate Batch_size 

OPTIMAL VALUE 0.5 0.5 0.0001 10 

 

 

TRIALS Dropout1_rate Dropout2_rate Learning_rate Batch_size Validation 
Accuracy 

1 0.5 0.5 0.00010 10 60.02506 

2 0.3 0.4 0.00010 23 60.02506 

3 0.1 0.4 0.00010 126 60.02506 

4 0.3 0.2 0.00100 232 60.02506 

5 0.1 0.3 0.00001 35 60.02506 

6 0.2 0.7 0.00001 34 60.02506 

7 0.5 0.3 0.00100 25 60.02506 

8 0.4 0.3 0.00010 86 60.02506 

9 0.4 0.6 0.00010 23 60.02506 

10 0.2 0.1 0.00010 221 60.02506 

11 0.5 0.6 0.00001 28 60.02506 
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Table IX: Classification evaluation results for each split in terms of accuracy, specificity, sensitivity 

and F1-score 

 ACCURACY TIL SPECIFICITY SENSITIVITY F1-SCORE 

SPLIT 1 0.58 HIGH 0.58 1.00 0.73 

LOW 0.00 0.00 0.00 

SPLIT 2 0.58 HIGH 0.58 1.00 0.73 

LOW 0.00 0.00 0.00 

SPLIT 3 0.58 HIGH 0.58 1.00 0.73 

LOW 0.00 0.00 0.00 

 

 

Figure 6.1: ROC curve (AUC) related to the three splits performed 

 

6.2 RESULTS OF EXPERIMENT 2 

Results related to Hyper-parameter tuning are shown in Table X and the optimal values are reported 

in Table XI. Weights associated with each class obtained to get a balanced dataset were 0.863 for 

Low TIL and 1.187 for High TIL. Model’s ability to classify data in all the three splits based on 

accuracy, sensitivity, specificity and F1-score metrics are reported in Table XII, while ROC curve (AUC) 

is shown in Figure 6.2. 
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Table X: Hyper-parameter tuning results for each trial and evaluation in terms of validation 

accuracy 

TRIALS Dropout1_rate Dropout2_rate Learning_rate Batch_size Validation 
Accuracy 

1 0.5 0.5 0.000100 10 59.774435 

2 0.8 0.2 0.000100 11 59.774435 

3 0.3 0.4 0.000100 85 59.774435 

4 0.3 0.6 0.000100 250 59.774435 

5 0.4 0.8 0.000100 203 59.774435 

6 0.2 0.3 0.000100 172 59.774435 

7 0.2 0.2 0.000100 23 59.774435 

8 0.7 0.6 0.000010 43 59.774435 

9 0.7 0.3 0.000001 31 48.308271 

     10 0.8 0.7 0.000001 12 47.368422 

11 0.3 0.5 0.001000 220 59.774435 

 

 

Table XI: Hyper-parameters optimal values 

 Dropout1_rate Dropout2_rate Learning_rate Batch_size 

OPTIMAL VALUE 0.5 0.5 0.0001 10 

 

 

Table XII: Classification evaluation results for each split in terms of accuracy, specificity, sensitivity 

and F1-score 

 ACCURACY TIL SPECIFICITY SENSITIVITY F1-SCORE 

SPLIT 1 0.58 HIGH 0.58 1.00 0.73 

LOW 0.00 0.00 0.00 

SPLIT 2 0.58 HIGH 0.58 1.00 0.73 

LOW 0.00 0.00 0.00 

SPLIT 3 0.58 HIGH 0.58 1.00 0.73 

LOW 0.00 0.00 0.00 
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Figure 6.2: ROC curve (AUC) related to the three splits performed 

6.3 RESULTS OF EXPERIMENT 3 

Results related to Hyper-parameter tuning are shown in Table XIII and the optimal values are 

reported in Table XIV. Weights associated with each class obtained to get a balanced dataset were 

0.863 for Low TIL and 1.187 for High TIL. Model’s ability to classify data in all the five splits based on 

accuracy, AUC, sensitivity, specificity and F1-score metrics are reported in Table XV, while ROC curve 

is shown in Figure 6.3. 

Table XIII: Hyper-parameter tuning results for each trial and evaluation in terms of validation 

accuracy 

TRIALS Dropout1_rate Dropout2_rate Learning_rate Batch_size Validation 
Accuracy 

1 0.5 0.5 0.00010 10 71.804512 

2 0.1 0.2 0.00010 26 41.165414 

3 0.5 0.3 0.00001 247 40.225562 

4 0.5 0.7 0.00001 107 40.225562 

5 0.6 0.7 0.01000 111 40.225562 

6 0.6 0.6 0.00010 192 59.774435 

7 0.2 0.1 0.00001 19 57.706767 

8 0.5 0.4 0.00100 247 40.225562 

9 0.2 0.2 0.00001 63 40.225562 

10 0.2 0.2 0.01000 129 40.225562 

11 0.2 0.7 0.00001 163 59.774435 
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Table XIV: Hyper-parameters optimal values 

 Dropout1_rate Dropout2_rate Learning_rate Batch_size 

OPTIMAL VALUE 0.5 0.5 0.0001 10 

 

Table XV: Classification evaluation results for each split in terms of accuracy, AUC, specificity, 

sensitivity and F1-score 

 ACCURACY AUC TIL SPECIFICITY SENSITIVITY F1-SCORE 

SPLIT 1 0.85 0.9431 HIGH 0.84 0.92 0.88 

LOW 0.88 0.76 0.81 

SPLIT 2 0.86 0.9625 HIGH 0.97 0.79 0.87 

LOW 0.77 0.96 0.86 

SPLIT 3 0.75 0.9905 HIGH 0.98 0.59 0.73 

LOW 0.63 0.98 0.77 

SPLIT 4 0.88 0.9852 HIGH 0.99 0.81 0.89 

LOW 0.79 0.99 0.88 

SPLIT 5 0.95 0.9886 HIGH 0.97 0.93 0.95 

LOW 0.91 0.96 0.94 

 

Figure 6.3: ROC curve (AUC) related to the five splits performed 
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DISCUSSION AND CONCLUSION 

Based on the analysis presented in this study, it was possible to assess TIL from MRI breast cancer 

images with good accuracy in Experiment 3. MRI Images acquired from TCIA were initially pre-

processed to obtain a standardized and uniformed dataset with dimensions (256, 256, 100). The 

folders that contains tumor location data were halved in order to remove slices that not contain 

useful information for the analysis: this step was crucial because it allowed the classifier to focus 

only on images where the tumor was present, thereby facilitating its identification. Subsequently, 

the study relied on three experiments performed using three different classifiers: VGG-16 and two 

simpler CNNs, one with a single convolutional layer and the other with four convolutional layers. 

Before executing training and testing for each specific model, all images were resized to have 2D 

slices with dimensions (128, 128).  

In each experiment, the algorithm iteratively performed hyper-parameter tuning for eleven trials. 

Subsequently, weights associated with each class were calculated because the original dataset 

resulted to be imbalanced. Considering the results obtained from the three experiments, the VGG-

16 model proved to be too much complex.  In fact, by changing iteratively the parameters set in 

each trial during hyper-parameter tuning, the performance in terms of validation accuracy remains 

exactly the same (Table VII). This became evident during model training and testing, where the 

classifier yielded values close to 0 for the Low TIL class in terms of specificity, sensitivity, and F1-

score (Table IX). So, the model was not able to predict the ‘Low TIL’ class at all. In addition, the ROC 

curve, that represents the trade-off between sensitivity (True Positive Rate) and specificity (True 

Negative Rate), was found to be close to the diagonal. This indicates that the model was not able to 

generalize and discriminate between classes because the number of trainable parameters was too 

high with respect to the number of breast MRI images used for training. 

In the second experiment, the model which is significantly simpler, achieved outcomes very similar 

to the ones associated to VGG-16. 

In fact, results from hyper-parameter tuning in terms of validation accuracy remain more or less 

unchanged across calls (Table X) and, after training and testing, the classifier showed to be not able 

to discriminate between the two classes, obtaining the same values for accuracy, specificity, 

sensitivity, F1 score (Table XII) and ROC curve of the previous model. 

In the third experiment instead, the model, characterized by an intermediate level of complexity 

compared to the first two, yielded good results.  
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This was evident as observed among all the eleven tuning trials: the results exhibit considerable 

variability in terms of validation accuracy (Table XIII). Moreover, during both training and testing, 

the model shows good results in distinguishing between the two classes, obtaining values for 

accuracy, AUC, sensitivity, specificity and F1-score close to 1 (Table XV). This was further confirmed 

by the ROC curve, which was significantly distant from the diagonal.  

In general, this study obtained positive outcomes, demonstrating that the model with intermediate 

level of complexity emerged as the most reliable for classifying the available dataset into High/Low 

TIL.  

In scientific literature, there are few sources regarding the prediction of therapy outcomes in breast 

cancer combined with DL applications, especially concerning TILs. For this reason, the literature 

search was performed focusing more in general on the evaluation of therapeutic efficacy in different 

types of cancers through ML and DL techniques. Most of the studies focus on the prediction of 

therapy response in a 'blind manner'.  

DL models are simply fed with MRI and CT images and predict the response without searching for 

some motivations. This study represents an innovative approach because it is the first one that 

estimate a parameter quantifiable from histological images by using MRIs.  

Moreover, the classifier was able to achieve good results even though tumor segmentation was not 

applied to the breast cancer images. 

However, the findings of this study have to be seen in light of some limitations. Firstly, all the breast 

cancer MRI images were obtained from the same institution, leading to the issue of variability. 

In the classification analysis, the original dataset was highly heterogeneous and too small for the 

purpose of the study. Image pre-processing required extensive work, and data augmentation was 

necessary to obtain a sufficiently informative dataset.  

In addition, the study for the assessment of TIL has been performed on 2D MRI breast cancer images. 

So, in future, further investigations, as 3D analysis, will be required to preserve volumetric 

information of the tumor. This is an important aspect because the future application of DL 

techniques on cancer radiological images for the TIL assessment could make a positive impact on 

clinical applications and enhance patients care. 
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APPENDIX 

Table VI: Collection of the principal cancer subject characteristics for the analysis. The rows 
highlighted in yellow belong to those patients which are excluded because of missing TIL 

information. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PATIENT TUMOR LOCATION % TIL 

TCGA-BH-A0AW Left 20 

TCGA-BH-A0AZ Right 2 

TCGA-BH-A0B1 Right - 

TCGA-BH-A0B3 Right 15 

TCGA-BH-A0B5 Left 2 

TCGA-BH-A0B6 Left 35 

TCGA-BH-A0BG Left 40 

TCGA-BH-A0BJ Left 26 

TCGA-BH-A0BM Right 10 

TCGA-BH-A0BQ Left 30 

TCGA-BH-A0BT Right 5 

TCGA-BH-A0C0 Left 30 

TCGA-BH-A0DE Left 5 

TCGA-BH-A0DG Right 20 

TCGA-BH-A0DH Left 3 

TCGA-BH-A0DI Right 10 

TCGA-BH-A0DK Left 15 

TCGA-BH-A0DT Right 22 

TCGA-BH-A0DV Left 7 

TCGA-BH-A0DX Left 40 

TCGA-BH-A0DZ Right 5 

TCGA-BH-A0E0 Left 5 

TCGA-BH-A0E1 Left 8 

TCGA-BH-A0E2 Right 2 

TCGA-BH-A0E9 Right 1 

TCGA-BH-A0EI Right 25 

TCGA-BH-A0GY Left - 

TCGA-BH-A0GZ Left - 

TCGA-BH-A0H3 Left 20 

TCGA-BH-A0H5 Right 50 

TCGA-BH-A0H6 Right 7 

TCGA-BH-A0H7 Right 36 

TCGA-BH-A0H9 Right 18 

TCGA-BH-A0HA Right 12 

TCGA-BH-A0HI Right - 

TCGA-BH-A0HX Left 4 

TCGA-BH-A0HY Left 3 

TCGA-BH-A0RX Left 3 

TCGA-BH-A0W3 Left - 

TCGA-BH-A0W5 Left 100 

TCGA-BH-A18F Right 3 

TCGA-BH-A18H Right 10 

TCGA-BH-A18I Left - 

TCGA-BH-A28Q Right 40 

TCGA-BH-A201 Left - 

TCGA-BH-A202 Left - 
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