
UNIVERSITÀ POLITECNICA DELLE MARCHE

FACOLTÀ DI INGEGNERIA

Corso di Laurea Triennale in
Ingegneria Informatica e dell’Automazione

Progettazione e sviluppo di un sistema operativo per
architettura Intel IA-32 in Rust

Design and development of an operating system for
Intel IA-32 architecture using Rust

Relatore:
Prof. Mancini Adriano

Laureando:
Palmieri Gianmatteo

Anno Accademico 2022-2023

Sommario

Il presente lavoro di tesi tratta la progettazione e lo sviluppo di un sistema
operativo sperimentale per architettura Intel IA-32, scritto completamente
da zero nel linguaggio di programmazione Rust.

L’obbiettivo primario di questa tesi è mostrare il potenziale di Rust come
linguaggio di programmazione di basso livello, e di come questo linguaggio
sia particolarmente adatto allo sviluppo di sistemi critici, dove la velocità
d’esecuzione e la sicurezza sono delle priorità.
Fornisce un esame completo del sistema operativo sviluppato, compresi com-
ponenti critici come scheduler della CPU, driver, gestori degli interrupt e
delle chiamate di sistema.

Il lavoro discusso in questa tesi vuole essere uno stimolo per la ricerca futura
nello sviluppo di sistemi operativi moderni, mostrando come nuove tecnolo-
gie come Rust possono essere la base per una nuova generazione di sistemi
operativi veloci, sicuri ed affidabili.

Abstract

This thesis presents the design and development of an experimental oper-
ating system for the Intel IA-32 architecture. It was created entirely from
scratch using the Rust programming language.

The primary objective of this thesis is to showcase Rust as a modern systems
programming language, especially well suited for critical applications in low-
level environments, where performance and safety are paramount.
This thesis offers a comprehensive analysis of the developed OS, including
critical core components, such as the CPU scheduler, device drivers, inter-
rupts and system calls handlers.

The work discussed in this thesis aims to inspire future research in the field
of modern OS development, demonstrating how emerging technologies like
Rust can be the foundation for a new generation of performant, secure and
reliable operating systems.

Contents

1 Introduction 6
1.1 Definition and purpose of an operating system 6
1.2 Rust as systems programming language 7
1.3 Intel IA-32 architecture . 8
1.4 Objectives . 8
1.5 Thesis structure . 9

2 Bootloader 10
2.1 Master Boot Record . 10
2.2 BIOS interrupts . 12
2.3 Protected mode . 14
2.4 Global Descriptor Table . 15

3 Kernel 18
3.1 Interrupts . 18

3.1.1 Interrupt Descriptor Table 19
3.1.2 Interrupt Service Routines 20
3.1.3 CPU exceptions . 21
3.1.4 Programmable Interrupt Controller 21

3.2 Drivers . 23
3.2.1 Keyboard driver . 23
3.2.2 Advanced Technology Attachment disk driver 24

3.3 Multitasking . 26
3.3.1 Context switching . 27
3.3.2 CPU scheduler . 28
3.3.3 Task manager . 29

3.4 System calls . 31
3.5 Shell . 32

4 Standard library 34

CONTENTS 5

4.1 Print line macros . 34
4.2 Examples . 35

5 Conclusions and future development 36

Bibliography 37

Acknowledgements 37

Chapter 1

Introduction

1.1 Definition and purpose of an operating

system

An operating system is a software that manages the computer hardware[1].

It is the core software component of many computing devices including per-
sonal computers, servers, smartphones and embedded devices. It provides
several layers of abstraction over the hardware allowing users and applica-
tions to use the device through a simple interface, hiding the complexity of
the hardware underneath.

Depending on the complexity, they can serve different purposes. For instance,
multitasking operating systems, like the one discussed in this thesis, can run
multiple tasks simultaneously on the same machine.

This means the OS1 takes the responsibility of managing the available re-
sources by lending them to the processes in an organized, optimized and
secure manner. When processes are running the OS has to ensure the ab-
sence of unexpected and harmful behaviors, such as processes reading from
another process’s memory or seizing control of the CPU2 for too much time.

For this reason the OS must be as safe as possible, and the Rust programming
language can accomplish this requirement thanks to its compiler able to
guarantee memory-safety and thread-safety at compile-time.

1Operating System
2Central Processing Unit

1.2 Rust as systems programming language 7

1.2 Rust as systems programming language

Most operating systems are written in C 3, because of its low-level access to
hardware, allowing developers to write efficient code and providing features
like direct memory manipulation. However, when programming in C, this
comes with a price because developers take full responsibility over a pro-
gram’s memory, meaning they have to manage it manually. C requires the
programmer to allocate and deallocate memory explicitly. It provides flex-
ibility in memory usage, but if not done correctly, it can result in serious
bugs/issues such as memory leaks and dangling pointers.

These types of bugs pose significant dangers since malicious actors can exploit
them to execute arbitrary code or collect sensitive user data.

Higher-level programming languages address this problem by automating
memory management using garbage collection techniques. They implement
a runtime4 responsible for pausing the program, scanning the memory to
search for unused variables and automatically deallocating them. The draw-
backs are performance overheads and long pause times; for this reason those
programming languages are not employed for OS development.

The Rust programming language adopts an entirely different approach to
memory management. It uses the unique ownership feature, that can guar-
antee the safety of memory operations at compile time, allowing for very
little overhead at runtime. At the same time, it has the performance of a
low-level programming language like C and C++ and the memory safety of a
high level programming language, taking the best from both worlds without
having any noticeable drawbacks.

Actually, the concept of ownership is very straightforward - it consists of a
small set of rules that governs how memory is managed:

• Each value has an owner.

• There can be only one owner at a time.

• When the owner goes out of scope, the value is automatically dropped.

These rules enable other features such as references and borrowing, allowing
Rust to remain flexible as C and C++ while also ensuring memory safety.

3C is a general-purpose programming language
4A runtime provides an environment in which programs run

1.3 Intel IA-32 architecture 8

1.3 Intel IA-32 architecture

The Intel IA-32 architecture, also known as x86, is a 32-bit instruction set
architecture developed by Intel.

Starting from the late 90s formed the foundation of a wide range of computing
devices, most importantly personal computers and servers. It was developed
with a particular focus on backward compatibility, allowing it to run a vast
array of software developed over decades. For this reason it has significantly
shaped the trajectory of computing becoming an industry standard.

IA-32 is a Complex Instruction Set Computer (CISC) architecture, allowing
the execution of complex operations within a single instruction. It includes
multiple general-purpose registers and supports various data types and ad-
dressing modes.

It also features the protected mode, an operating mode that introduces hardware-
level security features, such as privilege levels, segmentation, virtual memory
and paging.

1.4 Objectives

The main objective of this thesis is to provide a comprehensive examination
of Felix.

Felix5 is an experimental operating system written completely from scratch
for the purpose of this thesis.

It is completely open source and its source code is released under the MIT
license.

Its source code is freely available on this GitHub repository:
https://github.com/mrgian/felix

5This name was chosen for its assonance with Unix

https://github.com/mrgian/felix

1.5 Thesis structure 9

Figure 1.1: Felix running in QEMU

1.5 Thesis structure

This thesis is structured in the following chapters:

• Introduction

• Bootloader

• Kernel

• Standard library

• Conclusions

The main part of this thesis follows a structure similar to that of the de-
veloped operating system, with a chapter for each main component of the
OS.

Chapter 2

Bootloader

The bootloader is a program responsible for booting the operating system.
Its main task is to load the kernel to memory and execute it, but before that
it needs to prepare the CPU by switching from 16 bit real mode to 32 bit
protected mode and setting up memory segments.

There are many full fledged bootloaders, like GRUB1, capable of running
complex operating systems such as Linux and Windows.

However, Felix uses its own tailor made bootloader, also written in Rust.
This allows to study the fundamental steps required to boot an operating
system, also giving insights on other topics, such as memory segmentation
and BIOS interrupts.

Felix uses a two-stage bootloader. The first stage is very memory constrained,
because it has to fit in the first sector of the disk, for this reason it has the
only purpose of loading the second stage, able to read from disk and load the
kernel.

2.1 Master Boot Record

The Master Boot Record (MBR) is the very first sector of a disk, also
know as bootsector because it contains the bootstrap program needed to boot
the OS (usually the first stage of the bootloader).[2]

1GNU GRUB, a very popular bootloader used in many Linux distributions

2.1 Master Boot Record 11

Offset Size (bytes) Description
0x000 440 MBR boostrap code
0x1B8 4 Unique Disk ID
0x1BC 2 Reserved
0x1BE 16 Partition table entry
0x1CE 16 Partition table entry
0x1DE 16 Partition table entry
0x1EE 16 Partition table entry
0x1FE 2 0x55AA signature

When booting from a disk, BIOS2 automatically loads the first sector of that
disk to address 0x7c00 and then jumps to that address, actually executing
the MBR3 bootstrap program.

In Felix the MBR bootstrap program is the first stage of the bootloader. This
is a very constrained environment because a program with a size of only 440
bytes has to be able to load the second stage of the bootloader to memory
and then execute it.

For this reason this part of the bootloader is usually written in Assembly4

code, it needs to be as optimized as possible. However the Rust compiler
has the possibility to generate size optimized binaries making it suitable for
this purpose. For this reason Felix’s first stage bootloader is written in Rust,
with the exception of a small portion of the program written in Assembly
responsible for:

• Disabling hardware interrupts.

• Setting data segments to zero.

• Setting up the stack.

• Calling Rust main function.

Listing 2.1: felix/boot/src/boot.asm
.section .boot, "awx"
.global _start
.code16

_start:
disable external interrupts
cli

2Basic Input Output System
3Master Boot Record
4Low level programming language very close to machine code

2.2 BIOS interrupts 12

set data segments to zero
xor ax, ax
mov ds, ax
mov es, ax
mov ss, ax
mov fs, ax
mov gs, ax

setup stack
cld
mov sp, 0x7c00

call main rust function
call main

2.2 BIOS interrupts

The first stage of the bootloader reads data from disk to load the second
stage, however, since it operates in a very constrained memory environment,
it cannot implement its own disk driver. For this reason the bootloader uses
BIOS interrupts to access hardware for various tasks, like printing to screen
or reading from disk.

BIOS interrupt calls are functions provided by the BIOS to facilitate and
abstract access to the hardware. They only work in 16 bit real mode, for
this reason they are not meant to be used as hardware drivers, but only to
facilitate the work of the bootloader during bootup. BIOS interrupts don’t
work when the CPU is in 32 bit protected mode, so implementing custom
drivers is mandatory for the kernel.

Felix uses BIOS interrupt 0x13 to read from disk; this interrupt requires
to setup a Disk Address Packet structure that specifies how many sectors to
read, from what LBA5 address and where to write them in memory:

Listing 2.2: felix/boot/src/disk.rs
#[repr(C, packed)]
struct DiskAddressPacket {

size: u8, //size of dap
zero: u8, //always zero
sectors: u16, //sectors to read
offset: u16, //target offset
segment: u16, //target segment

5Logical Block Addressing

2.2 BIOS interrupts 13

lba: u64, //logical block address
}

Before issuing the interrupt, the bootloader needs to set some CPU registers:

• DS:SI to the DAP’s address6

• AH to 0x42

• DL to the drive number (0x80 for the main drive)

Then issuing INT 0x13 will call the BIOS function that reads from disk[3].
If an error occurs during the read, the carry flag will be set. Felix’s bootloader
uses the JC instruction to check for this flag and notify the user.

Listing 2.3: felix/boot/src/disk.rs
unsafe {

asm!(
"mov {1:x}, si", //backup si
"mov si, {0:x}", //put dap address in si
"int 0x13",
"jc fail",
"mov si, {1:x}", //restore si
in(reg) dap_address as u16,
out(reg) _,
in("ax") 0x4200 as u16,
in("dx") 0x0080 as u16,

);
}

Another BIOS interrupt is INT 0x10, used internally by the print func-
tion to print a string to screen:

Listing 2.4: felix/boot/src/main.rs
fn print(message: &str) {

unsafe {
asm!("mov si, {0:x}", //move given string address to si

"2:",
"lodsb", //load a byte (next character) from si to

al
"or al, al", //bitwise or on al, if al is null set

zf to true
"jz 1f", //if zf is true (end of string) jump to end

"mov ah, 0x0e",
"mov bh, 0",

6Disk Address Packet

2.3 Protected mode 14

"out 0xe9, al", //e9 port hack
"int 0x10", //tell the bios to write content of al

to screen

"jmp 2b", //start again
"1:",
in(reg) message.as_ptr());

}
}

However, this interrupt is only used in the bootloader because the kernel
implements a more complex print function that directly writes to video
memory.

2.3 Protected mode

Before protected mode was introduced, real mode was the only operating mode
on x86 CPUs. For this reason old CPUs, like the Intel 80887, are lacking of
memory protection features.

This mode allowed access to memory using 16 bit address, this means that
the maximum addressable memory was 1MB. This limit was not a problem
at the time since all systems had no more than 640KB of RAM.[4]

Nowadays, this is a huge constrain that led to the introduction of 32 bit CPUs
and a new operating mode called protected mode. The protected mode allows
accessing memory using 32 bit addresses, bringing the the limit of addressable
memory to 4GB. This mode also introduced a lot of new security features that
real mode was completely lacking, like a new type of segmentation, privilege
levels and paging.[5]

For compatibility reasons, all x86 CPUs begin execution in 16 bit real mode,
for this reason early stages of the bootloader use this mode. Switching to
protected mode consists in three steps:

• Setup a Global Descriptor Table (discussed in the next paragraph).

• Set Protection Enable bit in CR0.

• Long jump to a protected mode code segment.

7A popular x86 16 bit CPU from Intel

2.4 Global Descriptor Table 15

Listing 2.5: felix/bootloader/src/main.rs
fn protected_mode() {

unsafe {
//enable protected mode in cr0 register
asm!("mov eax, cr0", "or al, 1", "mov cr0, eax");

//push kernel address
asm!(

"push {0:e}",
in(reg) KERNEL_TARGET,

);

//jump to protected mode
asm!("ljmp $0x8, $2f", "2:", options(att_syntax));

//protected mode start
asm!(

".code32",

//setup segment registers
"mov {0:e}, 0x10",
"mov ds, {0:e}",
"mov es, {0:e}",
"mov ss, {0:e}",

//jump to kernel
"pop {1:e}",
"call {1:e}",

out(reg) _,
in(reg) KERNEL_TARGET,

);
}

}

2.4 Global Descriptor Table

Switching to Protected Mode requires to setup a Global Descriptor Table
beforehand. The Global Descriptor Table (GDT) is a data structure specific
to the x86 architectures. It defines the memory segments, allowing to have
hardware protection regarding how memory is accessed by the CPU.[6]

Entries in the GDT8 are called Segment Descriptors and they are 8 bytes
long each. The first entry should always be null.

8Global Descriptor Table

2.4 Global Descriptor Table 16

The Segment Descriptor has a structure like this:

Felix uses a flat memory model, meaning its GDT contains only two entries,
a data segment and a code segment. Those two segment have the base set to
0x0, the limit set to 0xffff and the granularity bit set to 1, this means
they take up the entirety of the 4GB available memory.

Listing 2.6: felix/bootloader/src/gdt.rs
pub static GDT: GlobalDescriptorTable = {

//segment lenght (0xffff means all 32bit memory)
let limit = {

let limit_low = 0xffff << 0;
let limit_high = 0xf << 48;

limit_low | limit_high
};

//base address
let base = {

let base_low = 0x0000 << 16;
let base_high = 0x00 << 56;

base_low | base_high
};

//access byte
let access = {

let p = 0b1 << 47; //present bit (1 for any segment)
let dpl = 0b00 << 46; //descriptor privilege level (ring

, 0 for highest privilege, 3 for lowest)
let s = 0b1 << 44; //descriptor type bit
let e = 0b0 << 43; //executable bit
let dc = 0b0 << 42; //direction bit/conforming bit
let rw = 0b1 << 41; //readable bit/writable bit
let a = 0b0 << 40; //accessed bit

p | dpl | s | e | dc | rw | a
};

//flags

2.4 Global Descriptor Table 17

let flags = {
let g = 0b1 << 55; //granularity flag
let db = 0b1 << 54; //size flag
let l = 0b0 << 53; //long mode flag
let r = 0b0 << 52; //reserved

g | db | l | r
};

let executable = 0b1 << 43; //set only executable flag again
, instead of setting all values again

//first entry is always zero
//second entry is code segment (default + executable)
//third entry is data segment (default)
let zero = GdtEntry { entry: 0 };
let code = GdtEntry {

entry: limit | base | access | flags | executable,
};
let data = GdtEntry {

entry: limit | base | access | flags,
};

GlobalDescriptorTable {
entries: [zero, code, data],

}
};

Chapter 3

Kernel

The kernel is the core component of an operating system. Its responsibil-
ities include managing memory and devices, also providing an interface for
software applications to use those resources.[1]

Depending on their complexity and goals, kernels can be developed following
a model. There are two major models, microkernel and monolithic. The goal
of a microkernel is to run most of its services in userspace, resulting in better
security and modularity.

Felix uses a monolithic kernel. For this reason all of its services and device
drivers run in a single address space running in privileged mode. This allows
better efficiency and less code complexity. However, a single bug in one of
its components can bring down the entire system.

3.1 Interrupts

An interrupt is a signal that the CPU has to respond to. When the CPU
receives such signals, it stops to do whatever it was doing to handle the
interrupt before returning to its previous task.[7]

There are three types of interrupts:

• Exceptions: generated when the CPU runs into an error, like dividing
by zero or accessing an invalid memory address.

• Hardware interrupts: generated by hardware components when they
need to be handled, like pressing a key on the keyboard or moving the
mouse

3.1 Interrupts 19

• Software interrupts: generated by a specific CPU instruction, they
are usually used to invoke system calls or to run BIOS routines

3.1.1 Interrupt Descriptor Table

The Interrupt Descriptor Table is a data structure specific to the x86
architecture, its purpose is to tell the CPU where the Interrupt Service Rou-
tines are located, so that the CPU knows where to jump its execution when
an interrupt occurs.[8]

The location of the IDT1 is stored in the IDT register of the CPU. The
content of this register can be updated using the lidt instruction. Loading
the IDT means updating the IDT register with an address pointing to the
IDT Descriptor.

Listing 3.1: felix/kernel/src/interrupts/idt.rs
//load idt using lidt instruction
pub fn load(&self) {

let descriptor = IdtDescriptor {
size: (IDT_ENTRIES * size_of::<IdtEntry>() - 1) as u16,

//calculate size of idt
offset: self,

//pointer to idt
};

unsafe {
asm!("lidt [{0:e}]", in(reg) &descriptor);

}
}

The IDT Descriptor is another data structure related to the IDT that
contains data about the size and location of the IDT.

Listing 3.2: felix/kernel/src/interrupts/idt.rs
#[repr(C, packed)]
pub struct IdtDescriptor {

size: u16, //idt size
offset: *const InterruptDescriptorTable, //pointer to idt

}

IDT’s entries are called gates, each gate corresponds to an interrupt number
and has a complex structure. Other that containing the address of the in-
terrupt handler function, gates also define their type, segment selector and
flags.

1Interrupt Descriptor Table

3.1 Interrupts 20

Listing 3.3: felix/kernel/src/interrupts/idt.rs
#[repr(C, packed)]
pub struct IdtEntry {

offset_low: u16, //lower 16 bits of handler func
address

segment_selector: u16, //segment selector of gdt entry
reserved: u8, //always zero
flags: u8, //entry flags
offset_high: u16, //higher 16 bits of handler func

address
}

3.1.2 Interrupt Service Routines

An Interrupt Service Routine (ISR) is a routine written to handle an
interrupt. When an interrupt occurs, the CPU searches for the corresponding
routine in the IDT and then jumps to it.[9] Since ISR2 are called directly by
the CPU, their calling protocol differs from normal C functions, for the same
reason they use a particular instruction for returning, the iret instruction.

The most important thing to know when writing an ISR is that the CPU
automatically pushes some registers to the stack before calling the ISR. Those
registers are EFLAGS, EIP, and CS. Knowing their value when an interrupt
occurs can be very useful for the handler or when debugging an exception.

Most operating systems use dedicated assembly functions as interrupt han-
dlers. Felix however, makes use of Rust inline assembly to call another
function from the handler and then returning.

Listing 3.4: felix/kernel/src/interrupts/exceptions.rs
#[naked]
pub extern "C" fn div_error() {

unsafe {
asm!(

"push 0x00",
"call exception_handler",
"add esp, 4",
"iretd",
options(noreturn)

);
}

}

2Interrupt Service Routine

3.1 Interrupts 21

For example, the code above is the ISR for handling the division error ex-
ception. Notice the naked attribute and the noreturn option, those two
things make sure that, when compiled, the function is only made by the in-
structions present in the asm block. Also notice the call to exception handler,
everything pushed to the stack before this call will be available to the func-
tion as arguments, including the registers already pushed by the CPU. This
way of passing arguments is called cdecl convention.

Listing 3.5: felix/kernel/src/interrupts/exceptions.rs
#[no_mangle]
pub extern "C" fn exception_handler(int: u32, eip: u32, cs: u32,

eflags: u32) {
libfelix::println!("EIP: {:X}, CS: {:X}, EFLAGS: {:b}", eip,

cs, eflags);
loop {}

}

3.1.3 CPU exceptions

An exception is an interrupt triggered by the CPU itself when it runs into an
error during the current instruction.[10] On x86, there are about 20 different
CPU exception types. The most important are:

• Page fault: occurs on illegal memory accesses.

• Invalid opcode: occurs when the current instruction is invalid.

• General protection fault: occurs on various kinds of access viola-
tions, such as trying to execute a privileged instruction in user-level
code or writing reserved fields in configuration registers.

• Double fault: this exception is triggered if another exception occurs
while calling the exception handler.

• Triple fault: this exception is triggered if another exception occurs
while the CPU tries to call the double fault handler function. Since
triple fault can’t be handled, most processors react by resetting them-
selves and rebooting the operating system.

3.1.4 Programmable Interrupt Controller

The Programmable Interrupt Controller (PIC), also known as 8259
PIC, used to be a tiny chip on the motherboard of older computers, but
nowadays is integrated in the CPU die.

3.1 Interrupts 22

Since the CPU can’t have an interrupt line for each hardware component, the
main purpose of the PIC3 is to receive interrupt signals from the hardware
and dispatch them to the CPU when it’s ready.[11]

It has 28 pins, 8 of which are wired to the hardware components that can
trigger an interrupt. Since 8 is a small number, modern computers started to
use two PIC chips wired in cascade with a master and a slave PIC. Because
of its limitations, the PIC is now deprecated in favor of the modern APIC4,
however it’s still supported in modern systems for backwards compatibility.

The most important feature of the PIC is its ability to remap interrupts,
meaning it can take the interrupt line and add an offset to it before sending it
to the CPU. Remapping interrupts is mandatory because hardware interrupts
lines starting from zero are already occupied by CPU exceptions, for this
reason hardware interrupts have to be remapped to an offset of 32 minimum.
Remapping interrupts means reconfiguring the PICs by sending commands
to them through two I/O ports, one command port and one data port. For
the primary controller, these ports are 0x20 (command) and 0x21 (data).
For the secondary controller, they are 0xa0 (command) and 0xa1 (data).

This procedure consists in initializing the PICs by sending an init com-
mand, setting the offset, specifying which PIC is master and which is slave
and then setting the mode.

Listing 3.6: felix/kernel/src/drivers/pic.rs
pub fn init(&self) {

//backup masks, need to restore later
let mask1 = self.master.read_data();
let mask2 = self.slave.read_data();

//send init command
self.master.send_command(COMMAND_INIT);
wait();
self.slave.send_command(COMMAND_INIT);
wait();

//set offset
self.master.write_data(self.master.offset);
wait();
self.slave.write_data(self.slave.offset);
wait();

3Programmable Interrupt Controller
4Advanced Programmable Interrupt Controller

3.2 Drivers 23

//tell master pic that there is a connected slave pic on
IRQ2

self.master.write_data(4);
wait();
//tell slave pic that he is slave
self.slave.write_data(2);
wait();

//set 8086 mode
self.master.write_data(MODE);
wait();
self.slave.write_data(MODE);
wait();

//restore mask
self.master.write_data(mask1);
self.slave.write_data(mask2);

}

3.2 Drivers

A device driver is a software component built to interface a particular hard-
ware device with the kernel. By default an operating system doesn’t know
how to communicate with the hardware, for this reason it needs drivers to
translate operating system’s requests into commands that the hardware can
understand and execute.[1]

3.2.1 Keyboard driver

The PS/2 Keyboard is a device that talks to a PS/2 controller using serial
communication.[12]

Even though PS/2 keyboards are not used anymore, they are still supported
in modern systems. New motherboards emulate modern USB keyboards as
PS/2 devices to support older software.

When a key is pressed, the keyboard sends an interrupt signal telling the
kernel to handle it. However the interrupt itself doesn’t carry any information
about the pressed key, for this reason the keyboard stores a scancode in its
controller memory, waiting the driver to read it.

A scancode is a byte that can be read from the keyboard data port, it contains
information about the key and if it was pressed or released.

3.2 Drivers 24

Reading scancodes from the controller is not enough, the driver still has to
interpret those bytes to translate them in input data before sending it to the
operating system.

Listing 3.7: felix/kernel/src/drivers/keyboard.rs
pub extern "C" fn keyboard_handler(charset: [u8; CHAR_COUNT]) {

//read scancode from keyboard controller
let scancode: u8;
unsafe {

asm!("in al, dx", out("al") scancode, in("dx")
KEYBAORD_CONTROLLER as u16);

}

//notify pics end of interrupt
PICS.end_interrupt(KEYBOARD_INT);

//print char
let key = scancode_to_char(scancode, charset);

if key != ’\0’ {
unsafe {

SHELL.add(key);
}

}
}

3.2.2 Advanced Technology Attachment disk driver

Advanced Technology Attachment (ATA), also known as IDE5, is a
standard connection interface designed for storage devices, such as hard disk
drives, floppy disk drives and optical disk drives.

ATA6 has been replaced by SATA7, that features a more efficient and faster
data transfer. However, ATA drives controllers support ATA PIO Mode.
Even though this mode uses a lot of CPU resources, it makes the implemen-
tation the driver very simple. [13] For this reason the ATA disk driver is the
first storage driver implemented in Felix.

The most important function of this driver is read, it takes three arguments:
an LBA8 address, the number of sectors to read and a pointer to a target
where to write data in memory.

5Integrated Drive Electronics
6Avanced Technology Attachment
7Serial ATA
8Logical Block Addressing

3.2 Drivers 25

Listing 3.8: felix/kernel/src/drivers/disk.rs
//read multiple sectors from lba to specified target
pub fn read<T>(&self, target: *mut T, lba: u64, sectors: u16) {

if !self.enabled {
libfelix::println!("[ERROR] Cannot read! Disk not

enabled");
return;

}

//wait until not busy
while self.is_busy() {}

unsafe {
//disable ata interrupt
asm!("out dx, al", in("dx") 0x3f6, in("al") 0b00000010

as u8);

//setup registers
asm!("out dx, al", in("dx") SECTOR_COUNT_REGISTER, in("

al") sectors as u8); //number of setcors to read
asm!("out dx, al", in("dx") LBA_LOW_REGISTER, in("al")

lba as u8); //low 8 bits of lba
asm!("out dx, al", in("dx") LBA_MID_REGISTER, in("al") (

lba >> 8) as u8); //next 8 bits of lba
asm!("out dx, al", in("dx") LBA_HIGH_REGISTER, in("al")

(lba >> 16) as u8); //next 8 bits of lba
asm!("out dx, al", in("dx") DRIVE_REGISTER, in("al") (0

xE0 | ((lba >> 24) & 0xF)) as u8); //0xe0 (master
drive) ORed with highest 4 bits of lba

//send read command to port
asm!("out dx, al", in("dx") STATUS_COMMAND_REGISTER, in

("al") READ_COMMAND);
}

let mut sectors_left = sectors;
let mut target_pointer = target;
while sectors_left > 0 {

//a sector is 512 byte, buffer size is 4 byte, so loop
for 512/4

for _i in 0..128 {
//wait until not busy
while self.is_busy() {}

//wait until ready
while !self.is_ready() {}

let buffer: u32;
unsafe {

3.3 Multitasking 26

//read 16 bit from controller buffer
asm!("in eax, dx", out("eax") buffer, in("dx")

DATA_REGISTER);

//copy buffer in memory pointed by target
//*(target_pointer as *mut u32) = buffer;
core::ptr::write_unaligned(target_pointer as *

mut u32, buffer);

target_pointer = target_pointer.byte_add(4);
}

}
sectors_left -= 1;

}

self.reset();
}

Notice how target is a pointer to a generic data type, allowing this function
to write to every data structure.

The function first checks if the drive is enabled, waits until it’s not busy
and disables interrupts coming from the drive. Then fills up the controller
registers with the data needed for the reading, such as the LBA address
and how many sectors to read. Finally it sends the read command to the
controller.

At this point the drive controller starts filling its buffer with the data that’s
being read, so a loop copies from the buffer to the target pointer increasing
it by the size of the buffer on every iteration. Since a sector is 512 bytes large
and the buffer is 4 bytes large, this loops continues to run for 128 (512/4)
iterations for each sector.

Reading from the buffer has the effect of erasing it and telling the controller
to proceed by reading the next 4 bytes. For this reason the driver checks if
the drive is ready in each iteration, this avoids reading from the buffer before
it has been filled.

3.3 Multitasking

Felix is a multitasking operating system. When the user starts a task, it
gets added to a list, then then the kernel is responsible to execute that task
whenever possible.

Since Felix doesn’t support multi-threaded execution, everything runs on a

3.3 Multitasking 27

single core, so it’s responsible for sharing available processor time between
multiple tasks automatically, giving the user the illusion of the tasks being
run simultaneously. This type of execution is called concurrency, and it differs
from parallelism because tasks aren’t really executed at the same time.

Felix is a preemptive multitasking operating system. It differs from cooper-
ative multitasking systems because tasks don’t voluntarily give up the CPU,
but instead a task switch is triggered at every timer tick. Every time an
interrupt signal arrives from the timer, the handler calls a scheduler function
that decides which task will be executed next.[14]

3.3.1 Context switching

The most crucial part of a multitasking operating system is context switch-
ing. It involves storing the old state of the CPU and retrieving the new
state[15]. In this way when a task is stopped and then resumed later it
continues its execution like if it was never stopped.

There are two main things that defines context, the task stack and the CPU
state. Every task in Felix has its own stack, so that it can be restored by the
scheduler when it’s needed.

This is the timer IRQ9 responsible for triggering the scheduler at every timer
tick:

Listing 3.9: felix/kernel/src/interrupts/timer.rs
//TIMER IRQ
#[naked]
pub extern "C" fn timer() {

unsafe {
asm!(

//disable interrupts
"cli",
//save registers
"push ebp",
"push edi",
"push esi",
"push edx",
"push ecx",
"push ebx",
"push eax",
//call c function with esp as argument
"push esp",
"call timer_handler",

9Interrupt Request

3.3 Multitasking 28

//set esp to return value of c func
"mov esp, eax",
//restore registers
"pop eax",
"pop ebx",
"pop ecx",
"pop edx",
"pop esi",
"pop edi",
"pop ebp",
//re-enable interrupts
"sti",
//return irq
"iretd",
options(noreturn)

);
}

}

#[no_mangle]
pub extern "C" fn timer_handler(esp: u32) -> u32 {

//trigger scheduler and return the esp returned by scheduler
unsafe {

let new_esp: u32 = TASK_MANAGER.schedule(esp as *mut
CPUState) as u32;

PICS.end_interrupt(TIMER_INT);

return new_esp;
}

}

The most important instruction to notice in this IRQ is mov esp, eax,
this instruction sets the stack pointer to the value that just returned from
timer handler. This function returns the stack pointer of the next task
to be executed, but this stack contains the old CPU state in its bottom part,
so popping the CPU registers has the effect to restore the CPU to the state
it had before the task was stopped.

3.3.2 CPU scheduler

Felix uses a round robin algorithm for its scheduler, it gets triggered by the
timer interrupt handler. At every timer tick the algorithm chooses the next
task in the list and returns a pointer to its CPU state.

3.3 Multitasking 29

Listing 3.10: felix/kernel/src/multitasking/task.rs
pub fn schedule(&mut self, cpu_state: *mut CPUState) -> *mut

CPUState {
//if no tasks return current state
if self.task_count <= 0 {

return cpu_state;
}

//save current state of current task
if self.current_task >= 0 {

self.tasks[self.current_task as usize].cpu_state_ptr =
cpu_state as u32;

}

self.current_task = self.get_next_task();

self.tasks[self.current_task as usize].cpu_state_ptr as *mut
CPUState

}

Notice how the return value of this function is a pointer to the CPU state
of the chosen task, so that the context switcher can set the stack pointer to
this pointer and pop the registers to restore the state.

3.3.3 Task manager

The task manager is the component responsible for managing the insertion,
removal and scheduling of tasks from its tasks list.

It consists of several functions to manage the tasks list and a data structure
containing the array of tasks, the number of tasks and the ID of the current
running task.

Listing 3.11: felix/kernel/src/multitasking/task.rs
pub struct TaskManager {

tasks: [Task; MAX_TASKS as usize], //array of tasks
task_count: i8, //how many tasks are in

the queue
current_task: i8, //current running task

}

A task is defined by a data structure containing an array of 4K bytes that
makes the stack, a pointer to its CPU state and a value that marks if the
task wants to run or not.

Listing 3.12: felix/kernel/src/multitasking/task.rs
pub struct Task {

3.3 Multitasking 30

pub stack: [u8; STACK_SIZE],
pub cpu_state_ptr: u32, //pub cpu_state: *mut CPUState,
pub running: bool,

}

Adding a new task to the queue means putting the new task in the first
available slot in the task array.

Listing 3.13: felix/kernel/src/multitasking/task.rs
pub fn add_task(&mut self, entry_point: u32) {

let free_slot = self.get_free_slot();
self.tasks[free_slot as usize].init(entry_point);
self.task_count += 1;

}

However, before doing that the task needs to be initialized. Initializing a
tasks means settings up its stack by putting a blank CPU state in its bottom
part. In particular this new CPU state has its EIP register set to the entry
point of the task, so that the CPU jumps to that address when the task is
executed.

Listing 3.14: felix/kernel/src/multitasking/task.rs
pub fn init(&mut self, entry_point: u32) {

//mark task as running
self.running = true;

//set cpu state pointer to the bottom part of its stack
let mut state = &self.stack as *const u8;
unsafe {

state = state.byte_add(STACK_SIZE);
state = state.byte_sub(core::mem::size_of::<CPUState>())

;
}

//update cpu state pointer
self.cpu_state_ptr = state as u32;

let cpu_state = self.cpu_state_ptr as *mut CPUState;

unsafe {
//init registers
(*cpu_state).eax = 0;
(*cpu_state).ebx = 0;
(*cpu_state).ecx = 0;
(*cpu_state).edx = 0;
(*cpu_state).esi = 0;
(*cpu_state).edi = 0;

3.4 System calls 31

(*cpu_state).ebp = 0;

//set instruction pointer to entry point of task
(*cpu_state).eip = entry_point;

//set code segment
(*cpu_state).cs = 0x8;

//set eflags
(*cpu_state).eflags = 0x202;

}
}

3.4 System calls

A system call is a way in which a program in userland can request a service
from the kernel[16]. This interface allows the kernel to setup a security
model by putting restrictions on the type and scope of operations that can
be performed by certain processes.

The most common way to implement system calls is using software interrupts.
Felix uses a similar approach to Linux on x86. It consists in setting the
arguments in the CPU registers and then issuing interrupt 0x80.

When issuing a system call, the EAX register is used to set the number of
the system call, the other two registers EBX and ECX are used for storing
arguments.

Felix currently only supports two systems calls:

• syscall 0: prints the string pointed by the address in EBX with the
length specified in ECX

• syscall 1: removes the current running task from the task list

Listing 3.15: felix/kernel/src/multitasking/task.rs
pub extern "C" fn syscall_handler(ecx: u32, ebx: u32, eax: u32)

{
unsafe {

match eax {
//SYSCALL 0, print string pointed by ebx with lenght

specified in ecx
0 => {

let s = {
let slice = slice::from_raw_parts(ebx as *

const u8, ecx as usize);

3.5 Shell 32

str::from_utf8(slice)
};

print::PRINTER.prints(s.unwrap());
}

//SYSCALL 1, remove current active task
1 => {

TASK_MANAGER.remove_current_task();
}

_ => {}
}

PICS.end_interrupt(SYSCALL_INT);
}

}

3.5 Shell

The shell is a simple interface for the user to interact with the operating
system.

It allows the user to input commands for the operating system, those com-
mands are interpreted by the shell so that the kernel can respond (see Figure
3.5).

Felix’s shell supports various commands to interact with the OS:

• help: shows a list of available commands

• ls: lists the entries in the root directory

• cat filename : displays the content of a file in ASCII representation

• run filename : loads an executable file as a task and adds it to the
task queue

• ps: shows a list of the running tasks

• rt id : removes the specified task from the queue

3.5 Shell 33

Figure 3.1: Felix running in QEMU showing its shell

Chapter 4

Standard library

The standard library provides all the necessary implementations to compile
and run a program on an operating system.

It implements various useful algorithms and data structures, but most im-
portantly it provides a wrapper around system calls, so that the programmer
can interact with the OS more easily without directly calling system calls.

libfelix is the standard library implementation for Felix.

4.1 Print line macros

libfelix currently provides only one macro, used for printing to the screen.

This macro supports string formatting, allowing to print various data types
in text representation to the screen.

Since the kernel only supports printing raw strings through system calls, all
the formatting code has to be included in this library.

Luckily the Rust core library used in libfelix already implements the
formatting logic, so the only thing libfelix needs to do is to tell the
core library how to print a single unformatted string, and it does so by
implementing a wrapper around syscall 0.

Listing 4.1: felix/lib/src/print.rs
//core lib needs to know how to print a string to implement its

print formatted func
impl fmt::Write for Printer {

fn write_str(&mut self, s: &str) -> fmt::Result {

4.2 Examples 35

self.prints(s);
Ok(())

}
}

impl Printer {
pub fn prints(&self, s: &str) {

unsafe {
let ptr = s.as_ptr();
let len = s.len();

asm!("push eax", "push ebx","push ecx", "int 0x80",
"pop ecx", "pop ebx", "pop eax", in("eax") 0, in
("ebx") ptr as u32, in("ecx") len as u32);

}
}

}

4.2 Examples

libfelix allows programmers to write and compile programs able to run
on Felix. Here is an example of a program that uses libfelix to print to
screen:

Listing 4.2: felix/apps/hello/src/main.rs
//HELLO
//Simple program to test libfelix

#![no_std]
#![no_main]

use core::panic::PanicInfo;
use libfelix;

#[no_mangle]
#[link_section = ".start"]
pub extern "C" fn _start() {

let a = 0xFFFF;
libfelix::println!("Hello world! {:X}", a);

loop {}
}

#[panic_handler]
fn panic(_info: &PanicInfo) -> ! {

loop {}
}

Chapter 5

Conclusions and future
development

This thesis has analyzed the design and development of Felix. It has accom-
plished the goal to demonstrate the power of Rust in low-level and critical
environments.

Developing an operating system completely from scratch is a highly com-
plex and challenging task that requires deep understanding of CPU archi-
tecture, hardware interaction, embedded software and system-level program-
ming. This project gave me the opportunity to gain knowledge on such topics,
but also the ability to leverage this knowledge to develop other projects.

During the development, Felix gained a lot of popularity from other devel-
opers, some of which contributed to this project, giving me the opportunity
to get to know new talented people in the open source community.

Felix is still missing some key features to make it a truly safe and modern
operating system, such as an hardened memory allocator and support for
modern architectures like ARM and RISC-V.

For this reason the development of Felix doesn’t stop here but it will continue,
hoping to be one of the first steps into the beginning of a new generation of
secure and reliable operating systems.

Bibliography

[1] Silberschatz A., Galvin P. B., Gagne G., Operating System Concepts,
Wiley Publishing, 2008.

[2] https://wiki.osdev.org/MBR_(x86).

[3] https://wiki.osdev.org/Disk_access_using_the_BIOS_
(INT_13h).

[4] https://wiki.osdev.org/Real_Mode.

[5] https://wiki.osdev.org/Protected_Mode.

[6] https://wiki.osdev.org/Global_Descriptor_Table.

[7] https://wiki.osdev.org/Interrupts.

[8] https://wiki.osdev.org/Interrupt_Descriptor_Table.

[9] https://wiki.osdev.org/Interrupt_Service_Routines.

[10] https://wiki.osdev.org/Exceptions.

[11] https://wiki.osdev.org/8259_PIC.

[12] https://wiki.osdev.org/PS/2_Keyboard.

[13] https://wiki.osdev.org/ATA_PIO_Mode.

[14] https://wiki.osdev.org/Multitasking_Systems.

[15] https://wiki.osdev.org/Context_Switching.

[16] https://wiki.osdev.org/System_Calls.

https://wiki.osdev.org/MBR_(x86)
https://wiki.osdev.org/Disk_access_using_the_BIOS_(INT_13h)
https://wiki.osdev.org/Disk_access_using_the_BIOS_(INT_13h)
https://wiki.osdev.org/Real_Mode
https://wiki.osdev.org/Protected_Mode
https://wiki.osdev.org/Global_Descriptor_Table
https://wiki.osdev.org/Interrupts
https://wiki.osdev.org/Interrupt_Descriptor_Table
https://wiki.osdev.org/Interrupt_Service_Routines
https://wiki.osdev.org/Exceptions
https://wiki.osdev.org/8259_PIC
https://wiki.osdev.org/PS/2_Keyboard
https://wiki.osdev.org/ATA_PIO_Mode
https://wiki.osdev.org/Multitasking_Systems
https://wiki.osdev.org/Context_Switching
https://wiki.osdev.org/System_Calls

Acknowledgements

I would like to give my warmest thanks to my friends and family, in particular
my parents, for supporting me during this whole time, even in my darkest
moments. All this would not have been possible without you.

I would also like to give special thanks to everyone who took an interest in
Felix and to my secret weapon for supporting and showing me the way during
the development of Felix.

Finally, I would like everyone in the open source community for making the
world better every day.

	Introduction
	Definition and purpose of an operating system
	Rust as systems programming language
	Intel IA-32 architecture
	Objectives
	Thesis structure

	Bootloader
	Master Boot Record
	BIOS interrupts
	Protected mode
	Global Descriptor Table

	Kernel
	Interrupts
	Interrupt Descriptor Table
	Interrupt Service Routines
	CPU exceptions
	Programmable Interrupt Controller

	Drivers
	Keyboard driver
	Advanced Technology Attachment disk driver

	Multitasking
	Context switching
	CPU scheduler
	Task manager

	System calls
	Shell

	Standard library
	Print line macros
	Examples

	Conclusions and future development
	Bibliography
	Acknowledgements

