
UNIVERSITÀ POLITECNICA DELLE MARCHE

FACOLTÀ DI INGEGNERIA

Corso di Laurea Magistrale in Ingegneria Elettronica

Curriculum: Smart and Secure Communication Networks

Studio di attacchi al problema
dell’equivalenza tra codici lineari

Study of new attacks on the Code
Equivalence Problem

Relatore:

Prof. Paolo Santini

Correlatori:

Prof. Marco Baldi

Prof. Franco Chiaraluce

Tesi di Laurea di:

Lei Chen

Anno Accademico 2022-2023

Abstract

Gli schemi crittografici asimmetrici, come le firme digitali, hanno
una rilevanza fondamendale nell’ ambito della sicurezza degli schemi di
comunicazione e della cybersecurity. Essi si basano sulla difficoltà nel
risolvere alcuni problemi matematici, che devono essere computazional-
mente intrattabili (ovvero, risolubili solamente con algoritmi con com-
plessità temporale esponenziale), altrimenti gli schemi non sarebbero
sicuri.

Uno schema recentemente proposto è LESS, la cui sicurezza si
basa sul Code Equivalence Problem, ovvero, sul problema di trovare,
data una coppia di codici, un’equivalenza lineare che mappa un codice
nell’altro. Un caso particolare del code equivalence è quello del Permu-
tation Equivalence Problem (PEP), in cui si richiede che l’equivalenza
sia una permutazione. LESS è tra i partecipanti al processo NIST per
la standardizzazione di schemi di firma post-quantum e rappresenta un
candidato interessante in quanto, grazie a recenti miglioramenti, può
arrivare ad avere firme molto compatte.

Questa tesi avanza lo stato dell’arte sulla crittanalisi di PEP, miglio-
rando alcuni degli attacchi esistenti e dimostrando come, in alcuni casi
(quando i codici sono definiti su campi finiti non primi), istanze di PEP
ritenute difficili possono invece essere risolte in tempo polinomiale. I
risultati ottenuti sono giustificati tramite analisi teoriche e sono stati
verificati sperimentalmente tramite simulazioni intensive (utilizzando
Sagemath e Python).

Come primo contributo, è stato migliorato Support Splitting Algo-
rithm (SSA), trovando una nuova modalità per calcolare la funzione
di signature (usata come discriminante per ricostruire l’azione della
permutazione). Rispetto alla funzione usata originariamente in SSA,
la nuova funzione proposta in questa tesi mantiene la stessa comp-
lessità computazionale ma è più discriminante. Questo rende SSA
globalmente più efficiente, poichè riduce il numero di step necessari
per ricostruire la permutazione. I test effettuati confermano l’efficacia
della funzione proposta.

Come secondo contributo della tesi, sono state proposte e studi-
ate due modalità per trasformare istanze di PEP ritenute difficili in
istanze di PEP che, invece, possono essere risolte in tempo polinomi-
ale grazie a SSA o ad un risolutore per Graph Isomorphism Problem
(GIP). Le trasformazioni considerate valgono solamente per codici su
campi finiti di dimensione non prima. L’ idea è quella di considerare
PEP sui sottocodici di sottocampo, che mantengono la struttura della
permutazione. Pur partendo da codici difficili da attaccare (chiamati
self-dual), grazie alle trasformazioni proposte si riescono ad ottenere
codici per cui PEP può essere risolto facilmente (con algoritmi il cui
costo è polinomiale).

2

Questi risultati mostrano come istanze di PEP ritenute difficili
siano in realtà risolvibili in tempo polinomiale. Questo significa che
per LESS, cos̀ı come per altri schemi crittografici, esistono scelte di
parametri che rendono il problema vulnerabile. In particolare, grazie
ai risultati presentati in questa tesi, si può concludere che lavorare su
campi non primi è una scelta non sicura. Per questo motivo, si rac-
comanda fortemente di evitare di utilizzare codici di questo tipo per
applicazioni crittografiche, poiché sono facili da attaccare.

3

Abstract

Asymmetric cryptographic schemes, such as digital signatures, have
foundational relevance in communication scheme security and cyberse-
curity. They are based on the difficulty in solving certain mathemati-
cal problems, which must be computationally intractable (i.e., solvable
only by algorithms with exponential time complexity), otherwise the
schemes would not be secure.

A recently proposed scheme is LESS, whose security is based on the
Code Equivalence Problem, that is, on the problem of finding, given a
pair of codes, a linear equivalence that maps one code into the other. A
special case of code equivalence is the Permutation Equivalence Prob-
lem (PEP), in which the equivalence is required to be a permutation.
LESS is among the participants in the NIST process for standardiz-
ing post-quantum signature schemes and is an interesting candidate
because, with recent improvements, it can go so far as to have very
compact signatures.

This thesis advances the state of the art on cryptanalysis of PEP,
improving on some of the existing attacks and demonstrating how, in
some cases (when codes are defined over finite nonprimary fields), in-
stances of PEP considered difficult can instead be solved in polynomial
time. The results obtained are justified through theoretical analysis
and have been verified experimentally through intensive simulations
(using Sagemath and Python).

As a first contribution, Support Splitting Algorithm (SSA) was im-
proved by finding a new way to compute the function of signature (used
as a discriminant to reconstruct the permutation action). Compared
with the function originally used in SSA, the new function proposed in
this thesis retains the same computational complexity but is more dis-
criminative. This makes SSA more efficient overall, as it reduces the
number of steps required to reconstruct the permutation. The tests
performed confirm the effectiveness of the proposed function.

As a second contribution of the thesis, two ways of transforming
instances of PEP that are considered difficult into instances of PEP
that, instead, can be solved in polynomial time using SSA or a Graph
Isomorphism Problem (GIP) solver were proposed and studied. The
transformations considered apply only to codes over finite fields of di-
mension not before. The idea is to consider PEP on subfield codes,
which maintain the permutation structure. Although starting from
codes that are difficult to attack (called self-dual), thanks to the pro-
posed transformations we are able to obtain codes for which PEP can
be solved easily (with algorithms whose cost is polynomial).

These results show how instances of PEP thought to be difficult
are actually solvable in polynomial time. This means that for LESS,
as well as for other cryptographic schemes, there are parameter choices
that make the problem vulnerable. In particular, thanks to the results

4

presented in this thesis, it can be concluded that working on non-prime
fields is an unsafe choice. For this reason, it is strongly recommended
to avoid using such codes for cryptographic applications, as they are
easy to attack.

5

Study of new attacks on the Code

Equivalence Problem

Chen Lei

October 9, 2023

Contents

1 Introduction 8
1.1 The Code Equivalence problem 9
1.2 Attacks on PEP . 10
1.3 Our contribution . 11

2 Notation & Background 13
2.1 Finite fields . 13
2.2 Linear codes . 14

2.2.1 Dual code . 15
2.2.2 Change of basis . 15
2.2.3 Hull of a Linear code 16
2.2.4 Permutations . 16
2.2.5 Puncturing . 17
2.2.6 Shortening . 18

2.3 Code Equivalence . 19
2.4 Code Equivalence Problem 19
2.5 Computational complexity, decision problems and search prob-

lems . 20
2.6 Graph Isomorphism Problem 22

2.6.1 Reduction from PEP to GIP 22

3 The Support Splitting Algorithm (SSA) 24
3.1 SSA structure . 24
3.2 Observations . 25

6

4 SSA Implementation 28
4.1 Generation of two equivalent codes 28
4.2 Hull calculation . 29
4.3 Generate weakly self dual codes 29
4.4 Implementing SSA . 31
4.5 Code shortening . 31
4.6 Sendrier’s signature . 32
4.7 Signatures Comparison . 33
4.8 Shortening multiple columns 35

5 A New signature function for SSA 36
5.1 New signature implementation 39
5.2 New signature & Sendrier’s signature comparison 40

6 Code Equivalence on non prime field 43
6.1 Subfield Subcodes . 44
6.2 A property of subfield subcodes 44
6.3 Rank of a randomly generated matrix 45
6.4 Hull of a randomly generated matrix 47
6.5 PEP of randomly generated matrix resolution 50
6.6 Hull of a subfield subcode . 50
6.7 Simple GIP solver . 51
6.8 A New PEP Solver for codes over non prime field 53
6.9 GIP fullcode . 54
6.10 New Solver complexity estimation 55
6.11 Frobenius endomorphism . 56
6.12 A More versatile subcode exploiting the Frobenius endomor-

phism . 57
6.13 Decision on the equivalence between two codes through re-

duction in GIP . 59

7 Conclusion 61

8 Codes explanation 67

7

1 Introduction

In the field of telecommunications, security has always been a fundamental
component. In fact, in a highly digitized world, the need to protect data
and communications is absolutely essential. This is why we talk about
cybersecurity, and need ways to protect our communications and devices.

In a digital communication through a public infrastructure, such as the
Internet, one of the goals is for the transmitted message to reach its desti-
nation without being compromised. In other words, it is essential to ensure
that the received content is not altered during transmission or to verify that
the sender is indeed the one who produced the message. These needs are
especially crucial when it comes to online banking, online financial trans-
actions, transmission of legally valuable documents, electronic payments,
cryptocurrency exchanges, and much more. The most powerful solution in
the field of cybersecurity that guarantees these properties is digital signa-
tures. They are used to verify the authenticity and integrity of a digital
document or message.

A digital signature is based on asymmetric cryptography, also known as
public-key cryptography. The signature is obtained through a pair of keys,
one public and one private. The two keys are linked to each other through
advanced mathematical algorithms. The private key, as the name suggests,
is secret and is used to generate signatures for messages. Only the owner of
the signature possesses this key. On the other hand, the public key is known
to everyone and is derived from the private key. Its role is the opposite,
namely to validate the signature signed by the corresponding private key.
A fundamental property that these two keys must have is that computing
the private key from the public key is computationally infeasible. In fact,
the security of the signature is based on the difficulty of this calculation,
ensuring the secrecy of the private key.

Since the 70s, many digital signature schemes have been invented, each
with its own characteristics and complex mathematical problems to solve.
Taking the most common schemes as examples, RSA exploits the problem of
integer factorization: given two very large prime numbers, it is easy to calcu-
late their product, but it is enormously difficult to factorize the product into
its prime factors. Another example is the discrete logarithm problem, on
which schemes like Diffie-Hellman, El Gamal, and ECC are based. Specif-
ically, the computational complexity of any algorithm (attack) that solves
factorization and discrete logarithm grows approximately as

2(α log2(n)) (1)

8

where n is the number to be factorized and α is some (positive) constant.
However, with the development of quantum computing, solving classical

problems that underpin asymmetric cryptography will no longer be difficult.
For example, Shor’s algorithm allows for the polynomial-time solution of the
factorization problem, easily breaking RSA. By applying appropriate mod-
ifications to the algorithm, it can also solve the discrete logarithm problem
and elliptic curves.

Therefore, in 2017, the National Institute of Standards and Technol-
ogy (NIST) launched a new competition for standardizing new public-key
cryptographic schemes resistant to classical and quantum computers. Af-
ter three rounds of selection, in 2022, NIST announced the first algorithms
to be standardized. The public key encapsulation mechanism (KEM) to
be standardized is CRYSTALS-KYBER. The digital signatures to be stan-
dardized are CRYSTALS-Dilithium, FALCON, and SPHINCS+. Except for
SPHINCS+, all these schemes are based on problems involving structured
lattices. However, due to the lack of diversity in computational problems
used by signature schemes, at the same time, NIST announced an additional
fourth round of selection. The deadline for submissions closed on June 1,
2023.

In this context, the cryptography research group from Università Po-
litecnica delle Marche has submitted to NIST two digital signature schemes,
in collaboration with other universities from Europe and USA. One of these
is LESS, which stands for Linear Equivalence Signature Scheme [3–5, 7].
LESS is a Zero-Knowledge protocol and a digital signature scheme whose
security is based on the Code Equivalence Problem. Thanks to recent devel-
opments [6], the scheme can achieve very compact signatures, e.g., less than
2kB for 128 bits of security, making it as one of the post-quantum schemes
with the shortest signatures.

1.1 The Code Equivalence problem

A linear code is usually used for error correction, for example, to restore bits
that get lost during communication or data saved in storage, or to correct
bits affected by errors during a wireless communication. Yet, linear codes
are also employed to build cryptographic schemes: very difficult problems
can be thought of by exploiting linear codes.

One of these problems is the Code Equivalence Problem (CEP). Briefly,
two linear codes are defined as equivalent when they have properties in com-
mon, like minimum distance and error correcting capability. Typically, when
two codes are equivalent, there exists a (linear) transformation mapping one

9

code into the other. An example of such transformations is that of permu-
tations: two codes are equivalent if one applies a column permutation on
one of them. In the context of cryptography, or precisely in the context of
the LESS digital signature scheme, the secret key will be the permutation
matrix while the public key are the two equivalent codes. Only the owner
of the secret key can always demonstrate that the two matrices are equiv-
alent. The security of the scheme is based on the fact that others, anyone
unauthorized, cannot prove the equivalence. In other words, the scheme is
broken when there are fast methods to find the secret permutation matrix.

1.2 Attacks on PEP

A schoolbook approach to solve PEP is to test all possible permutations
and it is certainly impracticable. Yet, we know about more efficient ways
to solve PEP. The only known efficient solvers for PEP are the Support
Splitting Algorithm (SSA) [10] and the reduction to Graph Isomorphism
Problem (GIP) [2], which are effective only when the hull dimension is
small. By hull, we refer to the intersection between a code and its dual.

Let d denote the hull dimension. Then, SSA works only d > 0 and takes
time complexity O

(
n3 + qd ln(n)

)
. The algorithm is heuristic, i.e., the above

expression holds only for random codes. It’s not known if the algorithm can
effectively solve all PEP instances. Let π be the secret permutation, and C,
C ′ be two codes such that C ′ = π(C). SSA works by applying a signature
function S, defined as S(C, i): the function takes as inputs the linear code
and a position i. Whenever j = π(i), then it must be S(C, i) = S(C ′, j′).
Using the values of such a function, one can discover the images of each
index and, in the end, reconstruct the permutation π.

The reduction to GIP, instead, takes time O
(
nd+ωTGIP(q, n)

)
, where

ω ∈ [2.3, ; 3] is the exponent for matrix inversion and TGIP(q, n) is a solver
for GIP. Thanks to the recent breakthrough by Babai [1], we know that
GIP can be solved in quasi-polynomial time. This implies that, when d is
constant, all instances of PEP can be solved in time which is, in the worst
case, quasi-polynomial.

Notice that, on average and especially when q is large, GIP can be solved
in O(n2) time, making de facto PEP solvable in polynomial time given that
d is constant. However, when dealing with codes whose hull dimension d
grows with n, the cost of the algorithm becomes exponential. The same
holds for SSA, since d becomes linear in n so the cost grows as O(qαn).

10

Ambient space: Fn
q

C

Hull
Subfield subcode

Subcode’s hull

Figure 1: Relation between codes, subfield subcodes and hulls

1.3 Our contribution

In this thesis we give two main contributions. First, we improve the signature
function employed in the SSA algorithm. Namely, we propose and study a
signature function which can be computed in the same time required by
the one in [10] but which is more discriminant. This implies that a smaller
number of signature evaluations is required: this makes SSA faster. We
prove this result by first analyzing theoretically the new signature function,
and then confirm it through numerical simulations.

As the second and main contribution of this thesis, we show how to
transform a PEP instance with large hull into another PEP instance with
much smaller hull dimension. Our technique mainly consists in looking at
subfield subcodes of the given codes. Such subcodes preserve the action of
the secret permutation and, under certain circumstances (working over a
non prime finite field, code rate which is properly low/high), have a hull
whose dimension d′ is, with very high probability, much smaller than d. To
see the relation between codes, hulls and subfield subcodes, see Figure 1.

We show that, with large probability, d′ is either 0 or equal to a small
constant. This allows us to claim that, looking at subcodes, one can easily
solve most of the instances that, prior to this work, were considered hard.

Notice that, even when d′ is not necessarily bounded, the reduction turns

11

out to be useful in several cases. First, the subcodes are defined over a
subfield, and makes algorithms such as SSA faster. Moreover, if d′ < d, we
have been able to reduce the dimension of the problem, and this makes both
SSA and GIP solvers faster.

The reduction we described above can generically be applied when the
code rate R is such that R > 1−1/ℓ1. However, there are several tweaks that
one can apply to broaden the number of instances for which it works. For
instance, when R < 1− 1/ℓ (by attacking the dual codes) or, when the code
rate does not fall in these cases, one can exploit the Frobenius intersection.

The effectiveness of the transformations we propose has been validated
thanks to intensive numerical simulations, using Python and Sagemath.
These simulations show that, for the wide majority of codes, we are able
to reduce to a PEP instance with small hull. Moreover, we have verified
that solving such instances allows to solve the initial PEP instance. That
is, the reduction does not create spurious solutions and any solution to the
newly obtained instance is indeed a solution for the initial instance. This
confirms that our methods work and, in practice, can be effectively employed
to solve PEP.

As a consequence, we highly recommend that these instances are not con-
sidered when building cryptosystems out of PEP, since the resulting schemes
are likely insecure, in light of the attacks we present in this thesis.

1The reduction may work even when the rate does not respect such constraints; how-

ever, the number of codes for which this holds is very small.

12

2 Notation & Background

This section talks briefly about some basic concepts of Linear algebra and
Code. They are preliminary notions at the basis of algorithm optimizations.

All testing, proof of concept and verification are done through the Sage-
Math platform.

Throughout the thesis, if it is not explicitly specified, the italic q denotes a
prime power, i.e., q = pm for a prime p and positive integer m.

Matrices and vectors are denoted by uppercase bold letters and lowercase
bold letters respectively, e.g. A represents a matrix and b a vector. ⟨u,v⟩
denotes the inner product between u and v, that is, a mathematical oper-
ation that takes two vectors and produces a scalar (a single value) as its
result. Let n the dimensions of u and v, the definition is as follow:

⟨u,v⟩ =
n∑

i=1

uivi

If ⟨u,v⟩ = 0, then u and v are orthogonal to each other.

The sequence {1, ..., n} is denoted by [n].

2.1 Finite fields

A finite field Fq is a field that contains q distinct elements; finite fields exists
whenever q is a prime power, i.e., it is of the form pm for p ∈ N being a prime
and m ∈ N being a non null integer. The way operations are performed in
the finite field depends on whether q is a prime or not.

Whenever q is a prime, then all the calculations are performed by reduc-
ing modulus q. For instance, if q = 7, then 3+ 4 = 0 because (3+ 4) mod
7 = 7 mod 7 = 0. Mathematically, we say that the field is isomorphic to
Zq (i.e., the ring of all integer reduced modulus q) and express its elements
as {0, 1, · · · , q − 1}.

Instead, if q is a prime power (i.e., m > 1), the corresponding field
will be called Extension field, then the operations get more involved. First,
the field elements are in this case polynomials with coefficients over Fp and
maximum degree m− 1. Namely, each element of the field can be expressed
as a(x) =

∑m−1
i=0 aix

i. To define the field, one must first choose an irre-
ducible polynomial g(x) with degree m and coefficients over the base field

13

Fp. Then, the finite field is defined by considering all operations mod g(x).
This implies that the sum between two field elements is simply obtained by
summing the coefficients referred to the same monomial, i.e.,

a(x) + a′(x) =

m−1∑

i=0

aix
i

︸ ︷︷ ︸
a(x)

+

m−1∑

i=0

a′ix
i

︸ ︷︷ ︸
a′(x)

=

m−1∑

i=0

(ai + a′i)x
i.

For what concerns the product of elements, instead, we always have to con-
sider that this is done via reduction mod g(x). Namely, the product be-
tween a(x) and a′(x) is a(x) · a′(x) mod g(x).

Example

Considering a extension field Fq with q = 25, a possible primitive gener-
ator polynomial is p(X) = 1 + X2 + X5. Let α be a root of p(X), then
p(α) = 1 + α2 + α5 = 0 and α5 = 1 + α2. After that, the elements of
this field are polynomials with coefficients over F2 and maximum degree
4 = 5−1. Now, let v1(α) = 1+α2 and v2(α) = 1+α2+α3 be the two entry
of the field, their sum and product are made in the following way:

Their sum is:

v1(α) + v2(α) = 1 + α2 + 1 + α2 + α3

= (1 + 1) + (1 + 1)α2 + α3

= α3

(2)

And the product is:

v1(α) · v2(α) = (1 + α2)(1 + α2 + α3)

= 1 + α2 + α3 + α2 + α4 + α5

= 1 + α3 + α4 + α5

= 1 + α3 + α4 + 1 + α2

= α2 + α3 + α4

(3)

2.2 Linear codes

A Linear code C ⊆ F
n
q of dimension k and length n is a k-dimensional

subspace of Fn
q . The quantity R = k

n is called code rate, and any vector

14

c ∈ C is called codeword. A canonical representation for a code is through
a generator matrix, that is, a full-rank matrix G ∈ F

k×n
q such that C ={

uG | u ∈ F
k
q

}
. In other words, G is a basis for the space associated with

C: if the code has dimension k, then this space has dimension k and contains
qk codewords. Each codeword is generated as a linear combination of the
rows of G. Since G has full rank k, any two different linear combinations
yield two different codewords.

2.2.1 Dual code

The Dual code of C, denoted C⊥, is an (n− k)-dimensional linear subspace
of Fn

q that is given by the following set:

C⊥ = {w ∈ F
n
q : ⟨w,v⟩ = 0 for all v ∈ C} (4)

That is, the set of all vectors that are orthogonal to codewords in C. De-
noting r = n− k, we have that C⊥ has generator matrix H ∈ F

r×n
q is called

parity-check matrix and is such that GH⊤ = 0.

2.2.2 Change of basis

The general linear group formed by the non singular k× k matrices over Fq

is indicated as GLk. In other words, GLk contains all k × k matrices with
values over Fq which admit a multiplicative inverse.
Any code admits multiple generator matrices: for any S ∈ GLk, which can
be seen as a change of basis, it holds that SG and G generate the same
code. The systematic generator matrix for a code is the matrix having the

form
(
Ik,V

)
, where V ∈ F

k×(n−k)
q . Computing this matrix is rather easy:

if G =
(
A,B

)
, with A ∈ F

k×k
q and B ∈ F

k×(n−k)
q , then V = A−1B. Indeed,

applying the change of basis S = A−1, we get

SG =
(
SA,SB

)
=

(
A−1A︸ ︷︷ ︸

Ik

,A−1B︸ ︷︷ ︸
V

)
.

Obviously, for any S ∈ GLr, H and SH are parity-check matrices for the
same code. Starting from a generator matrix in systematic form, one can
easily find the parity-check matrix using the following relation

G =
(
Ik,V

)
⇐⇒ H =

(
−V⊤, Ir

)
.

15

2.2.3 Hull of a Linear code

The Hull of a linear code C is defined as the intersection between the code
and its dual. In mathematical form:

H(C) = C ∩ C⊥ (5)

When the hull H(C) has dimension zero, we say that it is trivial. On the
other hand, if the dimension of the hull is not zero, then the code is called
weakly self dual.
We now recall the most important properties of the hull.

First, any vector in the hull is a codeword of C and is orthogonal to all
codewords in C.
The hull is a linear subspace of Fn

q . To see this, consider two vectors c, c′ ∈
H(C), which implies

c = uG, c′ = u′G,

c = ũH, c′ = ũ′H,

where u,u′ ∈ F
k
q and ũ, ũ′ ∈ F

r
q. Let us now consider a linear combination

of c and c′ as
c′′ = αc+ βc′,

where α, β ∈ F
n
q . We see that c′′ ∈ H(C); indeed

c′′ = α
(
uG

)
+ β

(
u′G

)
=

(
αu+ βu′

)
︸ ︷︷ ︸

u′′

G = u′′G, (6)

c′′ = α
(
ũH

)
+ β

(
ũ′H

)
=

(
αũ+ βũ′

)
︸ ︷︷ ︸

ũ′′

H = ũ′′H. (7)

Equation (6) proves that c′′ ∈ C, while equation (7) proves that c′′ ∈ C⊥.
So, c′′ is also in C ∩ C⊥ and, consequently, is in H(C).

Since any vector in the hull is also a codeword of C, the hull of a code
is a subcode of C. But since it is also a subcode of C⊥, the hull dimension
must be in the range [1;min{k, n− k}]. As we will see in the next sections,
the hull plays a crucial role in the complexity of SSA.

2.2.4 Permutations

We denote by Sn the symmetric group on n elements, and consider its el-
ements as permutations of n objects. We represent a permutation as a
bijection of {1, · · · , n} := [n], that is

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
.

16

Obviously, the first row can be omitted, obtaining the so-called one-line
notation π := (i1, i2, · · · , in), so that π(j) = ij . In other words, π moves the
j-th element to position ij . For a vector a = (a1, · · · , an), it holds that

π(a) =
(
aπ−1(1), · · · , aπ−1(n)

)
.

Extending the action of permutations on matrices A, i.e., π(A) indicates the
matrix resulting from the action of π on the columns of A. Any permutation
can be represented with a n × n matrix P ∈ F

n×n
q , with the property that

all rows and all columns contain a unique non null element (with value 1).
It is easy to see that P−1 = P⊤ (where ⊤ denotes transposition), so that
PP⊤ = In.

We define Mn = Sn⋉F
∗n
q as the group of monomial matrices (sometimes

also called generalized permutations). For τ = (π,v) ∈ Mn, one has

τ(a) =
(
v1 · aπ−1(1), · · · , vn · aπ−1(n)

)
.

The monomial can be represented as PD, with P the permutation matrix
describing π and D the diagonal matrix with main diagonal equals v.

Example 1. Let n = 5 and π = (4, 3, 2, 5, 1); then

π =

(
1 2 3 4 5
4 3 2 5 1

)
.

For a = (a1, a2, a3, a4, a5), we have

π(a) =
(
aπ−1(1), · · · , aπ−1(n)

)
=

(
a5, a3, a2, a1, a4

)
.

Let q = 11 and A =

(
7 0 3 2 5
10 2 1 5 8

)
. Then

π(A) =
(
a5,a3,a2,a1,a4

)
=

(
5 3 0 7 2
8 1 2 10 5

)
.

2.2.5 Puncturing

Given a linear code C ⊆ F
n
q with dimension k, we define its puncturing in

positions J ∈ [n] as the operation that returns the code

P
(
C, J

)
=

{
{ci}i ̸∈J | (c1, · · · , cn) ∈ C

}
.

For the sake of simplicity, sometimes we will write C\J = P(C, J); it can be
seen that C\J has dimension ≤ k and length n− |J |.

17

2.2.6 Shortening

Given a linear code C ⊆ F
n
q with dimension k, we define its shortening in

positions J ∈ [n] as the operation that returns the code

S
(
C, J

)
= P (C∗, J) , where C∗ = {c ∈ C | cJ = (0, · · · , 0)}.

For the sake of simplicity, sometimes we will write C−J = S(C, J); it can be
seen that C−J has dimension ≤ k − |J | and length n− |J |.

Proposition 1. Let C be a linear code with length n and J ⊆ [n]. Then

- the dual of P(C, J) contains S(C⊥, J);

- the dual of S(C, J) contains in P(C⊥, J).

Proof: Let v ∈ C⊥ such that vJ = (0, · · · , 0); then, for any c ∈ C, it
holds that

0 = cv⊤ = cJv
⊤
J︸ ︷︷ ︸

cJ ·(0,··· ,0)⊤=0

+c\Jv
⊤
\J = c\Jv

⊤
\J .

The first thesis is proven by considering that v\J ∈ S(C⊥, J) and c\J ∈
P(C, J). For the second thesis, we consider that for any codeword c ∈ C
such that cJ = (0, · · · , 0), we have c\J ∈ S(C, J); then, for any v ∈ C⊥, it
holds that

0 = cv⊤ = c\Jv
⊤
\J + cJv

⊤
J︸ ︷︷ ︸

(0,··· ,0)v⊤

J
=0

= c\Jv
⊤
\J .

Since v\J ∈ P(C⊥, J), this proves the second thesis. ■
A summary of the properties of punctured and shortened codes is shown in
Table 1.

New length New dimension New redundancy New cdal code

P(C, J):
puncturing

on z positions
n− z ≤ k ≥ n− k − z Contains S(C⊥, J)

S(C, J):
shortening

on z positions
n− z ≤ k − z ≥ n− k Contains P(C⊥, J)

Table 1: Summary of properties for puncturation and shortening, for a code
C with length n and dimension k; the size of the considered set is |J | = z.

18

2.3 Code Equivalence

We consider codes endowed with the Hamming metric, which is defined as

wt(a) = |{i | ai ̸= 0}| .

Since monomials shuffle coordinates and apply scaling factors, the number
of zeros is preserved: for this reason, we say that monomials are isometries
for the Hamming metric. Since permutations are a special case of mono-
mials (monomials with scaling factors all equal to 1), the same holds for
permutations.

For a code C ⊆ F
n
q and τ ∈ Mn, we denote

τ(C) = {τ(c) | c ∈ C} .

In other words, τ(C) is the code obtained by applying τ to all codewords of
C. It is easy to see that C and τ(C) have some common properties, such
as the same minimum distance and the same weight distribution. For this
reason, we say that C and τ(C) are equivalent.

If G ∈ F
k×n
q is a generator matrix for C, then a generator for C ′ = τ(C)

is of the form
G′ = Sτ(G) = SGPD,

where S ∈ GLk is any change of basis. Equivalently, if H is a parity-check
matrix for C, then a parity-check matrix for C ′ is in the form

H′ = ZHPD−1,

where Z ∈ GLn−k. This is very easy to prove: indeed

H′G′⊤ = ZHPD
(
SGPD−1

)⊤
= ZHPDD−1P⊤

︸ ︷︷ ︸
=In

G⊤S⊤

= ZHG⊤
︸ ︷︷ ︸
=0

S⊤ = 0.

2.4 Code Equivalence Problem

The problem of finding an isometry between two given codes is called Code
Equivalence Problem. Normally, two versions of the problem are considered,
depending on the type of isometry one wants to determine.

19

Problem 1. Linear Equivalence Problem (LEP)
Given two linear codes C,C ′ ⊆ F

n
q with dimension k, find a monomial τ ∈

Mn such that C ′ = τ(C). In other words, given G,G′ ∈ F
k×n
q , find S ∈ GLk

and τ ∈ Mn such that G′ = Sτ(G).

Problem 2. Permutation Equivalence Problem (PEP)
Given two linear codes C,C ′ ⊆ F

n
q with dimension k, find a permutation

π ∈ Sn such that C ′ = π(C). In other words, given G,G′ ∈ F
k×n
q , find

S ∈ GLk and π ∈ Sn such that G′ = Sπ(G).

Solvers for the two problems may be significantly different. For the
thesis, the focus will be only on PEP.

2.5 Computational complexity, decision problems and search
problems

Computational complexity is a way to measure how efficient computer al-
gorithms are. It helps to understand how the time and memory required by
an algorithm grow as the size of the problem it’s solving gets larger. In the
context of asymmetric cryptography, the security of cryptographic schemes
is based on the difficulty of solving the mathematical problem behind the
scheme. Therefore, from this point of view, the scheme is secure when there
is no efficient algorithm for solving the problem.

Typical notation used for representing the complexity is the Big O no-
tation. The efficiency of the algorithms can be classified into the following
complexities:

• O(na) indicates that the complexity grows in polynomial time with n.
Cryptographic schemes that are based on a problem that is solvable
in polynomial time are considered insecure.

• O(an), for a > 1, indicates that the complexity is exponential with n.
A cryptographic scheme is safe if, in the literature or in the next few
decades, only algorithms, for solving the problem behind the scheme,
with this complexity exist.

Decision problems and Search problems Decision problems and search
problems are two fundamental types of computational problems in computer
science and mathematics. The decision problems focus on answering yes or
no, while search problems aim to find actual solutions. Taking the example
of the code equivalence problem, a decision problem could be asking if the

20

P

NP

NP-COMPLETE

PEP

Figure 2: Relation between PEP and complexity classes

two given code are equivalent, while a search problem could be a task to
find the permutation matrix that connect these two codes.

A problem lives in NP if its solutions can be verified in polynomial time.
Given a problem with large input n, it lives in P if there is at least one
algorithm that solves it in time limited by a polynomial in n. NP-complete
problems are among the most difficult problems in NP. If a problem can be
reduced into an existing NP-complete problem in polynomial time, it implies
that this problem is at least as hard as the hardest problems in NP. So, if
one could resolve in polynomial time of one of the problem in NP-complete,
then all problems in NP-complete are resolvable in polynomial time.

Hardness classification for decisional PEP It has been proven in [8]
that NP-completeness of PEP would imply collpase of the polynomial hi-
erarchy, i.e., would imply P = NP. There are many evidences against such
a relation, so that the wide majority of researchers believe that P ̸= NP.
Assuming that P is indeed different from NP, right now we can only place
PEP in a class which is in between P and NP-complete as in Figure 2.

Indeed, we do not know about polynomial time solvers for PEP, so we
cannot say that PEP is in P. Notice that, for a problem to be in P, we require
to know about an algorithm that can solve in polynomial time all instances.
For PEP, we only know about algorithms that take polynomial time only
when the input PEP instance has some property (e.g., trivial hull). For

21

weakly-self dual codes, the time complexities of these algorithms become
exponential. Existence of such hard instances is exactly why we cannot say
that PEP is in P.

2.6 Graph Isomorphism Problem

The Graph Isomorphism Problem (GIP) has some connections with Code
Equivalence Problem. First, similarly to the Code Equivalence Problem,
GIP cannot be NP-complete unless the polynomial hierarchy collapses. For
many years, the problem has been deemed hard, so that all known solvers
were (worst case) sub-exponential time algorithms. Actually, in recent years,
Babai, a professor at the University of Chicago has found a solver algorithm
that solves the Graph Isomorphism problem with quasi-polynomial time [1].

2.6.1 Reduction from PEP to GIP

Thanks to Professor Babai’s contribution, now everyone knows that graph
isomorphism problems can be solved in quasi-polynomial time algorithms.
We now describe how solvers for GIP can be used to solve PEP, when the
considered codes have trivial hull.

First, we observe that GIP can be formulated as follows:

A′ = P⊤AP, (8)

where A is the adjacency matrix of the starting graph, while P is the per-
mutation matrix finally, A′ is the adjacency matrix of the graph after the
isomorphism. As it can be seen from the equation, it has a similarity with
the PEP equation G′ = SGP, where instead of the basis change matrix
S there is P⊤. Also in this problem, the unknown is P. Actually, certain
instances of PEP can be reduced to the GIP; technically, this is called re-
duction from PEP to GIP. We proceed by describing how such a reduction
works.

Let G : G 7→ G⊤(GG⊤)−1G = A be the function that, on input some
matrix G, returns the transformed matrix A. This transformation has a
constraint on G, i.e. GG⊤ must not be a singular matrix. Therefore, it
works when the hull of G is trivial.

Applying G to the PEP’s equation, the equation becomes:

G(G′) = G′⊤(G′G′⊤)−1G′

= A′.
(9)

22

Instead, for the second part of the equation, we get:

G(SGP) = P⊤G⊤S⊤(SGPP⊤G⊤S⊤)−1SGP

= P⊤G⊤S⊤(SGG⊤S⊤)−1SGP

= P⊤G⊤S⊤(S−⊤(GG⊤)−1S−1)SGP

= P⊤G⊤(GG⊤)−1GP

= P⊤AP,

(10)

obtaining a new equation:

A′ = P⊤AP, (11)

where A′ = G(G′) and A = G(G).
This means that, starting from two codes, we found that a permutation

mapping one code into the other exists if and only if the corresponding
graphs are isomorphic. Now, it is possible to solve PEP using a solver for
GIP. If we are interested in solving the search version, then we can get the
permutation matrix P with a GIP solver.

23

3 The Support Splitting Algorithm (SSA)

In this section we recall the working principle of the Support Splitting Al-
gorithm (SSA).

3.1 SSA structure

The support splitting algorithm has been introduced by Sendrier in 2000.
It’s an algorithm that solves the permutation equivalence problem by re-
constructing the permutation index by index. In other words, given two
matrices which, one of these generates the same code of the other up to
a column permutation. It finds for each column of one matrix, the corre-
sponding index after the permutation. The algorithm is a composition of
three main techniques:

• Hull : Since the hull is a subcode, therefore, it may contain fewer
codewords. This optimizes the attack.

• Weight distribution function: This function, denoted by WEF (C),
yields the weight distribution of all codewords of a code. In a standard
way, it is done by computing all the codewords so, if the code C has
dimension k, computing WEF (C) takes time O(qk) where q is the
finite field’s cardinality.

• Puncturing : For a code C, puncturing it in a position i means recon-
structing the code in such a way that all the words of the new code,
compared to the original word, the i-th element is removed. It is de-
noted by Pi(C). This operation is very easy to do, just remove the
i-th column of main code’s generator matrix G ∈ F

k×n
q , resulting a

matrix of dimension k × (n− 1).

Now is possible to proceed to describe the algorithm. For the sake of sim-
plicity, the following approach finds only the first index. But it can be
generalized to find all other indices. To recap, C is the original code and C ′

is the permuted one.

1. Compute the hull of both codes, so B = H(C) and B′ = H(C ′).

2. Puncture the hull B in position 1, obtaining B\1 = P1(C).

3. Compute the weight distribution function of the obtained punctured
code, i.e., W1 = WEF (B\1).

24

4. For each i ∈ [n], puncture the hull B′ in position i, obtaining B′
\i =

Pi(C
′).

5. For each i ∈ [n], compute the weight distribution function of B′
\i,

obtaining W ′
i = WEF (B′

\i).

6. If there is a unique i such that W1 = W ′
i , conclude that 1 is permuted

to i.

In the case which there are more indices i that satisfy the equationW1 = W ′
i ,

that is, there are colliding indices, the step six needs to be refined. But this
case is unlikely to happen if we work on a large cardinality q of finite field
so, it can be neglected for the moment.

3.2 Observations

The idea behind the algorithm is actually very simple. The algorithm ex-
ploits some fact about codes:

• An invariant is a property of a code that does not vary if the code is
permuted.

• Two equivalent codes have the same weight distribution of codewords,
i.e., WEF (C) = WEF (C ′). So the weight distribution function is an
invariant function.

• the previous statement is also valid for the hull of the code. In other
words, WEF (H(C)) = WEF (H(C ′)).

The code punctured on the first column has as its generator matrix the
composition only of columns {g2, ...,gn} of the original code matrix. If the
corresponding i-th column is eliminated from the permuted code matrix,
for i which is equivalent to the index of 1 after the permutation. These
two codes will have the same columns up to reordering. Therefore, since
these two codes differ only by a permutation, their weight distribution of
codewords will be the same, that is, WEF (B\1) = WEF (B\i), for i = π(1).
On the other side, if the wrong column of second code matrix is deleted, they
will differ in some columns (precisely, two columns) so, it is very likely that
they have a different weight distribution.

25

Computational complexity The SSA is a combination of many proce-
dures. Following the steps of the algorithm, first of all, computing the hull
of the two codes takes time O(2n3), since it can be done with linear algebra.
Let d denote the dimension of the hull. Then computing the weight distribu-
tion of hull WEF (B\1) takes time O(qd), the same calculation WEF (B′

\i)
is repeated n times on the hull of the second code, i.e. the permuted one.
Finally, combining these large O’s together gives a complexity of

O(2n3 + (n+ 1)qd) (12)

to draw the first permuted index.

The role of hull If the calculation of weight distribution were not applied
to the code hull, but directly to the code itself, the complexity would have
been O(qk). Since the hull is a subcode, its dimension d must be d ≤ k. So,
using the hull, one could reduce the computational complexity.
Furthermore it has been proven that, for random codes, the hull dimension
is extremely small with very high probability [9]. This means that the term
qd becomes a very small constant (i.e., something like q2 or q3). Since all
the remaining terms in the complexity are polynomials of n, the attack runs
in polynomial time.
On the other side, to keep the problem still difficult, normally self-dual
codes are used. That is, codes that are equal to their dual. This means that
C = C⊥ or, equivalently, that any generator matrix G is also a parity-check
matrix, which implies GG⊤ = 0. In such cases, the hull H(C) = C, so the
hull has maximum dimension d = k. The time complexity of the algorithm
is dominated by O(qk) so, it is exponential in the code dimension.
The maximum dimension of hull is reached when self-dual codes are used.
So, for the definition of self-dual codes, the value of code dimension is equal
to the value of redundancy: k = r ⇒ n = k+r = k+k ⇒ n = 2k ⇒ k = 1

2n.
Then the code rate is R = 1

2 , namely, the time complexity is also exponential
in the code length.

If there exist a efficient probabilistic test In the crucial step of the
SSA algorithm, that is, after the two equivalent codes C and C ′ have been
punctured, the algorithm compares whether the second is still equivalent
with the first. The methods existing so far are based mainly on the calcu-
lation of the weight distribution of the code, when the two codes have the
same weight distribution they are likely to be equivalent, while when they
are not, they are certainly not equivalent.

26

This operating principle resembles that of the test of Fermat in the prime
number determination. The Fermat test interrogates the number several
times, if the test fails it is certainly not prime. Otherwise, the number
may be a prime. Therefore, by repeating this procedure many times the
probability that the number is a prime will tend to one. In fact this test
works in almost all cases.
Returning to the case of the PEP, if there is an efficient test that can compare
and say ”no” when codes are not equivalent, then all cryptographic schemes
based on PEP will be immediately broken.

27

4 SSA Implementation

This section illustrates the steps to implement the SSA algorithm. We did
a proof of concept for SSA, using SageMath, a Python-based free open-
source mathematics software system. It includes many mathematical pack-
ages therefore, speeds up the various tests.

It is evidently very cumbersome to write all the required algorithm code
in one go. So, at first time, the algorithm functions had been divided into
several files, after the test of functionality they had been reunited in a single
script. All essential codes for implementation are attached in the appendix.

4.1 Generation of two equivalent codes

The first thing is to write a script for testing if a linear code, after a per-
mutation and base change, is equivalent to the initial. To generate a totally
random code,the representative generator matrix is required. SageMath pro-
vides the random matrix function. But it needs some parameters, namely,
the Galois field on which it is defined, the number of rows k and the number
of columns n. The k and n are equivalent to the dimension and length of
the code, respectively. The Galois field is defined using GF function, in
which the field order is passed. This field will also be used to generate other
matrices defined on the same field. After the set up of the random code
matrix, the random change of basis matrix with size k × k is generated. It
may happen that the create change of basis is not full rank, in such case the
matrix must be regenerated. This is done by inserting a while loop that will
not terminate until the matrix’s rank is not equal to the dimension k or until
the determinant is not different from zero. The last matrix needed is the
permutation matrix, it is a matrix that has a 1 for each column and row.
SageMath already provides the function to generate such a matrix. Just
generate a permutation object through the Permutations function with size
n, then get a random permutation and convert it to a matrix. At this point
is possible to apply the matrix products to obtain the permuted code matrix
by

G_prime = S*G*P

where G is the initial generator matrix, S the change of basis and P the
permutation matrix.
Finally, to check whether these two codes are equivalent, the most com-
mon method is comparing their weight distribution. So the two matrices

28

are converted to their respective code objects using codes.LinearCode func-
tion. and then pull out their weight distribution by calling the method
weight distribution. Therefore, both by eye and the comparison of equality
operator == have shown that they are the same.

A further test was also done on a codeword of the original code to ver-
ify if, after the permutation, it belongs to the permuted code. To generate
a codeword, a random vector of length k was chosen. Then its multiplied
by the code generator matrix obtaining the codeword v of length n. Sub-
sequently, v is permuted with the initially generated permutation matrix.
To check if v is a codeword of the permuted code, it have to be multiplied
with the parity matrix of the permuted code to obtain the syndrome. If the
syndrome is equal to a zero-vector, then it means that v is a legal codeword.
Doing the calculation, it is actually a codeword.

4.2 Hull calculation

The hull of a code is a subcode obtained from the intersection of code itself
with its dual code, the construction of this subcode is rather simple: First
step is to define a vector space F

n
q of dimension n over a finite field of q ele-

ment, the function that returns a vector space object is called VectorSpace.
Using it, through the method subspace and, passing the code generator ma-
trix as parameter, the two subspaces V1 and V2 are created. V1 and V2 are
respectively the vectorial representation of the code and its dual. Now the
intersection space V1 ∩ V2 between the two subspaces V1 and V2 can be ob-
tained by executing the method intersection of one subspace on the another
one. In the end, the basis of intersection space V1 ∩ V2 are exactly the basis
of hull. So, the generator matrix of hull is rebuilt by calling the method
basis on V1 ∩ V2 with a conversion into matrix.

4.3 Generate weakly self dual codes

A totally random code has usually the hull with small dimension (i.e., some-
thing like 2 or 3). This makes the attack very easy, therefore it does not
have much importance in the study of the attack. The interests are on
codes that have a high hull dimension. Those codes are also called weakly
self dual code. One method to generate weakly self dual codes is to repeat
the random code generation until a code with the desired hull dimension is
generated. But evidently, this approach is impracticable for high values of
hull dimension. An simple and effective way is the following:

29

1. First, generate a random vector v with length n on the finite field Fq,
with random vector function.

2. Check if this vector v is a self-orthogonal codeword, if not, repeat the
random vector generation. To test v’s self-orthogonality just compute
the inner product of v with itself. If the result is zero, then it is self-
orthogonal. There are cases that the random vector v is a null vector
or it’s linear dependent with other rows of G, in these cases it is not
considered a qualified vector.

3. Convert the vector v into a 1× n matrix G with matrix function.

4. Convert matrix G to it’s associated code C with codes.LinearCode
function.

5. Get the dual code C⊥ of C with method dual code.

6. Generate a random codeword w from code C⊥ with method ran-
dom element.

7. Check if the just made codeword w is a self-orthogonal codeword, with
the same rule as point 2.

8. Append this codeword w to matrix G as a new row.

9. Compute the hull of G, verify if its dimension reaches the required
value. If is true, proceed, otherwise return to point 4.

10. Get a random codeword u from the dual code of G, but this time,
proceed if the codeword u is not a self-orthogonal codeword.

11. Append this codeword u to matrix G as a new row.

12. Get the rank of G, verify if its dimension reaches the required value.
If is true, a desired weakly self dual code is yielded, otherwise return
to point 10.

At point 8, the self-orthogonal codeword w appended to matrix G makes
sure that the codewords generated by G are still self-orthogonal so, these
basis are also in the dual space. Since w is caught from the dual code, it
may isn’t linear dependent with other rows before appending.

30

4.4 Implementing SSA

After the implementation of the previous functions, at this point, the algo-
rithm is very simple to write.
The value of each parameters are rather small, because values that are too
high cause the algorithm to slow down. especially for the length n of the
code and the dimension of the hull, The amount of computation required
for the latter is exponential.
First of all, for the two generated equivalent codes, their hulls B and B′

are considered. Then, the puncturing is applied on the hull B’s first col-
umn, that is, the first column is removed. This operation can be done by
delete columns method of matrix of hull. Consequently, the weight distribu-
tion of punctured hull B\1 is saved. Thereafter a for loop of n times is exe-
cuted, for each loop, the puncturing of i-th index is applied on the hull of the
permuted code, then, after puncturing, its weight distribution WEF (B′

\i)

is calculated and compared with WEF (B\1) counted previously. If they are
equal, the index i is considered colliding and it is saved.
Several tests were carried out (the corresponding code is in the Appendix),
the Tables 2, 3, 4 and Figure 3 contains the results of the colliding indexes ob-
tained by fixing n and k, varying q and hull dim. Themean colliding indices,
(if the value is one, then there are no collisions) is retrieved on about 100
tests. As can be seen from tables, increasing the dimension of hull, the col-
liding indices tend to be one. And the tendency is faster for higher values
of q.

4.5 Code shortening

The use of shortening instead of puncturing has the advantage on the di-
mension k of the code to which it is applied, that is, while the puncturing
does not change the dimension, the shortening reduces the dimension by
the number of columns removed. This has a positive impact on the cal-
culation of the weight distribution, considering the cost is exponential in
the code dimension k. SageMath provides a method shortened for Linear
code objects that returns the code shortened in specific columns. But if one
wants to realize the shortening on their own, the procedures are very simple.
Namely: first consider the parity matrix of the code, and add to it, for each
column to be removed, a n-length vector of all zeros except in the index of
the column where the value is different from zero. Then convert back to
code and consider its dual. Remove the specified columns from the genera-
tor matrix of the dual code, if the procedures are performed correctly, these

31

n k q hull dim mean colliding indices

20 10

2

2 6.6
3 5.6
4 4.1
5 3.5
6 3.9

3

2 9.7
3 5.5
4 4.5
5 3.0
6 2.6
7 2.1
8 2.6
9 4.1
10 19.1

5

2 6.2
3 2.2
4 1.1
5 1.0
7 1.0
9 1.0
10 1.7

Table 2: Average number of colliding indices, for SSA and several code
parameters. For each set, we have performed 100 experiments. For all the
considered instances, we have used n = 20.

columns are columns of zeros. The new matrix thus obtained has dimensions
(k − l)× (n− l), for l the number of columns to delete.

4.6 Sendrier’s signature

The meaning of the signature in this context, is a function that is applied
to the code, and has the property that if the two codes are equivalent, they
certainly have the same signature value. In Sendrier’s article, precisely in
section 5.2, he introduced a signature made this way:

S : (C, i) → (WEF (H(C\i)),WEF (H(C⊥
\i))) (13)

32

n k q hull dim mean colliding indices

15 5

2

1 7.58
2 6.12
3 6.02
4 4.77
5 4.96

3

1 10.23
2 8.97
3 5.22
4 4.85
5 4.27

5

1 12.11
2 5.93
3 2.11
4 1.25
5 1.06

Table 3: Average number of colliding indices, for SSA and several code
parameters. For each set, we have performed 100 experiments. For all the
considered instances, we have used n = 15.

Compared to the signature used so far for the tests, which looks like this:

F : (C, i) → (WEF (B\i)) with B = H(C) (14)

The differences essentially are that, In Sendrier’s signature first punctures
the code then calculates the hull instead of vice versa. Furthermore he
considers a pair of values where the second has replaced the code argument
with its dual.

4.7 Signatures Comparison

This paragraph illustrates the test to see if the Sendrier’s signature, or if
the replacement of puncturing operation with shortening (with the hull cal-
culation after the shortening) used in equation 14 could improve the attack
from the point of view of number of colliding indices. That is, it compares
the discriminative capacity of different signatures. Or more clearly, the ef-
fectiveness to discriminate two equivalent codes from the others. The more
colliding indices are found, the lower is the discriminative capacity.
We did tests (the corresponding code is in the Appendix) to see the quality

33

n k q hull dim mean colliding indices

22 7

2

1 8.00
2 7.45
3 6.50
4 4.18
5 3.35
6 3.16
7 2.76

3

1 11.54
2 10.10
3 5.59
4 4.23
5 2.56
6 2.52
7 2.26

5

1 14.80
2 6.64
3 2.13
4 1.14
5 1.02
6 1.00
7 1.00

7

1 16.86
2 6.76
3 1.76
4 1.04
5 1.00
6 1.00
7 1.00

Table 4: Average number of colliding indices, for SSA and several code
parameters. For each set, we have performed 100 experiments. For all the
considered instances, we have used n = 22.

34

Figure 3: SSA colliding indices for different q as hull dimension increases

of the signatures just mentioned with different values of hull dim, n, k and
q. An example varying the hull dim is showed in the Figure 4, ignoring the
average number of colliding indices, is recognizable for low hull values (2 and
3) that the difference of mean colliding indices between Sendrier’s signature
and others are very small and, for high values they are just overlapped.

4.8 Shortening multiple columns

The tests done so far have only removed one column at a time from the code.
So it is not known whether removing multiple columns at the same time for
comparing the weight distribution of shortened codes improves the quantity
of colliding indices. That is, if the shortening on codes by removing more
columns enhances the discrimination.
Unlike the original algorithm which aimed to find only one permutation in-
dex per time, this time it finds directly t indices, so t indicates the number
of columns that will be removed. But the number of choices (combinations)
of columns in this case is no longer n, but n choose t. That is, the number
of combinations grows binomially with t. This is the compromise on com-
putation time.

35

Figure 4: Graphical comparison between Sendrier’s signature, Puncturing
and Shortening by varying hull dim with n = 20, k = 10 and q = 3

SageMath provides Combinations function to enumerate all combinations of
t element in a range of n.
The following tables 5 and 6 shows the effect of shortening on 2, 3 or 4
columns at the same time. The tests (the corresponding code is in the Ap-
pendix) were done by varying values of n, k, q, hull dim and t. Due to the
complexity as the parameters t increase, the tests with t = 4 are done 10
times, while the others are 30 times. As one might imagine, the number of
colliding indices does not depend on t, but only on hull dim− t.

5 A New signature function for SSA

As mentioned in section 4.7, the Sendrier’s signature performs better than
others, its strategy discriminates the codes very well. But all these tech-
niques are based on the calculation of weight distribution of the code which
has a time complexity of O(qd), with d the hull dimension. And when d and
finite field cardinality q are small, it happens very often that the codes have
same weight distribution. Hence, discrimination performance declines.

36

n k q t hull dim mean colliding indices

20 10 5

2

3 40.2
4 5.1
5 1.6
6 1.0
8 1.0
9 1.0
10 1.0

3

4 216.2
5 13.3
6 2.1
7 1.4
8 1.0
10 1.0

4

5 1001.6
6 110.3
7 6.3
8 1.6
9 1.0
10 1.0

Table 5: Colliding indices by shortening multiple columns with n = 20 and
k = 10

Therefore, a new signature is designed, which is not based on the calculation
of the weight distribution, but on the codewords, so the complexity is still
exponential in d, i.e. O(qd). Since the weight of a codeword is obtained
from counting the non zero element of codeword itself, the information used
by Sendrier is only a subset of this new signature.
The idea is first described at a high level, then there is a detail on practical
implementation. First consider two codes B and B′ = π(C) where π ∈ Sn is
a permutation. Let B ∈ F

d×n
q for B and B′ = SGP a generator for B′. Let

L : Fd×n
q 7→ F

qd×n
q be the function that, on input some matrix B, returns

the matrix whose rows are all linear combinations of rows of B. It is easy
to see that this matrix possesses some useful invariance properties.

Proposition 2. Let B ∈ F
d×n
q and B′ = SBP, with S non singular and P

a permutation matrix. Then

L(B′) = P′L(B)P,

37

n k q t hull dim mean colliding indices

15 7

3

2

3 63.00
4 26.76
5 25.56
6 21.43
7 74.53

3

4 232.86
5 129.76
6 147.96
7 135.30

4
5 605.96
6 414.56
7 835.80

5

2

3 31.76
4 5.96
5 1.80
6 1.30
7 2.0

3

4 108.16
5 26.23
6 5.10
7 5.86

4
5 323.63
6 80.63
7 25.66

Table 6: Colliding indices by shortening multiple columns with n = 15 and
k = 7

where P′ is a qd × qd permutation.

The fact to consider the new permutation P′ is due to the fact that the
effect of S is that of modifying the bijection between F

d
q and B, i.e., the

way information sequences are mapped into codewords. Starting from this
consideration, consider a new signature function as follows:

1. compute L(B);

2. let Mi be the multiset entries of the i-th row of (B);

3. sort the multisetsM1, · · · ,Mqd (e.g., using some lexicograph ordering);

38

4. let Ci be the i-th column of L(B);

5. sort the multisets C1, · · · , Cn;

6. set
Wi =

(
M1, · · · ,Mqd , C1, · · · , Cn

)
.

In practice, the function can be implemented efficiently using hash func-
tions; this way, so it’s not necessary to work with multisets, which may be
not very easy to handle (especially, when considering an ordering).

5.1 New signature implementation

As mentioned in the previous section, the new signature can be implemented
with the help of the hash function. Which drastically reduces the size of the
signature. This section illustrates the implementation of the algorithm:

1. In the first place, let B denotes the matrix on which to calculate the
signature.

2. Generate all qd vectors of finite field vector space F
d
q , where q is finite

field cardinality and d the dimension. In coding theory, these vec-
tors represent the set of messages that can be encoded by the code.
SageMath provides the VectorSpace function to create a vector space
object, in which is possible to iterate all vector in the space.

3. Define a new matrix A of size qd×n over Fqd×n
q to contain codewords.

4. For each vector v in F
d
q encode it with B obtaining the codeword

c = vB, and insert into the matrix A.

5. After filled up the matrix A with all qd codewords, sort every single
row and, for each sorted row compute the hash hi = hash(ci).

6. Sort all row hashes and compute the hash of them h = hash(h1, ..., hqk).

7. Repeat the hash procedure also for transposed matrix A⊤, i.e., sort
each row of A⊤ and compute ti = hash(mi), then compute the hash
t = hash(t1, ..., tn) of sorted hashes ti

8. The signature is the pair (h, t).

39

As can be seen from the algorithm, unlike other signatures, it not only
calculates all the codewords, it also orders them. The sorting and then
hashing facilitates the comparison of the signature with the signature of
other code during the execution of the SSA. In other words, sorting and
hashing replaces the cumbersome comparing one by one the codewords of
the two codes.
Therefore, this algorithm compares directly the codewords rather than just
compare the number of weights. This makes the signature more precise.
Indeed, it may is the optimal solution in O(qd) complexity.

5.2 New signature & Sendrier’s signature comparison

In Tables 7 and 8 are shown the mean colliding indices of two signatures
under different parameters, the mean is calculated on 100 executions and
the code length n is fixed to 20 (the corresponding code for the test is in
the Appendix).
Analyzing the table, the value of code dimension k does not influence the
average value of colliding indices since during the execution code’s hull were
considered which, as also happened in previous tests, as the hull dimension
increases the colliding indices mean decreases and tends to 1. The same ef-
fect is also valid for the finite field cardinality parameter, i.e., as q increases
the colliding indices mean decreases.
More clearly, the Figure 5 shows the trend of colliding indices of two signa-
tures with another parameters (n = 18, k = 7 and q = 5), in this case, the
improvement of new signature is not particularly big.
In conclusion, the most important thing is that the new signature has a
noticeable reduction of average colliding indices compared to Sendrier’s sig-
nature for q > 2, but they have same performance for q = 2.

40

n k Hull dimension
Avg. number of collisions
New Old

20 4

2 aaaaa8.33aaaaa aaaaa8.33aaaaa

3 6.40 6.40

4 4.63 4.63

20 6

2 8.60 8.60

4 4.23 4.23

6 3.50 3.50

20 8

2 7.06 7.06

4 5.03 5.03

6 3.63 3.63

Table 7: Comparison between old and new signature functions, for q = 2
and several values of n, k and hull dimension [DAFINIRE!!!!]

41

n k Hull dimension q
Avg. number of collisions

ratio
New Old

20 4

2
3 aaaaa7.50aaaaa aaaaa11.10aaaaa 0.67
7 2.95 5.85 0.50

3
3 2.75 5.45 0.50
7 1.20 1.80 0.66

4
3 1.60 3.90 0.41
7 1 1 1

20 6

2
3 6.92 10.44 0.66
7 3.54 7.18 0.49

4
3 1.44 4.20 0.34
7 1.02 1.06 0.96

6
3 1.06 2.72 0.38
7 1 1 1

20 8

2
3 6.80 10.52 0.64
7 3.28 6.64 0.49

4
3 1.68 4.34 0.38
7 1.04 1.04 1

6 3 1.04 3.08 0.33

Table 8: Table Compare New signature with Sendrier’s for several values of
n, k, hull dimension and q

42

Figure 5: Graphical comparison between new signature and Sendrier’s sig-
nature with n = 18, k = 7 and q = 5

6 Code Equivalence on non prime field

A finite field Fp can exist when the number of elements q = pm is a prime
power, i.e., q = pm for a prime p and positive integer m. The most common
and trivial case is when m = 1, so q = m, in this case, the finite field is
composed by the set {0, 1, ..., p − 1} . While m > 1, finite fields are built
from a irreducible polynomial of degree m with coefficient over base field Fp,
and its called extension field. Elements of extension field are the set of all
polynomial of degree m− 1 with coefficient on Fp. Naturally, the extension
field contains the base field Fp as subfield in fact, polynomials of degree 0,
i.e., constants, are entries of base field Fp.
Actually, every finite field Fq with prime power q = pm elements contains
at least one subfield, and with the same ration, for codes, at least a subfield
subcode.

43

6.1 Subfield Subcodes

The finite field Fq=pm withm = 1 has a unique subfield, which corresponds to
the field itself. So, it is not a case worth studying. But things get interesting
for m > 1: for each divisor m′ of m except the 1, there exists a smaller
subfield Fb with b = qm

′

. Correspondingly for codes, a subfield subcode
whose entries are in a subfield Fb ⊆ Fq. The subcodes obviously, as the
subfields, have fewer codewords. Therefore, attacking the subcodes should
come with lower complexity. And also, subfield subcodes are isomorphism
of the starting code, hence, they maintain many properties of the source
code.
A way to construct subfield subcode is illustrated below:
Considering ℓ = m

m′ , Fq can be seen as a ℓ-dimensional vector space over the
base field Fb: Let φb : Fq 7→ F

ℓ
b denote the map that brings any element of

finite field Fq into a ℓ-length vector over the base field Fb. Let H ∈ F
(n−k)×n
q

be a parity-check matrix for C, and denote by H′ ∈ F
ℓ(n−k)×n
b = φb(H),

that is, the parity-check matrix obtained by replacing each element of H
with the ℓ-length vector. Then, B is the code over Fb whose parity-check
matrix is H′. Since H′ has ℓ(n− k) rows, the maximum dimension of B is

n− ℓ(n− k) = n
(
1− ℓ(1−R)

)
,

so that the maximum achievable rate is Rℓ = 1− ℓ(1−R).
Notice that if the dimension of the starting code is too small, i.e., if n − k
is too large, it may happen that ℓ(n− k) > n. In such a case, H′ has more
rows than columns and, with high probability, generates the whole space
F
n
b . In such cases, the subcode B would be empty.

6.2 A property of subfield subcodes

The reason to study the subfield subcodes comes from the fact that, by
extracting the subcodes from two equivalent codes, i.e. which differ by a
permutation, they are also equivalent. In mathematical form:

Theorem 1. Let q = pm and b = pm
′

, with ℓ = m/m′. Let C ⊆ F
n
q and

C ′ = π(C), with π being a permutation. Let B = φℓ(C) and B′ = φℓ(C
′).

Then, B′ = π(B).

Therefore, all algorithms for solving PEP can be applied to the subfield
subcode instead of the initial code. With a hope of having a reduction in
complexity.

44

6.3 Rank of a randomly generated matrix

Random matrices are fundamental for algorithms or protocols in a security
application. As they provide maximum uncertainty, i.e., entropy, on the keys
of cryptographic scheme, making it difficult to discover. Therefore studying
random matrices and their properties provides greater consciousness of the
limits and potential of the cryptographic scheme on which it is based.
In the case of the LESS digital signature scheme, the random matrix and
its permuted form the public keys, and the permutation matrix connecting
the two matrices need not be revealed.
This section talks about the probability of having a rank rk of the random
matrix lower than its number of rows k, assuming that the matrices taken
into consideration has entries over a finite field Fq and always have the num-
ber of rows k smaller than the number of columns n as they are considered
as the generator matrix of a code.
The condition of having full rank, i.e. rk = k, is that all the k rows of the
random matrix are linearly independent. Therefore starting from the first
row, since it does not have to compare with any other rows it is certainly a
linearly independent unless it is a null row (so the probability that this not
happens is 1 − 1

qn). At this point adding the second row, its condition of
not being linearly dependent on the first is that it must not be a multiple
of it. Since the entries are based on a finite field Fq, for a codeword (row),
there are only q multiples of it. So the probability that the second row is
independent from the first is that extracting randomly a n-length vector
based on Fq must not obtain a vector that is a multiple of the first row. In
mathematical formula:

Pr{v2 ̸= jv1; ∀j ∈ {1, ..., q − 1}} = 1−
q

qn
(15)

Doing an induction for the i-th row, the constraint on this row is that it
must not be a linear combination of the other i− 1 remaining rows:

Pr{vi ̸= w; ∀w ∈ span(v1, ...,vi−1)} = 1−
qi−1

qn
(16)

45

Combining the constraints for each row, the probability of having a full-rank
random matrix is as follows:

Pr{rk = k} =
k∏

i=1

1−
qi−1

qn

≈
k∏

i=1

e
− qi−1

qn

= e
−

∑k
i=1

qi−1

qn

= e−
∑k

i=1 q
i−1−n

= e
−

∑k
i=1

(
1
q

)n+1−i

= e
−

∑n
i=n−k+1

(
1
q

)i

.

(17)

We now consider the exponent of the above formula. We notice that

n∑

i=n−k+1

(
1

q

)i

=

n∑

i=0

(
1

q

)i

−

n−k∑

i=0

(
1

q

)i

.

We now use the properties of the geometric series: for any α < 1, it holds
that

∑m
i=0 α

i = 1−αm+1

1−α . So:

n∑

i=0

(
1

q

)i

=
1− (1/q)n+1

1− 1/q
,

n−k∑

i=0

(
1

q

)i

=
1− (1/q)n−k+1

1− 1/q
,

so that

n∑

i=n−k+1

(
1

q

)i

=
n∑

i=0

(
1

q

)i

−
n−k∑

i=0

(
1

q

)i

=
qk − 1

(q − 1)qn
.

Since qk ≫ 1, we approximate qk−1
(q−1)qn ≈ qk

(q−1)qn = 1
(q−1)qn−k . We conclude

by considering that e−x ≈ 1 − x for small x; for large n − k, we have
1

(q−1)qn−k ≪ 1, so that

e
−

∑n
i=n−k+1

(
1
q

)i

≈ e
− 1

(q−1)qn−k ≈ 1−
1

(q − 1)qn−k
.

46

Thus, the probability of not having a full-rank matrix in a square random
generation is approximated as 1/q. Furthermore, as q increases, or the rate
R decreases from 1, the matrices tend to be full-rank (polynomially with q
and exponentially with 1−R).

6.4 Hull of a randomly generated matrix

The dimension of the hull is very important in solving the PEP. In fact when
the hull of the matrix has a high dimension, the problem is difficult to solve.
While for the hull with small dimensions the problem is easy especially when
the dimension can be considered a constant, In this case the solution of the
problem becomes polynomial time.
Assuming the case of a random matrix which the number of rows is less than
or equal to the number of columns k ≤ n. The hull dimension of a matrix
G can be easily obtained, without knowing its construction, by calculating
the rank of the matrix GG⊤.
There are two extreme cases: If the dimension of the hull is 0, then the rank
of this matrix is rank(GG⊤) = k. On the other hand, if the dimension
of the hull is equal to k, then rank(GG⊤) = 0. Hence a general formula
of hull dimension d is d = k − rank(GG⊤). An analytical formula on the
probability for the hull dimension had not been found during the study. But
a series of experiments (the corresponding code is in the Appendix) are done
with the achievement of the fact that the hull dimension is usually zero or
unitary and rarely greater than 2. However, after various experiments on
the occurrence of the dimension on 100000 random matrices, a expression
for the hull dimension probability when it is not 0 can be represented like
this:

Pr{d = x} =
1

q(
x+1
2)

(18)

Computing the above formula for growing x, we get

x
(
x+1
2

)

1 1
2 3
3 6
4 10
5 15
6 21
7 28

47

so that for d = 0 we can approximate

Pr{d = 0} = 1−
1

q
−

1

q3
−

1

q6
− · · · ≈ 1−

1

q

The results proving this are given by the tables 9, 10, 11 and 12, which
reports the results of the SageMath simulation on 1000000 random matrices.
As can be seen from the tables, when the rate deviates from 1, the formula
works, while for rates close to 1, large hull dimensions are more often, but
they still extinguish exponentially. This enlargement could be linked to the
fact that, with rates near 1, the matrix under test is closest to square, so
it has more chance to be not full-rank. Contrary to the intuition of having
a high rate gives the code of matrix a small parity-check matrix and their
intersection is small.
The Figure 6 shows the theoretical trend of random code’s hull dimension
for different values of q, as can be seen from it, the greater q is, the lower
the probability of having high hull dimension. Except the case for q = 2,
contrary to the simulation related to table 9, where the probability of having
a trivial hull is less than the probability of having a hull with dimension 1.

d occurrency relative occurency theorical relative occurency

0 427897 0.427897 0.358398

1 415366 0.415366 0.500000

2 138231 0.138231 0.125000

3 17313 0.017313 0.015625

4 1179 0.001179 0.000976

5 14 0.000014 0.000030

Table 9: Table hull dimension with q = 2, k = 6, R = 1
2

d occurrency relative occurency theorical relative occurency

0 639404 0.639404 0.628240

1 318626 0.318626 0.333333

2 40453 0.040453 0.037037

3 1499 0.001499 0.001371

4 18 0.000018 0.000016

Table 10: Table hull dimension with q = 3, k = 6, R = 1
2

48

d occurrency relative occurency theorical relative occurency

0 793476 0.793476 0.791935

1 198185 0.198185 0.200000

2 8270 0.008270 0.008000

3 69 0.000069 0.000064

Table 11: Table hull dimension with q = 5, k = 6, R = 1
2

d occurrency relative occurency theorical relative occurency

0 760497 0.760497 0.791935

1 229533 0.229533 0.200000

2 9579 0.009579 0.008000

3 390 0.000390 0.000064

4 1 0.000001 0.0000001

Table 12: Table hull dimension with q = 5, k = 6, R = 5
6

49

Figure 6: theoretical random code hull dimension for different q

6.5 PEP of randomly generated matrix resolution

PEP on random matrices are easy-to-solve problems. In fact, as seen in the
SSA algorithm section, the complexity of this algorithm, if not refined, is
exponential in dimension k of the code, however, with a small adjustment
on the use of the code, that is, instead of considering the code itself, it
considers its hull. At this point, since the matrix is random and, as already
seen in section 6.4, these matrices usually have a very small hull dimension,
i.e. the occurrences of high hull dimensions drop exponentially. So the SSA
algorithm will generally only take q, q2 or q3 calculations.
On the other side, in the most frequent case of the zero-dimensional hull,
the technique of section 2.6.1 can be applied, i.e. the reduction of the PEP
to the GIP.

6.6 Hull of a subfield subcode

When the codes or equivalently the matrices are built on a finite field q = pm

with m ≥ 1, then there are certainly a subfield subcodes which will have the

50

codeword space smaller than the starting code, therefore studying proper-
ties of subfield subcodes could improve the attack. Since the permutation
is inherited by the subfield subcodes then it makes one wonder if the hull
of the subfield subcodes inherits the permutation of the starting code, that
is, if the permutation is transitive through the calculation of the subfield
subcodes and it’s hull, and that’s actually how it is. At first glance the idea
of having to use the hull of the subcode is not thought of since one might
think that the hull dimension of the subfield subcode inherits the hull size
of the source code. The surprising thing that during the tests done on the
subfield subcodes is exalted is that the dimension of their hull has nothing
to do with the hull of the starting code. Furthermore it tends to be similar
to a completely random code or matrix hull, namely, its dimensions appear
with the same probabilities of a random matrix hull.
The figure 7 and 8 (the corresponding code that originate the Figures is in
the Appendix) shows both the probabilities of the hull dimension of the sub-
field subcode of a code with specific hull dimension d and the hull dimension
of a random matrix with entries on the same subfield and the same number
of rows and columns of subcode’s matrix. As can be seen from the figure,
the two curves are almost overlapped. Except the case which the source
code has a hull dimension equal to the dimension k of the code in which, it
has a small peak at 2. But in any case, for high values of hull dimension
they have negligible probability.

6.7 Simple GIP solver

To test and solve the PEP in the case of a code with zero hull dimension
and to have an auxiliary solver for the new algorithm of the next section,
a simple GIP solver with a complexity of O(n2) has also been written, this
algorithm could fail (it might spit out an incorrect permutation matrix)
which is more frequent when q is small.
A description of the solver is the following:
As said in section 2.6.1, the GIP solver finds the permutation matrix between
two adjacency matrices, therefore given two matrices of the two equivalent
codes, they must first be transformed into an adjacency matrix. So once
done, consider the two adjacency matrices.
Remind that the two adjacency matrices are square matrices, now looking at
the GIP: The transformation or isomorphism of the graph does a very simple
thing. Considering a adjacency matrix, the multiplication with the matrix
P at the right permutes the columns. Subsequently the multiplication on
the P⊤ at the left permutes the rows, that is, first a permutation of columns

51

Figure 7: Hull prob. for code with q = 5, ℓ = 2, n = 20, k = 15 and d = 4

Figure 8: Hull prob. for code with q = 5, ℓ = 2, n = 20, k = 15 and d = 5

52

and then a permutation of rows is applied to this matrix.
The solver first does a very tricky thing which is to sort all the rows of the two
adjacency matrices. Since there is no change of basis in this transformation,
the reordering of all the rows of the two matrices causes the permutation of
the columns to be elided. The side effect of sorting which causes the failure
is that multiple rows with same arrangement and values may come out, and
this effect happens often when q is small, e.g. 2, 3 and 5.
After, it is enough to compare the two matrices row by row and the matrix
P can be obtained again.

6.8 A New PEP Solver for codes over non prime field

In this section, a new algorithm for solving PEP is proposed, which works
in the case of code defined on a finite field Fq with q an extension field, i.e.
q = pm with m > 1, and having a high predefined hull dimension d. By
aggregating the techniques and observations discussed above, for example
the new signature, the reduction to the GIP with the solver, the use of the
code hull and the use of the subfield subcode.
The strategy of this algorithm is to avoid directly calculating the signature
of the code with high hull dimension, but instead exploiting its properties.
Considering the two codes (matrices) of the PEP, first of all the new al-
gorithm directly calculates the subfield subcodes on codes, there are three
cases for the starting codes, the rate R < 1

2 , R > 1
2 or R = 1

2 . special cases,
including R = 1

2 , for them there are methods to get around, an example is
to puncture or shorten a column to the code to deviate from R = 1

2 . The
details will not be discussed here. When R < 1

2 , the dual code must be
considered as the candidate to calculate the subfield subcode. Moreover for
same reason, the choice of parameter ℓ must ensure that ℓ(n−k) < n, other-
wise it will very likely to obtain a subfield subcode that has a parity matrix
greater than the length n of the code, i.e. a code with a void generator
matrix is an empty code. So ultimately, the algorithm works for R < 1

ℓ or
R > 1− 1

ℓ .

The first step, i.e., considering the subfield subcode, already reduces sig-
nificantly the complexity of the code to be operated.
But as mentioned in section 6.6, the hull of the subfield subcode has con-
stant dimension therefore for a further improvement on the attack, code’s
hull is considered. At this point, referring to section 6.5, if the dimension of
the hull is zero, the algorithm ends with the transformation into GIP and
retrieve directly P using the solver, otherwise it apply the SSA with the new

53

signature.
Finally if the case is very unlucky, i.e. the dimension of the hull of subfield
subcode is very large then, this new algorithm is absolutely an unsuitable
solution to solve it.

The description of the algorithm just mentioned is summarized in the
following drawing:

Instance:
(
C, C ′

)

Ambient: extension field Fq

Hull dimension: d

Instance:
(
B ⊆ C, B′ ⊆ C ′

)

Ambient: subfield Fp ⊆ Fq

Hull dimension: d′

SSA GIPOthers

d′ large d′ ̸= 0 d′ = 0

Easy instances

6.9 GIP fullcode

In the literature a method has been proposed for resolving the PEP by re-
ducing it to GIP with non trivial code’s hull. The technique called GIP
fullcode is very simple:
Since the reduction to GIP requires that the square matrix GG⊤ must be
full rank, otherwise matrix inversion cannot be applied. Since this rank de-
pends on the dimension of the hull, i.e. rank(GG⊤) = k− d, where k is the
dimension of the code and d the dimension of it’s hull. One can shortening
d columns of the matrix to make the hull of the punctuated code, with a

54

(k − d) × (n − d) dimensional matrix, become trivial. By shortening them
randomly, it is very likely that two non-equivalent codes are obtained, so
this procedure must be repeated by

(
n
d

)
combinations until a combination,

of the d indices shortened that lead to two equivalent codes, is found.
After a series of simplifications on the complexity of this procedure, one ob-
tains that for a constant d, the complexity of GIP fullcode is like O(nd+2.3),
on the other side, for a hull dimension linear with code length n, that is,
d = αn, then the complexity will be dominated by O(nn). For simplicity,
we consider the difficult as O(nd+2.3).

6.10 New Solver complexity estimation

In this section the performances, both in formula and in numbers, of the
different PEP resolution algorithms are presented.
The tables 14 and 15 shows the Big O argument in numerical form. As can
be seen from tables, both GIP fullcode and Sendrier’s SSA are very sensitive
to the dimension d of the code hull, in other words, they are exponential in
d. While the new solver, despite some constraints on the parameters, due to
the randomness of the subfield subcode’s hull dimension, it almost always
works with very small hull dimensions. When hull dimension d is zero it
uses the GIP solver otherwise it launches the SSA. Hence, this new solver
can be considered polynomial time.
The difference in complexity between those algorithms as the hull dimension
varies are presented in Table 13 (the corresponding code that compute the
complexities is in the Appendix), for large hull dimensions, both SSA and
GIP fullcode works in exponential time while the new solver is still polyno-
mial.
Moreover, the Figure 9 shows a visual comparison of the different algorithms.
Since the y axis is in the logarithmic scale, an exponential growth is rep-
resented as a straight line. So, as can be seen from the Figure, both GIP
fullcode and SSA have an exponential trend as hull dimension d increases.
While the New solver remains polynomial.

The
The complexity for GIP Fullcode is:

O(nd+2.3) = O(2(d+2.3) log2 n) (19)

And for Sendrier’s SSA:
O(n3 + log(n)qd) (20)

55

Hull dimension Cost

SSA Small Polynomial

SSA High Exponential

GIP fullcode Small Polynomial

GIP fullcode High Exponential

New solver Small
Polynomial

New solver High

Table 13: Table of SSA, GIP fullcode and new solver complexity

Finally, the new solver:

O(pr{d = 0} · n2 +

n/2∑

i=1

Pr{d = i} · (n3 + log(n) · (pm
′

)d)) (21)

n k q d GIP fullcode SSA Sendrier ℓ Our new solver

20

3
22

1 14.26 12.96
2

11.24

3

22.90 12.99 11.24

24

22.90 14.30 9.78
22.90 14.30 4 9.78

6

22.90 14.30

2

9.78

5
31.54 21.58 9.78

32 31.54 17.48 10.29
34 31.54 33.27 8.95

8
52

8
44.51 38.73 9.46

72 44.51 46.49 9.12

Table 14: GIP vs Sendrier SSA vs New solver. All time complexities are
expressed in log2 units

6.11 Frobenius endomorphism

Given a finite field Fq, with q = pm, there is an endomorphism, precisely,
an automorphism Fp : Fq 7→ Fq called Frobenius endomorphism, that is, it
maps an entry of finite field into another entry with the following expression:

Fp(x) = xp (22)

56

n k q d GIP full code SSA Sendrier ℓ Our new solver

30

6

24

5

35.82 21.78 2 11.31
28 35.82 41.77 4 9.98
34 35.82 33.47 2 10.26
38 35.82 65.16 4 9.82
58 35.82 94.64 4 9.81
74 35.82 57.91 2 9.83
74 35.82 57.91 4 9.83

10

24 5 35.82 21.78

2

11.31
34 10 60.35 65.16 10.26
54 10 60.35 94.64 9.88
74 8 50.54 91.60 9.83

40 15

28

10

65.46 81.88

2

10.85
34 65.46 65.28 11.21
38 65.46 128.68 10.65
58 65.46 187.64 10.64

Table 15: GIP vs Sendrier SSA vs New solver. All time complexities are
expressed in log2 units

The transformation applied on a code’s generator matrix G is invariant to
permutation, i.e., let π a permutation:

G′ = π(G) ⇒ Fp(G
′) = π(Fp(G)) (23)

So, it may be useful for the attack since it is only a remapping of the
elements, it certainly does not make the situation worse.

6.12 A More versatile subcode exploiting the Frobenius en-
domorphism

In section 6.8, a PEP solver for codes defined over a extension field is pre-
sented. This solver has constraints on the structure of the code due to the
existence of the subfield subcode, i.e. on the maximum rate R that the code
can assume for the chosen ℓ, it must be R < 1

ℓ or R > 1− 1
ℓ , in other hand,

the possible values of ℓ are bound by the power m of the prime number p of
the field cardinality q = pm. So, some choices of the rate R and the value
of m can prohibit the use of this solver.
This section presents a more versatile subcode that is applicable with any
power m > 1 and every rate R except R = 1

2 . The idea is as follows:

57

Figure 9: Complexity (log2) comparison between GIP fullcode, Sendrier’s
SSA and New solver as the code’s hull dimension increases. Fixing n = 50,
k = 20 and q = 58

Assuming that the code rate R is greater than 1
2 . First compute the Frobe-

nius endomorphism Fp(G) of the code generator matrix G, then intersect
Fp(G) with G. The new subcode to consider is the intersection, it’s dimen-
sion is at least one, and preserves the permutation.
For the cases of codes with rate R > 1

2 , just consider the dual code, which
will have the complementary rate. On the other hand, it is also easy to
see that, when the defined finite field is prime, i.e., the finite field is not an
extension field, then the Frobenius automorphism will return the code itself,
so the intersection does not bring any reduction.
By doing tests with SageMath, it was noticed that the dimension of the in-
tersection is almost 1, while high dimensions rarely appear, that is, without
an analytical expression, the probability of having high dimensions decreases
exponentially.
Once the such intersection has been calculated, since it already has a very
small dimension, to solve the subcode one can use the solver for GIP if the
hull is null, otherwise SSA.

58

6.13 Decision on the equivalence between two codes through
reduction in GIP

The solver proposed in section 6.7 was a search-type solver, and could be
integrated into the GIP solver of section 6.8. But due to its poor resolution
nature it often fails, that is, after a reordering of the row elements on one
of the two adjacency matrices, it is likely that multiple rows becomes iden-
tical, especially for small q. Therefore it brings an ambiguity in the choice
of permutation.
On the other hand, a suitable search-type solver python code that manages
to solve the isomorphism has not been found. But a decision-type solver
has been found, that is, this type of solver says yes if the two graphs are
isomorphic, otherwise it says no. In fact, the is isomorphic function of the
networkx library performs this type of resolution. With a few settings, the
function becomes suitable for solving the decision on GIP with adjacency
matrices obtained from the reduction of the PEP.
Even if the is isomorphic function does not return the permutation matrix
that links the two adjacency matrices, by doing experiments using this al-
gorithm, the possibility of the resolution of the PEP through the reduction
into GIP can be assured.
Below, in the table 16, the discriminating capacity and execution times of
the function by giving it either two adjacency matrices obtained from two
equivalent codes or from two random codes are presented, obviously the
codes are with null hull.
Considering that the two input matrices to the is isomorphic function are
obtained by transforming the code’s generator matrices with null hull into an
adjacency matrix. In this regard, the label equiv false represents the num-
ber of cases out of a total of 500 that, the is isomorphic function declared
that the two adjacency matrices are not isomorphic when in fact they were
obtained from two equivalent codes. While the label random true represents
the number of cases that, the function declared that the two adjacency ma-
trices are isomorphic when these matrices were obtained from two random
codes. Finally, the labels euiqv time and random time indicates the average
execution time, expressed in seconds, of the function when two adjacency
matrices from two equivalent codes and two random codes are passed re-
spectively.
As can be seen from the table, The number of true negatives is always 0 so
it gives an indication that the function works, i.e., the function recognizes
the equivalent code by having their transformed adjacency matrices. While
false positives are exalted only when n is small, i.e. in the case n = 10 in

59

the table, and for a q equal to 2, which are more when the rate is far from
a 1

2 and fewer when the rate is 1
2 . Furthermore, the calculation time of the

function both for equivalent code and for random code does not depend on
the code rate R, in fact these matrices are transformed into adjacency ma-
trices which has dimension n×n therefore, given a fixed n, the dimension k
does not affect execution time. On the other hand, if n and k are fixed and
only the finite field Fq is varied, the execution time grows as the cardinality
q increases.
Looking from afar, one notice that the execution time for equivalent codes
grows considerably as n increases but does not grow much for random codes.
This situation is understandable since it is enough to find an edge of the
graph that cannot be obtained after a permutation, then one can immedi-
ately state that they are not isomorphic. While many parts of the adjacency
matrix must be tested to be sure that they are isomorphic, a rough estimate
is that the complexity grows as n2 which represents the number of elements
in the matrix.

For the complexity of the latter, a further experiment was done by setting
k = n

2 , which means rate R = 1
2 , and finite field Fq fixed at q = 28. The

results are reported in table 17 and as graphic in Figure 10 (in the Figure, the
computational complexities of isometry between random codes are omitted).
Looking at the table or chart, as n increases the complexity of checking two
isomorphic matrices grows polynomially, while the time spent on checking
two random matrices doesn’t change much.

60

Figure 10: Time complexity of function is isomorphic with growing n

7 Conclusion

With this thesis work, a new method to solve the case of Permutation Equiv-
alence Problem of Code Equivalence Problem has been presented. The tech-
nique is polynomial time, and works for a certain instance of the problem.
Like all other problems, there are parameter choices that are very vulnerable.
Although the new method only breaks a narrow instance of the problem, we
have demonstrated that the problem is still difficult if the code structure is
chosen carefully.

The discriminators, i.e. the signatures, used in SSA for discriminating
a code with another non equivalent one have always exploited the com-
putation of the weight distribution. In this thesis, we have improved the
signature while maintaining the computational complexity of O(qk), i.e., in-
stead of calculating the weight distribution, which requires calculating all
codewords, we directly considered this set of codewords as signature. Fur-
thermore, to reduce the signature size, the hash of the sorted set is taken.
The improvement about the effectiveness is theoretical, but tests developed
in section 5.2 shows that it has really a significant improvement.

Subsequently, in the most substantial part of the thesis, we have studied

61

a new method to transform PEP instances into new PEP instances for codes
defined on a extension field, i.e., non-prime field. In particular, when the
initial code is a self dual code, that is, with a high dimensional hull which
in the literature is considered a safe condition for existing algorithms, the
final code has a small hull with very high probability, similar to a hull of a
completely random code. This permits the use of efficient algorithms.

The idea of the transformation is to consider the subfield subcodes, which
maintains the structure of the permutation. Then if the latter code has a
null hull we solve it with a GIP solver after a reduction to GIP (these GIP
algorithms are polynomial time), otherwise we proceed with SSA which at
this point, with very high probability, ends in polynomial time. Our results
show that, for these instances of PEP previously thought to be difficult, it
is now possible to use an efficient solver, which on average has a polynomial
time complexity. The Figure 10 of the 6.10 section has illustrated, theoret-
ically, the estimation of the complexity of the existing algorithms with the
new solver. In short, the PEP is easy (polynomial time), when the codes
are defined over a non-prime field.

For this reason, we strongly recommend to avoid using codes with the
aforementioned structures for cryptographic applications, because they are
easy to attack.

To conclude, the case of Linear Equivalence Problem has not yet been
studied in this work. But with the research done in the thesis, the attack
could also be extended to the case of LEP.

62

n k q equiv false random true equiv time random time

10

2

2

0

41 2.172E-04 3.008E-05
7

0

3.670E-04 1.432E-05
16 4.116E-04 1.772E-05
256 5.052E-04 5.126E-05
65536 6.086E-04 7.722E-05

5

2

0

5 2.699E-04 1.638E-05
7

0

3.537E-04 1.316E-05
16 4.064E-04 1.620E-05
256 4.788E-04 5.528E-05
65536 6.142E-04 8.068E-05

8

2

0

52 2.212E-04 3.384E-05
7

0

3.554E-04 1.298E-05
16 4.045E-04 1.624E-05
256 4.754E-04 5.338E-05
65536 4.863E-04 7.946E-05

20

5

2

0 0

1.291E-03 1.908E-05
7 1.386E-03 1.808E-05
16 1.730E-03 1.896E-05
256 2.378E-03 6.204E-05
65536 2.516E-03 1.977E-04

15

2

0 0

1.180E-03 2.116E-05
7 1.405E-03 2.088E-05
16 1.747E-03 2.046E-05
256 2.418E-03 7.838E-05
65536 2.566E-03 2.002E-04

30

5

2

0 0

2.554E-03 3.188E-05
7 3.286E-03 2.534E-05
16 4.237E-03 2.624E-05
256 6.728E-03 6.228E-05
65536 7.065E-03 3.064E-04

15

2

0 0

2.222E-03 2.494E-05
7 3.278E-03 2.414E-05
16 4.186E-03 2.432E-05
256 6.686E-03 7.774E-05
65536 7.045E-03 3.146E-04

25

2

0 0

4.055E-03 2.488E-05
7 3.260E-03 2.534E-05
16 4.212E-03 2.412E-05
256 6.688E-03 7.576E-05
65536 7.059E-03 3.214E-04

Table 16: True negative, false positive and execution time of is isomorphic
function

63

n k q equiv time random time

10 5 256 4.088E-04 5.452E-05

20 10 256 1.903E-03 6.564E-05

30 15 256 5.222E-03 6.230E-05

50 25 256 1.987E-02 5.986E-05

70 35 256 4.932E-02 6.648E-05

100 50 256 1.319E-01 8.348E-05

120 60 256 2.129E-01 7.776E-05

150 75 256 3.907E-01 8.986E-05

200 100 256 8.591E-01 1.467E-04

Table 17: Time complexity of function is isomorphic with growing n

64

References

[1] László Babai. Graph isomorphism in quasipolynomial time. In Proceed-
ings of the forty-eighth annual ACM symposium on Theory of Comput-
ing, pages 684–697, 2016.

[2] Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha. Permuta-
tion code equivalence is not harder than graph isomorphism when hulls
are trivial. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 2464–2468. IEEE, 2019.

[3] Alessandro Barenghi, Jean-François Biasse, Tran Ngo, Edoardo Per-
sichetti, and Paolo Santini. Advanced signature functionalities from the
code equivalence problem. International Journal of Computer Mathe-
matics: Computer Systems Theory, 7(2):112–128, 2022.

[4] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and
Paolo Santini. LESS-FM: fine-tuning signatures from the code equiv-
alence problem. In Post-Quantum Cryptography: 12th International
Workshop, PQCrypto 2021, Daejeon, South Korea, July 20–22, 2021,
Proceedings 12, pages 23–43. Springer, 2021.

[5] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo
Santini. LESS is more: code-based signatures without syndromes. In
Progress in Cryptology-AFRICACRYPT 2020: 12th International Con-
ference on Cryptology in Africa, Cairo, Egypt, July 20–22, 2020, Pro-
ceedings 12, pages 45–65. Springer, 2020.

[6] Tung Chou, Edoardo Persichetti, and Paolo Santini. On Linear Equiv-
alence, Canonical Forms, and Digital Signatures. 2023. https:

//eprint.iacr.org/2023/1533.

[7] Edoardo Persichetti and Paolo Santini. A new formulation of the linear
equivalence problem and shorter LESS signatures. Cryptology ePrint
Archive, 2023.

[8] Erez Petrank and Ron M Roth. Is code equivalence easy to decide?
IEEE Transactions on Information Theory, 43(5):1602–1604, 1997.

[9] Nicolas Sendrier. On the dimension of the hull. SIAM Journal on
Discrete Mathematics, 10(2):282–293, 1997.

65

[10] Nicolas Sendrier. Finding the permutation between equivalent linear
codes: the Support Splitting Algorithm. IEEE Transactions on Infor-
mation Theory, 46(4):1193–1203, 2000.

66

Listings

1 code utils . 69
2 compare puncturing shortening sendrier 77
3 test mean colliding indices . 79
4 shortening multiple columns 80
5 comparison sendr new . 82
6 test hull subf random . 84
7 random code hulldim occurency 86
8 test is isom forgip . 87
9 new solver . 90
10 theorical complexity GSN . 92

8 Codes explanation

This appendix reports the code we have used for all the simulations. The
meaning of each reported code is reported below.

1. This Code is used as a library, it contains functions useful for the
following codes, including the generation of weakly self dual code, the
generation of two equivalent code, the hull computation, the Sendrier’s
signature, the New signature etc..

2. Contains the performance simulation as hull dim increases on SSA
using different method to sign the code, as Puncturing, Shortening and
Sendrier’s signature. After the simulation, it plots a graph showing the
mean colliding indices of the signatures.

3. Contains the simulation about the trend of mean colliding indices of
SSA as hull dim increases for different values of q. Then it plots a
graph showing the curve for each q.

4. Tests if the operation of shortening multiple columns instead of one
columns during the SSA increases the performance in terms of mean
colliding indices.

5. Compares the performance between the Sendrier’s signature and our
new signature for SSA, and plots the result for increasing hull dim.

6. Compares the trend of probabilities of having a specific value of hull dim
between a subfield-subcode obtained from a weakly self dual code and a

67

random generated code with same field and dimensions of the subfield-
subcode. In the end, the script plots the results.

7. This script records the occurrency of hull dimensions on a large quan-
tity of randomly generated matrices.

8. It confirms the effectiveness of the reduction to GIP from PEP using
is isomorphic function powered by Networkx library, that is, to verify
if the adjancency matrices obtained by reducing the two equivalent
codes are isomorphic and in other hand, if the adjancency matrices
obtained by reducing two random codes are not isomorphic.

9. This Code is a Proof of concept of PEP resolution for codes defined on
a non-prime finite field. It includes the computation of subcodes, the
reduction to GIP if the hull is null and the SSA with new signature.

10. This script performs a numerical calculation of the complexities of
the different algorithms for solving the PEP such as GIP fullcode,
Sendrier’s SSA and New solver. Then plots the difference between the
New solver and other algorithms for increasing hull dim.

68

Code Snippet 1

Listing 1: code utils
1 import time

2 import numpy

3 import networkx as nx

4 import matplotlib.pyplot as plt

5
6 ’’’ ### Declarations:

7 hull(C)

8 generate_permutation(Fq,n)

9 generate_change_of_basis(Fq,k)

10 code_shortening(C,columns)

11 generate_weakly_self_dual(Fq,n,k,hull_dimension)

12 Sendrier_signature(Fq,C,i)

13 get_H_subcode(H, ell , Fq, Fp)

14 new_signature_function(Fq ,B)

15 build_adjacency(G)

16 GIP(G,G_prime ,P)

17 generate_weakly_self_dual_code(Fq,n,k,k_hull) #min dim hull 1

18 genTwoEquiv(Fq ,n,k,hull_dim)

19 frob_intersec(G)

20 FqToIntMatrix(G)

21 GIP_is_isomorphic(AdjancencyMatrix1 ,adjM2)

22 ’’’

23
24 #Get the intersected code with entry over Fq between C1 and C2.

25 def code_intersection(C1 ,C2,Fq):

26 #get the generator matrix of two codes

27 G1 = C1.generator_matrix ();

28 G2 = C2.generator_matrix ();

29 n = C1.length ();

30 #declare a n-dimensional vector space over Fq.

31 Vn = VectorSpace(Fq,n);

32 #consider V1 and V2 as subspaces created

33 #from basis defined by G1 and G2.

34 V1 = Vn.subspace(G1);

35 V2 = Vn.subspace(G2);

36 #get the intersection

37 V12 = V1.intersection(V2);

38 #retrieve the basis of intersected space ,

39 #that is, the generator matrix of intersected code.

40 G12 = V12.basis();

41 return(G12);

42
43 #################################

44
45 #Compute the hull of a code; return the generator matrix of hull.

46 def hull(C):

47 #convert the generator matrix to code.

48 C = LinearCode(C)

49 #retrieve the finite field on which we work

50 Fq = C.generator_matrix ()[0 ,0]. parent ()

51 C_dual = C.dual_code (); #get the dual code

52 #get the intersection between code and itself ,

53 #that is, the hull

54 G_hull = code_intersection(C,C_dual ,Fq);

55 return matrix(G_hull) #return a matrix

56
57 #################################

58
59 #Generate a n * n permutation matrix.

60 def generate_permutation(Fq,n):

61 #consider a random

62 P = Permutations(n).random_element ();

63 #convert the permutation to permutation matrix

64 P_matrix = matrix(Fq ,P.to_matrix ());

65 return P_matrix;

66
67 #################################

68
69 #Generate a k * k change of basis matrix.

70 def generate_change_of_basis(Fq,k):

71 rank_S = 0;

69

72 #regenerate until we get a full rank matrix

73 while rank_S < k:

74 S = random_matrix(Fq,k,k);

75 rank_S = rank(S);

76
77 return S;

78 #################################

79
80 #parameters: C: code to short , columns: list of columns to remove.

81 def code_shortening(C,columns):

82 #convert the generator matrix to code.

83 C = LinearCode(C)

84 #consider the parity check matrix

85 H = C.parity_check_matrix ();

86 #create a new zero matrix with same number of columns of H

87 #and number of rows as many columns to remove ,

88 #then for each row , add a 1 to the position indicated by parameter columns.

89 A = zero_matrix(len(columns),H.ncols());

90 for i in range(len(columns)):

91 A[i,columns[i]]=1; #Add rows to parity check matrix like [1, 0, 0]; [0, 1, 0]

92
93 #merge the new matrix A at the bottom of H

94 Hext = block_matrix ([[H],[A]]);

95 Hext_code = LinearCode(Hext);

96 #get the dual code of the extended H built before.

97 Gext = Hext_code.parity_check_matrix ();

98 #the Gext so obtained has in the columns indicated by parameter ’columns ’

99 #all zeros , so we delete these columns.

100 G_shorted = Gext.delete_columns(columns);

101 return (G_shorted);

102
103 #################################

104
105 #Generate a weakly self dual code with desired hull dimension.

106 def generate_weakly_self_dual(Fq,n,k,hull_dimension):

107
108 #n = 60; #code length

109 #k = 30; #code dimension

110 #q = 127; #finite field cardinality

111 #hull_dimension = 7; #desired dimension for the hull

112 #Fq = GF(q); #define finite field

113
114 ###Start with a self orthogonal codeword

115 s = 1; #s is the inner product of the codeword with itself

116 #while : repeat until the codeword is not self orthogonal.

117 while s !=0:

118 a = random_vector(Fq,n); #random vector with length n

119 #Compute inner product <a ; a>

120 s = 0;

121 for i in range(n):

122 s+= (a[i])^2;

123 #Check if the number of zeros is smaller than n

124 nzero = a.list().count (0);

125 if nzero == n:

126 s = 1;

127
128 #convert to matrix

129 nG = matrix(a);

130
131 hd = 1; #the initial Hull dimension is 1

132 #construct the code until we get to the desired hull dimension.

133 while hd < hull_dimension:

134 #Pick codeword from the dual , until you find a self -orthogonal word

135 C = codes.LinearCode(nG);

136 Cd = C.dual_code ();

137 s = 1;

138 while (s !=0):

139 b = Cd.random_element ();

140 s = 0;

141 for i in range(n):

142 s += (b[i])^2;

143 nzero = b.list().count (0);

144 if nzero == n:

145 s = 1;

146
147 #Enrich nG with the new codeword

70

148 nG_new = block_matrix ([[nG],[matrix(b)]],subdivide=False);

149 C_hull = hull(nG_new);

150 hd_new = matrix(C_hull).nrows ();

151 #if hd_new > hd:

152 hd = hd_new

153 nG = nG_new

154 #commented , still work.

155 #nG = matrix(C_hull);

156 #print(" Reached dimension is = "+str(hd));

157 #print("done")

158 obtained_k = hd;

159 #now fill up the matrix with non self -orthogonal rows.

160 while obtained_k < k:

161 #print(obtained_k , k);

162 #Continue picking codewords

163 C = codes.LinearCode(nG);

164 Cd = C.dual_code ();

165 s = 0;

166 attempts = 20 #after 20 cicles break

167 while (s ==0):

168 attempts -= 1

169 if(attempts < 1):

170 return matrix (0)

171 b = Cd.random_element ();

172 for i in range(n):

173 s += (b[i])^2;

174
175 #Enrich nG with the new codeword

176 nG = block_matrix ([[nG],[matrix(b)]],subdivide=False);

177 obtained_k = rank(nG);

178 #if the final matrix has wrong number of rows return 0.

179 if(nG.nrows() > k):

180 return matrix (0)

181
182 return (nG)

183
184 #################################

185
186 #Convert WEF of Sendrier ’s signature to string of polynomials

187 def WefToPolyStr(WEF):

188 wefLen = len(WEF)

189 #if the list of weight distribution has only one element

190 #then it can only be the null word.

191 if wefLen <= 1:

192 return "1"

193 s = str(WEF [0])

194 #for each element of WEF , give it the corresponding power of X.

195 for i in range(1,wefLen):

196 if i == 1 and WEF[i] > 0 :

197 s = s + "+" + str(WEF[i]) +"X"

198 elif WEF[i] > 0:

199 s = s + "+" + str(WEF[i]) +"X^"+str(i)

200 return s

201
202
203 #S:(C,i) -> (W(H(C i)) , W(H(C^T i))) <-- first calculate the dual then puncture.

204 #Compute the Sendrier ’s signature

205 def Sendrier_signature(Fq,C,i):

206 # get the generator matrix of code C

207 C = LinearCode(C)

208 G = C.generator_matrix ();

209 #puncturing it in the position i.

210 G = G.delete_columns ([i]);

211 #then compute the hull , as required by the formula.

212 HG = hull(G);

213 #if the hull is null , then

214 #the weight distribution will have only a null vector.

215 if HG == 0:

216 WEF1 = [0];

217 else:

218 HGC = LinearCode(matrix(HG));

219 WEF1 = HGC.weight_distribution ();

220
221 #now consider the punctured code of the dual code.

222 H = C.parity_check_matrix ();

223 H = H.delete_columns ([i]);

71

224 HH = hull(H);

225 if HH == 0:

226 WEF2 = [0];

227 else:

228 HHC = LinearCode(matrix(HH));

229 WEF2 = HHC.weight_distribution ();

230 #return a list containing thw two weight distribution

231 #in the form of stringfied polynomial

232 return [WefToPolyStr(WEF1),WefToPolyStr(WEF2)];

233
234 #################################

235
236 #Return H of subfield subcode , works only with not extented destination field.

237 #Params: H original code’s parity check matrix , ell = m/m’ , Fp is a subfield of Fq.

238 #For subcodes over subfield with field still an extented , use codes.Subfieldsubcode(C,Fp)

239 def get_H_subcode(H, ell , Fq, Fp):

240
241 #consider the vector space over Fq with base over Fp.

242 #from_V and to_V are two function that maps

243 #a polynomial over an extended field to a tuple and viceversa.

244 V, from_V , to_V = Fq.vector_space(Fp , map=True);

245
246 r = H.nrows ();

247 n = H.ncols ();

248 #H_prime is the parity check matrix of subfield subcode

249 #with entry over Fp and number of columns still n

250 #but the number of rows are multiplied by ell.

251 H_prime = matrix(Fp,ell*r,n);

252 ’’’

253 divide the coefficients of each polynomial of the original matrix and

254 insert them one by one into the column of the new matrix H_prime.

255 ’’’

256 for i in range(r):

257 for j in range(n):

258 vector_h_ij = to_V(H[i,j]);

259 #print(H[i,j])

260 #print(vector_h_ij);

261 for u in range(ell):

262 #print(vector_h_ij[u])

263 H_prime[i*ell+u,j] = vector_h_ij[u];

264
265 return H_prime;

266
267 #################################

268
269 #Compute the new signature

270 def new_signature_function(Fq,B):

271 #q is the cardinality ,that is the number of element of

272 #the finite field Fq.

273 q = Fq.cardinality ();

274 k = B.nrows ();

275 n = B.ncols ();

276
277 #Generate all vectors over Fq with length k

278 #they will be the messages to be encoded.

279 V = VectorSpace(Fq,k);

280
281 #Generate all codewords and insert it into the matrix L

282 #so the new matrix is composed by all codewords.

283 #each row is a codeword.

284 L = matrix(Fq,q^k,n);

285 i = 0;

286 for u in V:

287 L[i,:] = matrix(u)*B;

288 i += 1;

289
290 #We now hash all rows and columns , after we sort them

291 #Let’s start with the rows

292 hashes_rows = [];

293 for i in range(q^k):

294 row_i = L[i,:];

295 val_i = sorted(row_i.list());

296 hash_i = hash(str(val_i));

297 hashes_rows.append(hash_i);

298
299 #Now , we sort the vector and hash it again to make it more compact

72

300 hashes_rows = sorted(hashes_rows);

301 row_hash = hash(str(hashes_rows));

302
303 #Now , we consider the columns

304 hashes_cols = [];

305 for i in range(n):

306 col_i = L[:,i];

307 val_i = sorted(col_i.list());

308 hash_i = hash(str(val_i));

309 hashes_cols.append(hash_i);

310
311 #Now , we sort the vector like we did to hashes_rows.

312 hashes_cols = sorted(hashes_cols);

313 col_hash = hash(str(hashes_cols));

314 #return the row hash and the column hash.

315 return [row_hash , col_hash];

316
317 #################################

318
319 ’’’

320 Build the adjacency matrix from code generator matrix.

321 given G the required matrix , then

322 the formula is A = G^T (GG^T)^-1 G

323 it requires that the hull of G is null , otherwise (GG^T)^-1 cannot be performed.

324 ’’’

325 def build_adjacency(G):

326 U = G*G.transpose ();

327 return G.transpose ()*U.inverse ()*G;

328
329 ##Simple GIP solver. First compute the adjacency matrices of two input codes ,

330 #then compute the permutation matrix that connects the two isomorphic graphs.

331 #Very likely to fail with small q

332 def GIP(G,G_prime ,P):

333 #the hull must be null.

334 G_hull = hull(G)

335 if G_hull.nrows() != 0 :

336 #print("G’s hull is not null")

337 return "hullnot0"

338 #Take the generator matrices and then reduce them to adjacency matrices.

339 G = LinearCode(G).generator_matrix ();

340 G_prime = LinearCode(G_prime).generator_matrix ();

341 n = G.ncols ();

342 #Construct adjacency matrices

343 A = build_adjacency(G);

344 A_prime = build_adjacency(G_prime);

345
346 #verify that the reduction hold

347 #print("A’ = P^T*A*P ? ",A_prime == P.transpose ()*A*P);

348
349 #we now recover P; we also consider that the algorithm may fail

350 #for each row , we consider the multiset given by the entries of the row

351 #in vulgar words , we sort all rows of the adjacency matrices so the

352 #effect of permutation on rows disappears.

353 unique_values = [];

354 unique_values_prime = [];

355 for i in range(n):

356 vals = sorted(A[i,:]. list());

357 unique_values.append(vals);

358
359 vals_prime = sorted(A_prime[i,:]. list());

360 unique_values_prime.append(vals_prime);

361
362 #we now search for correspondences; our guess is my_P

363 #that is,we look for rows after the permutation.

364 my_P = matrix(ZZ,n,n);

365 for i in range(n):

366 for j in range(n):

367 if unique_values_prime[j] == unique_values[i]: #we found a corresponding index

368 pos_i = j;

369
370 my_P[i,pos_i] = 1;

371
372 #check whether the found solution is equal to the trush.

373 #print("my_P == P ?",my_P == P);

374 if my_P == P:

375 return "success"

73

376 else:

377 return "my_p_wrong"

378
379 #################################

380
381 #Generate generator matrix for weakly self -dual code

382 def generate_weakly_self_dual_code(Fq ,n,k,k_hull):

383
384 #Parameter for algorithm

385 num_new_coordinates = 1; #this is a parameter , don’t touch it

386
387 # the code starts here

388 # first , we generate a self -orthogonal codeword.

389 is_C_self_orto = 1;

390 while is_C_self_orto != 0:

391 C = random_matrix(Fq ,1,n);

392 is_C_self_orto = sum([C[0,i]^2 for i in range(n)]);

393
394 #bring the codeword into sys form (eventually , permute columns)

395 i = 0;

396 #first , we search a non null element of the codeword.

397 while C[0,i]==0:

398 i+=1;

399
400 #then we swap this element with the first element.

401 tmp = C[0,0];

402 C[0,0] = C[0,i];

403 C[0,i] = tmp;

404 #normalization.

405 C = C[0,0]^ -1*C;

406
407 kp = 1; #this is the number of found linearly independent codewords

408 while kp < k:

409
410 #Obtain H matrix of the systematic form of generator matrix C.

411 V = C[:,kp:];

412 A = -V.transpose ();

413
414 #sample new codeword (we compute only the non systematic part of V)

415 u = random_matrix(Fq ,1,n-kp);

416 u_parity = u*A;

417
418 if kp < k_hull: #in this case , search for a self orthogonal codeword

419
420 mu = sum([u[0,i]^2 for i in range(n-kp)]) + sum([u_parity[0,i]^2 for i in range(kp

)]);

421
422 while mu != 0: #loop until a self -orthogonal codeword is found

423
424 #modify only num_new_coordinates positions in u (and in the corresponding

codeword)

425 delta_u_support = Combinations(n-kp ,num_new_coordinates).random_element ();

426 for i in delta_u_support:

427 val = Fq.random_element ();

428 while val == 0:

429 val = Fq.random_element ();

430 u[0,i] += val;

431 u_parity += (val*A[i,:]);

432
433 mu = sum([u[0,i]^2 for i in range(n-kp)]) + sum([u_parity[0,i]^2 for i in

range(kp)]);

434 else: #in this case , search for a codeword which is not self -orthogonal

435
436 mu = sum([u[0,i]^2 for i in range(n-kp)]) + sum([u_parity[0,i]^2 for i in range(kp

)]);

437
438 while mu == 0: #loop until a self -orthogonal codeword is found

439
440 #modify only num_new_coordinates positions in u (and in the corresponding

codeword)

441 delta_u_support = Combinations(n-kp ,num_new_coordinates).random_element ();

442 for i in delta_u_support:

443 val = Fq.random_element ();

444 while val == 0:

445 val = Fq.random_element ();

446 u[0,i] += val;

74

447 u_parity += (val*A[i,:]);

448
449 mu = sum([u[0,i]^2 for i in range(n-kp)]) + sum([u_parity[0,i]^2 for i in

range(kp)]);

450
451 #Add new codeword and see if if enriches dimension

452 attempt_new_C = block_matrix(Fq ,2,1,[C,block_matrix(Fq ,1,2,[u_parity ,u])]);

453 p = copy(attempt_new_C);

454
455 #Elimination for lower part

456 for i in range(kp):

457 attempt_new_C[kp ,:] += (-attempt_new_C[kp ,i]* attempt_new_C[i,:]);

458
459 #Find pivot

460 pivot_pos = kp;

461 flag_pivot = 0;

462 while (pivot_pos < n)&(flag_pivot == 0):

463 if attempt_new_C[kp ,pivot_pos]==0:

464 pivot_pos += 1;

465 else:

466 flag_pivot = 1;

467
468 #print(flag_pivot);

469 if flag_pivot:

470 if pivot_pos != kp: #swap columns to bring the pivot in position kp

471 tmp = attempt_new_C [:,kp];

472 attempt_new_C [:,kp] = attempt_new_C [:, pivot_pos];

473 attempt_new_C [:,pivot_pos] = tmp;

474
475 attempt_new_C[kp ,:] = attempt_new_C[kp,kp]^-1* attempt_new_C[kp ,:];

476 #Do elimination for upper part

477 for i in range(kp):

478 attempt_new_C[i,:] += (-attempt_new_C[i,kp]* attempt_new_C[kp ,:]);

479
480 #update C and kp

481 kp += 1;

482 C = attempt_new_C;

483
484 return C;

485
486 #################################

487
488 # G_prime ,S,G,P = genTwoEquiv(Fq ,n,k,hull_dim)

489 # generate two equivalent code.

490 def genTwoEquiv(Fq ,n,k,hull_dim):

491 #if the required hull_dim is zero ,

492 #then we can’t use generate_weakly_self_dual_code

493 if hull_dim == 0:

494 flag_ok = 0

495 #repeat until we get a null hull matrix.

496 while flag_ok == 0:

497 G = random_matrix(Fq,k,n);

498 a = hull(G).nrows()

499 if a == 0 :

500 flag_ok = 1;

501 else:

502 G = generate_weakly_self_dual_code(Fq ,n,k,hull_dim);

503 ’’’

504 G = generate_weakly_self_dual(Fq,n,k,hull_dim)

505 while G.nrows() != k:

506 G = generate_weakly_self_dual(Fq,n,k,hull_dim)

507 ’’’

508 #generate the permutation matrix and the change of basis.

509 P = generate_permutation(Fq,n);

510 S = generate_change_of_basis(Fq,k);

511 #compute the permuted equivalent code.

512 G_prime = S*G*P;

513 return G_prime ,S,G,P;

514
515 #################################

516 ##Function to intersect two codes; it returns a basis for the intersection space

517 def span_intersection(G1 ,G2,Fq):

518 n = G1.ncols();

519 Vn = VectorSpace(Fq,n);

520 V1 = Vn.subspace(G1);

521 V2 = Vn.subspace(G2);

75

522 V12 = V1.intersection(V2);

523 G12 = V12.basis();

524 return(G12);

525
526 #apply Frobenius to matrix G

527 def frob(G,frob_endo):

528 #apply Frobenius endomorphism to every element of G.

529 return G.apply_map(lambda x: frob_endo(x))

530
531 #works when rate > 1/2, get the intersection code of code itself with it’s Frobenius

automorphism

532 def frob_intersec(G):

533 Fq = G[0 ,0]. parent ()

534 #get the Frobenius endomorphism function

535 fr = Fq.frobenius_endomorphism ()

536 G1 = G;

537 #apply Frobenius to matrix G

538 G2 = frob(G,fr);

539 #return the intersection between G and his Frobenius endomorphism.

540 return matrix(span_intersection(G1 ,G2,Fq))

541
542 #################################

543
544 #convert matrix over finite field to their integer representation.

545 def FqToIntMatrix(G):

546 n = G.ncols ()

547 #create a new matrix.

548 GADINT = matrix(n,n);

549 Fq = G[0 ,0]. parent ()

550 #check if the field is prime.

551 p_is_prime = Fq.is_prime_field ()

552 for i in range(n):

553 for j in range(n):

554 #if the field is not prime , then we can use integer_representation function

555 if p_is_prime == false:

556 GADINT[i,j] = GAD[i,j]. integer_representation ()

557 else:

558 #otherwise we just need to do a convertion.

559 GADINT[i,j] = int(GAD[i,j])

560 return GADINT

561
562 #################################

563
564 # determine whether two adjancency matrix are ispmorphic. need import:

565 #import networkx as nx

566 #import matplotlib.pyplot as plt

567 import networkx.algorithms.isomorphism as iso

568
569 #enable checks for weights for is_isomorphic funtion.

570 em = iso.categorical_edge_match(’weight ’, ’weight ’)

571
572 def GIP_is_isomorphic(GADINT ,GADINT2):

573 #convert matrices to numpy matrices.

574 N = numpy.matrix(GADINT)

575 N2 = numpy.matrix(GADINT2)

576
577 ### ** change one number , so is_isomorphic will give false ** ###

578 ’’’

579 change_one_element = False;

580 if change_one_element == True:

581 if N[1,1] == 0:

582 N[1,1] = 1;

583 else:

584 N[1,1] = 0

585 ’’’

586 ### now convert to networkx graph ###

587 X=nx.from_numpy_matrix(N)

588 X2=nx.from_numpy_matrix(N2) #, parallel_edges = False

589
590 #nx.draw(G) # default spring_

591 #plt.show()

592
593 x = nx.is_isomorphic(X, X2, edge_match = em)

594 return x

76

Code Snippet 2

Listing 2: compare puncturing shortening sendrier
1 reset()

2 load("func_chen.sage")

3
4 #### define parameters for code ####

5 n = 20; #code length

6 k = 10; #code dimension

7 hull_dim = 0; #desired dimension for the hull

8 #finite field parametyers

9 q = 3;

10 F_source = GF(q)

11
12 ##

13 ’’’ # comparison signatures between Sendrier ’s, Puncturing and Shortening

14 ’’’

15 #a dictionary to put the results

16 plotlists = {}

17 #number of tests to compute the mean

18 numtest = 100

19 #container to put the results of different signatures

20 punct = []

21 short = []

22 sendr = []

23 #for cicle that repeats for hulldim from 2 to 7

24 for hd in range (1,7):

25 hull_dim = hd+1

26 #counters to save the number of colliding indices.

27 punctnum = 0

28 shortnum = 0

29 sendrnum = 0

30
31 for testth in range(numtest):

32 print(testth , " hd ", hull_dim , " q ", q)

33 #first we generate two equivalent code for test.

34 G2,S,G,P = genTwoEquiv(F_source ,n,k,hull_dim)

35 #get the hull of G

36 GHULL = hull(G)

37 #get the shortened/punctured version of G

38 GSHORT = LinearCode(G).shortened ([0])

39 GPUNCT = G.delete_columns ([0])

40 #compute the hull for shortened/punctured version

41 GSHORT = hull(GSHORT)

42 GPUNCT = hull(GPUNCT)

43 #compute the weight distrbutions

44 w_short = LinearCode(GSHORT).weight_distribution ()

45 w_punct = LinearCode(GPUNCT).weight_distribution ()

46 w_sendr = Sendrier_signature(F_source ,GHULL ,0)

47 #get the hull of G2

48 G2HULL = hull(G2)

49 #for each column of the permuted code G2:

50 for j in range(n):

51 #get the shortened/punctured version of G2 in j-th position

52 G2SHORT = LinearCode(G2).shortened ([j])

53 G2PUNCT = G2.delete_columns ([j])

54 #compute the hull

55 G2SHORT = hull(G2SHORT)

56 G2PUNCT = hull(G2PUNCT)

57 #compute the weight distrbutions of manipulated codes

58 w2_short = LinearCode(G2SHORT).weight_distribution ()

59 w2_punct = LinearCode(G2PUNCT).weight_distribution ()

60 w2_sendr = Sendrier_signature(F_source ,G2HULL ,j)

61 #if the signatures are is equal

62 #increase the corresponding counter.

63 if w_punct == w2_punct:

64 punctnum += 1

65
66 if w_short == w2_short:

67 shortnum += 1

68
69 if w_sendr == w2_sendr:

70 sendrnum += 1

71 #get the mean colliding indices by dividing counter by numtest.

77

72 mean_punct = N(punctnum/numtest)

73 mean_short = N(shortnum/numtest)

74 mean_sendr = N(sendrnum/numtest)

75 punct.append ((hull_dim , mean_punct));

76 short.append ((hull_dim , mean_short));

77 sendr.append ((hull_dim , mean_sendr));

78
79 plotlists[’punct ’] = punct

80 plotlists[’short ’] = short

81 plotlists[’sendr ’] = sendr

82
83 #Plotting

84 g = list_plot(plotlists[’punct’] , color=’red’, plotjoined=True , marker = ’x’, legend_label=

" Puncturing");

85 g += list_plot(plotlists[’short’] , color=’blue’, plotjoined=True , marker = ’o’, legend_label=

’ Shortening ’);

86 g += list_plot(plotlists[’sendr’], color=’green ’, plotjoined=True , marker = ’v’, legend_label=

" Sendrier ’s");

87
88 g.set_legend_options(borderpad=1,loc=1,shadow=False ,fancybox=True)

89 xlabel = "hull dim."

90 ylabel = "mean colliding indices"

91 g.axes_labels([xlabel , ylabel])

92 g.fontsize (10)

93 g.show();

78

Code Snippet 3

Listing 3: test mean colliding indices
1 reset()

2 load("code_utils.sage")

3
4 #### define parameters for code ####

5 n = 18; #code length

6 k = 7; #code dimension

7 hull_dim = 0; #desired dimension for the hull

8 #finite field parametyers

9 q = 3;

10 Fq = GF(q)

11
12 ##

13 ’’’ test Mean colliding Indices (puncturing) for SSA ’’’

14 #this list saves the results for each different value of q.

15 resultsForQ = [];

16 numtest = 1000

17 for q in [2,3,5,7]:

18 #this list saves the results for each different value of hull dimension.

19 resultsForHull = []

20 F_source = GF(q)

21 # hull dimension from 1 to k

22 for ii in range(k):

23 hull_dim = ii+1 #hull_dim from 1 to k, add 1 because range begins from 0

24 colliding_indices_count = 0 #counter for colliding indices.

25 for iii in range(numtest):

26 print(iii , " hd ", hull_dim , " q ", q)

27 #generate two equivalent code

28 G2,S,G,P = genTwoEquiv(F_source ,n,k,hull_dim)

29 #calculate the hull of G after puncturing.

30 G_h_p = hull(G.delete_columns ([0]))

31 #now compute the weight_distribution

32 #if the hull is null , then consider the weight_distribution as 0

33 if G_h_p.nrows() == 0:

34 WG = 0

35 else:

36 G_h_s_c = LinearCode(G_h_p)

37 WG = G_h_s_c.weight_distribution ()

38
39 #compute the weight_distribution of the hull of permuted code after puncturing.

40 for j in range(n):

41 G2_h_p = hull(G2.delete_columns ([j]))

42 if G2_h_p.nrows () == 0:

43 W2G = 0

44 else:

45 G2_h_s_c = LinearCode(G2_h_p)

46 W2G = G2_h_s_c.weight_distribution ()

47 if WG == W2G:

48 colliding_indices_count += 1

49
50 #get the average colliding indices.

51 mean_colliding_indices = colliding_indices_count/numtest;

52 resultsForHull.append((hull_dim , mean_colliding_indices));

53 #add the result for a specific q.

54 resultsForQ.append(resultsForHull)

55
56 #plotting

57 g = list_plot(resultsForQ [0], color=’red’, plotjoined=True , marker = ’o’, legend_label=’ q = 2

’);

58 g += list_plot(resultsForQ [1], color=’blue’, plotjoined=True , marker = ’o’, legend_label=’ q =

3’);

59 g += list_plot(resultsForQ [2], color=’green ’, plotjoined=True , marker = ’o’, legend_label=’ q

= 5’);

60 g += list_plot(resultsForQ [3], color=’black ’, plotjoined=True , marker = ’o’, legend_label=’ q

= 7’);

61
62 g.set_legend_options(borderpad=1,loc=1,shadow=False ,fancybox=True)

63 xlabel = "hull dim."

64 ylabel = "mean colliding indices"

65 g.axes_labels([xlabel , ylabel])

66 g.fontsize (10)

67 g.show();

79

Code Snippet 4

Listing 4: shortening multiple columns
1 reset()

2 load("code_utils.sage")

3
4 ### this is the script to see how the colliding indices go if we shorten multiple columns.

5 def colliding_indexes_calculator(q,n,k,hull_dim ,t):

6 #generate the code with specified dimension of hull and calculated an permutation.

7 #n = 20; #code length

8 #k = 6; #code dimension

9 #q = 3; #finite field cardinality

10 #hull_dim = 6; #desired dimension for the hull

11 Fq = GF(q);

12 #generate a weakly self dual code.

13 G = generate_weakly_self_dual(Fq,n,k,hull_dim);

14 while G.nrows() != k:

15 G = generate_weakly_self_dual(Fq,n,k,hull_dim);

16 #generate the permutation matrix and the change of basis

17 P = generate_permutation(Fq,n);

18 S = generate_change_of_basis(Fq,k);

19 #compute the permuted G

20 G_prime = S*G*P;

21 #convert the matrices to codes.

22 G_code = LinearCode(G)

23 G_prime_code = LinearCode(G_prime)

24
25 #t = 4; #number of positions in which we do the shortening

26 G_short = code_shortening(G_code ,range(t));

27 #consider the hull

28 H_G_short = hull(G_short);

29 #weight_distribution of Hull of shorted G.

30 Whgs = LinearCode(H_G_short).weight_distribution ();

31
32 #generate all combinations , they are ’n choose t’ elements.

33 combinations = Combinations(n,t);

34 number_of_combinations = len(combinations);

35 #a list to save indices that collide.

36 colliding_improved_indexes =[];

37 counter1 = 0;

38
39 t0= time.time();

40
41 for i in combinations:

42 counter1 = counter1 + 1;

43 if(counter1 % 800 == 0):

44 print(str(counter1) + "/" + str(number_of_combinations));

45 #apply the multiple shrotening to the permuted code.

46 G_prime_short = code_shortening(G_prime_code ,i);

47 #consider the hull

48 H_G_prime_short = hull(G_prime_short);

49 Whgps = LinearCode(H_G_prime_short)

50 Whgps = Whgps.weight_distribution ();

51 #add to list if the weight distribution are equal.

52 if Whgps==Whgs:

53 colliding_improved_indexes.append(i);

54
55
56 t1 = time.time();

57 #print("time elapsed = " +str(t1 -t0));

58 #print(" number of combinations = " + str(number_of_combinations)) ;

59 #print(" colliding_improved_indexes length = " + str(len(colliding_improved_indexes)));

60 return len(colliding_improved_indexes);

61
62
63 #parameters

64 n = 20

65 k = 10

66 hull_dim = 10

67 q = 5

68
69 t = 4

70
71 #test params

80

72 num_test = 100

73
74 mean_colliding_indices = 0

75
76 for kk in range(num_test):

77 mean_colliding_indices += colliding_indexes_calculator(q,n,k,hull_dim ,t)

78
79 #compute the average colliding indices.

80 mean_colliding_indices = mean_colliding_indices / num_test

81 print(N(mean_colliding_indices))

81

Code Snippet 5

Listing 5: comparison sendr new
1 reset()

2 load("code_utils.sage")

3
4 #### define parameters for code ####

5 n = 18; #code length

6 k = 7; #code dimension

7 hull_dim = 0; #desired dimension for the hull

8 #finite field parametyers

9 q = 3;

10 Fq = GF(q)

11
12 ##

13 ## comparison New signature with Sendrier ##

14 #container to put the results

15 list_sendr = [];

16 list_new = [];

17
18 numtest = 100 # we do only 100 test because the computation of signatures are very slow.

19 for q in [5]:

20 #container to put the results for each hull dimension.

21 list_hull_sendr = []

22 list_hull_new = []

23 #define the finite field of q element.

24 F_source = GF(q)

25 for xx in range(1,k):

26 hull_dim = xx+1 # hull_dim from 1 to k.

27 #counters to save the number of colliding indices.

28 sendr_count = 0

29 new_count = 0

30 #we repeat SSA for ’numtest ’ times

31 for ii in range(numtest):

32 print(ii , " hd ", hull_dim , " q ", q)

33 #first we generate two equivalent code for test.

34 G2,S,G,P = genTwoEquiv(F_source ,n,k,hull_dim)

35 #get the hull of G

36 GHULL = hull(G)

37 #shortening the first column.

38 GSHORT = LinearCode(GHULL).shortened ([0])

39 #compute the Sendrier_signature , we pass the hull of G

40 WGSEN = Sendrier_signature(F_source ,GHULL ,0)

41 #compute the new_signature , we pass the first column shortened hull.

42 WGNEW = new_signature_function(F_source ,GSHORT.generator_matrix ())

43
44 G2HULL = hull(G2) #get the hull of the permuted G

45 #for each column of the permuted code:

46 for j in range(n):

47 G2SHORT = LinearCode(G2HULL).shortened ([j])

48 W2SEN = Sendrier_signature(F_source ,G2HULL ,j)

49 W2NEW = new_signature_function(F_source ,G2SHORT.generator_matrix ())

50 #if the signature of Sendrier or new signature is equal

51 #increase the corresponding counter.

52 if WGSEN == W2SEN:

53 sendr_count += 1

54
55 if WGNEW == W2NEW:

56 new_count += 1

57 #get the mean colliding indices by dividing counter by numtest.

58 mean_sendr = N(sendr_count/numtest);

59 mean_new = N(new_count/numtest);

60 print("results check")

61 print(mean_sendr)

62 print(mean_new)

63 list_hull_sendr.append((hull_dim , mean_sendr));

64 list_hull_new.append((hull_dim , mean_new));

65
66
67 list_sendr.append(list_hull_sendr)

68 list_new.append(list_hull_new)

69
70 #plotting the trend of two signatures by increasing the hull dimension.

82

71 g = list_plot(list_sendr [0], color=’red’, plotjoined=True , marker = ’o’, legend_label= "

Sendrier ’s");

72 g += list_plot(list_new [0], color=’blue’, plotjoined=True , marker = ’o’, legend_label=’ New

signature ’);

73
74 g.set_legend_options(borderpad=1,loc=1,shadow=False ,fancybox=True)

75 xlabel = "hull dim."

76 ylabel = "mean good indices"

77 g.axes_labels([xlabel , ylabel])

78 g.fontsize (10)

79 g.show();

83

Code Snippet 6

Listing 6: test hull subf random
1 reset();

2 load(’code_utils.sage’);

3
4 #function that compute the subfield subcode.

5 def subfield_subcode(C,Fq,Fp ,ell):

6
7 H = C.parity_check_matrix ();

8 H_prime = get_H_subcode(H, ell , Fq , Fp);

9
10 return codes.LinearCode(H_prime).parity_check_matrix ();

11
12
13 #Code and finite field parameters

14 k = 15;

15 n = 20;

16
17 k_hull = 5;

18
19 p = 5;

20 m = 2;

21 m_prime = 1;

22
23 num_test = 500;

24
25 ####### Finite fields

26 q = p^m;

27 b = p^m_prime;

28 ell = m/m_prime;

29
30 Fq = GF(q);

31 Fb = GF(b);

32
33 #these vectors will be used to contain the occurency of different dimension of hull.

34 hull_dim_self = vector(ZZ,n+1);

35 hull_dim_random = vector(ZZ ,n+1);

36
37 #these vectors will be used to contain the occurency of different dimension of subfield

subcode.

38 subcode_dimension_self = vector(ZZ,n+1);

39 subcode_dimension_random = vector(ZZ,n+1);

40
41 for i in range(num_test):

42
43 print(i);

44 #looking at weakly self dual code

45 # if the initial hull is null , then we generate a random matrix.

46 if k_hull == 0 :

47 G = random_matrix(Fq,k,n)

48 while rank(G) != k or hull(Fq,G).nrows() > 0 :

49 G = random_matrix(Fq,k,n)

50 else:

51 #otherwise we generate a weakly self dual code

52 G = sample_weakly_self_dual_code(q,n,k,k_hull);

53
54
55 #print("Code generated! ")#, test_hull_dim , ’ ’,true_hull_dim);

56 #print("---------------");

57 G_prime = subfield_subcode(codes.LinearCode(G),Fq,Fb,ell);

58 k_prime = G_prime.nrows();

59 #save the obtained subcode_dimension

60 subcode_dimension_self[k_prime] += 1;

61
62 hull_G = hull(codes.LinearCode(G_prime));

63 k_prime = hull_G.nrows();

64 #save the obtained hull dimension

65 hull_dim_self[k_prime]+=1;

66
67 ######---- now , generate random code with same dimension and length ----#####

68 H = random_matrix(Fb, ell*(n-k), n);

69 nG = codes.LinearCode(H).parity_check_matrix ();

70

84

71 k_prime = nG.nrows();

72 #save the obtained subcode_dimension

73 subcode_dimension_random[k_prime] += 1;

74
75 hull_G = hull(codes.LinearCode(nG));

76 k_prime = hull_G.nrows();

77 #save the obtained hull dimension

78 hull_dim_random[k_prime]+=1;

79
80
81 #new list to save the average number of the dimension

82 vals_self = [];

83 vals_rnd = [];

84 dim_self = [];

85 dim_rnd = [];

86
87 ’’’

88 we divide the sum of the dimensions by

89 the number of tests thus obtaining the average number of the dimension.

90 ’’’

91 for i in range(n+1):

92 if hull_dim_self[i]>0:

93 vals_self.append ((i,hull_dim_self[i]/ num_test));

94 if hull_dim_random[i]>0:

95 vals_rnd.append ((i,hull_dim_random[i]/ num_test));

96
97 if subcode_dimension_self[i]>0:

98 dim_self.append ((i,subcode_dimension_self[i]/ num_test));

99 if subcode_dimension_random[i]>0:

100 dim_rnd.append ((i,subcode_dimension_random[i]/ num_test));

101
102 #plotting

103 g = list_plot(vals_self , color=’red’, plotjoined=True , marker = ’x’, legend_label=’ Hull

Dimension - Weakly -self dual’);

104 g += list_plot(vals_rnd , color=’blue’, plotjoined=True , marker = ’x’, legend_label=’ Hull

Dimension - Random ’);

105
106 g.set_legend_options(borderpad=1,loc=1,shadow=False ,fancybox=True)

107 g.axes_labels(["Hull dimension","probability"])

108 g.fontsize (10)

109 g.show();

110 #g.save("g.svg")

85

Code Snippet 7

Listing 7: random code hulldim occurency
1 reset()

2 load("code_utils.sage")

3
4 # small test on probability of hulldim , result : decreases as 1/q(n^2+n)/2

5
6 n = 12; #code length

7 k = 6; #code dimension

8 hull_dim = 5; #desired dimension for the hull

9 if(hull_dim > min(k,n-k)):

10 raise ValueError("hull dim incorrect")

11
12 #finite field parametyers

13 p = 2; #prime number

14 m = 1; #the power of prime number ,so q is p^m

15
16 #define fields

17 q = p^m;

18 Fq = GF(q);

19 #dictionary to save results.

20 dictHull = {}

21 dictRank = {}

22 number_of_tests = 1000000

23 for i in range(number_of_tests):

24 print(i)

25 G = random_matrix(Fq,k,n)

26 #G2 = random_matrix(Fq,k,k)

27 hull_dimens = hull(G).nrows ()

28 #rk = k - rank(G2)

29 #add the result to the dictionary.

30 #dictRank[rk] = dictRank.get(rk ,0)+1

31 dictHull[hull_dimens] = dictHull.get(hull_dimens ,0)+1

32
33 #print(dictRank)

34 print(dictHull)

86

Code Snippet 8

Listing 8: test is isom forgip
1 # in this script , we test the networkx function: is_isomorphic

2 # it gives yes or no , so it solves the decisional problem

3 # we apply this function to the adjancency matrices obtained by reducing

4 # two equivalent code or random code , to see if the equivalence between codes

5 # is mirrored to the isomorphism between respective weighed graph.

6
7 reset()

8 load("code_utils.sage")

9 #import the networkx algorithms

10 import networkx.algorithms.isomorphism as iso

11 import time

12
13 #set checks for weights

14 em = iso.categorical_edge_match(’weight ’, ’weight ’)

15
16 #see https :// networkx.org/documentation/stable/reference/algorithms/generated/networkx.

algorithms.isomorphism.vf2pp.vf2pp_all_isomorphisms.html#networkx.algorithms.isomorphism

.vf2pp.vf2pp_all_isomorphisms

17
18 #### define parameters for code ####

19 n = 30; #code length

20 k = 5; #code dimension

21 hull_dim = 0; #desired dimension for the hull

22 if(hull_dim > min(k,n-k)):

23 raise ValueError("hull dim incorrect")

24
25 #finite field parametyers

26 p = 2**12;

27 F_source = GF(p,’x’);

28 #check if is prime.

29 p_is_prime = is_prime(p);

30
31 #convert matrix over finite field to their integer representation.

32 def FqToIntMatrix(G):

33 n = G.ncols ()

34 #create a new matrix.

35 GADINT = matrix(n,n);

36 Fq = G[0 ,0]. parent ()

37 #check if the field is prime.

38 p_is_prime = Fq.is_prime_field ()

39 for i in range(n):

40 for j in range(n):

41 #if the field is not prime , then we can use integer_representation function

42 if p_is_prime == false:

43 GADINT[i,j] = GAD[i,j]. integer_representation ()

44 else:

45 #otherwise we just need to do a convertion.

46 GADINT[i,j] = int(GAD[i,j])

47 return GADINT

48
49 # we do a test with growing n, we expect the complexity to grow as n squared

50 for n in [10 ,20 ,50 ,100 ,200 ,500 ,1000 ,2000 ,5000]:

51 # consider coderate 1/2

52 for k in [floor(n/2)]:

53 # consider the extended field 2^8

54 for p in [2**8]:

55
56 #finite field parametyers

57 F_source = GF(p,’x’);

58 p_is_prime = is_prime(p);

59
60 #dictionaries to save the results , will save true or false of function:

is_isomorphic

61 results = {}

62 results[’equiv ’] = {} #results of two equivalent code case

63 results[’random ’] = {} #results of two completly random code case

64 timeresults = {} #save the time spent.

65 #variable to switch between equivalent code and random code

66 generateEquivOrRand = ’equiv ’

67
68 for iii in range (1000):

87

69
70 if generateEquivOrRand == ’equiv ’:

71 #### generate two equivalent code ####

72 G2,S,G,P = genTwoEquiv(F_source ,n,k,hull_dim)

73 while rank(G) != k :

74 G2,S,G,P = genTwoEquiv(F_source ,n,k,hull_dim)

75
76 else :

77 #### generate two completly random code

78 G = random_matrix(F_source ,k,n)

79 while rank(G*G.transpose ()) != k or rank(G) != k:

80 G = random_matrix(F_source ,k,n)

81
82 G2 = random_matrix(F_source ,k,n)

83 while rank(G2*G2.transpose ()) != k or rank(G2) != k:

84 G2 = random_matrix(F_source ,k,n)

85
86
87 #### transform into adjancency matrix ####

88 GAD= build_adjacency(G)

89 GAD2= build_adjacency(G2)

90
91 #print(iii)

92 #### move finite field matrix elment into new integer matrix ####

93 # because numpy do not accept matrices over finite field.

94 GADINT = matrix(n,n);

95 for i in range(n):

96 for j in range(n):

97 if p_is_prime == false:

98 GADINT[i,j] = GAD[i,j]. integer_representation ()

99 else:

100 GADINT[i,j] = int(GAD[i,j])

101
102 GADINT2 = matrix(n,n);

103 for i in range(n):

104 for j in range(n):

105 if p_is_prime == false:

106 GADINT2[i,j] = GAD2[i,j]. integer_representation ()

107 else:

108 GADINT2[i,j] = int(GAD2[i,j])

109
110 #### convert to numpy matrix ####

111 N = numpy.matrix(GADINT)

112 N2 = numpy.matrix(GADINT2)

113
114 # a little test

115 ### ** change one number , so is_isomorphic will give false ** ###

116 change_one_element = False;

117 if change_one_element == True:

118 if N[1,1] == 0:

119 N[1,1] = 1;

120 else:

121 N[1,1] = 0

122
123 ### to nx graph ###

124 X=nx.from_numpy_matrix(N)

125 X2=nx.from_numpy_matrix(N2) #, parallel_edges = False

126
127 #nx.draw(G) # default spring_

128 #plt.show()

129 #print(’before ’)

130
131 t0 = time.time()

132 # edge_match = em means we also check edge weights

133 x = nx.is_isomorphic(X, X2 , edge_match = em)

134 t1 = time.time()

135 #print(’after ’)

136 #add results in the dictionary

137 results[generateEquivOrRand][x] = results[generateEquivOrRand].get(x,0)+1

138 timeresults[generateEquivOrRand] = timeresults.get(generateEquivOrRand ,0) + (

t1-t0)

139 if generateEquivOrRand == ’equiv ’:

140 generateEquivOrRand = ’random ’

141 else :

142 generateEquivOrRand = ’equiv’

143

88

144 print("-------------")

145 print(’n = ’, n , ", k = ", k ,’, p = ’, p)

146 print(results)

147 print(timeresults)

148 print("--------------")

89

Code Snippet 9

Listing 9: new solver
1 reset()

2 load("code_utils.sage")

3
4 #### define parameters for code ####

5 n = 30; #code length

6 k = 7; #code dimension

7 hull_dim = 5; #desired dimension for the hull

8 #finite field parametyers

9 p = 5 # the prime number

10 m = 2 # the power

11
12 m_prime = 1; #the power of the subfield.

13
14
15 ### compute new parameters

16 coderate = k/n; #coderate

17 ell = m/m_prime;

18 q = p**m;

19 #define the original finite field and the subfield.

20 F_source = GF(q,’x’);

21 F_subfield = GF(p**m_prime ,’x’);

22
23 #check if the hull_dim is correct

24 if hull_dim > min(k,n-k) :

25 raise ValueError("hull dim incorrect")

26 #this version do not support coderate 1/2

27 if coderate == 1/2:

28 raise ValueError("Does not work with R = 1/2")

29
30 ### generate two equivalent code

31 G2,S,G,P = genTwoEquiv(F_source ,n,k,hull_dim)

32
33 # if R<1/l or R>1-(1/l) use Subfield subcode , else use Frobenius intersection

34 if coderate < 1/ell or coderate > 1-(1/ell):

35 usefrob = false

36 if coderate > 1-(1/ell):

37 # use code itself

38 G = LinearCode(G)

39 G2 = LinearCode(G2)

40 else:

41 # use the dual code

42 G = LinearCode(G).dual_code ()

43 G2 = LinearCode(G2).dual_code ()

44 #get the Subfield Subcodes

45 subG = codes.SubfieldSubcode(G, F_subfield).generator_matrix ()

46 subG2 = codes.SubfieldSubcode(G2, F_subfield).generator_matrix ()

47 else:

48 #otherwise we exploit the frobenius intersection

49 usefrob = true

50 #Frobenius intersection works for rate > 1/2

51 if coderate > 1/2:

52 pass

53 else:

54 # use the dual code

55 G = LinearCode(G).parity_check_matrix ()

56 G2 = LinearCode(G2).parity_check_matrix ()

57 #get the intersection with Frobenius endomorphism

58 subG = LinearCode(frob_intersec(G)).generator_matrix ()

59 subG2 = LinearCode(frob_intersec(G2)).generator_matrix ()

60
61 ## considering the subcode.

62 if usefrob == true:

63 print("using Frobenius intersection subcode")

64 else:

65 print("using Subfield subcode")

66
67 print("Subcode dims = ",subG.dimensions ())

68 print("Subcode2 dims = ",subG2.dimensions ())

69
70 hG = hull(subG)

71 hG2 = hull(subG2)

90

72
73 print("Subcode ’s hull dims = ",hG.dimensions ())

74 print("Subcode2 ’s hull dims = ",hG2.dimensions ())

75
76 #check if permutation is still valid

77 permutation_is_valid = subG * P * LinearCode(subG2).parity_check_matrix ().transpose ()

78 print("Permutation is valid = ", permutation_is_valid.is_zero ())

79
80 #now , if the hull is null , we proceed with GIP , otherwise we proceed with SSA.

81 if hG.nrows () == 0 and usefrob == false :

82 print("[hull =0] Subcode ’s hull is zero , proceed with GIP")

83 a = GIP(subG ,subG2 ,P)

84 print("[hull =0] GIP solve = " , a)

85 else:

86 print("[hull >0] Subcode ’s hull is not zero , proceed with SSA")

87 if true:

88 Fsub = subG [0 ,0]. parent ()

89 if usefrob == true:

90 print(’[hull >0] use directly Frobenius intersection ’)

91 CG = subG

92 CG2 = subG2

93 else:

94 print(’[hull >0] use subfield subcodes hull’)

95 CG = hG

96 CG2 = hG2

97 #compute the new signature

98 sign1 = new_signature_function(Fsub , CG.delete_columns ([0]))

99 good_indices_new_sign = [];

100 for i in range(n):

101 #print(i)

102 sign2 = new_signature_function(Fsub , CG2.delete_columns ([i]))

103 if sign1 == sign2:

104 good_indices_new_sign.append(i+1);

105 #print the colliding indices.

106 print(’[hull >0] ’ ,good_indices_new_sign)

91

Code Snippet 10

Listing 10: theorical complexity GSN
1 reset()

2 load("code_utils.sage")

3
4 ##

5 #calculates the probability of a code having a hull of a certain dimension.

6 def prhull(q,x,maxx):

7 #if the required dimension is null

8 #then the probability will be 1 minus the

9 #sum of all the probabilities of not having a non -nll hull.

10 if x == 0:

11 somm=0

12 for i in range(1,maxx +1):

13 asd = prhull(q,x+i,0)

14 somm += asd

15
16 return N(1-somm)

17 else:

18 return 1/(q**((x**2+x)/2))

19
20 # theorical formula calculation.

21 # G = GIP fullcode , S = Sendrier ’s SSA , N = New solver.

22 def evaluate_GSN(n,k,d,p,m,ell):

23
24 q = p**m

25 mp = m/ell;

26 #check if the parameter ell respect the constraints.

27 if(ell*k > n and ell*(n-k) > n):

28 print("ell too high *******")

29 raise ValueError("ell too high")

30 #formula of GIP fullcode

31 gipfull = n**(2.3+d)

32 #formula of Sendrier ’s SSA

33 sendr = n**3 + log(n)*(q**d)

34 #formula of New solver , that is, the sum of

35 #the sum of all probabilities of having

36 #hulls of a certain dimension multiplied by the respective complexity.

37 newsolver = prhull(q,0,ceil(n/2))*(n**2)

38 for i in range(1,floor(n/2)):

39 newsolver += prhull(q,i,0)*(n**3 + log(n)* (p**(mp))**i)

40
41 print(’n=’,n,’, k=’,k,’, d=’,d, ’, q=’,p,’^’,m,’, ell=’,ell ,’.’)

42 #consider the complexity in log2

43 GPFL = N(log(gipfull , 2))

44 SDRS = N(log(sendr ,2))

45 NEWS = N(log(newsolver ,2))

46 print(’GIP full: ’ ,format(GPFL , ".2f") , ’, SendrierSSA: ’,format(SDRS , ".2f") , ’,

NewSolver: ’,format(NEWS , ".2f"))

47
48 evaluate_GSN(n=20,k=3,d=1,p=2,m=2,ell=2)

49
50 ’’’

51 below is a non -rigorous simulation of the complexities

52 of the different algorithms as the hull size varies

53 ’’’

54 #code parameters

55 n = 50

56 k = 20

57 d = 10

58 #list to save the complexity for each hull_dimension.

59 list_G = []

60 list_S = []

61 list_N = []

62 for d in [0,1,2,3,4,5,6,7,8,9,10]:

63 #parameters of finite field

64 p = 5

65 m = 8

66 ell = 2

67 q = p**m

68 mp = m/ell;

69 #check if the parameter ell respect the constraints.

70 if(ell*k > n and ell*(n-k) > n):

92

71 print("ell too high *******")

72 raise ValueError("ell too high")

73
74 gipfull = n**(2.3+d) #GIP fullcode formula

75 sendr = n**3 + log(n)*(q**d) #Sendrier ’s formula

76 newsolver = prhull(q,0,ceil(n/2))*(n**2) #New solver formula

77 for i in range(1,floor(n/2)):

78 newsolver += prhull(q,i,0)*(n**3 + log(n)* (p**(mp))**i)

79
80 #consider the complexity in log2

81 GPFL = N(log(gipfull , 2))

82 SDRS = N(log(sendr ,2))

83 NEWS = N(log(newsolver ,2))

84 list_G.append ((d, GPFL))

85 list_S.append ((d, SDRS))

86 list_N.append ((d, NEWS))

87
88 #Plotting

89 g = list_plot(list_G , color=’green ’, plotjoined=True , marker = ’o’, legend_label=’ GIP

fullcode ’);

90 g += list_plot(list_S , color=’red’, plotjoined=True , marker = ’o’, legend_label= " Sendrier ’s"

);

91 g += list_plot(list_N , color=’blue’, plotjoined=True , marker = ’o’, legend_label=’ New

signature ’);

92
93 g.set_legend_options(borderpad=1,loc=1,shadow=False ,fancybox=True)

94 xlabel = "hull dim."

95 ylabel = "Complexity"

96 g.axes_labels([xlabel , ylabel])

97 g.fontsize (10)

98 g.show();

93

