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Sommario

Il melanoma è una delle forme più comuni e mortali di cancro, che può svilupparsi

a partire da lesioni cutanee. La diagnosi tempestiva permette di salvare la vita delle

persone, nella maggior parte dei casi. Per diagnosticare questo tumore, gli esperti

oltre a raccogliere informazioni sulla storia dermatologica del paziente, effettuano

unŠispezione visiva e dei test diagnostici. La dermatoscopia, dermoscopia o epilu-

minescenza, è una tecnica non invasiva rivolta alla diagnosi precoce del melanoma,

in cui lŠanalisi della lesione cutanea viene condotta per mezzo di un dermatoscopio;

uno strumento che favorisce lŠispezione della pelle in-vivo, rimuovendo i riĆessi della

superĄcie della pelle. Uno dei metodi più diffusi in dermatologia per la diagnosi

di cancro alla pelle, è la regola 7-pt checklist che prevede lŠidentiĄcazione di una

serie di attributi sulla lesione, ad ognuno dei quali è assegnato un punteggio. La

lesione viene diagnosticata come melanoma se supera una certa soglia. Ad oggi, molti

medici utilizzano il 7-point checklist rule sfruttando immagini prese tramite dermo-

scopio. Tuttavia, lŠispezione della cute tramite un dermoscopio è spesso inĆuenzata

dallŠesperienza del medico, così come da altri fattori come lŠattenzione, lo stress o la

fatica. Per affrontare questo problema, sforzi nel settore della ricerca negli ultimi

anni si sono rivolti allo sviluppo di sistemi Computer-Aided Diagnosis (CAD), ovvero

sistemi di diagnosi assistita da computer, con lŠobiettivo di supportare le decisioni

degli specialisti. In letteratura è presente unŠampia gamma di applicazioni CAD che

hanno raggiunto performance equivalenti o superiori rispetto a quelle di dermatologi

esperti. Tuttavia, i modelli di Deep Learning (DL), sui quali si basano i sistemi

CAD non sono ancora parte integrante delle attività di diagnosi, a causa della loro

natura black-box: il processo di ragionamento del sistema di Intelligenza ArtiĄciale

risulta non visibile allŠutente Ąnale. Per questa ragione i medici hanno poca Ąducia

nel risultato restituito dal software: perché la macchina ha predetto la diagnosi di

meloma? Quali sono i fattori identiĄcati nellŠimmagine che hanno condotto il sistema

di DL a prendere una determinata decisione? Da questo limite nasce lŠobiettivo di

questo lavoro, che è quello di sviluppare un modello di deep learning che espliciti

lŠevoluzione del suo ragionamento circa le sue predizioni. La vision è la creazione di

un futuro ecosistema umano-artiĄciale nel quale entrambi gli attori (il dottore e il

sistema di AI) collaborino per il raggiungimento del medesimo scopo. Se i modelli di

AI saranno accettati, potranno essere di supporto alle decisioni diagnostiche. Questi

modelli posso ingerire molti più dati e più rapidamente rispetto alle capacità di un
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essere umano, e questo potrebbe arricchire la conoscenza di un medico, che avrebbe

a disposizione una quantità di informazioni nettamente superiore.

Il framework Concept-Bottleneck Model (CBM) è un design pattern proposto in

letteratura, in cui la struttura del modello viene riorganizzata in due componenti: un

modello addestrato sulle immagini, che fa predizioni su concetti espressi in linguaggio

naturale, e quindi comprensibili da un essere umano; e un modello addestrato su

questi concetti che fa predizioni di uno speciĄco output target. In questo lavoro i

concetti sono i task della 7-point checklist e il target di output è la diagnosi binaria di

Melanoma o Naevi. In questo modo, il modello AI mostra una spiegazione spiegazione

concettuale della diagnosi Ąnale. Questo studio mira a sviluppare explainable models

per la predizione di cancro alla pelle utilizzando il framework CBM, e li confronta con

modelli più tradizionali come il Single-Task Learning (STL) e il Multi-Task Learning,

anchŠessi implementati e utilizzati negli esperimenti. Per tutte le conĄgurazioni pro-

poste, sono state utilizzate architetture popolari di reti neurali per lŠimpelentazione

dellŠestrazione delle features nelle immagini. Le architetture utilizzate come basesono:

ResNet50, InceptionV3, e DenseNet121. La parte head delle reti neurali, volta alla

classiĄcazione delle label Ąnali, è stata invece progettata ed implementata per ogni

modello proposto. Il dataset utilizzato è il derm7pt, pubblicamente rilasciato. Si

tratta di un database di oltre 2000 immagini e annotazioni sugli attributi della

7-pt checklist e sulla diagnosi. I risultati ottenuti sono promettenti e dimostrano

come i CBM ha delle performance equiparabili rispetto ai modelli standard. Questo

suggerisce che ulteriori studi possono essere condotti per testare architetture più

soĄsticate basate su questo framework.
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Abstract

Melanoma is one of the most common and deadly forms of cancer arising from skin

lesions. An early dectection has been shown to aid in reversing the odds of survival

in the majority of cases. Physicians use evaluations of the patient that include

gathering information, visual inspection and diagnostic tests for skin disorders. In

dermatoscopy the inspection of skin lesion is conducted by means a dermatoscope,

that allows a visual in-vivo analysis unobstructed by skin surface reĆection. The

7-point checklist rule is one of the most used rule-based method in dermatology for

the diagnosis of skin cancer by dermatologists, which consists in identifying a set

of attributes on the lesion and assigning a score to them. The lesion is diagnosed

as melanoma if it exceeds a certain threshold. However, the visual inspection with

dermatoscope is often inĆuenced by the experience of doctor, as well as other factors

such as attention, stress, and fatigue. To deal with this challange, over the last years,

research efforts have been directed towards the development of Computer-Aided

Diagnosis (CAD) systems to support the physiciansŠ decisions. Many applications of

CAD were presented in the literature, and they have shown to achieve performance

comparable or better to experienced dermatologists. Despite the good performance,

Deep Learning (DL) models have not been accepted by the medical community

yet, due to their black-box nature in which the reasoning process of the ArtiĄcial

Intelligence system remains "opaque" to the Ąnal user. For this reason, physicians do

not trust in the output of the model: why does the machine say that the diagnosis

is cancer? What are the factors found in the image that have guided a particular

output? From this gap arises the objective of this work: to develop a trustworthy

deep learning model, which exposes its reasoning process to the Ąnal user. The

vision is to have, in the future, a hybrid human-artiĄcial ecosystem where both

actors (the doctor and the AI system) work together in a collaborative way. The

Concept-Bottleneck Model (CBM) framework is a design pattern proposed in the

literature, in which the architecture of the model is re-organized in two components:

one model trained on raw images, which predicts human-understandable concepts,

and a second model trained on these concepts which predicts a speciĄc target.

In this work the concepts are the 7-point checklist patterns and the target is

the binary diagnosis of Melanoma. In this way, the AI model shows a conceptual

explanation of the Ąnal diagnosis. This study aims to develop explainable models

for the prediction of melanoma using the CBM framework, and to compare them to
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more traditional models such as Single-Task Learning (STL) and simple Multi-Task

Learning. For all the proposed conĄgurations, popular neural network architectures

are used for the features extraction: ResNet50, InceptionV3, and DenseNet121 and

customized heads have been built in order to classify the Ąnal labels. The dataset used

in this work is the publicly released derm7pt: a database of over 2000 dermoscopy

images and annotations for the attributes of the checklist. In the experiments, the

models achieve promising performance and show that CBM yields equiparable results

in comparison to standard models.
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Chapter 1

Introduction

One of the most common and deadly forms of cancer is Melanoma, which arising from

skin lesions. However, an early diagnosis has been shown to aid in reversing the odds

in the majority of cases [9]. Physicians use evaluations of the patient that include

gathering information, visual inspection and diagnostic tests for skin disorders, such

as biopsy, scraping, diascopy, and so on. The focus of this work is on visual inspection

through dermoscopy images. Different strategies have been developed by the medical

community to recognize a skin lesion. The 7-point checklist method accounted for

in this project is a rule-based algorithm that requires identifying seven dermoscopic

patterns correlated with melanoma. Each criterion is assigned a score and the skin

lesion is diagnosed as melanoma when the sum of the score passes the given threshold.

The last decade has seen an increasing interest in the development of Computer-Aided

Diagnosis (CAD) systems thanks to the improvement of machine learning algorithms

and the spreading accessibility of computational power. CADs help physicians in their

analysis and are able to work on a higher number of images in less time compared to

human efficiency as they are not subject to stress or fatigue. Nowadays, deep learning

methods for skin lesion diagnosis have reached dermatologist-level performance [10].

However, machine learning models are not able to explicit the equivalent abilities

of a reasoning human. As a matter of fact models can inference relationships as

it only links statistical associations in the data. Critical applications (e.g. justice

or healthcare) are limited due to the lack of understanding of the inference process

of ML models. Complex reasoning patterns need the ability to understand the

context and also to master trivial abilities simultaneously. For instance, in the Ąeld

of computer vision: spatial awareness, recognizing of colors and shapes, and so on.

In pshychology this is called transfer of learning that occurs when people apply

strategies, skills, and information they have learned to a new problem or context

[11]. For humans, the information re-utilization from one task to another is common:

a solution or conclusion rarely ever involves a single knowledge or skill. In Multi-

Task Learning (MTL) [12] this scheme is an inspiration and models learn multiple

tasks simultaneously, leveraging on the shared features that they might have. The

drawback of this approach is the increase of model complexity and consequentially
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Chapter 1 Introduction

the interpretability and explanation of its decision process. This is a crucial point

for the usability of models, in fact, regardless of tested performances on new data,

the human operators are less likely to trust ML without a clear understanding of the

reason behind a prediction or choice.

Thus, it is necessary to understand and retrace the decision process of the model not

only at a low level (i.e. mathematical/algorithmic) but also at high-level explanations

(i.e. natural language representations/concepts) [13]. The idea proposed by the

Concept Bottleneck Model framework [14] is to develop models that Ąrst predict a set

of interpretable concepts, and then use these concepts to predict the main target label.

Hence the model conveys and shows additional information more understandable by

users and this should encourage more trust towards the system.

This work proposes architectures for single-task learning and multi-task learning

for detecting melanoma in dermoscopy skin images. In fact, the application of such

methods to the analysis of bio-medical images will have a critical impact once it

becomes part of the daily workĆows [13]. Furthermore different concept bottleneck

models have been proposed, inspired by [14]. This architecture aims to enable better

interpretability by humans (i.e. dermatologists) in real applications. The manuscript

will be divided in the following chapters:

• Chapter 2 Ů State of the Art: this chapter begins with a description of the

medical background 2.1 which introduces the essential backdrop to understand

the diagnosis problem and which dermatologist algorithms and tools have used

to design the Computer-Aided Diagnosis (CAD) system. Paragraphs about

technical backgrounds 2.2 follow, which explain Deep Learning (DL) methods

for image classiĄcation, Convolutional Neural Network (CNN) and the use

of CNN in Multi-task learning. Lastly, this chapter shows machine learning

applications to skin lesion diagnosis 2.2.3 and methods proposed on the same

dataset used in this work (Derm7pt dataset).

• Chapter 3 Ů Methods: Ąrstly the dataset used in the experiments is presented

3.1, as well as the various adjustements that have been applied to it. Then

Single-Task Learning (STL) deep learning architecture is studied 3.3.1 with a

variety of parameters and conĄgurations. This is used only to predict diagnosis

of melanoma or not melanoma (i.e. naevi). The analysis is expanded to

the case of MTL 3.3.2, which aims to learn 8 different tasks related to 7-

point checklist criteria: diagnosis, pigment network, blue whitish veil, vascular

structure, pigmentation, dots and globules, regression structures, and streaks.

Different variations of architectures have been proposed. Lastly, three different

concept bottleneck model 3.3.3 setups have been implemented: independent

model, sequential model, and joint model.

2



• Chapter 4 Ů Results: explores the setup used for experiments 4.1, and the

deĄnition of the metrics used to evaluate the performance of the models. The

chapter containts the results obtained through the different methods proposed

in Sec. 4.2.

• Chapter 5 Ů Conclusion: an overview of the entire work with some Ąnal

considerations.

3





Chapter 2

State of the Art

2.1 Medical background

2.1.1 Skin Lesion and use of Dermatoscope

Definition of Skin Lesion

Skin is a complex tissue vital for the functions of mechanical protection, thermoregu-

lation, immunosurveillance, and maintenance of a barrier that prevents insensible

loss of body Ćuids.

The skin lesion is a superĄcial growth or patch of the skin that does not resemble

the area surrounding it. Skin lesions can be grouped into two categories: primary

and secondary.[15]

Primary Skin Lesion

This category groups all the variations of the skin in color or texture that may be

present at birth (for example nevus or birthmarks) or that may be acquired during a

personŠs lifetime. The latter represents all the skin lesions associated with infectious

disease such as warts, acne, or psoriasis; allergic reactions, such as hives or contact

dermatitis; environmental agents such as sunburn, pressure, or temperature extreme.

Secondary Skin Lesion

This category groups all the lesions that involve changes in the skin that result

from primary skin lesions, either as a natural progression or as a result of a person

manipulating a primary lesion.

Dermatoscope

A dermatoscope is a device used by dermatologists to examine the skin at low

magniĄcation (e.g. 10X). Older instruments consist of a low-power (10x) magniĄer, a

nonpolarized light source, a transparent plate, and a light layer of mineral oil between

the instrument and the skin. The role of mineral oil is to facilitate inspection of skin

lesions without reĆection from the skin surface. Recent dermatoscope use polarized

light to eliminate skin surface reĆections [16], and allow digital image capture.
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Chapter 2 State of the Art

2.1.2 Dermatologist Diagnosis Methods

Skin Cancer is by far the most common type of cancer [17], and early detection is

a major factor in reducing mortality rates associated with this type of skin cancer.

There are two major types of Skin Lesion diagnosis:

• Evaluation of the Dermatologic Patient: which include the gathering of derma-

tologic history and dermatologic examination (i.e. visual inspection)

• Diagnostic Tests for Skin Disorders: that are indicated when the previous

approach is not effective. This method includes patch testing, biopsy, scrap-

ings,examination by wood light, tzanck testing, and diascopy. [18]

This work focuses on the Ąrst one and in particular on the dermoscopy examination

method. The aid of dermoscopic images allows the application of different algorithms

that are commonly accepted and used for skin lesion diagnosis by science. These

diagnostic methods are the following: pattern analysis, ABCD rule; 7-point check-

list criteria; Menzies methods, and the revised pattern analysis.[19] The Board of

the Consensus Netmeeting agreed on a two-step procedure for the classiĄcation of

pigmented lesions of the skin.[19]

1. The Ąrst step is the differentiation between nonmelanocytic and melanocytic

lesions. For this decision phase, the algorithm in Figure 2.1 is used. The

classiĄcation of the melanocytic lesion is based on the presence of aggregated

globules, pigment network, branched streaks, homogeneous blue pigmentation, or

a parallel pattern (palms, soles, mucosa). If any of the previous characteristics

are present then the lesion should be evaluated for the presence of textitcomedo-

like plugs, multiple milia-like cysts, and comedo-like openings, irregular crypts,

light brown Ąngerprint-like structures, or ŞĄssures and ridgesŤ (brain-like

appearance) pattern. If so, the lesion is suggestive of a seborrheic keratosis. If

not, the lesion has to be evaluated for the presence of textitarborizing blood

vessels (telangiectasia), leaf-like areas, large blue- gray ovoid nests, multiple

blue-gray globules, spoke wheel areas, or ulceration. If present, the lesion

is suggestive of basal cell carcinoma. If not, one has to look for textitred

or red-blue (to black) lagoons. If these structures are present, the lesion

should be considered a hemangioma or an angiokeratoma. If all the preceding

questions were answered with Şno,Ť the lesion should still be considered to be

a melanocytic lesion.

2. The step after the lesion identiĄcation in melanocytic origin, is the decision

whether the lesion is benign, suspect, or malignant. To perform this, four

different methods are the most commonly used and today considered the basic

of dermoscopy knowledge[20]:
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• ModiĄed pattern analysis

• ABCD rule of dermatoscopy

• 7-Point checklist criteria

• Menzies method

In this dissertation, the focus will be on the Seven-Point Checklist method (see

chapter 3). The most relevant comparison was made by dermatologists [21] which

encompass the distinctions between ABCD rule and Seven-Point criteria: the 7-

point checklist gave a sensitivity of 95% and speciĄcity of 75% compared with 85%

sensitivity and 66% speciĄcity using the ABCD rule and 91% sensitivity and 90%

speciĄcity using standard pattern analysis (overall ELM diagnosis). Compared

with the ABCD rule, the 7-point method allowed less experienced observers to

obtain higher diagnostic accuracy values These methods are conĄrmed as valid by

Argenziano, et al. in their 2021 publication. [20]

In the next paragraph, there is an explanation of Seven-Point checklist criteria.

Figure 2.1: Algorithm for the determination of melanocytic versus nonmelanocytic
lesions according to the proposition of the Board of the Consensus
Netmeeting.[1]

2.1.3 7- Point Checklist Criteria

The 7-Point Checklist diagnostic method is a rule-based algorithm that requires

identifying seven dermoscopic criteria associated with melanoma. For each criterion

7
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is assigned a score and the skin lesion is diagnosed as melanoma when the sum of

the score passes a given threshold [21, 22]. The two thresholds are:

• Classic Ů excision is recommended if the total score is ≥ 3

• Revised Ů excision is recommended if the total score is ≥ 1

Table 2.1: Seven-point checklist: dermoscopic criteria and scores for the classic and
the revised version of the algorithm

Dermoscopic pattern Classic algorighm score Revised algorithm score

Atypical network +2 +1
Blue-white veil +2 +1
Atypical vascular pattern +2 +1
Irregular dots/globules +1 +1
Irregular streaks +1 +1
Irregular blotches +1 +1
Regression structures +1 +1

The following is a dermatologic description [22] of each pattern shown in 2.1. The

images of each criterion are shown in Fig. 2.2 and 2.3

• Atypical network Ů Combination of at least two types of pigment network (in

terms of color and thickness of the lines) asymmetrically distributed within the

lesion

• Blue-white veil Ů Irregular, structureless area of conĆuent blue pigmentation

with an overlying white Śground-glassŠ Ąlm. The pigmentation cannot occupy

the entire lesion and usually corresponds to a clinically elevated part of the

lesion

• Atypical vascular pattern Ů Linear-irregular vessels, dotted vessels, and ⁄or

milky-red areas not clearly seen within regression structures

• Irregular dots ⁄globules Ů More than three round to oval structures, brown or

black in color, asymmetrically distributed within the lesion

• Irregular streaks Ů More than three brown to black, bulbous or Ąnger-like

projections asymmetrically distributed at the edge of the lesion and not clearly

arising from network structures

• Irregular blotches Ů Black, brown, and/or grey structureless areas asymmetri-

cally distributed within the lesion (Fig.

• Regression structures Ů White scar-like depigmentation and/or blue pepper-like

granules usually corresponding to a clinically Ćat part of the lesion
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(a) Atypical pigment net-

work

(b) Presence of blue

whithis veil

(c) Irregular vascular

structure

(d) Irregular pigmenta-

tion

Figure 2.2: Dermoscopy images of seven point checklist patterns: atypical pigment
network, presence of blue whithis veil, irregular vascular structure, irregu-
lar pigmentation

(a) Irregular streaks (b) Irregular Dots and

globules

(c) Presence of regression

structures

Figure 2.3: Dermoscopy images of seven point checklist patterns: dots and globules,
presence of regression structures, irregular streaks
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2.2 Technical background

2.2.1 Deep Learning for Image Classification

Pattern Recognition and Image Classification

Pattern Recognition is a Ąeld of automated discovery of regularities and patterns in

data. These regularities are recognized through the use of computer algorithms and

allow them to perform actions on data such as classiĄcation in various categories.

Pattern recognition has several applications: image analysis, machine learning, signal

processing, statistical data analysis, computer graphics, bioinformatics, information

retrieval, and data compression.

Nowadays, thanks to the increased availability of processing power and the plentitude

of Big Data, some modern pushes to pattern recognition involve the use of Machine

Learning (ML). In ML, pattern recognition regards the assignment of a label to a

given input value [23]. In this thesis, the methods used focus on a speciĄc type of

pattern recognition task: Image Classification, which tries to predict for each sample

in the input one of a given set of classes (for instance, decide whether a given image

represents "melanoma" or "not melanoma").

However, pattern recognition is a more general problem that deals with other types

of output as well, for example:

• Regression, which assigns a real-valued output to each input;[24]

• Sequence labeling, which assigns a class to each member of a sequence of

values[25] (e.g. part of speech tagging, which assigns a part of speech to each

word in an input sentence);

• Parsing, which assigns a parse tree to an input sentence, describing the syntactic

structure of the sentence.[26]

Pattern Recognition Algorithms mostly make effort to provide a reasonable answer

for every possible input and to return the "most likely" matching of the inputs,

taking into account their statistical variation. It is in contrast with Pattern Matching

Algorithms which look for exact matches in the input using pre-deĄned patterns 1

1An example is a regular expression matching that searches for patterns in textual data sorted in a
determined way
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Pattern recognition — supervised, unsupervised and semi-supervised

Pattern recognition is by and large categorized in line with the learning procedure

used to grasp the regularities in data in order to predict an output value. There are

three types of learning methods

• Supervised learning Ů expects a set of data (called training data) that contains

observations that have been properly labeled with the correct output, by the

hand of one or more domain experts. The goal of this learning procedure is

to generate a model that endeavors to meet to objectives: perform as well as

possible on the training data and generalize as well as possible on new data

(i.e. can correctly label data never seen)

• Unsupervised learning Ů accepts training data that has not been hand-labeled,

and tries to discover patterns that it can successively use to decide the correct

output label for new data instances.

• Semi-supervised learning Ů is a recent combination of the two previous, which

use both unlabeled and labeled.

One observation in the dataset (i.e. an input sample) for which an output value is

generated is formally termed as an instance. Each instance is formally deĄned by

a features vector, which together represents a characterization of all known about

the instance. Features vectors can be seen as deĄning points in a multidimensional

space, which means that it is possible to apply methods for manipulating vectors in

vector spaces to the instances of a dataset. The feature can be:

• Categorical (or nominal) Ů set of unsorted items (e.g. gender of "male" or

"female", profession "software engineer", "chef", and so on)

• Ordinal (i.e. set of ordered items such as "small", "medium" or "large")

• integer-valued (e.g. a count of number of occurrences of a particular word in

an email)

• real-valued (e.g. measurement of body temperature)

Deep Learning

Deep Learning is a subĄeld of Machine Learning, in which the model is inspired

by the biological brain. It is based on ArtiĄcial Neural Networks that work with

representation learning. These two topics will be brieĆy introduces in the next

paragraph:
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• Artificial Neural Networks (ANNs), often called only Neural Networks (NNs)

are inspired by distributed communication nodes and information processing in

biological systems, but have some distinctions. Specifically, neural networks are

more symbolic and static, while the brain of most living organisms is dynamic

(i.e. plastic) and analogue. [27, 28, 29]. ANNs are computing systems with

a structure formed by a collection of nodes called artificial neurons. These

units are connected in a way that resembles the connections of neurons in the

biological brain. Each connection is an edge between two nodes, and can send

a signal. The behavior of each neuron is summarizable in three steps:

1. receive the signal from another unit;

2. process it;

3. transmit the processed output to other units.

The signal at a connection is a real number and represents the input message

received by the neuron from another, and the output of each neuron is computed

by function (linear or non-linear) of the sum of its inputs, in Fig. 2.4 is shown

an example of linear unit. Edges typically have a weight that adjusts as learning

Figure 2.4: Example of linear unit with output that is a linear combination of one
input x, weighted by w, added with a bias b[2]

proceeds, multiplies the signal, and decreases or increases its strength.

An ANN has a structure in which all neurons are organized typically in a layer.

Different layers may carry out different transformations in their inputs. Signals

go forward from the first layer, called the input layer, to the last layer, called

the output layer. In Deep Learning there are hidden layers between the input

and the output, and the overall lenght of the chain gives the depth of the model,

It is from this terminology that the name “deep learning” arises. [30]

• Feature learning (also known as representation learning) is a set of techniques

that allow a computer system to find out a representation for feature detection

or classification from raw data. In contrast to feature engineering in which

domain knowledge expertise is needed, in feature learning the machine learns

both the features and the specific task to perform. [31]
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Deep Learning belongs to supervised methods.

Nowadays there exist very powerful frameworks in Deep Learning for supervised

learning. By creating a model architecture with more layers and more units within a

layer, a Deep Neural Network (DNN) can map functions of increasing complexity.

DNNs can accomplish most of the tasks that consist of mapping an input vector

to an output vector, given relatively large models and datasets of labeled training

examples.

The organization of neurons, connections, and layers can be designed in different

ways. In this work, there was be used feedforward neural networks. Feedforward

neural networks (also known as Deep feedforwards networks or multilayer perceptrons

(MLPs) are ArtiĄcial Neural Networks wherein edges between neurons do not form a

cycle. The goal of a feedforward network is to approximate some function f∗. For

instance: a classiĄer, y = f∗(x) maps an input x to a category y. A feedforward

network deĄnes a mapping y = f(x; θ) and learns the value of the parameters θ that

result in the best function approximation. [30]

2.2.2 Convolutional Neural Networks Principal Methods for Image

Classification

Convolutional Neural Networks (CNNs) are a class of deep feedforward networks

most commonly used to analyze visual imagery and to categorize images into one of

several predeĄned classes. A convolutional neural network consists of three layers Ű

an input layer, hidden layer, and output layer. The speciĄcity of a conv net is that

the hidden layers follow this strucutre:

1. Convolutional Layer followed by detection stage

2. Sub-sumpling or pooling Layer

3. Fully-Connected Layer

These are the fundamental types of layers used in CNN, and an architecture example

is shown in Fig. 2.5

The convolutional layer applies a convolutional operation through multiple Ąlters,

on every image. This operation generates one feature for each Ąlter, extracting

the high-level features such as vertical and horizontal edges. This mechanism is

adjusted by the network during the training, learning the values of each Ąlter (also

known as weights). More precisely the inputs and the Ąlters are multidimensional

arrays, respectively of pixels and parameters (also referred as tensors). Formally the

convolutional operation is, as explained in [30] deĄned by:
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Figure 2.5: SimpliĄed Convolutional Neural Network for classiĄcation task [3]

S(i, j) = (I ∗ K)(i, k) =
∑︂

m

∑︂

n

I(m, n)K(i − m, j − n) (2.1)

This operation is schematized, according to [30] in Fig. 2.6.

The convolutional operation produces a linear combination that is given in input

to a nonlinear activation function (commonly rectiĄed linear activation function

shown in Fig. 2.7) This stage is often called as detection stage and for ReLU istance

rectiĄes to zero all the negative values.

The last phase is handled by the pooling function, the most used is the Max

Pooling function. This technique subsamples the input tensor, dividing the area of

an input slice into chunks of non-overlapping squares and giving the maximum values

within that area. Thus, a max-pooling operation can reduce the dimension of the

tensor extracted by a feature map and helps pull smooth features.

The output of the pooling operation is Ćattened to a one-dimensional vector and

used as the input of a fully connected feed-forward network. The last layer needs to

compute the loss function in order to train the CNN. In this work, the last layer uses

a softmax activation function to simulate pseudo-probability. During the training

the network adjusts weights in order to minimize the loss function (i.e. the difference

between ground truth and predicted label).

Famous architectures

In this section there is a brief introduction some popular CNN architectures for

image classiĄcation AlexNet, ResNet, InceptionNet, and DenseNet121

AlexNet [4] Ů The AlexNet architecture is displayed in 2.8. It was designed by
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Figure 2.6: An example of 2-D convolution

Ilya Sutskever, Geoffrey Hinton, and Alex Krizhevsky in 2012 [4].

This network is a large convolutional neural network trained on ImageNet during

the LSVRC-2010 contest, to classify 1.2 million of high-resolution images in 1000

different classes.

It is composed of Ąve Conv layers, some of which are followed by max-pooling layers,

and three fully-connected layers with an output layer that has 1000-way softmax

neurons, to classify the 1000 different labels. During the test phase, they achieved

top-1 and top-5 error rates of 37.5% and 17.0% respectively.

Deep Residual Network - ResNet [5] Ů In Deep Neural Network with high depth,

creating a stack of layers does not work properly, the repeated multiplication may

present a vanishing gradient. This issue occurs when the gradient is extremely small,

and it prevents the weights from signiĄcantly changing their values.

The core objective of ResNet is to construct a shortcut connection that skips one

or more layers to transport the input value in the output of another layer, through

a direct edge (as shown in Fig. 2.9). The authors of this work want to address a

degradation problem in which accuracy gets saturated and degrades rapidly. They

show that it is not only caused by overĄtting. In fact adding more layers leads to

higher training error [5].
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Figure 2.7: ReLu function

Figure 2.8: Structure of AlexNet[4]

With ResNet50 architecture a deeper model would not produce a greater training

error compared to its shallower counterparts. This is achieved by explicitly letting

each few stacked layers Ąt a residual mapping instead of hoping they would directly

Ąt a desidered underlying mapping.

This formulation can be realized by feedforward neural networks with "shortcut

connections" (Fig. 2.9), that are those skipping one or more layers and in this case

perform identity mapping, and their ouputs are added to the output of the stacked

layers. In literature there exists different ResNet architectures. The most commonly

used are 50-layer, 101-layer, and 152-layer. Recently variants were proposed, such

as denseley connected convolutional networks (DenseNet) and RexNeXT. These

networks aim to increase the feature reuse and width of ResNet to increase the

Figure 2.9: Residual learning: a building block [5]
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accuracy and obtain a network highly parameter-efficient. [32, 33, 34]

InceptionNet [6] Ů The GoogLeNet architecture shown in 2.10, also named Incep-

tion v1 has 22 layers in total, resulting in a more deep model respect AlexNet. It uses

average pooling instead fully-connected layer to reduce the computational overhead.

Furthermore, a 1x1 convolution layer is used to debase the computational complexity.

Two auxiliary classiĄers are attached to the outputs of two of the inception modules

for forwarding propagation, to elude vanishing gradient that makes the network hard

to train.

Figure 2.10: GoogLeNet network [6]

There are also other two versions of this architecture: Inception v2, and Inception

v3 [35]. These are improved networks, that use other techniques to increase the

accuracy and reduce the computational complexity (such as dimensionality reduction,

convolution kernel factorization/decomposition, and batch normalization).

DenseNet121 [7] Ů The authors grasp the idea of shorter connections between

layers and connect each layer to every other subsequent layer in a feed-forward

fashion. This means that any feature maps of each layer are used as inputs for

the subsequent layers, as well as receiving feature maps from all preceeding layers.

DenseNet has the following pros: reduction of vanish gradient problem, strengthen

feature propagation, encourage feature reuse and reduce the number of parameters.

A dense block architecture is shown in Fig. 2.11

2.2.3 Convolutional Neural Network and Multi-Task Learning

Multi-task learning (MTL) is a subĄeld of machine learning, in which a model learns

multiple tasks simultaneously. Such approaches offer advantages like improved data

efficiency, reduced overĄtting through shared representations, and fast learning by

leveraging auxiliary information. [36]

Multi-Task Architectures for Computer Vision: in literature several architectures

were proposed for different aims: Computer Vision, Language Processing, Reinforce-

ment Learning, Multi-Modal (that is capable to handle multiple tasks from multiple

domains, e.g. visual and linguistic data). In this section, there will be a brief overview

of principal architecture in the Ąeld of Computer Vision. Many MTL architectures

in CV branch the network into task-speciĄc parts and use shared components for
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Figure 2.11: A 5-layer dense block. Each layer takes all preceding feature-maps as
input. [7]

improving generalization over sharing and information Ćow between tasks, at the

same time minimize the negative transfer.

Shared Trunk [36] Ů The more traditional multi-task architecture is the following:

a base network used for features extraction on all tasks (i.e. a global features

extraction)

Cross-Talk [36] Ů This architecture has a separate Neural Network for each task,

and the information stream between parallel layers in the task networks. These

layers are named cross-talk. The idea is that the input of every layer is a linear

combination of the output of the previous layers from all task networks. The weights

of each linear combination is learned and task-speciĄc, in this way each layer can

select which tasks to use for its advantage (i.e. from which tasks get information).

Prediction Distillation [36] Ů This type of architectures are founded on the

following principle: learned features from one task may be useful in performing

another related task (i.e. helping to learn another task)

Task Routing [36] Ů Both shared trunk and cross-talk architecture are founded

on an unĆexible scheme about parameter sharing. The novel component of this

architecture is a layer that applies a task-speciĄc binary mask, named Task Routing

Layer to the output of a Convolutional Layer. The sharing occurs at the features

level instead of the layer level The binary masks are not learned, the user has control

over the degree of sharing between tasks using a hyperparameter "sharing ration"

σ which can take values from 0 to 1. This binary mask is randomly initialized at

the beginning of training and then Ąxed from that point on. The range of these

hyperparameters specify the proportion of units in each layer which are task-speciĄc.
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The drawback of this architecture is an increase of number of parameters.

2.3 Machine Learning application to Skin Lesion Diagnosis

2.3.1 Methods proposed

There are a range of Machine Learning algorithms frequently used in dermatology,

as summarized in [37]

In the following section the most recent and relevant works will be presented.

• Hameed, et. al in [38], proposed hybrid approach i.e. using deep convolution

neural network and support vector machine (SVM). The proposed scheme

is designed, implemented and tested to classify skin lesion image into one of

Ąve categories, i.e. healthy, acne, eczema, benign, or malignant melanoma.

Experiments were performed on 9,144 images obtained from different sources.

AlexNET, a pre-trained CNN model was used to extract the features. the

overall accuracy achieved is 86.21%.

• Jainesh Rathod et. al [39] This system will utilize computational technique

to analyze, process, and relegate the image data predicated on various features

of the images. Skin images are Ąltered to remove unwanted noise and also

process it for enhancement of the image. Feature extraction using complex

techniques such as Convolutional Neural Network (CNN), classify the image

based on the algorithm of softmax classiĄer and obtain the diagnosis report as

an output. An initial training gives the output accuracy of 70% approximately.

2.3.2 Methods proposed on 7ptDerm dataset

The dataset used in this work is Derm7pt publicly available. Related works on this

dataset are the following:

• Kawahara et al., 2019 [40] - this work proposes a deep convolutional neural

network multi-task trained on multi-modal data (i.e. on images both clinical

and dermoscopic, and patient meta-data). The aim is to classify each sample

through the 7-point melanoma checklist criteria and predict skin lesion diagnosis.

The neural network uses a single optimization (i.e. multi-task structure). They

use different loss functions, each one considers a diverse combination of input

modalities. They reported results for experiments setup with all the input

modalities and the unbalanced dataset, in other words, the original dataset

without the application of any balancing technique.

• Coppola et al., 2020 [10] - The purpose of this work is to obtain a single

neural network capable of classyĄng skin lesion diagnosis, as well as the seven
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patterns, belong to the 7-point checklist. The network take only dermoscopic

images as input. Furthermore they develop a mechanism to share between

tasks only information relevant to them from other tasks. They use learnable

gates for each task, that regulate wich features coming from other tasks would

be useful for the speciĄc task they refer to.

• Somfai et al., 2021 [41] - the goal is to bridge machine learning applications

and human in melanoma detection scenario. They build a system combining:

visual pre-processing, deep learning, and ensembling to provide explanations

to experts and minimize false-negative rate, whilst maintaining high accuracy.

They assemble a skin lesion classiĄer by building a number of deep CNN-based

classiĄers (called feature classifiers) which receive preprocessed input images

typically focused on the individual criteria of the ABCD melanoma classiĄcation

rules, and fuse their prediction via a shallow neural net.

• Li et al., 2020 [42] - their research focuses on the lack of generalization in deep

neural networks when trained on limited datasets (this is very common with

medical image).2. They propose to learn a representative feature space through

variational encoding with a novel linear-dependency regularization term to

capture the shareable information among medical data collected from different

domains. They adopt seven public skin lesion datasets, including HAM10000,

DermoĄt, Derm7pt, MSK, PH2, SONIC , and UDA. Their method is based on

two different medical imaging classiĄcation tasks: skin lesion classiĄcation task

and gray matter segmentation task of spinal cord.

• Lucieri et al., 2020 [43] - the work aims to clarify a deep learning based

medical image classiĄer developed by REasoning for COmplex Data (RECOD)

Lab for classiĄcation of three skin tumors: Melanoma, Seborrhei Keratosis,

and Melanocytic Naevi. They used derm7pt and PH2 skin disease datasets

for experimentation. Concepts understandable by human are mapped to

RECORD image classiĄcation model with the help of Concept Activation

Vectors. The authors sustain that the work increase conĄdence of dermatologists

on Computer-Aided Diagnosis (CAD) systems and can play a fundamental role

for further development of CAV-based neural network interpretation methods.

• Bdair et al., 2021 [44] proposed FedPerl, a semi-supervised federated

learning method that utilizes peer learning from social sciences and ensemble

averaging from committee machines, to build communities and encourage its

member to learn from each other such that they produce more accurate pseudo

labels. They validated FedPerl on 38,000 skin lesion images coming from
2Trained deep neural network on data within a certain distribution may not be able to generalize

to the data with another distribution [42]
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ISIC19, HAM10000, Derm7pt, and PAD-UFES. They opt for EfficientNet as a

backbone architecture and initialized weights through Xavier.
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Chapter 3

Methods

The present work proposes different methods to address both the diagnosis task

and the 7-pt checklist tasks. Firstly the dataset used is presented, together with

pre-processing steps made. Secondly, different approaches belonging to Single-

Task Learning, Multi-Task Learning, and Concept-Bottleneck Models are introduced.

Single-Task Learning (STL) methods aim to learn one task; i.e. diagnosis. Multi-Task

Learning (MTL) approaches have been developed to predict seven tasks; i.e. the

tasks related to 7-pt checklist rule. The idea of MTL is that information acquired by

a learning system regarding one speciĄc pattern can inĆuence the learning of other

patterns and vice-versa. The Concept-Bottleneck Models (CBM) are inspired by

[14] and they have been choosen in order to improve the explainability of Machine

Learning models as well as their trustability.

3.1 Dataset description and preprocessing strategies

The dataset used is Derm7pt (from the Interactive Atlas of Dermoscopy [45]),

which was publicly released with [40]. It is a database provided for evaluating

computerized image-based prediction of a skin lesion diagnosis and of the the seven-

point checklist criteria. It consists of over 2000 dermoscopy and clinical color

images, with corresponding structured patient meta-data that includes other types of

information, such as patient gender and lesion location. This dataset has been noted

to have Şexcellent interobserver agreementsŤ, and was used to teach dermatologists,

suggesting that it is a suitable source for training machine learning algorithms [40].

In Tab. 3.1 there is a summary of the database. Each entry in the dataset is named

case, and has data available in multiple modalities (i.e. clinical and dermoscopic

images and metadata). For each case labels are available for 8 categories: pigment

network, regression structures, pigmentation, blue whitish veil, vascular structures,

streaks, dots and globules, diagnosis. These categories will be used as the 8 tasks

to learn in the MTL architecture explained in 3.3.2, so in the following the terms

task and category will be used interchangeably. These categories also will be used for

evaluating of the 7-point checklist criteria, introduced in 2.1.3.
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Table 3.1: Section headers indicate the categories; abbrev indicate the abbreviation
for the label and the grouping used in the experiments, name is the full
name of the label; 7-pt score is the contribution to the criteria ("-" is no
contribution); no. of images indicates how many images exist with the
particular label

abbrev name 7-pt score no. of images

DIAGNOSIS (DIAG)

NEV nevus - 575
MEL melanoma - 252

Seven point criteria

1. Pigment Network (PN)

ABS absent 0 276
TYP typical 0 335
ATP atypical 2 216

2. Blue Whitish Veil (BWV)

ABS absent 0 644
PRS present 2 183

3. Vascular Structures (VS)

ABS absent 0 690
REG regular 0 73
IR irregular 2 64

4. Pigmentation (PIG)

ABS absent 0 484
REG regular 0 82
IR irregular 1 261

5. Streaks (STR)

ABS absent 0 494
REG regular 0 96
IR irregular 1 237

6. Dots and Globules (DaG)

ABS absent 0 134
REG regular 0 301
IR irregular 1 392

7. Regression Structures (RS)

ABS absent 0 594
PRS blue areas 1 223
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3.1.1 Dataset pre-processing

Among the available modalities in the dataset, only the dermoscopic images have

been used in the experiments because they have a higher resolution and allow to

appreciate better the patterns on the lesion that are necessary for the seven-point

criteria.

Grouping of granular labels

The original dataset is deĄned with 43 different labels at the most granular level.

However, most labels occur infrequently and have comparable clinical interpretation

(e.g. types of benign nevi), thus in [40] they grouped infrequent labels with similar

clinical interpretation into a single label, and obtain a total number of in 24 labels

with higher granularity. For example, in the diagnosis category, the NEV label groups

all the nevi labels (e.g. blue nevus, clark nevus, etc) into a single label. Table 3.1

shows the available labels for each of the tasks studied in this work and the relative

number of sample in that category.

Adjustments to dataset

The dataset was modiĄed through these steps:

1. Removal of unnecessary samples: the focus of this work is building a model to

distinguish nevi (NEV) from melanoma (MEL); thus the samples with other

diagnoses present in the dataset (such as Basal-cell carcinoma, seborrheic

keratosis and others) have been excluded in the experiments. Table 3.1 shows

the tasks with corresponding labels, and how many images exist with the

particular labels, after this pre-processing step.

2. Dataset splitting: the samples in the dataset have been split in training,

validation, and testing subset following [40]. Therefore the number of samples

per subset is as follows:

• Train set: 346

• Valid set: 161

• Test set: 320

3. Sanity check: veriĄcation that images contained in the split datasets arenŠt

duplicates. As a matter of fact, whether an image of val or test sets are also

present in the training set we would have Data Leakage1. The case_num (i.e.

1Data Leakage, sometimes called train-test contamination occurs when validation or test data
corrupt training data. In this way the model is trained and evaluated on the same data, so it
may get good performance but perform poorly when it will be deployed to make decisions[46]
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(a) Normal (b) Flipped (c) Rotated

(d) Normal (e) Flipped (f) Rotated

Figure 3.1: Example of data augmentation of 2 samples, with random horizon-
tal/vertical Ćip, and random rotation within a range of 20°.

ID) of skin lesion is beign used to address this task.

Data Augmentation

One way to improve the generalization performance of machine learning model is

to train on more data: the more samples the network has to learn from, the better

it will be able to identify which differences in images matter and which do not for

the classiĄcation. The data augmentation technique allows using of the data owned

to obtain more data. The idea is to transform the images in the database in ways

that preserve the labels in categories. In this way, the classiĄer learns to ignore

those kinds of transformations. For instance, whether melanoma is facing left or

right in a photo doesnŠt change the fact that it is a Melanoma and not a Naevi. An

example of data augmentation is shown in Fig. 3.1. In this case, the model will learn

that modiĄes such as rotation or Ćips, are diversity that it should overlook. In fact,

this project works whit a relatively small dataset and the following types of data

augmentation have been used:

• Random horizontal and vertical Ćip

26



3.2 Problem definition and objective functions

• Random rotation within a range of 20° and the points outside the boundaries

of the input are filled according to a mode called nearest, in which points are

occupied with the same value of the nearest pixel.

An example of data augmentation implemented is shown in 3.1

Imbalance problem: balanced mini-batch sampling at training time

The dataset is imbalanced, thus it may happen that several mini-batches do not

include one of the unique labels, meaning that the neural network will seldom be

optimized for that label. For this reason, this work employs the same mini-batch

sampling scheme described in [40]: at each training iteration, k cases are randomly

sampled from the training set for each of the unique target labels present in the

dataset. Consequentially, in every mini-batch there are at least k elements belonging

to each unique label. As observed in Tab. 3.1, unique labels are 21 across the 8 tasks

considered. This means that b = 21k is the size of a each mini-batch during training.

3.2 Problem definition and objective functions

3.2.1 Formal encoding: one-hot method

Formally, a set is given of n color images xs ∈ X and their corresponding one-hot

encoded labels for T tasks

ys = {y1
s, y2

s, ...yT
s } ∈ Y ⊂ R

J1

⊗ R
J2

⊗ ...RJT

(3.1)

where ⊗ is the direct product, s = 1, ...n is the sample index and J1, ...JT indicate

the number of labels in each task t. Thus each

yt
s =

[︂

yt
s,1, yt

s,2, ...yt
s,Jt

]︂

(3.2)

is the vector of one-hot encoded lables for sample s for task t. The aims of both STL

and MTL problems is to find a neural network gθ, which has a set of parameters

such that gθ : X → Y minimizes a chosen objective function.

3.2.2 Activation function

The output function is a transformation that is applied the output vectors of a

neural network before the loss computation. For all architectures proposed Softmax

activation function has been used. This function, also known as softargmax or

normalized exponential function is a generalization of the logistic function to multiple

dimensions. Given a categorical distribution also referred as multinoulli distribution

(i.e. a discrete probability distribution that describe the possible results of a random
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variable that can take on one of K possible categories), the softmax function is often

used to predict the probabilities associated with this types of distributions [30]. The

softmax function is deĄnd to be σ : RK → [0, 1]K

softmax(xi) =
exp(xi)

√︂n
j=1 exp(xj)

(3.3)

A softmax function take as input a vector z of K real numbers, and normalize it into a

probability distribution consisting of K probabilities proportional to the exponential

of the input numbers. This means that the input of the function can be any real

number, but its output belong to the interval (0,1).

3.2.3 Loss function

Categorical cross entropy

The categorical cross entropy (CE) for each sample s is deĄned as

ϕ(ys, ŷs) = −
Jt

∑︂

j=1

ys,jlog(ŷs,j) (3.4)

Where J t is the cardinality of label set of a task t, ys ∈ R
1×Jt

and ŷs ∈ R
1×Jt

are

respectively the one-hot encoded ground truth and the softmax activated predicted

output of the network. Cross entropy is entropy between two probability distributions

as deĄned by Shannon in [47]. This function measures the average number of bits

required to send a message from distribution A to Distribution B. Thus, it is used

for compute the difference between two probabilities: ground truth distribution and

prediction distribution. In this way the algorithm attempts to minimize this function

in order to achieve its goal; i.e. predict values equal as much is possible to ground

truth. In other words, the ML model ideally wants to obtain two equal probability

distributions.

Focal categorical cross entropy

Focal cross-entropy (FCE) was Ąrst introduced in [48]. This loss function scales the

standard cross-entropy by a factor, which expresses the conĄdence of the model in

classifying a sample; i.e. inputs that are classiĄed easily have major conĄdence and

should have a minor impact on the loss function, thus they should have a higher

scale value. The classiĄcation loss function for one sample s is:

ξ(ys, ŷs) = −
Jt

∑︂

j

ys,j(1 − ŷs,j)βlog(ŷs,j) (3.5)
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For both CE and FCE J t is the cardinality of label set of a task t. While yt
s ∈

R
1×Jt

and ŷt
s ∈ R

1×Jt

are respectively the one-hot encoded ground truth and the

softmax activated predicted output of the network, as deĄned in Eq. 3.1 3.2. The

hyperparameter β is equal to β = 2 , how is presented in Ąndings in [48].

3.3 Proposed Architecures

In this section different approaches are presented. Firstly models belonging to

different methods: single-task learning and multi-task learning. Secondly different

models which implement concept bottleneck framework. The Ąrst approach aims

to classify only the task related to the diagnosis (i.e. DIAG category), the latter

focuses also on the classiĄcation of the seven-point checklist tasks, thus the networks

presented in multi-task learning approach compute 8 tasks in total (the diagnosis

and the seven-point). For some architectures, the transfer learning technique has

been used, deĄned in [49] as follows: inductive transfer refers to any algorithmic

process by which structure or knowledge derived from a learning problem is used to

enhance learning on a related problem. SpeciĄcally, state-of-the-art architectures

pre-trained on the ImageNet dataset2

3.3.1 Single-task architectures

This paragraph describes the single-task models used for the classiĄcation of diagnosis.

These models consist of a base architecture taken from the literature, which is used

as a feature extractor, followed by a series of layers to process the features into

classiĄcation logits. The structure of the single-task models is represented in Fig. 3.2.

The base architectures used in the experiments are IncepionV3 [35], ResNet50 [5],

and DenseNet121 [7]: a brief summary of the characteristics of these models have

been given in Sec. 2.2.2. These base models are initialized with weights pre-trained

on the ImageNet dataset. For add regularization, a 30% dropout has been introduced

at the deeper levels after the Global Average Pooling (Fig. 3.2). These STL models

have trained with the categorical cross-entropy objective function, as deĄned in 3.4.

3.3.2 Multi-task architectures

In this paragraph the architectures that aim to predict 8 different tasks simultane-

ously (Tab. 3.1) will be presented. Similarly to the single-task architectures, these

architectures use popular architectures as base of CNN. The base networks used

are ResNet50, InceptionV3, and DenseNet121. The latter choice has been made in

2ImageNet is a database of images formed according to the WordNet hierarchy (presently only the
nouns) in which each node of the hierarchy is depicted by hundreds and thousands of images.
The models used are ResNet50, InceptionV3 and DenseNet121, briefly recapped in Sec. 2.2.2
have been employed in the experiments. https://www.image-net.org/
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Figure 3.2: Single-Task proposed architectures with use of different bases: Incep-
tionV3, ResNet50, and DenseNet121. The weitghts are initialized on
pre-trained bases on ImageNet dataset.

order to reduce overĄtting. In fact, the number of parameters of DenseNet121 is

approximately one-third compared to ResNet50 and Inceptionv33 (i.e. 8,062,504).

The classiĄcation layer of each base architecture has been removed and 8 different

branches are added: one for different tasks. Each task branch has the same archi-

tecture. Thus different bases provide different features extraction and get different

performances. The common structure is showed in Fig. 3.3 The choice to put equal

branches structure allows comparing better the models. Loss function is the same

for all models. In particular for each task a focal cross entropy ξ(·) has been applied,

as characterized in 3.5, and the total loss of MTL models is deĄned as

Ξ =
∑︂

t ∈ T

ξt(y
t
s, ŷt

s) (3.6)

where T = {DIAG, PN, BWV, V S, PIG, STR, DaG, RS}

3.3.3 Concept bottleneck model architectures

In this paragraph three Concept Bottleneck Models (CBM) [14] approaches will be

presented. The Ąrst part will brieĆy present the idea of the CMB, the subsequent one

introduces the architecutres proposed in this work. The authors of the original paper

[14], seek to learn models that allow to interact with high-level concepts. Whether

a model is deployed, it will be used by physicians, thus the essential idea is that

clinicians can manipulate concepts predicted by it, and propagating these changes to

the Ąnal prediction. For instance, in this work the concepts are the seven criteria of

7-pt checklist rule and the Ąnal prediction is the skin lesion diagnosis. This type of

model also empowers human-model interaction: the authors show that the accuracy

increases signiĄcantly if it may correct model misconceptions at test time [14]. This

type of interaction has not been studied in this manuscript.

The aim is to predict a target y, given an input x ∈ R
d. The training points also

3ResNet50 and InceptionV3 have 25,636,712 and 23,851,784 parameters respectively
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3.3 Proposed Architecures

Figure 3.3: Multi-task Architecture with 8 branches: one for DIAG task and 7
for Seven-Point checklist patterns. This strcture represents the three
different archictectures implemented, in which the difference is in the
base: ResNet50, InceptionV3 or DenseNet121.

convey an intermediate representation deĄned as c ∈ R
k, that is a vector of k concepts.

Thus training samples are deĄned in the following way {x(i), y(i), c(i)} for i = 1...n.

Where n is the number of available training samples.

A CBM is characterized by f(g(x)), where g(·) maps an input image into the concept

space (for istance: "pigmentation", "dots and globules", "streaks", etc.) and f(·) maps

these concepts into Ąnal label (i.e. the presence or absence of melanoma on skin

lesion).

The fundamental difference of CMB compared to standard end-to-end systems, is

that the prediction ŷ = f(g(x)) depends on the ĉ = g(x) that is trained to achieve a

component-wise to the concepts c.

The authors of Concept Bottleneck Models [14] methodically experiment three

conĄgurations of f(·) and g(·):

• Independent bottleneck: g(·) and f(·) are trained indipendently using the ground

truth labels. This means that there are two different models with distinct loss

functions.

• Sequential bottleneck: in this case there are two different models which are

trained sequentially. Firstly, g(·) is trained to predict the concepts vector.

Secondly, the prediction of g(·) are used as input to f(·) during the training

phase.

• Joint bottleneck: is deĄned similarly to the Sequential bottleneck, with the

difference that the two models are trained simultaneously; i.e. the loss function
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is a sum of the loss functions of the two models.

The following paragraphs will describe the concept bottleneck model conĄgurations

that have been used in this work.

Figures 3.4a and 3.4b illustrate g(·) and f(·) architectures respectively.

Independent configuration

This structure consists of two models, trained indipendently on actual images for

g(·) and actual concepts for f(·).

1. g(·) for x → c

A convolutional neural network, that given an input image x, make predictions

on concepts c. DenseNet121 has been chosen as base architecture, as it showed

the best results in the multi-task learning setting experiments (see section

4.2.2). The architecture is presented in section 3.3.2 in which the diagnosis

task has been removed. The neural network has been trained on actual images.

The loss function is focal cross entropy for each task, as deĄned in Eq. 3.5.

Thus, the total loss is computed as:

Ξ =
b

∑︂

s

∑︂

t ∈ T

ξt(y
t
s, ŷt

s) (3.7)

where T = {PN, BWV, V S, PIG, STR, DaG, RS}; i.e. the 7 attributes of the

7-point checklist rule.

2. f(·) c → y

A multi-layer perceptron, that given the concepts c make prediction of the

diagnosis task y. The neural network has been trained using the true concepts

as input, however at test time it receives as input the concepts predicted by the

model g(·). The classiĄcation loss function for the diagnosis task for one sample

is categorical cross entropy because this is the same loss function used in a STL

(section 3.3.1), and this allows to compare the results. The categorical cross

entropy for each sample s is deĄned in Eq. 3.4.
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(a) g(·)

(b) f(·)

Figure 3.4: CBM: architectures of g(·) which predict concepts from raw images, and
f(·) which predicts output target.
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Sequential configuration

For this structure, the same models used in independent conĄguration have been

chosen, and they are trained at different times. The difference compared to Indepen-

dent CBM, is that MLP is trained on predicted concepts instead of actual concepts.

Loss function is categorical cross entropy, deĄned in Eq. 3.4, because the Ąnal

prediction is single-task: the diagnosis label. Within a mini-batch the loss function

is

Φ =
b

∑︂

s

∑︂

t ∈ T

ϕt(y
t
s, ŷt

s) (3.8)

where yt
s = ĝ(x) and T = {PN, BWV, V S, PIG, STR, DaG, RS}, the 7 patterns of

the 7-point checklist.

Joint configuration

This structure aims to minimize both task and diagnosis losses simultaneously. The

focal categorical cross entropy (Eq. 3.5) and categorical cross entropy (Eq. 3.4)

presented for above conĄgurations have been used. The loss function of joint model

is

Ljoint =
b

∑︂

s

[
T

∑︂

t

λξ(yt
s, ŷt

s) − ϕDIAG(yDIAG
s , ŷDIAG

s )] (3.9)

where λ regulates the weight of concepts loss in contrast to task loss.
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Results

This chapter describes and discusses the most relevant results obtained while experi-

menting with the proposed architectures.

4.1 Experimental setup

The proposed architectures have been implemented in Python 3.8 using the popular

deep learning framework TensorFlow [50] (version 2.3.0). The experiments were

carried out on GPU NVIDIA GeForce GTX TitanX which has 12 GB of memory.

Despite the GPU is faster than a CPU, the less dedicated RAM allows a smaller

mini-batch size given the size of the model and the inputs. The images have been

resized to 254 x 254 to improve efficiency.

The dataset has been split into train, valid, and test sets as deĄned in Section 3.1.

The training has been performed on the entire training dataset for all the experiments.

In machine learning, many strategies are explicitly designed to reduce the error of

the model with new data, and they are known collectively as regularization [30]. In

this research, the model performance at the end of each epoch has been evaluated

through the validation set, with a regularization technique called early stopping.

Tests have been performed in a 5-fold validation fashion: the whole test dataset is

equally divided into Ąve parts, and for each iteration, only one part constitutes the

test set. Successively, mean and standard deviation across the Ąve test folds have

been calculated.

4.1.1 Metrics

This section summarizes the metrics used for the evaluation of experiments. They

have been implemented using the scikit-learn library [8].

All the confusion matrices are calculated on the entire test set. The remaining

metrics have been computed on 5-folds test set and the results are reported as

mean and standard deviation of these split. Furthermore note that only accuracy

and F-measure are reported in this chapter. Precision and recall can be found in

the Appendix 6. Precision and recall are evaluated on the positive label (MEL =
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melanoma) for the diagnosis task. For non-binary tasks, these metrics are evaluated

as a weighted average (based on the number of true samples for each label).

Confusion Matrix

A Confusion Matrix is built for each model trained to evaluate the metrics of a

classiĄcation. By deĄnition, a confusion matrix C, is such that each entry of the

matrix, is equal to the number of observations belong to the label indicated in the

row but predicted to label indicated by column. For example, in binary classiĄcation,

the count of true positive is tp, false positive is fp, true negative tn and false negative

fn. An example is shown in Tab. 4.1. In this work the confusion matrices are

computed without any normalization, which means that the information of number

they convey exhibits the exact sum of samples predicted to any class.

Accuracy

The accuracy function computes the fraction (i.e. with normalization) of correct

predictions. Both in STL and in MTL, the accuracy is computed for any task

separately. If the yî is the predicted value of the i − th sample and yi is the

corresponding true value, then the fraction of correct predictions over nsamples

accuracy(y, ŷ) =
1

nsamples

nsamples−1
∑︂

i=0

✶(yî = yi) (4.1)

where ✶(x) is the indicator function.

Precision

Precision is the ratio

tp

tp + fp
(4.2)

where tp represents the number of true positive, while fp is the number of false

positive. The best score is 1 and the worst one is 0. An intuitive explanation of

Tot. population = p + n Predicted positive Predicted negative

Actual positive tp fn

Actual negative fp tn

Table 4.1: DeĄnition of confusion matrix C with tp, tn, fp, and fn indicated.
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this metric is the following: it is the ability of the model not to label as positive the

negative samples.

Recall

Recall is the ratio

tp

tp + fn
(4.3)

where tp represents the number of true positive, while fn is the number of false

negative. The best value is 1 and the worst value is 0. This metrics is intuitively the

ability of the classiĄer to Ąnd all positive samples

F1-score

F1-score, also known as balanced F-score or F-measure can be interpred as a weighted

average of the precision and recall. Its best value is 1 and the worst score is 0. Both

precision and recall give the same relative contribution to the F1 score. F-measure is

formally deĄned as

2
(precision × recall)

precision + recall
(4.4)

4.2 Experiments

In the following pages the most signiĄcant experiments have been selected among all

experimentations carried out. This section is intended to show the thought process

leading to the Ąnal setting of the concept-bottleneck models. Initial experiments have

been carried out on single-task learning models with the melanoma diagnosis as main

task. These were followed by multi-task learning models over the 8 available tasks

(diagnosis + 7 checklist attributes). Finally, the best performing base architecture

was chosen as backbone for the experiments employing the concept-bottleneck model

framework. A summary of the experiments including the relevant hyperparameters

and performance can be found in Tab. 4.2. In-depth performance for the experiments

are reported in Tab 4.4 to Tab. 4.7.
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Base type F. Ar. Loss η Im.N. m.b.s Dr. 7pµ DIAG

RN STL 3.2 ϕ 10−3 Yes 40 30% - 79.1
Inc STL 3.2 ϕ 10−3 Yes 40 30% - 79.4
DN STL 3.2 ϕ 10−3 Yes 40 30% - 80.0

RN MTL 3.3 ξ 10−4 Yes 42 - 47.2 34.1
Inc MTL 3.3 ξ 10−4 Yes 42 - 69.34 80.0
DN MTL 3.3 ξ 10−4 Yes 42 - 71.24 81.2

DN CBM-CNN 3.4a ξ 10−4 Yes 42 - 68.2 -
- CBM-MLP 3.4b ϕ 10−4 - 21 30% - 76.2
- CBM-seq 3.4 ϕ 10−4 Yes 42 30% - 78.4
. CBM-joint 3.4 ϕ + ξ 10−4 Yes 42 30% 71.9 82.2

Table 4.2: Summary of the experiments. Column Base refers to the features ex-
traction base of each model, if it is applicabile, where RN = ResNet50,
Inc = InceptionV3, and DN = DenseNet121; type indicates whether the
model belongs to single-task, multi-task learning or concept-bottleneck
framework; F. Ar. collects the direct referiments to full architectures;
Loss is the loss funcion (i.e. categorical cross entropy ϕ, deĄned in Eq.
3.4 or focal cross entropy deĄned in Eq. ξ 3.5); η represents learning
rate; Im.N. is whether the model use the ImageNet as initialization of
parameters for the base. m.b.s is mini-batch size; Dr. is dropout where
applicable; 7pµ refers to the accuracy average of seven-point pattner of
Tables 4.6 and 4.7; DIAG refers to the accuracy of diagnosis task.

38



4.2 Experiments

Experiments have been conducted in chronological order as they are presented

in the following paragraphs: from single-task learning, through multi-task learning

and Ąnally concept bottleneck models. In all the results concerning the diagnosis

task, f1-score, precision and recall are computed with regard to the MEL label; i.e.

diagnosis of melanoma.

4.2.1 Single-task learning

The architectures used in these experiments are presented in section 3.3.1. The

proposed structure is common for all convolutional neural networks, the difference is in

the three bases used as features extractors: ResNet50, InceptionV3, and DenseNet121.

All the experiments for the single-task learning are carried out with the balancing

sampling method introduced in paragraph 3.1.1. The step of the process is the

following:

1. Evaluation of which labels to select for the balancing. In this phase, models

are trained using both balancing on ŠNEVŠ-ŠMELŠ as unique labels as well as

the 21 labels, presented in 3.1. Only results using ST ResNet50 have been

reported, however the others architectures display comparable metrics. Results

in Tab. 4.3 show that balancing on 2 unique labels ŠNEVŠ and ŠMELŠ gives a

slightly better performance, hence this is the balancing method used for all the

subsequent STL experiments. The k parameter which deĄnes the dimension

of mini-batches is set to 20, in order to obtain a mini-batch size equal to b =

20 × 2. Furthermore, the training curves reported in appendix 6.1.1 display

that the balancing on 21 labels return a singular behaviour during the training.

This is conĄrmed also by confusion matrices that have been reported in the

appendix which express a better classiĄcation performance whether the model

is trained with the balancing on ŠNEVŠ and ŠMELŠ.

Model µac ±σac µpr ±σpr µrec ±σrec µf1 ±σf1

ResNet5021label 70.6 4.9 54.9 8.6 50.4 7.8 52.0 5.4

ResNet50NEV −MEL 79.1 3.0 63.6 10.8 69.2 3.8 61.1 18.1

Table 4.3: STL: comparison between Balanced Batch Sampling on 21 unique labels
and NEV-MEL labels. The mean and standard deviation of all metrics, are
been computed on Ąve folds of test set obtained with StratifiedKFold

provided by [8].
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Model µac ±σac µf1 ±σf1 µpr ±σpr µrec ±σrec

STResNet50 79.1 3.0 63.6 10.8 69.2 3.8 61.1 18.1

STInceptionV3 79.4 2.8 60.8 8.7 75.2 6.7 52.3 13.1

STDenseNet121 80.0 4.7 66.2 11.2 69.7 7.5 66.2 11.2

Table 4.4: STL: The mean and standard deviation are been computed on Ąve folds
of the test set obtained with StratifiedKFold provided by [8].

2. Experiments involving the other bases, are carried out with the Ąner balancing

method studied in the Ąrst step. The results are reported in Tab. 4.4. The

better accuracy is obtained with DenseNet121 as base. STInceptionV3 is the

neural network which has higher precision, hence it is better in the prediction

of true positive (i.e. melanoma cases). The preeminent recall is obtained wit

STDenseNet121, thus this neural network has a lower error with false negatives.

This suggests that the latter is the most effective model.
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Figure 4.1: STL: STDenseNet121: confusion matrix. Columns are the predictions
and rows are the ground truth.

The best performant model is ŠSTDenseNet121Š for the accuracy and F-measure.

The confusion matrix in Fig. 4.1 shows that the neural network recognize fairly well

true positives and true negatives.

Additional experiments have been carried out without any balancing. In the table

4.5 are shown results obtained, that are perfectly aligned with what we expect: for

all models the performance are signiĄcantly worst.

Model µac ±σac µf1 ±σf1 µpr ±σpr µrec ±σrec

STResNet50 68.4 0.6 55.6 0.9 46.8 0.9 68.4 0.6

STInceptionV3 58.75 4.6 57.1 5.0 56.0 5.3 58.7 4.6

STDenseNet121 58.1 4.8 58.1 5.01 58.32 5.3 58.1 4.8

Table 4.5: STL: The mean and standard deviation of all metrics, are been computed
on Ąve folds of test set obtained with kStratifiedKFold provided by [8].
The models have trained without any balancing
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4.2.2 Multi-task learning

Multi-task learning architectures have a common structure as deĄned in Sec. 3.3.2.

They are composed of a base that executes the extraction of features. These bases

are the same used for the STL; i.e. ResNet50, InceptionV3, and DenseNet121. The

classiĄcation layer of these bases has been removed, and an equivalent branch for each

task is added, for the classiĄcation of diagnosis and seven-point patterns. The weights

of the bases are initialized with the pre-trained models on ImageNet dataset, and

during the training they have not been frozen. In order to Ąne-tune all parameters.

The learning rate is set to 10−4 instead of 10−3 of the single-task learning based

on experimental Ąndings. In fact, the training curves for learning rate equal to

10−3, behave singularly, with a constant trend for all tasks (see appendix 6.1.2).

All the experiments for the multi-task learning are carried out with the balancing

sampling methods introduced in paragraph 3.1.1, computed on the 21 unique labels.

The results conĄrm that the best model is the one with DenseNet121 as feature

extractor, as shown in Tab. 4.6. Thus, MT DenseNet121 is the model selected to

execute experiments on the concept-bottleneck models in the following paragraph

(Sec. 4.2.3).
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Model µDIAG ±σDIAG µP N ±σP N µBW V ±σBW V µV S ±σV S µP I ±σP I µST ±σST µDaG ±σDaG µRS ±σRS

Accuracy

MTDenseNet121 81.2 5.6 60.3 10.2 86.6 1.4 82.5 10.2 70.6 6.3 65.0 2.1 60.9 5.8 72.8 3.9

MTInceptionV3 80.0 3.0 52.5 7.8 86.6 5.9 81.6 5.2 67.2 7.2 62.2 7.8 62.5 8.5 72.8 3.0

MTResNet50 34.1 3.0 32.8 2.5 25.0 3.1 81.2 0.0 51.6 5.3 28.7 0.9 49.4 0.9 61.9 4.1

F1-score

MTDenseNet121 65.9 12.3 60.1 10.4 86.3 1.4 81.9 9.0 66.8 5.7 64.2 2.3 60.1 4.6 70.7 3.8

MTInceptionV3 65.6 7.3 52.3 7.9 86.9 5.3 79.1 5.6 66.6 7.3 62.4 7.2 59.6 7.9 66.9 4.9

MTResNet50 47.9 2.4 24.5 1.8 15.3 6.3 73.6 1.1 48.9 5.5 12.8 0.7 32.6 0.9 59.1 3.2

Precision

MTDenseNet121 76.9 12.0 60.9 9.9 87.1 2.1 82.9 8.7 64.6 3.8 65.7 5.8 61.3 4.8 71.7 5.3

MTInceptionV3 71.5 6.3 54.0 8.1 87.8 3.5 80.4 8.7 69.6 5.7 64.8 7.4 60.1 7.9 73.3 6.4

MTResNet50 31.9 1.8 20.1 1.5 51.0 30.3 67.7 2.7 53.4 2.9 8.3 0.5 24.4 0.8 58.0 3.8

Recall

MTDenseNet121 59.3 15.7 60.3 10.2 86.6 1.4 82.5 10.2 70.6 6.3 65.0 2.1 60.9 5.8 72.8 3.9

MTInceptionV3 61.3 10.6 52.5 7.8 86.6 5.9 81.6 5.2 67.2 7.2 62.2 7.8 62.5 8.5 72.8 3.0

MTResNet50 96.0 4.2 32.8 2.5 25.0 3.1 81.2 0.0 51.6 5.3 28.7 0.9 49.4 0.9 61.9 4.1

Table 4.6: MTL: The mean and standard deviation of all metrics, are been computed on Ąve folds of test set obtained with kStratifiedKFold

provided by [8]. The models have trained with balancing.
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4.2.3 Concept Bottleneck Models

In this section, the most promitent results obtained during the experimentation of

CBM frameworks are summarized. The different conĄgurations and their training

process have been deĄned in Sec. 3.3.3. Given the Ąndings discussed in Sec. 4.2.2 the

learning rate is set to 10−4. All the experiments for both g(·) and f(·) are carried out

with the balancing sampling method introduced in paragraph 3.1.1 and computed

on the 21 unique labels.

Following the Ąndings of the experiments using STL and MTL models, the DenseNet121

was chosen as base model for the CBMs employed in this section.

The results are shown in Tab. 4.7 and are commented below:

• Diagnosis task: over the three conĄgurations, training according to the joint

conĄguration yields higher accuracy, F-measure, precision and recall. The con-

fusion matrix for this conĄguration is shown in Fig. 4.2: the model misclassiĄes

more MEL samples rather than NEV.

• 7-pt checklist patterns: also for the concepts predictions, the joint conĄguration

performs better for all concepts except for VS, in which the Convolutional

Neural Network of independent conĄguration perform slightly better.
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Figure 4.2: CBM joint: confusion matrix for the diagnosis target. Rows are true
label, columns are predicted labels.
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Model µD ±σD µP N ±σP N µBW V ±σBW V µV S ±σV S µP I ±σP I µST ±σST µDaG ±σDaG µRS ±σRS

Accuracy

IndependentCNN - - 59.1 10.6 83.8 3.6 81.9 5.1 68.1 2.1 65.0 3.2 54.4 6.8 72.5 5.5

IndependentMLP 76.2 7.8 - - - - - - - - - - - - - -

Sequential 78.4 6.2 - - - - - - - - - - - - - -

Joint 82.5 4.2 63.1 4.6 89.7 4.4 81.6 0.7 70.6 5.8 68.8 3.3 60.3 11.8 78.1 5.2

F1-score

IndependentCNN - - 58.0 10.4 83.3 2.9 77.3 4.0 67.9 2.5 64.7 3.1 54.2 6.5 69.7 5.5

IndependentMLP 55.3 19.0 - - - - - - - - - - - - - -

Sequential 57.9 15.4 - - - - - - - - - - - - - -

Joint 65.9 10.6 61.0 5.3 89.1 4.9 73.3 1.0 70.0 6.8 67.4 2.3 59.3 12.2 76.8 5.4

Precision

IndependentCNN - - 58.8 11.2 85.2 2.6 73.4 3.7 70.5 1.7 66.6 3.4 56.7 6.1 71.6 8.4

IndependentMLP 64.6 16.8 - - - - - - - - - - - - - -

Sequential 72.0 10.0 - - - - - - - - - - - - - -

Joint 83.0 4.6 64.3 6.3 90.0 5.0 66.5 1.1 72.4 6.3 69.4 3.4 61.5 10.8 77.6 6.0

Recall

IndependentCNN - - 59.1 10.6 83.8 3.6 81.9 5.1 68.1 2.1 65.0 3.2 54.4 6.8 72.5 5.5

IndependentMLP 49.3 20.5 - - - - - - - - - - - - - -

Sequential 49.3 17.3 - - - - - - - - - - - - - -

Joint 55.2 13.2 63.1 4.6 89.7 4.4 81.6 0.7 70.6 5.8 68.8 3.3 60.3 11.8 78.1 5.2

Table 4.7: CBM: The mean and standard deviation of all metrics, are been computed on Ąve folds of test set obtained with kStratifiedKFold

provided by [8].
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Model 7pt-avg

Accuracy

CBM-Joint 73.1

F1-score

CBM-Joint 70.9

Precision

CBM-Joint 71.6

Recall

CBM-Joint 73.1

Table 4.8: Mean of the best CBM model on seven patterns of 7-pt checklist patterns

4.2.4 Application of 7-pt rule on ground truth

In order to compare with the clinical ground truth, the 7-point checklist rule has been

applied to the ground truth labels of the attributes of the test set. The predictions

obtained in this way represent the diagnosis that would be obtained in clinical

practice when applying the rule to correctly identiĄed attributes.

For standard threshold τ = 3 the Ąndings about the accuracy of the are comparable

to the STL, MTL., and CBM. While for the precision, the application of seven-point

clinical rule is better only in IndependentMLP , which means that it gives less false

positive. In opposite the recall is signiĄcantly higher with the application of seven-

point score instead of any models presented. This suggests that the clinical rule

rarely returns a false negative (i.e. it dignoses well negatives samples). The results

are shown in Tab. 4.9.

4.3 Discussion

In this section, the results reported in the previous sections will be discussed and

compared among each other and to another work that uses the same dataset.

Two macro-categories of architectures are proposed in this work: STL and MTL/CBM.

The Ąrst does not yield the interpretation of the diagnosis, the latter includes both

MTL and CBM. An overall comparison shows that across the models they do not

differ a lot one to each other for the accuracy of the diagnosis. Further comparison

between MTL and CBM insights that they are equiparable for the average accuracy

on seven patterns of 7-pt checklist, for the DenseNet121 as base. Thus, the latter is

could be selected in order to pursue future studies, in that it impelements hierarchy

between concepts and the Ąnal diagnosis, which is intrinsic of the seven point rule.

For Single-Task Learning (STL) (Sec. 4.2.1) the best model is ŠSTDenseNet121Š with
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µac ±σac µpr ±σpr µrec ±σrec µf1 ±σf1

τ = 3 83.4 4.9 67.5 7.4 94.0 2.3 78.4 5.3

τ = 1 56.9 3.6 42.3 2.3 99.0 2.2 59.2 2.4

Table 4.9: Seven-point rule on ground truth

acc = 80.0%±4.7 , F1-score 66.2±11.2 %, and recall = 66.2%±11.2. The precision

metric is higher in the model ’STInceptionV3’ with a value equal to 75.2%±6.7,

The Multi-Task Learning (MTL) (4.2.2) models have been trained to learn 8 tasks

(diagnosis and attributes) without a hierarchy assigned to the tasks. For the diagnosis

task the best model is ’MTDenseNet121’ with a diagnosis accuracy of 81.2%±5.6,

and a mean among seven-point patterns accuracy equal to 81.6%. ’MTDenseNet121’

is also better with regard to the F1-score and precision metrics among the tasks.

Surprisingly, the MTResNet50 model reaches a recall value equal to 96% for the

melanoma diagnosis and for the seven clinical patterns the mean is 71.2%. This

suggests that ’MTResNet50’ achieves a low false negative rate, which is a desiderable

behaviour in this setting. The use of ’MTResNet50’ may be considered for further

refinements on the architecture as well as the hyperparameters. Overall the MTL

models appear to perform better than their STL counterparts, probably due to the

higher generalization that comes from learning multiple correlated tasks at the same

time.

Given the findings from the STL and MTL experiments, the DenseNet121 was

chosen as base architecture for the experiments with the Concept-Bottleneck Models

(CBM) configurations (Sec. 4.2.3). The Joint configuration is the best for accuracy =

82.5%±4.2, F-measure = 65.9%±10.6, Precision = 83.0%±4.6, and Recall 55.2%±13.2

for the diagnosis task. This is also true for the mean of seven patterns as can been

seen in Tab. 4.8. Finally, between MTL and CBM we can say that for the diagnosis

task the accuracy is higher in CBM. The difference in performance with the best MTL

models is not excessive, but CBM models have the benefint of learning the hierarchy

present between the seven-point patterns and the diagnosis task. The experiments

in the CBM also show a better performance than the STL models, probably due to

the same generalization benefits coming from MTL. Further comparison has been

done among the implemented models and the clinical ground truth. This is obtained

by applying the 7-point checklist rule to the true labels of the attributes in the test.

This shows the efficacy of the rule when the attributes are correctly identified; the

metrics are reported in Tab. 4.9. This rule is highly efficient in identifying the cases

of melanoma, as shown by the high values of recall (over 90%) for both threshold

values. The models proposed in this manuscript don’t yield such a hight recall rate.

At the same time the rule suffers from a high false-positive rate, especially when the

threshold is low, meaning that many benign lesion will be classified as melanoma.
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The implemented models perform better in this regard, being able to identify a

higher number of naevi.

Comparing with other approaches is challeging as often different subset of the

same dataset or other sources are used in the training. A comparison is somewhat

possible with [40], which uses the same split of the Derm-7pt dataset. In this work

they explored using different input modalities as training data for their system (i.e.

clinical and dermoscopic images and metadata) both in a single- and multi-modal

input conĄgurations. The work of [40] employs a mini-batch sampling strategy

equivalent to the one used in this work. Additionally, they weight each sample based

on the frequency of the sampleŠs labels in the mini-batch. This weighting strategy

is not implemented in this work, but it is a possibile future employ. Furthermore

they use more samples, because in this work only NEV and MEL labels have been

selected for diagnosis task. For this reason the diagnosis task of [40] is a 5-label

task while the one proposed in this research is a binary task. Two others signiĄcant

difference involve loss function and multi-modal input of [40]. The comparison will

be made with the accuracy obtained in [40] during training with only dermoscopic

images, and in the following referred as xd−Kaw, and with training done combining

all possible inputs (clinical, dermoscopic and meta-data images), in the following

referred as xcombine−Kaw. The ŠMTDenseNetŠ achieved an average accuracy on the 8

tasks of 72.4% while the ŠCBM-joinŠ of 74.3%. KawaharaŠs xd−Kaw and xcombine−Kaw

accuracies achieved performances of 72.5% and 73.7%, respectively. In conclusion

the best models obtained in this work are competitive compared to the model of [40].
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Conclusion

Visual inspection of dermoscopic images of skin lesions is a standard between ex-

perienced and practitioners dermatologists. The 7-pt checklist is one of the most

used rule-based algorithms for the diagnosis of skin cancer. This technique consists

in identifying seven clinically signiĄcant patterns in the dermoscopic image. Each

pattern is assigned a score and the diagnosis of cancer is made if the sum across

all patterns is greater than the chosen threshold. The problem is that, human

inspection of the skin is inĆuenced by different factors such as experience, attention,

stress, or fatigue. Thus, over the last years research has been conducted to develop

CAD systems in order to support the physiciansŠ decisions. However, against the

prominent performances already reached by CADs proposed in the literature, they

are encountering barriers in their diffusion in the real-world. The main reason is

related to black-box nature of deep learning systems, that causes a lack of trustability

by users. From this point the goal of this research study arises. This work focuses

on developing a model for melanoma diagnosis based on the Concept-Bottleneck

Framework. The framework proposes a re-organization of standard the deep learn-

ing model into two components: one that is trained from raw images to predict a

set of human-understandable concepts; and a second component trained on these

concepts, to predict the Ąnal target (i.e. the diagnosis). Additionaly, standard

models of single-task learning and multi-task learning have been developed to make

comparisons. The Ąrst has been designed to predict only the diagnosis task, while

the latter computed 8 tasks simultaneously: the diagnosis and the 7-pt checklist

patterns. The experiments have been carried out on a publicly released dataset

derm7pt consisting of 1011 images labeled by experts for the seven-point patterns

as well as the diagnosis. Overall, in total 10 experiments have been reported in

this manuscript, divided in the three main frameworks of Single-Task Learning

(STL), Multi-Task Learning (MTL) and Concept-Bottleneck Models (CBM). Three

popular architectures for image classiĄcation have been tested as viable bases for

our models, with the DenseNet121 emerging as best performing base architecture.

Overall, experiments have yielded satisfying results. The best model appears to be

the CBM trained using the Joint conĄguration, which shows better performance
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across the eight inspected tasks. In addition to a better performance, this model also

addresses the problem of a better explainability of the prediction of the model. This

suggests that further studies could be conducted in this direction for the design of

CBM architectures that could achieve higher performance while providing additional

details to the Ąnal diagnosis, and incorporating clinically relevant hierarchies. This

could facilitate the spreading of CADs systems in the health sector with a view to a

future in which machines and humans could work in a collaborative ecosystem.
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Appendix

6.1 Appendix Results

In this section additional metrics, training curves or confusion matrices of the most

relevant experiments have been reported.

6.1.1 Appendix Single-task learning

Comparison between balancing on 21 and NEV-MEL unique labels

Figure 6.1 shows results with balancing on 21 labels, while 6.2 represents the balancing

on NEV-MEL labels. The confusion matrices show that for balancing on 21 labels 6.1a,

the model misclassiĄes more than the balancing on 2 labels 6.2a. The training curves

display that the balancing on 21 labels return a singular behaviour during the training.

Furthermore the confusion matrices show a better classiĄcation performance whether

the model is trained with the balancing on ŠNEVŠ and ŠMELŠ. This conĄrm that the

latter balancing method is better than the Ąrst.
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(a) Confusion matrix on 21 labels

(b) Loss on 21 labels

(c) Accuracy on 21 labels

Figure 6.1: STL: comparison between confusion matrix and training curves of bal-
ancing on 21 and NEV-MEL unique labels. These are metrics related to
21 labels balancing.
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(a) Confusion matrix on NEV-MEL labels

(b) Loss on NEV-MEL labels

(c) Accuracy on NEV-MEL labels

Figure 6.2: STL: comparison between confusion matrix and training curves of bal-
ancing on 21 and NEV-MEL unique labels. These are metrics related to
2 labels balancing.
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6.1.2 Appendix Multi-task learning

Confusion matrices and loss curve with learning rate 10−3

The following are the plots of training curves for lista pattern. This phenomena

appear only for some tasks.
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(a) Dots and Globules

(b) Diagnosis

(c) Pigment Network

Figure 6.3: MTDenseNet121: confusion matrices of Diagnosis, Dots and Globules,
and Pigment Network with learning rate equal to 10−3
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(a) Pigmentation

(b) Regression Structures

(c)

Figure 6.4: MTDenseNet121: confusion matrices of Pigmentation, and Regression
Structures with learning rate equal to 10−3
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(a) Vascular Structures

(b) Blue Whitsh Veil

Figure 6.5: MTDenseNet121: confusion matrices of Vascular Structures, and Blue
Whitsh Veil with learning rate equal to 10−3
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Figure 6.6: MTL DenseNet121: total loss function with learning rate equal to 10−3
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