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ABSTRACT

Many real-world optimization problems involve continuous and nonlinear decisions. Each

nonlinear component of these problems can be modeled linearly, with or without taking into

consideration additional integer variables. In this study, different modeling alternatives are proposed

for a real-world nonlinear optimization problem, in particular the hydroelectric unit commitment

problem (1-HUC). The 1-HUCs non-linearities comes from the energy produced in each period. It

is defined as a two-dimensional non-convex and non-concave function of decisions variable related

to water. Flow and head, being themselves variable decisions are nonlinear, convex and are one-

dimensional functions of the turbine volume. A common simplification is also considered, assuming

that the hydraulic head is fixed and thus defining the power output as a one-dimensional, non-

convex function of water flow. Several linear and nonlinear models are described for the 1-HUC

and fixed-head 1-HUC. These models cover several families of modeling alternatives, including

models common in the literature as well as new models with less common features. Different sets of

instances are generated to assess performance sensitivity against key 1-HUC features. Several

available solvers are used for each nonlinear model and the best virtual solver is selected to focus on

model capabilities rather than solver performance. Based on the numerical experiments, counter-

intuitive recommendations are given to help practitioners select the most appropriate model and

solver based on instance characteristics.
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INTRODUCTION

In real life, we are regularly subjected to continuous optimization through well-defined methods.

These methods are mainly the linear and nonlinear methods that are done by means of additional

variables and represent a more precise physical system, faster than a linear model but requiring

more computational at time, especially when the possibility of convexity doesn't apply. To

implement and present the specificity of these two possibilities, firstly, we shall present in a detail

manner the different illustrations that represent a real-world non-linear function. We will mainly

focus on the HUC model of hydroelectricity. HUC commitment models cover a wide range with or

without linearity. All 1HUC models offer two methods, one is specific to one-dimensional

nonlinear convexity and the other is proper to non-concave two-dimensional nonlinear whose

parameters are precision, feasibility and computation time. With the 1HUC model, we will have

the ability to provide optimal and effective solutions that improve the different models.

Furthermore, this model presents a set of solutions that possessed linear and non-linear properties

with integer or non-integer values. This thesis aims to define and explain the 1HUC approach in

the general recommendations of numerical modeling base on an experimental model and briefly

summarize the usage of nonlinear optimization in literature reviews, to explain his numerical

experiment that illustrates the performance of different 1HUC disjunctions, that can be used to

partition the solution set or to obtain bounds on the optimal solution of the problem. Within the

framework of the MINLPs, the use of disjunctions for branching has been the subject of intense

research, while the practical usefulness of disjunctions as a means of generating valid linear

inequalities has attracted attention only recently. Secondly, we will describe some applications of

MINLPs well-known for their separation and disjunction method which has proved its

effectiveness in Mixed Integer Linear Programming (MILP). As showed by the experimental

results, this application has obtained encouraging results in the case of MILP, while using a simple

separation method.
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1 HYDRO UNIT COMMITMENT

The HUC is like a hydroelectric container with an upstream and downstream reserve. The

production follows the working principle that water flows from the upstream to the reserve passing

by the turbines of the unit. The horizon time is discretized in time periods of delta duration. At each

period of time “T”, the water flow “DT” passing by the unit, has to be in the interval (D, D). The

power point produced at the time period T depends on the water flow rate DT but also the tank

head. The quantity of water in the reserve depends on the water in upstream; the minimum capacity

is defined as the target volume when we have additional positive or negative water entries. The

reserve contains water that has an expected unit value. A higher level will lead to retain more water

and produce less electricity, which is the opposite for a low level. The HUC presents in this context

the problem of selecting price takers to maximize electricity revenue. It has parameters such as the

water value, the external in flows and the capacity of the reservoir which is related to the water

value of each reservoir at the end of the period.

The main purpose of HUC is maximizing profit by meeting target of capacities and volumes. At

each period, we have volume conservation constraints which calculate the hydraulic load. The

simplification of HUC consists in assuming a constant load ht = H. This simplification is relevant

for small variations.

1-1 HUC NON-LINEARITY LITERATURE

The goal of linear and nonlinear modeling is to approximate the power function F from a

hydroelectric to the power function ᵇ�ᵇ� = ᵇ�ᵆ�ᵇ� × ᵆ� × ᵆ�ᵇ� × ᵆ�ᵇ�. PT are the RHO powers. The

density of water G is the universal gravitational constant. DT represents the flowing water and HT

the height to consider. HUC considered multiples units; a power function is derived from linearity

which is a head bilinear function and the flow of water. The function also depends on the height

and the downstream of the volume more than the upstream volume. (F) Is a bilinear function that

depends on the flow and management. SPACIAL HYDRO BRANCH AND BOUND (SHBB)

exists to optimally solve the HUC with cascading units and the MINLP. A bilinear function of

water level and flow is obtained by comparing it again with the pgen. The function F is a

polynomial function of degree 4. The function F is bilinear as a function of flow and height in

articles. It is considered convex and concave, but in HUC the authors have introduced a family of

univariate linear functions by a power of a room model depending on the water flow. Each

partially linear function represents a volume VS. Water flow, using exactly four parts VS. NLP,

which has become a univariate linear function by the introductory function. Moreover, it
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approaches constraints by a univariate flow family that involves a polynomial function. He also

has included an improvement of 1-HUC which is the rectangle method. However, several actors

will be ignored and considered people of no economic value for optimization.

1-2 NONLINEAR FUNCTION FOR 1-HUC

From the Pgen model, we want to specify the functions F and G. The function f is used to

calculate the head and it shows the evolution of the head as a function of the volume, for an

instance where ʏi are instance-dependent parameters and ʏ4 belong to a certain interval. Meaning

that the function is necessarily convex. According to the shape of the tank, the function can be

quasi-linear or presented in a very sensitive non-linearity. For each turbine, the function g is

almost linear when the turbine starts and after it curves more and more until the next turbine starts

up. When a turbine starts, we notice a break in the form of the function.

Figure 1: example of g and f functions

Following the evolution of the problem, we were interested to the power function f because

this function is neither convex nor concave. It doesn't necessarily correspond to our data because it

has been a generic hydroelectric function of the literature and described by its equation not being a

fixed head. The following functions correspond more to the data that will be considered as a model

instead of the equation with g non-convex and non-concaveᵇ�ᵇ� = ᵇ�ᵆ�ᵇ� × ᵆ� × ᵈ�ᵉ� × ᵈ� (dt.ht). With a fixed head, the power is the product of the function and the

constants but unfortunately remains non-convex and non-concave. We can say with certainty that

the power regime of each turbine is convex and makes the unit to have N turbine which starts in the

prescribed order. The addition of several turbines accentuates the concavity of the functions to be
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much more refined. The function is almost linear at the start of the turbine and becomes more linear

at the start of the next turbine. The tea binary variable sea is equal to the << i >> if the first turbine

rotates and uses the power accumulated in the first turbines. In general cases, the function g also

depends of the head (figure3.). It illustrates the evolution of the function for the minimum and

maximum load of instance BT-1 in the case of 1HUC. This function is as close as possible to

physics. The tea Pgen model is considered as the original model that cannot be used to solve the 1-

HUC for the following reasons:

- In terms of calculation, when we consider the function G as described, it is nonlinear with

mixed variable;

- Preliminary calculations show that this model involves more calculations times than all the

other models.

A possible solution would be to derive more treatable models than the original one, to capture the

nonlinearity in the power function. This power function presents the following characteristics

(useful) non-convex, non-concave, locally linear. When you start a turbine, it's convex with respect

to the water flow

Figure 2: example of g function for minimum and maximum load.
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2 MODEL FOR 1-HUC

It's has as purpose to represent the non-linearity of the 1-HUC, resulting from the energy

production function and from its characteristics. The models are also described for the 1-HUC with

a fixed head.

2-1 (MI) NLP MODELING ELEMENTARY NONLINEAR FUNCTIONS

Here, the models are representations of each turbine to realize. It is enough to consider each

turbine separately and to have a representation close to physics. The problem remains at the level

of the auxiliary variables of the turbines because they are necessary.3 models are presented:

- polynomial function (formula family of functions)

- 5pl with the Max () function

- 5PL function family without the Max () function

The MILP and MINLP convex problem contain non variables constraints of the first type only.

When these constraints are relaxed, we obtain a relaxing suite which gives a lower bound on the

optimal solution value and a vector solution x that satisfies convex constraints but can violate the

requirements of entirety. We made deepest research on the way to use this type of disjunction, how

to derive disjunctive cuts from it and how to add effectively such inequalities while using the couple

BB method to a generator procedure of cutting. Duration (7, 8, 49). Many generalizations can be

introduce at the MILP level. A well-known example is the split disjunction ᵴ�ᵉ� ≤ ᵴ�ᵼ� ᵇ�ᵴ�ᵉ� ≥ ᵴ�ᵼ� + ᵼ�
where

- (π, π0) Є Z

- P + 1 and x Є Z

- P is a vector of p integer variables (10, 17, 22, 36).

The formulation of a MINLP problem is submitted to the two types of no convex constraints. The

optimal solution to the relaxation LP, x can be unrealizable for entirety constraints or for one or many

reformulation constraints, xk = Ѳk(x). In this work, we are principally going to consider disjunctions

issue from the constraints of the second type, and concentrate on the problem of finding valid disjunctions

which is violated by a solution to the relaxation LP of P0.

In a simple manner, let’s consider a no convex constraints xk = 0k (xi) with 0k univariate and

xi constant (disjunctions can be derived with a similar procedure when 0k is multivariate and/or xi
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is integer). Let’s suppose that this constraint is violated by a solution x of the relaxation LP, which

means that the spatial disjunction, although valid for any ß € ii of the user interface, it is not

violated by x. It is a starting point with the MILP, for which disjunctions on integer variables are

valid and obviously violated by fractional solutions

2-2 MILP MODELING A PIECEWISE LINEAR FUNCTION

In the modeling of linear problems, piecewise linear approximations have a fundamental use,

especially for obtaining MILPs. The purpose of comparing a piecewise linear model to a non-linear

model is to compare the accuracy of the values of the solutions. This is the standard linear

formulation that we have considered more precisely, the convex formulation. There are several

methods to obtain a piecewise linear function in two dimensions, but they are much more focused

on the computation time than on the values of the solution. The one-dimensional method allows to

obtain a piecewise linear function in two dimensions. It represents a generalization of the convex

combination.

The UVLS is an important means to prevent the acceleration of the tension. This article uses

LM as a criterion of tension stability. LM designs the maximal quantities of supplementary charge

at a point of a given functioning by the UVLS organogram approach. When an eventuality is

detected by the surveillance system online after a certain period, the relay command is no more

furnishing energy to the following charge and the UVLS strategy is detected. In normal

circumstances, the system actualizes periodically the UVLS strategy according to the state of the

system online. The set of contingence is defined by operators whose can include the N 2

unexpected with relatively high probabilities.

For each contingence, the LM post-contingence can be obtained by the method based on the

immediate optimization of the power flow obtain by the surveillance system online. If is inferior to

the exigency LM demanded, the UVLS optimization is solved to generate and refresh the UVLS

strategy of contingence. The refreshment rate is limited by the resolution speed of optimization.

Parallel calculation techniques can accelerate that process. The UVLS optimization is a problem

based on the MILP and is presented in section III-B. The UVLS strategy meaning the optimal

solution, determines which start has to be abandoned. When a certain contingence produces, the

last correspondent strategy is adopted by the relay command to assure that the LM satisfied the

exigencies.

The objective function is to minimize the total cost of the effacement. Binary variables Xcz

designs the jettison strategy. Xcz is equal to 1 if all the loads at the start z is 0. Let’s note that the
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continuously controllable load can easily be extended in this model. The constraints of the

modeling DPWLPF presented in section II are included to provide an image of the states of the

system post-contingence after UVLS. Nodal power balance equations are described as the active

and reactive output powers of the unit that must be limited within the authorized range. Bus

voltage amplitudes are restricted within the safe range. Constraints representing the flow

constraints of branches apparent quadratic linear per piece.

2-3 INTEGER LINEAR PROGRAMMING

Dillon and Al. developed an integer programming method for the practical size. In what concerns

problems based on the extension and modification of the branch and bound method, the HUC

problem can be divided into a nonlinear economic dispatch problem and linear pure integer one.

HUC problem can also be based on the Benders approach while the mixed integer programming

approach solves the HUC problem by reducing the solution search space and rejecting infeasible

subsets. A linear programming problem can be solved either by decomposing the entire problem

into sub problems using the Danzig Wolf

Decomposition principle, and then solving each sub-problem using linear programming or by

solving the problem directly using the revised simplex technique. To solve logic contradictions, the

Hitting set tree (HST) of REITER is often used to satisfy the principle of minimal changes. The

given work applies the HST algorithm to the minimal incoherent subset to solve the incoherence.

The work of [8] proposes various strategies to calculate axiom weights then modifying the HST

algorithm to find a solution with a minimum weight sum. That algorithm is more efficient because

of the normal optimality criterion of minimum path length has been replaced by the minimum path

rank where could exist a number of path that could be interrupted sooner. This algorithm

corresponds to HST Swoop in our experimentation. The work of provides a graph based algorithm

for calculating conflicts and apply the HST algorithm to find solutions. To ameliorate the efficacy

of algorithms based on HST, some works provide algorithms to reduce the search space and satisfy

other types of minimum change definitions. Such algorithm first extract a subset of each conflict

then apply the HST algorithm to its subsets. A typical work is given in the lines that follow, there

we show two algorithms to treat the problem of revision of the ontology. An algorithm uses the

notation function to choose the axioms with highest score of each contradiction. The other exploits

weights to select the axioms with the lowest weight. The two algorithms correspond to HST Score

and HST Weight. However, the effectiveness of these algorithms remains a problem if the extracted

subsets are not quite small.
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To further improve efficiency, researchers offer heuristic strategies to find an approximately

minimal solution and adopt a new semantics to avoid building a HST. The previous algorithm

removed axiom with the highest score of MIPS and has chosen another in the left MIPS and this

process is repeated until there is no more MIPS. Obviously, the solution consisting of all deleted

axioms could not be minimal. The work of furnishes equally a notation function to select axioms

and revise an ontology. There are several work that deal with the incoherence of ontology learning

tasks and the ontology versions . They don’t calculate conflicts but stop an axiom to be added to a

coherent ontology because that axiom can cause a potential incoherence. The article furnishes an

effective algorithm by replacing the semantics standard in the characterization of inference tasks

Lite by an alternative semantic call semantics of type. In such cases, the conflicts calculation and

their minimal set of hit can be avoiding.

2-4 BRANCH AND BOUND

Cohen and Al. presented a new approach to solve the HUC problem based on the branch and

bound method, which incorporates all temporal constraints and does not require unit priority

ordering. Huang and Al proposed constraint logic programming and branch-bound technic to

provide an efficient and flexible approach to the HUC problem. The branch and bound procedure

consists of the repetitive application of the following steps. Firstly, the decision variables (i.e.: the

set of decision variables considered) through which the optimal solution is obtained is known to be

partitioning in subset. Secondly, if all the elements of a subset violate the constraints of the

minimization problem, then this subset will be eliminated for further consideration.

2-5 LAGRANGIAN RELAXATION

Based on the Lagrangian relaxation approach, the HUC problem can be written in terms of 1) a

cost function that is the sum of terms implicating each single unit; 2) a set of constraints involving

single unit; 3) a set of coupling constraints (the generation and reserve constraints). In the first

part, we have a sub-division of the basic solution. Officially, the HUC problem can be written as a

pumped storage hydroelectric power station. Zhuang and Al proposed three new phases of

Lagrangian relaxation algorithm for HUC. In the first phase, the Lagrangian dual of the UC is

maximized with the standard sub gradient technique; the second phase finds a dual feasible

solution in reserve and is followed by a third economic dispatch phase. Wang and Al presented a
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rigorous mathematical method to deal with the bounds on the rampart UC and the rotor fatigue

effect.

2-6 OPTIMIZATION OF INTERIOR POINTS

Interior point methods have been used not only to successfully solve very large linear and

nonlinear programming problems, but also to solve combinatorial and a non-differentiable

problem. The interior point method has now been applied to solve scheduling problems in electric

power systems. Madrigal and Al applied the interior point method to solve the HUC problem.

Based on his observation, he noticed that it possesses advantages and meets no problem with the

use of parameters.
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3 DISJUNCTIONS IN A MINLP

For the MINLP, in order to apply the disjunctive programming paradigm to the non-convex,

MINLP disjunctive programming paradigm need a description of valid disjunctions set that will be

violated by an optimal solution x. Convex problems of MILP and MINLP contain only convex

constraints of the first kind. When these constraints are relaxed, we obtain a continuous relaxation

which produces a lower bound on the optimal solution value and a solution vector. A standard

procedure for selecting disjunctions is to sort them in ascending order of infeasibility. During the

selection of a disjunction for branching, the one with the maximum infeasibility is chosen. If a set

of disjunctive cuts is desired, the first p will choose the first p disjunctions from the sorted list and p

disjunctive cuts are generated. As we can see, this measure of infeasibility may not be the best way

to classify disjunctions. More sophisticated techniques have been proposed for disjunction selection

in branching process. For example, strong branching, pseudo-cost branching, reliability branching

and violation transfer. A generalization of the reliability in the case of MINLP has recently been

presented disjunctions in special cases of the MINLP

10



Figure 3: linearization of constraint.

3-1 MINLP WITH A FAMILY OF POLY FUNCTIONS

The polynomial function has a parabolic form and can be represented by a polynomial function of

degree 2, where each function represents a power generated by a turbine plus the contribution of the

previous turbines, according to their starting order (figure 5.2) as shows in the example with 03

turbines

Figure 4: polynomial function representing the power for each combination.

3-2 NLP WITH 5PL FUNCTIONS USING MAX FUNCTION

The function g can be represented as a sum of 5PLs and by the power of a turbine, where each of

the 5PLs represents the power of a turbine and, if the sum is correctly built; it can be a correct

approximation of the physical sums. The figure below shows well an approximation of the sum of
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The functions 5PL as continuous lines and 035PL as a dotted line

Figure 5: sum of 5PL functions representing the power for a fixed volume

This model is a variation of (P5P L-max), where the max () is linearized by adding linear

inequalities, auxiliary variables and binary variables. The inequality set ensuring the unit= max (0,

dt – y1it). The model (P5P L – bin) contains inequalities and contrary to the model NLP (P5P L –

max), the model (P5P L – bin) is a MINLP, because it needs an auxiliary binary variable. The

model (P5P L – bin) can be solved by many MINLP solvers because the function max () has been

linearized. The non-linearity is the same for (P5P L – max) and (P5P L – bin); the two models take

into account the characteristics C1 and C2. Let’s note that the model (Pgen) and the piecewise

nonlinear function with 5PL are also a MINLP. The difference between the two is that the binary

variables are not the same as those of the (P5P L – bin). Indeed, the binary variables of (P5P L –

bin) act only to linearize the function while the (Pgen) are decision variables to fit the model (P5P L

– bin) to the fixed head 1-HUC.

3-3 NLP WITH A BILINEAR FUNCTION

A model used in the literature for solving the HUC as a MINLP is a bilinear model. The water

flow represents the linear power in relation to the head. Therefore, it must be done while respecting

the flow of water. The following notations illustrate the non-constant phenomenon such that the

power depends linearly on waterᵇ�ᵇ� = ᵇ�ᵆ�ᵇ�ᵆ�ᵆ�ᵇ� + ᵉ� + (ᵉ�). The inequalities calculate the power

which depends linearly on the height of the stream ht, the pbilin contains inequalities for the

MINLP functions. It is easy to have an under estimator and an over estimator because a bilinear

function is convex. The Pbilin model contains MINLP inequalities which are effective tools on this

type of nonlinearity because a binary function is convex and it is easy to build an over estimator and

an under estimator. (PHD – poly), (P5P L – max) or (P5P L – bin), (Pbilin) do not require any

additional variables. This makes this model a potential candidate for quickly solving problem.

Indeed, the binary function does not present any of the nonlinear characteristics; even MILP models

such as piecewise linear models might have better accuracy. When we adopt the (Pbilin) model to a

1-HUC fixed-head, the model becomes a linear model where the power is a linear function of water

flow.
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The problem with this model is the risk of approximation when fitting a pbilin model to the

1HUC which has fixed head and a height h. The linear model and the power become a linear

function. The water flow for this purpose adapts to the power ᵉ�ᵉ� = ᵇ�ᵆ�ᵇ�ᵈ�ᵈ� (ᵉ� + ᵉ�ᵈ�ᵉ�) which

contains inequalities. The pop model is a necessary model for finishing the workflow. Its

advantage remains a considerable solution but has the disadvantage that its target volumes may be

inaccessible. The combination of 1-HUC model and the pop model give us a MINLP model. The

pop model adapted to the fixed head 1-HUC contains very few variables.

3-4 SUMMARY OF NONLINEAR MODELS AND FUNCTIONS

All of these models generally have the same constraints. In table 1, we have a summary of all the

models. Table 2 shows us the characteristics and the type of program for each model.

The convexity and the linearity does not take into consideration the integer variables. Theoretically,

no model presented fits perfectly the power function of the original model. None of the nonlinear

models present the 4 nonlinear characteristics of the power functions. However, it will be

demonstrated in the numerical experiments that these models admit very small approximation

errors, while the shortest times are obtained in other models.

Figure 6: : comparison of the models non-linear characteristic
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4 SOLUTION APPROACHES FOR NON-LINEAR OPTIMIZATION

PROBLEM
T

The solution to approaches nonlinear optimization goes through the linear and non-linear

system. A nonlinear function can be approximated in 4 possible ways: approximations with a

linear function, approximations with a family of elementary functions, approximations with a

piecewise linear function, approximations with a discrete set of decisions. These models lead

to the (MLIP) for the set of mixed nonlinear models, the non-linear program (NLP) or the non-

linear mixed integer program. If the function is convex or concave, and the set of constraints is

convex, there are specialized methods, called convex optimization methods that can be used. In

other word, there are several solutions. For example: the use of principle separation and

evaluation to split and treat several parameters separately. The algorithm can also be stopped

before it succeeds, if it can be proven that no subsequent solution will be better within a certain

tolerance. The Karush-Kuhn-Tucker (KKT) conditions guarantee that a solution obtained in

this way is optimal. These algorithms essentially use the principle of separation at run time,

means the presence of a lower and upper bound in each subspace. The first minimization

solution is derived from all solutions of the feasible subspace. This lower bound is obtained by

solving a relaxation of the problem for a MILP. In the case of the relaxed problem, we obtain

the integrity constraints through the convex sub estimator. Since our study is limited to the

exact methods, we selected solvers who will make us visualize the optimal solution of our

system.

4-1 MODELING

In the framework of modeling of a nonlinear problem, the choices of modeling can have an

impact on the processing speed. In this case, the convex problem of the system admits a single

local optimum which is also a global optimum based on the convex estimators NINLP and NLP.

The computation of lower bounds also means a very fast convergence towards the global optimum.

The choice of the solution can modify the feasibility of the problem, particularly in the case of

polynom of the second degree. Of course, we can underline that each solver is unique but the

modeling will impose its impact on the calculation time, if the MLIP is in it.

It is usually motivated by the shorter computation time and the structure of the function which

influences its model. The PWL is a piecewise linear function and affine collection on intervals.
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They are described through disjunctive solutions that make it possible to describe a PWL model.

They are also useful in the case of linear non-continuity of a univariate function.

An example of figure (Figure12.1).

Figure 7: approximation with a piece-wise linear function.

4-2 ALGORITHMS

Solving a MLP or MINLP models consists in looking an underestimation of the convex function;

there is a study by BMF16 which describes a list of underestimations for several linear functions.

Many sub- estimators have been created in order to obtain the best one or the use of symbolic

reformulation will consist in adding auxiliary variables in order to maintain simplistic

nonlinearities. Another method consists in reducing the domain of variables as above. These two

methods are based on feasibility and optimality. Another approach is to find a linear polyhedron

that includes any other nonlinear function on an interval. In a way that a polyhedron will be both a

sub-estimator and an over-estimator of the linear function. We can obtain spaces by splitting; here,

we will obtain what we call disjunctive inequalities. To solve a MILP, the algorithm of branch and

bound (BB) and its derivatives, in particular the branch and cut. Branch, cut and price are widely

used. The strategy divides the search space, only if the optimal solution of the linear and the

relaxation are not integer solution. A search space can be ignored if its lower bound value is

superior than the global upper bound of the best integer holder solution. To solve a NLP or a

MINLP when the nonlinear functions are non-convex, we need a local optimum which is not
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necessarily the global optimum. Global optimization refers to all the techniques that seek the global

optimum. The main algorithm involved in most global optimization tools is the spatial and bound

branch which can be applied to solve a MINLP. The main characteristic that differs the SBB and the

BB is the lower bound which is obtained by a convex underestimation instead of linear relaxation.

The strategy to construct a search tree is the same as a classic branch. There are many variants of

the SBB leading to the implementation of different tools. These tools can solve both a MINLP and a

NLP or just the NLP. If the modeling doesn’t require any binary variable, the model remains

continuous and results in a PNL. A SBB variant for PNL is the Branch and Bound using a

parameter ᾳ to calculate the under estimator functions. The reduced space Branch and Bound is an

amelioration of SBB for NLP with a branching process performed only on a subset of variables. The

branch and the contract permit to reduce the domains of variables in order to obtain a better under

estimator convex. The difference between the BB, the SBB and the lower bound is obtained by a

under estimator convex while the linear relaxation of this modeling remains continuous.
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5- DISJUNCTIVE CUTS FOR NONCONVEX MINLP

This selection of instances shows that, in some cases, the benefit of disjunctive cuts is worth

than the CPU time spent on generation. This is especially true for box QP instances which

although a large amount of time is spent on disjunctive cuts, it translates in a better lower bound or

a lower CPU time. Again, the fact that the current separation algorithm is rather simple, suggest

that a more efficient implementation would permit to obtain the same benefit advantage in a

shorter time.

We have also schematized the performance of the four variants using performance profiles. This

performance profile only considers instances that could be solved in less than two hours by at least

one of the variants. Therefore, it also compares the quality of a variant in terms of the number of

solved instances. The numbers of instance (plotted on the y-axis) for which a deviation is less than

the corresponding value on the abscissa axis. We can observe once again that, in some cases, we

considered the use of reliability branches and disjunctive cuts as something more profitable for

MINLL instances. Reliability branches is solved in a short time while the disjunctive cuts will

obtain a better lower bound but both remain expensive.

5-1 MOTIVATION FOR NON-CONVEX MINLP

Mixed Nonlinear Programming is a powerful modeling tool for problems that are generally

defined in optimization. There are many applications of NLP in the field of chemical engineering

and computational biology. Among them, there are special subclasses of MINLP such as mixed

integer linear programming (MINLP).

When f is linear and all GI are affine, the convex MINLPs (i.e., MINLPs whose continuous

relaxation is a convex nonlinear program), admit special solvers (that are more efficient). So the

only reason to use a general purpose non convex MINLP solver is that the problem cannot be

classified into any of these special cases. Efficient algorithms for non-convex optimization aim to

find a relaxation and obtain a good lower bound on the problem and on the value of the optimal

solution. In the case of MILPs, a lower bound can be found by solving the LP relaxation obtained

by relaxing the set of all variables. In the case of convex MINLPs, the relaxing integrality
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produces a convex nonlinear problem and thus a lower bound. In a general case, it can be difficult

to find a relaxation and a lower bound on the global optimum of P0 since that the relaxing

integrality produces a nonlinear and non-convex problem. When relaxation doesn’t yield a strong

lower bound, one approach to strengthening relaxation is to use logical methods and disjunctions

that are satisfied by all solutions of P0. In their most general form, disjunctions are logical

operators that return true whenever one or more of their operands are true. In this work, we

consider disjunctions that are involve in linear inequality, although there are more general

disjunctions
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6-NUMERICAL EXPERIMENTS

The tests are carried out via Neos Server [CMM98] using the following five MINLP solvers:

ANTIGONE, BARON, COUENNE, LINDO Global, SCIP, as well as the MILP solver CPLEX.

For MINLP solvers, the GAMS format is used for input files, while that for the MILP solver use

the LP format.

All experiences are performed on the Neos Server prod-exec-7 machine (a 2x Intel Xeon Gold

5218 @ 2.3 GHz processor with 384 GB of RAM), using a single thread. The calculation time

limit is set to 10800 seconds.

6-1 MODELING CHOICE

The parameters presented in the different models are obtained by adjusting the power of the

original model. Indeed, this adjustment is made by the nonlinear method of least squares.

Remember that our goal is to study and analyze the different approximations of the power function

whose parameters are head functions. The PPWL is a model on which we can compare the impact

of the number of linear PPWL. All these models include variables that are subject to equality

constraints; which have the particularity of not having a sufficiently explicit bound constraint.

6-2 MODEL COMPARISON

As mentioned above, the 1-HUC and its simplified version 1-HUC fixed have

configurations not resolvable by all the solvers. The following diagrams show the proportions of

the different configurations solved with their VBS while AE are the follower

Figure 8: proportion of configuration solved with their

VBS where the CT is under a CT threshold
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6-3 COMPARISON OF SOLVERS

Note that some configurations cannot be solved with all solvers. Indeed, the model (P5PL

- max) is only supported by LINDO Global and SCIP. Moreover, none of the configuration with

(PLD - poly) returns a feasible solution. It follows that the results related to the (PLD - poly)

model are not included. All figures and tables for the results are with VBS, except Tables 4 and 5

which show the results for each solver. Figure 7 shows on the ordinate, the proportion of

configurations solved with their VBS, under a given CT on the abscissa. Similarly, figure

8shows on the ordinate, the proportion of solved configurations with their VBS, but this time

under a AE given in abscissa. Figure 9 shows on the ordinate the proportion of patterns resolved

with their VBS, under a DB given in abscissa. For these three figures, the configurations are

color coded according to the configuration model.

Figure 9: proportion of configurations solved with their VBS
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To finish, the disjunctive cuts are as effective in the MINLP solvers as in MILP. Although,

they are generated from an LP relaxation of a non-convex MINLP. They can considerably improve

the lower bound that will permit to perform the performance of a branch and bound method. A

disadvantage of the CGLP procedure is to solve a large LP in order to obtain a single cut. Itis

reflected in a single cut that is carried over to the MINLP case. Figure 4(c) is a comparison

between the remaining gap and the reports of all instances for which none of the variants could

obtain an optimal solution in two hours or less. This graph shows for each algorithm, the number

of instances (plotted on the y-axis) with a deviation remaining below the corresponding entry on

the x - axis.

Some algorithms have been developed for the MILP to overcome this problem.

Unfortunately, as shown, their extension to the MINLP case is not so simple.

6-4 NUMERICAL PROBLEMS

Numerical problems represent an interesting compromise in respect to the accuracy versus

speed of resolution while some work has been realized in a rigorous global optimization that

formally verifies nonlinear functions, including semi-algebraic and transcendental functions

(Domes, 2009; Domes and Neumaier, 2014). The most commonly used solutions oft ware

generates relaxations and cutting planes via a floating point arithmetic, and then uses LP and NLP

solvers based on floating point to find under estimators and heuristic solutions. Numerical

instability can be at least partially mitigated by using validated interval arithmetic (Brönnimann,

Melquiond, Pion, 2003, 2006; de Moura Pass more, 2013) for FBBT. Especially for ill-

dimensioned optimization problems, the combination of divergent solution strategies can induce

numerical problems due to the variation in tolerances between solvers (including conflicts) and the

different sub-solvers of the same meta-solver)
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7. GLOBAL SEARCH METHODS

7-1 DIRECT SEARCH METHODS

Theoretical developments focuses on positive coverage sets and insurance descent

mechanisms. Convergence to the optimal solutions of first and second order is guaranteed under

certain assumptions of smoothness and differentiation of the objective function, and the constraints

within the direct local search region based on simplex model methods. Convergence has been

extensively studied in the literature, where a set of feasible region update rules guarantees a

convergence to local optima when the size of the feasible region is sufficiently small. All CDFO

local direct search methods include a set of non-stationarity rules that is the principal mechanism

followed by derived algorithms. Direct search methods require that the function should be sampled

at locations defined by positive covering sets in order to move in the directions of the best value of

the objective function. In addition, the mechanism method of CFD must ensure that strict design

geometry criteria are meet, in order to theoretically guarantee true stationarity, geometry

measurements like the cosine measurement of positive covering sets. Finally, local CDFO

algorithms converge when the mesh size, simplex diameter or line search parameter are small

enough and which have been theoretically related to convergence towards stationary points. A

diagram of the local search is showed in Figure3, where initially a random point is selected,

followed by a set of expansions and contractions until the step size is reduced to zero. It should be

noted that the purely direct search methods do not follow exactly what is showed in figure 3,

because in the case of a direct search, the new top must be located on a pre-defined network.

Figure 3 is expanded as a general representation of the forward search and feasible region that will

be described. Following the disadvantages of the CDFO, the local direct searches are strongly

dependent on the initial point, the trap in the nearest local optimum and the large number of

functions required to guarantee convergence. In order to increase the probability of convergence

towards the global optimum, multi-start approaches can be used. However, these are not effective

in cases where the model of interest is computationally expensive, when a good starting point is

available and when sampling does not require a large computational cost.
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7-2 STOCHASTIC METHODS

Stochastic CDFOs constraints originates from the evolutionary literature and it is based on

random sampling strategies or on strategies based on probabilistic criteria. Based on probabilistic

criteria, the random search was initiated as a concept in the 1950s, proving asymptotic

convergence results. The first algorithm to use random samples from a centroid model was

Figure 10: : search for local trust area

the COMPLEX method (Box, 1965), which proceeded by replacing the worst possible points

identified. Controlled random search algorithms were then developed on the basis of which new

solutions are generated for a sequence of probability distributions. Other developments that have

long been in this category are genetic algorithms category, particle swarm, memetic algorithms

and Tabu search (Das Suganthan, 2011; ONG, Nair, Keane, 2003; Pal, Csendes, Markot,

Neumaier, 2012; Sun, Garibaldi, Krasnogor, Zhang, 2013). There are several developments that

extend the stochastic methods to mixed integer optimization. Cases in which the space is

necessarily large, complex, or poorly understood and a more sophisticated mathematical analysis

is not applicable.

7-3 HYBRID METHODS

Several algorithmic developments combine two or more techniques in order to exploit the

techniques and advantages of different methodologies in terms of convergence, sampling

requirements and efficiency. The hybrid methodology has significantly better performance

compared to pure evolutionary algorithms (Egea, Martí, Banga, 2010; Egea, RodriguesFernandez,

Banga, Marti, 2007a; Egea, Vries, Alonso, Banga, 2007b). Griffin and Kolda (2010) integrate the

DIRECT algorithm with a stochastic generator search approach to solve constrained box problems,
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while Hemker and Werner (2011) combine DIRECT with a local search based on a substitute of

general problems of CDFO constraints. Recently, Liuzzi, Lucidi and Piccialli (2015a) have

proposed modifications to the algorithm DIRECT in order to speed up convergence by using local

searches and transformations of the feasible domain. Vaz and Vicente (2007), (2009) integrate

Particle Swarm Optimization (PSO) with model search components to solve box constrained and

linearly constrained CFD problems. Martelli and Amaldi (2014) combine three different

techniques, constrained particle swarm, pattern search and the COMPLEX to solve non smooth

problems with multiple nonlinear constraints. In addition, there are several methodologies that

uses arrogate models to approximate a part of the models to an original MINLP model. This is

treated as a black-box and develop an iterative approach collecting additional samples in order to

improve the convergence to a global solution (DavisIerapet,2007,2008,2009;

HenaoMaravelias,2011). Finally, Garcia-Palomares, Gonzalez, Castano and Burguillo-Rial (2006)

propose to combine the global search with a final local search; a recent development combines a

global and direct local search and optimization in a box constrained DFO algorithm (GLODS)

which aims at identifying several local solutions without using multi-start random methods

(Custódio Madeira, 2015). In addition, decomposition methods have been developed to solve

complex problems, such as the optimization of steam networks (Colmenares Seider 1989), where

steam pressures and temperatures are optimized at the lower level, using a global deterministic

optimization, while water and mass flow are optimized upwards by using the stochastic level and

the stochastic COMPLEX method. Similarly, Gassner and Marechal (2009) develop a

decomposition algorithm for total site optimization integrated with heat exchangers and utility

networks.

7-4 SEARCH TABU

Tabu search is a powerful optimization procedure that has been successfully applied to a

number of combinatorial optimization problems. It has the ability to avoid trap in local by

employing a flexible memory system. Morietal presented an algorithm, incorporating the list of

priority into the Tabu search for unitary commitment. Rajan and Al. solved the CU problem using

the neural-based Tabu search method. Lin and Al developed an improved Tabu search algorithm to

solve economic allocation problems. Mantawy and Al. presented CPU solutions using Tabu

research and also solved long-term hydro power planning problems very effectively using a new

Tabu search algorithm.
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CONCLUSION

Different linear and nonlinear models are compared to solve nonlinearity problems in terms

of resolution, feasibility, approximation error, distance to best recalculated value and computation

time. The nonlinear problem considered is 1-HUC, comprising two non-linearity: a one-

dimensional convex and a two-dimensional non-convex function. A common simplification of 1-

HUC and the fixed head 1-HUC is also considered, with only one nonlinearity: a non-convex and

non-concave dimensional function. A first model is defined for the 1-HUC and for the fixed-head

1-HUC. However, this model contains too many non-linearity which are difficult to solve in a

reasonable time, even for small instances. Several simpler models are proposed, the objective

being to represent the non-linearity of the 1-HUC and the 1-HUC with fixed head. These models

cover a wide range of modeling families, including models for 1-HUC from the literature, but also

new models with nonlinear functions. Multiple instances sets with 1-HUC and fixed-head 1-HUC

features are solved with each of the specific solver choices. The three solvers that give the lowest

TC and solve the most instances are CPLEX for linear models and BARON for nonlinear models.

There are linear and nonlinear models which are not supported by BARON. This result is valid for

both 1-HUC and 1-HUC fixed head. Configurations with a large number of break points (number

of turbines) and models with a family of elementary functions, namely (P2D-poly), (P5PL max)

and (P5P L-bin), introduce more variables, making their TCs larger. Likewise, instances with more

breakpoints have less nonlinearities and create trade-offs between computation time,

approximation error and some are not even recommended for any instance class. Moreover, the

computation time of a nonlinear model depends on the available global solver. Thus, no model is

perfect, the choice of model depends on the characteristics of the instance and the solver used.

Recommendations are given to guide the selection of the mathematical model and an appropriate

solver. Future work could be devoted to describe models with alternative functions to derive an

efficient reformulation of nonlinear models. Models can be tested on variants of Hydropower Unit

Commitments, including more constrained from the literature, either with a multi-unit topology or

with a pumping systems. Generally, the same type of study can be done for any nonlinear problem

and could complement the results presented. The approach envisaged is to use optimal algorithms

with approximations of the original model. A complementary approach would be needed to solve

the original model with heuristics and compare the results of each approach.
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RIASSUNTO THESI

In questo progetto, abbiamo dovuto sviluppare dal punto di vista theorica il modello e la tecnica per

risolvere il problema dell'impegno dell'unità idroelettrica, tenendo pienamente conto dei vincoli

dinamici dell'unità idroelettrica per ottenere un'economia complessiva del funzionamento del

sistema elettrico. Il problema dell'ingaggio di unità idrotermali combinate è risolto mediante un

approccio di scomposizione e coordinamento. L'impegno dell'unità termica viene risolto utilizzando

una tecnica di rilassamento lagrangiana convenzionale. Il sistema idroelettrico è suddiviso in bacini

idrografici, a loro volta suddivisi in invasi. I bacini idrografici sono ottimizzati dalla

programmazione del flusso di rete (NFP). La programmazione dinamica basata su un elenco di

priorità viene utilizzata per risolvere il problema dell'impegno dell'unità idroelettrica (HUC) nel

serbatoio. Viene utilizzato un metodo di approssimazioni successive per aggiornare i valori

marginali dell'acqua (moltiplicatori di Lagrange) al fine di migliorare la convergenza dell'innesto

dell'unità idraulica, a causa delle grandi dimensioni e dei molteplici accoppiamenti dei vincoli di

conservazione dell'acqua. L'integrazione dell'impegno dell'unità idroelettrica nel pacchetto esistente

di ottimizzazione idrotermica (HTO) migliora significativamente la qualità della sua soluzione nel

sistema.
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