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Abstract

The research delves into the evolving field of iris recognition in biometric systems,
emphasising the dangers of reconstruction attacks. It addresses the challenge of
maintaining these systems’ security and reliability in the face of sophisticated attack
strategies.

The CASIA V1.0 dataset with 756 iris images was used in the study to build
and test iris recognition models. Two primary models were created, one inspired by
literature. Convolutional neural networks were used in these models, which were
rigorously trained and validated. The project also investigated various reconstruction
attack strategies, with a particular focus on reconstructing training data from released
machine learning models using a reconstructor network.

The recognition models achieved high iris identification accuracy, with the first
model achieving 96.43% and the second 92.86%. The reconstruction attack experi-
ments, on the other hand, revealed significant differences in the biometric similarity
of the reconstructed and actual iris images. To assess these differences, descriptive
statistics and statistical analyses (including the Shapiro-Wilk test and paired t-tests)
were used.

The study demonstrates that iris recognition systems can maintain a high level
of security and data integrity even when subjected to sophisticated reconstruction
attacks. The similarity between the reconstructed and actual iris images suggests
that these systems are resistant to model inversion attacks, which increases trust in
biometric security systems.

The study concludes that modern iris recognition models are not only highly
accurate, but also have a high resistance to reconstruction attacks. This highlights
the importance of these systems in secure biometric verification and identification
processes, providing strong defence against potential security threats.
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Chapter 1

Introduction

Iris recognition, a robust biometric identification approach, capitalizes on the steady
and distinctive nature of the human iris. It guarantees accurate and safe user authen-
tication in digital systems by utilizing both cutting-edge deep learning techniques
and more conventional methods like Gabor filtering. Iris Recognition, a pioneer in
biometric authentication, outperforms conventional credential-based methods and
provides improved protection against identity theft and cyberattacks.

However, the advancement of deep learning reveals vulnerabilities known as "model
stealing" is revealed. This vulnerability is driven by considerable data and computing
demands. Despite safeguards, maintaining performance and addressing security risks
need a careful balance. Face recognition is an area in which Artificial Neural Networks
thrive, however the emergence of Deep Neural Networks in Machine-Learning-as-
a-Service raises privacy issues due to the potential hazards of data exposure. As
MLaaS becomes more ubiquitous, security worries increase and research faces new
obstacles that highlight the need for privacy safeguards. Deep learning and other
data-driven methods are examined in "Machine Learning for Image Reconstruction,"
a special issue that aims to bridge the gap between real and rebuilt images.

This research aims to evaluate the robustness of modern iris recognition systems
against reconstruction attacks, emphasizing their significance in secure biometric
applications. Through the utilization of convolutional neural networks and extensive
experimentation, the study seeks to demonstrate the resilience of these models to
sophisticated attack strategies, reinforcing their efficacy in biometric verification and
identification processes.

Additionally, this research proposal aims to explore the application of state-
of-the-art reconstruction algorithms on biometric data to enhance confidentiality,
authentication, and data protection. By assessing the performance of various recon-
struction algorithms on a large-scale biometric dataset, the study intends to uncover
their potential benefits and limitations in terms of accuracy, efficiency, and privacy
preservation. The findings will inform the integration of reconstruction algorithms
into existing biometric systems, contributing to the development of more effective
and secure applications in fields such as law enforcement, border control, and access
control.

The rest of the thesis is structured as follows: The second chapter provides
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Chapter 1 Introduction

background information as well as a review of the literature on iris recognition. It
covers the fundamentals of authentication, biometrics, and iris recognition. Moving
on to Chapter 3, which provides an overview and a review of the literature on
reconstructing attacks against neural network models. Following that, Chapter
4 describes the experimental work by describing the datasets, prepossessing, iris
recognition models, and reconstruction attacks. Chapter 5 presents the experimental
results, while Chapter 6 discusses those results and concludes the work by listing the
thesis’s main contribution.
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Chapter 2

Iris Recognition and Authentication

2.1 Introduction

The iris recognition has emerged as a prominent biometric identification method,
leveraging both machine and deep learning techniques. Unlike passwords and pins,
which can be compromised, the uniqueness of the human iris remains consistent
throughout one’s life. As traditional security measures falter, the reliability and
precision of iris-based systems offer a promising avenue for robust authentication.
This section delves into the evolution and efficacy of Iris Recognition Systems using
advanced computational methodologies [1]. The human iris provides a stable and
unique biometric identifier, staying constant for a lifetime. With high randomness
and distinctiveness, it surpasses other modalities like facial or fingerprint recognition.
Near-infrared (NIR) sensing is preferred for capturing iris patterns, especially in
melanin-rich eyes. John Daugman’s pioneering Gabor filtering-based technique
remains the gold standard for rapid and precise iris recognition [2].

Furthermore, iris recognition has become a forefront in biometric authentication,
harnessing advancements in machine and deep learning. Traditional methods relied
on hand-crafted features, but the introduction of models like AlexNet revolutionized
the field. Deep learning offers an end-to-end approach, enabling precise extraction of
the intricate patterns of the iris. This evolution ensures enhanced security and user
identification in modern systems [3].

2.2 Biometric Authentication

The imperative to safeguard personal data and counter cyber threats necessitates ro-
bust user authentication in digital systems. Traditional methods involving possession
or knowledge of credentials pose security risks, while biometric authentication, based
on inherent physical traits, provides a secure and convenient alternative, ensuring
aspects like universality, uniqueness, and circumvention resistance [4][5].

Biometric authentication, crucial for identification and non-repudiation in infor-
mation security, addresses concerns like credit card fraud and identity theft. Unlike
traditional methods, it establishes an unbreakable correspondence between individu-
als and their data, enhancing overall security[6]. Information security, encompassing

3
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Figure 2.1: Some of the most widely used biometrics.

confidentiality, integrity, and availability, relies on various tools. Biometric systems
address key aspects, supporting identification, authentication, and non-repudiation.
With a rising focus on personal identification, especially due to concerns like credit
card fraud, biometric authentication, in contrast to traditional methods, provides a
more secure one-to-one correspondence between individuals and their data[7].

2.3 Biometrics

Advancements in technology have revolutionized identity verification, with automated
systems implemented in diverse applications, spanning from shared computers to
securing critical facilities like nuclear installations. Traditional methods, vulnerable
to sharing or theft, have paved the way for biometric verification systems. Leveraging
unique biological traits such as fingerprints, face, voice, iris, and keystroke patterns,
these systems offer heightened security(shown in Figure 2.1). Despite their advantages,
the inherent privacy risks associated with biometric data necessitate the development
of privacy-preserving schemes, encompassing encryption-based, cancelable, multi-
modal, hybrid, and secure computation-based systems [8].

Biometrics, rooted in historical practices, has transitioned from law enforcement
to widespread civilian use. Upholding criteria like universality, distinctiveness, per-
manence, and collectability, it prioritizes practical considerations such as accuracy,
user acceptance, and resilience against fraudulent methods [9]. The last decade
has witnessed the extensive adoption of biometric technologies for people authen-
tication, driven by their resistance to loss or theft. However, challenges persist
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in addressing variations in biometric measurements and determining information
content, particularly in entropy-based measures [10].

Biometric authentication, prevalent in diverse applications like immigration cards
and facial recognition in casinos, involves automated methods of verifying living
persons based on physiological or behavioral traits. Coined as "anthropometric
authentication," this field distinguishes itself by focusing exclusively on living human
subjects, excluding forensic techniques and non-living subjects [11].

2.4 Iris Biometric

The iris, the colored ring of tissue around the pupil, is controlled by muscles to
regulate light entering the eye, exhibiting a unique and relatively constant pattern
of furrows, ridges, and pigment spots, with its appearance believed to be randomly
determined during fetal development (figure 2.2 shows an example) and varying
between individuals and eyes[12]. The iris, recognized for its highly randomized
appearance, serves as an accurate biometric due to its data-rich structure, genetic
uniqueness, stability over time, and physical protection. The iris code computation
relies on quality iris images focused on the customer’s iris and properly positioned,
employing specialized filter banks to extract information and ensure accuracy through
circular bands conforming to iris and pupil boundaries[13]. Iris is a strong biometric
in terms of recognition performance, both theoretically and empirically[14]. Over the
past two decades, iris technology has evolved and integrated into various devices. The
typical processing flow of an iris image-based biometric system involves an enrollment
phase for database creation and a testing phase for real-time or pre-stored image
recognition, segmented for detailed analysis[15].

2.5 Literature review

We conducted a systematic literature review to gain insights into the state-of-the-art
iris recognition models. Initially, we detail the methodology employed for this review,
followed by a presentation of key findings.

2.5.1 Method

The IEEE Xplore search engine was used to search the selected research, the keywords
for this task were: "iris recognition," "machine learning," "deep learning," "neural
networks," and "biometric authentication". the titles and abstracts of the search
results have been reviewed. In this review, only studies from 2019 to 2023 were
included.
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Figure 2.2: Image from the Iris Challenge Evaluation Dataset.

2.5.2 Results

The search above method resulted in the identification of six research articles pub-
lished between 2019 and 2023. These articles are relevant to finding that ML model
exists for biometric classification (or equivalently, authentication) resistant against at-
tack to retrieve the training data. By employing this approach, recent and up-to-date
research findings were included in the review.

2.5.2.1 Vijaykumar V et al, 2022

Nowadays, the need for reliable and efficient authentication systems is crucial. Ar-
tificial intelligence, specifically machine learning, has revolutionized biometric au-
thentication systems. A powerful approach within machine learning is using deep
convolutional neural networks (CNNs) for visual representation. Iris recognition, a
biometric technique based on the unique iris patterns of individuals, offers a robust
and effective solution for authentication.

This research [16] proposes a robust iris recognition strategy based on a CNN
using a Kalman Filter. The suggested system surpasses existing iris recognition
methods on public iris databases like Ubiris.v2, CASIA, and MMU V1.0, achieving
an accuracy of over 99 percent in experimental findings.

Iris recognition technology is widely regarded as one of the most secure and reliable
biometric identification methods. It leverages advanced techniques, such as iris
scanning, to capture high-resolution iris images and compare them against stored
patterns in a database. Convolutional Neural Networks (CNNs) have emerged as
a prominent deep learning method for iris recognition. CNNs, shown in figure 2.3,
employ convolutional layers to extract relevant features from input images and classify

6
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Figure 2.3: Convolutional Neural Network.used by Vijaykumar V et al.(2022)

them. The proposed KCIR model automates feature extraction and classification
using CNNs, eliminating the need for domain-specific knowledge. Training the
CNN involves employing the backpropagation algorithm and the Adam optimization
approach to adjust weights and learning rates.

CNNs are classification algorithms that leverage weight sharing techniques and
computational layers to process high-dimensional data. They consist of convolution,
non-linearity, and pooling layers, followed by a fully connected layer and a logistic
regression activation function. CNNs offer advantages such as reduced parameters,
faster computation, and the ability to recognize boundaries, textures, and structures
in various environments. The depth and complexity of CNN’s hidden layers vary,
with low-level layers handling basic aspects and high-level layers identifying complex
features. Increasing the number of hidden layers enables recognition of distinct
objects with similar properties.

Kalman filters, known for their adaptability to changing systems, are memory-light
and highly efficient, making them ideal for real-time and embedded applications.
The data used in this study was sourced from the UBIRIS v2, MMU, and CASIA
v1 datasets. The training and testing were performed with a split of 70% and
30%, respectively. The results indicate that the Adam optimization technique,
which iteratively adjusts network weights based on training data, effectively reduces
the cost determined by cross-entropy. Cross entropy is employed to measure the
distance between output probabilities and the ground truth values. The training was
conducted over 150 epochs.

In conclusion, this paper proposes a robust iris-based biometric identification
method that, as shown in figure 2.4, achieves accurate and precise individual recogni-
tion using deep learning. The proposed approach involves preprocessing the input
image, performing improved segmentation to locate boundaries, normalizing the
segmented images using Daugman’s Rubber Sheet model, extracting effective features
through a CNN architecture, and employing a Neural Network (NN) classifier to
achieve over 99 percent accuracy. The experiments were conducted on the UBIRIS v2,
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Figure 2.4: Evaluation metrics for all the datasets for the proposed model. Used by
Vijaykumar V et al. (2020)

MMU, and CASIA datasets. Future work includes comparing the proposed method
with other contemporary algorithms and analyzing time and space complexities.

2.5.2.2 ZHUANG Y et al, 2020

This article [17] focuses on the importance of designing an efficient user authentica-
tion system that can accurately detect personal identity. Iris recognition, a widely
researched biometric identification technology, is gaining popularity due to increased
awareness of personal privacy. Leveraging artificial intelligence, specifically convolu-
tional neural networks (CNNs), presents an opportunity to enhance iris recognition
and protect private data. CNNs are well-suited for image processing and pattern
recognition, making them a practical algorithm. This study focuses on developing a
highly precise and efficient iris recognition system based on CNNs. A dataset of iris
samples from 20 individuals, including both eyes, is used to train the deep recognition
system. The model initially shows signs of underfitting and limited convergence with
insufficient training epochs. However, as the number of training epochs increases
shown in figure 2.5, the model achieves a testing accuracy of 99%.
In summary, The proposed CNN-based iris recognition system, as shown in Figure 2.6,
demonstrates remarkable accuracy in predicting the identities of up to 20 individuals.
The system incorporates two convolutional layers, each accompanied by a correspond-
ing pooling layer. The initial convolutional layer employs six filters, resulting in six
distinct feature maps. The subsequent convolutional layer receives a 2x2 subsampled
form of these six feature maps from the first pooling layer. Following convolution
with twelve filters in the second layer, the outputs are further processed in the second
pooling layer for an additional round of subsampling. Consequently, the network
transforms an input image from a size of 28x28 into 12 feature maps, each with a size

8
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Figure 2.5: Plotting the testing accuracy against the number of training epoch, notice
the accuracy started to plateau near 1000 epochs. used by ZHUANG Y
et al.(2020)

Figure 2.6: The architecture of the CNN-based iris recognition system.used by
ZHUANG Y et al.(2020)

of 4x4. These maps are then fed into the fully connected layer, enabling the system to
accurately determine the correct identification. However, there are some challenges to
address. These include the relatively small number of iris pairs used for training, the
computational complexity resulting in long training times, and the black-box nature
of the model, which lacks transparency regarding its inner workings. To overcome
these challenges, future research should focus on increasing the number of diverse
iris samples while maintaining accuracy, improving computational efficiency through
methods like hybridization in the network architecture, and reducing processing
complexity.
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Figure 2.7: (a) Creative iris image; (b) After performing localization; (c) Eight
unpacked texture images; (d) Eight unpacked texture images after en-
hancement and denoising. Used by Thakkar S et al. (2020)

2.5.2.3 Thakkar S et al, 2020

This paper [18] introduces a novel method for iris recognition by leveraging Gabor
filters and a supervised neural network. The authors compare their approach against
related works in the field and achieve an impressive Correct Recognition Rate (CRR)
of 99.9998 % on the CASIA iris databases, surpassing the performance of previous
methods. The study emphasizes the importance of biometric identification in the
context of advancing technology and the need for robust security systems. Notably,
the paper highlights the efficacy of features extracted from the neural network and
Gabor filters in iris recognition tasks shown in figure 2.7. To facilitate testing and
performance analysis, the authors construct a dedicated image database, although
specific details regarding the dataset, such as the number of individuals or images,
are not provided.

This study presents an algorithmic framework that combines Gabor filters and
deep learning for iris recognition, resulting in improved accuracy compared to
existing approaches. The proposed algorithm effectively extracts comprehensive and
distinct iris features, demonstrating its potential for reliable and accurate biometric
authentication. The achieved CRR of 99.9998% on the CASIA iris databases indicates
the high performance and superiority of the proposed method. The results highlight
the value of incorporating Gabor filters and neural networks in iris recognition systems,
further contributing to the advancement of biometric identification technologies.

2.5.2.4 Vizoni MV et al, 2020

This paper [19] presents a novel method for person authentication based on ocular
deep features extracted using a Convolutional Neural Network (CNN). The motivation
for this research stems from the limitations of biometric systems that rely on the
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whole face, which can result in poor performance in certain cases. By focusing
specifically on the ocular region, the proposed method aims to improve the accuracy
and robustness of biometric identification.

The method consists of two main stages as shown in figure 2.8: feature extraction
and identification (authentication) of individuals. In the feature extraction stage, ocu-
lar images are processed through a pre-trained CNN network, which applies successive
convolutions and samplings to analyze patterns. Importantly, the classification stage
of the CNN is not utilized, and the feature vector is obtained before classification.
Instead of using the deep features directly, the difference between the probe and
gallery deep feature vectors is employed. This pairwise strategy involves comparing
feature vectors obtained from the same individual to generate genuine comparison
patterns, while impostor comparison patterns are generated by comparing feature
vectors from different individuals. By converting the multi-class authentication
problem into a binary classification problem, the classifier can determine whether a
pair of ocular images is genuine or impostor.

In the identification stage, the extracted feature vectors are used for biometric
authentication. The objective is to verify if the biometric characteristics obtained
from the probe image match those stored in the database (gallery image). To enhance
the robustness and performance of the authentication system, a pairwise approach
is adopted, which models the relationships between feature vectors. The difference
feature vector, obtained by subtracting the probe and gallery feature vectors, is
presented to a Support Vector Machine (SVM) classifier. The SVM classifier is
trained to determine if the comparison is genuine (same individual) or impostor
(different individuals). Probability values provided by the SVM are used as scores
for calculating Receiver Operating Characteristics (ROC) curves and Equal Error
Rates (EERs), allowing for the evaluation of the system’s performance.

The experimental protocol involved assessing five different pre-trained CNN archi-
tectures (Resnet50, VGG16, VGG19, Xception, and VGG-Face) for feature extraction.
Feature vectors were extracted from the fully connected layer before classification,
resulting in feature vectors of either 1000 or 4096 dimensions. Genuine and impostor
difference feature vectors were generated by subtracting feature vectors from the
same individual or different individuals, respectively. An SVM classifier with an RBF
kernel was trained using the genuine and impostor difference feature vectors. During
testing, the difference feature vectors obtained from the test set were submitted to
the trained SVM classifier.

The results demonstrate the superiority of the proposed method compared to
traditional distance functions applied directly to feature vectors. The ROC curves
clearly show in figure 2.9 that the proposed method outperforms the direct application
of cosine and Euclidean distances. Among the five CNN architectures used for feature
extraction, VGG-Face achieved the best performance, with an EER of 3.18%. This
indicates the effectiveness of the proposed method in achieving accurate and reliable
biometric identification.
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Figure 2.8: Diagram of the proposed method. used by Vizoni MV et al.(2020)

In conclusion, the proposed method for ocular region recognition-based authenti-
cation demonstrates its effectiveness in improving biometric authentication systems.
By utilizing deep features and adopting a pairwise strategy, the method achieves
state-of-the-art performance. The results suggest that ocular characteristics have
great potential for biometric authentication, either as standalone features or in combi-
nation with other biometric modalities. This work contributes to the advancement of
biometric authentication systems and highlights the importance of exploring ocular
biometrics further.

2.5.2.5 Sudhakar T et al, 2019

This study [20] introduces a novel cancelable biometric system with the objective
of enhancing the security and privacy of biometric systems. The system utilizes
deep learning techniques to extract iris features and subsequently converts them
into cancelable biometric templates through the application of random projection.
Optimal biometric authentication is achieved by employing a support vector machine
(SVM) after conducting a comparative analysis of alternative classifiers. The proposed
system demonstrates improved template security and enhanced identification accuracy.
Figure 2.10 illustrates the overall architecture of the cancelable biometric system,
which consists of four main phases: feature extraction, transformation, fusion, and
testing. During the feature extraction phase, features of both the right and left irises
are extracted using a convolutional neural network (CNN). This process involves
five steps, including rescaling, pixelating, normalization, CNN training and testing,
and feature extraction based on CNN. It is worth noting that feature extraction
is identical for both the training and testing phases. In the transformation phase,
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Figure 2.9: ROC curves obtained by the five CNNs assessed in this work as a means
of obtaining deep ocular features. As one can observe VGG-Face obtained
the best result. used by Vizoni MV et al.(2020)

random projection is applied to the feature matrix to generate the cancelable template.
The iris was chosen as the biometric trait due to its stability over time, difficulty in
replication, clear differentiability, and the improved reliability achieved by utilizing
both irises (multi-instance). The proposed method offers computational efficiency
and requires less memory, as each template has a dimension of only (1 x 256),
thereby eliminating the need for dimension reduction techniques such as Principal
Component Analysis (PCA). This efficiency is made possible by utilizing maxpool,
which effectively reduces the iris dimensions from (1 x 16384) to (1 x 256). Each
feature set is then transformed into a new feature space using a user key and
orthogonal projection. The cancelable matrices of the user’s right and left irises
are fused through multiplication, resulting in the final template during the fusion
phase. This approach provides a high level of resistance to inversion, as imposters
are unable to recreate the original biometric using the key or template, or both.
In situations involving suspicious activity, the previous template can be revoked,
and a new template is issued to the user based on a new key. During the testing
phase, the user must present scans of both irises along with their user key for access
verification. The key serves as a code to a random matrix used during training. SVM
is employed to classify test data into specific classes, thereby verifying the user for
access authorization. The effectiveness of the proposed methodology is extensively
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validated using two multi-instance iris databases.

Figure 2.10: Overall architecture of the proposed cancelable biometric system. used
by Sudhakar T et al.(2019)

The primary aim of utilizing random projection (RP) is to preserve the Euclidean
distance and statistical properties before and after the projection. The proposed
technique involves three steps, as depicted in Figure 2.11: a) The generation of an
orthogonal matrix based on a user key, which remains consistent for both the left and
right irises of an individual. b) The feature matrix is multiplied by the orthogonal
matrix, resulting in a projection matrix. c) The projection matrices of the left and
right irises are multiplied together to obtain the cancelable template.

These steps collectively ensure that the statistical characteristics and Euclidean
distance are maintained throughout the process, and the resulting cancelable template
retains the essential features for biometric recognition.

Figure 2.11: Generation of cancelable template using proposed random projection
method. used by Sudhakar T et al.(2019)
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In conclusion, the study explores a multi-instance cancelable biometric system
that integrates deep learning, random projection, and machine learning. The system
exhibits desirable properties such as non-invertibility, cancelability, differentiability,
and computational efficiency. The implementation of a powerful deep neural network
architecture contributes to high accuracy results. Additionally, the use of random
projection significantly enhances the recognition rate and provides biometric trans-
formation. Comparative analysis of various machine learning classifiers highlights
optimal performance for user verification. The study prioritizes privacy preserva-
tion, improved security, and cancelability, which are key objectives in cancelable
biometrics.

2.5.2.6 Boyd A et al, 2019

In this study [21], the authors investigate the effectiveness of deep learning-based
feature extraction for iris recognition. The primary research question addressed
is whether it is more beneficial to train models from scratch on a large iris image
dataset or to fine-tune existing models to adapt them to the iris recognition domain.
The ResNet-50 architecture is selected as the base model for experimentation.

The ResNet-50 architecture is a deep convolutional neural network as shown in
figure 2.12 consisting of 53 convolutional layers. It is a fully convolutional model,
meaning it is independent of input image dimensions and can accommodate larger
input sizes. To explore the different training strategies, the authors utilize five sets
of weights. Three sets are trained specifically for iris images, while the remaining
two are obtained from the ImageNet and VGGFace2 datasets. These weights serve
as benchmarks for comparison. Different weight initialization methods are employed
for the trained networks.

To handle the large number of iris classes, the final classification layer of ResNet-50
is substituted, and a global average pooling layer is introduced. This modification
enables the model to generate compact feature vectors suitable for iris recognition.

Features are extracted from each convolutional layer of the ResNet-50 architecture.
In this study, features are obtained from all 53 individual convolutional layers,
resulting in feature vectors with sizes ranging from 16,384 to 524,288. To ensure
consistency and avoid dominance by larger scaled features, these feature vectors
undergo Min-Max scaling. The aim is to generalize the extracted features for iris
recognition, as the networks are not directly trained for classification on the specific
CASIA-Iris-Thousand database used in this study.

Given the high dimensionality of the feature vectors, dimensionality reduction
is applied before classification. Principal Component Analysis (PCA) is employed
on each layer, projecting the features onto a new subspace with 2000 dimensions.
This step aims to retain the most important features while avoiding overfitting. The
feature vector size is further reduced by selecting the number of features that capture
90% of the feature variance. The "randomized" Singular Value Decomposition (SVD)
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Figure 2.12: The figure illustrates the experimental setup, where iris images are
segmented to create training and testing datasets. ResNet-50 models
trained on ImageNet, VGGFace, fine-tuned versions, and a network
trained from scratch are used to generate feature vectors for classification
on the CASIA-Iris-Thousand dataset. used by Boyd A et al.(2019)

solver is utilized for efficient computation of PCA.
For classification, a one-versus-rest Support Vector Machine (SVM) with a linear

kernel is employed. The classification training set consists of 70% of the CASIA-Iris-
Thousand database, while the remaining 30% forms the testing subset. Stratified
splitting ensures a balanced distribution of samples across classes in both sets. Each
layer is associated with its own one-versus-rest classifier, and accuracy is evaluated
based on correct classifications in the test set.

The evaluation of the proposed approach is presented in Figure 2.13, which il-
lustrates the classification accuracy for each convolutional layer. The fine-tuned
networks consistently outperform other networks, with similar performance observed
between the fine-tuned ImageNet and VGGFace2 weights. The fine-tuned mod-
els achieve high classification accuracy, reaching up to 99%, demonstrating their
effectiveness as feature extractors for iris recognition.

Comparison with a previous study reveals that four out of the five networks in
this work surpass the highest recorded recognition rate achieved using the DenseNet
architecture. The fine-tuned ImageNet network achieves the highest recognition rate
of 99.38%. This highlights the effectiveness of fine-tuning pre-trained networks for
iris recognition and indicates that deeper networks, like ResNet-50, offer improved
performance due to the increased number of layers available for feature extraction.

In conclusion, the study provides insights into the optimal training strategy for iris
recognition using deep learning-based feature extraction. The findings demonstrate
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Figure 2.13: This plot shows the classification accuracy for each convolutional layer of
the five networks tested on the CASIAIris-Thousand dataset. The x-axis
is the convolutional layer number. Out of frame: results of VGGFace2
off-the-shelf for layers 48, 51, 52 and 53 which were 47.4%, 25.75%,
39.87%, and 53.81% respectively. used by Boyd A et al.(2019)

the superiority of fine-tuning off-the-shelf weights compared to both off-the-shelf
models and training from scratch. The proposed methodology, utilizing the ResNet-50
architecture and fine-tuning techniques, proves effective in achieving high accuracy
for iris recognition. The availability of fine-tuned ResNet-50 models trained on a
large iris image dataset further supports reproducibility and provides a valuable
resource for future research in this field.

2.5.3 Comparison tables

Table 2.1 outlines the study characteristics within the review, encompassing details
such as the study year, dataset, pre-processing steps, feature extraction methods,
data split approaches, optimization functions, loss functions, recognition performance
metrics, activation functions, and the number of epochs and batches used.

Table 2.2 presents a comprehensive comparison of performance metrics across
the included studies, offering insights into the variations and outcomes observed in
different research findings.
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Chapter 3

Attacks based on Reconstruction
techniques

3.1 Introduction

The landscape of deep learning models is evolving, marked by their insatiable appetite
for substantial data and computational resources. This progress, however, unveils
a vulnerability known as ’model stealing,’ allowing adversaries to replicate these
models without direct access, thereby jeopardizing their integrity [22]. Traditional
defense mechanisms, while in place, often grapple with the delicate balance between
preserving performance and fending off evolving security threats [22].

At the core of artificial intelligence, Artificial Neural Networks (ANNs) replicate the
intricate structures of the human brain, demonstrating their prowess in applications
like face recognition and AI gaming. Major industry players such as Google, Microsoft,
and Amazon harness the power of Deep Neural Networks (DNNs) for large-scale
data processing, ushering in the era of Machine-Learning-as-a-Service (MLaaS). This
innovative paradigm brings unparalleled ease of integration but simultaneously raises
a critical dilemma – the risk of exposing sensitive training data and proprietary
model intricacies. Despite ongoing defensive measures, the domain of neural network
(NN) privacy research is still nascent, underscoring the need for a comprehensive
exploration and policy realignment to effectively address these evolving privacy
concerns [23] [24].

As machine learning seamlessly embeds itself into various facets of our daily lives
through Machine Learning-as-a-Service (MLaaS) platforms provided by industry
behemoths like Amazon and Google, the spotlight intensifies on the imperative
to address security implications. While the current research thrust predominantly
focuses on enhancing the performance of training algorithms, an emerging need
compels the community to grapple with the security challenges, especially regarding
the privacy sensitivity of trained models. Real-world applications, acutely aware
of the potential leakage of sensitive information, are increasingly adopting privacy
measures. This has resulted in the surge of adopting oracle access or black-box
access within MLaaS systems as pragmatic solutions, striking a balance between
safeguarding privacy and ensuring usability [25]. This special issue delves into
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Chapter 3 Attacks based on Reconstruction techniques

the realm of "Machine learning for image reconstruction," emphasizing the crucial
role of data-driven approaches in image reconstruction. Bridging the gap between
existing images and reconstructed internal structures, machine learning, especially
deep learning, is rapidly becoming a prominent method in the field, showcasing its
potential as a new frontier in image reconstruction [26].

3.2 Literature review

To have an overview of the state-of-the-art of reconstructing attacks in the field of
biometric authentication, a systematic literature review was conducted. First, we
explain the method followed for this literature review and then a summary of findings
is presented.

3.2.1 Method

The IEEE xplore and Google scholar search engine was employed to identify research
relevant to data reconstruction from neural networks. Our primary search terms were
"Reconstructing Training Data", "Neural Networks", "Federated Learning", "Dataset
Distillation", and "Dataset Reconstruction Attacks". Furthermore, we looked for
papers that discussed the challenges and implications of adversaries using these
techniques. We primarily centered on research that focused on traditional deep
learning models, excluding those that delved into alternative architectures. Special
attention was given to works that explored ensemble inversion, informed adversaries,
and the boundaries of training data reconstruction.

3.2.2 Results

The search methodology described previously yielded 7 papers that were published
in the years 2022 and 2023.

3.2.2.1 Loo N et al, (2023)

Loo N et al. (2023) [27] presented a significant enhancement to the dataset recon-
struction attack framework, diving deeper than the foundational methods by Haim
et al. (2022) [28]. The new model, which operates on neural networks trained under
MSE loss, leverages the inherent properties of the Neural Tangent Kernel (NTK)
to guarantee a consistent and robust reconstruction. This advanced technique is
anchored on the equation:

LReconstruction = ∥∆θ − α⊤∇θfθ0(XT )∥22 (3.1)

Through rigorous evaluations on well-established datasets such as MNIST and
CIFAR-10, it was evident that wider networks boasted enhanced capability in
reconstructing more expansive datasets. An intriguing aspect of this study is the
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3.2 Literature review

Figure 3.1: The mean reconstruction error, depicted through the average value on
the reconstruction curve, displays a strong correlation with the evolution
of the finite-width NTK over the course of training. Dot size signifies the
dataset size, while the model width is distinguished by color variations.
used by Loo N et al, (2023).

establishment of a novel connection between dataset reconstruction and distillation.
They postulated that training on a distilled dataset could serve as a defense mechanism
against the reconstruction of the original dataset, shielding it from potential attacks.

However, a noteworthy limitation of their approach was its focus on 2-layer
networks, suggesting that more intricate architectures might remain vulnerable and
require further exploration. Their findings, including the varying reconstruction
quality across different network widths and the correlation between reconstruction
quality and kernel distance, can be visually appreciated in Figure 3.1. This figure
ideally would encapsulate the essence of their method, be it the attack mechanism,
the dataset distillation method, or the demonstrated reconstruction curve.

3.2.2.2 Haim N et al, (2022)

Haim N et al. [28] delve into the capability of neural networks to reveal details
about their training data. They explore the premise that the parameters of a trained
classifier might contain sufficient information to reconstruct a substantial chunk of
its training data.

Their Dataset Reconstruction Scheme capitalizes on the implicit biases of gradient-
trained neural networks to recover training data. For the experiments, the primary ar-
chitecture used is the Multi-layer Perceptron (MLP) comprising three fully-connected
layers.

Their approach pivots on a uniquely designed reconstruction loss function Lreconstruct:

Lreconstruct({xi}mi=1, {λi}mi=1) = α1Lstationary + α2Lλ + α3Lprior (3.2)

Empirical results depict the method’s efficacy in reconstructing training samples,
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Figure 3.2: Comparison to other reconstruction schemes. The top showcases Model
Inversion results while the bottom highlights the neural network’s first
layer weights. The ordering of CIFAR and MNIST images is based on
their output values. used by Haim N et al, (2022).

albeit with some noise. The technique appears most potent for data samples on the
decision "margin" of the neural network.

A critical comparison of their method with alternatives like "Model Inversion" and
"Weights Visualization" is elucidated in Figure 3.2. The top of the figure exhibits
the performance of Model Inversion on 2D, CIFAR10, and MNIST datasets, while
the bottom displays the first layer’s weights. Notably, in CIFAR and MNIST, the
images are ordered by their output values.

The paper by Haim N et al. [28] underscores the capacity within neural networks
to retain and possibly reveal their training data inadvertently.

3.2.2.3 Balle B et al, (2022)

This paper [29] delves into the potential risks associated with the ability of machine
learning models to inadvertently memorize and consequently reveal details about their
training data. Using a rigorous threat model, the authors developed a sophisticated
attack strategy that leverages an informed adversary. This adversary, familiar with
some portions of the training data, can successfully recreate other unseen data points
by just observing the parameters of the trained model. Particularly, they employed
a reconstruction attack, termed "RecoNN" (Figure 3.3 provides an overview), that
maps model parameters back to training images, which proved effective against
standard classifiers used on datasets like MNIST and CIFAR-10.One of the most
compelling visual proofs of this vulnerability was observed in Figure 3.4, where
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Figure 3.3: Overview of RecoNN-based attack. used by Balle B et al, (2022)

reconstructions of six random targets from the test set were vividly showcased.
However, the research also demonstrated that differential privacy (DP), a widely
recognized privacy preservation technique, can be employed to counteract such
reconstruction attacks. The paper introduced a novel definition, "reconstruction
robustness," linking it with Renyi Differential Privacy (RDP). Crucially, they establish
that even when differential privacy is applied with relatively high values of its privacy
parameter ϵ, it can still provide significant protection against reconstruction.

This Equation highlights the relationship between reconstruction robustness and
differential privacy:

PZ∼π,θ∼M(D_∪{Z})[ℓ(Z, R(θ)) ≤ η] ≤ γ (3.3)

Essentially, this equation describes the probability bounds for achieving a specific
reconstruction error, serving as a bridge between reconstruction robustness and estab-
lished differential privacy parameters. As a countermeasure, the paper suggests the
application of differential privacy during model training, highlighting that even with
larger values of the privacy parameter ϵ, effective mitigation against reconstruction
attacks can be achieved. The results underscore the necessity for developers to be
aware of these vulnerabilities and adopt practices like differential privacy to ensure
data confidentiality and security.

3.2.2.4 Guan J et al, (2022)

In this paper[30], the authors delve into an innovative correlation-based fingerprinting
framework meticulously designed to counteract and detect a myriad of model theft
attacks. This novel approach is a timely response to the pitfalls and challenges
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Figure 3.4: displays reconstructions of six random test set targets. It compares
original targets, default attack reconstructions, and those by the NN
oracle. used by Balle B et al, (2022).

encountered with traditional intellectual property (IP) protection methods. Current
strategies are often marred by accuracy losses, considerable time overheads, and
susceptibility to specific theft mechanisms. In contrast, the proposed framework,
encompassing the SAC-w and SAC-m techniques, adopts a pioneering stance. It
harnesses the unique properties of misclassified normal samples or CutMix Augmented
samples. Central to this approach is the computation of the correlation difference
between these samples. This pivotal step facilitates the identification of potentially
stolen models, offering a detection mechanism that operates without intruding into
the model’s primary training process.

A critical equation that encapsulates the theft detection strategy is the probability-
based model extraction, which can be represented as

L = α.KL(fT
stolen(x), fT

source(x)) + (1− α).CE(fstolen(x), lsource) (3.4)

The comprehensive experiments, as reflected in Figure 3.5, illuminate the preemi-
nent performance of the SAC-m technique in the domain of fingerprinting, remarkably
doing so while necessitating a substantially reduced sample pool. Additionally, the
strategic incorporation of cosine similarity in the analytical process has further
bolstered the model’s theft detection capabilities.

26



3.2 Literature review

Figure 3.5: SAC-w’s AUC change with different amounts of misclassified samples.
used by Guan J et al, (2022).

In summation, this research offers a solution to the dilemma of model theft that
looms large in machine learning. By merging accuracy conservation with time
efficiency, it promises a transformative impact on the domain. However, these
technological advancements also beckon introspection on broader socio-economic
fronts. The burgeoning acceleration of machine learning as a service, fueled by such
breakthroughs, might inadvertently reshape the job landscape, hinting at potential
socio-economic challenges ahead.

3.2.2.5 Guo C et al, (2022)

This paper [31] introduces a novel framework for quantifying data leakage in machine
learning models, particularly emphasizing the Fisher information matrix’s role in
assessing privacy. The Fisher information matrix serves as a statistical measure,
revealing how much information an observable variable unveils about an underlying
parameter. The groundbreaking insight in this paper is the expression of the Fisher
information matrix as an integral, linking the gradient of the log-likelihood function
to the empirical distribution of training data. This newfound identity empowers the
accurate measurement of potential information leakage from the model’s parameters
concerning sensitive training data.

To enhance privacy analysis, the paper introduces two pioneering privacy accounting
methods: Renyi differential privacy (RDP) and Fisher information leakage (FIL).
RDP offers a flexible trade-off between privacy and utility, expanding the horizons of
differential privacy. FIL, inspired by statistical privacy principles, takes the spotlight
by providing more robust mean squared error (MSE) lower bounds compared to
existing techniques.

The experimental validation on diverse datasets underscores the effectiveness of
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Figure 3.6: compares membership inference attacks (MIAs) and data reconstruction
attacks (DRAs) by framing them as games between private learners and
adversaries, with MIA measured by advantage (higher is better) and
DRA by mean squared error (lower is better).. used by Guo C et al,
(2022).

these approaches. One compelling figure, Figure 1 in the paper, presents the privacy
loss in differentially private logistic regression on the Adult dataset, using Fisher
information leakage. The results affirm the superiority of this method in establishing
stringent privacy lower bounds in comparison to conventional alternatives.

This paper offers a comprehensive framework for assessing data leakage in machine
learning models, highlighting the importance of the Fisher information matrix. By
providing practical tools to enhance privacy analysis, the paper advances the state
of the art in securing sensitive information in machine learning applications.

3.2.2.6 Gong H et al, (2022)

This paper discusses the potential privacy risks associated with exchanging gradients
and weights of models in Federated Learning (FL) systems. The authors provide an
overview of the FL framework and highlight the importance of privacy-preserving
techniques in FL. They then discuss the threat model of FL and the potential privacy
risks associated with exchanging gradients and weights. The authors also review
several existing attacks on FL systems, including Single-Sample Reconstruction Attack
System (SSRAS), Deep Leakage from Gradients (DLG), and Recursive Gradient
Attack on Privacy (R-GAP), figure3.7 illustrates the framework of the Improved
R-GAP Algorithm.

To address these privacy risks, the authors propose several defense mechanisms,
including gradient perturbation, differential privacy, and secure aggregation. They
also discuss the limitations of these defense mechanisms and suggest future research
directions.

This paper [32] provides a comprehensive review of the privacy risks and de-
fense mechanisms in FL systems. The authors highlight the importance of privacy-
preserving techniques in FL and propose several defense mechanisms to address
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Figure 3.7: The framework of Improved R-GAP Alogrithm. used by Gong H et al,
(2022).

the privacy risks associated with exchanging gradients and weights. The paper
includes Figure 4, which illustrates the comparison of gradient inversion attacks on
two datasets, and Figure 5, which presents ground truth and reconstructed images
by the attack system and DLG.

The paper introduces the Single-Sample Reconstruction Attack System (SSRAS)
and conducts experiments to assess its performance in the context of privacy attacks in
federated learning. The study focuses on a classification task with CNN6 architecture,
utilizing various activation functions and optimization techniques. Key metrics used
for evaluation include the Rank Analysis Index (RA-I), Attack Success Rate (ASR),
Attack iteration (Ai), Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity (SSIM).

In conclusion, this paper emphasizes the need for a deeper understanding of
gradient leakage attacks and privacy in federated learning. The proposed SSRAS
system and Improved R-GAP Algorithm provide valuable tools for privacy analysis
and open the door to more secure and privacy-preserving intelligent systems. These
findings offer important insights for researchers and practitioners in the field of
federated learning and privacy preservation.

3.2.2.7 Wang Q et al,(2022)

The paper[33] presents an ensemble inversion technique that significantly improves
model inversion tasks, with a focus on face classification. Utilizing multiple Mod-
els Under Attack (MUAs), the method reconstructs training images by guiding a
generator with a combination of MUAs’ predictions and a discriminator that en-
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Figure 3.8: illustrates a model inversion method where a generator, guided by an
ensemble of Models Under Attack, reconstructs original training images
while being constrained by class prediction agreement and the realism of
images compared to an auxiliary or, if unavailable, a data-free dataset.
used by Wang Q et al,(2022).

sures realistic image generation, akin to a GAN, as depicted in Figure 3.8. This
process benefits from diverse MUAs trained in different identity groups, enhancing
the extraction of unique features from shared identities.

The researchers conducted experiments with ResNet-34-based face classifiers on
the VGGFace2 dataset. Their findings illustrate that ensemble inversion not only
refines the visual details of reconstructed images but also boosts attack accuracy
compared to traditional single-model inversion methods. The accuracy of MNIST
digit reconstruction rose by 70.9% in data-free scenarios and by 17.9% with auxiliary
data, while face reconstruction accuracy increased by 21.1% over baseline methods.

Intriguingly, the paper[33] reveals that different face classifiers, even when trained
with the same data, focus on various facial features, suggesting a combination of
classifiers could lead to a more robust model inversion. With the application of
tailored losses—such as one-hot loss and maximum output activation loss—further
enhancements in sample quality were observed.

By highlighting the effectiveness of ensemble inversion in capturing distinct iden-
tity features without overlapping training and auxiliary data sets, the paper also
underscores the need for developing defensive strategies against such sophisticated in-
version techniques. The ultimate aim is a systematic exploration of model inversion’s
potential impact, setting the stage for future work in defense mechanisms.

3.2.3 Comparison table

Table 3.1 summarizes the key attributes of the reviewed articles on reconstruction
attacks, providing details on the study year, the dataset used, the employed method,
and the corresponding reconstruction performance metrics.
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Chapter 4

Materials and Methods

4.1 Dataset

The dataset which was used in this research is part of CASIA V1.0. This dataset
comprises 756 iris images from 108 eyes, with each eye contributing seven images
captured in two sessions using the CASIA close-up camera. The self-developed
camera features eight 850mm NIR illuminators for uniform and ample illumination.
To protect intellectual property rights (IPR), pupil regions in CASIA IrisV1 are
automatically replaced with a constant intensity circular region, eliminating specular
reflections from NIR illuminators. While this editing simplifies boundary detection,
it has minimal or no impact on other components of an iris recognition system, such
as feature extraction and classifier design.

The images in the database are stored in BMP format with a resolution of 320x280,
providing a valuable resource for iris recognition system research. For within-class
variability assessment, it is recommended to compare samples from the same eye
captured in different sessions, facilitating effective training and testing scenarios.
The arrangement of samples from different sessions is illustrated in Figure 4.1, where
three samples are collected in the first session (Figure 4.1(a)) and four in the second
session (Figure4.1 (b)). The data is available online 1

4.2 Recognition

The realm of iris recognition, pivotal in biometric systems, has evolved with machine
learning, promising heightened accuracy. In this context, we’ll be able to explain the
models which used in our experiment. the complexities of iris patterns necessitate
refined computational approaches by leveraging deep learning.

This research aims to automate and optimize the recognition process and contribute
to enhancing iris recognition systems, advancing their precision and reliability through
the strategic reconstruction of trained data.

1http://biometrics.idealtest.org/findTotalDbByMode.do?mode=Iris%23/datasetDetail/1
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Chapter 4 Materials and Methods

Figure 4.1: Example iris images in CASIA V1.0.

4.2.1 Preprocessing

Before the images are used for the training of the model, a pre-processing step is
carried out. The main steps of iris image preprocessing are (I) Threshoulding (II)
Morphological Operations (III) Find the contours (IV)GaussianBlur for iris mask
(V) Detect circles (VI) Iris mask and cropping.

4.2.1.1 Threshoulding

Thresholding, the simplest method, involves deriving a binary image from an original
grayscale image [34]. The outcome of these thresholding strategies is illustrated in
Figure 4.2.

Figure 4.2: Outcome of the Thresholding Process.

4.2.1.2 Morphological Operations

I performed two morphological operations in this step: opening and a subsequent
dilation process. The opening process involves a sequence of erosion and dilation
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4.2 Recognition

operations for image enhancement which is defined by the equation [35]:

Opening = IM ⊖ SE ⊕ SE (4.1)

Dilation involves systematically scanning an image with a structuring element,
occasionally extending beyond its borders, enhancing pixel value alignment. This
process contributes to the expansion of regions in the image [35]. The synergistic
interplay of open and dilation, as depicted in Figure 4.3, within the opening process
contributes to the enhancement of image clarity.

Figure 4.3: Result of the Opening and Dilation Morphological Processes.

4.2.1.3 Find the contours

The contours in images represent the boundaries of distinct objects or regions with
similar pixel intensity. Utilizing the active contour model for segmentation to localize
the boundary of the pupil with other unuseful details [36]. The figure 4.4 showed the
result of this step.

4.2.1.4 GaussianBlur for iris mask

Gaussian blur is a versatile image processing technique for noise suppression, softening,
and local averaging [37]. Gaussian Blur for an iris mask refers to the application of a
Gaussian filter to smooth and reduce noise in the mask representing the iris region.

4.2.1.5 Detect circules

The foundation of many circle detection algorithms lies in the utilization of the Hough
transform [38] which includes parameters representing ’ dp ’ adjusts accumulator
resolution, ’minDist’ sets minimum circle center distance, ’param1’ influences edge
detection, ’param2’ is the accumulator threshold, and ’minRadius’ and ’maxRadius’
define accepted circle sizes and the result in figure 4.5.
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Figure 4.4: Outcome of Contour Detection Process.

Figure 4.5: displays the outcome of the Hough Circles algorithm.

4.2.1.6 Iris mask and cropping

Iris mask creation involves accurately delineating the iris boundaries, followed by
cropping the original image based on the extracted region. Figure 4.6 illustrates the
outcome of cropping images using the iris mask, showcasing images focused solely on
the iris region[39].

Figure 4.6: displays the outcome of the Hough Circles algorithm.

4.2.2 Model and Training

In this section, we present the architecture of the model and outline the chosen
hyperparameters for training.
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4.2 Recognition

4.2.2.1 Prepare the data for one class classification

In implementing the recognition model, the utilization of One-Class Classification
(OCC) stands out as a distinctive approach within the broader context of multi-
class classification. OCC is tailored for scenarios where the training data exclusively
comprises a single positive class, aiming to construct a representation and/or classifier
that enhances the recognition of positively labeled queries during inference [40].

Upon partitioning the dataset into outcome target and non-target categories,
as depicted in Figure 4.7, the division involves 70% for training data and 30%
for validation data. This strategic division ensures a balanced and comprehensive
assessment of the model’s performance across various phases [40].

Figure 4.7: Dataset Division Using One-Class Classification.

4.2.2.2 Model Description

This model is inspired from this article [17].
The architecture of the iris recognition system involves three layers of convolutional

layer, each with a pooling layer of (2, 2) and dropout layer with a rate of 0.1. The
first convolutional layer includes six filters of size (3, 3) with a ReLU activation
function, and the strides parameter is set to (1, 1), meaning the filters move one
pixel at a time. The second convolutional layer with 64 filters of size (3, 3) and a
ReLU activation function. Third convolutional layer with 128 filters of size (3, 3) and
a ReLU activation function. The network processes an input image with dimensions
(280, 320, 3).

The subsequent flattened layer transforms the output of the convolutional layers
into a 1D array, priming it for fully connected layers. Three Dense (Fully Connected)
Layers follow, comprising 1028, 512, and 64 neurons with ReLU activation functions.
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These layers are adept at discerning intricate patterns within the flattened feature
set. The final Dense Layer has a singular neuron activated by the sigmoid function,
suitable for binary classification tasks, where the model outputs a probability denoting
the likelihood of the input belonging to a specific class.

We constructed a recognition model inspired by the research[29], which focuses on
data reconstruction. The second model is designed to be simpler than the initial one.

The second model architecture consists of a Sequential model with a convolutional
layer followed by max pooling and dropout layers. The initial Conv2D layer employs
32 filters of size (3, 3) with ReLU activation, processing images with dimensions
(280, 320, 3). Subsequent max pooling reduces spatial dimensions, and a dropout
layer with a dropout rate of 0.5 helps mitigate overfitting. The flattened output is
connected to two dense layers with 64 and 1 neuron(s) respectively, activated by
ReLU and sigmoid functions.

These two models are configured with the Adam optimizer utilizing an exponential
decay learning rate schedule, commencing at an initial rate of 0.000001. Binary cross-
entropy is the loss function for binary classification, and accuracy is the performance
metric. Training unfolds over 40 epochs with a batch size of 16, dynamically adjusting
the learning rate, and is validated using data generators during the training process.
The summaries of the first and second recognition models are presented in Tables 4.1
and Table 4.2, respectively.

Layer (type) Output Shape Param #
conv2d_1 (Conv2D) (None, 278, 318, 32) 896
max_pooling2d_1 (MaxPooling2D) (None, 139, 159, 32) 0
dropout_1 (Dropout) (None, 139, 159, 32) 0
conv2d_2 (Conv2D) (None, 137, 157, 64) 18,496
max_pooling2d_2 (MaxPooling2D) (None, 68, 78, 64) 0
dropout_3 (Dropout) (None, 68, 78, 64) 0
conv2d_3 (Conv2D) (None, 66, 76, 128) 73,856
max_pooling2d_3 (MaxPooling2D) (None, 33, 38, 128) 0
dropout_43 (Dropout) (None, 33, 38, 128) 0
flatten (Flatten) (None, 160512) 0
dense_1 (Dense) (None, 1028) 165,007,364
dense_2 (Dense) (None, 512) 526,848
dense_3 (Dense) (None, 64) 32,832
dense_4 (Dense) (None, 1) 65

Total params: 165,660,357 (631.94 MB)
Trainable params: 165,660,357 (631.94 MB)
Non-trainable params: 0 (0.00 Byte)

Table 4.1: Summary of the first Recognition Model, inspired by ZHUANG Y et al.,
2020 [17].
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4.3 Reconstructing

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 278, 318, 32) 896
max_pooling2d (MaxPooling2D) (None, 139, 159, 32) 0
dropout (Dropout) (None, 139, 159, 32) 0
flatten (Flatten) (None, 707232) 0
dense_1 (Dense) (None, 64) 45,262,912
dense_2 (Dense) (None, 1) 65

Total params: 45,263,873 (172.67 MB)
Trainable params: 45,263,873 (172.67 MB)
Non-trainable params: 0 (0.00 Byte)

Table 4.2: Summary of the second Recognition Model, inspired by Balle B et al,
2022 [29]

4.2.3 Recognition Evaluation

Two visual representations depict the outcomes of the training and validation pro-
cesses, illustrating the accuracy and loss. Figure 4.8 showcases the training and
validation accuracy, while Figure 4.9 presents the training and validation loss.

The evaluation of our recognition model employed multiple metrics. Equation
4.2 defines the accuracy, Equation 4.3 quantifies Precision, Equation 4.4 specifies
Recall, and Equation 4.5 delineates the F1_score. Additionally, Figure 4.10 visually
portrays the Confusion Matrix, offering a comprehensive insight into the model’s
performance.

Accuracy = TP + TN
TP + TN + FP + FN (4.2)

Precision = TP
TP + FP (4.3)

Recall = TP
TP + FN (4.4)

F1_score = 2× Precision× Recall
Precision + Recall (4.5)

4.3 Reconstructing

During the reconstruction phase, I applied a reconstruction algorithm inspired by
the work of Balle B et al, (2022) as outlined in Section 3.2.2.3 of this research.

The algorithm proposed in this paper [29] is a reconstruction attack strategy based
on training a reconstructor network. The reconstructor network is a neural network
that is trained by the adversary to output a reconstruction of the target point when
given as input the parameters of a released model.

39



Chapter 4 Materials and Methods

Figure 4.8: Training and validation accuracy

Figure 4.9: Training and validation loss

Figure 4.10: Confusion Matrix
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The attack strategy involves the following steps:

1. The adversary obtains access to a released machine learning model and its
parameters.

2. The adversary trains a reconstructor network using the model parameters and
a subset of the training data.

3. The adversary uses the reconstructor network to reconstruct the remaining
training data points.

4. The adversary can then use the reconstructed training data to train a new
model that is similar to the original model.

This process is visually represented in Figure 4.11.

Figure 4.11: A general Reconstruction Attack

The paper provides a theoretical analysis of reconstruction attacks against simple
machine learning models like linear, logistic, and ridge regression, as well as against
standard neural network architectures for image classification.

Algorithm 1 formalizes the reconstruction attack, detailing the interaction between
the model developer and the informed adversary. It utilizes the trained model θ on
data D with an additional point {z}, employing attack algorithm R to produce a
faithful reconstruction ẑ, evaluated based on the chosen error function ℓ, reflecting
privacy concerns and context-specific considerations. Privacy expectations may not
require perfect reconstruction, and the paper explores various metrics, including
MSE and model output similarities, with the choice of ℓ and the threshold for success
depending on the specific application and potential harm to individuals.

The paper draws a connection between membership inference attacks (MIA)
showed algorithm 2 and the proposed attack strategy. It introduces an informed
MIA adversary, more powerful than standard MIA, and emphasizes the significance
of differential privacy (DP) as strong privacy protection against both informed MIA
and accurate reconstruction.

This algorithm was firstly applied using the Github repository of the work [29].
During this step, MNIST dataset was utilized as input for training the MLP model.
The results of the reconstruction model are visually depicted in Figure 4.12.
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Algorithm 1 Reconstruction attack with an informed adversary. (Auxiliary side
knowledge aux is optional).

procedure Reconstruction(A, R, D, z; aux)
θ ← A(D ∪ {z})
ẑ ← R(θ, D−, A; aux)
return ℓ(z, ẑ)

end procedure

Algorithm 2 Informed Membership Inference Attack
1: procedure Informed-MIA(A, M, D, z0, z1)
2: b← Unif({0, 1})
3: θ ← A(D ∪ {zb})
4: b̂←M(θ, D−, A, z0, z1)
5: return b = b̂
6: end procedure

4.4 Reconstruction Implmenetation

Upon completion of training for the Recognition Models outlined in Section 4.2.2.2,
both the first and second models were saved using two distinct methods:

1. Save Model H5: The entirety of a deep learning model’s architecture, weights,
optimizer state, and training setup are stored in the Hierarchical Data Format
(HDF5) file format when a model is saved as an H5 file.

2. Side Knowledge Model: Pre-trained models are employed as feature extractors
or customized for particular tasks in side knowledge models, which are commonly
employed in transfer learning scenarios. Unlike H5 files, which save the whole
model architecture and weights, side knowledge models simply save particular
layers or components that provide important information about broad patterns
discovered during pre-training.

In order to test the two models (outlined in Section 4.2.2.2) with the two different
methods (h5 and side knowledge), four scenarios were implemented. The four
scenarios include matching the two recognition models and two saving methods
together. The general scheme is illustrated in Fig 4.13, showing the overarching steps
involved in the reconstruction process.

4.4.1 Evaluation

In order to evaluate the implemented reconstruction, two methods of evaluation
were followed. The first method involved the usage of the same input model. The
reconstructed data were used as input to try to gain non-legitimate authentication.
This was tested using both h5 and side knowledge models. The second method
includes measuring the similarity between the legitimate eye iris data and the
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Figure 4.12: displays the output of the Reconstruction model, where odd columns
represent the target, and even columns showcase the corresponding
reconstructions.

Figure 4.13: Reconstruction process scheme.

reconstructed ones. This evaluation aims to measure to what extent the reconstructed
data have the ability to gain false authentication.
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Chapter 5

Experimental Results

5.1 Recognition Model Accuracy

Table 5.1 provides a comparative analysis of the accuracy achieved by our Recognition
model and those discussed in the literature review(Section 2.5), all of which utilized
the same CASIA dataset.

Table 5.1: Recognition Models Accuracy

The model for Recognition Dataset Accuracy
Vijaykumar V et al, 2022 CASIA V1.0 99.85%
ZHUANG Y et al, 2020 CASIA-iris V4.0 99%
Thakkar S et al, 2020 CASIA-iris V4.0 CRR 99%

First Model (inspired by [17]) CASIA V1.0 96.43%
Second Model (inspired by [29]) CASIA V1.0 92.86%

5.2 Reconstrution Result

We utilized all four Recognition Model saving scenarios outlined in Section 4.4 as
input for the reconstruction model. The results, depicted in Figure 5.1, consistently
demonstrated similar outcomes across all scenarios.

5.3 Measuring the Similarity

5.3.1 Similarity Descriptive Statistics

We conducted a comprehensive assessment of similarity across three stages, employing
Descriptive Statistics to gain insights into data distribution.

• In the first stage, we evaluated the similarity score between each reconstructed
image and its corresponding actual image. Table 5.2 encompasses the Descrip-
tive Statistics values, while Figure 5.2 visually represents the data distribution
through a Histogram with mean and median, Violin plot, and Box plot.
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Figure 5.1: illustrates the outcomes of the reconstruction model, showcasing a side-
by-side comparison of the reconstructed (odd columns) and actual (even
columns) images.

Table 5.2: Descriptive Statistics Summary for all stages.

Value (Stage 1) Value (Stage 2) Value (Stage 3)
Mean 0.0078 0.0078 0.7675

Median 0.008 0.008 0.7577
Minimum 0.0065 0.0065 0.7348
Maximum 0.0096 0.0096 0.818

Range 0.0031 0.0031 0.0832
Standard Deviation 0.001 0.001 0.0299

Variance 0.0 0.0 0.0009
Skewness 0.1093 0.1093 0.4477
Kurtosis -1.0007 -1.0007 -1.1883

25th Percentile 0.0069 0.0069 0.7423
50th Percentile 0.008 0.008 0.7577
75th Percentile 0.0085 0.0085 0.7869

Interquartile Range 0.0016 0.0016 0.0446

• For the second stage, we considered the first image of actual images as a template.
Afterwards, we have measured the similarity between each reconstructed image
and the template. Descriptive Statistics for this stage are presented in Table
5.2, and Figure 5.3 provides a graphical representation of the data.

• In the third stage, we extended our analysis to measure the similarity between
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5.3 Measuring the Similarity

Figure 5.2: encompassing a Histogram with mean and median, a Violin plot, and a
Box plot for the first stage.

Figure 5.3: encompassing a Histogram with mean and median, a Violin plot, and a
Box plot for the second stage.

each actual image and the template. The aim here is to make a comparison
between similarities of remonstrated images and actual images with the template.
Table 5.2 compiles the Descriptive Statistics values for this stage, while Figure
5.4 depicts the data distribution through various plots.

We utilized Histogram with Kernel Density Estimation as depicted in Figure 5.5
to visually represent the data distribution between the reconstructed images and the
actual images. This shows both histograms of the second and the third stages.

Figure 5.4: encompassing a Histogram with mean and median, a Violin plot, and a
Box plot for the third stage.
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Figure 5.5: Histograms and KDE of two datasets.

5.3.2 Similarity Statistical Analysis

The aim of the statistical analysis is to find whether there is a statistically significant
difference between the similarities of reconstructed and actual images with the
template. We consider the the alpha level of 0.05 (α = 0.05)

Firstly. Shapiro-Wilk test was conducted to assess the normality of data. This
will lead us to choose a parametric or non-parametric test for the difference test.

Starting with Shapiro-Wilk test, we firstly present

1. Null Hypothesis (H0): The sample data follow a normal distribution. In
other words, there is no significant departure from normality in the population
distribution from which the sample was drawn.

2. Alternative Hypothesis (H1): The sample data do not follow a normal
distribution. This implies that there is a significant departure from normality
in the population distribution.

After Conducting Shapiro-Wilk test, the following results were obtained:

• Actual images similarities: the p-value is 0.1361. Since this value is greater
than the alpha level of 0.05, we do fail to reject the null hypothesis. This means
there is not enough evidence to say that the data is not normally distributed.

• Reconstructed images similarities: the p-value is 0.4304, which is also
greater than 0.05. This leads to the same conclusion: there is not sufficient
evidence to reject the null hypothesis of normal distribution.
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Given that the two lists appear to be normally distributed, it’s appropriate to use
a parametric test for comparing the two lists. In this case, the t-test is a suitable
choice. The paired t-test is a statistical test used to compare the means of two related
groups to determine if there is a statistically significant difference between them.

Moving topaired t-test, we present present.

1. Null Hypothesis (H0): There is no significant difference between the means
of the two related groups.

2. Alternative Hypothesis (H1): there is a significant difference between the
means of the two related groups.

The output of the paired t-test provides three key statistics:

1. Statistic: The t-statistic is 93.41.

2. P-value: The p-value is approximately 1.52× 10−18.

Given that the p-value is statistically smaller than alpha value, we can reject the
Null Hypothesis and say that the Alternative Hypothesis is true. We can say that
there is a significant difference between the means of the two related groups. In other
words, there is a significant difference between the biometric similarities and actual
similarities.
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Discussion and Conclusion

6.1 Discussion

The work of this project started with reproducing an iris recognition model based
on [17]. and Building another iris recognition model inspired from [29]. Looking
at table 5.1, we can compare the performance of our models with the literature
review (section 2.5). It showed that our system has a high authentication rate as
a One-Class Classifier. It shows that our model has a slightly lower accuracy that
could be neglected since the focus of our work is to test the reconstructing attacks.

The reconstruction attack was applied to the model given that the attacker
knows the model and has a side knowledge about the context. The results of the
reconstructing attacks are shown in Fig 5.1. For a general comparison of the naked
eye, we can say that. The reconstruction attack failed to regenerate images with a
similar look to the actual original ones. However, it might have the same embedded
patterns as the actual ones.

In order to catch any hidden similar patterns between the reconstructed images
and the actual ones, we have measured the similarity between each group of images
(reconstructed and actual) with an iris template of the person we want to authenticate.
The similarity score based on was calculated using SSIM (The Structural Similarity
Index). The results of the similarity indices are presented in Fig 5.2 and Fig 5.3
and 5.4 and also in table 5.2. From the descriptive statistics of the similarity
indices, we can observe that the similarity between the reconstructed images with
templates has a mean value of 0.0078 ± 0.001 while the actual similarities mean
equles to 0.7675± 0.0299. This showed that there is a significant difference between
the similarity score of the two groups, that is visually proven in Fig 5.5.

Moving on to find whether there is a statistical difference between the similarity
indices, we have conducted a statistical analysis. Based on the analysis in section
5.3.2, we can conclude with a high degree of confidence that there is a statistically
significant difference between the similarity scores of legitimate, original biometric
data and reconstructed biometric data, when each is compared to the same reference
template. The exceedingly high t-statistic, combined with an exceptionally low
p-value, strongly indicates that reconstructing biometric data has a measurable and
significant impact on its similarity to the reference template.
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The significance of these findings extends to the realm of biometric security and
authentication systems, shedding light on potential challenges in maintaining the
fidelity of reconstructed biometric data. The notable disparity in similarity scores
raises concerns about the reliability and security of reconstructed data compared to
the original, legitimate biometric data. This variance has the potential to impact the
overall effectiveness and security of biometric verification and identification processes.
While the current reconstructed images exhibit discernible content, their limited
ability to accurately recognize fundamental features, such as the shapes of eyes,
poses a current challenge to iris-based biometric authentication. Although existing
reconstruction methods may not currently pose a significant threat, it’s imperative
to recognize the possibility of more sophisticated techniques emerging in the future,
presenting a heightened risk to the security of iris-based biometric authentication.

6.2 Conclusion

In conclusion, the research presented in this project concentrated on the development
and evaluation of iris recognition models, with an emphasis on their robustness against
reconstruction attacks. Two models were created, inspired by previous research, and
tested using the CASIA V1.0 dataset. Despite the models’ high authentication rates,
their accuracy was slightly lower, which is to be expected given the emphasis on
testing reconstruction attacks.

The investigation of reconstruction attacks on iris recognition models is the study’s
main contribution. While such attacks could reproduce patterns similar to the
actual images, they were unable to closely replicate the images’ appearance. This
finding was supported by extensive similarity testing with the Structural Similarity
Index (SSIM), which revealed a significant difference in similarity scores between
original and reconstructed biometric data. This significant difference was confirmed
by statistical analysis, emphasising the impact of reconstruction on biometric data
fidelity.

These findings are especially important in the context of biometric security and
authentication systems. The significant difference in similarity scores between original
and reconstructed data suggests that reconstructed biometric data may be untrust-
worthy and insecure. This has significant implications for the effectiveness and
security of biometric systems, implying that reconstruction methods and their impact
on biometric verification and identification processes must be carefully considered.

Overall, the study emphasises the difficulties in maintaining the integrity and reli-
ability of biometric data in the face of advanced reconstruction attacks, emphasising
the importance of continuous advancements in biometric security measures.
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