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Abstract

Coronary artery disease (CAD) is an atherosclerotic narrowing of the coronary

artery lumen, that leads to angina or acute myocardial infarction. CAD is a

leading cause of death and its prevalence has been increasing rapidly, especially

in developing countries. It involves the presence of stenosis when the coronary

arteries are narrowed or blocked induced by the atheromatous plaques building

up inside, reducing oxygen-rich blood flow to the heart muscle and subsequently

resulting in an imbalance state between oxygen demand and supply.

Invasive Coronary Angiography (ICA) is considered the reference gold stan-

dard imaging technique for the assessment of clinically significant CAD, which

enables to reveal the initial CAD symptoms by the morphological features of

the coronary arteries such as diameter, length, branching angle, and tortuosity.

The challenging task for the interpretation of ICA images depends on complex

vessel structure, image noise, poor contrast, and non-uniform illumination. In

addition, the manual detection of stenosis is subjective and time-consuming, re-

quiring rich clinical experience. Therefore, developing an ICA-based automatic

detection algorithm could improve diagnostic efficiency and could provide huge

support to clinicians, reducing bias and subjective interpretations.

Several approaches have been proposed in the literature for stenosis detection

in ICA images, but these computer-based approaches owe their good results to

strong pre-processing techniques. To reduce manual burden in the detection and

quantification of coronary stenosis, deep-learning (DL) has been introduced.

Therefore, an end-to-end stenosis detection convolutional neural network

(CNN) capable of automatically detect stenosis in ICA images is proposed. The
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CNN for object detection chosen to be trained on the provided dataset is the

Single-Shot Multibox Detector (SSD), since it could be adequate for the limited

dataset and the number of parameters to train reduced.

The approach was validated on 5 models obtained through 5-fold cross-

validation, to compensate for the limited dataset dimension and performance

comparison of two different network versions, SSD300 and SSD7, is performed.

This approach has been shown to be quite good with mean values of In-

tersection over Union and Dice Similarity Coefficient (DSC) of 0.50 ± 0.06 and

0.64 ± 0.06 for SSD300 respectively and 0.30 ± 0.07 and 0.44 ± 0.08 for SSD7

respectively. Results of this work are good, despite they are slightly lower than

values obtained in the literature, when performance metrics are comparable. It

is necessary to highlight that the results depend on the annotations, subject to

variability, since are drawn manually by operators. Moreover, it is possible to

accept values with a certain margin of tolerance, since the aim is to identify

coronary stenosis, which is correctly done by visual inspection of the stenosis

prediction, except for some cases. Finally, this approach does not apply pre-

processing on images, differently from reference works.

This work is a good starting point to improve the stenosis detection in ICA

images but needs some improvements to be used directly in clinical, minimizing

the risk of misinterpretation, and accelerating the decision-making regarding the

proper treatment strategy.
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Chapter 1

Introduction

1.1 Coronary Artery Disease

Coronary artery disease (CAD) is the most common type of cardiovascular dis-

ease and a major cause of mortality, resulting in an estimated 7.6 million deaths

every year all over the world [1]. The main cause of CAD is atherosclerotic

plaque accumulation in the epicardial arteries leading to a mismatch between

myocardial oxygen supply and myocardial oxygen demand and commonly re-

sulting in ischemia. It involves the presence of stenosis, which is a plaque of fat,

cholesterol or other substances that can deposit and grow on the inner walls of a

coronary artery. Thus, the lumen of the artery becomes narrower and less blood

flows through the arteries, making it unable to supply sufficient blood or oxygen

to the heart muscle, leading to permanent heart damage, such as heart attacks

[2]. Therefore, it is important to identify and quickly treat the stenosis, before

the heart is severely damaged.

Two main arteries branch off the aorta namely Left Main Coronary Artery

(LCA) and Right Coronary Artery (RCA) which supply blood to the left and

right parts of the heart respectively. These two main arteries then divide into

a network of smaller coronary arteries which wrap themselves around the heart

[3]. The stenosis often manifests in various positions along the artery, with those

near major arterial junctions being most critical. An example of stenosis can be
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CHAPTER 1. INTRODUCTION

seen in (Fig. 1.1).

Figure 1.1: Example of significant stenosis of the left anterior descending
coronary artery from focal non calcific atherosclerosis with Computed Tomo-
graphic Coronary Angiography(A) and Invasive Coronary Angiography(B). Fig-
ure adapted from [4]

Chest pain is the most likely symptom that occurs during physical and/or

emotional stress, relieved promptly with rest or by taking nitroglycerin. This

process can be modified by lifestyle adjustments, pharmacological therapies, and

invasive interventions designed to achieve disease stabilization or regression [5].

In some patients, the coronary arteries become more severely blocked and re-

quire a revascularization procedure. The two procedures to manage a blocked

coronary artery are to implant a stent in the area of the blockage (angioplasty)

or to entirely bypass the blocked segment of artery surgically (bypass surgery)

as illustrated in (Fig. 1.2) [6].

Figure 1.2: Procedure of Percutaneous Coronary Intervention(A). Procedure of
Coronary Artery Bypass Graft Surgery(B)

Percutaneous coronary intervention (PCI; angioplasty) is a mini-
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CHAPTER 1. INTRODUCTION

mally invasive procedure in which a tube with an associated balloon is intro-

duced via a peripheral artery (either the femoral artery in the groin or the radial

artery at the wrist), avoiding the need for surgery and general anesthesia. The

balloon is inflated in the area of the blocked artery to stretch it open. In most

patients, a coronary stent is then placed. This spring-like looking device helps

to keep the artery open and reduces the chance of recurrent narrowing. Approx-

imately 15% to 20% of patients will develop renarrowing of the artery requiring

a repeated angioplasty procedure within 6 to 12 months. Stents may be coated

with medication that reduces the risk of renarrowing. To prevent clots develop-

ing in the stent, two medications that inhibit blood platelets are needed for up

to 1 year after the procedure (usually aspirin plus an additional blood thinner)

[6].

Coronary artery bypass graft (CABG) surgery is a major surgical pro-

cedure requiring general anesthesia. In most patients, the procedure is performed

after opening the chest through an incision through the breastbone. Veins taken

from the leg and an artery taken from within the chest are used to bypass the

coronary artery blockages. The bypass grafts have a high chance of remaining

open in the first 5 to 8 years after the operation. However, by 10 years after the

operation, about half of vein bypass grafts are either blocked or have developed

a severe narrowing. In contrast, arterial bypass grafts are more likely to remain

open. Although repeat bypass surgery is possible, many patients with a blocked

vein graft can be treated medically and do not need another operation [6].

However, it is of main importance to assess stenosis functional significance

for decision making in the interventional catheterization laboratory with respect

to revascularization [7].

1.2 Medical Images for CAD assessment

In symptomatic patients, the assessment of CAD presence and its severity is

critical for determining appropriate clinical management, and diagnosis is gen-

erally made or confirmed with some form of medical imaging. Medical images
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CHAPTER 1. INTRODUCTION

take a significant part in patient diagnostics at different levels, including regular

screening, diagnosis verification, preoperative planning, and follow-up. Accord-

ingly, great efforts are invested into this field to improve the quality of images

and facilitate accurate scan interpretation and avoid medical errors. At present,

the CAD evaluation mainly depends on Computed Tomographic Coronary An-

giography (CTCA) and Invasive Coronary Angiography (ICA) [8].

1.2.1 Computed Tomographic Coronary Angiography (CTCA)

CTCA, shown in (Fig. 1.3) is a non-invasive method that combines a CT scan

and a iodine-based contrast medium to examine the arteries that supply blood to

the heart. The images that are generated during the scan can be constructed to

create a three-dimensional image, which may be viewed on a monitor or printed

on a film.

The patient is connected to a cardiac monitor which shows the heart’s electri-

cal activity and an intravenous line is placed into an arm vein. During the scan,

x-rays pass through the body and are picked up by special detectors in the scan-

ner. During the procedure, contrast medium is introduced to the bloodstream to

allow a clear definition of the blood vessels under examination by making them

appear bright white. A beta blocker may also be administered to the patient

through the same IV line, or given orally to help slow down the heart rate, while

helping in improving image quality.

CCTA is increasingly used to assess CAD, providing high resolution three-

dimensional images of the coronary arteries. Moreover, it can also provide ad-

ditional information regarding the type of plaque (calcified, mixed or soft) [9].

Despite remarkable technical developments and even though it has the advan-

tage of being noninvasive, CCTA acquisitions expose the patient to a higher

dosage of radiation. Other limitations are the calcification blooming artefacts,

the limited spatial and temporal resolution, the unpredictability of hemody-

namic significance of intermediate coronary lesions and the difficulties to acquire

motion-free, high-quality images in patients with arrhythmias [3].
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CHAPTER 1. INTRODUCTION

Figure 1.3: In the upper panel the machinery of the CTCA. In the lower panel
the CTCA image processed of the RCA.

1.2.2 Invasive Coronary Angiography (ICA)

ICA, shown in (Fig. 1.4),i.e. the in vivo contrast study of the coronary artery

tree and its lumen, is commonly used to investigate the anatomy of the coronary

arteries and to assess the number, location, and severity of coronary stenosis. It

is a medical imaging technique that involves continuous X-ray (i.e. fluoroscopy)

with simultaneous injection of radiopaque contrast into the coronary arteries

[10]. Despite novel imaging modalities, like CTCA, have been developed, ICA

is currently regarded as the gold standard for coronary artery stenosis detec-

tion, according to the 2019 guidelines of the European Society of Cardiology [5].

With an injected contrast agent, ICA can offer anatomical information of even

very small vessels and enable cardiologists to observe dynamically from different

projection angles. Cardiologists can then identify and locate each stenosis with

a visual assessment [11]. During the procedure a long, thin, flexible catheter

(a thin hollow tube with a diameter of 2–3 mm) is inserted into a blood vessel

in the groin or arm. Using X-ray images as a guide, the tip of the catheter is
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CHAPTER 1. INTRODUCTION

passed up to the heart and coronary arteries. A special type of dye called a con-

trast medium is injected through the catheter and X-ray images (angiograms)

are taken. Both the right and left coronary arteries are injected multiple times

after changing the position of the X-ray system to visualize the coronary tree

from different perspectives. The sequential images that are produced over the

3–6 s acquisition time are called selective coronary angiograms, and the recorded

images, if carefully and comprehensively gathered with skill, accurately reveal

the extent and severity of all coronary arterial blockages. The contrast medium

is visible on the angiograms, showing the blood vessels the fluid travels through.

This clearly highlights any blood vessels that are narrowed or blocked. The

procedure is usually carried out under local anaesthetic, so the patient is awake

during the procedure, but the area where the catheter is inserted will be numbed.

This reveals the structure of arteries on X-ray images allowing to visually detect

stenosis and other visible abnormalities by a clinician. ICA is a fair and reliable

diagnostic method, as well as monitoring the progress of revascularization during

angioplasty.

Figure 1.4: On the left panel a representation of ICA procedure. On the right
imaging of the left anterior descending dissection by ICA.

1.2.3 Criticality in the Diagnosis

The fundamental tasks required for the interpretation of coronary angiography

are the identification and the quantification of the severity of stenosis within the

coronary circulation. Stenosis severity is typically determined in clinical practice

by physician visual assessment. Often, spurious dye and imaging artifacts can
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CHAPTER 1. INTRODUCTION

give a false appearance of stenosis in these sequences. To resolve such cases,

clinicians watch the angiograms in cine loops exploiting the fact that a real

stenosis will persist in each image frame through time. This approach, while

considered as clinical standard, has known limitations, such as significant intra-

and inter-rater variability, as well as high positive prediction bias. In addiction,

the manual estimations of coronary artery stenosis are time consuming and the

results from these readings are also dependent on subjective training. Thus, the

introduction of a tool to automatically detect stenosis from images could provide

a huge support to the clinicians, as it can not only eliminate the variability of

intra- and inter-observers, but also provide a second opinion for cardiologists

in enhancing the operational efficiency and productivity as well as improving

diagnostic confidence.

1.3 Disclosure

The current imaging techniques employed to diagnose CAD is known to be sig-

nificantly affected by intra- and inter-observer variation, due to the presence

of other tissues, camera movements and the difficulties associated to the visual

identification of the stenosis. To overcome all these limitations a support diag-

nostic tool in clinical practice is strongly suggested. In this work the emerging

Deep Learning (DL) techniques have been chosen to develop a system for stenosis

detection from ICA images automatically. Specifically, a Single Shot Multibox

Detector has been developed, considering it to be suitable for the present clinical

context. This work is carried out in collaboration with the Cardiology Depart-

ment of Ospedali Riuniti in Ancona: all the experiments and considerations

done in this work are conducted on ICA images collected, annotated and pro-

vided in DICOM (Digital Imaging and Communications in Medicine) format

with associated metadata by the doctors of this department.
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Chapter 2

State of the art

The process of interpreting complex coronary vasculature, image noise, low con-

trast vessels, and non-uniform illumination is time-consuming, thereby posing

certain challenges to the operator. Automatic CAD detection and labeling may

overcome these difficulties by supporting the decision-making process [5].

In this Chapter, a literature review about the conventional methods for steno-

sis detection in ICA images is presented, since the ICA is currently regarded as

the gold standard for coronary artery stenosis detection. Moreover, this work

tries to investigate the possibility of obtaining a CNN capable of automatically

detect stenosis in ICA images. Starting from the explanation of ICA images vi-

sual inspection for stenosis detection, an overview of the computer-based meth-

ods for the detection is provided, including semi-automated and fully automated

software, reaching finally the application of DL techniques in the field of medical

imaging. At last, the limitations in the state of art are highlighted and thus, the

thesis objective is presented.

2.1 Conventional stenosis detection in clinical prac-

tice

Over the course of years, several methods have been proposed for stenosis detec-

tion: the existing methods based on ICA are relatively few compared to those

8



CHAPTER 2. STATE OF THE ART

based on the CTCA, since the detection in ICA images is challenging, due to

the low contrast between vessels and surrounding tissues as well as the complex

overlap of background structures with inhomogeneous intensities [11].

2.1.1 Visual Assessment

Coronary angiography is performed to determine the presence and severity of

coronary stenosis, thus guiding the treatment for patients with CAD. Physi-

cian Visual Assessment (PVA) of stenosis severity remains the standard method

for guiding revascularization [12]. However, several studies employing different

techniques have seriously questioned the notion that visual interpretation of the

coronary angiogram permits an accurate assessment of the physiologic signifi-

cance of a coronary obstruction. By definition, significant CAD is the narrowing

of coronary artery lumen beyond the threshold of 50% diameter reduction in

coronary angiography images, thus assessing the physiologic significance of nar-

rowings of intermediate severity is uncertain. To examine the degree and severity

of coronary artery stenosis in clinical practice, cardiology specialists select the

key frames, and assess the stenosis manually by naked-eye visual inspection.

The selected key frames are those in which the vessels are more visible, as the

contrast agent passes through the arteries. However, the visual inspection of

coronary artery stenosis is known to be significantly affected by intra- and inter-

observer variation and time-consuming, requiring rich clinical experience and

expert knowledge [11]. In addition, it is challenging due to camera movements,

complex vessel structures, poor contrast between vessels and surrounding tissues,

nonuniform illumination, and overlap of background structures with inhomoge-

neous intensities [13].

There are two different approaches to visually evaluate structure anatomy in

ICA images [14]. The most common approach depends on assumptions about

the geometry of structures and vessels, relying on the exact definition of vessel

edges and requiring information on the luminal shape. Therefore, inaccuracies

might occur in the evaluation of lesions with indistinct vessel edges or irregular

luminal shapes. Although investigators have been working to make geometric
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methods of angiographic analysis easier and faster, many geometric methods

remain time consuming and difficult, and cannot be readily applied at the time

of cardiac catheterization [15]. Percent stenosis may not accurately reflect lesion

physiologic significance because the angiographically ”normal” segment of the

coronary artery may not be free of atherosclerotic disease.

The second and nongeometric approach is the densitometric measurements

of coronary strictures and its accuracy is not restricted by the shape of the

cross-section of the artery or its structure. It consists in measuring the x-ray

attenuation through a contrast-filled coronary artery and from this information

estimating the amount of contrast in the vessel, which is an index of luminal size.

It can be used to estimate an absolute as well as relative (i.e., percent stenosis)

index of coronary luminal size. In addition, densitometry is not dependent on

the exact definition of vessel edges and it is theoretically free of assumptions

as to shape of the lumen. Such characteristics may be important in analyzing

lesions immediately after thrombolysis or angioplasty, when vessel borders are

indistinct and the luminal shape is irregular [15].

The implication of variation in interpretation of angiograms is serious: if

readings are erroneous, some patients will undergo revascularization procedures

unnecessarily and others will be denied an essential treatment [16]. Conse-

quently, even though PVA is considered a clinical standard, it has known limi-

tations, implicitly leading to over-utilization of clinical services [12].

2.1.2 Computer-based image analysis

Since the late 1980s, quantitative coronary angiography (QCA) has been intro-

duced exploiting automated or semi-automated edge detection to provide more

precise quantitative estimates of bidimensional data obtained with ICA when

compared with more subjective measures like PVA. Whereas QCA has the in-

herent drawback of focusing only on the contrast-filled lumen of the vessel, it

continues to provide important insights for clinical research and, in selected cases,

clinical practice [17]. QCA provides more precise quantitative data in compar-

ison to visual assessment. In fact, the visual interpretation of the severity of a

10
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coronary stenosis is usually expressed in intervals of percentage of stenosis. Con-

versely, QCA produces a single specific measure for stenosis diameter, improving

the accuracy and reproducibility of the severity assessment.

QCA is a technique directly based on contrast coronary angiography that

obtains parameters that quantify objectively and with interval measures the sig-

nificance of a coronary stenosis. QCA is currently based on the use of a specific

and dedicated software that allows determination of some specific measures of

coronary lumen in an operator-independent way. When used in clinical practice,

QCA is performed on-line immediately after ICA providing objective and inde-

pendent parameter for the assessment of stenosis severity helpful to decide the

type of intervention and to choose the suitable devices and their sizes. When

employed in clinical research, QCA is performed off-line after finishing ICA pro-

cedure or intervention, based on data storage and transfer, and conducted by an-

giographic core laboratory experts, providing a visual annotation of the diseased

coronary arterial segments and the area surrounding each stenosis to determine

the percent diameter stenosis. Thus, providing a purely numerical evaluation

of coronary stenosis and interventional procedures. Standard workflow for QCA

consists of a multi-step analytical pipeline. As QCA is based on coronary angiog-

raphy, the first step in order to perform a QCA analysis is to acquire high-quality

ICA images focused on the target coronary artery segment of choice obtaining

a two-dimensional luminogram of a three-dimensional structure. The greater

is the contrast between the radiopaque contrast-filled coronary artery and the

radiotransparent background, the greater are the accuracy of QCA analysis and

reliability of the algorithm for the automated detection and reconstruction of

the lumen edges. The first step consists of calibration in which a catheter of a

known diameter, often expressed in French, is measured. A central line is drawn

by hand along the stretch of the catheter tip. The software automatically recog-

nizes its margins by using specific algorithms that, by means of digital images,

recognize the change from radiopaque pixels (black or dark grey)to radiotrans-

parent pixels (light grey or white) according to a densitometric analysis. The

software is in this way able to transform every pixel into a square with sides

11
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characterized by known dimensions (mm). This parameter is then employed to

measure the coronary region of interest [17].

QCA measurement process currently offers the most accurate and repro-

ducible measurements of anatomical coronary stenosis severity and thus is con-

sidered the clinical gold standard for measuring coronary stenosis. However,

despite the improvements over PVA, calculating stenosis severity by QCA still

requires satisfactory image acquisition and minimal user input to identify imag-

ing frames for analysis, which may introduce variability as well [18]. Limitations

related to QCA include dependency on ICA image quality and challenges in

assessing complex lesions, such as those with thrombus or calcification [12]. In

addition, QCA makes evaluations considering two dimensions, which is not suited

for three-dimensional structures such as coronary vessels and atherosclerotic le-

sions. Therefore, it is necessary to develop systems for image acquisition and

analysis that are automated and able to integrate more two-dimensional quan-

titative analyses in a single three-dimensional model, as the acquisition of three

or more angles may improve three-dimensional reconstruction by averaging [17].

Semiautomatic methods require human interaction to locate a stenosis and

only focus on assessing its severity. After vessel structures is extracted with dif-

ferent methods and the diameter of the target stenosis was manually measured,

the severity is evaluated. In Brieva et al. [19] a semiautomatic segmentation

technique based on a B-spline snake to extract the 2D coronary arteries is pro-

posed. A string matching technique is then applied to compute the vessel diam-

eter. A narrowing measure is then presented to evaluate the stenosis severity.

deformable spline with string matching [19]. In Fatemi et al. [20] firstly Hessian

based vessel enhancement filter (HBVF) is applied to the angiographic frame

to be segmented for enhancement of vessel structures. Meanwhile, the filter is

applied to other frames in the angiographic sequence. Afterward, angiographic

frames in the sequence and their vesselness filtered versions are fused using 2-D

wavelet transform to make an image which is used as a threshold for detecting

the vessels. Next, for detecting the vascular structures, the fused image accom-

panying with a couple of thresholds is applied to the vesselness filtered frame
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to be segmented. Finally, in order to find the narrowed coronary arteries, vessel

contours processing is employed for the measurement of the vessel thickness and

Hessian vesselness filter with wavelet-based image fusion [20].

All the above-mentioned methods are defined semi-automated software be-

cause they are computer-based image analysis tools developed to support identi-

fication procedure, ignoring the automatic detection task. These methods speed

up the analysis procedure but require human interaction to locate a stenosis and

only focus on assessing its severity.

2.2 Advanced stenosis detection via Deep Learning

technique

Fully-automatic methods concentrate on achieving automatic stenosis detection,

employing Computer Vision and/or Machine Learning (ML) techniques, avoid-

ing user dependency and thus providing standardized and reproducible measure-

ments [11, 21]. Even if the expert is capable of assessing stenosis in coronary

vessels by visual inspection, this approach becomes very time-consuming in case

of a huge amount of images. Moreover, the operator dependency results in

the subjectivity of the stenosis quantification and thus in a high inter/intra-

operator variability. In order to overcome these issues, computer-based image

analysis tools are developed to support stenosis detection procedure. Despite a

good performance, fully-automatic methods still have limitations: multiple pre-

processing procedures, such as vessel enhancement, segmentation and skeleton

extraction are performed in a single frame to detect stenosis. This is a time-

consuming process, and the intrinsic complexities of ICA images prevent these

substeps from obtaining ideal intermediate results. As a consequence, errors

might accumulate, hampering final stenosis detection. To avoid the cumbersome

pre-processing steps required for a single frame in traditional stenosis detection

methods, CNNs have been introduced.

Recently, DL methods have been widely used in image analysis and has shown

the capability to perform complex tasks like object detection, classification, and
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semantic segmentation. The success is due to the ability of CNNs, a powerful

DL method in the image processing field, to learn hierarchical representations of

raw input data, without relying on hand-crafted features [22], that have shown

promising results in medical imaging applications, having the potential to replace

or reduce manual burden in detection and quantification of coronary stenosis

[23]. Several studies have attempted the quantitative analysis of the degree of

stenosis and segmentation of the coronary artery lumen using CNN. However,

most of the previous approaches required intensive human interactions for data

annotation, by giving lesion-specific information in each frame (i.e., pixel-level

labeling of stenosis, or manual selection of key frame on each clip), which have

limited the practical usage and application to large dataset [13].

In literature, among the most recent researches on stenosis detection per-

formed on ICA, the works conducted by Cong et al. [24], Moon et al. [13], Wu

et al. [11] and Danilov et al. [5] resulted to be particularly interesting in relation

with the object of this thesis.

Cong et al. 2019

In this study an automated method for stenosis detection in ICA images is

proposed, which makes use of a CNN based workflow for image-level stenosis

classification, without the need for an a priori vessel segmentation. It depends

solely on physician stenosis reports to achieve accurate classification/detection.

By taking advantage of proposed redundancy training strategy and a class of ac-

tivation maps, stenosis positioning and localization capability can be determined

and visualized. Figure 2.1 illustrates an abstraction of the algorithmic workflow.

The study was performed on 194 patients from a multicenter dataset and

the stenosis location and their severity were previously analyzed with QCA in

order to categorize them into three clinically relevant groups based on stenosis

severity. 77 patients (39.7% of the total) had a stenosis of < 25%, indicated

as Category 0; 97 patients had (50% of the total) had a stenosis of25%-99%,

indicated as Category 1 and 20 (10.3%) were with 100% stenosis (occlusion),

indicated as Category 2. All ICA studies were saved in the universal DICOM
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Figure 2.1: Abstraction of the proposed end-to-end stenosis detection workflow.
The input of the method is an ICA dataset, and the 4 main steps (from data
preparation to stenosis detection) are described briefly in the dash-line boxes.
The model returns 3 types of outputs: Output 1: diagnosis result for an image-
level stenosis classification; Output 2: stenosis activation map and Output 3:
stenosis localization information. Figure adapted from [24].

15



CHAPTER 2. STATE OF THE ART

format with a resolution of 512*512 or 1024*1024, 15 frames per second, 60-120

frames. The main training setup is based on the three-category setup (named

3-CAT). However, also a binary setup is used with a distinction of two groups

of stenosis severity - < 25% vs. > 25% - named 2-CAT. In addition, 3-CAT

total occlusion were separated from other stenosis, because total occlusions is

seen to require a different and more urgent treatment strategy from stenosis le-

sions. Firstly, LCA/RCA were classified initially by experts in a small subset

and then leveraged by training a CNN classifier for automated classification of

a view as either the LCA/RCA coronary artery. The image preparation is per-

formed through an automatic detection of the ideal candidate frames and the

redundant frames, defined as the one in a ICA video with best image quality,

full contrast-agent penetration, clearly contrasted vessel borders, and anatomi-

cal significance of stenosis. It is trained an inception-v3 for recognizing the ideal

candidate frames and the redundancy frames. To further improve the perfor-

mance of candidate frame picking, they connect the fully-connection (FC) layer

of inception to a pair of bi-directional long-short-term memory (LSTM) network,

a recurrent neural network (RNN) that differs from CNN in its ability to process

temporal information or data that comes in sequences. Frames that did not

meet the selection criteria for candidate frames were manually removed from the

augmented training dataset (for classification training). Finally, after stenosis

classification with Inception-v3, a class of activation maps is employed to identify

the discriminative regions. Results report > 85% accuracy in 2-CAT and > 80%

accuracy in 3-CAT, showing the potential of this method in stenosis detection

in ICA images. However, training/validation overfitting was the most important

issue to be handled. A limitation of this study is that it was implemented at an

image-level method, although it has demonstrated its ability in videos.

Moon et al. 2020

The proposed method consists of key frame detection, to train a DL model for

classification of stenosis on each key frame, and visualization of the possible

location of the stenosis. Firstly, they propose an algorithm that automatically
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extracts key frames, essential for diagnosis, from 452 right coronary artery an-

giography movie clips. The DL algorithm is then trained with image-level an-

notations to classify the areas narrowed by over 50%. To make the model focus

on the salient features, they apply a self-attention mechanism. The stenotic

locations are visualized using the activated area of feature maps with gradient-

weighted class activation mapping. Figure 2.2 illustrates an overview of the

algorithmic workflow.

Figure 2.2: Overview of the framework for the automated recognition of stenosis
on ICA. Figure adapted from [13].

DICOM-formatted coronary angiography data were retrieved anonymously

from coronary angiography cases acquired in clinical practice. From the image

acquisitions, a series of 512 × 512 pixel grayscale images with different gray

levels were generated, and all cases were captured at the rate of 15 frames per

second. The image dataset was ramdomly divided to conduct 5- fold cross val-

idation. Firstly, they developed a fully automated key frame detection method

that could significantly reduce the manual workload, and eliminate the unnec-
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essary processing of a large number of video frames. After that, they utilized

GoogleNet Inception-v3 as the base architecture of DL model. Each five key

frames in a clip was fed into the CNN models to analyze the stenosis. Then, in

order to maximize the attention of the baseline network (GoogleNet Inception-

V3) to the characteristics of stenosis, they adopted the Convolutional Block

Attention Module (CBAM) attention method. Since the stenosis can be ob-

served in various different patterns and positions, they recalibrated the feature

maps on both spatial and channel phases to make the model focus on the dis-

criminative stenotic area, using Global Max Pooling (GMP) and Global Average

Pooling (GAP). The training method achieved high frame-wise area-under-the-

curve (AUC) of 0.971, frame-wise accuracy of 0.934, and clip-wise accuracy of

0.965 in the average values of cross-validation evaluations. Although there were

different locations and types of stenosis with different shapes of blood vessels

in the images, this approach showed promising performance. Furthermore, it

showed high performance when tested on three external datasets with ensemble

decision, which used different imaging protocols. The limitation of this study

consists in the use of the right coronary arteries only in the angiogram image

clips.

Wu et al. 2020

The authors propose a CNN-based method with a novel temporal constraint

across ICA sequences. Specifically, they developed a deconvolutional single-shot

multibox detector (DSSD) for candidate detection on contrast-filled X-ray frames

selected by U-Net. Based on these static frames, the detector demonstrates high

sensitivity for stenosis yet unacceptable false positives still exist. To solve this

problem, they propose a customized seq-fps module that exploits the temporal

consistency of consecutive frames to reduce the number of false positives. A

flow diagram of the proposed framework is shown in Fig. 2.3. It includes three

major parts: contrast-filled frames selection based on UNet, single frame stenosis

detection based on DSSD and false positive suppression based on seq-fps.

The raw ICA sequence data used in this study were acquired from 63 patients,
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Figure 2.3: Framework of the proposed method. The whole algorithm works as
follows: first, the contrast-filled frames of an input ICA sequence are selected
based on the U-Net segmentation results (shown in chronological order from top
to bottom). Then, the DSSD provides rough results for each selected frame (yel-
low arrows for true positives and aqua arrows for false positives). Finally, the
seq-fps module summarizes the rough results and removes false positives, gener-
ating the final results. Figure adapted from [11].

and sequence lengths vary from 3 to 5 at 14 frames per second. The resolution

of each frame is 512 x 512 pixels. They obtained 148 ICA sequences in total and

five-fold cross-validation experiments were conducted. Then, automatic identi-

fication of the N frames before and after the most contrast-filled frame from an

ICA sequence is performed with U-net network. The DSSD network doubles the

resolution of the high-level feature map with the learned deconvolutional layer

and further combines feature maps from two different levels by elementwise sum-

mation [25]. This step merges semantic information and location information,

generating feature maps with richer contents that are beneficial for the detec-

tion task. The DSSD has high sensitivity; however, it is still influenced by a

certain number of false positives. These false positives are generally stenosis-

like structures generated by time-dependent contrast agent inhomogeneity and

vessel motion. Based on a video object detection algorithm seq-nms (sequence-

non maximum suppression), they design the temporal module called seq-fps. It

is performed on the DSSD network results of consecutive contrast-filled frames

selected by U-Net, which selects the stenosis that most frequently appears in an

ICA sequence, thus filtering out remaining random false positives. The results

show that the proposed method outperforms existing stenosis detection meth-

ods, achieving the highest sensitivity of 87.2% and positive predictive value of

79.5%.
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Danilov et al. 2021

The very recent study of Danilov et al. is aimed at confirming the feasibility

of real-time coronary artery stenosis detection using DL methods. To reach

this goal they trained and tested eight promising detectors based on differ-

ent neural network architectures (MobileNet, ResNet-50, ResNet-101, Inception

ResNet, NASNet) using clinical angiography data of 100 patients. A total of

8325 grayscale images of 512 × 512 to 1000 × 1000 pixels were included for fur-

ther study. Figure 2.4 presents the results of the comparative study of the neural

networks. In addition to the absolute values of the metrics, the relative values

are also reported. The metrics of SSD MobileNet V1 were used as a benchmark

to compare with other models.

Figure 2.4: Comparative study of the selected models. Figure adapted from [5].

Three neural networks have demonstrated superior results. The network

based on Faster-RCNN Inception ResNet V2 is the most accurate and it achieved

the mean Average Precision of 0.95, F1-score 0.96 and the slowest prediction rate

of 3 fps on the validation subset. The relatively lightweight SSD MobileNet V2

network proved itself as the fastest one with a low mean Average Precision (mAP)

of 0.83, F1-score of 0.80 and a mean prediction rate of 38 fps. The model based
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on RFCN ResNet-101 V2 has demonstrated an optimal accuracy-to-speed ratio.

Its mAP makes up 0.94, F1-score 0.96 while the prediction speed is 10 frames per

seconds. The resultant performance-accuracy balance using the described neural

networks has confirmed the feasibility of real-time CAD tracking supporting the

decision-making process.

2.3 Limitation in the state of the art

Identification of significant coronary artery stenosis on ICA is an essential step

in the exam interpretation and subsequent clinical planning [24]. Various au-

tomated or semi-automated stenosis detection methods have been proposed to

aid the assessment. Despite these achievements, ICA images are characterized

by the intrinsic complexities, due to complex vessel structures, poor contrast

between vessels and surrounding tissues, nonuniform illumination, and overlap

of background structures with inhomogeneous intensities [11]. Therefore, ICA

is still indispensable for cardiologists in clinical practice. Despite a good per-

formance, fully-automatic methods still have limitations: multiple preprocessing

procedures, such as vessel enhancement, segmentation and skeleton extraction

are performed in a single frame to detect stenosis. This is a time-consuming

process, and the intrinsic complexities of ICA images prevent these substeps

from obtaining ideal intermediate results [11]. As a consequence, errors might

accumulate, hampering final stenosis detection. To avoid the cumbersome pre-

processing steps for a single frame in traditional stenosis detection methods,

CNNs are introduced to perform stenosis detection with state-of-the-art meth-

ods. However, although the use of DL has improved the analysis of biomedical

images compared to manual inspection, these algorithms are not an universal

remedy and also have limitations. The success of their application depends on

the number of observations, number of features, selection and parameterization

of features and algorithm chosen for the model [26]. Moreover many decisions

have to be made when training CNNs: how to pre-process the data; which net-

work architecture to select; and how to optimize the coefficients of the network
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[27].

DL has shown incredible results across many fields, but it still remains a

tricky technique to master. Given the same dataset, different researchers can

obtain widely varying results. All the studies that obtain good performance when

applying DL algorithms often differentiate themselves in aspects outside of the

deep network, like data pre-processing or augmentation techniques. For example,

by adding a stain normalization pre-processing step to improve generalization

without changing the CNN, or by focusing on data augmentation strategies to

make networks more robust, and they report that these strategies are essential

to obtain good performance.

2.4 Aim of the thesis

CAD is the leading cause of death worldwide, however the process of inter-

preting complex coronary vasculature, image noise, low contrast vessels, and

non-uniform illumination is time-consuming, thereby posing certain challenges

to the operator. Real-time automatic CAD detection and labeling may overcome

the above-mentioned difficulties by supporting the decision-making process.

Considering the limitations in the state of the art and the needs mentioned

above, the work done in this thesis aims to attenuate these problems developing

a tool based on object detection, one of the most important and challenging

areas of computer vision, for the stenosis detection on images taken by ICA

technique. The first part of the work is focused on the organization of the

dataset, to allow a training through K-fold cross validation. A CNN for object

detection, pretrained on natural images, has been chosen in accordance with

the literature to be trained on the provided dataset to obtain stenosis detection

from ICA images. The CNN model used for this purpose is the Single Shot

Multibox Detector (SSD), in two different version, SSD300 and SSD7, in order

to evaluate the best performing network between them. The choice is aimed by

consideration on these architecures, that can be adequate for the limited dataset

and the reduced number of parameters to train.
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Finally, to the best of author’s knowledge does not exist, in literature, an

end-to-end stenosis detection network that does not use pre- and post- process-

ing. This work tries to investigate the possibility to obtain a CNN capable of

automatically detect stenosis in ICA images.
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Materials and Methods

In this chapter, a short overview on DL is reported in Section 3.1, describing

the basics of Artificial Neural Network (ANN) and CNN, to give a background

knowledge about the objective of this work. Hence, in Section 3.2 a deeper un-

derstanding of the object recognition task is presented, together with the related

DL approaches. The SSD architecture, a specific CNN based object detection

model considered one the most accurate real-time object detector, simple and

fast, is presented in Section 3.2.1, while in Section 3.1.3 an explanation of the

transfer learning strategy is described.

3.1 Deep Learning Overview

The trade-off between a precise and early diagnosis is a crucial aspect to allow

optimal diagnostic, therapeutic and care work-up of several pathologies: in fact,

wrong decision can yield in adverse health outcomes and psychological distress

for the patients and in legal and financial impacts for healthcare system [28]

During the last decades, DL techniques faced a growing research interest

thanks to their inherent capability of overcoming the drawbacks encountered

with traditional Machine Learning (ML) algorithms, conventionally based on

hand-crafted features for making decisions. Recent literature about DL tech-

niques enlightened that the most used approach for medical image analysis are

the CNNs, for several tasks, i.e. classification, detection and segmentation. The
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application of DL algorithms to medical imaging faces many challenges, due to

the inconsistency in the data (resolution, contrast, signal-to noise), the absence

of image acquisition standards and the need for comprehensive medical image

annotations. Moreover, the biggest challenge in this field is related to limited

amount of data together with the complexities related to medical data sharing

[29].

3.1.1 Artificial Neural Network (ANN)

ANNs are inspired by biological neural networks. An ANN, indeed, is composed

of nodes, called artificial neurons, which model the neurons in the brain (Fig.

3.1). Physiologically speaking, each neuron takes inputs from its dendrites and

inside the soma a weighted sum of inputs is performed. The signal arrives to the

axon hillock. If the result is higher than the threshold limit, the signal propagates

along the axon and it is run to the successive neurons through synapses.

Figure 3.1: Biological representation of neuron. Figure adapted from [30].

In the same way, in the ANN, each connection between nodes transmits

a signal that is a real number. Neurons and connections are adjusted during

learning procedure by a weight. The nodes constitute layers, the first one is

known as input layers while the last one as output layer. Among them there

are one or more intermediate layers called hidden layers. Traditionally fully-

connected ANNs compute a transformation of the input data by using weights

and biases of the hidden layers in order to produce an output. To perform
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classification, namely label each output, thresholds are introduced in the final

layer. Each neuron of each hidden layer is connected to all the neurons of the

previous layer but there are no connections among neurons belonging to the same

layer. This structure allows to obtain an increasingly abstract representation of

the input data. The simplest form of an ANN is the perceptron proposed by

Frank Rosenblatt [31], represented in Fig. 3.2.

Figure 3.2: Representation of the Rosenblatt perceptron. It receives M value
inputs xn and each of them is multiplied by the corresponding weight wn. Subse-
quently all the products are added together and passed to the activation function.
Figure adapted from [31].

The perceptron mathematically represents the biological activity of the neu-

ron. The input signals xn communicate with the synapses wnj and give wnj ∗xn

as product. The synaptic weights have different values because some inputs influ-

ence the output more than others. Moreover, they can be negative and therefore

have an inhibitory influence. All the products are summed, if the result over-

comes a threshold (bias b) the neuron fires. The weighted sum is modelled by an

activation function g. The sigmoid function is usually applied and it is expressed

as:

σ(x) =
1

(1 + ex)
(3.1)

The output can be expressed in the following way, in which N represents the

number of inputs:

output = ŷ = g(
N∑
n=1

wnjxn + b) (3.2)
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The problem of the perceptron is that it is a linear classifier and thus it is

never used individually. Its main application is to be used in more complex ANN,

with multiple layers between the input and output layers. The CNN, described

in the following section 3.1.2, represents a particular type of ANNs.

3.1.2 Convolutional Neural Networks (CNN)

CNNs, based on ANNs, are deep hierarchical neural models that roughly mimic

the nature of mammalian visual cortex, and are the most promising architectures

to recognize and localize objects within cluttered scenes[32]. Goodfellow et al.

[33] defined CNNs as Artificial Neural Networks (ANNs) that perform convo-

lution, in place of general matrix multiplication, in at least one of their layers

[33]. The base of a CNN is the convolution which is a mathematical operation

between two functions that produces a new function. The convolution theorem

states that under certain conditions the Fourier transform of a convolution is

a point-wise product of Fourier transforms. In other words, convolution in one

domain (i.e., time domain) equals point-wise multiplication in the other domain

(i.e., frequency domain). The convolution is defined as follow:

g(x) = f(x) ∗ h(x) =

∫ ∞
−∞

f(s)h(x− s) ds (3.3)

where f(x) and h(x) are two functions and s a dummy variable. In case of

image processing, f(x) indicates the input, i.e. the image, h(x) refers to the

kernel, and g(x) identifies the feature map. A CNN is composed of alternating

convolutional layers, activation functions, pooling or subsampling layers and it

ends with fully-connected layers. A generic representation of a CNN architecture

is reported in Fig. 3.3:

The input is the whole image itself, this means that a depth is associated

with the image and represents the number of channels. For example, an RGB

image of M×N has 3 channels (one for R, B and G) so the full shape is actually

M × N × 3 . On the other hand, a scaled image of grays of the same size has

only one value per pixel position, so its full shape is M ×N × 1.

The purpose of a convolutional layer is to extract features from the input
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Figure 3.3: Representation of a generic CNN architecture having convolutional,
pooling and fully connected layers.

layer. These layers are comprised of a series of filters or learnable kernels which

aim at extracting local features from the input, and each kernel is used to cal-

culate a feature map.The first convolutional layer extracts low-level meaningful

features such as edges, corners, textures and lines. Next convolutional layers ex-

tract higher-level features, but the highest-level features are extracted in the last

convolutional layer. Each kernel is a matrix, spatially smaller than the image,

which convolves around the feature map or the input image, as represented in

Fig. 3.4.

Figure 3.4: Example of an image convolution. The 3x3 kernel convolves around
the input image, computing at each step the dot product. The process is repeated
for every pixel in the image. The source pixel is the anchor point at which the
kernel is centered.

The activation functions consist of non-linear layers that take the feature map

generated by the the convolutional layer and create an activation map. The ac-
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tivation function introduces the non-linearity into neural networks and it allows

the learning of more complex features. There are several nonlinear activation

functions such as tanh(x), sigmoid(x), and Rectified Linear Unit (ReLU).

The pooling or subsampling layer reduces the resolution of the feature maps

compressing features and the computational complexity of the network. The

most common pooling is the max pooling, but even the average pooling is often

implemented.The difference between them is how the output value is computed:

max pooling returns the maximum value from the portion of the image covered

by the window, while average pooling returns the average of all the values. The

window is scrolled along the spatial dimension of the feature map by a fixed

stride. An example of max pooling and average pooling is shown in Figure 3.5

Figure 3.5: Example of max pooling and average pooling operations. In this
example a 4x4 image is downsampled to a 2x2 by taking the maximum value or
the average value of each sub-region.

A CNN ends with one or more fully connected layers that produce non-spatial

output. The fully connected layers use the features arriving from all the previous

layers for classifying the input image into the various classes. The number of

neurons of the last fully connected layer equals the number of the classes.

A difference between CNNs and traditional ANNs is that the first ones are

primarily used in the field of pattern recognition within images [34].
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3.1.3 Transfer learning strategy

Data dependence is one of the most serious problem in DL. In particular, CNNs

have a very strong dependence on massive training data, because they need a

large amount of data to understand the latent patterns of images. Moreover,

training a CNN from scratch requires extensive computational and memory re-

sources. Thus, an alternative to training CNNs from scratch is transfer learning.

Inspired by humans capability in applying learned knowledge to solve new prob-

lems faster and with better solutions, transfer learning aims to exploit and to

transfer the knowledge or weights of a neural network trained on a large dataset

for new tasks. Practically, it generalizes the knowledge (features, weights) of

an existing solution to a new problem, leading to promising results also when

the new task has significantly less data [35]. The process of transfer learning

is illustrated in Fig. 3.6. One of the main aspect of CNNs is that the features

extracted by the first layers are not specifically related to a dataset, but they are

general and applicable to many dataset. Features computed by the last layer of

a trained network must depend greatly on the chosen dataset and task. Thus,

these last layer features are specific. If first layer features are general and last

layer features are specific, then there must be a transition from general to specific

somewhere in the network. Identifying the transition from general to specific can

lead to saving of time and higher performances. Since general features can be

applied to many dataset, avoiding their fine-tuning can save time; on the other

hand, fine-tuning specific features layers can lead to higher performances [36].

3.2 Object detection

Object detection is a computer technology related to computer vision and image

processing that deals with the process of finding and classifying objects in an im-

age, thus it includes the problem of localization and the problem of classification

of an object. Most of object detection models are designed for general image

field, such as pedestrians detection and cars detection. Medical images have sig-

nificantly different features from general images. These differences could result
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Figure 3.6: Graphical representation of the transfer learning approach of pre-
vious works. The knowledge (features, weights) that a model has learned from
a task (i.e., natural image classification) where a lot of labeled training data
are available (source domain) is exploited and transferred to another task, such
as medical image classification, with less data (target domain). Figure adapted
from [35].

in poor performance while models in general image field are directly applied to

medical image field [37].

The detection of objects of interest or lesions in images is a key part of di-

agnosis and is one of the most labor-intensive for clinicians. Typically, the tasks

consist in localization and identification of small lesions in the full image space.

Object detection in medical imaging aims to automatically detect lesions, im-

proving the detection accuracy or decreasing the reading time of human experts

[27].

3.2.1 Single Shot Multibox Detector (SSD)

One of the most popular object detection algorithm is the SSD, proposed by

Liu et al. [38] in 2015. It is a one-stage detector, composed of a base network

and additional convolutional layers. SSD takes only one shot to detect multi-

ple objects present in an image using multibox. It is significantly faster than

the other detection networks and it is high-accuracy object detection algorithm.

Even with relatively low resolution images, high speed and accuracy pertain to
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SSD, because of some specific characteristics: eliminates bounding box propos-

als like the ones used in Regional CCN’s and includes a progressively decreasing

convolutional filter for predicting object categories and offsets in bounding box

locations. High detection accuracy in SSD is achieved by using multiple boxes

or filters with different sizes, and aspect ratio for object detection. It also ap-

plies these filters to multiple feature maps from the later stages of a network.

This helps perform detection at multiple scales. Multiple versions of SSD are

developed, with different input images dimensions. Two of them are compared

in this thesis, in order to evaluate which can be the most effective for stenosis

detection and are presented in the Section 3.2.1 and 3.2.1.

SSD 300 architecture

The SSD approach is based on a feed-forward convolutional network that pro-

duces a fixed-size collection of bounding boxes and scores for the presence of

object class instances in those boxes, followed by a non-maximum suppression

step to produce the final detections. The early network layers are based on a

standard architecture used for high quality image classification (truncated be-

fore any classification layers), called base network. Then, it is added an auxil-

iary structure to the network to produce detections [38]. SSD300 architecture is

showed in Fig. 3.7.

Figure 3.7: A graphical representation of SSD300 architecture.

SSD has a base VGG-16 [39] network followed by multibox convolutional

layers. The VGG-16 base network is a standard CNN architecture for high
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quality image classification but without the final classification layers. VGG-

16 is used for feature extraction. To the base VGG network, six additional

convolutional layers are added for detection, to help with detection of objects at

multiple scales. In three of those layers, it is made 6 predictions instead of 4. In

total, SSD makes 8732 predictions per class. Each prediction is composed of:

• Bounding box with shape offset. ∆cx, ∆cy, h and w, representing the

offsets from the center of the default box and its height and width.

• Confidences for all object categories or all the classes. Class 0 is reserved

to indicate absence of the object.

The prediction of the bounding boxes and their confidence for different objects

in the image is done by multiple feature maps of different sizes that represent

multiple scales. Progressively decreasing convolutional layers decreases the fea-

ture map size and increases the depth. The deep layers cover larger receptive

fields and construct more abstract representations. This is helpful in detecting

larger objects. Initial convolutional layers cover smaller receptive fields and are

helpful in detecting smaller objects present in the image [38].

To predict the bounding box, the default boxes are pre-selected manually to

cover a wide spectrum of real-life objects. SSD also keeps the default boxes to a

minimum (4 or 6) with one prediction per default box and instead of using global

coordination for the box location, the boundary box predictions are relative to

the default boundary boxes at each cell (∆cx, ∆cy, ∆w, ∆h), i.e. the offsets

(difference) to the default box at each cell for its center (cx, cy), the width and the

height. During training time the default boxes are matched over aspect ratio,

location and scale to the ground truth boxes. SSD predictions are classified

as positive matches or negative matches and it only uses positive matches in

calculating the localization cost. If the corresponding default boundary box has

an Intersection over Union (IoU) - ratio between the area of overlap between

the predicted bounding box and the ground-truth bounding box and the area of

union - greater than 0.5 with the ground truth, the match is positive. Otherwise,

it is negative [38].
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Figure 3.8: In the image the network matches two default boxes. One with the
cat and one with the dog. They are treated as positives bounding boxes and the
rest are treated as negatives. Figure adapted from [38].

SSD 7 architecture

The SSD7 architecure, showed in Fig. 3.9, is a smaller version of the original

architecture. The detection approach is the same, but it consists of 7 convolu-

tional feature layers and 4 convolutional predictor layers. Also in this case, the

images in input have a shape of 300x300 pixels and it makes 3256 predictions.

In this work it is compared 2 different versions of the same SSD architecture,

in order to investigate the behaviors both in the case of a more complex and less

complex network.

Figure 3.9: A graphical representation of SSD7 architecture.
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Experimental Protocol

4.1 Dataset

The raw ICA sequences used in this study are acquired from the Cardiology

Department of Ancona’s Ospedali Riuniti. They consist of 226 frames, extracted

from the collection of 61 ICA images in DICOM format, which is a standard

protocol for the management and transmission of medical images and related

data [40]. 61 patients underwent ICA acquisition, of which 15 women and 46

men. From those acquisitions, a series of 512 × 512 pixels grayscale images with

different gray levels (0–255) are generated. The acquired frames are manually

labeled by the clinicians: the annotations on the images are made by visual

inspection, listing the depicted stenosis and their positions in the image. The

position information comes in the form of bounding boxes either squared or

rectangular.

4.1.1 Data preparation

The dataset is composed of ICA images and annotations, in DICOM and .xml

format respectively. The images are converted in .jpeg, while the annotations

are converted in .csv format, in order to give the required inputs to the network.

K-fold cross-validation is performed to split the dataset. Cross-validation is

a resampling procedure used to evaluate ML models applied on limited data
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samples. The procedure has a single parameter called K, in this study set equal

to 5, which refers to the number of groups that a given data sample is to be split

into. Each fold is composed of 12 patients, except for one fold that contains 13

patients. It is a popular method because of its simplicity and because it generally

results in a less biased or less optimistic estimate of the model skill compared to

other methods, such as a simple train/test split. The general procedure includes

the following steps:

1. Shuffle the dataset randomly;

2. Split the dataset into k groups;

3. For each unique group:

• Take the group as a hold out or test data set;

• Take the remaining groups as a training data set;

• Fit a model on the training set and evaluate it on the test set;

• Retain the evaluation score and discard the model.

4. Summarize the skill of the model using the sample of model evaluation

scores [41].

The schematic representation of the procedure is shown in Fig. 4.1 and the

numerical subdivision of ICA images is reported in Table 4.1.

Table 4.1: Dataset organization: 5-fold composition.

K-fold Train Validation Test

1-fold 134 46 46

2-fold 135 46 45

3-fold 139 45 42

4-fold 137 42 47

5-fold 133 47 46

The K-fold cross-validation approach is performed in testing phase. In par-

ticular, four datasets are used to train the network, and one of them is reserved
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Figure 4.1: A schematic illustration of K-fold cross-validation for K = 5. The
original dataset (shown in dark green) is randomly partitioned into K disjoint
sets (shown in light green). Then, for each subset, K–1 parts are used for training
the model (shown in green), one of which is used for validation (shown in light
green) and the remaining part is used for testing (shown in blue). This process
is repeated K times for all possible choices of the test set, producing test errors.
The final performance is reported by averaging the errors from each iteration.
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for validation. The last one is utilized for testing. The splitting is performed at

the patient level. The training set contains the sample of data used to fit the

model (weights and biases) and the model sees and learns from this data. The

validation set contains the sample of data used to provide an unbiased evaluation

of a model fit on the training dataset, while tuning model hyperparameters. The

evaluation becomes more biased as skill on the validation dataset is incorporated

into the model configuration. Hence the model occasionally sees this data, but

never does it “learn” from this. Finally, the testing set concerns the sample of

data used to provide an unbiased evaluation of a final model fit on the training

dataset. The test set provides the gold standard used to evaluate the model. It

is only used once a model is completely trained (using the train and validation

sets) [42].

4.2 Training setting

The overall algorithm is implemented with Keras, an open-source software li-

brary that provides a Python interface for artificial neural networks. Keras acts

as an interface for the TensorFlow library. Experiments are performed using

Google Colaboratory: a free GPU cloud platform based on Jupyter notebook

environment that supports 14858 MB of free GPU, 12.4 GB of free RAM, and a

processor size of 900.6 MB.

Images are resized to 300 x 300 x 3 pixels or 200 x 200 x 3 pixels, for SSD300

and SSD7 respectively, in order to give as inputs to the network the correct

image dimension. Before training, the images are pre-processed by removing the

intensity mean. To train the SSD300, by using the technique of transfer learning,

the pre-trained weights, related to the original SSD300 model trained on MS

COCO [43], are initialized. While the SSD7 is trained from scratch, initializing

the weights of the network to random values. After setting these as the starting

points, the entire networks are trained by updating all the weights to adapt to

the custom dataset. Network training aims to find the model parameters by

minimizing a cost function (J(y,ŷ)), where ŷ denotes the output of the model
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(i.e. the prediction) and y the desired output (i.e. the label associated with the

input x).

4.2.1 Data augmentation

Data augmentation is a technique that can be used to artificially expand the size

of a training set by creating modified data from the existing one. It is a good

practice to use data augmentation to prevent overfitting, or if the initial dataset

is too small to train on, or to squeeze better performance from the model. In

this work it is proposed an on-the-fly data augmentation that involves:

• Photometric transformations: brightness, contrast, saturation and hue.

• Geometric transformations: flip (horizontal and vertical), translation (both

directions), scale (inward) and rotation (90°,180°,270°).

4.2.2 Loss function

An important component for network training is the Loss Function, which defines

the method with which the loss (i.e. the prediction error) is calculated. In

other words, in the context of an optimization algorithm, the function used

to evaluate a candidate solution (i.e. a set of weights) is referred to as the

objective function. The goal is to maximize or minimize the objective function,

meaning that it is searching for a candidate solution that has the highest or lowest

score respectively. Typically, with neural networks, the aim is to minimize the

error. As such, the objective function is often referred to as a cost function or

a loss function and the value calculated by the loss function is referred to as

simply “loss”. The overall SSD objective loss function is a weighted sum of the

localization loss (loc) and the confidence loss (conf ):

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g)) (4.1)

where N is the number of matched default boxes. If N = 0, wet set the loss to 0.

The localization loss is a Smooth L1 loss between the predicted box (l) and the
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ground truth box (g) parameters. Similar to Faster R-CNN, it is regressed to

offsets for the center (cx , cy) of the default bounding box (d) and for its width

(w) and height (h).

Lloc(x, l, g) =
N∑

iεPos

∑
mεcx,cy,w,h

xkijsmoothL1(l
m
i − ĝj

m) (4.2)

ˆgcxj =
gcxj − dcxi

dwi
(4.3)

ĝcyj =
gcyj − dcyi

dhi
(4.4)

ĝwj = log
gwj
dwi

(4.5)

ĝwj = log
gjj

dhi
(4.6)

The confidence loss is the softmax loss over multiple classes confidences (c). It

is defined as:

Lconf (x, c) = −
N∑

iεPos

xPijlog(ĉi
P ) −

∑
iεNeg

log(ĉi
0) (4.7)

where

ĉi
P =

exp(ci)
P∑

exp(ĉi
P )

(4.8)

The localization loss is the mismatch between the ground truth box and the

predicted boundary box. SSD only penalizes predictions from positive matches.

It is wanted the predictions from the positive matches to get closer to the ground

truth. Negative matches can be ignored. The confidence loss is the loss of

making a class prediction. For every positive match prediction, we penalize the

loss according to the confidence score of the corresponding class. For negative

match predictions, it is penalized the loss according to the confidence score of

the class “0”: class “0” classifies no object is detected.
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4.2.3 Adaptive Moment Estimation (Adam) Optimization

Adam is an optimization algorithm that can be used instead of the classical

stochastic gradient descent procedure to update network weights iteratively

based on training data. Adam’s name is derived from adaptive moment esti-

mation because uses estimates of the first and second moments of the gradient

to perform updates, which can be seen as incorporating gradient descent with

momentum (the first-order moment) and RMSProp algorithm (the second-order

moment). Specifically, the algorithm calculates an exponential moving average

of the gradient and the squared gradient, and the parameters β1 and β2 control

the decay rates of these moving averages. Considering gt,i as the gradient of J,

generic cost function, with respect to the parameter θi after t batches. Using

the Adam optimizer, every parameter after each batch is computed in this way:

θt+i,t = θt,i −
η√

v̂t(gt,i) + ε
· m̂t(gt,i) (4.9)

where ε is an hyperparameter characterized by very small values and useful to

prevent a null denominator, while m̂t is the first moment (the mean) estimate

of the gradient and v̂t is the second moment estimate (uncentered variance) of

(gt,i). The first and the second moment estimates are calculated in this way:

mt = β1 ·mt,i + (1 − β1) · (gt,i) (4.10)

vt = β2 · vt,i + (1 − β2) · (gt,i)
2 (4.11)

where the hyperparameters β1, β2 ε [0, 1) control the exponential decay rates

of the moving average of the gradient (mt) and of the squared gradient (vt) re-

spectively. In this study β1 and β2 are set to 0.9 and 0.999 respectively. The

mini-batch size is set to 16 as a balance between training speed and gradient

convergence. The batch size is a hyperparameter that defines the number of

samples to work through before updating the internal model parameters. The
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number of epochs, that define the number of times that the learning algorithm

will work through the entire training dataset, is set to 100, with 10 steps per

epochs. The performance of the mini-batch depends critically on how the learn-

ing rate (α) is tuned. α determines the step size of each iteration while moving

toward a minimum of the loss function (cross-entropy). In setting the learn-

ing rate, there is a trade-off between the rate of convergence and overshooting.

While the descent direction is usually determined from the gradient of the loss

function, the learning rate determines how big a step is taken in that direction.

A learning rate too hig can make the learning jump over the minima, while a

learning rate too low might either take too long to converge or get stuck in an

undesirable local minimum. Due to fine-tuning and to the assumption that the

gradient of the cross-entropy is already in a good position, the learning rate is

set to 10−3 in order to not move too far from the favorable area of where the

gradient descent starts. To increase the efficiency during the training procedure,

a specific callback, named ”ReduceLROnPlateau” has been applied. This func-

tion monitors the validation loss and performs a reduction of the learning rate

by a factor equal to 0.2 if no improvement of the loss value is seen after 8 epochs,

until reaching a learning rate of 10−5.

4.3 Evaluation Metrics

The performances of each tested CNN model are evaluated with respect to the

manual annotation performed by the clinician, considered as the ground truth. A

set of metrics commonly used to evaluate the performance of binary classification

is employed. In the field of ML and in the problem of statistical classification, a

confusion matrix, a specific table layout that allows visualization of the perfor-

mance of an algorithm, is defined through these terms:

• True Positive (TP): number of predicted positives correctly classified: num-

ber of frames in which stenosis is correctly detected.

• True Negative (TN): number of predicted negative correctly classified as

frames without stenosis.
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• False Positive (FP): number of predicted positives incorrectly classified:

frames in which the stenosis is mistakenly identified.

• False Negative (FN): number of predicted negatives incorrectly classified

as frames without stenosis, although it presents stenotic areas.

Confidence is defined as the probability that a box contains the object.

The metrics used in this work for the evaluation of the proposed model are

Intersection over Union (IoU), the Dice Similarity coefficient (DSC) and the

Average Precision (AP), described in the following subsections [33].

4.3.1 Intersection over Union (IoU)

IoU is an evaluation metric used to measure the accuracy of an object detection

algorithm on a particular dataset. In order to apply IoU to evaluate an object

detector it is needed to clarify

• The ground-truth box, that is the hand-labeled bounding box from the

testing set that specifies where, in the image, the object of interest is;

• The predicted box, that is the model’s output.

The IoU is defined as follows:

IoU =
Area of Overlap

Area of Union
(4.12)

in which the Area of Overlap is the overlap between the predicted bounding

box and the ground-truth bounding box. Instead, the Area of Union is the

area encompassed by both the predicted bounding box and the ground-truth

bounding box. Its range is from 0 to 1, with 1 signifying the greatest similarity

between predicted and truth.

4.3.2 Dice similarity coefficient (DSC)

The DSC (also known as the F1 score) is one of the evaluation metrics most

frequently used in medical image segmentation. It is a statistic used to gauge

the similarity of two samples. The equation is as follows:
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DSC =
2 × TP

2 × TP + FP + FN
(4.13)

It can be defined as the ratio between the double of the Area of Overlap and the

Total Number of Pixels in both images. Its range is from 0 to 1, with 1 signifying

the greatest similarity between predicted and truth, like IoU [36].

4.3.3 Average Precision (AP)

Average Precision (AP) is a metric mostly used in object detection, measuring

the detection accuracy. Before, it is necessary to define the Precision and the

Recall:

• Precision measures how accurate is the predictions. i.e. the percentage of

correct predictions.

precision =
TP

TP + FP
(4.14)

• Recall measures how good the network finds all the positives.

recall =
TP

TP + FN
(4.15)

Generally, the AP represents the area under the precision-recall curve. Pre-

cision and recall are always between 0 and 1. Therefore, AP falls within 0 and

1 also, but it is often expressed as percentage. Precision-recall curves have a

distinctive saw-tooth shape: if the (k + 1)th terms retrieved is nonrelevant then

recall is the same as for the top k terms, but precision drops. If it is relevant,

then both precision and recall increase, and the curve jags up and to the right

[33]. It is often useful to remove these jiggles and the standard way to do this

is with an interpolated precision: the interpolated precision pinterp at a certain

recall level r is defined as the highest precision found for any recall level r′ ≥ r:

pinterp(r) = max
r′≥r

p(r′)

Finally, the average precision can be defined as the area below the interpolated

precision-recall curve which can be calculated with the following formula:

AP =
n−1∑
i=1

(ri+1 − ri)pinterp(ri+1) (4.16)

44



CHAPTER 4. EXPERIMENTAL PROTOCOL

where r1, ..., rn are the recall levels where accuracy has been interpolated.

mean Average Precision (mAP)

The AP calculates the accuracy for a single class [36]. When are present K

classes, the mean Average Precision (mAP) is defined as:

mAP =

K∑
i=1

APi

K
(4.17)
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Results

This chapter presents the results obtained following the experimental protocol

with both SSD300 and SSD7 architectures. The results are reported in terms of

performance metrics, statistical tests performed and prediction of the stenosis

detection on the ICA images.

5.0.1 SSD300 evaluation

For each fold, a table containing the dataset characteristics, the trends of the

loss function, the numerical values of performance metrics and the precision–

recall curves are reported. Hence, it is possible to evaluate and understand the

capability of the proposed networks in terms of stenosis detection in ICA images.

In these trials, the network predicts a bounding box, therefore detects stenosis,

for each image.
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1-fold

Table 5.1: Dataset organization: 1-fold composition.

Train Validation Test

Number of images 134 46 46

Number of patients 37 12 12

Figure 5.1: Trend of the loss values for the 1-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.45.

Table 5.2: Performance metrics values for the 1-fold.

Mean value Standard deviation

IoU 0.59 0.18

DSC 0.73 0.16
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Figure 5.2: Precision-Recall curve for the 1-fold. The mAP is 0.89.

2-fold

Table 5.3: Dataset organization: 2-fold composition.

Train Validation Test

Number of images 135 46 45

Number of patients 36 12 13

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.44.

Table 5.4: Performance metrics values for the 2-fold.

Mean value Standard deviation

IoU 0.46 0.14

DSC 0.61 0.13
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Figure 5.3: Trend of the loss values for the 2-fold.

Figure 5.4: Precision-Recall curve for the 2-fold. The mAP is 0.74.
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3-fold

Table 5.5: Dataset organization: 3-fold composition.

Train Validation Test

Number of images 139 45 42

Number of patients 36 13 12

Figure 5.5: Trend of the loss values for the 3-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.49.

Table 5.6: Performance metrics values for the 3-fold.

Mean value Standard deviation

IoU 0.46 0.21

DSC 0.60 0.22
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Figure 5.6: Precision-Recall curve for the 3-fold. The mAP is 0.75.

4-fold

Table 5.7: Dataset organization: 4-fold composition.

Train Validation Test

Number of images 137 42 47

Number of patients 37 12 12

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.47.

Table 5.8: Performance metrics values for the 4-fold.

Mean value Standard deviation

IoU 0.45 0.23

DSC 0.59 0.24
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Figure 5.7: Trend of the loss values for the 4-fold.

Figure 5.8: Precision-Recall curve for the 4-fold. The mAP is 0.48.
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5-fold

Table 5.9: Dataset organization: 5-fold composition.

Train Validation Test

Number of images 133 47 46

Number of patients 37 12 12

Figure 5.9: Trend of the loss values for the 5-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.59.

Table 5.10: Performance metrics values for the 5-fold.

Mean value Standard deviation

IoU 0.54 0.12

DSC 0.69 0.09
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Figure 5.10: Precision-Recall curve for the 5-fold. The mAP is 1.

5.0.2 SSD7 evaluation

For each fold, a table containing the dataset characteristics, the trends of the loss

function and the numerical values of performance metrics are reported, hence it

is possible to evaluate and understand the capability of the proposed networks

in terms of stenosis detection in ICA images.
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1-fold

The dataset considered is the same described in Table 5.1 In this trial the network

makes a prediction only in 9 images out of 46 images of test set.

Figure 5.11: Trend of the loss values for the 1-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.30.

Table 5.11: Performance metrics values for the 1-fold.

Mean value Standard deviation

IoU 0.26 0.14

DSC 0.39 0.18
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Figure 5.12: Precision-Recall curve for the 1-fold. The mAP is 0.50.

2-fold

The dataset considered is the same described in Table 5.3 In this trial the network

makes a prediction only in 23 images out of 45 images of test set.

Figure 5.13: Trend of the loss values for the 2-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.30.
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Table 5.12: Performance metrics values for the 2-fold.

Mean value Standard deviation

IoU 0.26 0.12

DSC 0.39 0.15

Figure 5.14: Precision-Recall curve for the 2-fold. The mAP is 0.67.

3-fold

The dataset considered is the same described in Table 5.5 In this trial the network

makes a prediction only in 19 images out of 42 images of test set.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.30.

Table 5.13: Performance metrics values for the 3-fold.

Mean value Standard deviation

IoU 0.34 0.15

DSC 0.49 0.17
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Figure 5.15: Trend of the loss values for the 3-fold.

Figure 5.16: Precision-Recall curve for the 3-fold. The mAP is 0.61.
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4-fold

The dataset considered is the same described in Table 5.7 In this trial the network

makes a prediction in 42 images out of 47 images of test set.

Figure 5.17: Trend of the loss values for the 4-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.30.

Table 5.14: Performance metrics values for the 4-fold.

Mean value Standard deviation

IoU 0.24 0.15

DSC 0.36 0.20
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Figure 5.18: Precision-Recall curve for the 4-fold. The mAP is 0.29.

5-fold

The dataset considered is the same described in Table 5.9 In this trial the network

makes a prediction only in 14 images out of 46 images of test set.

Figure 5.19: Trend of the loss values for the 5-fold.

The performance metrics results on the test set images are obtained setting

the confidence threshold at 0.30.
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Table 5.15: Performance metrics values for the 5-fold.

Mean value Standard deviation

IoU 0.41 0.20

DSC 0.56 0.19

Figure 5.20: Precision-Recall curve for the 5-fold. The mAP is 0.57.

5.0.3 SSD300 prediction

In the Figures 5.21, 5.22 are reported the correct and the wrong predictions of

stenosis in ICA images of test dataset.
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Figure 5.21: A correct bounding box prediction, containing the stenosis, from

1-fold (on the left panel) and the corresponding bounding box annotated by the

clinician (on the right panel).

Figure 5.22: A wrong bounding box prediction, without the stenosis, from 4-fold

(on the left panel) and the corresponding bounding box annotated by the clinician

(on the right panel).
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5.0.4 SSD7 prediction

In the figures 5.23, 5.24 are reported the correct and the wrong predictions of

stenosis in ICA images of test dataset. In some cases multiple predictions for an

image, lead to an inaccurate detection, since there is only one stenosis.

Figure 5.23: A correct bounding box prediction, containing the stenosis, from

2-fold (on the left panel) and the corresponding bounding box annotated by the

clinician (on the right panel).

Figure 5.24: A missing bounding box prediction, from 3-fold (on the left panel)

and the corresponding bounding box annotated by the clinician containing the

stenosis (on the right panel).
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5.0.5 Comparison between SSD300 and SSD7

In order to highlight similarities and differences between the SSD300 and SSD7

architectures, a statistical analysis is performed. Both IoU and DSC values

obtained on the test set prediction for each fold are reported as boxplots in Fig.

5.25, graphically depicting numerical data through their quartiles. Moreover,

the boxplots permit to point out the variability outside the upper and lower

quartiles through whiskers. The outliers are plotted as individual points. The

spacings between the different parts of the box indicate the degree of dispersion

(spread) and skewness in the data. In addition they allow to estimate median

and mean values. In the following Figures 5.25, 5.26, 5.27, 5.28, 5.29 the green

triangle indicates the mean value, the blue line the median and the circle the

outliers.

Figure 5.25: Boxplots of the IoU (left panel) and DSC (right panel) for SSD300

(on the left) and SSD7 (on the right): results from the 1-fold.

Figure 5.26: Boxplots of the IoU (left panel) and DSC (right panel) for SSD300

(on the left) and SSD7 (on the right): results from the 2-fold.
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Figure 5.27: Boxplots of the IoU (left panel) and DSC (right panel) for SSD300

(on the left) and SSD7 (on the right): results from the 3-fold.

Figure 5.28: Boxplots of the IoU (left panel) and DSC (right panel) for SSD300

(on the left) and SSD7 (on the right): results from the 4-fold.

Figure 5.29: Boxplots of the IoU (left panel) and DSC (right panel) for SSD300

(on the left) and SSD7 (on the right): results from the 5-fold.

65



CHAPTER 5. RESULTS

The goal of cross-validation is to test the model’s ability to predict new data

that was not used in estimating it, in order to flag problems like overfitting or

selection bias and to give an insight on how the model will generalize to an

independent dataset. Therefore, the mean value and their respective standard

deviation of performances over the 5-fold both for SSD300 and SSD7 are reported

in the following Table 5.16:

Table 5.16: Performance metrics values for both networks SSD300 and SSD7
in all the 5-fold. The values are reported as mean value ±standarddeviation.

SSD300 SSD7

IoU 0.50 ± 0.06 0.30 ± 0.07

DSC 0.64 ± 0.06 0.44 ± 0.08

mAP 0.77 ± 0.20 0.53 ± 0.15
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Discussion

In this Chapter, the results presented in Chapter 5 are discussed.

In this work, an end-to-end stenosis detection CNN, without post- and pre-

processing on images, capable of detect stenosis in ICA images automatically is

proposed. Current literature comprises a small number of studies on stenosis

detection through DL techniques, published in the very last few years; thus,

there is plenty to explore on this subject. None of the state of art works has

been capable to obtain good performances without including some image pre-

processing, such as enhancing the visibility of the target and the quality of the

images. Moreover, all the studies considered as references for this work base

their effectiveness on the detection of the best video frames, on which then they

perform the stenosis detection [24, 13, 11].

Therefore, to overcome the limitations met in literature and to investigate

deeply this very recent topic, the SSD is chosen. In addition, this architecture can

be suitable for the limited dataset and reduced number of training parameters.

The proposed approach results to be quite satisfactory especially in relation

to the SSD300, keeping into account the preliminary stage in which the research

is in the automatic detection of stenosis in ICA images. However, even though

the SSD300 shows better performances in terms of IoU, DSC, and mAP com-

pared to the SSD7. It should be further investigated in future studies ICA images

with stenosis in a different location from the center, since the images considered

67



CHAPTER 6. DISCUSSION

to train and evaluate these networks present the stenosis in most of the cases in

the middle of the image. On the other hand, the SSD7 has lower performance

than the SSD300 in all the 5-fold, but predicts bounding boxes even in areas

other than the center of the image.

Furthermore, the values can be attributed to the lesser complexity of the

architecture, unable to identify the ICA images features. The mean value and

the standard deviation over the 5-fold are 0.50± 0.06 for IoU and 0.64± 0.06 for

DSC in the case of SSD300; the value for SSD7 are 0.30±0.07 and 0.44±0.08 for

IoU and DSC respectively, thus it is supposed that the network can generalize

the problem in all the ICA images. It is noted that, in fold 4 the network

under-performs in detecting the stenosis, in fact, the mAP, both for SSD300

and SSD7, is much lower than the average based on all the folds, affecting the

overall fold’s metrics. While, the best mAP is obtained in fold 5, evaluated

with SSD300, which is equal to 1: the good predictions are recognized by the

network itself, indicating also the greatest prediction confidence score of 0.59.

Thanks to K-fold cross-validation, the results obtained promise good network

behavior on data never seen before, in addition, it is possible to verify the data

uniformity, since all the folds behave similarly, as demonstrated by the small

standard deviation values. Results are slightly lower than values obtained in

the literature and it is not always possible to make a numerical comparison,

since the metric performances utilized in the reference studies are different from

those used in this approach. It is necessary to highlight that the results depend

on the annotations, affected by intra-operator variability, since they are drawn

manually by three clinicians. Moreover, it is possible to accept values with a

certain margin of tolerance, since the aim is to identify coronary stenosis, which

is correctly done by visual inspection of the stenosis prediction, except for some

cases. The variability of the results obtained highlights the difficult task this

thesis tries to face, due to the high variability of the target object to detect

and the quality of the images. Moreover, several aspects of ICA contribute to

make this task challenging: ICA images contain significant image noise and have

limited image contrast. In the medical field, a very high number of images are
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acquired and stored every day, but most of the time their quality is not sufficient

to treat them as with natural images. Nevertheless, this network, pre-trained on

natural images, has been chosen for its ability to detect very well on other object

detection tasks, and the results suggest that it can be effective also in medical

images, but the availability of a large dataset could promise better performances.
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Conclusion

In the literature, DL approaches, in particular CNNs, were revealed to be very

suitable to implement intelligent systems for supporting decisions in the clinical

field. Among various methods for diagnosing CAD, ICA is the gold standard

method. It helps to evaluate the severity and the extent of stenosis, as well

as monitoring the progress of revascularization during angioplasty. However,

detecting stenosis in these images is very challenging, since they have intrinsic

complexities due to complex vessel structures, poor contrast between vessels and

surrounding tissues, nonuniform illumination, and overlap of background struc-

tures with inhomogeneous intensities. Moreover, manual detection of stenosis

is subjective and time-consuming, requiring rich clinical experience. Therefore,

developing an ICA-based automatic detection algorithm can improve diagnostic

efficiency and confidence. Driven by these limitations, this thesis proposes an

end-to-end approach, through a CNN, to automatically detect stenosis in ICA

images.

Results of this work are good, despite the fact that they are slightly lower

than values obtained in the literature. State-of-the-art is very limited and dates

back to the last few years. However, the studies considered perform a strong pre-

processing on the raw images to be really effective. Thus, despite their better

performances, the proposed approaches are difficult to apply in clinical practice.

By visual inspection, SSD provides correct and accurate detection of stenosis in
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ICA images, even though in some images the predictions are erroneous, such as

multiple detections or in wrong positions. Although K-fold cross-validation is

used to make up for the reduced number of images as much as possible, future

works will widen the dataset, which will improve the performance.

In conclusion, this work is a good starting point to obtain automatic stenosis

detection in ICA images but it needs further improvements to be used directly

in clinical practice, minimizing the risk of misinterpretation and accelerating the

decision-making regarding the proper treatment strategy.
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