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Studio della relazione tra mito-nuclear discordance e sex biased 

dispersal utilizzando un metodo di forward simulation (SLiM). 

Riassunto esteso della tesi di laurea di Francesco Giannelli 

 

1. INTRODUZIONE 

Negli ultimi anni, numerosi studi basati sull’analisi della distribuzione 

geografica dei marcatori mitocondriali e nucleari, hanno rilevato un’elevata 

incidenza di discordanza nei pattern di distribuzione di questi due marcatori. 

Tale discordanza prende il nome di mito-nuclear discordance. Le ipotesi 

avanzate per spiegare il fenomeno sono varie. Tra queste, una delle più 

accreditate è il sex biased dispersal. Con questo termine ci si riferisce alla 

presenza di differenti pattern di dispersione tra individui di diverso sesso 

all’interno della stessa specie. Tale comportamento è stato rilevato in numerosi 

taxa: in particolare nei mammiferi, che in linea di massima prenderemo come 

esempio in questo lavoro, l’elevata dispersione geografica del sesso maschile 

e la concomitante filopatria femminile sono eventi riportati con elevata 

frequenza.  

 

2. OBIETTIVI E ASPETTATIVE 

Lo scopo di questo lavoro è verificare se processi di sex biased dispersal 

possono produrre pattern di discordanza geografica nella distribuzione della 
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diversità genetica tra marcatori nucleari e mitocondriali in popolazioni naturali 

a dimensioni stazionarie. Ci aspettiamo di osservare che processi di sex biased 

dispersal, caratterizzati da una scarsa dispersione femminile, siano sempre 

associati ad un aumento medio della diversità e differenziazione genetica 

mitocondriale (aumento della struttura genetica) non bilanciata da un aumento 

equivalente della diversità genetica nucleare e, inoltre che la filopatria 

femminile comporti un aumento della varianza nei valori di differenziazione 

genetica mitocondriale.  

 

3. METODI 

Per validare le nostre ipotesi, lo strumento utilizzato è SLiM, un software di 

simulazione in forward ottimizzato per la creazione di modelli evolutivi 

sofisticati. All’interno dell’ambiente simulativo di SLiM abbiamo generato 

individui caratterizzati da genomi composti da una porzione nucleare e da una 

porzione mitocondriale, che si disperdono e interagiscono in un’area 

bidimensionale. Per lo scopo sono stati disegnati e testati cinque modelli, che 

prevedono differenti coefficienti di dispersione per i due sessi:  

Modello 1 2 3 4 5 

Dispersione 

maschile 

2Km 3.3333 Km 5 Km 6.66667 Km 2Km 

Dispersione 

femminile 

8 Km 6.66667 Km 5 Km 3.3333 Km 8 Km 

Pattern di sex biased 

dispersal 

0.25 0.5 1 2 4 
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Ogni modello viene lanciato 10 volte e il campionamento di individui, 

effettuato utilizzando 3 diverse distanze di campionamento (50 Km, 100 Km, 

150 Km), inizia solo una volta che la popolazione raggiunge un equilibrio 

definito da una sufficiente stabilizzazione dei valori di eterozigosità nucleare e 

mitocondriale.  

Le statistiche calcolate per questi modelli sono: 

- FST: misura la differenziazione genetica tra campioni di individui 

- Eterozigosità: misura la frequenza di eterozigoti, stimata per ogni locus 

e rapportata alla lunghezza del genoma. 

Entrambe le statistiche vengono calcolate sia per il genoma nucleare che per il 

genoma mitocondriale.  

 

4. RISULTATI 

4.1 Effetto dei pattern di sex biased dispersal sulla differenziazione genetica 
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Figura 1. Effetto di diversi pattern di sex biased dispersal sulla differenziazione genetica 

nucleare e mitocondriale. I tre boxplot mostrano i valori FST, per il genoma nucleare e 

mitocondriale, relativi a tutti i campioni dei cinque diversi modelli, con diversi pattern di sex biased 

dispersal: 0,25, 0,5, 1, 2, 4. I valori sono suddivisi nelle tre immagini in base alla rispettiva distanza 

di campionamento. A: 50 Km, B: 100 Km, C: 150 Km. 

 

Come si evince da ogni confronto in figura 1, i valori di differenziazione 

mitocondriale sono, in media, sempre maggiori di quelli nucleari. Ciò è dovuto 

al minor flusso genico del genoma mitocondriale, la cui dimensione di 

popolazione effettiva è di base ridotta (i.e., eredità uniparentale e aploidia) 

rispetto a quello nucleare. È invece particolarmente interessante vedere come i 

diversi pattern di sex biased dispersal agiscano sulla differenziazione genetica 

mitocondriale: possiamo infatti apprezzare come il valore della FST 

mitocondriale tra individui diminuisca leggermente quando il rapporto di 
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dispersione è sbilanciato in favore della femmina, mentre aumenta 

notevolmente quando il rapporto di dispersione è sbilanciato a favore del 

maschio. 

 

4.2 Distribuzione comparativa dei valori FST 

 

 

Figura 2. Relazione tra differenziazione genetica nucleare e mitocondriale per coppie di 

campioni per diversi modelli di dispersione influenzata dal sesso (0.25, 1, 4). I grafici mostrano 

i valori FST per i genomi nucleari e mitocondriali calcolati tra coppie di campioni prelevati alla 

generazione 100.000 utilizzando 150 Km come distanza di campionamento. Le immagini mostrano 

i risultati di tre diversi modelli con diversi pattern di dispersione basati sul sesso: A: 0,25, B: 1, C: 

4. 

 

Risulta inoltre evidente come i pattern di sex biased dispersal in cui la 

dispersione femminile è ridotta (Figura 2, immagine C) portano ad una 

distribuzione molto ampia dei valori di FST mitocondriale. Ciò evidenzia che 
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nei modelli caratterizzati da un’elevata dispersione maschile e filopatria 

femminile, prelevando pochi campioni casuali, si possono osservare situazioni 

in cui la differenziazione genetica mitocondriale tra gruppi di individui è molto 

alta e discordante con la differenziazione nucleare o, a al contrario, piuttosto 

bassa e più coerente con i valori di differenziazione genetica nucleare, che 

rimangono invece costanti. 

 

4.3 Impatto della distanza geografica 

 

Figura 3. Differenziazione genetica media per diversi modelli di dispersione influenzata dal 

sesso in base alla distanza di campionamento. L’immagine A mostra i risultati del genoma 

mitocondriale, dove è possibile vedere come, nei pattern di sex biased dispersal 2 e 4 (asse X), il 

valore medio della differenziazione genetica (FST) aumenta notevolmente. L’immagine B mostra i 

risultati del genoma nucleare. Notare la diversa scala sull'asse Y tra i due pannelli. 

 

I risultati suggeriscono che, in ogni modello, la variazione dei valori di FST, sia 

mitocondriale (Figura 3, immagine B) che nucleare (Figura 3, immagine A), è 

sempre direttamente proporzionale alla distanza. Questo pattern è coerente con 

un effetto di isolation by distance, dove una distanza geografica crescente è 

sempre proporzionalmente correlata a una distanza genetica maggiore tra gli 

individui. 
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4.4 Dinamiche dell'eterozigosità 

L’eterozigosità è un parametro di cui abbiamo tenuto conto per definire il 

tempo di attesa necessario affinché la popolazione simulata raggiungesse un 

equilibrio sufficiente per iniziare le nostre analisi. Nel tener traccia di questa 

statistica, tuttavia, ci siamo resi conto che nelle simulazioni il pattern di 

eterozigosità mitocondriale aveva un andamento atipico e inatteso, 

caratterizzato da picchi e successivi crolli (Figura 4).  

 

Figura 4. Variazione dell'eterozigosi nucleare e mitocondriale in 500.000 generazioni. Nel 

modello utilizzato per creare questo grafico la costante di dispersione maschile è 4 volte la costante 

di dispersione femminile (modello SBD = 4). 

 

Le cause di questi cicli di quasi-fissazione seguiti da nuova differenziazione 

degli aplotipi potrebbero essere ricondotte alla mancanza di ricombinazione dei 

marcatori mitocondriali, insieme al più intenso effetto della deriva su questo 

genoma, ma sicuramente la dinamica instabile dell'eterozigosi mitocondriale 

merita di essere ulteriormente approfondita. 
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5. Discussione e conclusioni 

Le nostre simulazioni rivelano chiaramente che i pattern di sex biased dispersal, 

caratterizzati da una ridotta dispersione femminile e quindi da un flusso genico 

mitocondriale ridotto, sono sempre associati a una differenziazione genetica 

mitocondriale (FST) media, significativamente più alta e con una maggiore 

variabilità nel suo intervallo di valori (Figura 1). Allo stesso tempo, a causa 

della stocasticità intrinseca del processo di dispersione, possiamo osservare che 

a valori costanti di FST nucleari possono essere associati sia valori alti che bassi 

di FST mitocondriale (Figura 2, immagine C). I nostri risultati mostrano come, 

semplicemente diminuendo l'entità del flusso genico mitocondriale, si ha un 

forte impatto sulla struttura della diversità genetica di questo genoma, 

suggerendo una forte correlazione tra sex biased dispersal e mito-nuclear 

discordance. 
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ABSTRACT 

 

 

The number of papers reporting mito-nuclear discordance in natural 

populations is continuously increasing. One of the most accredited hypotheses 

to explain mito-nuclear discordance is sex biased dispersal, a phenomenon that 

is common in mammals in which male biased dispersal and female philopatry 

are frequently reported. 

To test the hypothesis that these two phenomena are correlated, using the 

forward simulation software SLiM, we created 5 simulation models, 

implementing a different sex biased dispersal pattern in each model. 

The results clearly reveal that sex biased dispersal patterns, characterized by 

reduced female dispersion, are always associated with mean, significantly 

higher mitochondrial genetic differentiation and with greater variability in its 

range of values, while the nuclear genetic differentiation remains largely 

unaltered. These results suggest a strong correlation between sex biased 

dispersal and mito-nuclear discordance. 
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1. INTRODUCTION 

 

1.1  - Mito-nuclear discordance 

 

In the context of population genetics, the study of the geographical distribution 

of variation at different genetic markers is fundamental to understand the 

dynamics that occur within and among populations. A genetic marker is a DNA 

sequence with a known position in the genome. Genetic markers are tools 

widely used in various fields of genetics (Sunnucks et al., 2000). In population 

genetics, mitochondrial and nuclear markers are used to evaluate how they vary 

between individuals or groups of individuals in order to infer evolutionary 

processes. 

The most used approaches for reconstructing genetic relationships between 

individuals have always taken greater account of the use of mitochondrial 

markers only, but in the past years, thanks also to the increased availability of 

whole genome (i.e., nuclear) data, a large number of studies have highlighted 

that this approach can lead to incorrect conclusions (Zink & Barrowclough 

2008). 

Mitochondrial DNA has many specific characteristics, some of which make 

this genome very suitable for phylogenetic analysis, which can be summarized 

as follows even though some exceptions exist: 
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- it is haploid 

- it is not subject to recombination or segregation  

- it does not present the problem of duplications 

- it is present in multiple equal copies  

- it is maternally inherited  

- it has a high rate of evolution due to the fact that it does not have 

reparation mechanisms  

However, conducting analyses based only on the mitochondrial genome and 

therefore ignoring the nuclear genome data, in many cases diploid and inherited 

from both parents, introduces important limitations and does not guarantee us 

a complete description of the population from a genetic point of view. At the 

same time analyses conducted by combining data from mitochondrial and 

nuclear genomes can lead to contrasting results (Zink & Barrowclough 2008; 

Folt et al., 2019), as the mitochondrial genome, due to its maternal inheritance 

and its haploidy, has an effective population size four times smaller than the 

nuclear one (Hudson & Turelli 2003; Zink & Barrowclough 2008). It follows 

that mitochondrial DNA is more susceptible to the accumulation of mutations 

due to genetic drift, and also to reduced gene flow compared to the nuclear 

genome. Taken together, these characteristics cause the mitochondrial genome 
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to usually show different patterns of genetic diversity than the nuclear genome, 

heavily conditioning this type of analysis. 

This implies that analyses based only on mitochondrial data or on both nuclear 

and mitochondrial data can lead to results that do not completely describe the 

evolutionary dynamics occurring within the population or, even worse, that can 

support incorrect hypotheses (Folt et al., 2019).  

The suggested solution to avoid these kinds of problems is to conduct analyses 

on the nuclear genome and the mitochondrial genome separately. However, in 

the past years, this approach has brought to light a high frequency of papers 

reporting a discrepancy between the geographical distribution pattern of 

nuclear and mitochondrial markers (Toews et al., 2012). This so-called mito-

nuclear discordance can be defined as the different geographic distribution of 

diversity between mitochondrial and nuclear markers within a natural 

population. 

 

Figure 1: Number of papers reporting mito-nuclear discordance: cases from 1983 to 2011. (From 

Toews et. al. 2012) 
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The diagram in Figure 1 shows how many papers, reporting mito-nuclear 

discordance, have been published from 1983 to 2011. It clearly highlights how 

the number of papers has increased over the years, suggesting mito-nuclear 

discordance as an important phenomenon in nature and so a real problem for 

researchers attempting to reconstruct the evolutionary dynamics of populations 

and species (Figure 2). 

 

 

Figure 2. Example of mito-nuclear discordance (from Morales et al 2017). 

 

In the past years many works have investigated the causes of this discrepancy, 

trying to give an explanation to this phenomenon. These works suggest that the 
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most probable causes for the arising of mito-nuclear discordance within a 

population are: 

- Demographic characteristics and demographic events that can enhance 

genetic drift: genetic drift alone can produce geographically discordant patterns 

between nuclear and mitochondrial DNA (Petit & Excoffier, 2009) and if the 

demographic history of the population is characterized by bottlenecks the effect 

of drift is more pronounced. 

- Introgression: if the phenomena of introgression mainly or totally 

concern only one between the nuclear and mitochondrial genome (Cahill et al., 

2013; Morales et al., 2017). 

- Incomplete lineage sorting: describes the situation in which copies of 

genes found on individuals of different species coalesce into a common 

ancestral copy in a time prior to the speciation event between the two species. 

Therefore, the gene tree produced by the gene differs from the tree produced 

by the species under examination, producing discordant results (Maddison 

1997; Suh et al., 2015). 

- Selective processes: if in the population there are differences in how 

selection acts between mitochondrial and nuclear genome, mito-nuclear 

discordance can arise (Toews et al., 2012; Morales et al., 2017). 
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- Sex-biased asymmetries: in this context these asymmetries may be 

caused by mating behaviour, sex-biased offspring production or sex biased 

dispersal (Toews et al., 2012). In particular, sex biased dispersal will be the 

process on which the present work is focused. 

 

1.2  - Sex biased dispersal 

 

Sex biased dispersal refers to a particular type of sex biased asymmetry that 

consists in different patterns of dispersion between individuals of different 

sexes within a population. Sex biased dispersal is a common behaviour in 

animal species as it is often reported in mammals, birds and reptiles (Trochet 

et al., 2016).  

Particularly, in mammals, male biased dispersal (i.e., males disperse more than 

the females) and female philopatry are the most frequently reported phenomena 

(Trochet et al. 2016; Dobson et al., 1982). 
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Table 1. Proportion of sex-biased dispersal: the black part represents male-biased dispersal while 

the grey part represents female biased dispersal. (From Trochet et al 2016) 

 

The hypothesized causes to explain this phenomenon are: 

- Inbreeding avoidance: due to the greater parental investment in the 

offspring by females, these pay a higher price in case of inbreeding, so females 

prefer immigrants to residents, causing male biased dispersal (Lehmann et al., 

2003).  

- Mate competition: the sex in which there is greater intra-sexual 

competition for reproduction has a higher dispersion coefficient (Dobson, 

1982). 
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- Resource competition: suggested to cause sex biased dispersal when the 

competition for resources is high and a portion of individuals is prevented from 

breeding (Greenwood, 1980).  

 

As the geographical dispersion of individuals is the basis of the gene flow 

within and among populations, sex-biased asymmetries in dispersal may have 

profound effects on the distribution of genetic diversity (Bohonak et al., 1999). 

Nuclear gene flow depends on both male and female dispersal while 

mitochondrial gene flow depends on female dispersal only. So, even when both 

sexes disperse at the same rate, mitochondrial gene flow is lower than the 

nuclear gene flow. Hence, if females disperse less than males, mitochondrial 

gene flow is highly reduced while nuclear gene flow is only partially affected 

by the lower female dispersion rate (Figure 3). 
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Figure 3. Nuclear and mitochondrial gene flow between two populations. Panel A shows the gene 

flow between two populations in which there is no sex biased dispersal. In Panel B is represented 

the gene flow between two populations in which there is sex biased dispersal. 

 

Different dispersion rates between sexes creates a significant difference 

between gene flow at the different genomes (mitochondrial and nuclear) which 

can lead to marked differences in the geographic distribution of genetic 

diversity calculated between nuclear and mitochondrial markers.  

In particular, analyses using mitochondrial markers could highlight the 

presence of a clear structure among populations, whereas analyses using 

nuclear markers do not reveal any population’s structure. 
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A population is considered structured when it deviates from a model of 

complete panmissia and it is instead composed of local subpopulations which 

are distinguishable from each other at the genetic level. These subpopulations 

are characterized by similar (usually low) levels of genetic diversity among all 

the individuals that compose each of them, but at the same time a certain level 

of genetic diversity when comparing individuals from different subpopulations 

(Wright, 1949). 

Thus, we have that sex biased dispersal can then significantly contribute to 

creating a mitochondrial genetic structure within natural populations that is not 

balanced by an equally marked nuclear genetic structure.  

This lack of consistency in the patterns of diversity between the two genomes 

is defined as mito-nuclear discordance.  
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2. AIM AND OBJECTIVES 

 

2.1  - Aims of the project 

 

The purpose of this work is to test whether sex-biased dispersal processes can 

produce patterns of geographic discordance in the distribution of genetic 

diversity between nuclear markers and mitochondrial markers in natural 

populations at stationary population size. 

On a more methodological perspective, another important target of this work 

is to test whether a newly developed forward simulation approach can be useful 

to create sophisticated evolutionary scenarios in order to explore mito-nuclear 

interactions in a spatial model. 

 

2.2  - Project objectives 

 

We can summarize the objectives of this work in four main points: 

1. Learn how to use an advanced bioinformatic tool for forward in time 

simulations of natural populations to develop a spatially-explicit two-

dimensional simulation model.  
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2. Design a simulation system which allows to simulate mitochondrial 

genome alongside nuclear genome with the appropriate inheritance of 

both DNAs and implement spatial simulation dynamics in the system 

such as dispersion and spatial interactions among individuals. 

3. Use this simulation system to develop a biologically realistic model to 

test different patterns of sex biased dispersal and their effect on both 

nuclear and mitochondrial genetic diversity while producing the 

necessary output for estimating summary statistics of interest.  

4. Analyse the output of the different simulation scenarios in the context of 

the basic population genetics theoretical expectations to verify the 

likelihood of our simulation design and understand the role of the sex-

biased dispersal on mito-nuclear discordance patterns. 

 

2.3  - Expectations draw from population genetics theory 

 

Due to the haploidy and the maternal inheritance of the genome, mitochondrial 

effective population size is expected to be four times smaller than the nuclear 

one.  The effective population size has a strong impact on the genetic diversity 

of the population being inversely correlated with the intensity of genetic drift. 

Because of this difference in the effective size of the populations, we expect 
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that the genetic diversity of the two genomes will be already different from one 

another. 

In addition, nuclear gene flow derives from both male and female dispersal 

while mitochondrial gene flow derives from female dispersal only. This means 

that even when male and females disperse at the same rate nuclear gene flow 

is higher than mitochondrial gene flow.  

Reduced gene flow means again a more intense effect of divergence by drift 

and, hence, higher genetic diversity between distant individuals. So, if in the 

population females disperse less than the males, nuclear gene flow will be 

partially reduced, due to the fact that the female contribution is lower than in 

conditions of equal dispersion, while mitochondrial gene flow will be instead 

highly reduced. So, we can presume that sex biased dispersal differently affects 

mitochondrial genetic diversity and nuclear genetic diversity leading to 

discordant patterns of genetic diversity distribution between the two genomes.  

 

We expect that by increasing the difference in dispersion between the males 

and the females (male biased dispersal) in our population, we will observe an 

increased mitochondrial genetic diversity and differentiation (i.e., increased 

genetic structure) not balanced by an equivalent increase in nuclear genetic 

diversity.  
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In order to have meaningful insights of the correlation between sex biased 

dispersal and mito-nuclear discordance, we also expect to detect a broader 

distribution of mitochondrial genetic differentiation, characterized by values 

that can be in total contrast with nuclear differentiation, and by values that are 

consistent with the latter. 

 

On a broader perspective, investigating the correlation between mito nuclear 

discordance and sex biased dispersal will help us understand how these 

processes can affect the results of scientific studies and, for example, how they 

can bias populations and species conservation programs. A better 

understanding of the effect of sex biased dispersal on the genetic diversity can 

be fundamental to delineate more accurate expectations and to correctly set up 

studies on natural populations. 
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3. METHODS 

 

3.1  - Simulations 

 

Simulation software has proven to be a very useful tool to investigate the 

evolutionary dynamics that occur in natural populations. Simulation 

approaches allow the user to create sophisticated ecological and life-history 

evolutionary models which are suited to inferring natural processes or 

demographic characteristics of populations. In the last decades, thanks to 

technological progress and the greater availability of computing power, 

simulations have become more powerful and accurate, ensuring greater 

predictive capacity, and allowing these methods to gain an increasingly 

important role in many scientific fields (Hoban et al., 2012; Yuan et al., 2012).  

Moreover, thanks to the greater use of this software by the scientific 

community, the developers of these programs have worked to make these 

methods increasingly accessible, even to researchers less specialized in 

computer science, also implementing simple graphical user interfaces (gui). 

In population genetics simulations software are mainly used to predict the 

effects of interacting evolutionary forces, to infer historical processes or to 

understand the properties of newly developed methods (Hoban et al., 2012). 
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In genetics, simulation of evolutionary models can be done in forward or in 

backward (or coalescent-based). 

 

Backward simulations generate a gene tree that describes the history of 

different copies of a gene until the most recent common ancestor (MRCA) is 

reached. The probability of two copies to coalesce into a common ancestor is 

influenced by their demographic history. These approaches are based on the 

coalescent theory (Kingman, 1982). Backward simulations look back in time, 

starting from a final condition in which we have several copies of a single gene 

and inferring the coalescence events between the samples, to an initial 

condition in which all copies of the target gene reach a common ancestor. This 

approach only considers DNA fragments and not individuals, this feature 

makes these methods much faster and less complex than forward simulations. 

 

Forward simulations are focused on individuals and their genomes (or parts of 

genome); every individual has different characteristics and follows its own life 

cycle. Individual’s features can be determined by the users to reach their 

purpose or can be emergent from the simulation model. Forward simulations, 

as the name suggests, look forward in time, starting from an initial population 

to a final population. Since the simulation must consider a large number of 
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individuals and therefore a large number of DNA fragments and individual’s 

features, this approach requires a much higher computational effort than the 

backward approach.  

 

Between these two approaches there is no one better than the other, both are 

valid methods, the choice between the two depends only on the application for 

which they are required. Forward simulation methods allow to simulate more 

complex evolutionary scenarios than the backward simulations methods, but 

the latter are more suitable for inferring processes that occur on large time 

scales. 

 

3.2  - SLiM 

 

To test the effect of sex biased dispersal on mitochondrial and nuclear genetic 

diversity, we used SLiM (Selection on Linked Mutations): an optimized 

forward simulation software (Haller et. al., 2019). SLiM allows to create 

sophisticated evolutionary models thanks to its unique features:  

- It is a highly scriptable software, meaning that every mechanic of our 

scenario can be extensively modified, and it does not require any high work of 

scripting, as even complex models can be expressed in a page of code or less.  
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- The software is highly optimized in order to be more efficient and to 

require less computing power. 

These characteristics make this software very suitable for our work and more 

generally make SLiM a very interesting method for carrying out population 

genetic analyses. 

As proof of this, since 2013, the year of release of the software, the number of 

users and scientific articles based on the use of this software has continuously 

grown as well as the range of its applications. 

 
Figure 4. SLiMgui: SLiM graphical user interface - https://messerlab.org/slim/ 

  

https://messerlab.org/slim/
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3.3  - non-Wright Fisher model 

 

In population genetics, a widely used model to make predictions or infer 

demographic processes is the Wright-Fisher model (Fisher 1922; Wright 

1931). In SLiM, the Wright-Fisher system is the default setting for creating 

evolutionary scenarios, and it is designed as follows: 

- Non overlapping generations, as each individual is born, reproduces and dies 

in the same generation, 

- Fitness affects the probability of every individual to reproduce and not 

mortality, 

- Population size is a fixed parameter pre-set by the user and not a value 

emerging from the characteristics of the population. 

In addition to this simple model, SLiM offers the opportunity to implement a 

different nonWright-Fisher model, also known as the Moran model (Moran, 

1962). In this nonWF model, generations are overlapping, meaning that every 

generation is not an actual generation of individuals but it is just an opportunity 

for every individual to be born, reproduce or die.  

Age is considered as an individual’s property, and it affects the probability of 

each individual to die. In our work, we decided to use a U-shaped age based 

mortality (Tidière et al., 2016; Lahdenperä et al. 2018), scaled for a small-

medium sized mammal (Nowak 1991; Witting, 1997), meaning that the 
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probability of each individual to die is higher for the first year, very low for the 

years after the first and starts increasing after the fifth year of life, until it 

reaches 100% in the eighth year of life. (Figure 5). 

 

Figure 5. Age based mortality. The graph shows the probability of each individual to die in the 

current generation according to its age.  

 

In nonWF models, population size and sex ratio are emergent from the 

simulation, and they are not parameters imposed by the user, it follows that 

population size is the result of how many offspring are created versus how 

many individuals die in each generation. This feature contributes to creating a 

more realistic and more dynamic evolutionary scenario. 

In addition, fitness does not affect the probability of each individual to 

reproduce, but it only affects each individual's likelihood of surviving 
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To investigate the correlation between sexual dispersion and mito-nuclear 

discordance, we implemented our simulation using a non-Wright-Fisher 

model. 

 

3.4  - Continuous space model 

 

In SLiM, it is possible to create continuous spatial models, which allow the 

user to simulate one-dimensional, two-dimensional or three-dimensional 

geographic landscapes in which individuals can disperse and interact with each 

other. In these models, spatial coordinates are considered as properties of each 

individual and affect how individuals reproduce, disperse, and compete with 

each other. In continuous spatial models, it is possible to create complex spatial 

landscapes by including numerous environmental variables in order to evaluate 

their impact on the studied population. 

In our model, we designed a simple homogeneous two-dimensional landscape 

to minimize the number of variables that can interfere with our system. 
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3.5  - Neutral conditions 

 

All of the models we implemented in our experiment have been defined to work 

in neutral conditions, which means that all the mutations are neutral and in no 

way affect the probability of individuals to reproduce or survive. Selective 

processes are not something we want to investigate in this work, so in defining 

our model we have decided not to take these phenomena into consideration. 

 

3.6  - Reference species 

 

In this work, we used mammals as a reference biological system to set up our 

simulations. Sex biased dispersal is a common behaviour in mammalian 

species. In particular, male biased dispersal and female philopatry are 

commonly reported in this taxon (Dobson, 1982; Trochet et al., 2016). We then 

used dispersion rates and age-based mortality which could be broadly 

consistent with a small-medium size mammal species (Nowak 1991; Witting, 

1997). 
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3.7  - Model design and basic parameters 

 

In the first part of every SLiM’s script the most important parameters of the 

simulations are defined: simulation options, mutation rate, recombination rate, 

length of the different components of the “chromosome”, simulation constants 

and so forth. 

We start setting up a nonWright-Fisher, two-dimensional spatial model, and 

defining a carrying capacity of 15.000. The carrying capacity is a constant 

parameter that affects the population size (see below for further details). We 

define constant values to regulate the dispersal of the offspring and the age-

based mortality. We also define that we want our model to include sexual 

reproduction and so different sexes enabling the “sex” parameter.  

 

3.8  - The genome 

 

In SLiM is it possible to work with different elements of the genome at the 

same time, but the software manages all the DNA as a single chromosome. For 

our work we wanted to create ten nuclear genomic elements alongside one 

mitochondrial genome. 

To do that we created two different genomic elements, g1 and g2, that represent 

the nuclear portion and the mitochondrial portion of the genome respectively. 
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Our chromosome is composed of ten g1 nuclear elements of 16.000 bp each 

and one g2 mitochondrial element of 16.000 bp, for a total of 176.000 bp 

(Figure 6). 

The recombination rate is set as 1x10e-8 within the nuclear elements and as 0.5 

between them, this last parameter allows us to create recombination 

breakpoints and to work with independent elements as we wanted to simulate 

unlinked nuclear regions. For the mitochondrial genome we are using a 0 

recombination rate within the genome and of course a 0.5 recombination rate 

between the mitochondrial genome and the rest of the chromosome. 

After that we set up the mutation rate as 1x10e-7 for the mitochondrial DNA 

and 1x10e-7 for the nuclear DNA. The latter is rather high as compared to the 

reference literature (Drake et al., 1998), but it is a shortcut to reduce the 

simulation time, as we are working on a little portion of the nuclear genome 

and we need enough mutations to work with. It is basically the same as working 

with 1.600.000 bp of nuclear DNA if the mutation rate is 1x10e-8. 

Lastly, we create three different kinds of mutations, m1, m2 and m3:  

- m1 is the nuclear mutation that occurs only in the nuclear portion of the 

genome, this mutation has 0.5 as dominance coefficient and a selection 

coefficient of 0.0.  
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- m2 mutation is the mitochondrial mutation that only occurs within the 

mitochondrial portion of DNA, it has a dominance coefficient of 1.0 and a 

selection coefficient of 0.0.  

- m3 mutation is a marker mutation that allows us to simulate the 

maternally inheritance of the mitochondrial DNA. 

Every mutation in this simulation is neutral as we do not want to take into 

account selective processes. 

 

 

Figure 6. Representation of the simulated genome from SLiM. One copy of the genome is 

coloured in blue, while the other one is shown in purple. The black portion of the genome represents 

the mitochondrial genome (haploid). Yellow bars represent the frequency of the mutations in the 

population. 

 

3.9  - Mitochondrial and nuclear inheritance models  

 

SLiM works only with diploid genomes, so every deviation from this standard 

has to be implemented in the simulation. In our model, we need to simulate 

mitochondrial DNA alongside nuclear DNA.  To do so we need to define that 

only a part of the genome is maternally inherited and haploid while the other 

part is inherited from both parents and it is diploid. 
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To simulate the haploidy of the mitochondrial genome, in every generation 

every m2 mutation, appearing on the second copy of the mitochondrial 

genome, is removed, allowing only one copy of Mt DNA accumulating 

mutations.  

To simulate the maternal inheritance of the mitochondrial genome one 

important thing to know is that in SLiM the first copy of the genome of every 

individual is always inherited from the mother while the second one is always 

inherited from the father. When simulating the maternal inheritance of the 

mitochondrial DNA, we took this mechanism into consideration as we only 

needed to avoid the inheritance of the mother’s second (disabled and without 

mutations) mitochondrial genome. We set up the model so that at each 

generation the second genome of each female is marked with the marker 

mutation m3 and, at the same time, every individual that has this mutation on 

its first genome is discarded. This prevents individuals with an incorrect 

inheritance of the mitochondrial genome from being born in the first place 

(Figure 7). 

Another important thing to do is to remove mutations when they fix in the 

population. SLiM does it automatically, but for the mitochondrial genome we 

need to change this function in order to remove mutations when they reach 

fixation in a haploid system, meaning that we implemented a function that 
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removes every mitochondrial mutation which reaches a frequency equal or 

greater than 0.5.  

For the nuclear genome, the standard SLiM setting works fine, so we run it 

with the default options. 

 

Figure 7. Mitochondrial inheritance. In the figure we can see the method used to ensure the correct 

inheritance of the mitochondrial genome. In both figures (A and B) we see that copy 2 of the genome 
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of the newborn is inherited from the father and can be copy 1 or 2 of the latter. This is irrelevant, as 

in the newborn copy 2 will in any case be deactivated. Copy 1 is inherited from the mother and the 

mechanism foresees, that only when copy 1 is inherited from the newborn, this is accepted, as in the 

m3 mutation check we make sure that the m3 mutation, generated on all copies 2 of the females, is 

not found on copy 1 of the newborn. Not shown in the picture: if the newborn is female, a new m3 

mutation will be generated on copy 2 of its genome. 

 

3.10  - The simulated area 

 

As said above, we want to simulate individuals that disperse over a two-

dimensional area, so we defined a homogeneous landscape map of 200 x 400 

pixels. As we interpret a single pixel as a kilometer, our simulated area 

corresponds to 80.000 square kilometers. The so-defined landscape has 

boundaries at the edges, which means that the population is confined within the 

area. 

To start the simulation with a population that presents the characteristics of an 

equilibrium population, we define the initial spatial coordinates of the single 

individuals by setting random values as X and Y coordinates that ensure that 

the spatial position of each individual is included within a square of 100 km x 

100 km in the centre of the area (Image 8, panel A). From this initial position, 

with the generations progress, the population expands until it homogeneously 

colonizes the entire area (Image 8, panel B). 
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Figure 8. Colonization of the area by the population. At the beginning of the simulation 

individuals are randomly generated within a square area in the center of the landscape (panel A). 

After several generations, the population grows in number and expands to colonize the entire area 

(panel B).  

 

 

3.11 - Sex biased dispersal simulation 

 

To simulate different pattern of dispersal for individuals of different sexes, we  

define the dispersion function for males and females as constant values before 

the simulation’s start. The sum of the two constants is always 10 kilometers, so 

that in every simulation we choose a value between 2, ~3.3, 5, ~6.6 or 8, and 

we assign this constant value to the male and calculate the female’s dispersal 

constant as ten minus the male’s dispersal constant. Using this approach, we 

make sure that the ratio between these two constants is always 0.25, 0.5, 1, 2, 

or 4. These values define the sex biased dispersal patterns that we will use in 

our five models (Table 2). 
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Model 1 2 3 4 5 

Male dispersal 2Km 3,3333 Km 5 Km 6,66667 Km 2Km 

Female dispersal 8 Km 6,66667 Km 5 Km 3,3333 Km 8 Km 

Sex biased 

dispersal pattern 

0,25 0,5 1 2 4 

 

Table 2. Dispersal constant values for male and female individuals.  

 

An important aspect of our dispersion simulation system is that the nuclear 

gene flow is expected to be rather constant across all models: as both sexes 

contribute to it and the sum of the male and female constants is always 10, the 

magnitude of the global movement of nuclear genes is fixed. This helps us 

further simplify the system so that we can focus on mitochondrial genetic 

diversity. 

We apply the dispersion function on the offspring so that individuals move to 

a different location starting from their mother’s spatial position in their first 

year of life only, while the extent of their movement is based on their sex. 

The coordinates of the mother are defined by X and Y values. To generate the 

newborn’s coordinates, two values are added to the X and Y coordinates of the 

mother, these values are random numbers taken from a normal distribution 
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function which has as 0 as mean and the sex dispersal constant assigned of the 

given model as standard deviation (Figure 9). 

In this way, the newly generated child will move to a new position which is the 

result of the coordinates of the mother and of the two random values generated 

by the normal distributions for the X and Y axes. 

 

 

Figure 9. Offspring’s spatial dispersion function. The scatter function assigns spatial coordinates 

to the child, using the mother's spatial coordinates as a reference and two random functions based on 

a normal distribution with mean 0 and standard deviation as the model’s sex specific dispersal 

constant. The functions shown in the figure are for illustrative purposes only and do not derive from 

functions used in the simulation. 
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3.12  - Fitness and population size 

 

In nonWright-Fisher models, fitness is defined as hard fitness, meaning that 

this individual’s feature does not affect the probability of each individual to 

reproduce, but it affects its chances of surviving until the next generation. So, 

every individual that is alive during the reproduction event has the same 

probability to reproduce as the others. In our experiment this setting is fine as 

we are not working with selective processes. However, in our models, fitness 

is also important to regulate the population size. 

In section 3.7, we defined a constant value for the carrying capacity allowing 

us to define a value around which the size of our population will fluctuate.  

So, the population size in our simulations depends on three factors: 

- Carrying capacity: a constant value defined by the user; 

- Total density of the population in the area: as we want our population 

size to remain stable during all the simulation time and not indefinitely 

growing; 

- Age based mortality: we define a probability of every individual to die 

during each generation, this probability is based on the individual’s age and 

follows an “U shaped” distribution (Figure 5). 

These three parameters together define the total population size. The carrying 

capacity of our model is set as a constant number of 15.000, causing the size of 
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our population to fluctuate around 10.000 individuals as population size is an 

emergent parameter in the simulation.  

 

3.13 - Spatial interactions 

 

To simulate more realistic interactions between individuals in our simulation 

we set up two spatial interactions: the first one is a positive interaction that 

regulates mate choice, while the second one is a negative interaction that 

regulates the competition between individuals which are in the same area. 

 

3.13.1  Reproduction interaction 

 

In our nonWright-Fisher models every individual has the same probability of 

reproducing as any other one without any effect of selection on reproduction. 

However, in our model individuals need to reproduce only with potential mates 

which are located nearby. We set up an interaction function which defines a 

circular area with radius 5 kilometers around every female; inside this area, the 

female “looks for” the nearest interacting male neighbor, using a specific 

SLiM’s function called nearestinteractingneighbor (Figure 10).  If the function 
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finds a potential mate for the female, reproduction happens and the child is 

generated, otherwise the female does not reproduce.  

Importantly, in nonWright-Fisher models population size is emergent from the 

carrying capacity, population density and age-based mortality, so most of the 

new individuals are only born if old individuals die. So, every generation there 

is a different number of newborns based on how many individuals died in the 

same generation. 

 

Figure 10. Reproduction interaction. In the image females are coloured in red while males are 

coloured in green. This image shows how females choose their potential mates.  

 

3.13.2  Competitive interaction 

 

In SLiM, individuals have no dimensionality, meaning that they can overlap on 

the same spatial coordinates and that there is no disadvantage for the 

individuals to live all gathered in the same area. As we want to simulate 
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mammal-like organisms dispersing across an area, we have to take into account 

the competition between individuals. To create a more realistic scenario we set 

a negative interaction function between newborns and other individuals. This 

function ensures that newborns have a lower probability of surviving in the first 

year of their life if they share the same area with too many potential 

competitors. Every generation for every newborn we define an area of 2 

kilometers radius around it, then we look for other individuals that can compete 

with it, if there are five competitors or more within the defined area the 

probability of the newborn surviving to the next generation is highly reduced 

(Figure 11). Every individual in the simulation is considered a possible 

competitor.  

 

Figure 11. Competitive interaction. The mother’s spatial position is coloured in red, while the 

newborn's spatial position is coloured in light blue and the potential competitors are coloured in 

yellow. The left image represents a situation in which the newborn moves, starting from the mother’s 

spatial position to a place that is not sufficiently crowded to affect its fitness. On the right image the 

area is too crowded. 
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3.14  - Simulation burn-in to reach stationarity 

 

In every simulation individuals start from a square area in the middle of the 

landscape and colonize all the area dispersing according to their sex. At the 

same time mutations start to occur, increase (or decrease afterwards) in 

frequency and, eventually, get fixed (or lost) in the population.  

To obtain reliable estimates of the parameters of our modelled scenario, we set 

up our simulation with an initial burn-in to let the population reach an 

equilibrium. As summary statistics, we used the total population 

heterozygosity, calculated over the entire length of the nuclear genome and the 

mitochondrial genome, to understand how many generations to wait until the 

equilibrium is reached. In fact, in a population at its equilibrium, without any 

interfering force, average heterozygosity across many different loci is expected 

to stabilize around a value depending on population size.  

Starting from generation 1.000 and every 500 generations, we used all the 

individuals in the population to calculate the total nuclear heterozygosity and 

the total mitochondrial heterozygosity (Figure 12). As we are working with a 

low number of mutations due to computational limitations, even after several 

thousands generations, heterozygosity can still fluctuate. In particular the 

mitochondrial heterozygosity shows a peculiar pattern that we discuss below.  
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To find the average generation at which all our models reach equilibrium, 

meaning that the heterozygosity value stabilizes, we ran 10 simulations for each 

of the five possible sex biased dispersal patterns (0.25, 0.5, 1, 2, 4) and 

observed the average heterozygosity through time. When the average value 

stabilizes for both genomes, we can say that the equilibrium is reached and 

considered the previous as the burn-in time. For our simulation, the estimated 

average burn-in time is 50.000 generations.  

Figure 12. Heterozygosity through generations. Nuclear and mitochondrial total heterozygosity 

variation during all the simulation time. This graph shows the values related to the sex biased 

dispersal pattern 1.  

 

3.15  - Sampling 

 

As our task is to investigate how nuclear and mitochondrial genetic diversity 

change at different sampling distances across the five models, with different 

patterns of dispersal between the sexes, we sampled groups of individuals at 
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different predefined distances: 50, 100 and 150 kilometers apart. The sampling 

function, created specifically for this simulation, takes 10 pairs of samples to 

compare for each defined sampling distance. The algorithm is set to select an 

area of 14 x 14 km (minimum size to always sample at least 20 individuals), 

within which 20 individuals are sampled. At a predefined distance (among 

those pre-set), a second area of equal size to the first one is selected and 20 

individuals are sampled within it (Figure 13). 

The procedure is automatically performed 10 times for each defined sampling 

distance, so that we have 30 pairs of groups of individuals to compare for our 

analyses, 10 for each sampling distance.  

This procedure is repeated every 500 generations starting from the end of the 

burn-in time, when the population has reached its equilibrium. 

 

 

Figure 13. Sampling distances. The three different distances used to sample groups of individuals 

to compare.   
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3.16  - Summary statistics 

 

This entire simulation system was designed to evaluate how different patterns 

of dispersal between the sexes can affect the mitochondrial and nuclear genetic 

diversity between individuals of the same population. One of the most widely 

used statistics for estimating genetic differentiation between individuals is FST 

(Wright, 1949).  

 

𝐹𝑆𝑇  =  
𝐻𝑇  −  𝐻𝑆

𝐻𝑇
 

Equation 1. Calculation of FST. HT refers to the total expected heterozygosity, while HS refers to the 

average heterozygosity across the two subpopulations. 

 

FST is used to reveal population’s differentiation caused by population’s 

structure (Weir & Cockerham, 1984) and in our case is calculated for both 

mitochondrial and nuclear genome, so we can have an estimation of the genetic 

diversity calculated for both genomes at the same time, giving us the possibility 

to compare these two parameters.  
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The reference values for this statistic are (Wright, 1978; Hartl e Clark, 1997):  

- <0.05 = low genetic differentiation 

- 0.05-0.15 = moderate genetic differentiation 

- 0.15-0.25 = high genetic differentiation 

- >0.25 = very high genetic differentiation 

In our simulation, FST between pairs of samples is calculated every sampling 

event to estimate how different these two sampled groups are between them. 

 

Another statistic that we calculate is the total heterozygosity. Heterozygosity 

consists in the condition of having two different alleles in one locus. It is a 

fundamental parameter for measuring the genetic variability between 

individuals, from which a great deal of information on the structure and history 

of a population can be inferred. In our model, heterozygosity is given by the 

sum of the frequency of heterozygotes for each polymorphic site in the 

genomes, calculated as 2pq (frequency of heterozygotes from the Equation 2), 

normalized for the length of the genome. 

 

p2 + 2pq + q2 = 1 

Equation 2. Hardy-Weinberg equilibrium equation (Hardy, 1908; Weinberg, 1908). In the 

equation a biallelic locus is considered, in which p and q are respectively the frequencies of one or 

the other allele, it follows that 2pq is the frequency of heterozygotes for that locus. 
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As said before we used this statistic to calculate the burn-in time and to better 

understand how our model works. As the FST, we calculate heterozygosity for 

both mitochondrial and nuclear genome, but we calculate this statistic for the 

whole population and not for groups of individuals.  

 

3.17  - Running the simulations 

 

To obtain sufficiently robust results we need to run multiple simulations, to 

have a sufficient number of simulations for every different sex biased dispersal 

pattern. Every simulation takes at least two hours on a single CPU and the time 

increases for highly different dispersion rates (model 1 and 5). To get enough 

data in a relatively short time is then necessary to work on computer clusters. 

Every simulation (Supplementary material, 1) can be run on a single CPU, so 

the only way to accelerate all the process is to run multiple simulations on 

multiple CPUs at the same time. To do that we created a script in Bash with the 

instructions to run the simulations (Supplementary material, 2) and then a for-

loop script that reads and executes the instruction file multiple times 

(Supplementary material, 3).  

We created five different instruction files, every file used different dispersion 

rates for the sexes, so that we can have the same number of simulations for 
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every dispersion ratio. Usually, we ran from 10 to 20 simulations at the same 

time. 

  



58 
 

4. RESULTS 

 

4.1  - Effect of sex biased dispersal patterns on genetic differentiation 

 

The main objective of this work is to understand how mitochondrial genetic 

differentiation and nuclear genetic differentiation, calculated between pairs of 

samples, are influenced by different sex biased dispersal patterns. We used 

groups of individuals taken at different distances from each other to explore the 

role played by geographic distance on genetic differentiation, for different sex 

biased dispersal patterns.  
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figure 14. Effect of different patterns of sex biased dispersal on nuclear and mitochondrial 

genetic differentiation. The three boxplots show the FST values, for the nuclear and mitochondrial 

genome, related to all of the samples from the five different models, with different patterns of sex 

biased dispersal: 0.25, 0.5, 1, 2, 4. The values are divided into the three panels according to the 

respective sampling distance. A: 50 Km, B: 100 Km, C: 150 Km 

 

As clear in every comparison in figure 14, the mitochondrial differentiation 

values are, on average, always greater than the nuclear one. This is expected 
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due to the inherent smaller effective gene flow of the mitochondrial genome 

compared to the nuclear one. 

What is more interesting is how the different patterns of sex biased dispersal 

act on mitochondrial genetic differentiation: taking as a reference the 1:1 ratio 

between male and female dispersion (sex biased dispersal pattern = 1), we can 

appreciate how the mitochondrial FST between individuals decreases slightly 

when the dispersion ratio is unbalanced in favour of the female, while it 

increases considerably when the dispersion ratio is unbalanced in favour of the 

male. Our simulation results clearly show how a sex biased dispersal pattern 

characterized by a reduced rate of female dispersion, considerably accentuates 

mitochondrial genetic differentiation, leading to a situation where analyses 

based on the mitochondrial genome alone would, on average, reveal the 

presence of a strong structure within the population. Moreover, with a male to 

female dispersion ratio of 2 and 4, the variance of the mitochondrial genetic 

differentiation increases significantly for all three sampling distances used, 

meaning that there is the possibility to observe very high and moderately low 

FST values using mitochondrial markers.  

 

Regarding the nuclear genetic differentiation, it is evident that the system used 

to determine the dispersion coefficients of the two sexes, with a fixed global 
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movement of nuclear genes, ensures that nuclear diversity remains largely 

unaltered by the different sex biased dispersal models (figure 14) and that in no 

model is it possible to observe the presence of a structured nuclear population. 

Nevertheless, it is possible to detect a slight increase of nuclear FST values in 

the models with lower female dispersal. This effect could be due to the fact that 

all the newborns move starting from a point of origin which is defined by the 

spatial coordinates of the mother. Due to this characteristic of the simulations, 

in these models the female could play a more important role than the male in 

determining the extent of nuclear gene flow. However, this hypothesis remains 

to be investigated by further simulations. 

 

4.2  - Comparative distribution of FST values 

 

To observe how different patterns of sex biased dispersal act on the relationship 

between mitochondrial and nuclear genetic differentiation in the same pair of 

samples, we directly compared the nuclear and mitochondrial FST values 

calculated for each pair of samples (Figure 15). 
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Figure 15. Relationship between nuclear and mitochondrial genetic differentiation for pairs of 

samples for different patterns of sex biased dispersal (0.25, 1, 4). The plots show the FST values 

for nuclear and mitochondrial genomes calculated between pairs of samples taken at the 100.000 

generation using 150 Km as sampling distance. The panels show the results of three different models 

with different sex biased dispersal patterns: A: 0.25, B: 1, C: 4.  

 

The most important result is the distribution of mitochondrial FST values for the 

different dispersion models, given that the distribution of nuclear FST values 

remains rather constant. 

Observing these graphs, it is evident that the sex biased dispersal pattern in 

which female dispersion is reduced (Figure 15, Panel C) leads to a very wide 

distribution of mitochondrial FST values, with very high or extreme values of 

differentiation (which are not paralleled by an increase in the nuclear 
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differentiation), and cases in which it remains much more consistent with the 

nuclear FST values. 

This highlights even more the previous observation: in models characterized 

by male biased dispersal and female philopatry, taking a few random samples, 

we can have situations in which the mitochondrial genetic differentiation 

between groups of individuals is very high and discordant with the nuclear 

differentiation or, on the contrary, rather low and more consistent with it. 

This increased variance in the mitochondrial differentiation is, in our opinion, 

a strong indication of the possible correlation between sex biased dispersal and 

mito-nuclear discordance. 

 

4.3  - The impact of geographic distance 

 

To evaluate whether the geographical distance between samples had different 

effects according to the sex biased dispersal patterns, we compared the three 

sampling distances across the mean genetic differentiation for the different 

models. 
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Figure 16. Average genetic differentiation for different patterns of sex biased dispersal 

according to the sampling distance. Panel A shows the results of the mitochondrial genome, where 

it is possible to see how, in the sex biased dispersal ratio 2 and 4 (X axis), the mean value of genetic 

differentiation (FST) increases considerably. Panel B shows the results of the nuclear genome. Note 

the different scale on the Y-axis between the two panels. 

 

The results suggest that the variation in the values of FST, both mitochondrial 

(Figure 16, panel B) and nuclear (Figure 16, panel A), is always proportional 

to the distance in every model. Even if it is not so intense at this distance range, 

this pattern is consistent with an isolation by distance effect, where an 



66 
 

increasing geographic distance is always proportionally correlated to an 

increased genetic distance between individuals. 

 

4.4  - Heterozygosity dynamics across generations 

 

The heterozygosity calculated for the mitochondrial and nuclear genome for all 

individuals are two parameters that we have taken into consideration during all 

the simulations to calculate the burn-in time and to check that the simulation 

was proceeding correctly. 

The results show that at about 50.000 generations, in all models, the average 

nuclear and mitochondrial heterozygosity across replicated runs reach a level 

of stability which we deemed sufficient to start the analytical phase. 

However, in each individual replicated run, the mitochondrial heterozygosity 

showed rather unstable dynamics. 
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Figure 17. Heterozygosity through generations for different sex biased dispersal patterns. The 

graphs show Nuclear (blue) and mitochondrial (red) heterozygosity calculated for all the simulated 

individuals across 100.000 generations for sex biased dispersal patterns of 0.25 (panel A), 1 (panel 

B) and 4 (panel C). We used different scales to show the trend of the curves more clearly, as the total 

value is not something that interests us now. 

 

In fact, regardless of the sex biased dispersal pattern imposed, the 

mitochondrial heterozygosity never seems to reach a stable equilibrium, but it 

is rather characterized by important variations across the generations (Figure 

17). What is interesting is that when the dispersion ratio is 4 (Figure 17, panel 

C) we observe that the value of mitochondrial heterozygosity exceeds that of 

nuclear heterozygosity. Further analysing this process by running the same 

simulation for 500.000 generations and sampling individuals every 100 

generations rather than 500 we can observe that the heterozygosity dynamics 
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is even more intense, resulting in very high peaks of mitochondrial 

heterozygosity followed by sudden collapses, while the nuclear heterozygosity 

remains stable (Figure 18). 

 

 

Figure 18. Nuclear and mitochondrial heterozygosity variation across 500.000 generations. In 

the model used to create this graph the male dispersal constant is 4 times the female’s dispersal 

constant (SBD pattern = 4). 

 

While the lack of recombination in the mitochondrial markers together with the 

more intense effect of drift could be the causes of these cycles of haplotypes 

quasi-fixation followed by new differentiation, the unstable dynamics of 

mitochondrial heterozygosity certainly deserves to be further investigated.  
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5. DISCUSSION 

 

5.1  - Discussion 

 

Our simulations clearly reveal that sex biased dispersal patterns, characterized 

by reduced female dispersion and therefore by a reduced mitochondrial gene 

flow, are always associated with mean, significantly higher mitochondrial 

genetic differentiation (FST) and with a greater variability in its range of values 

(Figure 14; Figure 15 panel C). 

As a consequence of the reduced mitochondrial gene flow in models with lower 

female dispersal, the mitochondrial genetic diversity is on average significantly 

more structured than in the other models. At the same time, due to the inherent 

stochasticity of the dispersal process, we can observe either high or low values 

of mitochondrial FST (Figure 15, panel C). 

The same does not hold for models in which the sex biased dispersal pattern is 

characterized by a female dispersion rate which is greater than or equal to that 

of males. In these models, in fact, we find that the mitochondrial genetic 

differentiation values are on average lower, indicating an absence of structure 

within the mitochondrial population and a distribution of FST values that 

appears to be consistent with the nuclear FST values (Figure 15, panels A and 
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B). Nuclear FST values never significantly increase and instead, always suggest 

the absence of structure within the nuclear diversity. This was expected as total 

nuclear gene flow is always constant in our models (Figure 14). 

 

Our results show how by acting on a single variable (i.e. by decreasing the 

entity of the mitochondrial gene flow) there is a strong impact on the structure 

of the mitochondrial genetic diversity suggesting a strong correlation between 

sex biased dispersal and mito-nuclear discordance. 

 

Minimizing the variables which were explored, our simulation design makes 

simplicity one of its strongest points, even if introducing important limitations. 

Defining a constant total nuclear gene flow certainly helps us to better 

understand the dynamics concerning the mitochondrial genome, but it does not 

make us fully understand the full contribution of the nuclear genome in these 

processes. Furthermore, the conditions of neutrality and the use of a completely 

homogeneous area where our simulated population thrives mean that our 

models are far from describing a completely realistic scenario. 

These limitations are aspects that we have taken into account when developing 

our models, but our initial target was to design a simple but clearly functioning 

simulation system before adding more variables. 
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The simulation approach used proved to be a method lived up to the task 

assigned, showing a high efficiency and flexibility of use. Furthermore, it is 

evident that SLiM (Haller et al., 2019) is potentially able to respond to much 

more complex tasks than those it has already solved. 

 

However, in order to convincingly prove the correlation between sex biased 

dispersal and mito-nuclear discordance, this work needs to implement other 

methods and other statistics. We know that the FST is a widely used statistics to 

estimate the structure of a population (Weir & Cockerham, 1984), but, 

concerning the mito-nuclear discordance, it can only give us some general 

indications. The main methods used in the literature to detect mito-nuclear 

discordance (Cahill et al., 2013; Folt et al., 2019; Firneno et al., 2019; 

Rakotoarivelo et al., 2019; Prous et al., 2019) preferentially used maximum 

likelihood gene tree topology comparison or bayesian clustering analysis 

(BCA) methods such as Structure (Falush, Stephens & Pritchard, 2003) and 

Geneland (Guillot et al., 2005). These systems will necessarily have to be 

implemented in our work to reach more clear-cut insights. 
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The investigation of the causes of mito-nuclear discordance in natural 

populations has been indicated as a priority for future studies on this subject 

(Toews et al., 2012). In recent years, the number of works that have set 

themselves the goal of detecting the phenomenon in nature and investigating 

its causes has increased. Most of the analyses carried out in recent works have 

mainly tried to correlate the genetic data of a certain population with its 

ecological and historical data (Cahill et al., 2013; Folt et al., 2019; Firneno et 

al., 2019). 

In this context, our work is innovative, as it proposes a method never used 

before for this type of investigation. Although our system could be further 

improved to provide more relevant results, it is certainly a good starting point 

for future developments. Having designed and tested a fully controllable 

simulation system is certainly innovative and potentially very useful for 

investigating the correlation between mito-nuclear discordance and sex biased 

dispersal. 
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5.2  - Future directions 

 

 

The models created for this project have a great potential for future 

investigations in this field, as we can imagine our simulation scenarios as 

working basic models in which we can implement new functions to further 

explore the mito-nuclear interactions in a two-dimensional area. 

 

5.2.1 More realistic scenarios 

 

One of the future objectives of the project is certainly to include new variables 

in the models and to evaluate their impact on the whole system. Among the 

variables evaluated so far, the most interesting to be implemented in the model 

are: 

- Heterogeneous environment: by simulating natural barriers in our 

system we can evaluate how they affect the dispersion of different 

genetic markers. 

- Different demographic histories: by simulating a more dynamic 

demographic history, with bottleneck events we will be able to 

understand how demography affects mito-nuclear interactions. 

- Different patterns of dispersion: the system used for this project 

deliberately presents numerous simplifications. A good starting point for 
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the future development of this work is to set up a system in which the 

nuclear genetic flow is not always constant or in which individuals move 

also after the first year of life.  

 

5.2.2 Use of phylogenetic trees as summary statistics 

 

A common way to highlight the presence of mito-nuclear discordance in 

natural populations is to compare phylogenetic trees constructed using nuclear 

markers with those constructed using mitochondrial markers (Rakotoarivelo et 

al., 2019; Prous et al., 2019). In this way we can understand if the two trees are 

consistent with each other and with the geographical distribution of the 

individuals. For this reason, a possible implementation of our approach is to 

build phylogenetic trees, based on nuclear and mitochondrial genomes 

separately, using individuals sampled within the simulated area. This will allow 

us to test whether the discordance between nuclear and mitochondrial 

phylogenetic trees obtained from natural samples can also be observed by 

comparing trees obtained through simulations, and to evaluate the impact of 

different patterns of sex biased dispersal on this discrepancy. 
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5.2.3 Application to a real biological system 

 

Once models that are capable of producing robust data, consistent with 

expectations, have been obtained, it will be possible to proceed with the 

application on a real study system. In our case, the target species on which to 

test the application is the African crested porcupine (Hystrix cristata). Previous 

studies (Trucchi et al., 2016) have pointed out that within the African 

population of this rodent there is an important discordance between the 

geographic distribution of nuclear and mitochondrial markers, particularly by 

observing the phylogenetic trees produced using the two different genomes 

(Trucchi, unpublished).  

 

Figure 19. Geographic distribution of African crested porcupine's nuclear and mitochondrial 

markers. On the left is represented the phylogenetic tree built using nuclear markers, while on the 

right is represented the phylogenetic tree built using mitochondrial markers (Trucchi, unpublished). 
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Looking at Figure 19 it is clear that the phylogenetic tree based on nuclear 

markers seems to be coherent with the geographic distribution of individuals, 

while the phylogenetic tree based on mitochondrial markers is totally 

inconsistent with it. 

The application on African crested porcupine should be conducted using 

specific simulation parameters able to describe the ecology and behaviour of 

this species. 

  

5.2.4 Building a predictive model 

 

A long-term objective of this project is to build a predictive model: a pre-set 

simulation model, capable of inferring a demographic parameter starting from 

a genetic parameter, or inferring a genetic parameter starting from a 

demographic parameter, simply by adapting the initial parameters of the 

simulation to the species to be studied. It could therefore be possible to have 

an estimate of the extent of sex biased dispersal starting from an estimation of 

the discrepancy between nuclear genome and nuclear genome or vice versa. 

Indications on how to calibrate this system could come from the application on 

the porcupine. 
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6. CONCLUSIONS 

 

The main result that we can infer from the data obtained from the simulations 

is that a reduced female dispersion greatly affects the mitochondrial genetic 

differentiation between individuals within the population, leading more often 

to the formation of a highly structured mitochondrial population. The same is 

not applicable for the nuclear genome, as in these models it is minimally 

influenced by the different patterns of sex biased dispersal, and in all the 

simulations FST values are never high enough to suggest the presence of a 

structured nuclear population. 

This suggests that, even if not considering all the variables at stake in a real 

population, the mitochondrial and the nuclear genome are subject to totally 

different dynamics simply due to their characteristics of inheritance and ploidy 

so that if sex biased dispersal arise in the species, this phenomenon has a very 

different impact on the two genomes leading to major inconsistencies between 

the two samples. These observations, however, are not yet sufficient to prove 

that patterns of sex biased dispersal may be at the basis of the observed cases 

of mito-nuclear discordance, but they are nevertheless excellent indications that 

there is indeed an important correlation between these two phenomena. 
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In the models implemented in this study, the sampling distance does not seem 

to be a critical parameter, as the increase in genetic differentiation is always 

consistent with the increase in the geographical distance between individuals. 

However, we think that exploring a different range of sampling distance can 

turn out to be important in future developments of this work.  

 

The target of this project was to create a model as simple and controllable as 

possible in order to fully understand how it works and how the different 

patterns of sex biased dispersal affect the genetic distance between individuals 

calculated on both nuclear and mitochondrial genomes. Our results are 

therefore a fundamental step of a project that does not end with this work, but 

that aims to continue the investigation by including a growing number of 

variables to create an increasingly realistic evolutionary scenario. 
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SUPPLEMENTARY MATERIAL 

 

 

 

Supplementary material 1. SLiM’s script. 

initialize() { 
initializeSLiMModelType("nonWF"); 
initializeSLiMOptions(dimensionality="xy"); 
defineConstant("K", 15000); // carrying capacity 
defineConstant("L", c(0.7, 0.1, 0.1, 0.1, 0.25, 0.5, 0.75, 1.0)); 
 
if (exists("slimgui")) 
defineConstant("D", c(2, 3.333333333, 5, 6.666666667, 8)); 
 
defineConstant("Sm", sample(D, 1)); 
defineConstant("Sf", (10 - Sm)); 
 
defineConstant("d1", 50); 
initializeSex("A"); 
  
initializeMutationRate(c(1e-7, 1e-7), c(160008, 176009)); 
initializeMutationType("m1", 0.5, "f", 0.0); //nuclear mutation 
m1.convertToSubstitution = T; 
initializeMutationType("m2", 1.0, "f", 0.0); //mitochondrial mutation 
m2.convertToSubstitution = T; 
initializeMutationType("m3", 1.0, "f", 0.0); //mitochondrial MARKER mutation 
  
initializeGenomicElementType("g1", m1, 1.0); //nuclear genome 
initializeGenomicElementType("g2", m2, 1.0); //mitochondrial genome 
  
initializeGenomicElement(g2, 160009, 176009); 
for (i in 1:10){ 
initializeGenomicElement(g1, ((i-1)*16000)+(i-1), (i*16000)+(i-2) ); 
} 
  
  
initializeRecombinationRate(c(1e-8, 0.5, 1e-8, 0.5, 1e-8, 0.5, 1e-8, 0.5, 1e-8, 0.5, 
1e-8, 0.5 ,1e-8, 0.5, 1e-8, 0.5, 1e-8, 0.5, 1e-8, 0.5, 0), c(15999, 16000, 32000, 
32001, 48001, 48002, 64002, 64003, 80003, 80004, 96004, 96005, 112005, 
112006, 128006, 128007, 144007, 144008, 160008, 160009, 176009)); 
  
// spatial mate choice 
initializeInteractionType(1, "xy", maxDistance = 5, sexSegregation= "FM"); 
i1.setInteractionFunction("l", 1.0); 
initializeInteractionType(2, "xy", maxDistance= 2); 
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i2.setInteractionFunction("f", 1); 
} 
 
1 early() { 
sim.addSubpop("p1", 500); 
p1.individuals.age = rdunif(500, min=0, max=7); 
for (ind in p1.individuals) { 
px = runif(1, 150, 250); 
py = runif(1, 50, 150); 
p = (c(px, py)); 
ind.setSpatialPosition(p);} 
p1.setSpatialBounds(c(0.0, 0.0, 400.0, 200.0)); 
mapImage = Image("Landscape2.png"); 
p1.defineSpatialMap("world", "xy", (1.0) - mapImage.floatG, 
valueRange=c(0.0, 1.0), colors=c("#682C09", "#1BA81B")); 
} 
 
//Reproduction happens only between individuals that are close to each other 
reproduction(NULL, "F") { 
male = i1.nearestInteractingNeighbors(individual, 1); 
if (male.size() > 0) 
subpop.addCrossed(individual, male); 
else 
return; 
} 
 
 
modifyChild() { 
//Female dispersal 
if (child.sex == "F"){ 
do child.x = parent1.x + rnorm(1, 0, Sf); 
while ((child.x < 0.0) | (child.x > 400.0)); 
do child.y = parent1.y + rnorm(1, 0, Sf); 
while ((child.y < 0.0) | (child.y > 200.0));} 
  
//Male dispersal 
if (child.sex == "M"){ 
do child.x = parent1.x + rnorm(1, 0, Sm); 
while ((child.x < 0.0) | (child.x > 400.0)); 
do child.y = parent1.y + rnorm(1, 0, Sm); 
while ((child.y < 0.0) | (child.y > 200.0));} 
  
//Mito-Nuclear simulation 
if (childGenome1.containsMarkerMutation(m3, 175000)) 
return F; 
if (childIsFemale) 
child.genome2.addNewMutation(m3, 0.0, 175000); 
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return T; 
} 
 
1:100000 early() { 
// life table based individual mortality 
inds = p1.individuals; 
ages = inds.age; 
mortality = L[ages]; 
survival = 1 - mortality; 
inds.fitnessScaling = survival; 
// density-dependence, factoring in individual mortality 
p1.fitnessScaling = K / (p1.individualCount * mean(survival)); 
   
i2.evaluate(); 
  
//If a newborn moves into a crowded area has an high probability of dying 
juveniles = p1.sampleIndividuals(10000, maxAge=1);  
for (ind in juveniles){ 
competitors = i2.nearestNeighbors(ind, 100); 
if (competitors.size() >= 5){ 
ind.fitnessScaling = 0.005;}}} 
 
late () { 
Mmuts = sim.mutationsOfType(m2); 
  
// remove any new mutations added to the disabled diploid genomes 
sim.subpopulations.individuals.genome2.removeMutations(Mmuts); 
  
// remove mutations in the haploid genomes that have fixed 
freqs = sim.mutationFrequencies(p1, Mmuts); 
if (any(freqs >= 0.5)) 
sim.subpopulations.genomes.removeMutations(Mmuts[freqs >= 0.5], T); 
  
i1.evaluate();} 
 
1 late (){ 
 catn("Sf= " + Sf + " " + "Sm= " + Sm);} 
 
1000:100000 late () { 
if (sim.generation % 500 != 0) 
return; 
//creates the areas of sampling 
p1select = 
p1.individuals[p1.individuals.x>0&p1.individuals.x<100&p1.individuals.y>50&p1.in
dividuals.y<150]; 
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p2select = 
p1.individuals[p1.individuals.x>175&p1.individuals.x<225&p1.individuals.y>50&p1.
individuals.y<150]; 
p3select = 
p1.individuals[p1.individuals.x>300&p1.individuals.x<400&p1.individuals.y>50&p1.
individuals.y<150]; 
if (p1select.size() >= 40 & p2select.size() >= 40 & p3select.size() >= 40){ 
     
sp1 = sample(p1select, 40); 
sp2 = sample(p2select, 40); 
sp3 = sample(p3select, 40); 
   
sp1n = sp1.genomes; 
sp2n = sp2.genomes; 
sp3n = sp3.genomes; 
   
sp1m = sp1.genome1; 
sp2m = sp2.genome1; 
sp3m = sp3.genome1; 
   
Nmuts = sim.mutationsOfType(m1); 
Mmuts = sim.mutationsOfType(m2); 
   
   
H1n = calcHeterozygosity(sp1n, Nmuts, start= 0, end= 160008); 
H2n = calcHeterozygosity(sp2n, Nmuts, start= 0, end= 160008); 
H3n = calcHeterozygosity(sp3n, Nmuts, start= 0, end= 160008); 
   
H1m = calcHeterozygosity(sp1m, Mmuts, start= 160008, end= 176009); 
H2m = calcHeterozygosity(sp2m, Mmuts, start= 160008, end= 176009); 
H3m = calcHeterozygosity(sp3m, Mmuts, start= 160008, end= 176009); 
   
p1inds = p1.sampleIndividuals(10000); 
p1genome1 = p1inds.genome1; 
   
HTotn = calcHeterozygosity(p1.genomes, Nmuts, start= 0, end= 160008); 
HTotm = calcHeterozygosity(p1genome1, Mmuts, start= 160008, end= 176009); 
   
   
FST12n = calcFST(sp1n, sp2n, Nmuts, start= 0, end= 160008); 
FST13n = calcFST(sp1n, sp3n, Nmuts, start= 0, end= 160008); 
FST23n = calcFST(sp2n, sp3n, Nmuts, start= 0, end= 160008); 
   
FST12m = calcFST(sp1m, sp2m, Mmuts, start= 160008, end= 176009); 
FST13m = calcFST(sp1m, sp3m, Mmuts, start= 160008, end= 176009); 
FST23m = calcFST(sp2m, sp3m, Mmuts, start= 160008, end= 176009); 
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MNnump1 = sp1n.countOfMutationsOfType(m1); 
MMnump1 = sp1m.countOfMutationsOfType(m2); 
   
   
MNnump2 = sp2n.countOfMutationsOfType(m1); 
MMnump2 = sp2m.countOfMutationsOfType(m2); 
   
   
MNnump3 = sp3n.countOfMutationsOfType(m1); 
MMnump3 = sp3m.countOfMutationsOfType(m2); 
   
Di = (Sm/Sf); 
   
catn (" ");   
catn ("Generation" + " " + sim.generation + " " + "Di: " + Di); 
catn("Heterozygosity: " + sim.generation + " " + H1n + " " + " " + H1m + " " + H2n + 
" " + " " + H2m + " " + H3n + " " + " " + H3m + " " + HTotn + " " + HTotm); 
cat("Mutation count "); 
catn(" "); 
catn(" " + MNnump1 + " " +  MNnump2 + " "  + MNnump3); 
catn(" "); 
catn(" " + MMnump1 + " " + MMnump2 + " " +  MMnump3); 
catn(" "); 
catn("FST12: " + "Nu: " + FST12n + " " + "Mt: " + FST12m); 
catn("FST13: " + "Nu: " + FST13n + " " + "Mt: " + FST13m); 
catn("FST23: " + "Nu: " + FST23n + " " + "Mt: " + FST23m);}} 
 
 
50000:100000 late () { 
if (sim.generation % 500 != 0) 
return; 
  
p1inds = p1.sampleIndividuals(10000); 
p1genome1 = p1inds.genome1; 
 
Nmuts = sim.mutationsOfType(m1); 
Mmuts = sim.mutationsOfType(m2); 
  
HTotn = calcHeterozygosity(p1.genomes, Nmuts, start= 0, end= 160008); 
HTotm = calcHeterozygosity(p1genome1, Mmuts, start= 160008, end= 176009); 
 
//Sampling 
for (i in 1:3){ 
     
c = 0; 
  
do{ 
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ind = p1.sampleIndividuals(1); 
    
p4select = p1.individuals[(p1.individuals.x <= (ind.x + 7) & p1.individuals.x >= 
(ind.x - 7)) & (p1.individuals.y >= (ind.y - 7) & p1.individuals.y <= (ind.y + 7))]; 
      
d1a = (d1 * i); 
d1b = (d1a + 5); 
    
if (p4select.size() >=20){ 
        
paselect = p1.individuals[(p1.individuals.x > ind.x + d1a & p1.individuals.x < ind.x 
+ d1b & p1.individuals.y < ind.y + d1b & p1.individuals.y > ind.y - d1a)]; 
pbselect= p1.individuals[(p1.individuals.x < ind.x - d1a & p1.individuals.x > ind.x - 
d1b & p1.individuals.y < ind.y + d1b & p1.individuals.y > ind.y - d1a)];  
   
pcselect= p1.individuals[(p1.individuals.y > ind.y + d1a & p1.individuals.y < ind.y + 
d1b & p1.individuals.x < ind.x + d1b & p1.individuals.x > ind.x -d1a)];  
   
pdselect= p1.individuals[(p1.individuals.y < ind.y - d1a & p1.individuals.y > ind.y - 
d1b & p1.individuals.x < ind.x + d1b & p1.individuals.x > ind.x - d1a)];  
   
p5select = c(paselect, pbselect, pcselect, pdselect);     
if (p5select.size() >= 1){ 
samp = sample(p5select, 1); 
p6select = p1.individuals[(p1.individuals.x <= (samp.x + 7) & p1.individuals.x >= 
(samp.x - 7)) & (p1.individuals.y >= (samp.y - 7) & p1.individuals.y <= (samp.y + 
7))];} 
         
if  (p6select.size() >= 20){ 
p4sample = sample(p4select, 20); 
p6sample = sample(p6select, 20); 
p4samplegenomes = p4sample.genomes; 
p4samplegenome1 = p4sample.genome1; 
p6samplegenomes = p6sample.genomes; 
p6samplegenome1 = p6sample.genome1;     
      
Mmuts = sim.mutationsOfType(m2); 
Nmuts = sim.mutationsOfType(m1); 
      
p4nuclearThetaW = calcWattersonsTheta(p4samplegenomes, muts= Nmuts, 
start= 0, end= 160008); 
p6nuclearThetaW = calcWattersonsTheta(p6samplegenomes, muts= Nmuts, 
start= 0, end= 160008); 
p4mitoThetaW = calcWattersonsTheta(p4samplegenome1, muts= Mmuts, start= 
160008, end= 176009); 
p6mitoThetaW = calcWattersonsTheta(p6samplegenome1, muts= Mmuts, start= 
160008, end= 176009); 
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FSTnu = calcFST(p4samplegenomes, p6samplegenomes, start= 0, end= 
160008); 
FSTmt = calcFST(p4samplegenome1, p6samplegenome1, start= 160008, end= 
176009); 
Di = (Sm/Sf); 
      
if (isNULL(FSTnu) | isNULL(FSTmt)) 
c = c+0; 
else{ 
c= c+1; 
catn("Seed: " + getSeed() + " " + sim.generation + " " + d1a + " " + Di + " " + 
FSTnu + " " + FSTmt + " " + HTotn + " " + HTotm);}}}} 
 
while (c < 10);}} 
 

 

Supplementary material 2. Bash script to run the simulation.  

 
#!/bin/bash 
#PBS -l nodes=node2-gen:ppn=1 
#PBS -l walltime=1000:00:00 
#PBS -q long 
 
 
#where all the steps will be performed: 
cd /giorgio/data1/stud/fgiannelli/simul 
 
/giorgio/data1/stud/fgiannelli/bin/build/slim -s $seed -d D=8 
Modellodefinitivocluster.slim > 4_"$seed"_out 

 

Supplementary material 3. Bash for loop. used to launch the simulations 

multiple times.  

 

for i in {1..10};do qsub -v seed=$i slim.lanc ;done 

  



94 
 

 


