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Abstract 

Gestational diabetes is a high blood glucose condition that develops during pregnancy and although 

it usually disappears after giving birth, women who experienced gestational diabetes are more prone 

to develop type 2 diabetes later in their life. Insulin clearance, a physiological process representing 

the removal of insulin from the blood in the entire organism, is one of the main processes underlying 

the development of type 2 diabetes, together with insulin resistance and altered insulin secretion. Due 

to the role of insulin clearance in the development of type 2 diabetes, it is important to investigate 

this process also in women who experienced a history of gestational diabetes. Population modelling 

is a tool that allows to find correlations between heterogenic characteristics of subjects and to study 

the metabolism of certain molecules within the body. The aim of the present thesis was to exploit a 

population modelling approach for the study of insulin clearance in previous gestational diabetes. To 

this purpose, a mathematical model able to segregate hepatic and extrahepatic insulin clearance, 

previously proposed by Polidori et al., has been considered. The involved population consisted of 114 

women with an history of gestational diabetes (pGDM) and a group of 41 healthy women as controls 

(CNT) who underwent an insulin modified intravenous glucose tolerance test. Data were processed 

with Monolix, a software providing simple solution for non-linear mixed effects modeling for 

pharmacometrics. To exploit the information about the heterogeneous characteristics among the 

population certain covariates, among those suggested by the software, were included into the model. 

Analyses were performed either on the complete dataset (OVP, overall population) and including the 

group (CNT, pGDM) as a categorical variable or considering the CNT and pGDM datasets separately. 

Population estimates of extrahepatic insulin clearance for pGDM women resulted almost three times 

smaller with respect to that of CNT group (0,32 L/min vs 0,91 L/min). Instead, concerning the hepatic 

insulin clearance population estimates, the pGDM population showed a higher value with respect to 

CNT (29,7% vs 44,7%). Individual estimates for FEL resulted significantly different for pGDM vs 

CNT, whereas CLP were found different only when considering the separate datasets. In conclusion, 

the proposed population modelling approach showed its capability to provide population parameter 

estimates related to hepatic and extrahepatic insulin clearance. Hepatic insulin clearance may be 

affected by the presence of a history of gestational diabetes, whereas extrahepatic insulin clearance 

requires further investigation in wider populations. 
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Introduction 

Gestational diabetes is a high blood glucose condition that develops during pregnancy. Although it 

usually disappears after giving birth, women who experienced gestational diabetes are more prone to 

develop type 2 diabetes later in their life. Type 2 diabetes is another type of diabetes mellitus; the 

three main processes underlying its development are tissue resistance to the action of insulin (i.e., 

insulin resistance), altered insulin secretion by the pancreas and altered insulin clearance.  

Insulin clearance is a physiological process representing the removal of insulin from the blood in the 

entire organism. It occurs in the liver, but also in other organs such as kidneys and skeletal muscles, 

thus it is possible to distinguish hepatic and extrahepatic insulin clearance, respectively. Due to the 

role of insulin clearance in the development of type 2 diabetes, it is important to investigate this 

process also in women who experienced a history of gestational diabetes. 

Insulin clearance is a phenomenon that can be directly measured only through invasive procedures 

that cannot be performed in human subject. In this context, mathematical modelling approaches can 

be used to quantitatively assess insulin clearance from easily measured data, coming from venous 

blood samples. However, quantification of insulin clearance from mathematical modelling 

procedures may be affected by differences of subjects characteristics (age, sex, weight, etc.), called 

covariates. 

Population modeling is a tool to identify and describe relationships between a subject's physiologic 

characteristics and observed drug exposure or response. Population models usually have fixed effect 

as well as random-effect parameters and are therefore called “mixed-effect” models. Fixed effects are 

population parameters assumed to be the same each time data is collected, and random effects are 

random variables associated with each sample (individual) from a population. 

The aim of the present thesis is to exploit a population modelling approach for the study of insulin 

clearance in previous gestational diabetes. To this purpose, a previously proposed mathematical 

model able to segregate hepatic and extrahepatic insulin clearance has been considered. 

 



1 
 

1. Outline of physiology 
1.1.  Glucose homeostasis 

The process of maintaining plasma glucose concentration at steady-state levels, in the narrow range 

70-110 mg/dl, is called “glucose homeostasis”. Food consumption is the most important source of 

glucose. As shown in Fig. 1, to utilize the available glucose, the β-cells of the pancreas produce 

insulin, a hormone that stimulates glucose uptake at a cellular level, enhancing in this way glucose 

metabolism. Moreover, the glucose in excess is converted into glycogen in liver and skeletal muscles. 

Insulin secretion occurs in response to elevation of glucose concentration, but also to positive rate of 

change of glucose concentration. Once it absolved its function, insulin goes through a receptor-

mediated uptake process, followed by its degradation, accomplishing “insulin clearance”. Instead, 

when glucose level becomes too low, pancreatic α-cells release glucagon, a hormone which provokes 

the catabolic division of glycogen into glucose, which is released into the blood in order to restore 

the glucose level [1]. 

 
Fig. 1 

Glucose homeostasis system [1]. 
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As well as insulin action is essential to avoid hyperglycemia, glucagon action is aimed to prevent 

hypoglycemia, in both healthy and diabetic subjects. Incretin hormones, like glucose-dependent 

Insulinotropic Polypeptide (GIP) and Glucagonlike-peptide-1 (GLP-1), are secreted by the 

gastrointestinal tract in response to nutrient ingestion and are responsible for the “incretin effect”. It 

consists in an increase of the glucose-dependent insulin secretion (“insulin potentiation”) during an 

oral glucose tolerance test (OGTT), compared to an isoglycemic intravenous glucose infusion (I-

IVG). In fact, it is not possible to observe the incretin effect in an intravenous glucose tolerance test, 

since there is no glucose bolus which passes through the gastrointestinal tract and triggers the incretin 

hormones production. GIP is secreted by k-cells and GLP-1 is released by L-cells, which are both 

cells of the small intestine, activating in response to nutrient ingestion. Another hormone involved in 

glucose homeostasis is the amylin. It is secreted together with insulin by β-cells in response to 

increasing food compounds (such as glucose) levels and its functions are inhibition of glucagon 

secretion, reduction of endogenous glucose production during the postprandial period and favoring 

glycogen synthesis. Production of amylin is impaired in diabetes patient’s bodies. The use of synthetic 

pramlintide, which is an amylin analogue, showed to improve glycemic control in diabetic subjects 

[2]. 

 

1.2.  Diabetes Mellitus 
Impaired glucose metabolism can manifest in three forms of diabetes mellitus: type 1 diabetes 

mellitus (T1DM), type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus. In T1DM 

subjects, insulin is not secreted at all since all the β-cells in the pancreas are destroyed by an antibody 

autoimmune response [1]. Finally, it can happen that a pregnant woman is diagnosed with gestational 

diabetes, impairment that usually ends with the birth of the baby. This pathologic condition can often 

go unnoticed, in fact, it is important to often check the glycemic level. Women who pass thought 

gestational diabetes have an increased probability to develop T2DM in old age. Impairments in the 

insulin sensitivity and β-cells function are present in women with a history of gestational diabetes. 

Insulin sensitivity is defined as the capability of insulin to stimulate glucose uptake, while β-cells 

function refers to the ability of β-cells to produce adequate amounts of insulin [3]. Insulin clearance 

is another physiological process which regulates glucose tolerance, and it occurs in the liver, but also 

in other organs such as kidneys and skeletal muscles [4]. Since it is not possible to heal T1DM and 

T2DM, patients need regular insulin supplements and/or medications, based on a necessary and 

frequent glycemic control. Healthy and balanced diet, as well as physical activity are also 

recommended to diabetic subjects [5]. Formulation of diagnosis of diabetes can be accomplished 

through the observation of blood levels of glycated hemoglobin (Hba1c) and/or the fasting plasma 
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glucose (FPG). For Hba1c levels higher than 6,5%, the diagnosis of diabetes is very likely. 

Concerning FPG, levels comprised between 5,6 and 6,9 mmol/L indicates an impaired fasting 

glucose, while levels greater than 7,0 mmol/L indicate provisional diagnosis of diabetes, and further 

investigations could confirm the diagnosis or not [6]. Some pharmacological therapies will be 

presented in the next chapter, in relation to the included studies. 
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2. Review on population modelling in the field of glucose 
2.1.  Population modelling 

The control of glucose in both diabetic and healthy people is an active field of research and in-silico 

models are widely used for it. Among all the approaches which are usually employed, in this study 

we focus on the nonlinear mixed-effect approach, through which it is possible to build a population 

model and to perform a population analysis. In this field, a population model allows to find 

correlations between heterogenic features of people (age, sex, weight, etc.), called covariates, and the 

metabolism of a certain molecule or drug in human body. A nonlinear mixed-effect model 

incorporates both fixed and random effects. Fixed effects are population parameters assumed to be 

the same each time data is collected, and random effects are random variables associated with each 

sample (individual) from a population. This approach allows to exploit input data to quantitatively 

evaluate the influence of the covariates on the variables (parameters). Population models are often 

pharmacokinetic (PK) or pharmacodynamic (PD) models, or the two mixed together (PK/PD models). 

The PK part is referred to how the drug is processed within the body, while PD modelling is based 

on a quantitative integration of several factors: pharmacokinetics, pharmacological systems, 

pathological and physiological processes. In this way it’s possible to understand the intensity and 

time-course of drug effects in the human body and it’s then possible to identify the optimal therapeutic 

dosing regimen for a specific patient.   
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2.2.  Bibliographic Review 

The research in the literature has been performed with the screening process described in Fig. 2. 

  

Fig. 2.  

Systematic Review procedure flowchart: selection of the papers of interest.  

Searching with the string “population model” AND glucose) NOT animal Pubmed showed 19 results, 

while Scopus showed 49 results. Since this latter gave too many results, the research has been repeated 

with the string (“population model” AND glucose AND compartment) NOT animal, obtaining 6 

results. The same string in Pubmed would give just 1 result, so we preferred to keep the previous 

string for it. Among these 23 papers, reading the abstracts, 7 of them have been deemed appropriate 



6 
 

for inclusion. A further research was done adding “AND covariate” in the string, in order to include 

papers with a covariate analysis, but nothing pertinent was found. The included studies will be 

presented in chronological order. 

The study by R. Hovorka and coauthors [7] is titled “Pancreatic β-Cell Responsiveness during Meal 

Tolerance Test: Model Assessment in Normal Subjects and Subjects with Newly Diagnosed 

Noninsulin-Dependent Diabetes Mellitus” and was published on Diabetologia journal in 1993. Its 

aim was to quantify pancreatic beta cell responsiveness through the estimation of two indexes: the 

postprandial sensitivity M1, representing the ability of stimulating β-cells of postprandial glucose, 

and the basal sensitivity M0, representing the ability of stimulating β-cells of fasting glucose. The 

measurements of plasma glucose and C peptide occurred in relation to a meal tolerance test (MTT), 

or oral glucose tolerance test (OGTT), in 16 healthy subjects and in 16 analogue newly diagnosed 

noninsulin-dependent diabetes mellitus (NIDDM) patients. The standardized meal consisted in 75 g 

of carbohydrates, 500 Cal. The model proposed in this study is a model of C peptide secretion and 

kinetics and it is composed by 2 compartments: the central one and the peripheral one, as shown in 

Fig. 3. 

 

 
Fig. 3. 

Model of C peptide secretion and kinetics during an OGTT [7]. 
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C peptide secretion is a linear function of plasma glucose concentration (g(t)), and M1 and M0 are the 

parameters of the linear relation. Their estimation highlighted the difference in sensitivity of β-cells 

between newly diagnosed NIDDM and control subjects. Fig. 4 shows the estimation of M1 and M0, 

while Fig. 5 shows plasma concentrations of glucose, C peptide and insulin along the time. 

 

 
Fig. 4. 

Estimates of postprandial sensitivity (M1) plotted against estimates of basal sensitivity (M0) in normal 

subjects (solid squares) and subjects with newly diagnosed NIDDM (open squares). The mean standard 

deviation (SD) has been plotted for each group [7]. 
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Fig. 5. 

Top panel, middle panel and bottom panel represent plasma glucose, plasma insulin and plasma C peptide 

respectively during an OGTT in normal subjects (solid squares) and 16 body mass index (BMI)-matched 

subjects with newly diagnosed NIDDM (open squares) [7]. 

 

From the last graphics, it is possible to have a measure of the impaired glucose control in newly 

diagnosed NIDDM patients. For example, it is possible to see how the diabetic subject’s plasma 

glucose level fails to go back to the fasting level (Fig. 5). The authors also observed that the 

intersubject variability influenced the measures, in particular the ones relative to control subjects. 

Moreover, an individual estimation of k01 would have given a better accuracy of the indexes M1 and 

M0, due to the heterogeneous differences among the subjects. Finally, M1 is a composite index, 
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representing the overall pancreatic responsiveness after an OGTT at that moment. This means that it 

does not allow the separation of defects in the net glucose effect and the incretin effect. In conclusion, 

Hovorka and colleagues built a model capable of assessing the β-cells responsiveness during an 

OGTT, successfully highlighting the overall differences in the metabolism between metabolically 

healthy people and newly diagnosed NIDDM subjects [7]. 

 

The study by J. B. Moller and coauthors [8] is titled “Mechanism-based population modelling for 

assessment of L-cell function based on total GLP-1 response following an oral glucose tolerance test” 

and was published in 2011. Its aim was to build a mechanism-based population model which 

describes the time course of blood GLP-1 concentration, and to assess capability of GLP-1 secretion 

from L-cells in each subject through indices. A mixed group of healthy volunteers and T2DM patients 

took part to an OGTT (standard 75 g dose of glucose). Once the dose is ingested and the 

gastrointestinal tract is stimulated, the production of GLP-1 in the L-cells starts. The half-life time of 

GLP-1 is very short for both T2DM subjects and control subjects, lasting about 2-3 min. This means 

that the decreased GLP-1 response in T2DM patients is due to lower post-prandial secretion. The 

model is composed by 2 sub-models: a glucose-insulin model (model (A)) and a GLP-1 secretion 

model (model (B)), as it is possible to see in Fig. 6. 

 
Fig. 6. 

(A) Glucose-insulin model; (B) GLP-1 secretion model [8] 
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The Glucose-insulin model was needed for the estimation of the glucose absorption rate constant, 

which is ka (instead, ka*A3 is the glucose absorption rate). The GLP-1 secretion model is an indirect 

response model with a zero-order input and first-order loss. The zero-order input is composed by two 

mechanisms with different times of onset, one faster and one slower. The fast one is the mechanism 

triggered by the glucose dose signal and it provokes a peak in GLP-1 concentration around 40 minutes 

after the ingestion. The slower mechanism, instead, is the glucose absorption. The delay was 

implemented through the transit compartments and kb, a transit rate constant representing the delay 

between glucose absorption rate and stimulation of late phase of GLP-1 secretion. Instead, kc is the 

neural signal rate constant, and it is related to the stimulus for GLP-1 secretion from the 

gastrointestinal tract. Moreover, the elimination of GLP-1 is represented like a first-order process. 

The choose to model separately model (A) and model (B) was made in order to avoid biasing the 

estimation of glucose absorption towards the prediction of GLP-1 concentration. The implementation 

was performed in the software NONMEM VI. The results of this study are strictly linked with the 

estimation of ka, kb and kc. Looking at Fig. 7, it is possible to observe two peaks (darker plots) of the 

two stimuli for GLP-1 secretion. In fact, S1 and S2 are transit compartments mostly influenced by kc 

and kb respectively. The peaks relative to them are at around 25 min and 100 min respectively, and 

this seems to be consistent with the GLP-1 profiles usually observed after a meal. The faster stimulus, 

relative to kc, is probably due to the activation of a proximal-distal neuroendocrine loop, due to the 

nutrients passing in the duodenum. In conclusion the model proposed in this study is not free of 

defects, mostly linked to the accuracy of the employed tools. However, the authors chose not to 

perform the covariate analysis and to leave it to future studies, to evaluate the influence of different 

demographic factors on the GLP-1 secretion. 

 
Fig. 7. 

Normalized mean of simulations of compartments S1, A3 and S2 versus time [8]. 
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The study by J. Fang and coauthors [9] is titled “Study reanalysis using a mechanism-based 

pharmacokinetic/pharmacodynamic model of pramlintide in subjects with type 1 diabetes” and was 

published on AAPS Journal in 2013. Pramlintide is an amylinomimetic which showed to be helpful 

in improving glycemic control in diabetic patients. The data were taken from a previous study, in 

which 25 male T1DM patients participated. Plasma glucose and drug concentration were measured 

after ingestion or two hours intravenous infusion (at three different dose levels), or placebo, in the 

postprandial period. The proposed PK/PD model is shown in Fig. 8 and it consists of a 

pharmacokinetics part, a two-compartmental model (central and peripheral compartments) with zero 

order infusion and first order elimination. 

 

 
Fig. 8. 

Proposed PK/PD model. On the left there is the two-compartmental model relative to the pharmacokinetics 

of pramlintide, and the dotted lines represent its effect on the pharmacodynamic. The open bar represents the 

stimulation (S), while the closed bar represents the inhibitory effect [9].  

 

Since glucose homeostasis is a turnover process, the model is structured like an indirect response 

model. K0 represents the sum of net entry glucose from the meal, kin represents the endogenous 

glucose from the liver, and kout represents the removal of glucose by uptake and utilization. Instead, 

ka is the first-order rate constant representing the absorption of glucose from the intestine. The 
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suppression of postprandial glucagon was represented with an inhibitory sigmoidal function. The 

influence of pramlintide on the process of gastric emptying is one of the most focused aspects in Fang 

and coauthors’ study and their model was able to quantify the delayed gastric emptying time through 

the variable S (pramlintide prolongation). Such delay seems not to be dependent on the dosage, since 

there is no significant increase of it increasing the dosing regimens. Moreover, Pramlintide provoked 

a significant decrease (at least 40%) in the glucose area under the curve net (AUCnet) for all the 

employed dosages except for the lowest one (30 µg), as it is possible to see in Fig. 9. 

 

 
Fig. 9. 

Glucose AUCnet for all the dosing regimens and placebo. Data are shown as means ± SD. The asterisks 

indicate the most significant differences between pramlintide and placebo [9]. 

 

Several software was employed in this study. NONMEM Version VII level 2.0 was used for the 

nonlinear mixed-effect models, S-Plus was used for the Diagnostic graphs and Phoenix WNL 6.1 for 

the non-compartmental PK analysis. Fang et al. successfully developed a model describing the 

fundamental effects of pramlintide on postprandial glucose regulation in T1DM patients [9]. 

 

The study by H. Li and coauthors [10] is titled “Target-mediated pharmacokinetic/pharmacodynamic 

model based meta-analysis and dosing regimen optimization of a long-acting release formulation of 

exenatide in patients with type 2 diabetes mellitus” and it was published on Journal of 

Pharmacological Science in 2015. In this study a PK/PD population model of exenatide ER was built. 

The aim of the simulations is to find the optimal dosing regimen to maximize the exposure to the 
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drug in T2DM patients. In fact, exenatide ER (“extended release”) is gradually released along the 

time, thanks to the employment of a Poly-lactic-co-glycolic acid (PLGA) matrix excipient which, 

after the injection, gradually releases the drug in the subcutaneous tissue. In the nonlinear mixed-

effect PK/PD model, built on Monolix, GLP-1R is taken into account too, as it is possible to see in 

Fig. 10, while FPG and HbA1c are observed to evaluate the efficacy of the dosing regimens.  

 

 
 

Fig. 10. 

Nonlinear mixed-effect PK/PD model of exenatide ER for T2DM patients [10]. 
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The proposed model can be divided into two parts: the PD part, composed by the FPG and HbA1c 

compartments, and the PK part, composed by the upper rest of the model. The PK model is composed 

by 4 transit compartments (a1-a4) before the absorption compartment (a5), to represent the gradual 

subcutaneous distribution carried on by the PLGA excipient. V1 and V2 are equal to central and 

peripheral compartments, respectively, while a6 and a7 are the amount of exenatide in the same 

compartments. CL and Q represent the elimination and inter-compartment clearances. Instead, a8 and 

a9 represent the amount of GLP-1 receptors and GLP-1R*a6 complex, respectively. Solid lines with 

the arrows represent the transit (ktr), the absorption (ka) and the elimination (CL). The PK/PD data 

was taken from 6 different publications, reported in the paper [10]. Fig. 11 shows how the population 

model fits well the data of one of the studies taken into account, in which exenatide ER dosages of 

0.8 and 2.0 mg were considered. The model demonstrated its capability to evaluate the efficacy of an 

exenatide ER-based therapy with several dosages and timings, assessing the changes in FPG and 

HbA1c levels. No covariate analysis was performed in this study. 

 

Fig. 11. 

Model prediction distribution. Mean plasma exenatide concentrations (A), mean change in FPG levels (ratios 

of FPG/FPG_BL) (B) and mean change in HbA1c levels (ratios of HbA1c/HbA1c_BL) (C) considering 

multiple injections of exenatide ER. Panels on the left are relative to 0.8 mg dosages, while panels on the 

right are relative to 2.0 mg dosages. Median model prediction is represented by blue dashed lines, the 95% 

confidence interval of the prediction is represented by the two blue solid lines, individual prediction values 

are represented by black solid lines, and observed values are represented by open circles [10]. 
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The study by N. Bouazza and coauthors [11] is titled “Evaluation of the pharmacokinetics of 

glibenclamide tablet given, off label, orally to children suffering from neonatal syndromic 

hyperglycemia” and it was published on the European Journal of Clinical Pharmacology in 2016. 

The pharmacokinetics of glibenclamide (Gb) in 18 children with neonatal syndromic hyperglycemia 

was studied. Gb is a sulfonylurea and it have been recently substituted to insulin for treatment of 

hyperglycemia in T2DM patients. In this study, the young patients have mutations of the genes 

relative to Kir6.2 and SURI, the two types of subunits of ATP-sensitive potassium channels in the 

pancreas beta cells. This genetic impairment is very rare. Gb has the capability to hyperpolarize the 

plasmatic membrane of the beta cells which prevents the normal secretion of insulin in response to 

blood glucose and it is completely metabolizable for the liver, so this drug is not toxic for the patients. 

Blood samples were frequently collected in the 12 h after the intake of the Gb dosage. The model 

employed are: a one-compartment model for the description of the data, a proportional error model 

for the residual variability and an exponential error model for the inter-subject variability. The 

covariates employed in this study are age, size, body mass index and genetic polymorphism. 

Concerning the covariate analysis, the covariate selection criteria to be incorporated in the model are 

physiological plausibility of the effect, production of a minimum threshold decrease in the objective 

function value and production of a reduction in the variability of the pharmacokinetic parameter, 

assessed by the associated inter-subject variability. The most significant covariate has been 

discovered to be the weight, since this parameter is responsible of variability of Gb clearance in 

children. In fact, Gb clearance increases with body weight linearly. Concentration time courses and 

relation between drug concentration and efficacy were described in the results. How it is possible to 

observe the venous plasma glucose concentration plotted against time in Fig. 12, a higher dosage of 

Gb allows to keep glycemia under control [11]. 
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Fig. 12. 

Venous plasma glucose measurements as a function of time after drug intake for different drug dosages (in 

the right lower corner) [11]. 

 

 

The study by S. Choy and coauthors [5] is titled “Weight-HbA1c-insulin-glucose model for 

describing disease progression of type 2 diabetes” and it was published on CPT: Pharmacometrics 

and Systems Pharmacology in 2016. A model describing changes in fasting serum insulin (FSI), FPG 

and HbA1c in obese patients with newly diagnosed T2DM was presented. At the beginning of the 

study, the patients had the 61% and 25% of the normal beta cells function and insulin sensitivity 

respectively, but they have been managed with therapy, diet and exercise for 67 weeks with a 

consequent reduction of the body weight and a relevant improvement of insulin sensitivity (to 30,1% 

of the normal). The proposed model is a weight-HbA1-insulin-glucose semi-mechanistic model, in 

which FPG, FSI and HbA1c are exploited as biomarkers of diabetes. We can see it in Fig. 13. EFW 

represents the combined effect of diet and exercise, placebo, and an upward counter-effect dependent 

on time acting on the input of weight. EFS stands for “effect on insulin sensitivity”. It depends on 

changes in weight (ΔWGT) and influences the insulin sensitivity (IS). EFB indicates the treatment 

effect on beta cell function, and it depends on an increase component and a decrease component. B, 
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representing the natural loss on beta cells functionality, together with the natural feedback from FPG, 

determines the production rate of FSI. Instead, FPG compartment is driven by both IS and FSI. 

Finally, FPG and postprandial glucose (PPG) determine the production of HbA1c, designed with 

three transit compartments [5]. 

 

 
Fig. 13. 

The weight-HbA1-insulin-glucose model proposed by Choy and coauthors [5].  

 

 

Employing this model, it has been possible to estimate the influence of weight loss on IS, and to 

evaluate the overall functioning of the homeostatic system and the diabetes biomarkers. The 

relationship between weight loss and insulin sensitivity is shown in Fig. 14. [5].  
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Fig. 14. 

The relationship between weight loss and insulin sensitivity. Each gray line represents an individual patient, 

while the black dots are the estimation data from the model. The blue line represents the linear regression of 

all points, then, in the weight-HbA1-insulin-glucose model, weight loss and insulin sensitivity are linearly 

proportional. For each kilogram lost, an obese T2DM patient is expected to regain about 1.5% insulin 

sensitivity [5]. 

 

The study by A. Rostami-Hodjegan and coauthors [12] is titled “Population-based modeling to 

demonstrate extrapancreatic effects of tolbutamide” and it was published on the Journal of Applied 

Physiology in 2020. The authors built a model to investigate the PK and PD of tolbutamide and the 

eventual influence of covariates on the process in healthy subjects. Tolbutamide is part of the 

sulfonylurea, in fact, it can be used to help T2DM treatment stimulating the secretion of insulin by 

the beta cells.  

 
Fig. 15. 

PK/PD model used to describe the biphasic insulinergic effect of tolbutamide [12]. 
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Fig. 15 shows the model used to describe the biphasic insulinergic effect of tolbutamide. The drug is 

released in the central compartment, with the usual peripheral compartment. Less usual is the remote 

effect compartment, which has a delayed insulinergic effect on insulin secretion, as opposed to the 

central one, which has an immediate effect on it. It can be observed that blood glucose has a synergic 

influence on insulin secretion together with the tolbutamide effects. Instead, Fig. 16 shows the model 

that describes the influence of tolbutamide on the system managing glucose production and 

consumption according to the blood glucose levels. It starts from the same assumptions of the 

Minimal Model [13], except the third: 1) plasma glucose concentration influences inhibition and 

utilization of glucose itself, 2) insulin has a synergistic influence on these effects of glucose, and 3) 

the decrease of glucose levels within plasma only depends on insulin present in the remote 

compartment (lymph), or, like in Rostami-Hodjegan study, it depends on both remote (or peripheral) 

compartment and serum insulin. It can be observed that tolbutamide effect works in synergy with 

insulin action.  

 

 
Fig. 16. 

Model describing how the combined effect of insulin and tolbutamide on the feedback control of glucose 

production-consumption by blood glucose concentration [12]. 
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Fig. 17. 

The solid line represents the relationship between insulinergic effect of tolbutamide and fasting serum 

insulin, while the dashed line represents the relationship between the hypoglycemic effect of exogenous 

insulin and fasting serum insulin [12]. 

 

These models successfully characterized PK and PD of tolbutamide, confirming the previous 

knowledge about the drug. Moreover, it has been highlighted that the covariate insulin sensitivity has 

a relevant influence on the insulinergic effect of tolbutamide. Indeed, in Fig. 17 it is possible to see 

those subjects with a higher FSI tend to secrete more insulin, considering the drug concentration as 

constant. This variability in the tolbutamide effect due to insulin sensitivity is similar to the 

compensatory insulinergic response to glucose in insulin-resistant subjects. Another point of the study 

regards the extrapancreatic effects of tolbutamide, consisting in prolongation of insulin effect in the 

remote compartment (lymph). These effects may be due to tolbutamide itself, or also to the portal-to-

peripheral ratio of serum insulin [12].  

 

In conclusion of the bibliographic review, a summary table of the presented studies is shown below 

(Table 1). 
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Table 1. Systematic Bibliographic review summary. 

Authors, 
year Title Involved 

subjects Aim Model 

Hovorka 
et al., 
1998 [7] 

Pancreatic β-Cell Responsiveness 
during Meal Tolerance Test: Model 
Assessment in Normal Subjects and 
Subjects with Newly Diagnosed 
Noninsulin-Dependent Diabetes 
Mellitus 

16 healthy 
subjects 
16 newly 
diagnosed 
noninulin-
dependent 
DM 

Quantify β-
cells 
responsiveness 
in response to 
a meal 
tolerance test 
or OGTT. 

Two-compartments 
model of C-peptide 
secretion and kinetics 

Moller et 
al., 2011 
[8] 

Mechanism-based population 
modelling for assessment of L-cell 
function based on total GLP-1 
response following an oral glucose 
tolerance test 

healthy 
volunteers and 
T2DM 
patients 

Asses of L-
cells function 
based on GLP-
1 response to a 
standard 75 g 
OGTT. 

Composed by 2 sub-
models: a glucose-
insulin model and a 
GLP-1 secretion 
model. Implemeted 
with NONMEM VI 
software. 

Fang et 
al., 2013 
[9] 

Study reanalysis using a 
mechanism-based 
pharmacokinetic/pharmacodynamic 
model of pramlintide in subjects 
with type 1 diabetes 

25 male 
T1DM 
patients and 
healthy 
controls 

Describe the 
effects of 
pramlintide of 
postprandial 
glucose 
regulation in 
T1DM 
patients. 

Nonlinear mixed-
effects two-
compartments model of 
PK/PD of pramlintide. 
Built on NONMEM 
VII 

Hi et al., 
2015 
[10] 

Target-mediated 
pharmacokinetic/pharmacodynamic 
model based meta-analysis and 
dosing regimen optimization of a 
long-acting release formulation of 
exenatide in patients with type 2 
diabetes mellitus 

T2DM 
patients and 
healthy 
controls. 
Datasets from 
6 papers. 

Find the 
optimal 
regimen of 
release of 
exenatide ER 
for treatment 
of T2DM. 

Two parts: PK part 
with FPG and HbA1c 
compartments; PD part, 
with 4 transient 
compartments, an 
absorption 
compartment, a central 
and a peripheral 
compartment. 
Nonlinear mixed-
effects model built in 
Monolix. 

Bouazza 
et al., 
2016 
[11] 

Evaluation of the pharmacokinetics 
of glibenclamide tablet given, off 
label, orally to children suffering 
from neonatal syndromic 
hyperglycemia 

18 children 
with neonatal 
syndromic 
hyperglycemia 

Asses the 
capability of 
glibenclamide, 
administered 
orally, to 
hyperpolarize 
the β-cells 
membrane, 
permitting a 
normal insulin 
response. 

1-compartment model 
for the description of 
the data, a proportional 
error model for the 
residual variability and 
an exponential error 
model for the inter-
subject variability 
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Authors, 

year Title Involved 

subjects Aim Model 
Choy et 
al., 2016 
[5] 

Weight-HbA1c-insulin-glucose 
model for describing disease 
progression of type 2 diabetes 

181 obese 
T2DM 
patients 
treated with 
diet and 
exercise for 
67 weeks. 

Quantify the 
improvements 
in insulin 
sensitivity and 
overall 
homeostatic 
system, 
employing 
FPG, FSI and 
HbA1 as 
biomarkers of 
diabetes. 

Population model 
taking into account 
FPG, FSI, HbA1c (3 
transit 
compartments) and 
weight.  

Rostami-
Hodjegan 
et al., 
2020 
[12] 

Population-based modeling to 
demonstrate extrapancreatic 
effects of tolbutamide 

2 groups of 
healthy 
subjects, 
differing for 
insulin 
sensitivity. 

Investigate the 
PK and PD of 
tolbutamide 
(insulinergic) 
and its 
extrahepatic 
effects. 

PK/PD model with 
central, peripheral 
and remote effect 
compartments. 
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3. Population modelling approach for the study of insulin 

clearance in previous gestational diabetes 

3.1 Dataset 

Data relative to 141 subjects with an history of gestational diabetes mellitus (pGDM) and 41 healthy 

subjects (CNT) were provided by the Metabolic Unit of the CNR Institute of Neuroscience which has 

an agreement with the Department of Information Engineering of Università Politecnica delle 

Marche. The insulin-modified frequently sampled intravenous glucose tolerance test (IM-IVGTT) 

procedures were performed after an overnight fast. After baseline blood samples were collected, two 

intravenous administrations occurred through the antecubital veins of the subjects: dextrose (0,3 

g/kg), chemically equal to glucose, at time t=0 for half a minute, and insulin (4 mU/Kg/min), for 5 

minutes starting from t=20. Dosages were normalized according to the body weight (BW) of each 

subject. Blood samples for the measurement of glucose, insulin and C-peptide concentrations were 

taken at several time instants until 180 min. Insulin concentration was measured at minutes 0, 3, 4, 5, 

6, 8, 10, 14, 19, 22, 27, 30, 35, 40, 50, 70, 100, 140, 180 [4]. 

3.2 Assessment of insulin clearance through a mathematical model   

The model presented in this thesis is based on the model of Polidori et. al [4], and it provides a model-

based method for the estimation of hepatic and extrahepatic insulin clearance through plasma insulin 

and C-peptide profiles obtained from the insulin-modified frequently sampled intravenous glucose 

tolerance test.  

The model is shown in Fig. 18. It is a two-compartments model and it is based on the following four 

assumptions: 

1. The endogenous secreted insulin enters the portal vein traveling to the liver before reaching 

the systemic circulation. The insulin secretion rate (ISR) is obtained by deconvolution starting 

from C-peptide profiles [14].  

2. The rate of delivery of insulin from the systemic circulation to the liver trough the hepatic 

artery is equal to the product of plasma insulin concentration (P) and the assumed hepatic 

plasma flow (HPF) rate (whose value was 0.576 L/min/m2, from the literature [15]).  

3. Insulin clearance occurs both in the liver and in extrahepatic tissues, which includes kidney, 

skeletal muscles and adipose tissue. Extrahepatic clearance is assumed to be proportional to 

the plasma concentration. 
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4. Hepatic clearance is modeled using a linear function or a saturable function. Both are tested 

in each subject, and the one providing the best fit is kept. 

 

 
Fig. 18.  

Graphical representation of the mathematical model of Polidori et al. The HPF rate used in the equations is 

the combined plasma flow to the liver from the portal vein and the hepatic artery [4]. 

 

The equations and the parameters describing the model are as follows: 

 

𝐼𝑛𝑠𝑢𝑙𝑖𝑛 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑜 𝑙𝑖𝑣𝑒𝑟 (𝑝𝑚𝑜𝑙/𝑚𝑖𝑛): 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 = 𝐼𝑆𝑅 + 𝐻𝑃𝐹 ∙ 𝑃 

𝐻𝑒𝑝𝑎𝑡𝑖𝑐 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (𝑝𝑚𝑜𝑙/𝑚𝑖𝑛): 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 = 𝐹𝐸𝐿 ∙ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 

𝑆𝑎𝑡𝑢𝑟𝑎𝑏𝑒𝑙 𝑚𝑜𝑑𝑒𝑙 =  
𝑉𝑚𝑎𝑥 ∙ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦

𝐾𝑚 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦
 

𝐸𝑥𝑡𝑟𝑎ℎ𝑒𝑝𝑎𝑡𝑖𝑐 𝑖𝑛𝑠𝑢𝑙𝑖𝑛 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (𝑝𝑚𝑜𝑙/𝑚𝑖𝑛) = 𝐶𝐿𝑃 ∙ 𝑃 

 

where P represents the plasma insulin (pmol/L), ISR is the insulin secretion rate (pmol/min), HPF is 

the hepatic plasma flow rate (L/min) and CLP represents the extrahepatic insulin clearance (L/min). 

FEL is the hepatic fractional extraction (dimensionless), Vmax is the maximal hepatic degradation rate 
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(pmol/min), and Km is the hepatic insulin delivery rate at which 50% of maximal degradation occurs 

(pmol/min). Model-identified parameters were normalized by body weight (BW) for comparison 

across subjects. The differential equations for the linear (first equation) and saturable (second 

equation) assumptions are as follows: 

𝑉𝑃

𝑑𝑃

𝑑𝑡
= 𝐼𝐼𝑅 + (1 − 𝐹𝐸𝐿) ∙ 𝐼𝑆𝑅 − (𝐻𝑃𝐹 ∙ 𝐹𝐸𝐿 + 𝐶𝐿𝑃) ∙ 𝑃 

𝑉𝑃

𝑑𝑃

𝑑𝑡
= 𝐼𝐼𝑅 + 𝐼𝑆𝑅 − 𝐶𝐿𝑃 ∙ 𝑃 −

𝑉𝑚𝑎𝑥 ∙ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦

𝐾𝑚 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦
 

VP is the extrahepatic distribution volume for insulin (L) and IIR is the insulin infusion rate 

(pmol/min). In order to make possible the comparison with analogous measures of clearance obtained 

through other experimental methods, these two equations were used to calculate CLIV and CLportal, 

which respectively are the clearance from a model for an intravenous insulin infusion (as in 

hyperinsulinemic clamps) and the clearance from a model for a portal infusion of insulin (as in 

endogenous secretion). For linear model they are: 

𝐶𝐿𝐼𝑉 = 𝐶𝐿𝑃 + 𝐻𝑃𝐹 ∙ 𝐹𝐸𝐿 

𝐶𝐿𝑝𝑜𝑟𝑡𝑎𝑙 =
𝐶𝐿𝐼𝑉

1 − 𝐹𝐸𝐿
 

3.3 Model Implementation 

The implementation took place in Monolix. The implemented model is the model of Polidori et al. 

for the estimation of clearance parameters [4], described in chapter 3.2. Each subject has her own ID, 

Body weight (BW), height (h), body mass index (BMI), age, basal glucose (Gb) and body surface area 

(BSA) were used as covariates, while hepatic plasma flow rate (HPF), insulin secretion rate (ISR) 

and insulin infusion rate (IIR) were employed as regressors, and they represent the input of the model. 

Plasma insulin (P) is the observed variable. In the model the peripheral insulin clearance (CLP), the 

hepatic fractional flow rate (FEL) and the extrahepatic distribution volume for insulin (VP) are the 

variables which are estimated. ISR represents the endogenous insulin secretion from pancreatic β-

cells to the liver through the portal vein in response to the glucose infusion. ISR data was obtained 

by deconvolution of C-peptide profiles, and there is a value for each of the 180 min of measurements. 

Instead, IIR are the values of the exogenous infusion of insulin occurring from min 20 to min 25. In 

the rest of the time records the value of IIR is zero. HPF data were computed for each subject as the 

product of the hepatic plasma flow rate (equal to 0.576 L/min/m2 [4]) and BSA, which in turn was 

calculated as: 
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𝐵𝑆𝐴 = 0,016667 ∙ √𝐵𝑊 ∙ √𝐻 . 

All the parameters, variables and their measurements units are reported in Table 2. 

 

Table 2 – Model parameters summary. 

Abbreviation Parameter Measurement Unit Use in the Model 
BW Body Weight Kg continuous covariate 
h Height cm continuous covariate 
BMI Body Mass Index Kg/m2 continuous covariate 
age Age years continuous covariate 
Gb Basal Glucose pmol/L continuous covariate 
BSA Body Surface Area m2 continuous covariate 
HPF Hepatic Plasma Flow L/min regressor 
ISR Insulin Secretion Rate pmol/L regressor 
IIR Insulin Infusion Rate pmol/min regressor 
P Plasma Insulin pmol/L observation 
CLP Peripheral (extrahepatic) insulin clearance L/min estimated parameter 
FEL hepatic fractional extraction dimensionless estimated parameter 
VP Extrahepatic distribution volume L  estimated parameter 

 

 

3.4 Data Analysis 

Monolix can rather run single tasks at a time or all at once. They are: 

- POPULATION PARAMETERS. This first task estimates the population parameters 

through Stochastic Approximation Expectation-Maximization (SAEM) algorithm. The 

estimate considers an objective function. This algorithm consists of two phases: an 

exploratory phase and a smoothing phase, in which convergence is reached. 

- EBs. The individual parameters are estimated using the conditional mode, representing the 

most probable values among the individual distributions. 

- CONDITIONAL DISTRIBUTION. In this task the individual parameters estimation is 

based on the conditional distribution, representing the uncertainty of the individual parameter 

values. A Markov chain Monte Carlo (MCMC) algorithm is used for sampling during the 

computation of the conditional distribution. The individual estimates obtained with the 

conditional distribution are used in the Pearson’s test too. This is a statistical test aimed to 

spot covariates which should be added to the model. It measures the correlation between the 

random effect of each parameter and each continuous covariate. If some covariate is 

https://monolix.lixoft.com/tasks/ebes/
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categorical, the Pearson’s test is substituted with the ANOVA test, with the same purpose. If 

the p-value is particularly low, a correlation is spotted, and the corresponding covariate should 

be added to the model. Another statistical test which is performed is the Shapiro Wilk test, 

which permits to measure how much a distribution is normal. It may operate on distribution 

of random effects as well as distribution of individual parameters. If the p-value is particularly 

low, then the random effects are normally distributed. After the introduction of a covariate for 

a certain parameter, the of individual distribution normality of such parameter is tested 

through the Kolmogorov Smirnov test. Finally, Correlation test (t-test) is a statistical test 

measuring the correlations between random effects of the parameters.  

- STANDARD ERRORS. This is the task for the calculation of the Fisher correlation matrix 

and standard errors. In addition, the eigen values are computed, and the condition number is 

the ratio between the max eigen values and the minimum one. If the condition number is lower 

than 100, overparameterization does not occur; if it is comprised between 100 and 1000, there 

could be overparameterization; if the condition number is greater than 1000, 

overparameterization is probable. Two methods are proposed for it: linearization method or 

stochastic approximation method. After running this task, two additional columns appear 

aside the estimated population parameters: standard error (SE) and relative standard error 

(RSE%). 

- LIKELYHOOD. Since the SAEM algorithm does not explicitly compute the objective 

function, the LIKELYHOOD task is dedicated to this. Indexes as BIC (Bayesian Information 

Criteria) and AIC (Akaike Information Criteria) give information about the loss of 

information during the model processing. 

- PLOTs. Plots are generated.  

 

The employed procedure was: 

1. Set 0,5 and 0,5 as initial values of FEL and CLP in “Initial Estimates”. The initial value of VP 

is left equal to 1. These values are close to previous estimate obtained in our laboratory with 

different tools, and they will be used as starting values for the parameter’s estimation. The 

initial values of the standard deviation of random effects are set to 1, corresponding to the 

maximum initial dispersion of the parameter distribution, and then it will converge to a smaller 

value. Starting with this high variability, the algorithm will explore a wider domain of values 

before converging. For all the simulations, the option MLE (Maximum Likelihood 
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Estimation) was selected into the “Initial Estimates” options. In this way the estimates will 

depend on the mean and the variance of the involved distributions. 

2. Run all tasks. We chose to consider the individual estimates computed according to the 

conditional mode, since it refers to the most probable value, differently from the estimates 

based on the conditional mean. Moreover, stochastic approximation method was selected for 

all the simulations in this study. 

3. Select Covariates and Correlations in the individual model. It is possible to choose which 

covariates are to be included into the model looking at the Pearson’s test, the ANOVA test, 

the Fisher Correlation Matrix and the corresponding plots. Instead, the correlations can be 

spotted consulting the results of the Correlation test (t-test). Visualization of which covariates 

and correlations are suggested for the model is done in the section called “proposed model”. 

In cases of multiple covariates and correlations we performed a selection on the basis of 

physiological and statistical considerations (i.e., observation of the standard errors, correlation 

matrices and condition numbers). Run all tasks. 

The previously mentioned methodology has been applied by considering: i) the complete dataset 

(OVP, overall population) and including the group (CNT, pGDM) as a categorical variable; ii) the 

CNT and pGDM datasets separately.  

For each dataset, two estimates have been performed in Monolix. The intermediate estimates provided 

indications about correlations and covariates to add to the model to improve the quality of final 

estimates. 

Once all the results were obtained, statistical tests were performed on the distributions of individual 

parameters in matlab, through the two-sample Student’s t-test (function “ttest2”). Sets was considered 

statistically different for p-values < 0,05. The sets which were employed for the t-test are the 

individual estimates in conditional mode. Each distribution was tested with the Shapiro-Wilk test to 

evaluate if they were normal or not. In case of not normal distributions, the log-transformation of 

them was given as input for the t-test. Instead, if the individual estimates were normally distributed, 

no transformation was needed. With the Student’s t-test it is possible to assess if two sets of data are 

statistically different or not. 
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4. Results  

Fig. 19 shows an example of the individual fits for some subjects related to the CNT group.  

 

 
Fig. 19. 

Individual fits of plasma insulin concentration (observed variable). Blue dots represent the observed data, 

while the purple curves represent the fits of the data. It is possible to observe two peaks, one relative to the 

first glucose infusion (at time zero), and the second due to the second insulin infusion (from min 20 to min 

25). 

Covariates and correlations suggested in OVP and CNT/pGDM datasets are reported in Table 3. Of 

note, no covariate, neither correlation, was considered for the estimates using CNT dataset. This 

means that, for CNT estimates, the final run coincides with the intermediate run. As an example, 

correlation between the parameter CLP and the covariate Gb is reported in Figure 20. 
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Table 3. Results of the correlation and covariate analysis. Correlations and covariates chosen for being 

considered in the final models are highlighted in bold. 

Dataset Correlation p-value Covariates p-value 

OVP FEL, VP 0,007 
group (for 

FEL) 0,022 

age (for CLP) 0,027 

CNT - - 
BSA (for FEL) 0,007 
BW (for FEL) 0,007 

pGDM CLP, VP 0,005 Gb (for CLP) 0,007 
 

 

 

Fig. 20. 

Individual parameters vs covariates. It is possible to observe the presence of a correlation between the 

parameter CLP and the covariate Gb. 
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Table 4 reports the values of the estimates of population parameters obtained through SAEM 

algorithm. Relative standard errors and condition numbers are displayed too.  

 

Table 4. Estimated population parameters in the intermediate phase (before setting correlations and 

covariates) and in the final phase, with their correspondent relative standard errors. 

Dataset Parameter 
Intermediate 

Population estimate 
(RSE%) 

Condition 
number 

Final population 
estimate (RSE%) 

Condition 
number 

OVP 
FEL 47,7 (2,3) 

2,4 
39,3 (4,7) 

24 CLP 0,46 (5,39) 0,59 (5,15) 
VP 3,06 (7,91) 3,34 (7,35) 

CNT 
FEL - 

- 
29,7 (13,6) 

6,9 CLP - 0,91 (16,00) 

VP - 3,76 (17,70) 

pGDM 
FEL 42,8 (2,7) 

6,6 
44,7 (2,7) 

110 CLP 0,54 (5,16) 0,32 (26,00) 
VP 3,34 (11,4) 3,21 (11,10) 

Legend: “-“ is used to express that intermediate and final estimates are equal for CNT dataset, due to the fact 

that no correlations or parameters were considered for it. 

 

Individual estimates obtained from the analysis of OVP dataset and CNT/pGDM dataset are reported 

in Table 5. 

 

Table 5. Individual estimates for hepatic and extrahepatic insulin clearance in OVP and CNT/pGDM datasets 

Datasets Parameters CNT pGDM p-value  

OVP 
FEL(%) 43,5 [11,6] 47,5 [9,5]* 0,01 

CLP(L/min) 0,61 [0,28] 0,63 [0,27] 0,11 

CNT/pGDM 
FEL(%) 33,0 [10,8] 47,0 [12,8] <0,001 

CLP(L/min) 1,04 [0,33] 0,50 [0,15] <0,001 
Data are reported as median [interquartile range]. * statistical significance, p<0,05. 
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5. Discussion and Conclusions 

This study proposed a population modelling approach for the study of insulin clearance in previous 

gestational diabetes. Estimation of population parameters quantifying hepatic (FEL) and extrahepatic 

(CLP) insulin clearance was provided for healthy women and women with a history of gestational 

diabetes by exploiting the model proposed by Polidori et al [6] and implementing it in the Monolix 

software. Monolix is a software providing simple solution for non-linear mixed effects modeling for 

pharmacometrics. It is based on the SAEM algorithm and provides robust, global convergence even 

for complex PK/PD models. The implemented Polidori model is a simple model described by a single 

differential equation with linear dynamics (even though the Polidori model has also a formulation 

with nonlinear dynamics which was not considered in this study). 

As it is possible to see in Table 3, the covariate “group”, used for labeling the two sub-populations 

CNT and pGDM within OVP dataset, was suggested as covariate for FEL with a p-value of ≃0,02. 

This result confirmed that the used population modelling approach was able to distinguish the two 

groups among the overall population OVP thus implying that the history of gestational diabetes may 

play a role. As shown in Table 3, Monolix suggested additional correlations and covariates for the 

model, but we decided to only include some of them, according to physiological and statistical 

reasons, like the observation of the standard errors, correlation matrices and condition numbers given 

by each simulation. 

Looking at the population parameters (Table 4), while the estimates relative to VP are quite similar in 

the estimation performed considering different datasets, there is a certain variability for the estimates 

of the clearance parameters FEL and CLP. In fact, with reference to the estimates obtained by the CNT 

and pGDM datasets, women with an history of gestational diabetes showed a CLP which is almost 

three times smaller with respect to control group (0,32 L/min vs 0,91 L/min), indicating a decreased 

extrahepatic insulin clearance in pGDM population. In the other hand, the population estimate of FEL 

was higher for pGDM population with respect to the control group, indicating an increased hepatic 

insulin clearance (29,7 % vs 44,7 %). Of note, population estimates obtained considering OVP dataset 

lay in between those obtained with the separate datasets. 

 

In the pGDM dataset the condition number of the final estimation was equal to 110, thus further 

investigation is required to check the occurrence of overparameterization, which could be present for 
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values of the condition number comprised between 100 and 1000. However, the RSEs (Table 4) and 

the correlation matrix (not shown) relative to the last pGDM simulation provided reliable results. 

Thanks to these factors, together with the fact that this critical condition number is just slightly larger 

than 100, it is reasonable to conclude that no overparameterization occurred throughout the 

simulations. 

When considering the individual estimates and the difference among groups the FEL resulted 

significantly different for the estimations performed on the OVP and on the separate (CNT/pGDM) 

dataset. Instead, significant differences between the two groups were detected for CLP only when 

considering the separate datasets. 

In conclusion, the proposed population modelling approach showed its capability to provide 

population parameter estimates related to hepatic and extrahepatic insulin clearance. Hepatic insulin 

clearance may be affected by the presence of a history of gestational diabetes, whereas extrahepatic 

insulin clearance requires further investigation in wider populations. 

  

https://context.reverso.net/traduzione/inglese-italiano/throughout+the+course+of
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