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Abstract

Atrial fibrillation (AF) is the most common sustained supraventricular arrhythmia
caused by a dysfunction of the sinus atrial node, which is no longer able to guide
atrial depolarization and, consequently, ventricular depolarization. As a result of this,
atrial contractility is lost causing an inability to completely empty blood from atrial
appendage leading to the risk of clot formation and subsequent thromboembolic
events.
The ECG analysis represents the most well-established noninvasive technique used
to detect atrial fibrillation. Most of the works on the analysis of ECG records for
AF detection are based on heart rate variability, i.e., on the R-R intervals, even if,
the most relevant information in atrial arrhythmias is contained in the fibrillatory
waves (F-waves) which replace the ordinary P-waves, related to the depolarization
of the atria. Due to their stochastic shapes and little amplitude, the process of
detection, extraction and visual inspection by clinicians of the F-waves represents a
really challenging task. Classical techniques used to carry out these tasks involve
the use of different signal processing principles such as principal component analysis;
however, recently, deep neural networks such as 1D convolutional neural networks
(CNNs), achieved high results in feature extraction and filtering of biomedical signals.
For this reason, in this thesis, a two-stage deep learning method based on 1D CNNs
and multipath modules is proposed to extract F-waves signals from 1-second length
windows of recorded ECG of patients affected by atrial fibrillation. The system was
trained and tested on a reference database, available online, for validation of methods
of extraction of atrial fibrillatory waves in the ECG, which consists of records of
simulated AF 12-lead ECG signals that are different combinations of real F-waves
and QRST complexes.
According to the results related to the testing dataset, in terms of evaluation metrics
analyzed, the performances of the implemented method are really promising, with a
mean correlation between the output and the target signal of 0,82 and mean values
of the sum of square distances and maximum absolute distance of 0,05 au and 0,03
au, respectively. Moreover, also the mean absolute errors of the dominant frequencies
and the amplitudes computed between the output and the target signals are low,
with values of 0,05 Hz and 0,01 µV, respectively. To our knowledge, no other work
exists in the literature which employs deep learning algorithms to extract F-waves
from ECG signals of AF patients. For this reason, also according to the promising
results obtained, this work can be considered a forerunner for this branch of research.
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Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting roughly
33.5 million people worldwide and its prevalence is expected to increase significantly
in the coming years.
AF is caused by a dysfunction of the sinus atrial node, which is no longer able to
guide atrial depolarization and, consequently, ventricular depolarization. As a result
of this, atrial contractility is lost causing an inability to empty blood from atrial
appendage leading to the risk of clot formation and subsequent thromboembolic
events.
Since the pathophysiological mechanisms causing and maintaining AF are still not
completely understood, various types of noninvasive techniques have been developed
to better understand the mechanisms. In addition, the lack of a comprehensive
understanding of its pathological mechanism, made is timely diagnosis becoming a
problem . People often miss the optimal treatment time because the early stages
of atrial fibrillation are usually paroxysmal and asymptomatic. Therefore, the
development of an automatic atrial fibrillation detection system, to provide accurate
and reliable diagnostic information as early as possible, is of great significance for
improving the quality of treatment and reducing the further deterioration of the
patient’s health.
The ECG analysis represents the most well-established noninvasive technique used
to detect atrial fibrillation. Even if most of the works on the analysis of ECG
records for AF detection are based on heart rate variability, i.e., on the R-R intervals,
recently the attention has been directed towards atrial fibrillatory waves (F -waves)
and their characterization. In episodes of AF, the F- waves replace the ordinary P-
waves related to the depolarization of the atria. F-waves can have different shapes,
amplitude, and duration in every patient and, additionally, their amplitude is low
and generally superimposed by the QRS complex. For these reasons, for clinicians,
detecting F-waves by visual inspection is a challenging task.
Recently, machine learning techniques, and in particular deep neural networks,
achieved high results in the evaluation and classification of biomedical images and
signals and have started to be used to aid in the process of diagnosis and treatment of
patients and augmenting physicians’ capabilities. Especially, 2D convolutional neural
networks (CNN) have achieved great success in the field of computer vision research
and are currently widely used in image processing tasks due to their unique ability
to capture position and translation invariant patterns and thus extract features from
complex data and classify them. This may not be a viable option in numerous
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applications over 1D signals, such as ECG, especially when the training data is scarce
or application-specific. To address this issue, 1D CNNs have recently been proposed
and immediately achieved state-of-the-art performance levels in several applications
such as personalized biomedical data classification and early diagnosis, structural
health monitoring, etc...
In this thesis, a two-stage deep learning method based on 1D CNNs and multipath
modules is proposed to extract F-waves signals from recorded ECG of patients
affected by atrial fibrillation. The performances of the method were evaluated in
terms of the most used signal evaluation metrics.
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Chapter 1

Clinical and Technical Background

1.1 Electrical event of the heart

1.1.1 Introduction

Even if the cardiac muscle shares a few characteristics with both skeletal muscle and
smooth muscle, it has a unique property known as autorhythmicity. This is related
to its ability to initiate an electrical potential at a fixed rate that spreads rapidly
from cell to cell to trigger the contractile mechanism. Although cardiac muscle has
autorhythmicity, heart rate is modulated by the endocrine and nervous systems.
There are two major types of cardiac muscle cells:

• myocardial contractile cells: 99 % of the cells in the atria and ventricles. They
conduct impulses and are responsible for contractions that pump blood through
the body.

• myocardial conducting cells: 1 % of the cells in the atria and ventricles that
form the conduction system of the heart. Except for Purkinje cells, they are
generally much smaller than the contractile cells and have few of the myofibrils
or filaments needed for contraction. Myocardial conduction cells initiate and
propagate the action potential (the electrical impulse) that travels throughout
the heart and triggers the contractions that propel the blood.

Each embryonic heart cell can generate its own electrical impulse followed by con-
traction. When two independently beating embryonic cardiac muscle cells are placed
together, the pace is set by the cell with the higher inherent rate, and the impulse
spreads from the faster to the slower cell to trigger a contraction. As more cells
are joined together, the fastest cell continues to assume control of the rate. A
fully developed adult heart maintains the capability of generating its own electrical
impulse, triggered by the fastest cells, as part of the cardiac conduction system.
The left and the right sides of the heart share the same electrical system for stimu-
lation and control. The components of the cardiac conduction system (Figure 1.1)
include the sinoatrial node, the atrioventricular node, the atrioventricular bundle,
the atrioventricular bundle branches, and the Purkinje cells.
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Figure 1.1: Conduction System of the Heart.

1.1.2 Sinoatrial Node

Normal cardiac rhythm is established by the sinoatrial (SA) node, a specialized
clump of myocardial conducting cells (modified cardiocytes) located in the superior
and posterior walls of the right atrium close to the orifice of the superior vena cava.
The SA node is known as the pacemaker of the heart since generates the rhythmic
pulse (sinus rhythm, or normal electrical pattern) followed by contraction of the
heart through an action potential, i.e., an electrochemical signal that propagates as a
travelling wave along the neurons. This impulse spreads from the SA node throughout
the atria through specialized internodal pathways, to the atrial myocardial contractile
cells and the atrioventricular node.
The internodal pathways are made of three bands (anterior, middle, and posterior)
that directly link the SA node to the next node in the conduction system, the
atrioventricular node. The impulse takes approximately 50 ms (milliseconds) to
travel between these two nodes. The relative importance of this pathway has been
debated since the impulse would reach the atrioventricular node simply following
the cell-by-cell pathway through the contractile cells of the myocardium in the
atria. Moreover, there is also a specialized pathway called Bachmann’s bundle or
the interatrial band that conducts the impulse directly from the right atrium to
the left atrium. Regardless of the chosen pathway, when the impulse reaches the
atrioventricular septum, the connective tissue of the cardiac skeleton prevents its
dispersion into the ventricular myocardial cells, except for the atrioventricular node.
This electrical event, that generates the wave of depolarization, is the trigger for
muscular contraction of the atria. The wave of depolarization begins in the right
atrium, and the impulse spreads from the superior portions of both atria and then
down through the contractile cells, efficiently pumping blood into the ventricles.
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1.1.3 Atrioventricular Node

The atrioventricular (AV) node is a second clump of specialized myocardial conductive
cells, located in the inferior portion of the right atrium within the atrioventricular
septum. The septum prevents the impulse from spreading directly to the ventricles
without passing through the AV node. There is a critical pause before the AV node
depolarizes and transmits the impulse to the atrioventricular bundle. This delay in
transmission is partially related to the small diameter of the cells of the node, which
slows the impulse, and also based on the fact that the conduction between nodal
cells is less efficient than between conducting cells.
For these reasons, the impulse takes approximately 100 ms to pass through the node.
This allows the atrial cardiomyocytes to complete their contraction that pumps blood
into the ventricles before the impulse is transmitted to the cells of the ventricle itself.
With extreme stimulation by the SA node, the AV node can transmit impulses
maximally at 220 per minute. This establishes the typical maximum heart rate in a
healthy young individual. Damaged hearts or those stimulated by drugs can contract
at higher rates, but at these rates, the heart can no longer effectively pump blood.

1.1.4 Atrioventricular Bundle, Bundle Branches and Purkinje Fibers

Arising from the AV node, the atrioventricular bundle, or bundle of His, proceeds
through the interventricular septum and then divides into two atrioventricular bundle
branches, commonly called the left and right bundle branches. The left bundle
branch has two fascicles and supplies the left ventricle, while the right bundle branch
supplies the right ventricle. Since the left ventricle is much larger than the right, the
left bundle branch is also considerably larger than the right. Both bundle branches
descend and reach the apex of the heart where they connect with the Purkinje fibers.
The impulse takes approximately 25 ms to reach them.
The Purkinje fibres are additional myocardial conductive fibres that spread the
impulse to the myocardial contractile cells in the ventricles. They constitute a more
elaborate network in the left ventricle than in the right. They extend throughout
the myocardium from the apex of the heart toward the atrioventricular septum and
the base of the heart. The Purkinje fibres have a fast inherent conduction rate, and
the electrical impulse reaches all the ventricular muscle cells in about 75 ms. The
contraction, as the electrical stimulus, begins at the apex and travels toward the
base of the heart. This allows the blood to be pumped out of the ventricles and into
the aorta and pulmonary trunk.
The total time from the initiation of the impulse in the SA node until the depolariza-
tion of the ventricles is approximately 225 ms [1]. Figure 1.2 shows the complete
cardiac conduction cycle, from the initiation of the pulse in the SA to its diffusion
throughout the atria and ventricles.

5



Chapter 1 Clinical and Technical Background

Figure 1.2: Cardiac conduction cycle.

1.1.5 Electrical event in pathological conditions

The normal electrical conduction system of the heart allows electrical impulses
generated by the heart’s pacemaker (the sinoatrial node) to spread to and stimulate
the muscular layer of the heart (myocardium) in both the atria and the ventricles.
Stimulation of the myocardium allows its contraction and, if this occurs in an orderly
manner, this permits the blood to be pumped to the body. A normal heartbeat
consists of a sequential contraction of atria followed by ventricles in a series of
cardiac cycle events. The succession of 3 such regular heartbeats displaying identical
waveforms leads to a steady rhythm.
Abnormal heart rate or rhythm, which is not physiologically justified, is known as
arrhythmia. Arrhythmias are almost always pathological except for sinus arrhythmia,
which is physiological. All pathological arrhythmias can be further classified based on
heart rate into tachyarrhythmia (fast), bradyarrhythmia (slow), or tachy-brady (fast-
slow) arrhythmia. All tachyarrhythmia originating above the ventricles, including
atria and atrioventricular node (AV node), are grouped under supraventricular
tachycardia (SVT). [2] Examples of SVT include atrial flutter, atrial fibrillation (AF),
atrioventricular nodal reentrant tachycardia (AVNRT), also known as paroxysmal
supraventricular tachycardia (PSVT), atrioventricular reentrant tachycardia (AVRT),
and multifocal atrial tachycardia (MAT).[3]
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1.2 Electrocardiography

1.2 Electrocardiography

1.2.1 Introduction

By means of the electrocardiogram (ECG), a measure of the changes in the electrical
activity of the heart over time, it is possible to obtain a vision of the structure and
functions of both healthy and diseased hearts. Over the years, the use of ECG has
become a standard of care in cardiology, particularly for the detection of arrhythmias
and acute myocardial infarction.
During the cardiac cycle, the heart contracts in response to a travelling electrical
impulse in the form of action potentials that move through the cells of the atria and
ventricles. According to the latter, at each stage of the cardiac cycle, there will be
one part of the heart tissue that is depolarized and another part, at rest, that is
polarized. This results in a charge separation, or dipole, which causes a fluctuating
electric field throughout the body that can be detected via electrodes attached to
the skin.
The use of electrodes on the surface of the skin to detect the voltage of this electrical
field is what the electrocardiogram provides. The intensity of the voltage detected
depends on the orientation of the electrodes with respect to that of the dipole ends.[4]
An ECG track can be obtained using a series of different positions or configurations
of the electrodes (unipolar, bipolar, modified bipolar) that, however, have been
standardized by universal application of certain conventions.
There are mainly three types of ECG recordings:

• Rest ECG: patients are simply required to lie down or sit up for the duration
of the test which takes about 5 to 10 minutes. This is the most common type
of ECG and one of the easiest to complete. The results recorded are typically
reflective of the heart at rest.

• Exercise ECG, also called stress test: this test is done in controlled environments
with the patient that walks on a treadmill or pedals on a stationary bike for
about 10 to 20 minutes gradually increasing the intensity of the exercise. This
ECG monitors the heart’s capabilities and activity under physically demanding
conditions, such as exercise.

• Holter monitor: this is a portable ECG used when there is the need to be
monitored for an extended period. The Holter monitor may need to be worn
for 24-72 hours, and sometimes up to 14 days to record any irregularities that
may not be picked up during shorter ECG tests. To accurately record the
heart’s activity during this period, these devices can continuously record ECG
and disperse the accumulated heat.
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1.2.2 Device

Functionally, the electrocardiograph can be divided into 6 blocks: ECG acquisition,
ECG signal processing, real-time ECG display, automated ECG interpretation,
storage, and transmission of the ECG reports. Figure 1.3 shows a typical ECG
machine.

Figure 1.3: ECG acquisition device.

The ECG signal is acquired through the patient module, made of a microprocessor,
an analog application-specific integrated circuit, 10-lead wires connected to the patient
using adhesive electrodes, and a cable back to the main part of the cardiograph.
The surface ECG is a low amplitude signal recorded in the presence of significant
interference, so great care is necessary to obtain a quality result. The analog signal
is filtered, amplified by a gain of 1000, and converted to a digital signal to allow
computer processing. Note that careful attention to skin preparation and electrode
adhesion has a large impact on reducing artifacts and interference.
The interference is actively controlled by the right leg drive system. This removes the
interference by using a negative feedback loop in which a small current is driven into
the right leg opposite to the common-mode signal until the measured one has been
reduced as much as possible. Generally, the common-mode interference is dominated
by the power line signal, with a frequency of 50 or 60 Hz. If the common-mode
interference were a pure sine wave (the form of the signal in AC power), the right leg
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drive system would output the opposite signal to delete the original common-mode
sinusoid.
Another important part of the ECG device is the leads-off indication system. This
warns the clinician when a lead wire or lead wires are either not connected or poorly
connected to the patient, situations that will result in a poor-quality signal being
recorded. The quality of the connection to the patient can be expressed as electrical
impedance (i.e., the resistance to the flow of electrical current). When a lead is off,
the resistance is infinite, so no current can flow. Special circuitry in the cardiograph
seen in Figure 1.4 is devoted to measuring the resistance between the lead wires to
assess the quality of the patient connection.[5]

Figure 1.4: Schematic diagram of the impedance measurement used for leads-off
indication.

Together with the patient module, there is the part devoted to the real signal
pre-processing and registration. A traditional hospital electrocardiograph presents a
main processor, real-time printer, real-time display, and a part to transmit the ECG
for long-term storage.
Typical real-time ECG processing includes filtering, buffering, and heart rate detec-
tion. Many ECG applications use CPU time and computer resources in real-time so
that the ECG signal processing can only use a fraction of what is available. That
constraint does not exist for the traditional diagnostic ECG report because real-time
processing is not required.

1.2.3 12-lead ECG

Commonly, 10 electrodes attached to the body are used to form the 12 ECG leads,
with each lead measuring a specific electrical potential difference.
The three most used lead positions are referred to as lead I, II and III and form the
so-called Einthoven triangle. These are the bipolar limb leads since they are placed
in the two upper limbs and the left lower limb (at each vertex of the triangle). A
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single ECG record (lead I, II, or III) is measured along the corresponding side of the
triangle using the electrodes at both ends (Figure 1.5). Considering LA the voltage

Figure 1.5: Einthoven’s Triangle.

of the electrode on the left arm, RA the one on the right arm and LL the one on
the left leg, the voltage of the described lead can be computed using the following
equations:

I = LA − RA (1.1)

II = LL − RA (1.2)

III = LL − LA (1.3)

The net dipole occurring in the heart at any step of the cardiac cycle is detected by
each lead (I, II, and III) in a different way because of the different orientations of
each lead set relative to the dipole in the heart. Each of these lead placements can
be thought of as viewing the electrical dipole from three different directions: lead I
from the top, lead II from the lower right side of the body, and lead III from the
lower left side, all looking at the heart in the frontal plane.
Three other leads use the limb electrodes in a way that each of these uses a pair
made by one limb electrode and a "neutral reference lead", known as Wilson’s central
terminal (VW ). These are referred to as the augmented unipolar limb leads. The
voltage at VW is produced by averaging the measurements from the electrodes RA,
LA, and LL as follows:
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VW = 1
3 (RA + LA + LL) (1.4)

The voltage recorded between the left arm limb lead and the neutral reference lead is
called lead aVL; similarly, the right arm limb lead is aVR, and the left leg lead is aVF.

aV R = RA − 1
2 (LA + LL) = 3

2 ( RA − VW ) (1.5)

aV L = LA − 1
2 (RA + LL) = 3

2 ( LA − VW ) (1.6)

aV F = LL − 1
2 (RA + LA) = 3

2 ( LL − VW ) (1.7)

Together with leads I, II, and III, augmented limb leads aVR, aVL, and aVF form
the basis of the hex axial reference system, which is used to calculate the heart’s
electrical axis in the frontal plane.
The last 6 are the chest leads, also known as the precordial leads. These leads are
unipolar, and they measure the electrical activity of the heart in the traverse plane,
instead of the frontal plane. For them, the neutral reference lead is "created," using
all 3 limb leads connected to the negative ECG lead, which puts it in the center of
the chest (Wilson’s central terminal). The 6 positives, or "exploring", electrodes are
labelled from V1 to V6.(Figure 1.6).

Figure 1.6: Precordial leads and Wilson’s central terminal.

The 3 bipolar limb leads, 3 unipolar limb leads, and 6 precordial leads make up
the 12-lead ECG.[4]
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1.2.4 ECG signal

A recorded ECG represents the detected change in voltage of the electrical activity
of the heart, which is normally displayed as millivolts (mV), with respect to time,
expressed as seconds. A typical lead II ECG waveform shows a series of peaks and
valleys that correspond to ventricular or atrial depolarization and repolarization.
The cardiac cycle begins with the firing of the sinoatrial node in the right atrium.
This firing is not detected by the surface ECG since this signal does not have
enough amplitude to be recorded with distal electrodes and it dissipates through the
conductive medium. The atria then depolarize giving rise to the P-wave of around
80-100 ms in duration. As the P-wave ends, the atria are completely depolarized and
begin their contraction. The signal then returns to baseline, and action potentials
(not large enough to be detected) spread to the atrioventricular node and bundle of
His.
Then, roughly 160 ms after the beginning of the P-wave, the right and left ventricles
begin to depolarize, resulting in the QRS complex, which represents the beginning of
ventricular contraction, which is around 80 (60- 100) ms in duration. Simultaneous
with the QRS complex, the atria are repolarizing. The effect of this global atrial
repolarization is sufficiently masked by the much larger amount of tissue involved in
ventricular depolarization and, thus, is not normally detected in the ECG. During
ventricular contraction, the ECG signal returns to baseline.
Then the ventricles, after contraction, repolarize, giving rise to the T wave. Note
that the T-wave is normally the last-detected potential in the cardiac cycle and so
followed by the P-wave of the next cycle. Figure 1.7 shows the recorded ECG of a
healthy subject.
Sometimes also the so-called U-wave is detected after the T-wave, with the same
polarity as this latter (positive deflection). This one has a much shorter amplitude
and usually ascends more rapidly than it descends (which is the opposite of the
T-wave). Even if its presence is not fully understood, it is considered by some to
be caused by the late repolarization of the Purkinje system.[4] The frequency of an
ECG signal is generally between 0.5 Hz and 100 Hz.[6]

1.2.5 Noise and Artifacts

ECG signal conveys a large amount of information about the structure of the heart
and the function of its electrical conduction system. However, this information
often interfered with noise generated during measurement which may lead to wrong
interpretation. The noise can be divided into continuous and transient noise.
The continuous noise is associated with signals coming from all the leads with a
similar temporal distribution but different intensity levels.
These noises dominate different frequency bands. The low-frequency range signifies
baseline wander (BW), the medium frequency signifies the power line interference
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Figure 1.7: Electrocardiogram for a healthy subject during one cardiac cycle.

(PLI), and the high-frequency components signify the electromyography (EMG)
noise.[7]

• Low frequency: Baseline Wander (BW) noise
Baseline wander is a low-frequency noise component present in the ECG signal
which is especially present in the exercise ECG and during ambulatory/Holter
monitoring. This noise is mainly due to respiration, and body movement,[8]
which affect the base x-axis of the ECG signal making it appear to ‘wander’
or move up and down rather than be straight. The drift of the baseline with
respiration can be modelled as a non-stationary sinusoidal signal of time-varying
amplitude and frequency of respiration. That is, the effect of baseline drift
can be considered as an amplitude modulation to the ECG signal.[9] In other
words, BW noise causes a shift of the entire signal from its normal base, which
normally is a zero-mean signal (Figure 1.8). The frequency range of baseline
wander is usually less than 1.0 Hz, but this range could be enlarged in real
situations.

• Medium frequency: Power-line interference (PLI) noise
The power-line interference represents a common noise source in the ECG as
well as in any other bioelectrical signal recorded from the body surface. This
noise is related to the electromagnetic susceptibility of the cables transporting
signals and is characterized by a 50 or 60 Hz sinusoidal interference within
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Figure 1.8: ECG signal with baseline wander artifact.

the ECG signals’ frequency range, sometimes accompanied by harmonics. PLI
noise is classified as a narrow band and can prevent the clinician from analyzing
the ECG signal exactly, mainly due to the low-amplitude waveform making
P-waves and T-waves unidentifiable boundary regions (Figure 1.9).[7]

Figure 1.9: ECG signal with power-line interference.

• High frequency: Electromyography (EMG) noise
The electromyographic (EMG) noise is caused by the detection in the ECG
signal of the contraction of muscles different from the heart. When people move
their bodies, muscles around electrodes will contract, generating depolarization
and repolarization waves that will be detected by the electrodes and then
appear in the ECG signals. The EMG signal is completely stochastic, and its
amplitude depends on the intensity and frequency of the muscles’ contraction
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(Figure 1.10).[7] EMG noise consists of a maximum frequency of 10 KHz.

Figure 1.10: ECG signal with EMG noise.

On the other hand, the transient noise typically lasts for a short time and is
categorized into white Gaussian noise (WGN). Since its instantaneous value indicates
Gaussian distribution and power, its spectral density is distributed uniformly.[7] Ex-
amples of this type of noise are patient electrode motion artifact and instrumentation
noise. Different from continuous noise, this cannot be defined in terms of frequency.

• Patient electrode motion artifact
Motion artifact is the noise that results from the motion of the electrode in
relation to the patient’s skin. This artifact is usually the most difficult type of
noise to detect because its spectrum completely overlaps that of the ECG, and
its morphology often resembles that of P, QRS, and T-waves (Figure 1.11).[10]
Therefore, it is hardly detected when only using the ECG signal.

Figure 1.11: ECG signal with electrode motion artifact.

• Instrumentation noise
The electrical device related to the ECG signal also contributes to noise. All the
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components in equipment like the electrodes, cables, amplifiers, and converters
are the major sources of instrumentation noise. This noise cannot be eliminated
and can only be reduced by applying high-quality equipment and a well-designed
circuit.[7]

1.2.6 Filtering techniques

The usual pre-processing stage of the ECG signal consists of using filters to attenuate
noises and artifacts components while preserving the morphological characteristics
important in the diagnostic interpretation of the signal. Different filters can be
employed, according to the type of noise that needs to be removed:

• Finite impulse response (FIR) filters:
In FIR design, the output of the filter is the weighted sum of past input values
which is finite and can be represented by Eq. 1.8:

Y [n] =
M∑︂

k=0
bkx(n − k) (1.8)

where x [n] denotes the input signal, bk are the filter coefficients and Y [n] is
the output response.[10]
FIR filters are simple and stable filters. The window method is the simplest FIR
filter design method. Here all frequencies below the cut-off frequency are passed
with unity amplitude and others are blocked. The different windows used are
the Rectangular Window, Hanning window, Hamming window, and Blackman
window. Using these windows, high pass filters and low pass filters are designed
with cut-off frequencies of 3 Hz and 100 Hz to remove baseline wander (BW)
noise and electromyography (EMG) noise respectively.[8] Band-stop FIR filters
can be used also to remove PLI noise. In Figure 1.12 are shown examples of
frequency response of ideal FIR filters.

Figure 1.12: Frequency response of ideal FIR filters.
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• Infinite impulse response (IIR) filters:
IIR filter has infinite impulse response and acts like a feedback loop which never
terminates when a single impulse is applied to it. It has both zeros and poles
in the system. IIR filters may not be stable because of the infinite response.
IIR filter can be mathematically expressed by Eq. 1.9:

Y [n] =
N∑︂

i=0
aix [n − i] +

N∑︂
j=1

bjY [n − j] (1.9)

where N is the filter’s order, ai and bj are the filter coefficients and the output
depends on past inputs and past outputs.[11]
The stationary power line interference can be removed using a notch IIR filter.
If a notch filter has a higher attenuation level, it will be able to remove PLI
noise to a greater extent from the ECG signal, but practically it eliminates
power line interference at 50 Hz or 60 Hz frequency.[8]

• Adaptive filters:
An adaptive filter can adapt to the change in the signal over time. An adaptive
filter has two input signals: one is the base input signal and the other is the
reference signal. The filter compares them and calculates the error. The error
is then minimized iteratively based on some objective function. Some popular
algorithms for adaptive filters are Least Mean Square (LMS), Normalized Least
Mean Square (NLMS) and Recursive Least Squares (RLS).[11] Figure 1.13
reports the block diagram of an adaptive filter, where x [n] is the input signal,
d [n] is the reference signal and e [n] is the computed error.

Figure 1.13: Block diagram of an adaptive filter.

The advantages of the adaptive filter method are that the filtering response
is fast, and the residual errors are small, while its main drawback is that
this method requires reference signal (either signal or noise characteristics)
information for the effective filtering process.[8] Adaptive filters can be employed
to remove motion artifacts and power line noise.
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1.3 Atrial Fibrillation

1.3.1 Introduction

Atrial fibrillation (AF) is a pathology that generates an irregularly irregular heart
rhythm. AF is the most common sustained supraventricular arrhythmia [12] caused
by a dysfunction of the sinus atrial node, which is no longer able to guide atrial
depolarization and, consequently, ventricular depolarization. Specifically, the normal
regular electrical impulses generated by the sinoatrial node are overwhelmed by
disorganized electrical waves, usually originating from the roots of the pulmonary
veins. These disorganized waves conduct intermittently through the atrioventricular
node, leading to irregular activation of the ventricles that generate the heartbeat.
As a result of the above effects, atrial contractility is lost causing an inability to
completely empty blood from atrial appendage leading to the risk of clot formation
and subsequent thromboembolic events. Typically, the heart rate varies from 120 to
160 beats per minute; however, a heart rate as fast as 200 beats per minute can be
seen.[3]

1.3.2 Classification types

AF may be described in terms of the duration of episodes. Episodes often increase
in frequency and duration over time.[12]

• Paroxysmal AF comes and goes, i.e. it begins and ends spontaneously. The irreg-
ular heartbeat may last anywhere from several seconds to a week and episodes
may recur with variable frequency. However, most episodes of paroxysmal AF
resolve themselves within 24 hours. Paroxysmal AF may be asymptomatic,
which means without any apparent symptoms. The first line of treatment
for asymptomatic paroxysmal AF may be lifestyle changes, such as reducing
daily caffeine consumption and reducing stress, in addition to medications as
preventative measures.[13]

• Persistent AF also begins spontaneously. It lasts at least seven days and may
or may not end on its own. Medical intervention such as cardioversion, in
which the clinician shocks the heart into rhythm, may be needed to stop an
acute, persistent AF episode. Lifestyle changes and medications may be used
as preventive measures.

• Long-standing persistent AF lasts at least a year without interruption. It’s
often associated with structural heart damage. This type of AF can be the
most challenging to treat since usually the medications to maintain a normal
heart rate or rhythm are often ineffective. More invasive treatments, such as
electrical cardioversion, catheter ablation or pacemaker implantation, may be
needed.
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• The term "permanent AF" is used when the patient and clinician make a joint
decision to stop further attempts to restore and/or maintain sinus rhythm. Ac-
ceptance of AF represents a therapeutic attitude on the part of the patient and
clinician rather than an inherent pathophysiological attribute of AF. According
to [14] this type of AF may result in more severe symptoms, lower quality of
life, and an increased risk of a major cardiac event.

Further classification is done in terms of:

• Nonvalvular AF, in the absence of rheumatic mitral stenosis, a mechanical or
bioprosthetic heart valve, or mitral valve repair.

• Valvular AF, when results from a problem with a heart valve, such as mitral
valve stenosis, in which not enough blood can pass from the left atrium into
the left ventricle.

Clinicians must determine whether a valvular problem is responsible for AF before
they recommend a treatment plan. Newer medications that aim to prevent blood
clots are available, but the Food and Drug Administration (FDA) has not approved
them as safe and effective treatments for nonvalvular AF.[12]
As described above, the characterization of patients with AF by the duration of their
AF episodes has clinical relevance in those outcomes of therapy such as catheter
ablation are better for paroxysmal AF than for persistent AF. [15]
Furthermore, both paroxysmal and persistent AF may occur in a single individual.
"Lone AF" is a historical descriptor that has been variably applied to younger
persons without clinical or echocardiographic evidence of cardiopulmonary disease,
hypertension, or diabetes mellitus.[16] Because the definitions are variable, the term
lone AF is potentially confusing and should not be used to guide therapeutic decisions.

1.3.3 Epidemiology

The incidence and prevalence of AF are increasing worldwide. According to data from
the FHS (Framingham Heart Study), the prevalence of AF increased 3-fold over the
last 50 years. The Global Burden of Disease project estimated the global prevalence
of AF around 46.3 million individuals in 2016. Europe has a higher prevalence of AF
compared to the United States.
Similar to the prevalence, the incidence of AF increases with age. In all age groups,
males are more commonly affected than females. Despite a high prevalence of risk fac-
tors, African Americans tend to have lower AF incidence compared to Caucasians.[17]
The lifetime risk of AF was estimated at 1 in 4 among white men and women older
than 40 years in 2004; a decade later, lifetime risk estimates reached about 1 in 3 in
white individuals and 1 in 5 for black individuals.
In the United States alone, at least 3 to 6 million people have AF, and this number
is expected to rise from 6 to 16 million by 2050. Figure 1.14 shows the projected
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numbers of patients with AF in the United States by 2050 according to different
studies. In Europe, prevalent AF in 2010 was around 9 million among individuals
older than 55 years and is expected to reach 14 million by 2060. It was estimated
that by 2050 AF will be diagnosed at least in 72 million individuals in Asia, of which
3 million with AF-related strokes.
Awareness and enhanced detection of AF have improved over the past decade, which
is important since about one-third of the total AF population is asymptomatic.
Therefore, the global AF burden is certainly underestimated.[18]

Figure 1.14: Estimates of the number of individuals with atrial fibrillation in the
United States by 2050.

1.3.4 Etiology

Atrial fibrillation is commonly associated with conditions that alter the structure of
the heart. Important causes and risk factors for AF are as follows [3]:

Cardiac Causes:

• Hypertensive heart disease

• Coronary artery disease

• Valvular heart disease

• Heart failure

• Congenital heart disease

• Cardiomyopathy

20



1.3 Atrial Fibrillation

• Infiltrative cardiac disease

• Sick sinus syndrome

• Pre-excitation syndrome

Non-Cardiac Causes:

• Chronic lung disease

• Pulmonary embolism

• Electrolyte abnormalities

• Acute infections

• Thyroid disorders

• Pheochromocytoma

• Hypothermia

• Post-surgical (seen in 35% to 50% of patients post coronary artery bypass graft)

Risk Factors:

• Age-related fibrosis

• Diabetes

• Obesity

• Metabolic syndrome

• Obstructive sleep apnea

• Chronic kidney disease

• High-intensity exercise

• Genetic factors

1.3.5 Pathophysiological and electrophysiological mechanism

AF occurs when structural and/or electrophysiological abnormalities alter atrial
tissue to promote abnormal impulse formation and/or propagation. These abnor-
malities can be related to several pathophysiological mechanisms, such that AF
represents a common phenotype for multiple disease pathways and mechanisms that
are incompletely understood.[19]
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The progressive fibrosis of the atria is the primary pathological change seen in AF.
This fibrosis is primarily due to atrial dilation, but also to genetic causes and in-
flammation. Dilation of the atria is a subsequence of a rise in the pressure within
the heart related to several diseases, such as valvular heart disease (mitral stenosis,
mitral regurgitation, and tricuspid regurgitation), hypertension, and congestive heart
failure. Any inflammatory state that affects the heart can cause fibrosis of the atria.
Mutation of the lamin AC gene is also associated with fibrosis of the atria which can
lead to atrial fibrillation.
Fibrosis is not limited to the muscle mass of the atria and may occur in the sinus
node (SA node) and atrioventricular node (AV node), correlating with sick sinus
syndrome. Prolonged episodes of atrial fibrillation have been shown to correlate with
prolongation of the sinus node recovery time [19], this suggests that dysfunction of
the SA node is progressive with prolonged episodes of atrial fibrillation.
Along with fibrosis, also alterations in the electrical properties of the atria can be
related to atrial fibrillation, such as their ability to be stimulated by the autonomic
nervous system.
Several hypotheses have been proposed to explain the electrophysiological mecha-
nisms that initiate and maintain AF.[15]
An important theory is that the regular impulses produced by the sinus node for a
normal heartbeat are overwhelmed by disorganized electrical waves, usually originat-
ing from the roots of the pulmonary veins.
Sources of these disturbances are either automatic foci, often localized at one of
the pulmonary veins or a small number of localized sources in the form of either a
re-entrant leading circle or electrical spiral waves (rotors). Figure 1.15 shows the
different mechanisms of conduction of the electric impulse in the heart of healthy
and affected by atrial fibrillation individuals. Three fundamental components favour
the establishment of a leading circle or a rotor: slow conduction velocity of the
cardiac action potential, a short refractory period, and a small wavelength. If the
action potential has fast conduction, with a long refractory period and/or conduction
pathway shorter than the wavelength, an AF focus would not be established. In
multiple wavelet theory, a wavefront will break into smaller daughter wavelets when
encountering an obstacle, through a process called vortex shedding. But, under the
proper conditions, such wavelets can reform and spin around a center, forming an
AF focus.[20]
Although the electrical impulses of AF occur at a high rate, most of them do not
result in a heartbeat. A heartbeat results when an electrical impulse from the atria
passes through the atrioventricular (AV) node to the ventricles and causes them to
contract. During AF, if all of the impulses from the atria passed through the AV
node, there would be severe ventricular tachycardia, resulting in a severe reduction
of cardiac output. This dangerous situation is prevented by the AV node since its
limited conduction velocity reduces the rate at which impulses reach the ventricles
during AF.[21]
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Figure 1.15: Conduction of the electrical impulse in a healthy and affected by AF
heart.

1.3.6 Diagnosis by ECG

Even if early detection of AF is important to ensure timely management of the
condition and avoid the recurrence of the arrhythmia as much as possible, several
studies reveal that ∼20% of AF cases remain undiagnosed. This condition is more
common in the elderly.[22] The diagnosis of AF requires rhythm documentation
acquired by a single-lead ECG tracing of ≥ 30 s or 12-lead ECG showing AF analyzed
by a physician with expertise in ECG rhythm interpretation. When AF detection
is not based on an ECG recording (e.g. with devices using photoplethysmography)
or in case of uncertainty in the interpretation of device-provided ECG tracing, a
confirmatory ECG diagnosis has to be obtained using additional ECG recording, e.g.,
Holter monitoring.[23] According to [24], in patients presenting with ischemic stroke
and with no prior history of AF, 72-hour Holter monitoring improves the detection
rate of silent paroxysmal AF.
Most of the works on the analysis of ECG records for AF detection are based on
heart rate variability, i.e., on the R-R intervals. RR intervals exhibit an irregularly
irregular behaviour during AF episodes because the heart’s activity is completely
arrhythmic.
However, the most relevant information in atrial arrhythmias is contained in the
P-waves, which consist of the depolarization of the atria. During AF episodes, the
P-wave cannot be detected or is replaced by irregular fibrillatory waves: F-waves.
F-waves (Figure 1.16) can have different shapes, amplitude, and duration in every
patient. Moreover, the P/F-waves have lower amplitude and can be also superimposed
by the QRS complex. For these reasons P-wave analysis for AF detection is much
more challenging.[22]
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Figure 1.16: Characteristic F-waves in the ECG of AF patients.

1.4 Artificial Intelligence and Deep Learning

1.4.1 Introduction

The term Artificial Intelligence (AI) was coined by John McCarthy in 1956 and refers
to the possibility of machines being able to simulate human behaviour and think.
Over the years, the computational power has grown to the point of instant calculations
and the ability to evaluate new data, according to previously assessed data, in real-
time. For this reason, today, AI is integrated into our daily lives in many forms
and has also begun to be incorporated into medicine to improve patient care by
speeding up processes and achieving greater accuracy. For instance, machine learning
algorithms can be used to evaluate medical images (X-ray, MRI, etc..) or signals
(ECG, EMG, etc...) to aid in the process of diagnosis and treatment of patients and
augmenting physicians’ capabilities.[25]
Anyway, conventional machine-learning techniques are limited in their ability to
process natural data in their raw form. For decades, constructing a pattern recognition
or machine-learning system required careful engineering and considerable domain
expertise to design a feature extractor that transformed the raw data (such as the
pixel values of an image or samples of a signal) into a suitable internal representation
or feature vector from which the learning subsystem, often a classifier, could detect
or classify patterns in the input.
Representation learning is a set of methods that allows a machine to be fed with
raw data and to automatically discover the representations needed for detection or
classification.
Deep-learning methods are representation-learning methods with multiple levels of
representation, obtained by composing simple but non-linear modules that each
transform the representation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level. With the composition of
enough such transformations, very complex functions can be learned.[26]
Deep learning methods can be used to solve problems of classification, clustering
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or regression and so they can be "supervised", "semi-supervised" or "unsupervised"
algorithms.

1.4.2 Artificial Neural Network

Artificial Neural networks (ANN) are the basis of deep learning techniques with
representation learning that attempt to imitate the way a human brain works.
In its simplest form, a biological brain is a huge collection of neurons. Each neuron
takes electrical and chemical signals as inputs through its many dendrites and
transmits the output signals through its axon. Axons contact other neurons at
specialized junctions called synapses where they pass on their output signals to other
neurons to repeat the same process over and over millions and millions of times.
Taking inspiration from the brain, an ANN is a collection of connected units, called
artificial neurons.[27]
The first artificial neuron was modelled in 1943 by McCulloch and Pitts as a switch
that receives input data and, depending on the total weighted input and the bias,
is either activated or remains inactive. The decision of the state is devoted to the
activation function of the neuron. Making a parallelism with the human brain, the
weight, by which an input is multiplied, corresponds to the strength of a synapse.
These weights can be both positive (excitatory) and negative (inhibitory).[26] The
bias instead, allows to shift the activation function by adding a constant to the inputs
(it can be thought of as analogous to the role of a constant in a linear function,
whereby the line is effectively transposed by the constant value).
Figure 1.17 shows the structure of an artificial neuron.
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Figure 1.17: Artificial neuron model.

According to the previous definition, Eq. 1.10 relates the input with the output of
an artificial neuron.

Yk = Φ (
∑︂

n

xn · Wkn + bk ) (1.10)

Where Yk is the output, xn are the n input, Wkn are the weights associated with
each input, bk is the bias and Φ represents the activation function of the neuron.
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A typical neural network has from a few dozen to hundreds, thousands, or even
millions of artificial neurons, also called units, arranged in a series of layers, each of
which connects to the layers on either side. Some of them, known as input units, are
designed to receive the input data from the outside world, other units, sit on the
opposite side of the network, represent the response of the network and are known
as output units. In between the input units and output units are one or more layers
of hidden units. Most neural networks are fully connected, which means each hidden
unit and each output unit is connected to every unit in the layers on either side.[27]
The connections between one unit and another are represented by the weights Wkn.
The higher the weight, the more influence one unit has on another. A simple fully
connected Neural Network can be designed as shown in Figure 1.18.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 1.18: Architecture of a fully connected neural network.

1.4.3 Activation functions

If an activation function is not used in a neural network, then the output would
simply be a simple linear function (which is a polynomial of degree one). Although
linear equations are simple and easy to solve, their limited complexity gives no ability
to the networks to learn and recognize complex mappings from data.
In literature, different kinds of activation functions exist, but there is no thumb
rule for one of them. The choice of activation function is context-dependent, i.e., it
depends on the task that is to be accomplished. The most used activation functions
are [28]:
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• Binary Step Function
The Binary Step Function is the simplest activation function that exists, and
it simply implements an if-else condition for the input. It is generally used in
binary classifiers, but it cannot be used in the case of multiclass classification.
The main problem of this activation function is that its gradient is zero, which
may cause a problem during the backpropagation step in the training phase
of the network. Mathematically the binary step function can be defined by
Eq. 1.11.

f (x) =

⎧⎨⎩0 x < 0
1 x > 1

(1.11)

Figure 1.19 shows a plot of this function.

Figure 1.19: Binary step activation function.

• Linear Function
The linear activation function is directly proportional to the input. To remove
the problem of the zero gradient of the binary step function, the linear function
can be used. It can be defined by Eq. 1.12.

F (x) = a · x (1.12)

The value of variable a can be any constant value chosen by the user, and it
will correspond to the value of the gradient. There isn’t much benefit of using
linear function, since the neural network would not improve the error due to
the same value of gradient for every iteration and so it will not be able to
identify complex patterns from the data. Therefore, linear functions are ideal
where interpretability is required and for simple tasks.
Figure 1.20 shows a plot of this function.
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Figure 1.20: Linear activation function.

• Sigmoid Function
It is the most widely used activation function as it is non-linear. The sigmoid
function transforms the values in the range 0 to 1. It can be defined by Eq. 1.13.

f (x) = 1
1 + e−x

(1.13)

The sigmoid function is continuously differentiable and defined for all real input
values. The derivative of the function is non-negative at each point. Moreover,
the sigmoid function is not symmetric about zero, which means that the signs
of all output values of neurons will be the same. This issue can be improved
by scaling it. Figure 1.21 shows a plot of this function.

Figure 1.21: Sigmoid activation function.
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• Hyperbolic Tangent function
The hyperbolic Tangent function (Tanh) function is similar to the sigmoid
function, but it is symmetric around the origin. This results in different signs
of outputs. It can be defined by Eq. 1.14.

f (x) = 2 · sigmoid (2x) − 1 (1.14)

Tanh function is continuous and differentiable, the values lie in the range -1 to
1. As compared to the sigmoid function the gradient of the tanh function is
steeper. Tanh is preferred over sigmoid function as it has gradients which are
not restricted to vary in a certain direction and, it is zero-centered. Figure 1.22
shows a plot of this function.

Figure 1.22: Hyperbolic Tangent activation function.

• ReLU function
ReLU stands for rectified linear unit and is a non-linear activation function
which is widely used in neural networks.
ReLU is more efficient than other functions because all the neurons are not
activated at the same time, rather a certain number of neurons are activated
at a time. In some cases, the value of the gradient is zero, due to which the
weights and biases are not updated during the back-propagation step in neural
network training. It can be defined mathematically by Eq. 1.15.

f (x) = max (0, x) (1.15)

Figure 1.23 shows a plot of this function.
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Figure 1.23: ReLU activation function.

• Exponential Linear Unit function
Exponential Linear Unit or ELU is a variant of the Rectified Linear Unit. ELU
introduces a parameter slope for the negative values of x. It uses a log curve
for defining the negative values. It can be defined mathematically by Eq. 1.16.

⎧⎨⎩f (x) = x, x ≥ 0
f (x) = a ·

(︁
ex−1)︁

, x < 0
(1.16)

Figure 1.24 shows a plot of this function.

Figure 1.24: Exponential Linear Unit activation function.
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• SoftMax function
Softmax function is a combination of multiple sigmoid functions. Since a
sigmoid function returns values in the range 0 to 1, these can be treated as
probabilities of particular class data points. Softmax functions unlike sigmoid
functions, which are used for binary classification, can be used for multiclass
classification problems. The function, for every data point of all the individual
classes, returns the probability. It can be defined mathematically by Eq. 1.17.

σ(z)j = ezj∑︁K
k=1 ezk

for j = 1, . . . ., K (1.17)

Figure 1.25 shows a plot of this function.

Figure 1.25: SoftMax activation function.

1.4.4 1D Convolutional Neural Network

During the last decade, Convolutional Neural Networks (CNNs) have become a
standard for various Computer Vision and Machine Learning operations. CNNs are
feed-forward Artificial Neural Networks (ANNs) with alternating convolutional and
subsampling layers, also called pooling layers. Deep 2D CNNs with many hidden
layers and millions of parameters can learn complex objects and patterns providing
that they can be trained on a massive size visual database with ground-truth labels.
With proper training, this unique ability makes them the primary tool for various
engineering applications for 2D signals such as images and video frames. Thus, each
neuron of this network contains 2-D planes for weights, which is known as the kernel,
and input and output which is known as the feature map.
Yet, this may not be a viable option in numerous applications over 1D signals
especially when the training data is scarce or application-specific. To address this
issue, 1D CNNs have recently been proposed and immediately achieved state-of-
the-art performance levels in several applications such as personalized biomedical
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data classification and early diagnosis, structural health monitoring, etc... Another
major advantage is that a real-time and low-cost hardware implementation is feasible
due to the simple and compact configuration of 1D CNNs that perform only 1D
convolutions (scalar multiplications and additions).
Different studies show that compact 1D CNNs have superior performance on those
applications with limited labelled data and high signal variations acquired from
different sources (i.e. patient ECG). [29]
The basic structure of a 1D CNN tries to imitate that of the older 2D CNN, and, as
illustrated in Figure 1.26, it presents two distinct layer types:

1. the so-called "CNN-layers" where both 1D convolutions, activation function
and sub-sampling (pooling) occur.

2. Fully connected (dense) layers that are identical to the layers of a typical
Multi-layer Perceptron (MLP) and therefore called "MLP-layers". The scalar
outputs of the last convolutional layer are forward propagated through the
MLP-layers to produce the final output that represents the classification or
regression of the input signal.

Figure 1.26: 1D CNN configuration with 3 CNN and 2 MLP layers.

The configuration of a 1D-CNN is formed by the following hyperparameters:

• Number of hidden CNN and MLP layers/neurons (in the sample 1D CNN shown
in Figure 1.26, there are 3 and 2 hidden CNN and MLP layers respectively).

• Filter (kernel) size in each CNN layer (in the sample 1D CNN shown in
Figure 1.26, the filter size is 41 in all hidden CNN layers).

• Subsampling factor in each CNN layer (in the sample 1D CNN shown in
Figure 1.26, the subsampling factor is 4).

• The choice of pooling and activation functions.
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As in the conventional 2D CNNs, the input layer is a passive layer that receives
the raw 1D signal and the output layer is a MLP layer with the number of neurons
equal to the number of classes.
Three consecutive CNN layers of a 1D CNN are presented in Figure 1.27. As shown
in this figure, the 1D filter kernels have size 3 and the sub-sampling factor is 2 where
the kth neuron in the hidden CNN layer, l, first performs a sequence of convolutions,
the sum of which is passed through the activation function, f , followed by the sub-
sampling operation. This is indeed the main difference between 1D and 2D CNNs,
where 1D arrays replace 2D matrices for both kernels and feature maps. As a next
step, the CNN layers process the raw 1D data and "learn to extract" such features
which are used in the classification task performed by the MLP-layers. Therefore,
both feature extraction and classification operations are fused into one process that
can be optimized to maximize the classification performance.
This is the major advantage of 1D CNNs which can also result in a low computational
complexity since the only operation with a significant cost is a sequence of 1D
convolutions which are simply linear weighted sums of two 1D arrays.[29]

Figure 1.27: Three consecutive hidden CNN layers of a 1D CNN.

Thus, the types of layers generally found in a 1D CNN are:

1. Convolutional layers
These are the essential blocks of the CNN. In each CNN layer, 1D forward
propagation (1D-FP) is expressed by Eq. 1.18.

xl
k = bl

k +
Nl−1∑︂
i=1

conv1D(wl−1
ik , sl−1

i ) (1.18)
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where xl
k is defined as the input, bl

k is defined as the bias of the kth neuron at
layer l, sl−1

i is the output of the ith neuron at layer l − 1, wl−1
ik is the kernel

from the ith neuron at layer l − 1 to the kth neuron at layer l. conv1D(., .) is
used to perform "in-valid" 1D convolution without zero-padding.

2. Pooling layers
These are generally applied after each convolutional layer. Different functions
can be used in this layer, but the max is the most used. A max 1-D pooling
layer performs downsampling by dividing the input into 1-D pooling regions
and then computing the maximum of each region. Thus, after the convolution
is performed, the intermediate output of each layer of the network, yl

k, can
be expressed by passing the input xl

k through the activation function of the
neuron f(.), and then applying the downsampling. These operations can be
expressed by Eq. 1.19.

yl
k = f

(︂
xl

k

)︂
and sl

k = yl
k ↓ ss (1.19)

where sl
k stands for the output of the kth neuron of the layer, l, and "↓ ss"

represents the downsampling operation with a scalar factor, ss. Pooling layer
parameters are not trainable.

In most of the networks, Batch normalization layers are also present to standardize
the inputs to a layer for each mini-batch during the training of the network, stabilizing
the learning process and dramatically reducing the number of training epochs required.

1.4.5 Training artificial neural networks

Deep learning discovers intricate structures in large data sets by using the backprop-
agation algorithm to indicate how a machine should change its internal parameters
that are used to compute the representation in each layer from the representation in
the previous layer.[26]
Backpropagation is an abbreviation for "the backward propagation of errors", since an
error is computed at the output of the network and distributed backwards throughout
the network’s layers. It is commonly used to train deep neural networks. In the
context of learning, backpropagation is commonly used by the gradient descent
optimization algorithm to adjust the weight of neurons by calculating the gradient
of the loss function.[27]
In other words, the learning (training) process of a neural network (supervised
algorithm) is an iterative process in which the calculations are carried out forward
and backwards through each layer in the network until a loss function is minimized
(Figure 1.28).
The entire learning process starts initializing the weights of the network. A typical
strategy in neural networks is to initialize the weights randomly, and then start
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optimizing. At each iteration, also called epoch, the predicted output of the network
is used, together with the expected output, to compute the loss. Several loss functions
can be found in the literature. The definition and choice of the best loss function for
a network depends on the type of the problem and the nature of the input data.

Figure 1.28: Training process of Artificial Neural Network.

1.4.6 Overfitting, Underfitting and Generalization problems

The generalization error of a machine learning model is the difference between the
empirical loss of the training set and the expected loss of a test set. This measure
represents the ability of the trained model (algorithm) to generalize well from the
learning data to new unseen data. It is typically understood that good generalization
is obtained when a machine learning model does not memorize the training data,
but rather learns some underlying rule associated with the data generation process,
thereby being able to extrapolate that rule from the training data to new unseen
data and generalize well.[30]
On the opposite side, when the generalization error is too high, it could be related
to two different situations:

1. Overfitting: this happens when the network works too hard to find the very
best fit to the training data and the model learns their detail and noise. In
other words, the noise or random fluctuations in the training data are picked up
and learned as concepts by the model. The problem is that these concepts do
not apply to new data and negatively impact the model’s ability to generalize.

2. Underfitting: this refers to a model that can neither model the training data nor
generalize to new data. An underfit machine learning model is not a suitable
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model and will be obvious as it will have poor performance on the training
data. This is an easy-to-detect situation and it could be solved by designing a
different machine learning algorithm.

To reduce the effect of overfitting, multiple solutions based on different strategies
are proposed to inhibit the different triggers.
One method, called "Early-stopping", has been widely used in iterative algorithms,
especially in neural networks starting from the 1990s.[31] This strategy divides the
initial set of training data into two subsets, one used to train the model (training
data), and the other used to validate it (validation data). After each epoch of training,
the network is validated using the data of the validation set and the relative training
and validation errors (losses) are computed. Trends of training and validation error
are reported in Figure 1.29.

Figure 1.29: Overfitting and early stop point.

If the model continues learning, after a certain point known as "early-stopping", the
validation error will start to increase, while the training error will continue decreasing.
If we stop learning before that point, it’s underfitting, after is overfitting. So the
aim is to find the exact point to stop training. In other words, the validation set is
used to figure out a perfect set of values for the hyperparameters, weights and biases
of the network, while, later, the test set will be used to do the final evaluation of
accuracy. Other techniques to solve the problem of overfitting try to reduce noises in
the training set, as in the "reduce the size of network" strategy, or try to distinguish
noises, meaning and meaningless features and assign different weights to them, as in
the "Regularization" strategy.[31]
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Literature review

2.1 Introduction

Most of the recent works on atrial fibrillation and neural networks rely on the latter
for the extraction of features useful to classify ECG signals as normal or affected by
the various types of AF. No research has been found in the literature using neural
networks to extract F-waves from the ECG signals of patients with atrial fibrillation.
The identification and extraction of F-waves from the ECG signal is an arduous
task, as the F-waves overlap the QRS complex and T-waves in both the time and
frequency domain.
For this reason, it cannot be achieved by standard signal-filtering techniques. Since
this study aims to create a filter using neural networks for the extraction of F-waves,
the literature research has concentrated on papers that use deep learning algorithms
to filter the ECG signal.

2.2 Method

The systematic literature search was conducted in two electronic bibliographic
databases: PubMed and Scopus.
The root ‘ecg’ was used to search for studies about the methodology of signal
acquisition. The roots ‘denoising*’, ‘filter*’ and ‘elimination’ were used to search for
studies concerning the filtering techniques of the signal, and the roots ‘network*’,
and ‘deep learning’ to search for studies referring to machine learning techniques.
Moreover, studies that contain the keywords ‘classification’ and ‘extraction’ were
excluded from the results.
Terms within each concept were combined with the Boolean operator ‘OR’ and then
combined with the Boolean operator ‘AND’, except for the terms ‘classification’ and
‘extraction’ that were combined with the Boolean operator ‘AND NOT’. As a limit
for the field of search, ‘Title’ was used for all the concepts, expect for the exclusion
criteria where ‘Title/Abstract’ was used. Moreover, the English language was used
as a limit to filter the documents and only papers of the last 10 years were considered
in the results.
Documents (research papers and conference articles) were imported into the Zotero
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reference management system for duplicate removal. Titles and abstracts were
analyzed to include only documents about the topic of interest.

2.3 Results

Overall, 43 studies were identified in the bibliographic and organizational databases;
of these, 7 were duplicated. After title and abstract analysis, 14 studies were selected,
from 2013 to 2023.

2.3.1 S. Poungponsri et al. (2013)

In this paper [9], a novel adaptive filtering approach based on wavelet transform and
artificial neural networks is investigated for ECG signal noise reduction.
In this work, Daubechies 4-tap wavelet (D4) is employed. Once the wavelet transform
coefficients are obtained, sub-band thresholding is then performed on these coefficients.
This thresholding discards high-frequency noise and also performs feature extraction
of the ECG signal to provide the inputs to the neural network. A neural network is
then employed as the final filtering process to further remove the remaining noise that
is "embedded" in DWT coefficients. In the meantime, the neural network effectively
performs an "inverse discrete wavelet transform (IDWT)" at the output. That is, the
inputs of the neural network are DWT coefficients while the output of the neural
network is the filtered ECG signal in the time domain.
The overall system block diagram for neural network training is shown in Figure 2.1.

Figure 2.1: The neural network training scheme proposed by S. Poungponsri et al.
(2013).

The proposed approach is tested on various noises and artifacts, including power-
line interference, baseline wander noise, electrode motion artifact, muscle contraction
artifact, and white noise. Computer simulation results show this approach can
successfully remove them with significant SNR improvement in the ECG signal, over
other algorithms which are typically limited to removing only one or two types of
noise.
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2.3.2 S. O. Rajankar et al. (2015)

In this paper [32] ECG denoising is achieved using a wavelet neural network by
approximating the signal to the maximum possible accuracy.
The feed-forward back propagation neural network is designed to consist of four
layers namely input, two hidden layers having 10 neurons each and an output layer.
The first hidden layer has having bias vector and sigmoidal activation function. The
input provides weights to the first layer. Each subsequent layer has weights coming
from its previous layers. For the second hidden layer instead of using the sigmoidal
activation function the various mother wavelets from library wavelets available in
MATLAB toolbox such as daubachies, meyer, coiflet, etc. are used. The network
architecture is shown in Figure 2.2.

Figure 2.2: The neural network architecture proposed by S. O. Rajankar et al. (2015).

The input to the neural network are the samples of ECG signal with white Gaussian
noise of various noise levels, while the ECG signal to be denoised is considered as
the target. Performance is measured according to the mean square error (MSE) and
the one achieved with db6 wavelet is found to be superior. Comparing the results
with other standard methods is shown that the neural network approach gives a
strong alternative to discrete wavelet transform with soft thresholding for denoising
or compression of an ECG signal.
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2.3.3 Yue Qiu et al. (2017)

This study [33] proposes a method for the elimination of 50-Hz power line interference
(PLI) in ECG signals, using recurrent neural networks (RNN). It uses a deep Long
Short-Term Memory (LSTM) RNN model with 3 hidden layers and each layer has
16 LSTM neurons, which could guarantee enough model capability to acquire the
signal pattern.
A dense connection with linear activation is put on the top of the third hidden layer
for the regression function.
Figure 2.3 shows the architecture of the network.

Figure 2.3: The neural network architecture proposed by Yue Qiu et al. (2017).

After the training procedure, the trained model was used to extract the PLI signals
from contaminated ECG signals. Then the ECG signals are filtered by subtracting
the extracted PLI signals.
To compare the effectiveness of the proposed method with the traditional linear
filtering approach, a 50-Hz Butterworth notch filter (10th order with a center
frequency equal to 50 Hz) was also implemented on the same signal. It could be
noticed that the distortions of the QRS complex are negligible when filtered by the
proposed method while the applied notch filter causes observable distortions at each
QRS complex.
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2.3.4 C. T. C. Arsene et al. (2019)

This paper [34] presents two DL models for denoising ECG signals.
First, a Convolutional Neural Network (CNN) is depicted and applied to noisy
ECG signals. The CNN model was obtained by experiment, and it consists of six
2-dimensional convolutional layers, each having 36 filters with a kernel size of 19x1
per filter. Each convolutional layer is followed by a batch normalization layer with
36 channels, a rectified linear unit (ReLU) layer and an average pooling layer with a
stride of 4 and pooling size of 2. Before the final regression output layer, the signal
goes through a fully connected layer for regression.
The second DL model is a Long Short-Term Memory (LSTM) model, consisting of
two LSTM layers with 140 hidden nodes per layer. Before the final regression output
layer, the signal goes through a fully connected layer.
Figure 2.4(a,b) depicts respectively the structure of the CNN and LSTM models.

Figure 2.4: The CNN (a) and LSTM (b) models proposed by C. T. C. Arsene et al.
(2019).

To train and test the models three datasets were used. Two comprise synthetic
data while a third dataset is a real dataset. In each dataset, different levels of noise
were considered, which included baseline wander, muscle artifact, and electrode
motion artifact. Each dataset was divided into a training (3/4) and a testing dataset
(1/4).
The results demonstrate that while both DL models could deal with heavy and
drifting noise, the CNN model was markedly superior to the LSTM model in terms
of the Root Mean Squared (RMS) error.
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2.3.5 F. P. Romero et al. (2021)

This paper [35] proposes a novel algorithm for BLW noise filtering using deep learning
techniques. The basic hypothesis of this work is that by learning "smart filters" it is
possible to discriminate between the desired ECG signal and the undesired noise.
Multiple deep filters can learn how to properly filter small sections of the input ECG
signal while conserving its morphology using a similarity loss function.
The proposed model is a fully convolutional architecture based on multipath modules
that receive an ECG signal contaminated with BLW as input and give the clean
ECG signal as output.
The approach of this paper uses multipath modules, which place different convolu-
tional layers at the same level and let the backpropagation algorithm choose not only
the weights but also the best path for the signal to pass through. Figure 2.5 shows
the proposed Multi-Kernel Linear And Non-Linear (MKLANL) filter module.

Figure 2.5: Multi-Kernel Linear And Non-Linear (MKLANL) filter module proposed
by F. P. Romero et al. (2021).

The proposed MKLANL filter module is composed of two internal groups: the
linear group and the non-linear group. Each internal group contains four types
of convolutional layers with kernels equal to (3, 5, 9, and 15) followed by a linear
activation or a rectified linear unit (ReLU), depending on the group. The rationale
behind having convolution with linear and non-linear activations is the same as
having different convolutional kernels: let the model choose during training which
path is better, and how much each of them will contribute to the output. The
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proposed deep learning architecture is composed of six MKLANL filter modules
arranged sequentially (Figure 2.6).

Figure 2.6: Deep learning network architecture proposed by F. P. Romero et al.
(2021).

The proposed method was compared in terms of performance with other state-of-
the-art approaches. FIR and IIR filters were used as a representation of non-learnable
approaches together with two deep learning for ECG denoising. The first one is
based on deep recurrent neural networks (DRNN) and the second one is based on
fully convolutional denoising autoencoder (FCN-DAE).
Comparing the performances of all the methods, it can be observed that the proposed
one obtained the best results on all the metrics used.

2.3.6 P. Singh et al. (2021)

This paper presents [36] an ECG denoising approach based on the generative adver-
sarial network (GAN). GAN method trains two different models/networks simultane-
ously: a generator (G) model that learns to capture the training data distribution,
and a discriminator (D) model that computes the probability that a sample is not
from the G model but rather comes from the training data distribution.
In the proposed technique, the G network is made fully convolutional, and it does
not contain any dense layer. The architecture of G is similar to an auto-encoder
(Figure 2.7) and this network aims to learn the clean data distribution and produce
the denoised output.

The overall training process of the ECG-GAN denoising model is shown in Fig-
ure 2.8.

The proposed framework is tested for multiple noisy conditions including white
Gaussian noise, baseline wander, muscle artifact and electrode motion artifact.
The qualitative and quantitative evaluations used in this work show a significant
improvement over existing state-of-the-art ECG denoising methods, and in particular,
the noted advantage of such a framework is the generalization to several noise
conditions using a single generative model.
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Figure 2.7: Generator network (G) proposed P. Singh et al. (2021).

Figure 2.8: ECG-GAN training process proposed P. Singh et al. (2021).
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2.3.7 B. Xu et al. (2021)

This paper [37] proposes a new method of ECG denoising based on the combination
of the Generative Adversarial Network (GAN) and Residual Network. This work
can be seen as a step further than the one done in [36]. The method adopted is
based on the GAN structure, and it restructures the generator and discriminator. In
the generator network, residual blocks and Skip-Connecting are used to deepen the
network structure and better capture the in-depth information in the ECG signal.
In the discriminator network, the ResNet framework is used.
Figure 2.9 shows the overall structure of the method used, while Figure 2.10 and
Figure 2.11 are shown respectively the structure of the generator and discriminator
networks.

Figure 2.9: The overall structure of the network proposed by B. Xu et al. (2021).

In this work, to optimize the noise reduction process and solve the lack of local
relevance considering the global ECG problem, the differential function and overall
function of the maximum local difference are added to the loss function.
The experimental results prove that the method used in this article has better perfor-
mance than the S-Transform (S-T) algorithm, Wavelet Transform (WT) algorithm,
Stacked Denoising Autoencoder (S-DAE) algorithm, and Improved Denoising Autoen-
coder (I-DAE) algorithm. It is demonstrated that this method can effectively retain
the important information conveyed by the original signal performing an optimal
denoising.
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Figure 2.10: The structure of the generator network proposed by B. Xu et al. (2021).
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Figure 2.11: The structure of the discriminator network proposed by B. Xu et al.
(2021).
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2.3.8 L. Qiu et al. (2021)

The method proposed in this paper [38] is divided into two stages. In Figure 2.12 is
depicted the general flowchart of the proposed ECG denoising method.

Figure 2.12: General flowchart of the ECG denoising method proposed by L. Qiu et
al. (2021).

In the first stage, a Ude-net model is designed for ECG signal denoising to eliminate
noise. After the first stage, even if the noise in the ECG signal is eliminated, the
waveform of the ECG signal is inevitably distorted.
Figure 2.13 shows the structure of the proposed Ude-net model.

Figure 2.13: Improved one-dimensional U-net model structure proposed by L. Qiu et
al. (2021).

The DR-net model in the second stage is used to reconstruct the ECG signal and
to correct the distortion caused by noise removal in the first stage. This model has
two inputs: one input is the output of the U-net after the first stage, and the other
is the original noisy signal. The output instead is the corresponding ground-truth
ECG. Thus, this second model does not learn how to remove noise but rather learns
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to recover the effective part based on the first stage of U-net denoising.
Figure 2.14 shows the structure of the proposed DR-net model.

Figure 2.14: DR-net model structure proposed by L. Qiu et al. (2021).

This paper demonstrates how the proposed two-stage method can achieve both
the elimination of noise and the preservation of effective details to a large extent of
the signals.

2.3.9 Z. He al. (2021)

This paper [39] proposes an effective and simple model of encoder-decoder structure
with a skip connection embedded for denoising ECG signals (APR-CNN). Specifically,
Adaptive Parametric ReLU (APReLU) and Dual Attention Module (DAM) are
introduced in the model. The Rectified Linear Unit (ReLU) is replaced with the
APReLU for better negative information retainment. The DAM is an attention-based
module consisting of a channel attention module and a spatial attention module,
through which the inter-spatial and inter-channel relationship of the input data are
exploited. DAM is introduced at the back of each layer. The overall structure of this
model is presented in Figure 2.15.

The results of this work show that the APR-CNN can handle ECG signals with a
different signal-to-noise ratio (SNR).
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Figure 2.15: Structure of the model proposed by Z. He al. (2021).

2.3.10 A. Mohammadisrab et al. (2022)

This paper [40] analyzes the performance of a deep adaptive denoising auto-encoder
network (DeepADAENet) for ECG signal noise cancellation in the time-frequency
domain for practical use cases.
To achieve a higher resolution in distinguishing the noise from valuable data, the
fractional Stockwell transform (FrST) is exploited to convert the ECG to the time-
frequency image. The magnitude of the time-frequency version of the ECG is noise-
canceled using DeepADAENet. Then, inverse FrST is utilized to return the denoised
time-frequency ECG into the time domain. The architecture of DeepADAENet used
is shown in Figure 2.16.

Figure 2.16: The architecture of DeepADAENet proposed by A. Mohammadisrab et
al. (2022).

Muscle artifacts (MA), baseline wander (BW), and electrode motion (EM) from
the MIT-BIH Noise Stress Test Database (NSTDB) are utilized to make noisy the
clean ECG signals dataset according to Eq. 2.1:

Noise = αBW + βEM + λMA + ωRand (2.1)
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where α, β, λ, and ω represent the coefficients of each noise element and specify the
influence of the corresponding noise element in the simulated noisy signal. Moreover,
Rand stands for additive random noise in addition to BW, MA, and EM.
Experimental results reveal that DeepADAENet is remarkably adaptive to noises
resembling ECG waves (P, QRS, and T) and different heart physiologies. A compara-
tive evaluation also proved that DeepADAENet had a greater output signal-to-noise
ratio and achieved lower root mean square errors and percentage root mean square
differences compared to a fully convolutional network-based denoising auto-encoder
network (FCN-based DAE).

2.3.11 E. Brophy et al. (2022)

This paper [41] proposes a custom loss function capable of denoising electrode motion
artifact in ECG data to a higher standard than other, more common loss functions.
This work implements a personalized custom loss function with a convolutional neural
network (CNN) to return high-quality ECG. The CNN is composed of four-layer
1-D with batch normalization and ReLU (Rectified Linear Units) followed by a fully
connected layer. The model architecture is shown in Figure 2.17.

Figure 2.17: The network architecture proposed by E. Brophy et al. (2022).

The custom loss function used is composed of two parts: the first is the global
mean squared error (MSE), and the second is the MSE pertaining only to regions
where the QRS wave features exist. This can be represented by Eq. 2.2:

L = MSE (Xn, X) + α ·
j∑︂

i=1
MSE(RXniX, RXi) (2.2)
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where j is the total number of QRS complexes in the 3-second signal segment, RXi

is the ith QRS complex in signal X and RXni is the ith QRS complex in signal Xn.
The value α is a hyperparameter that is used to determine the level of importance
placed on the QRS complexes by the loss function relative to the ECG signal as a
whole.
The proposed model and custom loss function compute a weighted combination
of global and local mean square errors and improve the denoising performance of
the ECG in terms of the SNR and heart rate. This demonstrates the capability
of the algorithm to balance between denoising the signal and preserving the peaks
effectively.

2.3.12 R. Badiger et al. (2023)

This paper [42] presents a deep learning-based scheme for ECG signal filtering, which
is based on the deep autoencoder module. According to this scheme, the data is
processed through the encoder and decoder layer to reconstruct by eliminating noises.
Figure 2.18 shows the proposed DAE-ASCNet architecture.

The proposed deep learning architecture is based on the same concepts used in
the work by He et al. [39].
It uses a modified ReLU function to improve the learning of attributes since standard
ReLU cannot adapt to huge variations. Further, a skip connection is incorporated
to retain the key feature of the encoder layer while mapping these features to the
decoder layer. Finally, an attention model is also included, which performs channel
and spatial attention, which generates the robust map by using channel and average
pooling operations, resulting in improving the learning performance.
The proposed approach is tested on a publicly available MIT-BIH dataset where
different types of noise, such as electrode motion, baseline wander and motion
artifacts, are added to the original signal at varied SNR levels.
The comparative analysis with existing techniques shows a significant improvement
in the performance of the proposed approach in terms of RMSE and SNR.
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Figure 2.18: DAE-ASCNet for ECG filtering proposed by R. Badiger et al. (2023).
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2.3.13 H. Wang et al. (2023)

In this paper [43], it is proposed an ECG denoising method referred to as LSTM-
DCGAN which is based on an improved generative adversarial network (GAN). This
is a modified version of [37], where LSTM structures are included in the architecture
of the generator and discriminator instead of using only CNN layers.
The overall network structure is shown in Figure 2.19 and it is composed of multiple
layers of convolutional networks. Furthermore, the convolutional features can be
connected to their time series order dependence by adding LSTM layers after each
convolutional layer. The LSTM is used to preserve the global time domain information
of ECG.

Figure 2.19: Denoising model based on GAN proposed by H. Wang et al. (2023).

Figure 2.20 and Figure 2.21 show respectively the architecture of the generator
and discriminator.

Experimental results show that this method can remove the single noise and the
mixed noise while retaining the complete ECG information.
Compared with the state-of-the-art methods, this method obtains higher SNR
improvement and lower RMSE and PRD scores.
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Figure 2.20: Structure of the generator of the model proposed by H. Wang et al.
(2023).

Figure 2.21: Structure of the discriminator of the model proposed by H. Wang et al.
(2023).
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2.3.14 Y. Jin et al. (2024)

This paper [44] proposes a novel signal-denoising method based on a deep wavelet
convolutional neural network.
The architecture of the network (DW-CNN), shown in Figure 2.22, is inspired by
the structure of the denoising self-encoder with the convolution layers that replace
the simple full-connected layers. Moreover, based on automatic feature extraction
in the convolution layer, the discrete wavelet transform (DWT) is used to convert
the signal into high-frequency and low-frequency components for replacing pooling
layers to compress the input data and fully preserve the effective information.

Figure 2.22: The network architecture proposed by Y. Jin et al. (2024).

Compared with the existing methods, DW-CNN has better denoising performance
under different noise intensities and noise types.
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2.4 Comparison tables and discussion

Table 2.1,Table 2.2 and Table 2.3 provide a comparison of the main features of the
studies analyzed in this literature review.
As it is possible to notice, each paper bases the evaluation of the performances of the
proposed deep learning structures on the use of different metrics. In addition, the
input ECG signals to the various networks have different characteristics, including
sampling frequency, length and amplitude of the signal. Moreover, the noise removed
by the various signal-denoising techniques proposed is also different. The main ECG
artifacts considered for the denoising techniques are white Gaussian noise (WGN),
baseline wander (BW), muscle artifact (MA), and electrode motion artifact (EM).
Table 2.4 shows a comparison of the results obtained from the proposed studies in
terms of the relative metrics used. For the above-reported reasons and differences
between the works, the metrics reported are only the ones most widely used. In
particular, are reported the values of the signal-to-noise ratio of the output signal
(SNR output), the signal-to-noise ratio improvement between the input and the
output signal (SNRimp), the percent root mean square difference (PRD), the mean
square error (MSE) and the root mean square error (RMSE).
In the case in which in a paper the evaluation metric results are reported divided by
the type of noise removed in the ECG signal and the input ECG signal amplitude,
an average value has been calculated. For the paper [40] was not possible to report
the numerical results as the performances of the analyzed deep learning method are
shown only in the form of graphs or denoised signal plots.

57



Chapter 2 Literature review
Ta

bl
e

2.
1:

C
om

pa
ris

on
am

on
g

di
ffe

re
nt

st
ud

ie
s

[1
/3

].

R
e
f.

T
it

le
A

u
th

o
r

Y
e
a
r

D
a
ta

se
t

N
o

is
e

R
e
m

o
v

e
d

M
e
th

o
d

U
se

d
L

o
ss

F
u

n
c
ti

o
n

E
v
a
lu

a
ti

o
n

M
e
tr

ic
s

[9
]

A
n

ad
ap

ti
ve

fi
lt

er
in

g
ap

p
ro

ac
h

fo
r

el
ec

tr
o
ca

rd
io

-
gr

am
(E

C
G

)
si

gn
al

n
oi

se
re

d
u
ct

io
n

u
si

n
g

n
eu

ra
l

n
et

w
or

k
s

S
u
ra

n
ai

P
ou

n
gp

on
-

sr
i;

X
ia

o-
H

u
aY

u

20
13

M
IT

–B
IH

(M
as

sa
ch

u
se

tt
s

In
st

it
u
te

of
T

ec
h
n
ol

og
y

–
B

et
h

Is
ra

el
H

os
p
it

al
)

D
at

ab
as

e.

P
ow

er
-l

in
e

In
te

rf
er

en
ce

;
B

as
el

in
e

W
an

d
er

;
E

le
ct

ro
d
e

M
ot

io
n

A
rt

if
ac

t;
M

u
sc

le
C

on
tr

ac
ti

on
A

rt
if

ac
t;

W
h
it

e
G

au
ss

ia
n

N
oi

se

D
is

cr
et

e
W

av
el

et
T

ra
n
sf

or
m

+
A

N
N

W
ei

gh
te

d
S
u
m

of
S
q
u
ar

ed
E

rr
or

s

S
ig

n
al

to
N

oi
se

R
at

io
Im

p
ro

ve
m

en
t

(S
N

R
im

p
)

[3
2]

A
n

op
ti

m
u
m

E
C

G
D

en
oi

si
n
g

w
it

h
W

av
el

et
N

eu
ra

l
N

et
w

or
k

S
.

O
.

R
a
ja

n
k
ar

;
S
.

N
.

T
al

b
ar

20
15

M
IT

-B
IH

ar
rh

y
th

m
ia

d
at

as
et

s

G
au

ss
ia

n
n
oi

se
of

va
ri

ou
s

n
oi

se
le

ve
ls

W
av

el
et

N
eu

ra
l

N
et

w
or

k
A

r-
ch

it
ec

tu
re

N
ot

M
en

ti
on

ed

S
ig

n
al

to
N

oi
se

R
at

io
(S

N
R

);
M

ea
n

S
q
u
ar

e
E

rr
or

(M
S
E

)

[3
3]

E
li
m

in
at

io
n

of
P

ow
er

L
in

e
In

te
rf

er
en

ce
fr

om
E

C
G

S
ig

n
al

s
U

si
n
g

R
ec

u
rr

en
t

N
eu

ra
l

N
et

w
or

k
s

Y
u
e

Q
iu

;
F

en
g

X
ia

o;
H

ai
b
in

S
h
en

20
17

30
00

sy
n
th

et
ic

sa
m

p
le

s
of

E
C

G
si

gn
al

co
n
ta

m
in

at
ed

b
y

P
ow

er
L

in
e

N
oi

se
ra

n
d
om

ly
ge

n
er

at
ed

.

P
ow

er
L

in
e

In
te

rf
er

en
ce

D
ee

p
L

S
T

M
R

N
N

m
o
d
el

M
ea

n
S
q
u
ar

ed
E

rr
or

P
er

ce
n
ta

ge
R

o
ot

M
ea

n
S
q
u
ar

e
D

iff
er

en
ce

(P
R

D
)

[3
4]

D
ee

p
L

ea
rn

in
g

M
o
d
el

s
fo

r
D

en
oi

si
n
g

E
C

G
S
ig

n
al

s

C
.

T
.

C
.

A
rs

en
e;

R
.

H
an

k
in

s;
H

.
Y

in

20
19

T
h
re

e
d
at

as
et

s
w

er
e

u
se

d
.

T
w

o
co

m
p
ri

se
sy

n
th

et
ic

d
at

a
w

h
il
e

a
th

ir
d

d
at

as
et

is
a

re
al

d
at

as
et

(M
IT

B
IH

A
rr

h
y
th

m
ia

D
at

ab
as

e)
.

B
as

el
in

e
W

an
d
er

;
M

u
sc

le
A

rt
if

ac
t;

E
le

ct
ro

d
e

M
ot

io
n

A
rt

if
ac

t

T
w

o
D

L
M

o
d
el

s:
C

N
N

an
d

L
on

g
S
h
or

t-
T

er
m

M
em

or
y

(L
S
T

M
)

N
ot

M
en

ti
on

ed

R
o
ot

M
ea

n
S
q
u
ar

e
E

rr
or

(R
M

S
E

)

[3
5]

D
ee

p
F

il
te

r:
A

n
E

C
G

b
as

el
in

e
w

an
d
er

re
m

ov
al

fi
lt

er
u
si

n
g

d
ee

p
le

ar
n
in

g
te

ch
n
iq

u
es

F
ra

n
ci

sc
o

P
.

R
om

er
o;

D
av

id
C

.
P

iñ
ol

;
C

ar
lo

s
R

.
V

áz
q
u
ez

-
S
ei

sd
ed

os

20
21

Q
T

D
at

ab
as

e
fr

om
P

h
y
si

on
et

B
as

el
in

e
W

an
d
er

D
ee

p
F

il
te

r:
C

N
N

co
m

p
os

ed
b
y

M
K

L
A

N
L

fi
lt

er
m

o
d
u
le

s

S
u
m

of
S
q
u
ar

ed
D

is
ta

n
ce

(S
S
D

)
+

M
ax

im
u
m

A
b
so

lu
te

D
is

ta
n
ce

(M
A

D
)

S
u
m

of
th

e
S
q
u
ar

e
of

th
e

D
is

ta
n
ce

s
(S

S
D

);
P

er
ce

n
ta

ge
R

o
ot

M
ea

n
S
q
u
ar

e
D

iff
er

en
ce

(P
R

D
);

M
ax

im
u
m

A
b
so

lu
te

D
is

ta
n
ce

(M
A

D
);

C
os

in
e

S
im

il
ar

it
y

58



2.4 Comparison tables and discussion
Ta

bl
e

2.
2:

C
om

pa
ris

on
am

on
g

di
ffe

re
nt

st
ud

ie
s

[2
/3

].
R

e
f.

T
it

le
A

u
t
h

o
r

Y
e
a
r

D
a
t
a
s
e
t

N
o

is
e

R
e
m

o
v

e
d

M
e
t
h

o
d

U
s
e
d

L
o

s
s

F
u

n
c
t
io

n
E

v
a
lu

a
t
io

n
M

e
t
r
ic

s

[3
6
]

A
N

e
w

E
C

G
D

e
n
o
is

in
g

F
r
a
m

e
w

o
r
k

U
s
in

g
G

e
n
e
r
a
t
iv

e
A

d
v
e
r
s
a
r
ia

l
N

e
tw

o
r
k

P
r
a
t
ik

S
in

g
h
;

G
a
y
a
d
h
a
r

P
r
a
d
h
a
n

2
0
2
1

M
IT

-B
IH

A
r
r
h
y
t
h
m

ia
d
a
t
a
s
e
t
s

W
h
it

e
G

a
u
s
s
ia

n
N

o
is

e
;

B
a
s
e
li
n
e

W
a
n
d
e
r
;

M
u
s
c
le

A
r
t
if

a
c
t
;

E
le

c
t
r
o
d
e

M
o
t
io

n
A

r
t
if

a
c
t

G
e
n
e
r
a
t
iv

e
A

d
v
e
r
s
a
r
ia

l
N

e
tw

o
r
k

(
G

A
N

)

T
h
e

m
o
d
ifi

e
d

v
a
lu

e
fu

n
c
ti

o
n

o
f

G
n
e
tw

o
r
k

is
u
s
e
d

t
o

m
in

im
iz

e
t
h
e

d
is

t
a
n
c
e

b
e
tw

e
e
n

d
e
n
o
is

e
d

a
n
d

c
le

a
n

s
a
m

p
le

s

S
ig

n
a
l

to
N

o
is

e
R

a
t
io

(
S
N

R
)
;

S
ig

n
a
l

to
N

o
is

e
R

a
t
io

Im
p
r
o
v
e
m

e
n
t

(
S
N

R
im

p
)
;

P
e
r
c
e
n
t
a
g
e

R
o
o
t

M
e
a
n

S
q
u
a
r
e

D
iff

e
r
e
n
c
e

(
P

R
D

)
;

M
e
a
n

S
q
u
a
r
e

E
r
r
o
r

(
M

S
E

)
;

R
o
o
t

M
e
a
n

S
q
u
a
r
e

E
r
r
o
r

(
R

M
S
E

)

[3
7
]

A
n

E
C

G
D

e
n
o
is

in
g

M
e
t
h
o
d

B
a
s
e
d

o
n

t
h
e

G
e
n
e
r
a
t
iv

e
A

d
v
e
r
s
a
r
ia

l
R

e
s
id

u
a
l

N
e
tw

o
r
k

B
in

g
x
in

X
u
;

R
u
ix

ia
L

iu
;

M
in

g
le

i
S
h
u
;

X
ia

o
y
i

S
h
a
n
g
;

Y
in

g
lo

n
g

W
a
n
g

2
0
2
1

M
IT

-B
IH

a
r
r
h
y
t
h
m

ia
d
a
t
a
b
a
s
e

b
y

th
e

M
a
ss

a
c
h
u
se

tt
s

In
s
t
it

u
t
e

o
f

T
e
c
h
n
o
lo

g
y

a
n
d

B
e
th

Is
r
a
e
l

H
o
s
p
it

a
l

a
n
d

t
h
e

M
IT

-B
IH

n
o
is

e
s
t
r
e
s
s

t
e
s
t

d
a
t
a
b
a
s
e

o
f

P
h
y
s
io

B
a
n
k

E
le

c
t
r
o
d
e

M
o
t
io

n
A

r
t
if

a
c
t
;

B
a
s
e
li
n
e

W
a
n
d
e
r
;

M
u
s
c
le

A
r
t
if

a
c
t

C
o
m

b
in

a
ti

o
n

o
f

t
h
e

G
e
n
e
r
a
t
iv

e
A

d
v
e
r
s
a
r
ia

l
N

e
tw

o
r
k

a
n
d

R
e
s
id

u
a
l

N
e
tw

o
r
k

D
iff

e
re

n
ti

a
l

fu
n
c
t
io

n
a
n
d

o
v
e
r
a
ll

fu
n
c
ti

o
n

o
f

t
h
e

m
a
x
im

u
m

lo
c
a
l

d
iff

e
r
e
n
c
e

S
ig

n
a
l

to
N

o
is

e
R

a
t
io

(
S
N

R
)
;

R
o
o
t

M
e
a
n

S
q
u
a
r
e

E
r
r
o
r

(
R

M
S
E

)

[3
8
]

A
tw

o
-s

t
a
g
e

E
C

G
s
ig

n
a
l

d
e
n
o
is

in
g

m
e
t
h
o
d

b
a
s
e
d

o
n

d
e
e
p

c
o
n
v
o
lu

t
io

n
a
l

n
e
tw

o
r
k

Q
iu

L
is

h
e
n
;

C
a
i

W
e
n
q
ia

n
g
;

Z
h
a
n
g

M
ia

o
;

Z
h
u

W
e
n
li
a
n
g
;

W
a
n
g

L
ir

o
n
g

2
0
2
1

T
h
e

E
C

G
d
a
t
a

u
s
e
d

a
r
e

fr
o
m

C
P

S
C

2
0
1
8
,

a
n
d

t
h
e

n
o
is

e
s
ig

n
a
l

is
fr

o
m

M
IT

-B
IH

N
o
is

e
S
t
r
e
s
s

T
e
s
t

D
a
t
a
b
a
s
e

E
le

c
t
r
o
d
e

M
o
t
io

n
A

r
t
if

a
c
t
;

B
a
s
e
li
n
e

W
a
n
d
e
r
;

M
u
s
c
le

A
r
t
if

a
c
t

U
d
e
-n

e
t

m
o
d
e
l

+
D

R
-n

e
t

m
o
d
e
l

N
o
t

M
e
n
t
io

n
e
d

S
ig

n
a
l

to
N

o
is

e
R

a
t
io

Im
p
r
o
v
e
m

e
n
t

(
S
N

R
im

p
)
;

R
o
o
t

M
e
a
n

S
q
u
a
r
e

E
r
r
o
r

D
e
c
r
e
a
s
e

(
R

M
S
E

d
e
)

[3
9
]

D
u
a
l

A
t
t
e
n
t
io

n
C

o
n
v
o
lu

t
io

n
a
l

N
e
u
r
a
l

N
e
tw

o
r
k

B
a
s
e
d

o
n

A
d
a
p
t
iv

e
P

a
r
a
m

e
t
r
ic

R
e
L

U
fo

r
D

e
n
o
is

in
g

E
C

G
S
ig

n
a
ls

w
it

h
S
t
r
o
n
g

N
o
is

e

Z
ix

ia
o

H
e
;

X
in

w
e
n

L
iu

H
a
o

H
e
;

H
u
a
n

W
a
n
g

2
0
2
1

R
e
a
l

E
C

G
s
ig

n
a
ls

fr
o
m

M
IT

-B
IH

A
r
r
h
y
t
h
m

ia
D

a
t
a
b
a
s
e

a
n
d

R
e
a
l

E
C

G
n
o
is

e
fr

o
m

M
IT

-B
IH

S
tr

e
s
s

T
e
s
t

D
a
t
a
b
a
s
e

E
le

c
t
r
o
d
e

M
o
t
io

n
A

r
t
if

a
c
t
;

B
a
s
e
li
n
e

W
a
n
d
e
r
;

M
u
s
c
le

A
r
t
if

a
c
t

E
n
c
o
d
e
r
-

D
e
c
o
d
e
r

s
t
r
u
c
t
u
r
e

w
it

h
A

d
a
p
t
iv

e
P

a
r
a
m

e
t
r
ic

R
e
L

U
(
A

P
R

e
L

U
)

a
n
d

D
u
a
l

A
t
t
e
n
t
io

n
M

o
d
u
le

(
D

A
M

)

N
o
t

M
e
n
t
io

n
e
d

S
ig

n
a
l

to
N

o
is

e
R

a
t
io

(
S
N

R
)
;

M
e
a
n

S
q
u
a
r
e

E
r
r
o
r

(
M

S
E

)

[4
0
]

D
e
e
p

A
d
a
p
t
iv

e
D

e
n
o
is

in
g

A
u
t
o
-E

n
c
o
d
e
r

N
e
tw

o
r
k
s

fo
r

E
C

G
N

o
is

e
C

a
n
c
e
ll
a
t
io

n
v
ia

T
im

e
-F

r
e
q
u
e
n
c
y

D
o
m

a
in

A
.

M
o
h
a
m

-
m

a
d
is

r
a
b

e
t

a
l

2
0
2
2

M
IT

-B
IH

A
p
n
e
a
-E

C
G

d
a
t
a
b
a
s
e

(
A

P
N

E
A

-E
C

G
)

a
n
d

M
IT

-B
IH

N
o
is

e
S
tr

e
s
s

T
e
s
t

D
a
ta

b
a
s
e

(
N

S
T

D
B

)

E
le

c
t
r
o
d
e

M
o
t
io

n
A

r
t
if

a
c
t
;

B
a
s
e
li
n
e

W
a
n
d
e
r
;

M
u
s
c
le

A
r
t
if

a
c
t

F
r
a
c
t
io

n
a
l

S
t
o
c
k
w

e
ll

t
r
a
n
s
fo

r
m

(
F

r
S
T

)
+

D
e
e
p

A
D

A
E

N
e
t

+
In

v
e
r
s
e

F
r
S
T

N
o
t

M
e
n
t
io

n
e
d

S
ig

n
a
l

to
N

o
is

e
R

a
t
io

(
S
N

R
)
;

R
o
o
t

M
e
a
n

S
q
u
a
r
e

E
r
r
o
r

(
R

M
S
E

)
;

P
e
r
c
e
n
t

R
o
o
t

M
e
a
n

S
q
u
a
r
e

D
iff

e
r
e
n
c
e

(
P

R
D

)

59



Chapter 2 Literature review
Ta

bl
e

2.
3:

C
om

pa
ris

on
am

on
g

di
ffe

re
nt

st
ud

ie
s

[3
/3

].

R
e
f.

T
it

le
A

u
th

o
r

Y
e
a
r

D
a
ta

s
e
t

N
o

is
e

R
e
m

o
v

e
d

M
e
th

o
d

U
s
e
d

L
o

s
s

F
u

n
c
ti

o
n

E
v
a
lu

a
ti

o
n

M
e
tr

ic
s

[4
1
]

Im
p
ro

v
e
d

E
le

c
tr

o
d
e

M
o
ti

o
n

A
rt

e
fa

c
t

D
en

o
is

in
g

in
E

C
G

U
si

n
g

C
o
n
v
o
lu

ti
o
n
a
l

N
e
u
ra

l
N

e
tw

o
rk

s
a
n
d

a
C

u
st

o
m

L
o
ss

F
u
n
c
ti

o
n

E
.

B
ro

p
h
y
;

B
.

H
e
n
n
e
ll
y
;

M
.

D
e

V
o
s;

G
.

B
o
y
la

n
;

T
.

W
a
rd

2
0
2
2

M
IT

-B
IH

A
rr

h
y
th

m
ia

D
a
ta

b
a
se

a
n
d

M
IT

-B
IH

N
o
is

e
S
tr

es
s

T
es

t
D

a
ta

b
a
se

E
le

c
tr

o
d
e

M
o
ti

o
n

A
rt

if
a
c
t

C
N

N
w

it
h

fo
u
r

1
-D

la
y
e
rs

T
w

o
M

S
E

c
o
m

p
o
-

n
e
n
ts

:
G

lo
b
a
l

+
L

o
c
a
l

M
S
E

S
ig

n
a
l

to
N

o
is

e
R

a
ti

o
Im

p
ro

v
e
m

e
n
t

(S
N

R
im

p
);

H
e
a
rt

R
a
te

E
rr

o
r

P
re

d
ic

ti
o
n
;

In
te

rb
e
a
t

In
te

rv
a
l

(I
B

I)
+

H
e
a
rt

R
a
te

V
a
ri

a
b
il
it

y
(H

R
V

)
o
f

th
e

d
e
n
o
is

e
d

v
s

n
o
is

y
E

C
G

si
g
n
a
ls

[4
2
]

A
S
C

N
e
t-

E
C

G
:

D
e
e
p

A
u
to

e
n
c
o
d
e
r

b
a
se

d
A

tt
e
n
ti

o
n

a
w

a
re

S
k
ip

C
o
n
n
e
c
ti

o
n

n
e
tw

o
rk

fo
r

E
C

G
fi
lt

e
ri

n
g

R
a
g
h
a
v
en

d
ra

B
a
d
ig

e
r;

M
.

P
ra

b
h
a
k
a
r

2
0
2
3

M
IT

-B
IH

d
a
ta

se
t

W
h
it

e
G

a
u
ss

ia
n

N
o
is

e
;

B
a
se

li
n
e

W
a
n
d
e
r;

M
u
sc

le
A

rt
if

a
c
t;

E
le

c
tr

o
d
e

M
o
ti

o
n

A
rt

if
a
c
t

D
e
e
p

a
u
-

to
e
n
c
o
d
e
r

m
o
d
u
le

w
it

h
a

m
o
d
ifi

e
d

R
e
L

U
fu

n
c
ti

o
n
,

sk
ip

c
o
n
n
e
c
ti

o
n

a
n
d

a
tt

e
n
ti

o
n

m
o
d
e
l

N
o
t

M
e
n
ti

o
n
e
d

S
ig

n
a
l

to
N

o
is

e
R

a
ti

o
(S

N
R

);
R

o
o
t

M
e
a
n

S
q
u
a
re

E
rr

o
r

(R
M

S
E

)

[4
3
]

D
e
e
p

C
o
n
v
o
lu

ti
o
n
a
l

G
e
n
e
ra

ti
v
e

A
d
v
e
rs

a
ri

a
l

N
e
tw

o
rk

w
it

h
L

S
T

M
fo

r
E

C
G

D
e
n
o
is

in
g

H
.

W
a
n
g
;

Y
.

M
a
;

A
.

Z
h
a
n
g
;

D
.

L
in

;
Y

.
Q

i;
J
.

L
i

2
0
2
3

M
IT

-B
IH

A
rr

h
y
th

m
ia

D
a
ta

b
a
se

w
it

h
d
iff

e
re

n
t

le
v
e
ls

o
f

n
o
is

e
fr

o
m

th
e

M
IT

-B
IH

N
o
is

e
S
tr

es
s

T
es

t
D

a
ta

b
a
se

E
le

c
tr

o
d
e

M
o
ti

o
n

A
rt

if
a
c
t;

B
a
se

li
n
e

W
a
n
d
e
r;

M
u
sc

le
A

rt
if

a
c
t

D
e
e
p

C
o
n
-

v
o
lu

ti
o
n
a
l

G
e
n
e
ra

ti
v
e

A
d
v
e
rs

a
ri

a
l

N
e
tw

o
rk

(D
C

G
A

N
)

+
L

S
T

M

N
o
t

M
e
n
ti

o
n
e
d

S
ig

n
a
l

to
N

o
is

e
R

a
ti

o
Im

p
ro

v
e
m

e
n
t

(S
N

R
im

p
);

P
e
rc

e
n
t

R
o
o
t

M
e
a
n

S
q
u
a
re

D
iff

e
re

n
c
e

(P
R

D
);

R
o
o
t

M
e
a
n

S
q
u
a
re

E
rr

o
r

(R
M

S
E

)

[4
4
]

A
n
o
v
e
l

d
e
e
p

w
a
v
e
le

t
c
o
n
v
o
lu

ti
o
n
a
l

n
e
u
ra

l
n
e
tw

o
rk

fo
r

a
c
tu

a
l

E
C

G
si

g
n
a
l

d
e
n
o
is

in
g

Y
a
n
ru

i
J
in

;
C

h
e
n
g
ji

n
Q

in
;

J
in

le
i

L
iu

;
Y

u
n
q
in

g
L

iu
;

Z
h
iy

u
a
n

L
i;

C
h
en

g
li
a
n
g

L
iu

2
0
2
4

M
IT

-B
IH

A
rr

h
y
th

m
ia

D
a
ta

b
a
se

a
n
d

M
IT

-B
IH

N
o
is

e
S
tr

es
s

T
es

t
D

a
ta

b
a
se

E
le

c
tr

o
d
e

M
o
ti

o
n

A
rt

if
a
c
t;

B
a
se

li
n
e

W
a
n
d
e
r;

M
u
sc

le
A

rt
if

a
c
t

D
W

-C
N

N
:

D
e
e
p

W
a
v
e
le

t
C

o
n
v
o
lu

-
ti

o
n
a
l

N
e
u
ra

l
N

e
tw

o
rk

(w
it

h
H

a
a
r

w
a
v
e
le

t)
.

M
e
a
n

S
q
u
a
re

d
E

rr
o
r

S
ig

n
a
l

to
N

o
is

e
R

a
ti

o
(S

N
R

);
R

o
o
t

M
e
a
n

S
q
u
a
re

E
rr

o
r

(R
M

S
E

)

60



2.4 Comparison tables and discussion

Table 2.4: Comparison of evaluation metric results among studies.

Ref. SNR
OUTPUT SNRimp PRD MSE RMSE

[9] 12,11
[32] 27,72 4,010
[33] 2,42

[34] CNN: 0,029
LSTM: 0,232

[35] 50.45
[36] 14,58 6,48 0,002
[37] 40,88 0,010
[38] 9,96 0,004
[39] 7,21 0,045
[40]
[41] 29,74
[42] 46,22 0,024
[43] 19,25 12,91 0,035
[44] 5,99 0,194
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Chapter 3

F-waves extraction by deep learning

3.1 Introduction

Early detection of AF is important to ensure timely and correct management of the
condition and avoid the recurrence of the arrhythmia as much as possible.
According to the European guidelines for the diagnosis and management of patients
with atrial fibrillation [23], the diagnosis process requires rhythm documentation
acquired by a single-lead or 12-lead ECG tracing.
The most relevant information searched by clinicians in the evaluation of atrial
arrhythmias is contained in the irregular fibrillatory waves: F-waves, which replace
the standard atrial depolarization waves (P-waves). F-waves can have different
shapes, amplitude, and duration in every patient and, additionally, their amplitude
is low and generally superimposed by the QRS complex. For these reasons, for
clinicians, detecting F-waves by visual inspection is a challenging task.
Nowadays different signal processing principles have been employed to perform F-
waves extraction from ECG signals as average beat subtraction (ABS) and variants,
principal component analysis (PCA), interpolation and singular spectral analysis,
independent component analysis (ICA), adaptive filtering using an echo state network
and diffusion geometry.
Moreover, also deep learning algorithms are widely used to analyze and extract
features from biomedical signals such as ECG. Many recent works use machine
learning algorithms to classify different types of atrial fibrillation, but no work has
been found in the literature using deep learning methods to extract F-waves from
ECG signals of patients with AF.

3.2 Materials and methods

3.2.1 Dataset

The data used in this research come from a reference database for validation of
methods of extraction of atrial fibrillatory waves in the ECG, available online and
described in [45]. This dataset contains 240 records of simulated AF 12-lead ECG
signals, which are different combinations of real or synthetic F-waves and QRST
complexes. The synthetic F-waves and QRST complexes are generated by an extended

63



Chapter 3 F-waves extraction by deep learning

version of the sawtooth model [46] and an extended version of the single-dipole model
[47], respectively. The real F-waves without QRS-related residuals are carefully
selected from a proprietary clinical AF database [48], and the real QRST complexes
are selected from the PTB database [49].
The database is composed of eight signal sets together accounting for a wide range of
characteristics known to represent major challenges in F-waves extraction, including
high heart rates, QRST with high morphological variability (HMV), and the presence
of ventricular premature beats (VPBs). Each set contains 30 5-minute signals with
six different values of amplitude (5, 10, 20, 30, 40, 50 µV ). Each record is sampled
at a frequency of 1000 Hz. Moreover, this dataset is noise-free, except for the noise
which is present in real signals.
In Table 3.1 are reported the composition of sets of signals available in this database.

Table 3.1: Composition of the dataset.

SET Real
F-waves

Synthetic
F-waves

Real
QRST

complexes

Synthetic
QRST

complexes

Real
QRST

complexes
with HMV

Real
VPBs

S1 × ×
S2 × ×
S3 × ×
S4 × ×
S5 × ×
S6 × ×
S7 × × ×
S8 × × ×

3.2.2 Proposed model

This work proposes a two-stage deep learning method to extract F-waves from ECG
signals of patients affected by atrial fibrillation.
The architecture of the models employed in both two stages is the same, while the
two loss functions are different. The first model takes as input data the real ECG
signals with F-waves and the corresponding real F-waves as ground truth, while the
second model takes the output of the first model as input data and always the real
F-waves as ground truth. The basic block scheme of the designed architecture is
shown in Figure 3.1.

Both the proposed models are designed with 2 fully convolutional architectures
based on multipath modules. This approach places different convolutional layers at
the same level and lets the backpropagation algorithm choose not only the weights
but also the best path for the signal to pass through.
In deep learning models, often the kernel size is one hyperparameter challenging to
set. Therefore, typically a grid search or multiple empirical choices are performed to

64
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Figure 3.1: Block scheme of the proposed two-stage deep learning method.

find an optimal value, which can be time-consuming. Employing multipath modules,
an optimal kernel will be learned at each level. The proposed Multi-Kernel Linear
And Non-Linear (MKLANL) filter module is inspired by the Inception module,
originally introduced by [50] and adopted also in the DeepFilter designed in [35]. The
used MKLANL filter module (Figure 3.2) is composed of two internal groups: the
linear group with linear activation functions and the non-linear group with rectified
linear unit (ReLU) activation functions. Each internal group contains four types
of convolutional layers with 1D kernels equal to (3, 5, 9, and 15). The number of
convolutional filters for each type is N/8, where N is a hyperparameter to control
the total amount of filters per multipath module.

Figure 3.2: Structure of the MKLANL filter module.

Moreover, also dilated convolutions using non-consecutive kernels (Figure 3.3) were
introduced in the filter module in order to increase the kernel receptive fields without
increasing the computational load. For a one-dimensional signal x[i], the output y[i]
of a dilated convolution operation with a dilation rate r and a filter mask w[s] is
defined by Eq. 3.1.
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y[i] =
S∑︂

s=1
x[i + r · s]w[s] (3.1)

Figure 3.3: Dilated convolutions.

Each of the two designed networks is composed of six MKLANL filter modules
arranged sequentially. Figure 3.4 illustrates one of the two proposed deep learning
network architectures.

Figure 3.4: Architecture of each proposed network.

The first two layers have a total of 64 convolutional filters and are internally
structured as shown in Figure 3.2. In the second filter module, convolutional
operations were configured with a dilation rate r = 3, enabling dilated convolutions.
This same dilation rate was also set in the fourth and sixth layers. The number
of extracted features decreases along the network, starting with 64 in modules one
and two, then 32 features in modules three and four. Lastly, the modules five
and six contain 16 features each. The final step has one convolutional filter with
kernel = 9, which conforms to the output signal. Since F-waves are bipolar signals,
linear activation was used for this final step, thereby allowing the output to have
either positive or negative values.
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3.2.3 Training strategy

This thesis has been implemented partly in the MATLAB environment and partly
running Python code in the Google Colab environment.

Preprocessing
From the above-reported dataset composed of eight signal sets, only the data of
the first set, i.e. the one which contains signals with both real F-waves and QRST
complexes, were used.
Data were provided with the ".mat" extension, thus the first steps of preprocessing of
the data were implemented in the MATLAB environment. The first set contains 30
5-minute ECG and F-wave signals (12-lead acquisition) with six different values of
amplitude (5, 10, 20, 30, 40, 50 µV ) sampled at a frequency of 1000 Hz. To reduce
the computational effort of the training of the next step, signals were down-sampled
at a frequency of 512 Hz.
All the next preprocessing steps described have been performed similarly for ECG
and F-wave signals.
For every 5 minutes of the signal acquired through the 12 leads, 1-second windows
were extracted. To increase the randomization of the input data, a window shifting
has been imposed based on the amplitude of the signal considered. For the signal
with an amplitude of 5 µV , no shifting of the generated window has been considered,
while for the signal of 10 µV a shift of 0.1 seconds of the window has been imposed
with respect to the previous one, for the signal of 20 µV 0.2 seconds, for that of
30 µV of 0.3, 0.4 for that of 40 µV and 0.5 for that with amplitude equal to 50
µV . This procedure was necessary because, despite the ECG signals of the original
dataset being all different, the F-wave component contained in them was repeated
for some amplitude pairs of signals. Specifically, the signals with amplitude of 10 and
20 µV contained the same component of F-waves and similarly the pair of signals
with amplitude of 30 and 50 µV .
For each 5-minute signal, windows containing the first and the last second were
excluded, resulting in 298 windows of one second for each recording and therefore
a total of 107.280 windows of ECG and F-waves signal respectively. Finally, the
windows corresponding to the signals acquired through the leads aVR, aVF, aVL and
III were also excluded as they did not contain any additional information compared
to those acquired through the other 8 leads.
According to all the steps described, the final dataset obtained consists of 71.520s of
ECG signal recordings and the respective 71.520s of F-waves.
The dataset was imported via Google Drive into the Colab environment, which
provides a Jupyter notebook to execute Python codes. The lists of data corresponding
to the input signals of the implemented two-stage deep learning method (ECG with F-
waves) were shuffled to increase the randomization while maintaining the correlation
between the ECG recording and the corresponding component of F-wave.
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Finally, the dataset was divided into three sets: the training set which contained
80% of the data (57.120 seconds) that were used to train the implemented deep
learning method, the validation set which contained 10% of the data (7.200 seconds)
to determine when to stop training to avoid the overfitting problem, and the test set
containing the last 10% of the data (7.200 seconds); this data were kept away from
the system during training and were used only to evaluate it.
The described data split is shown in Figure 3.5.

Figure 3.5: Data subdivision.

Loss functions
As previously mentioned, the architecture of the two models, employed in the two-
stages deep learning method implemented, is the same, while the loss functions
change.
Both loss functions used during the network optimization process combine the Cosine
Similarity (CosSim) and the Mean Squared Error (MSE) or Mean Squared Deviation
(MSD).
The Cosine similarity is a measure of similarity between two vectors. It is a nor-
malized bounded inner product by L2 norms. The cosine similarity comes because
the normalized dot product by the Euclidean L2 normalization is the cosine of the
angle between the points denoted by the vectors in the unit sphere. It is defined by
Eq. 3.2.

CosSim(s1, s2) =
∑︁N

n=1 s1(n)s2(n)√︂∑︁N
n=1 s12(n)

√︂∑︁N
n=1 s22(n)

= ⟨s1, s2⟩
∥s1∥ ∥s2∥

1 ≤ n ≤ N (3.2)

where s1 and s2 are the extracted signal (F-waves) and the ground truth one to
be compared, n is the index of the current sample and N is the length of the signals
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(512 samples). The more similar the two vectors (or the two signals), the more the
cosine similarity gets closer to 1. Thus, CosSim looks more at the shape of the
extracted signals with respect to their amplitude.
The MSE instead takes the difference between each respective sample of the ground
truth signal and the signal predicted by the model, squares it, and averages it out
across the whole sample of the signal given in input. In other words, it provides an
idea of how similar the two signals are along their entire duration.
The MSE will never be negative, since it always squares the errors, and it could be
formally defined by Eq. 3.3.

MSE(s1,s2) = 1
N

N∑︂
n=1

(s2(n) − s1(n))2 1 ≤ n ≤ N (3.3)

The MSE is great for ensuring that the trained model has no outlier predictions
with huge errors since it puts a larger weight on these errors due to the squaring part
of the function.
Since both losses have different value ranges, have been balanced by different factors
in the two models. The loss function adopted in the first model is simply the sum of
the two above-described functions (Eq. 3.4), while in the second loss function, the
MSE term was balanced by a λ term (Eq. 3.5). It was empirically found that λ =
500 works well in the designed deep learning setup.

Loss1 = CosSim (s1, s2) + MSE(s1,s2) (3.4)

Loss2 = CosSim (s1, s2) + λ · MSE(s1,s2) (3.5)

3.2.4 Evaluation Metrics

The metrics used to evaluate the performances of the designed two-stage deep learning
model are the sum of the square of the distances (SSD), the maximum absolute
distance (MAD) and the normalized sample correlation coefficient between the ex-
tracted and the ground truth signal. Moreover, for each of the two signals also the
amplitude (A) and dominant frequency (DF) were computed.

Sum of the square of the distances (SSD)
This metric measures the sum of squared distances between the ground truth and
the extracted F-wave signals. It provides an idea of how similar the signals are along
their entire duration. It can be computed by Eq. 3.6.

SSD(s1,s2) =
N∑︂

n=1
(s2(n) − s1(n))2 1 ≤ n ≤ N (3.6)
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where s1 and s2 are the extracted signal (F-wave) and the ground truth one to be
compared, n is the index of the current sample and N is the length of the signals
(512 samples).

Maximum absolute distance (MAD)
This metric measures the maximum absolute distance between the two signals. The
formula is given by Eq. 3.7.

MAD(s1,s2) = max |s1(n) − s2(n)| 1 ≤ n ≤ N (3.7)

Normalized sample correlation coefficient (ρ)
This index measures the similarity between two signals. The normalized sample
correlation coefficient varies between -1 and +1 and can be expressed by Eq. 3.8.

ρ(s1, s2) = C(s1,s2)√︁
E(s1)E(s2)

= 1√︁
E(s1)E(s2)

N∑︂
n=1

s1(n)s2(n) 1 ≤ n ≤ N (3.8)

where:

E(s1) = C(s1, s1) =
N∑︂

n=1
s1(n)s1(n) (3.9)

E(s2) = C(s2, s2) =
N∑︂

n=1
s2(n)s2(n) (3.10)

Thus, signals that are as positively correlated as possible have a normalized corre-
lation of 1 and signals that are as negatively correlated as possible have a normalized
correlation of -1.

Amplitude (A)
Since F-waves are stochastic signals, the amplitude was computed as four times the
standard deviation (σn) of all the sample’s amplitude in the 1-second length window
(Eq. 3.11).

A(s1) = 4 · σn (3.11)

Dominant frequency (DF)
Dominant Frequency (DF) is a term used to identify the frequency related with the
greatest power/amplitude in a signal. The dominant frequency is determined from a
spectral analysis of the time series, i.e., Fast Fourier Transform (FFT). In this work,
the DF of the signal was computed as the maximum value of the FFT of the signal
in the 1-second length window (Eq. 3.12).

DF (s1) = max |FFT (s1)| (3.12)
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3.3 Results

Both the networks were trained for 100.000 epochs, with an early stop of the first
network at epoch number 35 and an early stop of the second network at epoch number
39. The output of the two-stage deep learning method implemented corresponds to
the output of the second network. For this reason, all the evaluation metrics of the
results reported involve the F-wave signals extracted as the output of the second
network and the original F-wave signals considered as a target.
Table 3.2, Table 3.3 and Table 3.4 report the results in the training, validation and
testing dataset, in terms of evaluation metrics considered for the comparison of the
two signals subdivided for the original amplitude of the input signal of the two-stage
deep learning network (ECG with F-waves).

Table 3.2: Evaluation metrics results for the training dataset in terms of input signal
amplitudes. Values are reported in terms of mean ± std.

TRAINING

A

INPUT signal

(µV)

A

TARGET

(µV)

A

OUTPUT

(µV)

DF

TARGET

(Hz)

DF

OUTPUT

(Hz)

ρ
SSD

(au)

MAD

(au)

05 0,008 ± 0,002 0,019 ± 0,004 6,093 ± 2,084 6,218 ± 1,774 0,754 ± 0,115 0,008 ± 0,004 0,010 ± 0,003

10 0,021 ± 0,009 0,033 ± 0,011 6,006 ± 2,134 6,227 ± 1,806 0,812 ± 0,099 0,014 ± 0,007 0,014 ± 0,005

20 0,039 ± 0,010 0,052 ± 0,011 6,949 ± 2,532 6,772 ± 2,167 0,854 ± 0,061 0,026 ± 0,012 0,021 ± 0,007

30 0,063 ± 0,027 0,066 ± 0,019 6,563 ± 2,324 6,577 ± 2,039 0,845 ± 0,070 0,059 ± 0,055 0,029 ± 0,015

40 0,091 ± 0,034 0,085 ± 0,023 5,995 ± 2,000 6,146 ± 1,664 0,841 ± 0,073 0,111 ± 0,102 0,042 ± 0,020

50 0,079 ± 0,025 0,077 ± 0,020 6,069 ± 2,159 6,167 ± 1,763 0,826 ± 0,082 0,093 ± 0,060 0,037 ± 0,015

Table 3.3: Evaluation metrics results for the validation dataset in terms of input
signal amplitudes. Values are reported in terms of mean ± std.

VALIDATION

A

INPUT signal

(µV)

A

TARGET

(µV)

A

OUTPUT

(µV)

DF

TARGET

(Hz)

DF

OUTPUT

(Hz)

ρ
SSD

(au)

MAD

(au)

05 0,008 ± 0,002 0,019 ± 0,004 6,002 ± 1,956 6,186 ± 1,809 0,757 ± 0,116 0,008 ± 0,004 0,010 ± 0,003

10 0,021 ± 0,009 0,033 ± 0,011 5,990 ± 2,104 6,255 ± 1,881 0,813 ± 0,100 0,014 ± 0,007 0,014 ± 0,005

20 0,040 ± 0,010 0,051 ± 0,011 6,962 ± 2,621 6,988 ± 2,366 0,855 ± 0,062 0,026 ± 0,010 0,021 ± 0,006

30 0,062 ± 0,027 0,066 ± 0,019 6,588 ± 2,296 6,519 ± 1,890 0,848 ± 0,066 0,056 ± 0,049 0,029 ± 0,015

40 0,091 ± 0,035 0,084 ± 0,023 5,928 ± 2,092 6,086 ± 1,645 0,841 ± 0,072 0,113 ± 0,104 0,041 ± 0,019

50 0,079 ± 0,026 0,077 ± 0,020 6,078 ± 2,035 6,092 ± 1,665 0,825 ± 0,083 0,095 ± 0,069 0,037 ± 0,016
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Table 3.4: Evaluation metrics results for the testing dataset in terms of input signal
amplitudes. Values are reported in terms of mean ± std.

TESTING

A

INPUT signal

(µV)

A

TARGET

(µV)

A

OUTPUT

(µV)

DF

TARGET

(Hz)

DF

OUTPUT

(Hz)

ρ
SSD

(au)

MAD

(au)

05 0,008 ± 0,002 0,020 ± 0,004 6,131 ± 2,089 6,136 ± 1,725 0,749 ± 0,119 0,008 ± 0,004 0,010 ± 0,003

10 0,021 ± 0,009 0,034 ± 0,012 6,056 ± 2,139 6,245 ± 1,889 0,814 ± 0,099 0,014 ± 0,008 0,014 ± 0,005

20 0,040 ± 0,010 0,052 ± 0,011 6,818 ± 2,542 6,700 ± 2,039 0,854 ± 0,060 0,027 ± 0,012 0,021 ± 0,007

30 0,063 ± 0,027 0,066 ± 0,020 6,568 ± 2,340 6,626 ± 2,016 0,843 ± 0,071 0,060 ± 0,052 0,030 ± 0,015

40 0,091 ± 0,034 0,085 ± 0,022 5,985 ± 2,101 6,187 ± 1,805 0,840 ± 0,073 0,112 ± 0,097 0,042 ± 0,019

50 0,080 ± 0,025 0,078 ± 0,021 6,090 ± 2,114 6,104 ± 1,655 0,824 ± 0,083 0,093 ± 0,054 0,037 ± 0,015

Table 3.5, Table 3.6 and Table 3.7 instead, report the results in the training,
validation and testing dataset, subdivided for the corresponding lead of the original
input signals of the two-stage deep learning network.

Table 3.5: Evaluation metrics results for the training dataset in terms of input signal
leads. Values are reported in terms of mean ± std.

TRAINING

LEAD

A

TARGET

(µV

A

OUTPUT

(µV)

DF

TARGET

(Hz)

DF

OUTPUT

(Hz)

ρ

SSD

(au)

MAD

(au)

I 0,037 ± 0,017 0,046 ± 0,014 6,286 ± 2,058 6,374 ± 1,837 0,839 ± 0,074 0,029 ± 0,025 0,019 ± 0,009

II 0,045 ± 0,021 0,053 ± 0,017 6,168 ± 2,121 6,182 ± 1,804 0,853 ± 0,065 0,037 ± 0,033 0,023 ± 0,010

V1 0,101 ± 0,021 0,097 ± 0,019 6,295 ± 1,197 6,270 ± 1,139 0,859 ± 0,069 0,125 ± 0,069 0,046 ± 0,017

V2 0,082 ± 0,026 0,079 ± 0,019 6,073 ± 1,712 6,151 ± 1,431 0,840 ± 0,076 0,101 ± 0,087 0,037 ± 0,017

V3 0,060 ± 0,025 0,063 ± 0,018 5,900 ± 1,831 6,127 ± 1,559 0,825 ± 0,082 0,064 ± 0,065 0,030 ± 0,014

V4 0,039 ± 0,015 0,047 ± 0,013 5,914 ± 2,170 6,173 ± 1,787 0,809 ± 0,089 0,032 ± 0,023 0,022 ± 0,009

V5 0,020 ± 0,010 0,030 ± 0,009 6,399 ± 3,081 6,598 ± 2,574 0,782 ± 0,100 0,014 ± 0,009 0,014 ± 0,006

V6 0,016 ± 0,008 0,027 ± 0,008 7,123 ± 3,470 6,910 ± 2,864 0,769 ± 0,111 0,012 ± 0,009 0,013 ± 0,005

Finally, Figure 3.6, Figure 3.7 and Figure 3.8 show some examples of F-wave
signals extraction performed by the deep learning method implemented. In each of
them is reported the original ECG signal with the F-wave component used as input
to the network, the F-waves signal used as target and finally, the F-waves signal
extracted by the implemented method.
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Table 3.6: Evaluation metrics results for the validation dataset in terms of input
signal leads. Values are reported in terms of mean ± std.

VALIDATION

LEAD

A

TARGET

(µV)

A

OUTPUT

(µV)

DF

TARGET

(Hz)

DF

OUTPUT

(Hz)

ρ

SSD

(au)

MAD

(au)

I 0,038 ± 0,017 0,047 ± 0,015 6,259 ± 2,108 6,340 ± 1,789 0,843 ± 0,073 0,028 ± 0,021 0,020 ± 0,009

II 0,045 ± 0,022 0,053 ± 0,018 6,186 ± 2,156 6,184 ± 1,847 0,855 ± 0,065 0,038 ± 0,033 0,023 ± 0,011

V1 0,099 ± 0,021 0,096 ± 0,019 6,336 ± 1,184 6,282 ± 1,073 0,862 ± 0,067 0,119 ± 0,064 0,046 ± 0,017

V2 0,081 ± 0,026 0,078 ± 0,019 6,118 ± 1,726 6,121 ± 1,305 0,838 ± 0,077 0,099 ± 0,079 0,038 ± 0,016

V3 0,060 ± 0,024 0,063 ± 0,017 5,904 ± 1,831 6,076 ± 1,528 0,824 ± 0,083 0,064 ± 0,059 0,030 ± 0,014

V4 0,040 ± 0,015 0,048 ± 0,013 6,031 ± 2,273 6,270 ± 1,795 0,810 ± 0,085 0,033 ± 0,022 0,022 ± 0,009

V5 0,020 ± 0,010 0,030 ± 0,009 6,504 ± 3,080 6,634 ± 2,621 0,780 ± 0,097 0,014 ± 0,010 0,014 ± 0,006

V6 0,016 ± 0,009 0,027 ± 0,009 7,169 ± 3,372 7,057 ± 2,831 0,766 ± 0,111 0,012 ± 0,007 0,013 ± 0,005

Table 3.7: Evaluation metrics results for the testing dataset in terms of input signal
leads. Values are reported in terms of mean ± std.

TESTING

LEAD

A

TARGET

(µV)

A

OUTPUT

(µV)

DF

TARGET

(Hz)

DF

OUTPUT

(Hz)

ρ

SSD

(au)

MAD

(au)

I 0,038 ± 0,017 0,046 ± 0,015 6,356 ± 2,149 6,292 ± 1,806 0,835 ± 0,078 0,029 ± 0,024 0,020 ± 0,008

II 0,044 ± 0,022 0,052 ± 0,017 6,047 ± 2,052 6,066 ± 1,665 0,853 ± 0,065 0,038 ± 0,036 0,023 ± 0,011

V1 0,102 ± 0,021 0,098 ± 0,019 6,334 ± 1,190 6,270 ± 1,092 0,857 ± 0,068 0,129 ± 0,069 0,046 ± 0,016

V2 0,083 ± 0,027 0,079 ± 0,020 6,041 ± 1,647 6,227 ± 1,462 0,839 ± 0,079 0,105 ± 0,090 0,038 ± 0,017

V3 0,061 ± 0,027 0,063 ± 0,019 5,842 ± 1,686 6,007 ± 1,421 0,825 ± 0,079 0,068 ± 0,075 0,030 ± 0,016

V4 0,040 ± 0,016 0,048 ± 0,014 6,026 ± 2,291 6,111 ± 1,736 0,807 ± 0,088 0,033 ± 0,024 0,022 ± 0,009

V5 0,020 ± 0,010 0,030 ± 0,009 6,613 ± 3,067 6,716 ± 2,721 0,780 ± 0,106 0,014 ± 0,008 0,014 ± 0,006

V6 0,016 ± 0,008 0,027 ± 0,008 7,096 ± 3,473 7,040 ± 2,916 0,765 ± 0,109 0,012 ± 0,007 0,013 ± 0,005
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Figure 3.6: Example of F-wave extraction performed by the two-stage deep learning
method implemented [1/3]. ECG with F-wave (a). Target F-wave (b).
F-wave extracted by the network (c).

Figure 3.7: Example of F-wave extraction performed by the two-stage deep learning
method implemented [1/3]. ECG with F-wave (a). Target F-wave (b).
F-wave extracted by the network (c).
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Figure 3.8: Example of F-wave extraction performed by the two-stage deep learning
method implemented [1/3]. ECG with F-wave (a). Target F-wave (b).
F-wave extracted by the network (c).

3.4 Discussion

In this work it is proposed a two-stage deep learning method to extract F-waves
from ECG signals of patients affected by atrial fibrillation. Both the two designed
deep learning models have 1D CNN architectures based on multipath modules. The
hyperparameters of the network and the loss functions used were defined empirically,
training the networks several times and evaluating their performances. The idea
behind the use of two networks on cascade, instead of only one, is based on exper-
imental results. It has been seen that, after the first stage, the waveforms of the
extracted F-waves are similar in shape to the ground truth F-waves but are inevitably
distorted in amplitude. This distortion could be attributed to the downsampling and
normalization performed by the first network. For this reason, a second network was
introduced, with the same architecture as the first but with a different loss function.
By emphasizing the distance between the extracted F-waves and ground truth signals
with respect to shape, the second loss function is intended to restore the amplitude
of the extracted F-waves from the first network. In other words, this second network
doesn’t learn how to extract the F-waves from the original signal but rather learns
to recover the information lost after the first stage. The second network can be seen
as a filter for the amplitude of the signal in input, i.e. the extracted F-waves from
the first deep learning model.
According to the results in terms of evaluation metrics analyzed, the performances
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of the implemented method are promising. It can be noticed that, independently the
signals given as input to the network belong to the training, validation or testing
dataset, the extracted F-waves share similar characteristics. This suggests that the
implemented method was trained to avoid the problem of overfitting. The input
signals differ in terms of both amplitude and lead used to record the ECG. This
means that the proposed two-stage deep learning method is strong enough to be able
to manage signals that have different shapes and amplitude. The results reported
separately for these two different characteristics of the input signal show that between
the extracted F-waves and the target signals the correlation coefficient is always
high, with the lowest value of 0.74. In particular, it can be noticed that, according
to the different amplitude of the input signals, the highest values of correlation were
reached for 20 µV amplitude, even if values for 10,30,40,50 µV amplitude are similar,
while the lowest values were obtained for 5 µV of input signal amplitude. Analyzing
instead the correlation according to the different leads used to record the ECG signal,
it can be noticed that, the bipolar leads, together with V1, V2, V3, and V4, show
the highest values. V5 and V6, between the precordial leads, are the ones placed
farthest from the heart and mainly record the activity of the ventricles; therefore,
the recorded R waves and F-waves components are smaller with respect to the one
recorded from the other leads. This could explain the lowest values of correlation
obtained for their relative input signals.
The F-wave repetition rate, also known as the dominant atrial frequency (DF),
helps monitor drug therapy and predict both spontaneous and drug-induced AF
termination. Results show that this feature is maintained in the waves extracted
by the model, with mean absolute error with respect to the target in the testing
dataset of 0.052 Hz. Similar results were obtained for the amplitudes of the output
signals. Finally, also the obtained values of SSD and MAD are low, demonstrating
the strength of this method and the similarity of the extracted waves in terms of
amplitude and shape with respect to the target.
Data used, and the preprocessing stage applied was oriented to increase the dimension
of the dataset, together with its randomization. A point of strength of this method
was to use only real ECG and F-waves signals, instead of synthetic signals, also
available in the original dataset. Furthermore, splitting the original signal in the 1s
length windows increased a lot the dimension of the input data and the different
shifting of the widows according to the different amplitude of the input signals
increased their randomization. The windows were not designed to obtain 1 beat of
ECG for each of them. Instead, one window could contain two peaks (R-R) or only
one, and it could start with P-waves but also QRS complex or T-waves. Most of
the studies on the analysis of ECG records for AF detection are based on heart rate
variability, i.e., on the R-R intervals. However, the above-described preprocessing of
the input data makes the implemented method completely independent of the RR
distance of the input ECG signal.
On the other hand, the main drawback of this work can be related to the data
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used. Firstly, according to the European guidelines [23], the diagnosis of AF requires
rhythm documentation acquired by 12-lead ECG showing AF analyzed by a physician
with expertise in ECG rhythm interpretation with at least 30 s of duration. This
method is limited to extracting F-waves from a 1-second ECG window, so, for clinical
usage, it requires further improvement in post-processing the output signals.
Moreover, all the ECG signals given as input to train the net contain F-waves. This
was the initial hypothesis of this work, but, given the promising results, it might be
interesting to try to train the network using as input both ECG signals containing
F-waves and signals recorded by healthy patients, not affected by AF.
Thanks to the results obtained using CNN for the classification and analysis of images,
nowadays the use of deep learning, and in particular of 1D CNN is increasingly
increasing for the study of biomedical signals. For what concerns the study of AF,
and particularly the extraction of the characteristic F-waves from recorded ECG
signals of diseased patients, no works have been found in the literature using deep
learning methods. Classical techniques used to carry out this task involve the use of
different signal processing principles such as PCA, ICA, etc...
For this reason, this work, given the promising results obtained, can be considered a
forerunner for this branch of research.
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Conclusion

This thesis proposed an in-depth analysis regarding a disturbance in the conduction
of the electrical impulse, i.e. atrial fibrillation. Specifically, attention has been paid
to the characteristic F-waves, which occur, even if with a small amplitude, in the
ECG of patients affected by this type of arrhythmia. The detection, diagnosis and
extraction of these waves is a complex process; to achieve these aims, the most
innovative techniques and methodologies of deep learning were examined. Due to
the lack of work with the same goal in the literature, the most recent works in which
deep learning techniques were utilized to filter ECG signals and eliminate noisy
components were reviewed.
Thus, a two-step deep learning model was proposed to extract the F-wave component
from a 1-second length ECG signal window of an AF-affected person. Although the
results obtained and evaluated in terms of evaluation metrics are really promising,
there is still room for improvement.
Specifically, for a more accurate clinical evaluation of the pathology, longer ECG
signal input windows should be used or signal post-processing techniques should be
designed to merge the output signals and obtain F-waves that last longer. A further
step of improvement could be to modify the network so that it can evaluate, before
proceeding with the extraction of the F-waves, if these are contained in the input
signal. In other words, the network could be trained with ECG input signals of both
healthy and AF-affected patients.
In this thesis, it was demonstrated that deep learning techniques, especially CNNs, can
identify and extract patterns in biomedical signals like ECG, and can be exploited,
even with simple implementation, to extract stochastic signal components with
excellent results.
Despite the use of already known and established deep learning techniques, this
work is innovative in their use as filters to extract a component of the principal
signal, rather than the recorded one (ECG), and for the application field, i.e. atrial
fibrillation and F-waves.
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