
Facoltà di Ingegneria
Corso di Laurea Magistrale in Ingegneria Elettronica

Online Learning of Oil Leaks Anomalies in
Wind Turbines with Block Based Neural

Network using Binary Reservoirs

Apprendimento Online di Anomalie Relative a
Perdite d’Olio in Turbine Eoliche Tramite

Rete Neurale con Processamento a Blocchi e
Reservoir Binari

Advisor:
Prof. Claudio Turchetti

Coadvisor:
Dr. Laura Falaschetti
Ing. Danilo Pietro Pau

Candidate:
Matteo Cardoni

Academic Year 2020-2021

Università Politecnica delle Marche
Facoltà di Ingegneria

Corso di Laurea Magistrale in Ingegneria Elettronica
Via Brecce Bianche – 60131 Ancona (AN), Italy

Abstract

Wind power is one of the most used renewable energy technologies. Human
inspections in the energy generator are expensive and require highly specialized per-
sonnel as turbines are located at hundreds of meters of altitudes, surrounded by
harsh environments. Therefore, to reduce un-needed intervenes or periodic assess-
ments, accurate and intelligently automated anomaly detection will play an impor-
tant role. The focus of this work is to design a deeply quantized anomaly detector
of oil leaks which may happen at the junction between the turbine high speed shaft
and the external bracket of the power generator. Here it is proposed a Block Based
Binary Shallow Echo State Network (BBS-ESN) architecture, belonging to reservoir
computing (RC) category, that is constituted by two reservoir layers. Furthermore,
BBS-ESN uses binary images block based processing and block based online train-
ing. This is done using fixed and minimal computational complexity, permitting to
achieve low power consumption and deployability on an off the shelf micro-controller
(MCU). This has been achieved through binarization of the images and up to 1-bit
quantization of the network weights and activations.

3D rendering has been used to generate a novel dataset of photo realistic images
similar to those potentially acquired by image sensors on the field while monitoring
the junction, with and without oil leaks. Images have been binarized and image
morphing has been used in order to simulate oil leak propagation. Binary random
noise, different from image to image, has been added to the sequences obtained with
morphing to simulate various percentages of defective photo-transistors, with time
unrelated malfunctioning.

Best achieved results in the less challenging conditions (i.e. without addition of
binary noise) are an accurate identification of anomalies, with 0% of false negatives
and 0% of false positives. Best achieved results in the most challenging conditions
(i.e. with an addition of binary noise in 10% of the pixels) are of 4.1% of false
positives and 14.6% of false negatives. The computational cost per image inference
is in the order of 7.8·106 for binary multiplications, 3.9·106 for int8 sums and 3.9·106

for int16 sums. The used RAM and Flash memories are respectively of 129.2 KBytes
and 16 KBytes. The inference execution time estimated using a STM32H743ZI2
MCU running at 480MHz is about 12.06 ms per image.

The extra computational costs for the BBS-ESN initial online training are in
the order of 3.1 · 107 for binary multiplications, 1.1 · 108 for fp32 multiplications,
3.1 · 107 for int8 additions and 2.6 · 105 for fp32 divisions. The estimated required
RAM is of 2,176 KBytes while the estimated required time, using the same MCU, is
1.232 s. The anomlay decision process, after the BBS-ESN training, sets a threshold
to separate the anomalous images from the normal ones in 1.206 s.

On the basis of these results it can be concluded that BBS-ESN is feasible on
off-the-shelf 32bit MCUs. Moreover the solution is also scalable in the number of
cameras to be deployed, permitting to achieve accurate and fast oil leak detections

3

from different view points.

Sommario

Le turbine eoliche sono una delle tecnologie più utilizzate per lo sfruttamento di
energie rinnovabili. L’ispezione umana all’interno delle cabine delle turbine eoliche
è costosa, poiché richiede personale altamente specializzato e poiché i generatori
possono trovarsi a centinaia di metri di altitudine, in ambienti ostili. Per questo
motivo rivelatori di anomalie automatici possono ricoprire un importante ruolo nella
riduzione di interventi specializzati inutili o di controlli periodici. L’obiettivo di
questo studio è la progettazione di un rilevatore di anomalie, che usi pesi fortemente
quantizzati, per identificare le perdite d’olio che possono verificarsi alla giunzione
tra l’albero ad alta velocità della turbina e l’involucro del generatore elettrico. Viene
proposta una rete neurale artificiale della categoria Reservoir computing (RC) che
usa due strati di reservoir, denominata Block Based Binary Shallow Echo State
Network (BBS-ESN). La BBS-ESN processa immagini binarie in blocchi e si addestra
usando blocchi di immagini. Questi calcoli sono effettuati con una complessità di
calcolo bassa e fissa, permettendo di raggiungere un basso consumo di potenza e di
implementare la rete su microcontrollori (MCU) disponibili in commercio. Questo è
possibile a causa della intensiva quantizzazione dei pesi e delle attviazioni della rete,
fino a quantizzare con un solo bit.

Il rendering 3D è stato usato per generare un dataset di immagini fotorealis-
tiche appositamente creato. Queste immagini sono simili a quelle potenzialmente
acquisite dai sensori di immagine sul campo durante il monitoraggio della giunzione.
Le immagini sono state binarizzate e il morphing per immagini è stato usato per
simulare la propagazione delle macchie d’olio. Alle sequenze così ottenute è stato
sommato rumore binario differente da immagine a immagine, così da simulare mal-
funzionamenti nei foto transistors non correlati nel tempo, in varie percentuali.

I risultati ottenuti nelle migliori condizioni, ovvero senza l’aggiunta di rumore
alle sequenze, è un’accurata identificazione delle anomalie con lo 0% di falsi negativi
e lo 0% di falsi positivi. Per quanto riguarda i risultati ottenuti nelle condizioni
più sfidanti, cioè usando sequenze con rumore aggiunto al 10% dei pixel, questi
sono di 4.1% di falsi positivi e di 14.6% di falsi negativi. I costi computazionali per
l’inferenza di una immagine sono nell’ordine di 7.8 ·106 per le moltiplicazioni binarie,
3.9 · 106 per le somme int8 e 3.9 · 106 per le somme int16. Le memore RAM e Flash
usate sono rispettivamente di 129.2 KBytes e 16 KBytes. Il tempo di esecuzione
stimato per l’inferenza, usando il microcontrollore STM32H743ZI2 con frequenza di
clock 480 MHz, è di circa 12.06 ms per immagine.

I costi computazionali aggiuntivi per l’addestramento online iniziale della BBS-
ESN sono nell’ordine di 3.1 · 107 per le moltiplicazioni binarie, 1.1 · 108 per le molti-
plicazioni fp32, 3.1 · 107 per le somme int8 e 2.5 · 105 per le divisioni fp32. La stima

4

della RAM richiesta per l’addestramento online è di a 2,176 KByes mentre il tempo
richiesto, usando lo stesso microcontrollore alla stessa frequenza di clock, è stimato
a 1.232 s. Il processo di decisione per le anomalie, dopo l’addestranento della BBS-
ESN, impone una soglia per separare le immagini anomale da quelle normali in circa
1.206 s.

Sulla base di questi risultati si può concludere che la BBS-ESN è implementabile
su un microcontrollore a 32bit disponibile in commenrcio. Inoltre, la soluzione è
scalabile nel numero di sensori di immagine usati, permettendo di ottenere rilevazioni
di anomalie accurate e veloci da punti di vista differenti.

5

Contents

1 Introduction 10

2 System architecture and associated requirements 13

3 Related work 14
3.1 Review of Echo State Networks and Deep Echo State Networks . . . 14

3.1.1 Review of Echo State Networks 15
3.1.2 Training of an Echo State Network 16
3.1.3 Review of Deep Echo State Networks 17
3.1.4 Training of Deep Echo State Network 18

3.2 Review of Anomaly detection . 19
3.2.1 Anomaly detection using Echo State Networks 19

3.3 Review of Echo State Networks online learning 19
3.4 Review of oil leaks detection, thresholding and block-based processing 19
3.5 Review of Network quantization . 20
3.6 Review of Extreme Learning Machines 20

4 Dataset creation 21
4.1 3D model . 22
4.2 Rendering . 23

4.2.1 Leaks images . 23
4.2.2 Light, background and virtual cameras specifics 23
4.2.3 Rendering specifics . 24

4.3 Images disposition in the Dataset and examples 24
4.3.1 Images with oil leak . 25
4.3.2 Images without oil leak . 26

4.4 Matlab preprocessing . 27
4.4.1 RGB images from preprocessing 29
4.4.2 Grayscale images from preprocessing 30
4.4.3 Binary images from preprocessing 30

4.5 Python data augmentation . 31
4.6 Images quantity . 33

5 Images usage 33

6 Proposed Block based Binary Shallow Echo State Network (BBS-
ESN) 35
6.1 BBS-ESN training . 35
6.2 Architecture overview . 36
6.3 Baseline BBS-ESN implementation 37
6.4 Quantized BBS-ESN implementation 38

6

6.4.1 Binarization of the reservoirs 38
6.4.2 Binarization of the input matrices 38
6.4.3 Quantized readout layer . 38
6.4.4 Memory savings . 42
6.4.5 Quantized BBS-ESN readout training implementation 42

7 Method for anomaly detection 42
7.1 Evaluator on blocks with interception region 43
7.2 Evaluator on blocks without interception region 43
7.3 Evaluator on images . 44
7.4 Choice of Γ coefficient . 45

8 Training and testing conditions 47

9 Analysis of the results 48
9.1 Choice of the best Evaluator . 48
9.2 Accuracy results with the baseline and quantized BBS-ESN, using the

Evaluator on images . 49
9.2.1 Choice of the number of training and transient blocks 50

9.3 Analysis of the results . 50
9.3.1 Robustness to training blocks order 52
9.3.2 Comparison with Residual Image Algorithm 52

9.4 Further tests . 53
9.4.1 Test with different quantization procedure 53
9.4.2 Removal of the recurrent connections 53

10 Feasibility analysis on a tiny micro controller 54
10.1 Training time profile . 55
10.2 Inference time profile . 55
10.3 Training required memory . 56
10.4 Inference required memory . 57

11 Conclusions and future works 58

List of Figures

1 Scheme of the internal of a wind turbine. The orange circle indicates
the region of interest for anomaly detection. 10

2 Exemplary installation with 4 cameras framing the junction where
anomalies can happen. 12

3 BBS-ESN netowrk with camera inputs, processing them as temporal
sequences of blocks. 13

4 Scheme of an Echo State Network 16

7

5 Scheme of a Deep Echo State Network 18
6 Parts used to compose the assembly used as rendering basis 22
7 Assembly composed with the parts in Figure 6 22
8 Leaks images examples. All the leak images have been produced

as white *.png images with transparent background. Here they are
represented in black for sake of visibility. 23

9 Natural light (i.e. not preprocessed) images from Group_16, one for
each set. Each image has the same <image number> in the sets and
as a consequence they have the same framing. 26

10 Natural light (i.e. not preprocessed) images without leak 27
11 RGB Images from Group_16, one for each set. In each set it is shown

an image with the same image number (and as a consequence the
same framing). 29

12 Images from Group_16: set_1 and set_4 (a and d) converted to
grayscale (b and e). The grayscale images are binarized in c and f. . 30

13 Diagrams of the augmentations pipeline for grayscale images. In this
way the noise addidion is performed to both the spatially augmented
images and the original ones. 32

14 Diagrams of the augmentations pipeline for binary images. The spa-
tial augmentations are performed after the erosion filter application
to both the eroded and not eroded images. All these images are sub-
sequently processed for saòt&pepper noise addidion. 32

15 Binary normal and anomalous images are resized, with selected subset
of blocks subject of further processing. 34

16 Top architecture of the BBS-ESN, that uses 2 reservoir layers. 36
17 Detection of images as normal or anomalous using the Evaluator on

blocks with interception region . 44
18 Detection of images as normal or anomalous using the Evaluator on

blocks without interception region 44
19 Detection of images as normal or anomalous using the Evaluator on

imgae . 45
20 FPR and FNR varying Γ. Here the reconstruction took place the

BBS-ESN and evaluation performed with Evaluator on images. The
training and testing conditions are reported in section 8, using Lexi-
cographical blocks order in the BBS-ESN training 47

21 Gamma values allowing the results obtained. The values are the same
for both the blocks order used for the network training (i.e. lexico-
graphical and random). 51

22 Comparison of the pipelines for the usage of the BBS-ESN and the
Residual Image Algorithm for input-output comparison. 52

8

List of Tables

1 Table of transformations applied to binary and grayscale images and
the corresponding labels added to the augmented images. 32

2 Number of images obtained through rendering 33
3 Number of images after preprocessing 33
4 Number of images after data augmentation 33
5 Images used as starting frame and ending frame of the morphing

sequences . 35
6 Baseline BBS-ESN parameters . 39
7 Baseline BBS-ESN weights and memory occupation 39
8 Baseline BBS-ESN description . 39
9 Operations performed for the readout training of the baseline BBS-ESN 40
10 Quantized BBS-ESN parameters . 41
11 Quantized BBS-ESN weights and memory occupation. 41
12 Quantized BBS-ESN inference operations for each block 41
13 Operations performed for the readout training of the quantized BBS-

ESN . 42
14 Evaluators accuracy results . 49
15 Accuracy results of the baseline and quantized BBS-ESN, compared

with an anomaly detection algorithm that evaluates the residual im-
age through image subtraction. A different Γ coefficient has been used
for each network and each noise percentage, in order to minimize the
FPR, the FNR and the sum of FPR and FNR. 50

16 Times estimated for the single operations spent for training and in-
ference . 54

17 Times required and respective operations for the readout training
for the quantized BBS-ESN. The time for converting binary values,
packed as 1-bit values, into int8 has not been considered in this esti-
mation. 55

18 Times required and respective operations for one block inference for
the quantized BBS-ESN . 56

19 RAM required for the training of the BBS-ESN. X is the state matrix
(Equation 17), Ytarget is the target matrix (Equation 18). 57

20 RAM required to perform the inference with the operations of Table
18. 58

9

1 Introduction

The wind industry is in continuous growth. Global installed wind-generation
capacity onshore and offshore has increased by a factor of almost 75 in the

past two decades, increasing from 7.5 gigawatts (GW) in 1997 to some 564 GW
by 2018, according to [1]. Provision of wind electricity doubled between 2009 and
2013, and in 2016 wind energy accounted for 16% of the electricity generated by
renewables, as reported in [2]. Wind turbines are typically clustered together in
wind farms, each of which can generate enough electricity to power thousands of
homes. Wind farms are usually located on onshore on top of a mountain or in an
otherwise windy place or, if offshore, in the sea in order to exploit natural winds.

By consequence, wind turbines inspection, monitoring, and repairing is a very
complex and costly task performed in a harsh environment and represents a fast
growing industry due to the high number of existing wind turbines that, approach-
ing to an advanced age, require maintenance. As these wind turbines age, predictive
maintenance is emerging as a fundamental requirement. Predictive maintenance
differs from preventive maintenance because it relies on the actual condition of the
equipment, rather than on the average or expected life statistics used to predict
when maintenance will be necessary. Typically, Machine Learning approaches are
adopted for the estimate of the actual condition of the system, including the capa-
bility to detect anomalies. In particular oil leaks detection in Wind Turbines is an
interesting problem, since leaks from the power generator can provoke fires inside
the turbine and because human prompt intervene is very difficult to happen, being
both dangerous and very expensive. In fact, the access to the inside cabin of the
generator is challenging as the turbines may be located offshore or in hard to access
locations. Figure 1 is shown a simplified scheme of the internal components of a wind
turbine [3]. The the junction where the anomalies are to be detected, between the
high speed shaft and the external bracket of the power generator, is put in evidence.

Figure 1: Scheme of the internal of a wind turbine. The orange circle indicates the
region of interest for anomaly detection.

10

The inside of the cabin offers an interesting opportunity: it can be fully controlled
using image cameras since the internal environment is un-changing over the time
and no lighting changes can happen. In fact, the external weather conditions cannot
affect the inside. This suggests that the deployment of image cameras to monitor
them is much less affected by illumination changes than cameras operating in other
open un-controlled environments, such as autonomous driving. Therefore, cameras
can be used to perform oil leaks detection in a kind of laboratory controlled working
conditions, allowing the oil leak to be the only possible change to be detected. Once
any anomaly will be detected, it will be promptly communicated to the maintenance
service department, so that a specialized operator intervention will be programmed.
The proposed system is conceived in such a way that image sensors are framing the
junction between the shaft and the bracket of the power generator, where oil leaks
would be located in case of anomaly. The junction needs to be framed with a 360°
field of view. For this reason, at least 3 or 4 cameras would be needed (the zones
framed by the camera can also overlap), depending on their field of view. Figure 2
shows a simplified scheme, using 4 cameras to frame the junction.

Such a system architecture requires to design a machine learning based anomaly
detector per each camera, to detect anomalies 360°.

Inside the images obtained from each camera, a precisely defined zone of in-
terest is defined, limiting the search area of the leaks, with also the advantage of
reducing the processing complexity. Since, at the best of our knowledge, no public
dataset about this problem exists in the state of the art, images have been produced
through 3D graphics photo-realistic rendering, reproducing scenarios with and with-
out anomalies and from different view points, i.e. camera positions. The challenge
we addressed consists of designing a system that can learn the normality in an on-
line modality, with low and fixed computational complexity as well as fixed memory
storage during its functioning. Thus, we investigated a system that can possibly
run with low power consumption on a cheap and off-the-shelf micro-controller unit
(MCU) which, in a preferred embodiment, is attached to all those image sensors
instantiated into the system to achieve close-to-sensor machine learning implemen-
tation.

The constraint of fixed complexity learning brought us to the choice of an Echo
State Network, which belongs to the category of Reservoir Computing category,
as will be specified in the section 3. Low complexity requirements are not only
achieved by designing a neural network with parsimonious model size, but also
binarizing the captured images before being processed by the neural network. This
is also possible due to the controlled lighting and overall working conditions inside
the turbine generator cabin. The binarization of the images, in turn, creates another
opportunity: to further reduce the complexity of the network by deeply quantizing
and, at most, binarizing its weights, including the reservoir layers ones and the
activations. In order to aggressively reduce the memory occupation and improve
pipelined processing of the system respect to a network working on the entire image,

11

(a) The cameras framing the junction

(b) Block diagram of the cameras framing the
junction, being synchronized in time

Figure 2: Exemplary installation with 4 cameras framing the junction where anoma-
lies can happen.

12

the framed zones of interest feeding the neural network are furtherly decomposed into
non overlapping blocks. This mimics a sequential scan in, for example, lexicographic
order, or in any other as the sensor technology permits. Finally, we designed the
system with the aim to make it robust to defective photo-transistors in the image
sensors, in order to deal with the lifetime of the system. This, also, would permit to
reduce the overall system maintenance. The sensor’s photo-transistors may in fact be
damaged by imperfect manifacturing process, aging or averse ambiental conditions,
like temperature fluctuations. In summary the peculiarity of the proposed work is
in the use of a deeply quantized (8 and 1 bit) block based ESN network with more
than one reservoir layers, capable to perform online normality (oil leaks absence)
learning with a cap on complexity. The system, also, uses images decomposed in
a block based temporally processed sequence. It is followed by an special purpose
anomaly decision process of the network outputs, named Evaluator. The proposed
network has been named Block Based Binary Shallow Echo State Network, briefly
BBS-ESN.

2 System architecture and associated requirements

In Figure 3 the block diagram of the system architecture is shown, from the images
acquisition in one of the cameras to their classification as normal or anomalous.
The outputs of the neural network are evaluated with a decision process, also imple-
mented by the MCU, called Evaluator, that will be described in detail in section 7.

Figure 3: BBS-ESN netowrk with camera inputs, processing them as temporal se-
quences of blocks.

The system requirements, from which the architecture is derived, are listed as
follows:

Cameras: a simplyfied diagram of the system architecture is shown in Figure 2b,
where 360 degree monitoring of the junction is achieved, as exemplary embod-
iment, using 4 cameras with adequate field of view (as explained in section 4).
The number of cameras to be used depends on their field view, so the system
needs to be scalable in their number.

Block Based Processing: each camera outputs only a limited set of fixed posi-
tion blocks, that are the ones that outline the zone of interest, that is the

13

junction. These images blocks are binarized, since the dark shape of leaks is
the only relevant information to solve the problem. In fact, there is no need
to process color information which were considered redundant and deceitful.
The binarization adopted in this study is explained in subsubsection 4.4.3.
The binarized blocks are used as input by the micro-controller unit (MCU)
whose aim consists of detecting the presence of any oil leaks, implementing
the presented machine learning solution.

Low Complexity requirements: The processing complexity that any MCU needs
to support has to be minimized without compromising the accuracy of the solu-
tion. If that would be achieved, then the derived approach can be implemented
on a low power micro controller, considering the problem of the low embedded
RAM and FLASH memory available.

As a consequence, the neural network has to be carefully designed. Besides
limiting the network weights number, complexity and memory reduction can
be achieved with quantization, even binarization in some cases, of the weights
and of the activations. To further decrease memory buffering complexity block-
based processing is used, mimicking each blocks decomposed image in a kind
of temporal sequence.

Online learning: since the system must not require pre-knowledge or pre-calibration,
the system must be able to learn the normality condition on site. After the
learning is concluded in a fixed amount of time, the system shall be able to
detect anomalies with low number of false negatives (to avoid missing dan-
gerous anomalies) and false positives (to avoid to trigger un-needed human
intervene).

Absence of real time constraints: the possibility to implement the detection in
an MCU, with small power consumption, is also made possible by the absence
of real time constraints. Therefore, once the zones of interest of an image are
processed by the micro controller, that end can trigger the image acquisition to
happen. Another assumption that justifies the absence of real time operations
necessity is that the human maintainer intervene time is order of magnitudes
greater than the detection time.

3 Related work

3.1 Review of Echo State Networks and Deep Echo State Networks

Due to the problem and requirements discussed in section 2, inference and learn-
ing need to be performed in a fixed and predictable amount of time and memory.
These needs represent a major limitation in the choice of NN topologies since most
training methods converge to the optimal solution in an a-priori unknown amount

14

of computational and storage resources. Typical training procedure of NN is based
on back-propagation using stochastic gradient descend using multiple epochs [4] by
processing large batches of data.

To overcome these problems, the BBS-ESN uses Deep Echo State Networks
(DeepESN briefly) [5, 6], that follow the principles of Echo State Networks (ESN
briefly) [7, 8]. They both belong to the category of Reservoir Computing (RC),
with the difference that DeepESN use more than one reservoir layer. In ESN and
DeepESN hidden nodes values are randomly assigned and never updated, while the
output weights layer are trained with a linear regression method [7], allowing an
a-priori known computations, memory and time. These networks, also, are suited
for temporal tasks.

In the field of artificial intelligence we can define a task as the learning of a
function that relates the input u with the desired output ytarget, with the objective
of minimizing the an error function E(y,ytarget(t)). A temporal task is defined as
the learning of a function y(t) = y

(
. . . ,u(t− 1),u(t)

)
in the discrete time domain

t = 0, . . . , T [8].

3.1.1 Review of Echo State Networks

ESN use a layer that is called reservoir, composed by Nn neuron units. The activa-
tion input vector is defined as u(t) ∈ RNu , the network state vector as x(t) ∈ RNn

and the output vector as y(t) ∈ RNy .
The weights matrices associated to the vectors are Win ∈ RNn×Nu for u(t),

W ∈ RNn×Nn for the internal connections and Wout ∈ RNy×Nn for the output.[7] In
the situation that there is not a weights matrix that connects the output with the
input (like the case in this study), we can write the network state at time t as

x(t) = f
(
Winu(t) + Wx(t− 1)

)
(1)

where f is a non-linear function applied element-wise.
The output, in the situation where Wout is connected only to the network state,

is calculated as:
y(t) = Woutx(t) (2)

The ESN scheme is represented in Figure 4.
A condition that is usually wanted in the matrix W is the echo state property.

This condition states that the effect of a state x(t) and an input u(t) on a future
state x(t + k) diminishes gradually with the succession of temporal instants. That
is to say that the effects vanishes for k →∞. Such property is obtained multiplying
the matrix W for a scaling coefficient such that the spectral radius ρ(W), that is
the greatest modulus of the eigenvalues of the matrix W , satisfies ρ(W) < 1.[8]

In this study, for the design of the quantized BBS-ESN, is assumed a less restric-
tive condition on ρ(W). This condition is ρ(W) ≤ 1, as explained in [9]. The matrix

15

Figure 4: Scheme of an Echo State Network

Win is usually set as dense, that is with all the weights different from 0 [8]. On the
contrary, the matrix W is usually sparse (that is with some of the weights equal
to 0), with a connectivity percentage of 20% or less (i.e. 20% or less of non-zero
weights). [10].

3.1.2 Training of an Echo State Network

In an Echo State Network the only matrix that is subject to training is Wout. The
matrices Win e W are instantiated with random values and kept fixed [7, 8, 9].
The reason for this is that the matrices for the state and for the output computation
serve different purposes: Win and W expand the input history u(t − 1),u(t), . . .
into a rich enough state space, while Wout combines the state in a vector y(t) more
similar as possible to the target output vector ytarget(t) [8].

The training of the readout matrix takes place in batch, grouping the states from
T preceding instants in

[
x(1), . . . , x(T − 1), x(T)

]
= X ∈ RNn×T (3)

and the correspondent readout for each temporal instant[
ytarget(1), . . . , ytarget(T − 1), ytarget(T)

]
= Ytarget ∈ RNy×T (4)

With these vectors grouped, the training is based on the solution of the linear system

WoutX = Ytarget, (5)

for this reason the training can take place online.
The solution could be found using a direct method, calculating the Moore-

16

Penrose pseudo-inverse matrix:

Wout = YtargetX
+. (6)

This method would be computationally expensive, so it preferable to reformulate
the problem as:

WoutXXT = YtargetX
T . (7)

Since XXT is square it can be inverted, leading to:

Wout = YtargetX
T (XXT)−1. (8)

However, there is the possibility for the matrix XXT to be singular. The method
used in the equation 8 can be modified with a regularization term to increase nu-
merical stability, leading to the equation

Wout = YtargetX
T (XXT + α2I)−1, (9)

where I ∈ NNn×Nn is an identity matrix [8].

3.1.3 Review of Deep Echo State Networks

A Deep Echo State Network follows the principles of ESN, but is composed by more
than one reservoir layers, connected in cascade.

The rationale behind the stacking of reservoir layers is the processing of each
temporal information in a hierarchical fashion, that is through composition of mul-
tiple levels of recurrent units [6].

In a DeepESN the first reservoir receives in input at time t the activation vector
u(t), at the same way an ESN does. The reservoirs after the first receive as input
the state of the reservoir preceding them at the same instant.

Therefore, each reservoir state is calculated as

x(r)(t) = f
(
W

(r)
in i(r)(t) + W (r)x(r)(t− 1)

)
, (10)

where the superscript (r) refers to the elements of the rth reservoir, starting from
r = 1 for the first. i(l)(t) describes the input at the rth reservoir at the instant t,
that is:

i(r)(t) =

u(t) if r = 1
x(r−1)(t) if r > 1

(11)

[5]. For a DeepESN with a number of reservoirs Nr, composed each by a number
Nn of neurons, the network state at time t is the vertical stacking of the states of
each reservoir at the same time (taken as column vectors):

x(t) =
[
x(1)(t) x(2)(t) ... x(Nr)(t)

]T
, (12)

17

with each reservoir state x(r)(t) ∈ RNn×1. The output of the network is:

y(t) = Wout

[
x(1)(t) x(2)(t) ... x(Nr)(t)

]T
, (13)

whereWout ∈ RNy×NrNn is the weights matrix connecting the units of every reservoir
to the network output, or readout, and the readout is y(t) ∈ RNy×1. The DeepESN
scheme is represented in Figure 5

Figure 5: Scheme of a Deep Echo State Network

3.1.4 Training of Deep Echo State Network

Considering the state at time t as Equation 12, the network training takes place
composing the state matrix (Equation 3) with the states from Equation 12. This
means that the state matrix, composed by the states of T instants, will be composed

18

in the following way:
x(1)(1) . . . x(1)(T)
x(2)(1) . . . x(2)(T)

...
...

x(Nr)(1) . . . x(Nr)(T)

 = X ∈ RNrNn×T (14)

Using this state matrix, the training takes place as in Equation 9 where, in this case,
the identity matrix I ∈ RNrNn×NrNn .

3.2 Review of Anomaly detection

Anomaly detection, or outlier detection, is an important problem that refers to the
task of identifying patterns in data that do not comply with the expected behaviour
[11, 12, 13, 14]. Many industrial real problems focus on finding anomalies from time
series, that is data depending on time [13, 15, 16, 17, 18, 19].

There are three distinct categories of anomaly approaches, depending on the ex-
istence of labels in training data, that is supervised, semi supervised or unsupervised
anomaly detection. This paper deals with the last category of unsupervised anomaly
detection, which is the most difficult scenario due to the absence of any label of the
data.

3.2.1 Anomaly detection using Echo State Networks

Echo State Networks have been used for unsupervised anomaly detection, in par-
ticular for situations where the network is trained only with data belonging to the
normal class (for example in situations where the available data is imbalanced in
the numbers for the normal and anomalous classes) [20, 21, 22, 23, 24]

3.3 Review of Echo State Networks online learning

Echo State Network have been used for online training applications. The reason for
this is the low computational complexity required for the ESN training, which does
not require the more computationally complex and time requiring process of stochas-
tic gradient descent, used in the most cases of deep learning usage [4]. Examples of
online trained ESN applications are found in in [25, 26, 27, 28, 29].

3.4 Review of oil leaks detection, thresholding and block-based pro-
cessing

Oil leaks detection has been used in the context of satellites synthetic aperture radar
images of the sea surface. One important process in these studies, that happens
before the evaluation of the presence or absence of leaks, is the feature extraction,
that can take place through thresholding [30, 31].

19

Another common process for these studies, also performed before the anomaly
detection, is the image segmentation [30, 32, 33, 34], that divides the images blocks
(of fixed or variable dimensions) into sub-images. The segmentation also permits to
discard not useful blocks, like land zones [34].

In these cases, however, blocks have been used as a single images, uncorrelated
to the other blocks. Moreover, the networks used in these studies were not recurrent,
since the images were not analyzed in a temporal fashion.

Apart from these fields of study, block based-image processing has been used
in Compressed Sensing [35], Noise Removal [36], Image Recapture [37] and Artifact
Removal and Image Compression [38, 39].

3.5 Review of Network quantization

Quantization is the process of approximating a continuous signal by a set of discrete
symbols or integer values. Most networks are trained using signle precision floating
point representation (fp32). In our case an fp32 or even fp64 representation has
greater precision than needed, requiring 4 to 8 times more memory than an integer 8
bits models or 32 to 64 times than a integer 1 bit models. Therefore, converting fp32
parameters to less precise bit representations, such as int8 and binary (int1), can
significantly reduce memory footprint, power consumption and offer the opportunity
of an increased execution speed. However, this cannot be achieved by compromising
the accuracy of the fp32 of fp64 precision models.

Quantization is categorized into two areas: 1) quantization aware training (QAT)
and 2) post training quantization (PTQ). The difference depends on whether quan-
tization is affecting weights learning during training or not. Alternatively, it is also
possible to categorize quantization by where data are grouped for quantization: 1)
layer-wise and 2) channelwise. A further classifiation based on bit-depth, such N-bit
quantization. With respect to network quantization, examples can be found in [40,
41]. [9] presents a study of an ESN designed with states represented by integer
numbers and a binary recurrence matrix.

3.6 Review of Extreme Learning Machines

Extreme Learning Machines (briefly ELM) share similarities with ESN and Deep-
ESN. They are defined as feedforward, not recurrent neural networks for classifica-
tion, regression, clustering, sparse approximation, compression and feature learning
with a single layer or multiple layers of hidden nodes, in which the parameters of
the hidden nodes (not just the weights connecting inputs to hidden nodes) do not
need to be tuned. These hidden nodes can be randomly assigned and kept fixed (i.e.
they are random projection but with nonlinear transforms), just like it can happen
with ESN and DeepESN. In most cases, the output weights of hidden nodes are
learned in a single step, which essentially amounts to learning a linear model. For
this reason, ELM permit inference and learning need to be performed in a fixed and

20

predictable amount of time and memory. The name "Extreme Learning Machines"
was given to such models by its main inventors Guang-Bin Huang, Qin-Yu Zhu and
Chee-Kheong Siew. According to their creators, these models are able to produce
good generalization performance and learn thousands of times faster than networks
trained using backpropagation [42]. In literature, it is also shown that these mod-
els can outperform support vector machines in both classification and regression
applications [43, 44, 45].

The output function of an ELM is

fL(x) =
L∑

i=1
βihi(ai, bi, x) = h(x)β (15)

where β = [β1, . . . , βL]T is the output weight vector and
h(x) = [h1(a1, b1, x), . . . , hL(aL, bL, x) is the output vector of the hidden layer, with
hidden node parameters (ai, bi). Basically, an ELM is trained in two main stages:
(1) random weights assignment to the hidden layers nodes, and (2) linear parame-
ters solving. In the first stage the hidden node parameters are randomly generated,
independently from the training data, according to any continuous probability dis-
tribution instead of being explicitly trained. In the second stage of ELM learning,
the weights β connecting to the hidden layer and the output layer and derived by
solving the linear equation

T = Hβ (16)

where H is the hidden layer output matrix and T is the training data target matrix
[43].

As a comparison with the network designed for this study, Subsection 9.4.2
reports the results obtained using the same proposed BBS-ESN architecture, but
without the reservoirs recurrent connections.

4 Dataset creation

A public dataset comprehensive of various framings of the junction of interest in
this study, in presence and absence of oil leaks, was not available. This is why it has
been created a specific one, consisting of a collection of synthetic images simulating
photographies that would be acquired by a live image sensors, representing normal-
ity (absence of leaks) and abnormality (presence of leaks). The images have been
produced through graphic 3D rendering in RGB format. The images have been
produced in various framings, viewpoints and metallic surfaces textures and, for
the anomalous images, various oil leak colors. Subsequent preprocessing has been
performed using Matlab, also producing grayscale and binary images generation,
using the RGB as starting point. Finally, data augmentation has been performed in
Python, for any further data quantity and quality enhancing.

The dataset is publicly available at
21

https://data.mendeley.com/datasets/nbxzxn3ffk/1.

4.1 3D model

The starting point for the renderings has been two 3D parts generated in SolidEdge
2020 1, shown in Figure 6. The bracket part in Figure 6a is a cylinder with an
internal cylindrical cavity. The cylinder has dimensions of 2,000mm of diameter
and 400mm of height and the cavity hole has a diameter of 105mm and a depth of
50mm.
The shaft part in Figure 6b is also cylindrical, with a diameter of 100mm and a
height of 1,000mm.

(a) Bracket part used for the rendering as-
sembly. It represents the external bracket
of the power generator

(b) Shaft part used for the rendering as-
sembly. It represent the high speed shaft

Figure 6: Parts used to compose the assembly used as rendering basis

The two parts compose an assembly, shown in Figure 7. The shaft part is

Figure 7: Assembly composed with the parts in Figure 6

positioned inside the cavity of the bracket part. The diameters of the shaft part and
of the cavity in the bracket part are not the same: they are respectively 100mm and

1https://solidedge.siemens.com/en/

22

https://data.mendeley.com/datasets/nbxzxn3ffk/1

105mm. This has been done in order to simulate some space in their coupling, as
can be seen in the example figures of Section 4.3.

4.2 Rendering

4.2.1 Leaks images

Leaks images have been produced using the image manipulation software Gimp2.
These images have been produced in *.png format because of the importance to
generate them with a transparent background. Brush tools of white color have been
used to produce the leak images. One or more leaks have been produced for each
Group folder for images with leak. Only in some cases leak images were generated to
be positioned, also, on the the bracket part of Figure 6b and not only on the shaft
part of Figure 6a. In Figure 8 are represented examples of leak images, with the
leaks colored in black for a visibility matter.

Once generated the leak images, they were imported in KeyShot9 as textures.
They have been changed in color, positioned, resized and wrapped (for the leaks to
be used in the shaft part). The leaks textures have also been edited adding with
bump mapping and displacement mapping to let them to appear three-dimensional
in the renderings.

4.2.2 Light, background and virtual cameras specifics

The environment has been chosen as a completely white background, spreading
uniform and diffurse white light, while subsequent regulations on the brightness
level made the background of a light gray color, giving the images a more natural
look.

The 3D model has been imported into Keyshot9 and the renderings have been
performed using 16 virtual cameras, all with the same aperture of 39.6°, that have
been kept in fixed positions for the generation of all the images.

2https://www.gimp.org/

(a) Leak image used
for the shaft part in
Group_12

(b) Leak image used
for the bracket part in
Group_12

(c) Leak image used
for the shaft part in
Group_16

Figure 8: Leaks images examples. All the leak images have been produced as white
*.png images with transparent background. Here they are represented in black for
sake of visibility.

23

Because of the symmetrical nature of the problem it has been decided not to
render images from the right side of the junction.

More than one framing has been used in order to simulate different camera po-
sitions. In fact, during the system setup the cameras, while remaining in fixed
positions after their positioning, may be placed with a variable framing of the junc-
tion.

4.2.3 Rendering specifics

The rendering has been performed using a CPU, specifically an Intel i5-6200U, with
two cores and a clock frequency 2.3 GHz. All the renderings have been performed
with the following specifics:

Samples: images have been rendered with 4 samples (i.e. calculated 4 times in
order to increase accuracy)[46]

Ray bounces: the number of ray bounces, that is the time light reflexes are calcu-
lated, have been set to 6. (that is the standard number).

Pixel blur: the amount of blur added to avoid over-sharp images. It has been
disabled in order to keep sharp shapes.

Anti-aliasing: used to smooth jagged edges. It has been set to 1, as indicated as
sufficient in [46].

Shadow quality: it has been kept to the minimum, that is 1, in order to reduce
the rendering times, since in [46] is reported the dramatic time increase due
to shadow quality raising.

Resolution: all the images obtained with rendering have the same resolution of
1024× 768 pixels.

4.3 Images disposition in the Dataset and examples

The dataset is contained in the main folder Oil_leak_dataset. Inside this folder
is contained the sub-foder Junction_images, where are located 22 directories of
images, named Group_1 to Group_22, and the Matlab preprocessing script, named
Preprocessing.m. Groups from 1 to 20 are dedicated to images with leaks, each
one containing images with a different leak shape, while groups 21 and 22 contain
images without leak.

The main folder Oil_leak_dataset also contains two Google Colab notebooks
for the augmentation of the grayscale images (Oil_leak_grayscale_augmentation.ipynb)
and of the binary images (Oil_leak_binary_augmentation.ipynb). Both the grayscale
and the binary images are obtained using the preprocessing script.
The directoty tree is reported below:

Oil_leak_dataset
Junction_images

Group_1

24

...
Group_22
Preprocessing.m

Oil_leak_grayscale_augmentation.ipynb
Oil_leak_binary_augmentation.ipynb

4.3.1 Images with oil leak

Groups from 1 to 20 are dedicated to images with leaks. The disposition of the
images with oil leak inside the directory Junction_images, before the application
of the preprocessing, is:

Junction_images
Group_1
...
Group_20

set_1
...
set_6

natural_light
g20s6.1nat.jpg
...
g20s6.16nat.jpg

The images in each folder are named as follows:
g<group number>s<set number>.<image number><label>.<extension>.

In this notation, g stays for “Group” and s stays for “set”. After the point follow
the image number and a label. The labels are univocally associated with the type of
preprocessing or to the images obtained directly from rendering, as in this case. In
these images, before applying the preprocessing, the label is nat, brief for “natural
light”.

In each of the groups the leak shape is the same. It is important to point out
that, in the entire dataset, images associated with the same <image number> are
generated with the same framing.

Each set, from set_1 to set_6, contains 16 RGB images, specifically:

• set_1: not painted steel texture, brown leak
• set_2: not painted steel texture, green leak
• set_3: not painted steel texture, gray leak
• set_4: white painted steel texture, brown leak
• set_5: white painted steel texture, green leak
• set_6: white painted steel texture, gray leak

Figure 9 shows examples of images with the same framing (i.e. with the same
<image number>) of Group_16, from all the 6 sets (g16s<set number 1-6>.2nat.jpg).

25

(a) not painted steel tex-
ture, brown leak

(b) not painted steel tex-
ture, green leak

(c) not painted steel tex-
ture, gray leak

(d) white painted steel tex-
ture, brown leak

(e) white painted steel tex-
ture, green leak

(f) white painted steel tex-
ture, gray leak

Figure 9: Natural light (i.e. not preprocessed) images from Group_16, one for each
set. Each image has the same <image number> in the sets and as a consequence
they have the same framing.

4.3.2 Images without oil leak

Groups 21 and 22 contain images without oil leaks. Group_21 contains images
rendered with not painted metallic texture, while Group_22 contains images rendered
with white paint metallic texture.

The directory tree of the images not presenting oil leak, before applying prepro-
cessing, is the following:

Junction_images
Group_21

set_1
natural_light

g21s1.1nat.jpg
...
g21s1.16nat.jpg

Group_22
set_1

natural_light
g22s1.1nat.jpg
...
g22s1.16nat.jpg

, with only one set per group (in both cases named set_1). Figure 10 shows examples
of images not presenting oil leaks, with not painted steel texture.

26

(a) white painted steel texture, no leak (b) not painted steel texture, no leak

Figure 10: Natural light (i.e. not preprocessed) images without leak

4.4 Matlab preprocessing

The Matlab preprocessing script can been applied to the rendered images. The
script has been designed with 2020b Matlab version, using the Image Processing
Toolbox [47].

The folder structure of the images with oil leaks, after the appliacation of the
preprocessing, is:

Junction_images
Group_1
...
Group_20

binary_1
g20s1.1bin.png
...

binary_2
g20s4.1bin.png
...

grayscale_1
g20s1.1gs.jpg
...

grayscale_2
g20s4.1gs.jpg
...

set_1
...
set_6

cold_light
g20s6.1cold.jpg
...

low_light_1
g20s6.1low1.jpg
...

low_light_2

27

g20s6.1low2.jpg
...

natural_light
g20s6.1nat.jpg
...

oversaturated
g20s6.1sat.jpg
...

warm_light
g20s6.1warm.jpg
...

As for the images without leak, after the preprocessing the direcrory tree is the one
below:

Junction_images
Group_21

binary_1
g21s1.1bin.png
...

grayscale_1
g21s1.1bin.png
...

set_1
cold_light

g21s1.1cold.jpg
...

low_light_1
low_light_2
natural_light
oversaturated
warm_light

Group_22
binary_1

g22s1.1bin.png
...

grayscale_1
g22s1.1bin.png
...

set_1
cold_light

g22s1.1cold.jpg
...

28

low_light_1
low_light_2
natural_light
oversaturated
warm_light

4.4.1 RGB images from preprocessing

The images generated from the RGB preprocessing are in *.jpg format.
To the images of the natural_light folders, inside each set, are applied 5 dif-

ferent RGB preprocessings. To each processing a <label> is associated in the image
name: g<group number>s<set number>.<image number><label>.<extension>, sub-
stituting the label nat. These preprocessings are:

luminance value decrease: 0.5 times the original. Associated label: low1.
luminance value decrease: 0.3 times the original. Associated label: low2.
saturation enhancement of 5 times the original. Associated label: sat.
warmer light temperature: +5 points in red, -15 points in blue. Associated

label: cold.
colder light temperature: -15 points in red, +5 points in blue. Associated label

warm.

Figure 11 shows examples of the same RGB image (g16s1.2nat.jpg), not painted
steel texture and brown leak, to which are applied the 5 RGB preprocessings.

(a) natural light (b) cold light (c) warm light

(d) low light 1 (e) low light 2 (f) enhanced saturation

Figure 11: RGB Images from Group_16, one for each set. In each set it is shown an
image with the same image number (and as a consequence the same framing).

29

4.4.2 Grayscale images from preprocessing

The images obtained frmo the grayscale conversion are in *.jpg format. The associ-
ated label is gs. The conversion from RGB format to grayscale eliminates hue and
saturation, retaining the luminance value of the image [48].

The grayscale images in the directories grayscale_1 are obtained from the set_1
images of each group, while the images in grayscale_2 are obtained from the set_4
images of the same group. This is why the <set_number> of the images in the
grayscale_2 folders is 4.

For Group_21 and Group_22, that contain images without leak, there is only
one set of images (Subsection 4.3.2). For this reason only one directory of grayscale
images will be created, named grayscale_1, as shown in the directory tree for
images without oil leaks in Subsection 4.4. Figure 12 shows an example of grayscale
conversion (and subsequent binarization, that will be explained in Subsection 4.4.3).

(a) Not painted steel tex-
ture, brown leak, not pre-
processed

(b) Grayscale preprocessing
of the image at the left

(c) Binary version of the
image at the left

(d) White painted steel tex-
ture, brown leak, not pre-
processed

(e) Grayscale version of the
image at the left

(f) Binary version of the im-
age at the left

Figure 12: Images from Group_16: set_1 and set_4 (a and d) converted to grayscale
(b and e). The grayscale images are binarized in c and f.

4.4.3 Binary images from preprocessing

The binary images obtained from the preprocessing are in *.png format and asso-
ciated label is bin. The binary images have been saved in *.png format because
*.jpg format does not allow to have a distribution of only 0 and 1 values. The bi-
nary images are obtained from the grayscale ones and the conversion is performed
calculating a threshold using the Otsu’s method [49].

The images in the directories binary_1 are obtained from the grayscale_1 direc-
30

tories from each group, while the images in binary_2 are obtained from the directory
grayscale_2 of the same group. Since the images from the directories grayscale_2
are obtained from set_4 of the respective group, the images <set_number> is 4.

As explained in Subsection 4.4.2 Group_21 and Group_22 will contain, after pre-
processing, only one grayscale images folder, named grayscale_1. For this reason
Group_21 and Group_22, after preprocessing, will contain only one binary images
folder, named binary_1. Figure 12 shows an example of the process of grayscale
conversion and binarization.

4.5 Python data augmentation

Data Augmentation is a process that uses techniques to enhance the data quantity
and quality, producing useful variability in order more accurate deep neural net-
works [50]. Two scripts for augmentation are provided: one for grayscale images
and one for binary images, since these two images classes are in lower numbers af-
ter preprocessing. The data augmentation scripts have been designed with Python
3.7.11 and use the ImageDataGenerator class, provided by the Keras (version 2.5.0)
library [51]. The augmentation functions used are methods of the ImageDataGener-
ator class and other functions relying on Tensorflow (version 2.5.0) and scikit-image
(version 0.16.2).

Both the augmentation scripts perform the following operations:

- Download the relative images directory (binary or grayscale)
- Import useful libraries like Numpy, Tensorflow, Scikit-Image, os, Pathlib
- Enable/disable the augmentation functions commenting/uncommenting from trans-
formation names lists

- Definition of the augmentation that are not methods of the ImageDataGenerator
class (using Tensorflow and scikit-image)

- Perform the augmentation functions
- Visualize the augmented images, compared to the original ones (this step is op-
tional).

- Save the augmented data. The dataset can be saved to the user’s Google Drive.

The transformations that are performed are reported in Table 1
The default specifications of these transformations are: erosion with disk filter of
radius 5, rotation range angle of 40° (with nearest fill mode), width shift range
of 0.2 (with nearest fill mode), height shift range of 0.2 (with nearest fill mode),
zoom range of 0.2, shear range of 0.2, salt&pepper noise at 1% and 5% percentages,
gaussian noise with mean 0 and variance 0.01. The default values can be changed
by the user.

The augmentation process for grayscale images has been designed with the aim
of applying noise addition to both the original images and the spatially augmented
ones (scheme in Figure 13).

31

Table 1: Table of transformations applied to binary and grayscale images and the
corresponding labels added to the augmented images.

Grayscale Binary Corresponding
label

Erosion filter x X erosion
Rotation X X rotation

Horizontal flip X X horizontalFlip
Vertical flip X X verticalFlip
Height shift X X heightShift
Width shift X X widthShift

Zoom X X zoom
Shear range X X shearRange

Salt and pepper
noise 1% X X s&p1%

Salt and pepper
noise 5% X X s&p5%

Gaussian noise X x gauss

Figure 13: Diagrams of the augmentations pipeline for grayscale images. In this
way the noise addidion is performed to both the spatially augmented images and
the original ones.

Figure 14: Diagrams of the augmentations pipeline for binary images. The spatial
augmentations are performed after the erosion filter application to both the eroded
and not eroded images. All these images are subsequently processed for saòt&pepper
noise addidion.

As for the binary images, the augmentation has been designed with the aim of
to applying the erosion filter to the original images, subsequently apply the spatial

32

augmentations to the eroded and original images and finally apply the noise addition
to all these images combinations. The scheme in Figure 14 synthesizes the pipeline.
For both the scripts the original directory structure is preserved.

When an augmentation is applied a label(indicated in Table 1) is added to the
image name, preceded by and underscore.

4.6 Images quantity

The number of images obtained through rendering, after preprocessing and after
data augmentation are reported, respectively, in Table 2, Table 3 and Table 4.

Table 2: Number of images obtained through rendering

RGB Grayscale Binary
With leak 1,920 - -

Without leak 32 - -

Table 3: Number of images after preprocessing

RGB Grayscale Binary
With leak 11,520 640 640

Without leak 192 32 32

Table 4: Number of images after data augmentation

RGB Grayscale Binary
With leak 11,520 20,480 30,720

Without leak 192 1,024 1,536

5 Images usage

To make an estimation of the camera distances in order to have a 360◦ view, it has
been took advantage of the cylindrical nature of the junction. As a reminder, the
virtual cameras used have a field of view of 39.6◦, as explained in subsubsection 4.2.3.
In the hypothesis of positioning the cameras with view centered perpendicularly
to the shaft surface, the condition for a with camera with that field of view to
have a 90◦ view of the shaft is to be at a distance from the shaft radius of l =
(r
√

2/2) ·
(
1 + tan−1(39.6/2)

)
= 2.67 r (with r the shaft radius).

For the images in this dataset, though, the distances of the virtual cameras are
variable and permit to cover a view of 180° of the shaft, generating as a consequence
images that overlap in the covered zones.

For the network design, using binary pictures as inputs, the images original
size has been scaled reducing each side to approximately 20% of the original size, to
192×144 resolution. Resizing has been used both for the baseline and the quantized

33

versions of the BBS-ESN and it has been performed using the bilinear interpolation
technique [52]. From the assumption of the cameras to be mounted in fixed positions,
as shown in Figure 2a, the acquired images can be decomposed through a fixed mask
in non overlapping blocks and can be read from the sensor only those blocks which
enclose portions of interest of the junction. Figure 15 shows examples of normal and
anomalous binary images in the same framing, resized and divided in blocks (both
RGB and binarized). Only the blocks outlining the junction have been chosen to be
used as network inputs for both learning and detection of anomalies. In fact, they
are the only ones carrying useful information for the purpose of oil leaks detection.

(a) Binary normal image divided in
blocks, 1024× 768 pixels

(b) Binary normal image with only
blocks outlining the junction, 192 ×
144 pixels

(c) Binary anomalous image divided
in blocks, 1024× 768 pixels

(d) Binary anomalous image with
only blocks outlining the junction,
192× 144 pixels

Figure 15: Binary normal and anomalous images are resized, with selected subset
of blocks subject of further processing.

In order to test the BBS-ESN networks simulating the temporal propagation of
oil leaks anomalies with a gradual transition, image morphing has been used [53,
54]. Normal images have been used as starting frame and anomalous ones with the
same framing (and original metallic texture in the RGB images) have been used
as ending frame. The kind of morphing used is called “Differentiable morphing”,
performing morphing without reference points, using a neural network to calculate
warp maps [55].

10 sequences have been produced, each one constituted by 100 images. More
than one framing has been used in order to simulate different camera positions. In

34

fact, during the system setup the cameras, while remaining in fixed positions, may
be placed with a variable framing of the junction. The mean blocks number for
the sequences used is 29.4. The images used at the starting and the ending of the
sequences are reported in Table 5.

Table 5: Images used as starting frame and ending frame of the morphing sequences

Morphing
sequence

Starting
image

Ending
image

1 g21s1.1bin g4s1.1bin
2 g21s1.2bin g2s1.2bin
3 g22s1.3bin g2s4.3bin
4 g21s1.4bin g4s1.4bin
5 g21s1.5bin g5s1.5bin
6 g21s1.6bin g6s1.6bin
7 g22s1.7bin g7s4.7bin
8 g22s1.8bin g8s4.8bin
9 g21s1.9bin g9s1.9bin
10 g21s1.10bin g10s1.10bin

6 Proposed Block based Binary Shallow Echo State Net-
work (BBS-ESN)

Two network versions have been designed, both with the same architecture but
presenting differences in the weights and the non-linearity precisions. They present,
also, differences in the reservoirs matrices connectivity (i.e. percetage of non-zero
weights). The starting point in the network design has been the baseline BBS-ESN,
from which the quantized BBS-ESN has been derived.

6.1 BBS-ESN training

The network training modality, for both the proposed network, is based on the
assumption that the image sensor is initially set and turned on framing the junction
while it is in normal state (i.e. without leaks). The rationale is that the network,
through training, aims at approximating the input image in a situation without
anomalies, while the framing of the camera remains the fixed. Once the learning is
concluded, the network is put in inference mode.

An anomaly condition will be asynchronously identified in the condition of the
output being significantly different from the input. This condition would occur
because the image under analysis is significantly different from the ones used by
the training step, therefore being anomalous. This approach is similar to the ones
adopted in [20, 21, 22] using ESN for anomaly detection.

Due to this formulation of network training, the network states caused by the

35

input blocks are stacked into the state matrix X, while the input blocks are used as
train targets y(t) (Equation 2). Therefore, the states are disposed as in Equation 17:

X =
[
x(1)(1) . . . x(1)(B)
x(2)(1) . . . x(2)(B)

]
, (17)

begin B the number of blocks used for the training. The matrix of the train targets
Ytargets is represented in Equation 18

Ytarget =
[
u(1) . . . u(B)

]
, (18)

where the blocks u(t) are acquired from more than one image and are placed in
the same order they have been used as network inputs. These two matrices are
used to compute Wout as in Equation 9. The blocks order of Equation 18 can
vary and the possibilities are explained in section 8. The choice on the number
of blocks fell on 80, which reason is explained in subsubsection 9.2.1. As for the
choice of stacking the states vertically, experiments have been conducted using the
visualization technique t-SNE [56] on the network states, treating them as 256-
dimensional values and embedding them in a 2 dimensional map. These experiments
shown a separation of the mapping zones of the 2 reservoir states, justifying the
assignation of different weights to them (as the scheme in Figure 16 proposes).

6.2 Architecture overview

The BBS-ESN was designed, in both full precision baseline and a quantized version,
with two reservoir layers. Figure 16 shows the top level view of the BBS-ESN.

Figure 16: Top architecture of the BBS-ESN, that uses 2 reservoir layers.

Both the BBS-ESN versions use two reservoirs of 256 neurons each. The inputs

36

are binary column vectors of dimension 256 × 1 (obtained from images blocks of
dimension 16×16 that are flattened). The BBS-ESN output is also a binary column
vector of dimension 256× 1.

The network pipeline follow the description below:

• First reservoir state: The input to the network, u(t), is a binary image
block (of dimension 16×16) flattened in a column vector of dimension 256×1.
The binary numbers are represented by -1 and 1 values. The input is mapped
into the first reservoir layer by the matrix W

(1)
in and the result is added to

the reservoir state at the previous time x(1)(t − 1), multiplied by a reservoir
matrix W (1). The weights of W (1) represent the weighted connection inside
each reservoir, from which the state of each neuron depends on the state of
the others. A non-linearity is applied to the result of the sum (Equation 11).

• Second reservoir state: The same operations are performed in the second
reservoir layer, except for its input that is the first reservoir state at the same
temporal instant (Equation 11).

• Network readout: The network readout y(t) is computed using both the
reservoir states vertically stacked in a column vector, as per Equation 19,

x(t) =
[
x(1)(t) x(2)(t)

]
. (19)

The BBS-ESN output is expressed by Equation 20

y(t) = Woutx(t). (20)

The matrix Wout is the only element of the network that is subject to training.

• Network output with sign extraction: Finally, the sign extraction is
applied to the network readout y(t) (Equation 21):

o(t) = sign
(
y(t)

)
. (21)

The weights of the matrices W (1)
in , W (1), W (2)

in and W (2) are composed by ran-
domly instantiated weights that are kept always fixed during learning and inference.
The sign extraction of Equation 21 does not play a role in the training.

6.3 Baseline BBS-ESN implementation

The baseline BBS-ESN relies on double precision floating point weights and com-
putations. All the matrices are fully connected, that means that they have all
non-zero coefficients. The matrices W

(1)
in , W (1), W (2)

in and W (2) are instantiated
(and then kept fixed) with a random uniform distribution between -1 and 1, using
the MT19937 pseudorandom number generator [57]. The coefficients of W (1) and

37

W (2) are subsequently rescaled in order for the matrices to have spectral radius [8,
5] ρ(W (1)) = ρ(W (2)) = 0.95.

The baseline BBS-ESN parameters are summarized in Table 6, Table 7 and
Table 8 (“bin[-1,1]”, from here on, stays for “binary distribution of -1 and 1”). In
Table 7 is reported that the weights matrices W

(1)
in , W (2)

in , W (1), and W (2) are to
be saved in Flash memory. The reason is that, since they are random instantiated
values that will never change, they can be used as constant values.

The readout training of the baseline BBS-ESN implements the operations re-
ported in Table 9. These operations are the ones performed in Equation 9, using
α2 = 1. In the table the K matrix inversion computations are not reported, since it
can be implemented with many methods. It is reported the order of magnitude of
the operations, in relation to the matrix dimension.

6.4 Quantized BBS-ESN implementation

6.4.1 Binarization of the reservoirs

As reported in [10], the connectivity of the reservoir W , in an ESN, can be reduced
leaving connections (i.e. non-zero weights) only in the diagonal matirx. In [9] the
reservoir weights have been set to identity matrices with all the rows shifted of a
fixed position. Instead, in this study both the reservoir matrices, W (1) and W (2),
have been set as an identity matrices. In this case ρ(W (1)) = 1 and ρ(W (2)) = 1.
Therefore, the condition on the spectral radius has been relaxed from ρ(W (1)) < 1
and ρ(W (2)) < 1, as in [8, 5], to ρ(W (1)) ≤ 1 and ρ(W (2)) ≤ 1, as in [9],

This weights distributions on W (1) and W (2) mean that the state of a neuron
depends only on the state of the same neuron at the preceding instant.

Furthermore, reservoir matrices as identity matrices have the advantage that
their multiplications do not need to be executed, nor it is required memory space
to save its values. For this reason these matrices are not listed in Table 10 and
Table 11.

6.4.2 Binarization of the input matrices

W
(1)
in and W

(2)
in have been instantiated with uniform distributions of binary values

(-1 and 1). The distributions have been obtained using the same pseudorandom
number generator used for the baseline BBS-ESN, that is the MT11937 [57].

6.4.3 Quantized readout layer

The readout weights have been quantized to int8, with a procedure that follows the
principle of normalization. All the elements of the matrix are divided for the smaller
of the matrix entries, taken in modulus, called from now min(|Wout i,j |).

It has been assessed, empirically, that min(|Wout i,j |) is always smaller than 1.

38

Table 6: Baseline BBS-ESN parameters

Blocks size 16× 16 pixels
Blocks values distribution bin.[-1, 1]

Input vector units 256× 1 pixels*

Number of reservoirs 2
Neurons per reservoirs 256

Reservoirs
Non-linearity tanh

Output vector units 256
Output vector distribution bin.[-1,1]

Reservoirs states in readout Vertically stacked

W
(1)
in , W

(2)
in

Uniform distribution of fp64
between -1 and 1

ρ(W (1)), ρ(W (2)) 0.95
Connectivity of reservoirs 100%

* the input vectors are obtained flattening the blocks

Table 7: Baseline BBS-ESN weights and memory occupation

Position Number Type Occupied
memory[KBytes]

Memory
Type

W
(1)
in 65,536 fp64 512 Flash

W (1) 65,536 fp64 512 Flash
W

(2)
in 65,536 fp64 512 Flash

W (2) 65,536 fp64 512 Flash
Wout 131,072 fp64 1,024 RAM

Total 393,216 fp64 2,048 Flash
1,024 RAM

Table 8: Baseline BBS-ESN description

Operation Multiply Accumulate Non- linearity

a(t) = W
(1)
in u(t) 65,536 (fp64) 65,280 (fp64) -

b(t) = W (1)x(1)(t− 1) 65,536 (fp64) 65,280 (fp64) -
x(1)(t) = tanh

(
a(t) + b(t)

)
- 256 (fp64) tanh

c(t) = W
(2)
in x(1)(t) 65,536 (fp64) 65,280 (fp64) -

d(t) = W (2)x(2)(t− 1) 65,536 (fp64) 65,280 (fp64) -
x(2)(t) = tanh

(
c(t) + d(t)

)
- 256 (fp64) tanh

y(t) = Woutx(t)* 131,072 (fp64) 130,816 (fp64) -
o(t) = sign

(
y(t)

)
- - sign

Total 393,216 (fp64) 392,448 (fp64) -
* x(t) =

[
x(1)(t) x(2)(t)

]T
.

As a consequence the resulting matrix (Equation 22)

W̃out = Wout

min(|Wout i,j |)
(22)

39

Table 9: Operations performed for the readout training of the baseline BBS-ESN

Position Multiply Accumulate Division

K = XXT + I
20,971,520
(fp64)

20,709,632
(fp64) -

A = K−1 O(5123)*

Z = YtargetX
T 10,485,760

(fp64)
10,354,688
(fp64) -

Wout = ZA
67,108,864
(fp64)

66,977,792
(fp64) -

* The number of operations necessary for the matrix inversion de-
pends on the algorithm used. It is in the order of 5123, being 256
the number of rows and columns of K.

will be composed of elements that, taken in modulus, are always greater or equal
to 1. Therefore, the values ỹ, obtained multiplying the BBS-ESN state for the the
rescaled readout W̃out, will be a scaled version of y, obtained with the original
readout Wout (Equation 20). This is expressed in formulas in Equation 23

W̃outx(t) = ỹ(t) = y(t)
min(|Wout i,j |)

. (23)

Therefore, the sign extraction of ỹ(t), from Equation 21, would produce the same
results of o(t) obtained with the baseline BBS-ESN, extractiong the sign from y(t).
The elements of W̃out are subsequently rescaled to int8 representation introducing,
inevitably, a quantization error. The procedure for rescaling the W̃out values and
converting them to int8 numbers is reported in Equation 24

W̃ int8
out = (int8)

(W̃out

max(|Wout i,j |)
· (27 − 1)

)
. (24)

Since the output of W̃out/max(|Wout i,j|) is at most 1, the W̃ int8
out matrix coeffi-

cients will be at most equal to 27 − 1.
The rescaling is the only additional training operation that is not executed for

the baseline BBS-ESN. It is needed in order to quantize the readout weights as
explained in the subsection 6.4.

The accumulations are performed in int8, even though the theoretical accumu-
lation maximum could be overflowed. The reason is that the uniform distribution
of binary values in the input matrices permits to never reach the accumulation
maximums. This has been tested changing the accumulation type, in the training
procedure, from int8 to int16 and the result in Table 15 showed no changes.

The quantized BBS-ESN operations and properties are summarized in Table 10,
Table 11 and Table 12. As for the baseline BBS-ESN, in Table 11 is reported that
the matrices W (1)

in and W
(2)
in are to be be saved in Flash since they are constant like

in the baseline implementation.

40

Table 10: Quantized BBS-ESN parameters

Blocks size 16× 16 pixels
Blocks values
distribution bin.[-1, 1]

Input vector units 256× 1 pixels*

Number of reservoirs 2
Neurons per reservoirs 256

Reservoirs
Non-linearity sign

Output vector units 256
Output vector distribution bin.[-1,1]

Reservoirs states in readout Vertically stacked

W
(1)
in , W

(2)
in

Uniform distribution
of binary -1 and 1

ρ(W (1)), ρ(W (2)) 1.0
Connectivity of reservoirs 0.39%

* the input vectors are obtained flattening the blocks

Table 11: Quantized BBS-ESN weights and memory occupation.

Position Number Type Occupied
memory[KBytes]

Memory
type

W
(1)
in 65,536 bin.[-1, 1] 8 Flash

W
(2)
in 65,536 bin.[-1, 1] 8 Flash

Wout 131,072 int8 128 RAM

Total 131,072 bin.[-1, 1] 16 Flash
131,072 int8 128 RAM

* The multiplication of the reservoirs state for the reservoirs matrices are
not reported, since those matrices have been set to be identity matrices.

Table 12: Quantized BBS-ESN inference operations for each block

Operation Multiply Accumulate Non- linearity

a(t) = W
(1)
in u(t) 65,536 (bin.[-1, 1]) 65,280 (int8) -

x(1)(t) = sign
(
a(t) + x(1)(t− 1)

)
- 256 (int8) sign

c(t) = W
(2)
in x(1)(t) 65,536 (bin.[-1, 1]) 65,280 (int8) -

x(2)(t) = sign
(
c(t) + x(2)(t− 1)

)
- 256 (int8) sign

y(t) = Woutx(t)* 131,072 (int8) 130,816 (int16) -
o(t) = sign

(
y(t)

)
- - sign

Total 131,072 (bin.[-1, 1])
131,072 (int8)

131,072 (int8)
130,816 (int16) -

* x(t) =
[
x(1)(t) x(2)(t)

]T
.

** The multiplication of the reservoirs state for the reservoirs matrices are not reported, since those
matrices have been set to be identity matrices.

41

6.4.4 Memory savings

The weights memory occupation for the baseline BBS-ESN is of 2,048 KBytes of
Flash and 1,024 KBytes of RAM, while for quantized BBS-ESN these values are 16
KBytes of Flash and 128 KBytes of RAM. The quantized network weights, conse-
quently, occupies only the 0.8% of the baseline Flash memory and only the 12.5% of
the baseline RAM. Section 10 reports an analysis on the implementation times and
operations for the use of the quantized BBS-ESN.

Table 13: Operations performed for the readout training of the quantized BBS-ESN

Position Multiply Accumulate Division

K = XXT + I
20,971,520
(bin.[-1, 1])

20,709,632
(int8) -

A = K−1 O(5123)*

Z = YtargetX
T 10,485,760

(bin.[-1, 1])
10,354,688

(int8) -

Wout = ZA
67,108,864
(fp32 x int8)

66,977,792
(fp32 + int8) -

Rescale Wout

to int8 ** - - 131.072
(fp32 / fp32)

* The number of operations necessary for the matrix inversion depends on
the algorithm used. It is in the order of 5123, being 256 the number of
rows and columns of K.

** The rescaling operation needs to be performed only for the quantized
network

6.4.5 Quantized BBS-ESN readout training implementation

The quantized BBS-ESN training implements the operations reported in Table 13,
using the formula from Equation 9, with α2 = 1. The matrix inversion in Table 13 is
performed using fp32 numbers. As a consequence, also the multiplication involving
these values use fp32. Also for the case of the quantized BBS-ESN, in Table 13
the K matrix inversion computations are not reported, since it can be implemented
with many methods. It is only reported the order of magnitude of the operations, in
relation to the matrix dimension. Section 10 and Table 17 report the K inversion
implementative details.

7 Method for anomaly detection

Anomalies are identified using a decision process called Evaluator. As already stated,
the anomaly recognition is based on the evaluation of the reconstruction error be-
tween the BBS-ESN input blocks and output blocks. Specifically, the error that
is taken into consideration is the number of pixel that is reproduced wrongly (i.e.
the with the opposite binary value) comparing the network output o(t) and to the

42

corresponding input u(t) per block basis.
The Evaluator is trained with the error values from a number of images (con-

sidered normal) processed by the BBS-ESN, once its readout training has already
been completed.

Three types of Evaluators have bee taken into account. In each Evaluator a
number of images are processed by the network after the readout training. These
images are numbered ∈ {T1, . . . , Tj , . . . , Tn} (T stays for training). In the following
notation, the images evaluated in inference will be named I1, . . . , Ij , . . ., where I
stays for inference.

7.1 Evaluator on blocks with interception region

For this Evaluator it is computed, for each of the training images ∈ {T1, . . . , Tj , . . . , Tn},
the mean of the wrongly reconstructed pixels per block, µTj , and the variance of the
wrongly reconstructed pixels per block, σTj .

A window of values, named training window, is subsequently set using these
values. Its mean value µ̄T is the mean of the µTj , while its width is determined by
σ̄T , that is the mean of the σTj , multiplied by a Γ coefficient. The training window
will be constituted, therefore, by the values in Equation 25.

Training windoweval. on blocks =
[
µ̄T − Γ σ̄T , µ̄T + Γ σ̄T

]
. (25)

Once the values µ̄T and σ̄T have been calculated, the Evaluator training is com-
plete. For each new image processed in inference, numbered I1, . . . , Ij , . . ., they are
calculated the mean of the blocks error µIj and the variance of the blocks error σIj ,
with which it is calculated the widow of values corresponding to the image Ij . For
an image to be considered normal, there must be a region of values that is common
with all the other window of values from the preceding images, comprehending also
the training window (Figure 17).

Since high noise percentages may alter the reconstruction of the images, this
Evaluator has been designed to have a decision technique that allows the recon-
structing values to have large variation margin. As will be seen in subsection 9.1,
this Evaluator is not the best choice. In fact the variance of the reconstruction
error σIj tends to enlarge in anomalous images, since they have normal blocks and
anomalous blocks, being the anomaly located in only some blocks. High σIj enlarge
the images windows of values, and this facilitates anomalous images to be evaluated
as normal.

7.2 Evaluator on blocks without interception region

This type of Evaluator takes into account the same values of the Evaluator on blocks
with interception region, but the interception region is not used. For an image to be
considered normal there must be common values between the window of an image

43

Figure 17: Detection of images as normal or anomalous using the Evaluator on
blocks with interception region

processed in inference, Ij , and the training window (Figure 18).

Figure 18: Detection of images as normal or anomalous using the Evaluator on
blocks without interception region

This Evaluator, also, is not the best choice (subsection 9.1). Here can be found
the same problem with σIj of the Evaluator with interception region, although it is
mitigated by not using the interception region.

7.3 Evaluator on images

It can already be introduced that this is the Evaluator that has performed better
results, as explained in subsection 9.1.

As the two Evaluators above, for each of the training images ∈ {T1, . . . , Tj , . . . , Tn},

44

the mean of the wrongly reconstructed pixels per block, µTj , is calculated. The mean
of the µTj , named µ̄T , is used also in this case as mean value of the Training window.
The width of the window, in this case, is determined by the variance on the µTj ,
named σT , multiplied for a Γ coefficient.

For this kind of Evaluator the width depends, apart from Γ, from the variance
on the mean error of the training images, not on the mean of the variances of the
error per block of the training images. This is the reason why this Evaluator is
called “Evaluator on images”.

The Training window, in this case, will be the one represented in Equation 26

Training windoweval. on image =
[
µ̄T − ΓσT , µ̄T + ΓσT

]
. (26)

The rationale, therefore, is to perform the evaluation as the sampling from a
pool of values, that can be normal or anomalous. This Evaluator has been designed
in order to be simple (hence not computationally complex) and not to be biased by
the reconstructing error variance in the images. A scheme of the Evaluator on image
functioning is reported in Figure 19

Figure 19: Detection of images as normal or anomalous using the Evaluator on
imgae

7.4 Choice of Γ coefficient

In order to reason about the choice of Γ, the accuracy metrics must be introduced
first. The accuracy results that have been chosen in this study are the False Negative
Ratio (FPR) and the False Positive Ratio (FNR). FPR in a sequence of images is
defined as in Equation 27:

FPR = False positives
Images in the sequence · 100, (27)

where “False positives” is the number of normal images evaluated as anomalous.

45

FNR is defined as in Equation 28:

FNR = False negatives
Images in the sequence · 100, (28)

where “False negatives” is the number of anomalous images evaluated as normal.
The choice of the best Γ coefficient depends on the type of Evaluator used and it

is different for each noise level added to the sequences (to simulate defective photo-
transistors). In this study, the best Γ values have been chosen a-posteriori, and they
are the values that would be used in deployement mode. In fact, the choice of Γ
cannot be performed online. The reason is that the training can happen only with
normal images, and the choice of Γ depends on the distance of the windows (in the
case of the Evaluaotors on blocks) or points (in the case of the Evaluator on images)
between values corresponding to both normal and anomalous images.

The choice of Γ is a trade-off. In fact, increasing it will lead to the inclusion of
more values corresponding to anomalous images in the Training window (or Inter-
ception region), leading to an increment of the FNR. On the other hand, lowering Γ
will shrink the Training window, leaving out of it some values from normal images
and increasing the FPR.

Both FPR and FNR can lead to negative effects. On the one hand the increasing
of false negatives would cause the detection of anomalies only when they are promi-
nent, causing delays in the maintenance service, at the risk of aggravating damages.
On the other hand too many false positives could cause false alarms and useless
maintenance interventions, leading to inefficiencies.

Γ coefficients can be chosen in order to minimize FPR, FNR or a weighted sum
of FPR and FNR, obtaining a trade-off between detection speed and false alarms
quantity.

46

Figure 20: FPR and FNR varying Γ. Here the reconstruction took place the BBS-
ESN and evaluation performed with Evaluator on images. The training and testing
conditions are reported in section 8, using Lexicographical blocks order in the BBS-
ESN training

As an exmaple, in Figure 20 they can be seen the FPR and FNR values for each
of the Γ analyzed, with the Evaluator on Images, mediated over the 10 morphed
sequences (section 5) with an addition of binary noise in 10% of the pixels in each
image. The images reconstruction took place with the BBS-ESN after a training
using blocks in Lexicographical order (section 8) and in the conditions explained in
section 8.

It is useful to point out that more than one image are used in the training of the
Evaluator because using a single image would cause the Training Window to be just
a single value, treating as anomalous every image producing a different µIj value.
(section 7). Clearly, these condition would be acceptable only in ideal conditions,
i.e. with total absence of defective photo-transistors. In fact, the binary noise
that is added to the images in time-unrelated, making normal images in a sequence
different between each other, while they would be all equal without noise, due to
fixed framing.

8 Training and testing conditions

1. Training blocks numbers: In all the tests a fixed number of 80 blocks,
collected from more than one image to achieve that quantity, have been used for

47

BBS-ESN training. Before using the states from those blocks for the training,
the states from previous 50 blocks have been discarded, treating them as initial
transient [7]. The choice of the training and transient blocks is explained in
subsubsection 9.2.1.

2. Training blocks order: Two different input blocks orders have been used to
construct the train matrices X, with the states caused by the flattened input
blocks, and Ytarget, composed by the target vectors. These target vectors
are the flattened input blocks themselves, since the aim of the training is the
reconstruction of the input blocks (Equation 17 and Equation 18).

The possible orders for the input blocks are:

- Lexicographical order : starting from the top left block, sliding right in
the same row and repeating the process in the rows below. The process
iterates for all the images used for the collection of training blocks.

- Random order : the blocks order, once the blocks from all the images have
been saved, is shuffled randomly. The pseudorandom number generation
algorithm used for the random shuffle is PCG64 [58].

This procedure has been done to test the sensibility of BBS-ESN to the input
order. It is important to point out that the states in X follow the order of the
input blocks in Ytarget, of which the states are a consequence.

3. Number of images to train the Evaluator: The Evaluator has been
implemented using 100 normal images for its training, as a trade-off between
test rapidity and accuracy results. In fact, the more images are used for
the Evaluator training, the more the Training window mean and variance are
computed using a wide samples population (that in this case are images).

4. Γ values used: the Γ values that have been used span from 0.02 to 20.

5. Images in test sequences: Once both the BBS-ESN and the Evaluator
trainings are completed, sequences of 70 images have been used (the value 70
has been chosen as a trade-off between a significant number of images and a
brief enough simulations time). In order to test the anomaly detection process
in the most variable way, the number of normal images in each tested sequence
(i.e. before the leak appearance) has been set differently (keeping the total
images for each sequence to 70).

9 Analysis of the results

9.1 Choice of the best Evaluator

The three Evaluators have been tested with the baseline version of the BBS-ESN.
All the 10 morphed sequences (section 5) have been tested with various noise levels.

48

For each of the noise levels used (0%, 0.001%, 0.01%, 0.1%, 1% and 10%) the results
have been mediated over the 10 sequences.

The baseline BBS-ESN has been used for these tests because it ensures best
precision and, consequently, an un-biased judgement on the best working Evaluator.
In fact, variations on the results due to quantization may cause misleading decisions
on the accuracy capabilities permitted by the Evaluators. The results obtained
for each noise percentage and using each of the three Evaluators are reported in
Table 14a.

Table 14: Evaluators accuracy results

(a) Best FPR and FNR results obtained for each Evaluator
Noise percentagesEvaluator

type 0% 0.001% 0.01% 0.1% 1% 10%

Ev. on blocks
with interc.

region
0.0 0.0 0.0 0.6 5.1 0.3 41.2 21.8 15.5 24.7 29.3 4.5

Ev. on blocks
without

interc. region
0.0 0.0 0.0 0.0 0.3 0.0 6.0 0.0 5.7 0.0 23.4 6.8

Ev. on
images 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 13.2

(b) Sum of FPR and FNR for all the noise percentages for each Evaluator

Evaluator type FPR + FNR summed for all
noise percentages

Ev. on blocks with interc. region 143.0
Ev. on blocks without interc. region 42.2

Ev. on images 15.9

The Evaluator on images (subsection 7.3) is the one that permits better accuracy
performances because it is the one that has the smaller FPR + FNR value summed
for all the noise percentages, as can be seen in Table 14b

9.2 Accuracy results with the baseline and quantized BBS-ESN,
using the Evaluator on images

Once chosen the Evaluator on images as the one with better performances, the
morphed sequences from section 5 have been processed with both the versions of the
BBS-ESN. Table 15 shows the accuracy results. The comparison with the Residual
Image Algorithm is explained in subsubsection 9.3.2. Figure 21 shows Γ values that
allow to achieve those results for each noise level. For the sake of brevity, only the
values used to minimize the sum of FPR and FNR are reported.

49

Table 15: Accuracy results of the baseline and quantized BBS-ESN, compared with
an anomaly detection algorithm that evaluates the residual image through image
subtraction. A different Γ coefficient has been used for each network and each noise
percentage, in order to minimize the FPR, the FNR and the sum of FPR and FNR.

Noise percentages
0.1% 1% 10%Minimi-

zation
Input-output
comparison

BBS-ESN
training

blocks order FPR FNR FPR FNR FPR FNR

Random 0.0 0.0 0.0 0.0 0.0 28.7Baseline BBS-ESN
Lexicographical 0.0 0.0 0.0 0.0 0.0 28.7

Random 0.0 0.0 0.0 0.0 0.0 33.1Quantized BBS-ESN
Lexicographical 0.0 0.0 0.0 0.0 0.0 33.1

FPR

Residual Image - 0.0 22.7 0.0 54.4 0.0 92.5
Random 0.0 0.0 0.0 0.0 83.8 0.3Baseline BBS-ESN

Lexicographical 0.0 0.0 0.0 0.0 83.8 0.3
Random 0.0 0.0 0.0 0.0 81.4 0.6Quantized BBS-ESN

Lexicographical 0.0 0.0 0.0 0.0 81.4 0.6
FNR

Residual Image - 32.1 0.0 83.8 5.0 85.4 9.9
Random 0.0 0.0 0.0 0.0 2.7 13.2Baseline BBS-ESN

Lexicographical 0.0 0.0 0.0 0.0 2.7 13.2
Randon 0.0 0.0 0.0 0.0 4.1 14.6Quantized BBS-ESN

Lexicographical 0.0 0.0 0.0 0.0 4.1 14.6

FPR
+

FNR

Residual Image - 1.2 5.6 6.6 28.9 30.7 38.6
Results with defective pixels percentage of 0%, 0.001% and 0.01% have not been reported
since they are always FPR = 0.0, FNR = 0.0.
The number transient blocks is 50 for each BBS-ESN test.
The number of blocks to train the readout is 80 for each BBS-ESN test.
The number of images used to train the Evaluator is 100 in every case.

9.2.1 Choice of the number of training and transient blocks

For the choice of the number of training blocks, various blocks number have been
tested (200, 100, 90, 80, 60, 30) with both the baseline and quantized BBS-ESN
with a fixed transient blocks of 50 (that is approximately the number of blocks in
two images for the images with a smaller blocks number, which has a mean of 29.4).
80 has been the only number that permitted FPR = 0.0 and FNR = 0.0 at the
noise level of 1% for both the BBS-ESN versions. As for the number of transient
blocks, various values have been tested (100, 80, 50, 30, 0) using both the BBS-ESN
versions, trained with 80 blocks. 50, as number of transient blocks, has been the
only value allowing FPR = 0.0, FNR = 0.0 at noise level 1% for both the baseline
and quantized BBS-ESN.

9.3 Analysis of the results

As the noise increases it becomes increasingly difficult for the network to separate
the µIj values corresponding to normal and anomalous images (section 7), using the

50

(a) Gamma coefficients for the quantized BBS-ESN allowing the results obtained.

(b) Gamma coefficients for the quantized BBS-ESN allowing the results obtained.

Figure 21: Gamma values allowing the results obtained. The values are the same
for both the blocks order used for the network training (i.e. lexicographical and
random).

Evaluator on images. This is why there is no Γ permitting to obtain FPR = 0.0 and
FNR = 0.0 at a noise percentage of 10%.

51

9.3.1 Robustness to training blocks order

Following the results of the experiments it can be stated that both the BBS-ESN
versions are robust to changing in the blocks order for the training of the readout
matrix Wout. In fact, the results obtained are the same (at one decimal place in
FPR and FNR, as reported in Table 15) in both the train condition.

9.3.2 Comparison with Residual Image Algorithm

The results have been compared with the ones achieved by using a Residual Im-
age Algorithm, that compares a newly acquired images with a saved one that is
considered normal, like the method in [59]. For this algorithm the Evaluator on im-
ages that has been used follows the same rules of the Evaluator on images used for
the BBS-ESN. Figure 22 compares the entire pipeline of input-output comparison
method, using the BBS-ESN or the Residual Image Algorithm.

(a) Pipeline for BBS-ESN trainining and Evaluator on images training

(b) Pipeline for Residual Image Algorithm image acquisition and Evaluator on images train-
ing

Figure 22: Comparison of the pipelines for the usage of the BBS-ESN and the
Residual Image Algorithm for input-output comparison.

Both BBS-ESN, baseline and quantized versions, have achieved better results
than the Residual Image Algorithm. This is due to a greater reconstruction error
that the BBS-ESN is capable to achieve for anomalous images and to a lower re-
construction error for normal images. This leads to a better separation between the
µIj from normal and anomalous images (subsection 7.3), leading to overall better
performances in terms of FPR and FNR.

52

9.4 Further tests

9.4.1 Test with different quantization procedure

Experiments have been conducted with the training procedure of the quantized
BBS-ESN, in the attempt to reduce the RAM requirements and the computational
complexity. It has been rescaled the matrix K−1 (Table 13) and converted it to
integer representation before the multiplication with Z, with the aim of reducing
the times required for executing the multiplication (the chosen representation has
been int32, to reduce the overflow possibility). The results, using lexicographical
training blocks order and choosing Γ coefficients in order to minimize the sum of
FPR + FNR, scored FPR = 0.8, FNR = 1.9 at a noise level of 1% and FPR = 3.2,
FNR = 13.1 at a noise level of 10%. Due to the accuracy reduction towards the
original method reported in Table 13, the original procedure has been kept. In
fact, this new method would cause a performance reduction at noise level 1%, since
using this noise level with the original quantization procedure we have FPR = 0.0,
FNR = 0.0.

9.4.2 Removal of the recurrent connections

Experiments have been conducted removing the recurrent connections with the base-
line and quantized BBS-ESNs, reducing the network to be feedforward: a classic
ELM (Section 3.6) with 2 hidden layers instead of 1. This also means that the
elements W (1)x(1)(t − 1) and W (2)x(2)(t − 1) of equation 11 have been equaled to
0. Consequently, the operations for computing x(1)(t) and x(2)(t) in Table 8 and
Table 12 are transformed to the sole application of the element-wise sign extraction.

Results (not shown in Table 15) show 0.0 values for both FPR and FNR in
the using sequences with 0% noise, for both the baseline and quantized feedforward
networks and for both the lexicographical and random training blocks orders.

As for the conditions of 1% and 10% noise percentages, the baseline feeforward
network, trained with lexicographical blocks order, scored results of FPR = 0.3,
FNR = 0.3 for 1% noise and FPR = 4.5, FNR = 12.3 for 10% noise. Using a
random blocks order the accuracy results were FPR = 0.3, FNR = 0.0 for 1% noise
and FPR = 3.2, FNR = 13.0 for 10% noise.

The quantized feedforward network scored results of FPR = 0.3, FNR = 0.3 for
1% noise and and FPR = 4.1, FNR = 11.7 for 10% noise with a lexicographical
training order. The results for the random training order with noise levels of 1%
and 10% were, respectively, FPR = 0.3, FNR = 0.0 and FPR = 3.9, FNR = 12.0.

These results were obtained using Gamma coefficient for the minimization of the
sum of FPR and FNR.

Results obtained by the BBS-ESN baseline and quantized versions are marginally
different. For noise level 1% the difference is under 1% for both FPR and FNR for
both the baseline and quantized versions. For noise level 10% the difference is under

53

1% for both FPR and FNR for the baseline version and under 1% for FPR and
under 3% for FNR for the quantized version.

10 Feasibility analysis on a tiny micro controller

The execution times of the quantized BBS-ENS version have been estimated con-
sidering the implementation one the micro-controller STM32H743ZI2 running at
480 MHz, featuring ARM Cortex-M7 core, 1 MByte embedded RAM and 2 MByte
embedded FLASH. The baseline BBS-ESN is out of profiling scope due to the us-
age of double precision floatin point (fp64) numbers that reduces time and memory
performances.

By profiling a variety of neural layers at various bit-depth, generated with the
plugin X-CUBE-AI v7.0.0 part of STM32CubeMX [60], it has been calculated that
by average the execution time of a single precision floating point (fp32) MACC is
10.4 ns. For a binary MACC it is 1.5 ns, for a int8 MACC it is 6 ns and, finally, for
a fp32 division it is 29 ns. On the basis of these values, they can be estimated the
execution times required for training and inference of the quantized BBS-ESN.

Being possible to implement up to 4 int8 sums in one clock cycle (using ARM
SIMD instructions [61]), the time for an int8 sum can be approximated to be

1/4
480 MHz = 0.52 ns. In a similar way, 2 int16 sums can be performed in 1 clock
cycle in an estimated time of 1/2

480 MHz = 1.04 ns.
In this study, binary values (-1 and 1) are packed as 0 and 1 in 32 bit words but

they are expressed as -1 and 1 in int8 values, in order to perform computations.
The time required for packing and unpacking these values to and from 32 bit words
has not been considered. It is important to notice, also, that in these estimates the
operations and the times for reading and writing into the registers are not considered.
The overall analysis, as a consequence, is an optimistic one.

In Table 16 are reported the times for the operations spent during training and
inference. The necessary time for a binary multiplication has been approximated
with the time required for a binary MACC.

Table 16: Times estimated for the single operations spent for training and inference

Operation Time[ms]
int8 sum 0.52 · 10−6

int16 sum 1.04 · 10−6

bin.[-1, 1]
multiplication 1.5 · 10−6*

fp32 MACC 10.4 · 10−6

fp32 division 29 · 10−6

* The time used for the binary
multiplication is approximated
to the time for a binary MACC.

54

10.1 Training time profile

Table 17 reports the execution times and the number of operations required for
the readout training. These operations are represented with the types used for the
MCU implementation. This means that accumulations that, theoretically, would be
of fp32 with int8 values, are implemented with both numbers in fp32).

The times for fp32 operations represent a slightly worse case, since the time
for fp32 multiplications and sums is approximated with the time for a number of
MACC equal to the multiplications number, that is slightly greater than the number
of sums. For the estimate of the matrix inversion time, the Gauss-Jordan method
has been considered, being the method used for the inversion in the ARM CMSIS-5
library [62].

Using 100 images to be trained (section 8), the Evaluator would require a training
time of 1.206 s.

Table 17: Times required and respective operations for the readout training for the
quantized BBS-ESN. The time for converting binary values, packed as 1-bit values,
into int8 has not been considered in this estimation.

Position Times[ms] Multiply Accumulate Division

K = XXT + I 0.042 · 103 20,971,520
(bin.[-1, 1])

20,709,888
(int8) -

A = K−1* 0.467 · 103** 44,869,888
(fp32)

44,869,888
(fp32)

131,328
(fp32)

Z = YtargetX
T 0.021 · 103 10,485,760

(bin.[-1, 1])
10,354,688

(int8) -

Wout = ZA 0.698 · 103** 67,108,864
(fp32)

66,977,792
(fp32) -

Rescale Wout 0.004 · 103 - - 131,072
(fp32)

Total 1.232 · 103

31,457,280
(bin.[-1, 1])
111,978,752

(fp32)

31,064,576
(int8)

111,847,680
(fp32)

262,400
(fp32)

* The Gauss-Jordan method has been considered for the inversion.
** The time required for fp32 multiplications and sums is obtained. approximating
the fp32 MACC quantity with the multiplication quantity

10.2 Inference time profile

The times and operations for a single block inference, using the quantized BBS-ESN,
are listed in Table 18. The multiplication of the reservoirs states for the reservoirs
matrices are not reported because those matrices are set to be identity matrices.

Since the estimated one block inference time is 0.402 ms and the mean blocks
number per image in the sequences used is 29.4, then approximated to 30, the time
required to perform the inference on one image is estimated with 12.06 ms. The
reason for having different blocks number in different sequences is illustrated in

55

section 5. As for the mean computational complexity, the computation numbers
must be multiplied by 30 to obtain the mean computations per image. They are
estimated with 7,864,320 binary multiplications, 3,932,160 int8 sums and 3,924,480
int16 sums. The time required to compare the BBS-ESN output o(t) with the input
u(t) has been neglected, being a simple XOR operation and a count of the 1 values
in output from the XOR, of second order importance versus to the other operations.
Furthermore, the computation of the mean number of 1 values per block in output
from the XOR, that is the µIj corresponding to the image (subsection 7.3), has been
neglected for the same reason.

Table 18: Times required and respective operations for one block inference for the
quantized BBS-ESN

Operation Time[ms] Multiply Accumulate Non-lin.

a(t) = W
(1)
in u(t) 0.034 65,536 (bin.[-1, 1]) 65,280 (int8) -

x(1)(t) = sign
(
a(t)+

x(1)(t− 1)
) 0.001* - 256(int8) sign

c(t) = W
(2)
in x(1)(t) 0.034 65,536 (bin.[-1, 1]) 65,280 (int8) -

x(2)(t) = sign
(
c(t)+

x(2)(t− 1)
) 0.001* - 256(int8) sign

y(t) = Woutx(t)** 0.333 131,072 (bin.[-1, 1]) 130,816 (int16) -
o(t) = sign

(
y(t)

)*** - - - sign

Total 0.402 262,144 (bin.[-1, 1]) 131,072 (int8)
130,816 (int16) -

* The time required for the int8 accumulation and sign extraction has been approximated with
the time required for a binary multiplication and int8 sum.

** x(t) =
[
x(1)(t) x(2)(t)

]T

*** The times for the sign extraction of y(t) have been neglected, having overestimated the times
for the int8 sum and sign extraction (in the numbers with the * symbol).
The multiplication of the reservoirs state for the reservoirs matrices are not reported, since we
have set those matrices to be equal to identity matrices.

10.3 Training required memory

The RAM required to perform the training (as described in Table 17) is reported
in Table 19 with all the necessary steps to be executed. The maximum required
RAM value is needed for the K matrix inversion and it is 2,176 KBytes. This
quantity has been estimated in the worst optimization case (i.e. in the need of
storing simultaneously every value of K and K−1, with the K coefficients expressed
as fp32 numbers).

56

Table 19: RAM required for the training of the BBS-ESN. X is the state matrix
(Equation 17), Ytarget is the target matrix (Equation 18).

Step
Matrices

needed
Dimension

and type

Required
RAM

for matrix
[KBytes]

Total
required
RAM

[KBytes]
X 512× 80 (bin.[-1, 1]) 5Before

training Ytarget 256× 80 (bin.[-1, 1]) 2.5
7.5

X 512× 80 (bin.[-1, 1]) 5
Ytarget 256× 80 (bin.[-1, 1]) 2.5Z = YtargetX

T

Z 256× 512 (int8) 128
135.5

X 512× 80 (bin.[-1, 1]) 5
Z 256× 512 (int8) 128K = XXT + I

K 512× 512 (int8) 256
389

K 512× 512 (fp32) 1,024
K−1 512× 512 (fp32) 1,024K−1*

Z 256× 512 (int8) 128
2,176

K−1 512× 512 (fp32) 1,024
Z 256× 512 (int8)** 128ZK−1 = Wout

ZK−1 256× 512 (fp32) 512
1,664

Rescaling
of Wout

Wout 256× 512 (fp32) 512 512

Wout 256× 512 (fp32) 512Conversion of
Wout in int8 Wout 256× 512 (int8) 128

512***

Final result:
Wout in int8

Wout 256× 512 (int8) 128 128

- - -
Maximum
required
RAM

2,176

* the RAM for the matrix inversion has been estimated in the worst optimization case (i.e. in
the necessity of storing simultaneously every value of K and K−1, with K converted in fp32).
** Z can be saved in int8 and every element converted to fp32 before multiplying it.
*** 512 KBytes is the maximum RAM required in this step because the elements of Wout can
be converted to int8 overwriting the fp32 values.

10.4 Inference required memory

By implementing the inference with the operations reported in Table 20, then the
total RAM required for one block inference is 129.2 KBytes, considering the readout
matrixWout and the input, state and output, respectively u(t), x(t) and y(t). These
values are shown in Table 20. As for the Flash memory, the required quantity for
one block inference is 16 KBytes, as reported in Table 11.

57

Table 20: RAM required to perform the inference with the operations of Table 18.

Matrix
or vector

Dimension
and type

Required
RAM[KBytes]

Wout
256× 512
(int8)

128

u(t)* 256× 1
(bin.[-1, 1])

0.03

x(t)* 512× 1
(bin.[-1, 1])

0.06

o(t)* 256× 1
(bin.[-1, 1])

0.03

- Total
required RAM

129.2

* The elements of u(t), x(t) and o(t) can be saved as
binary (0 and 1) in 32bit words and converted to int8
(-1 and 1) to perform operations, one value at a time.

11 Conclusions and future works

This study proved that the quantized BBS-ESN can be implemented in inference
with an estimated number of operations, per image, of 7,864,320 binary multiplica-
tions, 3,932,160 int8 sums and 3,924,480 int16 sums, and with an execution time of
12.06 ms. The estimates on the required RAM and Flash are respectively of 129.2
KBytes and 16 KBytes.

As for the quantized BBS-ESN training, the estimated numbers and types of
operations are 31,457,280 binary multiplications, 111,978,752 fp32 multiplications,
31,064,576 int8 sums and 111,847,680 fp32 sums, requiring an execution time of
1.232 s. For the training it is not required any additional space in Flash and the
required RAM is estimated to be 2,176 KBytes. Once the network has been trained,
the decision process called Evaluator trains to set the reconstruction error threshold,
to separate normal images from anomalous images, in 1.260 s (subsection 10.2).

The accuracy results that have been obtained with the quantized BBS-ESN are
of FPR = 0.0, FNR = 0.0 in the less challenging noise conditions (0%) and of
FPR = 4.1, FNR = 14.6 in the most challenging noise conditions (10%). These
are the best results for the sum of FPR and FNR and they are achieved setting
the Evaluator in order to minimize this sum. In the same conditions the baseline
BBS-ESN has performances of FPR = 0.0, FNR = 0.0 with no noise and FPR = 2.7,
FNR = 13.2 with a noise percentage of 10%.

The Flash memory saving for inference, between the baseline and the quatized
BBS-ESN, is of 2,032 KBytes, comparing the value of Table 11 with the value of
Table 7

58

The RAM saving for inference, in terms of required weights memory, is of 896
KBytes, comparing the value of Table 11 to the value of Table 7.

It is important to note, as stated in Section 10, that the estimates are optimistic,
since the operations and the time for reading and writing the data in the registers are
not considered. Moreover, the time and the operations required to convert binary
values into int8, and vice-versa (section 10) has been neglected. The reason for this
is that these operations are of second order importance versus the others.

This study shown that the quantized BBS-ESN can be implemented on a off-the-
shelf MCU, due to the deep quantization applied to the baseline BBS-ESN version.
This is feasible because the estimated time for the inference on one image is ap-
proximately 12.06 ms (subsection 10.2) and the images could be acquired every
minute or even less frequently, since the relatively slow process of oil leak motion.
Slight accuracy differences have been noted between the BBS-ESN and the network
maintaining the same architecture but without recurrent connections, both in the
quantized and baseline versions (subsubsection 9.4.2).

The network training could be optimized using half precision floating point num-
bers, or even fixed point precision numbers. The training states could be reduced in
smaller chunks making the training iterative between chunks until all of them are
processed and the weights computed. This approach would be useful, because it is
expected to reduce the RAM needs. Moreover, more networks architectures could
be tested, changing the combinations of reservoir layers, neurons per reservoir and
blocks dimensions. Finally, the network could be implemented in C-code, allowing
to measure on the device the quantities that have been estimated.

59

References

[1] Renewable Capacity Statistics 2019. Tech. rep. IRENA, 2019.

[2] Renewable Energy Statistics 2018. Tech. rep. IRENA, 2019.

[3] Magdi Mahmoud and Yuanqing Xia. “Some Industrial Systems”. In: Jan. 2012,
pp. 11–33.

[4] Yann LeCun, Y. Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature
521 (May 2015), pp. 436–44.

[5] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. “Deep reservoir com-
puting: A critical experimental analysis”. In: Neurocomputing 268 (2017). Ad-
vances in artificial neural networks, machine learning and computational in-
telligence, pp. 87–99.

[6] Claudio Gallicchio and Alessio Micheli. “Deep Echo State Network (Deep-
ESN): A Brief Survey”. In: CoRR abs/1712.04323 (2017). arXiv: 1712.04323.

[7] Herbert Jaeger. “The" echo state" approach to analysing and training recur-
rent neural networks-with an erratum note’”. In: Bonn, Germany: German
National Research Center for Information Technology GMD Technical Report
148 (Jan. 2001).

[8] Mantas Lukoševičius and Herbert Jaeger. “Reservoir computing approaches to
recurrent neural network training”. In: Computer Science Review 3.3 (2009),
pp. 127–149.

[9] Denis Kleyko et al. Integer Echo State Networks: Efficient Reservoir Comput-
ing for Digital Hardware. 2020. arXiv: 1706.00280 [cs.NE].

[10] Claudio Gallicchio and Alessio Micheli. “Architectural and Markovian factors
of echo state networks”. In: Neural Networks 24.5 (2011), pp. 440–456.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection:
A Survey”. In: ACM Comput. Surv. 41.3 (July 2009).

[12] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. “A survey on unsu-
pervised outlier detection in high-dimensional numerical data”. In: Statisti-
cal Analysis and Data Mining: The ASA Data Science Journal 5.5 (2012),
pp. 363–387.

[13] Manish Gupta et al. “Outlier Detection for Temporal Data: A Survey”. In:
IEEE Transactions on Knowledge and Data Engineering 26.9 (2014), pp. 2250–
2267.

[14] Victoria Hodge and Jim Austin. “A survey of outlier detection methodologies”.
In: Artificial intelligence review 22.2 (2004), pp. 85–126.

[15] Hui Lu et al. “An Outlier Detection Algorithm Based on Cross-Correlation
Analysis for Time Series Dataset”. In: IEEE Access 6 (2018), pp. 53593–53610.

60

https://arxiv.org/abs/1712.04323
https://arxiv.org/abs/1706.00280

[16] Faraz Rasheed and Reda Alhajj. “A Framework for Periodic Outlier Pattern
Detection in Time-Series Sequences”. In: IEEE Transactions on Cybernetics
44.5 (2014), pp. 569–582.

[17] Shixiong Wang, Chongshou Li, and Andrew Lim. “A Model for Non-Stationary
Time Series and its Applications in Filtering and Anomaly Detection”. In:
IEEE Transactions on Instrumentation and Measurement 70 (2021), pp. 1–
11.

[18] Min Hu et al. “Detecting Anomalies in Time Series Data via a Meta-Feature
Based Approach”. In: IEEE Access 6 (2018), pp. 27760–27776.

[19] Hermine N. Akouemo and Richard J. Povinelli. “Data Improving in Time Se-
ries Using ARX and ANN Models”. In: IEEE Transactions on Power Systems
32.5 (2017), pp. 3352–3359.

[20] Qing Chen et al. “Imbalanced dataset-based echo state networks for anomaly
detection”. In: Neural Computing and Applications 32 (Apr. 2020).

[21] Niklas Heim and James E. Avery. “Adaptive Anomaly Detection in Chaotic
Time Series with a Spatially Aware Echo State Network”. In: CoRR abs/1909.01709
(2019). arXiv: 1909.01709.

[22] Oliver Obst, X. Rosalind Wang, and Mikhail Prokopenko. “Using Echo State
Networks for Anomaly Detection in Underground Coal Mines”. In: 2008 In-
ternational Conference on Information Processing in Sensor Networks (ipsn
2008). 2008, pp. 219–229.

[23] Yıldız Karadayı, Mehmet N. Aydin, and A. Selçuk Öğrenci. “A Hybrid Deep
Learning Framework for Unsupervised Anomaly Detection in Multivariate
Spatio-Temporal Data”. In: Applied Sciences 10.15 (2020).

[24] Suwon Suh et al. “Echo-state conditional variational autoencoder for anomaly
detection”. In: 2016 International Joint Conference on Neural Networks (IJCNN).
2016, pp. 1015–1022. doi: 10.1109/IJCNN.2016.7727309.

[25] Jaemann Park et al. “utilizing online learning based on echo-state networks for
the control of a hydraulic excavator”. In: Mechatronics 24.8 (2014), pp. 986–
1000.

[26] Tim Waegeman, Francis wyffels, and Benjamin Schrauwen. “Feedback Con-
trol by Online Learning an Inverse Model”. In: IEEE Transactions on Neural
Networks and Learning Systems 23.10 (2012), pp. 1637–1648.

[27] Jean P. Jordanou, Eric Aislan Antonelo, and Eduardo Camponogara. “Online
learning control with Echo State Networks of an oil production platform”. In:
Engineering Applications of Artificial Intelligence 85 (2019), pp. 214–228.

[28] Voulodimos A et al. “Online classification of visual tasks for industrial work-
flow monitoring”. In: Neural Netw. 2011 Oct (2011). doi: 10.1016/j.neunet.
2011.06.001.

61

https://arxiv.org/abs/1909.01709
https://doi.org/10.1109/IJCNN.2016.7727309
https://doi.org/10.1016/j.neunet.2011.06.001
https://doi.org/10.1016/j.neunet.2011.06.001

[29] Kexin Xing et al. “Modeling and control of McKibben artificial muscle en-
hanced with echo state networks”. In: Control Engineering Practice 20.5 (2012),
pp. 477–488. issn: 0967-0661. doi: https://doi.org/10.1016/j.conengprac.
2012.01.002. url: https://www.sciencedirect.com/science/article/
pii/S0967066112000032.

[30] Kan Zeng and Yixiao Wang. “A Deep Convolutional Neural Network for Oil
Spill Detection from Spaceborne SAR Images”. In: Remote Sensing 12 (Mar.
2020), p. 1015.

[31] A.H.S. Solberg et al. “Automatic detection of oil spills in ERS SAR images”. In:
IEEE Transactions on Geoscience and Remote Sensing 37.4 (1999), pp. 1916–
1924.

[32] M. Kubát, R. Holte, and S. Matwin. “Machine Learning for the Detection of
Oil Spills in Satellite Radar Images”. In: Machine Learning 30 (2004), pp. 195–
215.

[33] Camilla Brekke and Anne H.S. Solberg. “Oil spill detection by satellite remote
sensing”. In: Remote Sensing of Environment 95.1 (2005), pp. 1–13.

[34] Diego Cantorna et al. “Oil spill segmentation in SAR images using convolu-
tional neural networks. A comparative analysis with clustering and logistic
regression algorithms”. In: Applied Soft Computing 84 (2019), p. 105716.

[35] Amir Adler et al. “A Deep Learning Approach to Block-based Compressed
Sensing of Images”. In: CoRR abs/1606.01519 (2016). arXiv: 1606.01519.

[36] Byeongyong Ahn and Nam Ik Cho. “Block-Matching Convolutional Neural
Network for Image Denoising”. In: CoRR abs/1704.00524 (2017). arXiv: 1704.
00524.

[37] Haoliang Li, Shiqi Wang, and AlexC Kot. “Image Recapture Detection with
Convolutional and Recurrent Neural Networks”. In: Electronic Imaging 2017
(Jan. 2017), pp. 87–91.

[38] Danial Maleki et al. “BlockCNN: A Deep Network for Artifact Removal and
Image Compression”. In: CoRR abs/1805.11091 (2018). arXiv: 1805.11091.

[39] Jonathan Quijas and Olac Fuentes. “Removing JPEG blocking artifacts us-
ing machine learning”. In: 2014 Southwest Symposium on Image Analysis and
Interpretation. 2014, pp. 77–80.

[40] Haotong Qin et al. “Binary Neural Networks: A Survey”. In: CoRR abs/2004.03333
(2020). arXiv: 2004.03333.

[41] Matthieu Courbariaux and Yoshua Bengio. “BinaryNet: Training Deep Neural
Networks with Weights and Activations Constrained to +1 or -1”. In: CoRR
abs/1602.02830 (2016). arXiv: 1602.02830.

62

https://doi.org/https://doi.org/10.1016/j.conengprac.2012.01.002
https://doi.org/https://doi.org/10.1016/j.conengprac.2012.01.002
https://www.sciencedirect.com/science/article/pii/S0967066112000032
https://www.sciencedirect.com/science/article/pii/S0967066112000032
https://arxiv.org/abs/1606.01519
https://arxiv.org/abs/1704.00524
https://arxiv.org/abs/1704.00524
https://arxiv.org/abs/1805.11091
https://arxiv.org/abs/2004.03333
https://arxiv.org/abs/1602.02830

[42] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning
machine: Theory and applications”. In: Neurocomputing 70.1 (2006). Neural
Networks, pp. 489–501.

[43] Guang-Bin Huang et al. “Extreme Learning Machine for Regression and Mul-
ticlass Classification”. In: IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics) 42.2 (2012), pp. 513–529.

[44] Guang-Bin Huang. “What are Extreme Learning Machines? Filling the Gap
Between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle”. In:
Cognitive Computation 7 (June 2015), pp. 263–278.

[45] Guang-Bin Huang. “An Insight into Extreme Learning Machines: Random
Neurons, Random Features and Kernels”. In: Cognitive Computation 6 (Sept.
2014), pp. 376–390.

[46] Keyshot manual. 2021. url: https://manual.keyshot.com/manual/render-
4/render-options/.

[47] Matlab - Image Processing Toolbox. 2021. url: https://it.mathworks.com/
products/image.html.

[48] Matlab. url: https://it.mathworks.com/help/matlab/ref/rgb2gray.
html.

[49] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level Histograms”.
In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979), pp. 62–
66.

[50] Connor Shorten and Taghi Khoshgoftaar. “A survey on Image Data Aug-
mentation for Deep Learning”. In: Journal of Big Data 6 (July 2019). doi:
10.1186/s40537-019-0197-0.

[51] Keras - Image data preprocessing. 2021. url: https : / / keras . io / api /
preprocessing/image/.

[52] Shreyas Fadnavis. “Image Interpolation Techniques in Digital Image Process-
ing: An Overview”. In: International Journal Of Engineering Research and
Application 4 (Nov. 2014), pp. 2248–962270.

[53] G. Wolberg. “Image morphing: a survey”. In: The Visual Computer 14 (1998),
pp. 360–372. doi: https://doi.org/10.1007/s003710050148.

[54] Aksh Patel. “Image Morphing Algorithm: A Survey”. In: 2015.

[55] volotat. url: https://github.com/volotat/DiffMorph.

[56] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”.
In: Journal of Machine Learning Research 9.86 (2008), pp. 2579–2605.

[57] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator”. In:ACM Trans.
Model. Comput. Simul. 8.1 (Jan. 1998), pp. 3–30.

63

https://manual.keyshot.com/manual/render-4/render-options/
https://manual.keyshot.com/manual/render-4/render-options/
https://it.mathworks.com/products/image.html
https://it.mathworks.com/products/image.html
https://it.mathworks.com/help/matlab/ref/rgb2gray.html
https://it.mathworks.com/help/matlab/ref/rgb2gray.html
https://doi.org/10.1186/s40537-019-0197-0
https://keras.io/api/preprocessing/image/
https://keras.io/api/preprocessing/image/
https://doi.org/https://doi.org/10.1007/s003710050148
https://github.com/volotat/DiffMorph

[58] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically
Good Algorithms for Random Number Generation. Tech. rep. HMC-CS-2014-
0905. Claremont, CA: Harvey Mudd College, Sept. 2014.

[59] Thibaud Ehret et al. “How to Reduce Anomaly Detection in Images to Anomaly
Detection in Noise”. In: Image Processing On Line 9 (2019), pp. 391–412.

[60] STMicroelectronics. url: https://www.st.com/en/embedded-software/x-
cube-ai.html.

[61] url: https : / / www . keil . com / pack / doc / CMSIS / Core / html / group _
_intrinsic__SIMD__gr.html.

[62] arm. url: https://github.com/ARM-software/CMSIS_5.

64

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.keil.com/pack/doc/CMSIS/Core/html/group__intrinsic__SIMD__gr.html
https://www.keil.com/pack/doc/CMSIS/Core/html/group__intrinsic__SIMD__gr.html
https://github.com/ARM-software/CMSIS_5

	Hardcover
	Softcover
	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	Introduction
	System architecture and associated requirements
	Related work
	Review of Echo State Networks and Deep Echo State Networks
	Review of Echo State Networks
	Training of an Echo State Network
	Review of Deep Echo State Networks
	Training of Deep Echo State Network

	Review of Anomaly detection
	Anomaly detection using Echo State Networks

	Review of Echo State Networks online learning
	Review of oil leaks detection, thresholding and block-based processing
	Review of Network quantization
	Review of Extreme Learning Machines

	Dataset creation
	3D model
	Rendering
	Leaks images
	Light, background and virtual cameras specifics
	Rendering specifics

	Images disposition in the Dataset and examples
	Images with oil leak
	Images without oil leak

	Matlab preprocessing
	RGB images from preprocessing
	Grayscale images from preprocessing
	Binary images from preprocessing

	Python data augmentation
	Images quantity

	Images usage
	Proposed Block based Binary Shallow Echo State Network (BBS-ESN)
	BBS-ESN training
	Architecture overview
	Baseline BBS-ESN implementation
	Quantized BBS-ESN implementation
	Binarization of the reservoirs
	Binarization of the input matrices
	Quantized readout layer
	Memory savings
	Quantized BBS-ESN readout training implementation

	Method for anomaly detection
	Evaluator on blocks with interception region
	Evaluator on blocks without interception region
	Evaluator on images
	Choice of coefficient

	Training and testing conditions
	Analysis of the results
	Choice of the best Evaluator
	Accuracy results with the baseline and quantized BBS-ESN, using the Evaluator on images
	Choice of the number of training and transient blocks

	Analysis of the results
	Robustness to training blocks order
	Comparison with Residual Image Algorithm

	Further tests
	Test with different quantization procedure
	Removal of the recurrent connections

	Feasibility analysis on a tiny micro controller
	Training time profile
	Inference time profile
	Training required memory
	Inference required memory

	Conclusions and future works

