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1. Introduction 

 

 

The corpus callosum (CC) is the largest white matter structure in the human 

brain, about ten centimetres in length and consisting of 200-300 million of 

axonal projections. This thick bundle of commissural fibres is located deep in 

the brain, beneath the cerebral cortex. The CC connects the two halves of the 

brain, the right and left hemispheres, and allows both hemispheres to 

communicate and send neural signals to each other. In this way, sensory, motor, 

and cognitive information’s are continuously exchanged between the two 

hemispheres via this neural pathway. Consequently, a damage to the CC can lead 

to incorrect hemispheres communication and loss of functions as the visual 

perception, speech, and memory.  

In the past, it was necessary to intervene by cutting the CC to treat severe 

epilepsy. Epilepsy is a chronic condition that causes intense and recurrent 

seizures in the patient’s brain, generally treated with medications. When the 

patient did not respond to anti-seizure medications, callosotomy was used. 

 

1.1 Callosotomy 

 

In the 1940s, the first case of corpus callosotomy was performed by Dr. William 

P. Van Wagenen. The callosotomy, often called split-brain surgery, is a palliative 

surgical procedure used as a treatment of intractable epilepsy. The corpus 

callosum is cut to interrupt the interhemispheric spread of epileptic seizures (Van 

Wagenen and Herren, 1940). Therefore, this invasive treatment allows patients 

to return to a normal life after the operation. Nowadays the split-brain surgery is 

completely replaced by more effective anticonvulsant drugs, and, if necessary, 

by selective and less radical surgery (Pearce, 2019). 
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In the last years of 1950, Roger Sperry began his research on split-brain to study 

the functional differences between the left and right brain hemispheres. At that 

point of time, based on previous studies about lateralization of brain functions 

(for example, the language and speech areas are usually located in the left 

hemisphere (Broca, 1865), Sperry was knowing that certain brain functions are 

localized largely in one hemisphere versus the other: each hemisphere controls 

movement and vision of the opposite side of the body, so that the left hemisphere 

is responsible for the right eye and controls the movement of the right part of the 

body and vice versa (Lienhard, 2017).  

Initially, Sperry performed experiments by cutting the CC of cats first and then 

of monkeys. As a result of these experiments, he deduced that these split-brain 

mammals were able to learn and memorize two different events, but each 

hemisphere was unable to communicate the acquired information; this led Sperry 

to assume that the two hemispheres function separately when are not connected 

by the CC, which therefore makes them act as a single brain (Sperry, 1961).  

In the 1960s, Sperry carried out the first studies on human patients. After 

callosotomy, the split-brain patients did not show any significant difference in 

function and behaviour from people with intact CC. So, he wondered: if the 

surgery did not affect the patient’s normal activity, then what is the role of the 

CC? Thus, Sperry and his graduate student Michael Gazzaniga invited several 

split-brain patients to participate in their study. They designed a series of tests to 

investigate if and what changes occurred in callosotomized patients, by testing 

their language, vision, and motor skills (Gazzaniga et al., 1965; Sperry, 1968). 

To evaluate the functional capacity of each hemisphere, it is critical to provide 

information to one side of the brain only. 

In the first test, the split-brain patients had to look at a white screen with a black 

cross or dot in the middle, which acts as a dividing point for the patient’s visual 

field; in this way, the left hemisphere processed what was shown in the right 

visual field (so the right of the cross) and vice versa. On the screen, Sperry 

presented a word to the left or right visual field for a second and then asked the 

patients to tell him the word they had read on the screen, as showed in Figure 

1.1. It turned out that when the word was presented in the right visual field, and 
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thus processed by the left hemisphere, the patients were able to repeat the 

displayed word. Conversely, when the word was shown in the left visual field, 

and thus processed by the right hemisphere, the patients were unable to report 

the word. This led Sperry to assume that the language center is only in the left 

hemisphere.  

 

Figure 1.1. Two words were displayed in right and left side of a central dot. The word 

displayed in the left visual field was processed by the right hemisphere and vice versa 

(Sperry, 1968). 

In the follow-up experiment, Sperry and Gazzaniga were focused on the function 

of the right hemisphere, to investigate if the split-brain patients had some 

language and memory abilities or at least recognize the word on the left side of 

the white screen. In this second test, after presenting two different words, on in 

the left and the other in the right visual field, Sperry asked the patients which 

word they had read and, as expected, they only reported the word displayed on 

the right side of the screen. Then, Sperry asked them to close their eyes and draw 

with their left hand, controlled by the right hemisphere. The patients drew the 

word displayed on the left side of the screen, so processed in the right 

hemisphere; when they looked at the drawing, they had no idea why the drawing 

did not correspond to the read word.  
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Sperry carried out another experiment, similar to the second test, to continue 

studying the right hemisphere’s ability to recognize words. Sperry asked the 

patients to place their left hand in a tray full of different objects (not visible to 

the patients). A word or an image, which indicated one object on the tray, was 

shown on the left visual field and so processed by the right hemisphere. The 

patients were asked to take an object from the tray by using the left hand, as 

showed in Figure 1.2. The patients picked up the object corresponding to the 

showed word/image, but they couldn’t name the object and didn’t even know 

why they chose that object. Sperry noticed that the patients, despite ignoring the 

object’s name, were able to give a very rudimentary description of the object 

itself, for example “the object is round” instead of “the object is a ball”. That 

was a great achievement, as until that time it was supposed that the language 

skills were only placed in the left hemisphere; however, from this last study, it 

was found that also the right hemisphere had some language ability, although 

elementary and rough. 

Sperry concluded that the left hemisphere contains the language center, and it is 

also responsible for understanding and remembering the words; the right 

hemisphere could recognize the words and was the source of emotional 

colouring of language. Actually, the left hand drew and picked up the object 

designed by the word showed in the left visual field and processed in the right 

hemisphere; the patient and also gave a basic description of it but was unable to 

pronounce the word. Moreover, these tests demonstrated that when the CC is 

severed, the two hemispheres are incapable to share the information; however, 

each hemisphere is still able to memorize and learn, but it has no idea what the 

other is doing (Gazzaniga et al., 1965; Sperry, 1968). 

Sperry and his colleagues received the Nobel Prize in Physiology and Medicine 

in 1981 for their split-brain research and for the findings regarding the 

lateralization of the cerebral hemispheres. 
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Figure 1.2. A word/image was displayed on the left side of the screen. By using the left 

hand, the subject picked up the object described on the screen and processed by the right 

hemisphere (Sperry, 1968). 

 

1.2 Functional Magnetic Resonance Imaging 
 

In the first years of 1990, Seiji Ogawa and Kenneth Kwong discovered a new 

non-invasive technique to study brain activity by measuring changes in blood 

flow: functional Magnetic Resonance Imaging (fMRI; Ogawa et al., 1990a). 

Functional MRI is used in clinical settings, as in neurosurgery for pre-surgical 

planning and intraoperative monitoring of the brain areas (awake surgery), and 

it allows the programming of the surgical strategy to minimize the risks of post-

operative deficit. However, fMRI is mainly used as a fundamental research tool, 

widely used in the neurological and cognitive neuroscience fields to study the 

different cognitive processes (language, attention, memory) in normal and 

pathological subjects. The main purpose of the fMRI studies is to identify the 

areas of the brain activated during predefined stimulation tasks, in an easily 

interpretable and reproducible way. This technique presents precious features 

compared to other methods as PET, EEG, and MEG. First, has a high spatial 
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resolution down to mm, is non-invasive and harmless (does not use the ionizing 

radiation as PET). Its limitation is a low temporal resolution (seconds; Poldrack 

et al., 2011). 

 

1.2.1 fMRI basic principles 

 

The brain needs nutrients such as oxygen and glucose to function. It consumes a 

large amount of the body’s energy but does not have a reservoir of stored energy. 

During the execution of a certain task, be it motor, cognitive or sensory, neurons 

implicated in that task send more signals than during the rest condition. The brain 

areas involved in the task are more active, and here an augment of blood flow is 

occurring. This means that an increase in neural activity leads to greater demand 

for energy. The oxygen is transported in the blood bound to hemoglobin (Hb) 

and is characterized by low solubility. The hemodynamic response (HR) allows 

a rapid delivery of blood, and therefore oxygen, to the active neuronal tissues. 

Therefore, changes in brain activity are closely related to changes in blood flow 

in the same area. The modification of the oxygenation state of hemoglobin in red 

blood cells is the core principle of the BOLD effect, i.e., Blood Oxygenation 

Level Dependent. The most common approach towards fMRI uses the BOLD 

contrast, which measures the ratio of oxygenated and deoxygenated hemoglobin 

concentration in the blood (Ogawa et al., 1990a). Thus, by measuring the change 

in blood oxygenation in response to neural firing, it is possible, through the 

BOLD fMRI, to identify brain areas activated by certain stimuli. 

As discovered by Pauling in 1936 (Pauling and Coryell, 1936), hemoglobin 

exists in two different stages, each with different magnetic properties: 

• Oxygenated hemoglobin, known as oxyhemoglobin (HbO2), presents 

diamagnetic characteristics, that is, it does not have unpaired electrons 

and the magnetic moments equals zero. HbO2 in a blood vessel has equal 

susceptibility as other brain tissues, demonstrating minimal impact on 

the magnetic field of an MRI scanner, leading to no distortions in the MR 

signal. 
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• Deoxygenated hemoglobin, known as deoxyhemoglobin (dHb), presents 

paramagnetic characteristics, that is, it has unpaired electrons and a non-

zero magnetic moment. dHb alters the susceptibility of the blood, with a 

magnetic susceptibility 𝑋𝑚, and interacts with the magnetic field of an 

MRI scanner resulting in local magnetic field distortions. This means that 

dHb suppresses the MR signal. 

Based on the study of Pauling, Ogawa had the idea of combining the MRI 

technique (used to study the anatomy of the brain) and the magnetic properties 

of hemoglobin (Osawa et al., 1990b) to map functional brain activity using dHb 

as contrast agent, which is a natural and not a radioactive agent, at variance with 

PET. Note that this technique does not measure neural activity directly, but it 

exploits the hemodynamic variations produced by neural activity to identify the 

activated areas of the brain.  

When neurons start to fire and neural activity in a cortical region increases, a 

systematic series of physiological changes occurs: first, an increase in the 

oxygen demands, leading to a vasodilatation and to an augment in the local 

cerebral blood flow (CBF), and local cerebral blood volume (CBV). As CBF 

increases more than the CBV, the change in blood flow exceeds the metabolic 

demand and, at the capillary level, there is a net increase in HbO2 concentration 

whereas the dHb concentration decreases. The decrease of dHb in a cortical 

region has a direct effect on the signal used to produce MR images, as showed 

in Figure 1.3. The MR signal from that region decays less rapidly, leading to a 

more uniform magnetic field and therefore a stronger BOLD signal, with the 

result that the activated region will appear as more intense region on the 

functional MR images (Gore, 2003). 

Therefore, the BOLD contrast relies on two principles: 

I. hemoglobin can distort the magnetic field of MRI scanner in a region of 

the cortex according to its level of oxygenation. 

II. regional blood oxygenation varies according to the levels of neural 

activity. 
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Functional MRI, thanks to the ability to acquire images in very reduced time (in 

the order of hundredths of a second), allows to visualise in an accurate and 

detailed manner the hemodynamic variations from the cortical regions, in 

relation to the level of neural activity in the same regions. 

 

 

Figure 1.3. Schematic illustration of the origin of the BOLD effect in fMRI (Gore, 2003). 

 

Thus, exploiting the hemodynamic response produced by the neuronal activity, 

fMRI can identify which areas of the brain are activated as a result of a particular 

stimulation. The trend of the BOLD signal (Figure 1.4) is strictly related to the 

metabolic phenomena involved in neuronal activation (Siero et al., 2013).  

 A typical BOLD response to a stimulus is characterized by three phases: 

• Initial dip: 1-2 seconds after the neural activity, the signal drop below the 

baseline because an initial increase in dHb concentration occurs because 

of the extraction of oxygen from capillaries. 
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• Peak: the signal increase, reaching the peak around the 5-6 seconds 

following the stimulus (the vasodilation necessary to augment flow 

towards that cortical region requires a few seconds), caused by the 

increase in CBV, CBF and Hb concentration which exceeds the demands 

leading to a decrease in dHb concentration in the involved area. This 

corresponds to an increase in the BOLD ratio. 

 

Figure 1.4. A typical MRI BOLD response model (Jezzard et al., 2001). 

 

• Plateau: if the neural activity remains over time, then the peak value is 

maintained. 

• Undershoot: after the peak and plateau phases, the metabolism of active 

neurons causes a continuous consumption of oxygen which in turn leads 

to an increase in dHb concentration which causes a reduction of the 

signal until a minimum, below the baseline. After reaching the minimum, 

the signal starts to increase again until it stabilizes on the basal level, 

prior to activation.  
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1.3 Resting state fMRI 

 

It is known that hemodynamic variations in brain structures are closely related 

to neural activity. Recent studies performed with fMRI and PET have shown that 

most of brain energy consumption is spent for an intrinsic metabolic activity not 

related to sensory, visual or motor stimuli. These findings suggested that the 

brain is mainly triggered by its intrinsic activity, which external stimuli can 

modulate rather than determine. Therefore, the neuroscientists were interested in 

understanding the nature of this intrinsic activity present even at rest (when the 

subject is lying and relaxed).  

The brain represents only 2% of the total mass of the body and consumes 20% 

of body's energy, most of which is used to fuel the continuous activity of 

neurons. In fact, the brain is always active, even in the absence of specific tasks. 

The increases in neuronal metabolism in the presence of functional tasks are 

usually much lower (<5%) than the energy consumption at rest. It has been 

hypothesized that this energy consumption reflects activity during rest, which 

decreases only when metabolic resources are temporarily redistributed for the 

execution of cognitive tasks (Fox and Raichle, 2007). 

The fMRI offers the possibility to record the simultaneous activation of multiple 

brain regions highlighting neural networks, usually called functional networks 

or just networks. These networks are sets of regions that coactivate and/or 

interact in the execution of specific functions. The coactivation is measured as a 

synchronization of the activity in a brain region during the performance of a 

function, i.e., in a correlation of their activity over time. By the use of fMRI, the 

temporal correlation of neural activity between spatially distinct brain regions 

can be evaluated; this correlation is defined Functional Connectivity (FC). 

Regions that simultaneously modulate their activation are therefore said to be 

functionally connected (Fox and Raichle, 2007). Note that not all regions 

anatomically connected to an active region are necessarily activated as well and, 

at the same time, brain regions that do not have direct anatomical connections 

can be coactivated since they can receive signals from intermediate regions. 
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In the 90’s, Biswal and his colleagues used fMRI technique to investigate how 

different areas of the brain were able to communicate with each other (Biswal et 

al., 1995). It was observed that, since brain activity is present even in the absence 

of a task or external stimuli, the fMRI signal of each region is characterized by 

spontaneous fluctuations. The brain activity not related to tasks is not a random 

noise, but it reflects a functional organization of the brain, suggesting that the 

networks are organized in a coherent way; this has generated a new avenue in 

neuroimaging research (Fox and Raichle, 2007). 

This approach is known as resting-state fMRI (rs-fMRI), which, at variance with 

the task fMRI, analyses spontaneous fluctuations using BOLD contrast without 

requiring subjects to perform a task.  The need to understand neural organization 

has brought interest to study resting-state patterns of the brain. Nowadays, in 

fact, there is a growth in the application of rs-fMRI to examine functional 

connectivity, both in normal and pathological conditions. Moreover, resting state 

studies present some advantages in comparison with task fMRI events. Actually, 

the absence of a specific task allows the scan of a variety of populations, such as 

children or cognitive impaired patients, which are not able to adhere to a specific 

paradigm. The time duration is about 5-10 minutes and different networks can 

be extracted from a single scan. In the most typical resting-state fMRI design, 

subjects keep their eyes closed, are instructed to not fall asleep and to think about 

anything. In addition, there are studies where participants keep their eyes open 

by fixating an object during the scanning (Barkhof et al., 2014). 

 

The spontaneous activity during the execution of a task shows an anatomical 

distribution similar to that observed during the rest phase. Smith and his 

colleagues (Smith et al., 2009) suggested that the measured neuronal responses 

represent an approximately linear overlap of task-related neuronal activity and 

spontaneous activity. The correlation between two or more regions equally 

activated by the execution of a task increases during the conditions of activity, 

and the correlation between the other regions decreases. Therefore, the 

correlation between brain structures remains constant during the rest and task 

phase and the observed changes in the correlations are simple due to a 
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superimposition of spontaneous and task-related activity (Fox and Raichle, 

2007). 

 

1.3.1 Resting state networks 
 

Resting state fMRI studies allowed researchers to identify several networks 

across different subjects which are denominated “resting-state networks” 

(RSNs). The most common RSNs identified are discovered by Beckmann and 

coworkers (Beckmann et al., 2005) and Smith and coworkers (Smith et al., 

2009). 

Beckmann and coworkers (2005) studying ten healthy subjects during rest 

condition, identified eight maps corresponding to eight RSNs. Figure 1.5 shows 

sagittal, coronal, and axial slices for eight networks overlayed onto the mean 

subjects’ high-resolution structural image (1×1×1.5 mm), aligned to the MNI 

template. All coordinates are in mm from the anterior commissure.  

 
 

Figure 1.5. Sagittal, coronal, and axial views of different spatial maps associated with low 

frequency resting patterns estimated from a group of 10 subjects (Beckmann et al., 2005). 



17 
 

The identified maps are: 

a) Medial visual cortical areas 

b) Lateral visual cortical areas 

c) Auditory system 

d) Sensory-motor system 

e) Visuo-spatial system 

f) Executive control 

g) Dorsal visual stream right 

h) Dorsal visual stream left. 

In 2009, Smith and coworkers compared the networks obtained from 36 healthy 

subjects during resting fMRI and those obtained from the large database of 

BrainMap, acquired during task fMRI. They performed a comparison between 

networks activated at rest and networks activated during a task to test whether 

there were or not a correlation between networks activated at rest and under 

stimuli. They identified 10 maps (Figure 1.6) corresponding to the 8 RSN maps 

previously described, an additional cerebellar map, and 2 distinct maps deriving 

from a splitting of lateral visual cortical area.  

 

 
 

Figure 1.6. The 10 maps obtained by Smith and co-workers. in sagittal, coronal, and axial 

view. Left column of each pair corresponds to the resting fMRI data overlayed onto the 

mean fMRI image from all subjects. Right column of each pair corresponds to the network 

from specific task fMRI (Smith et al., 2009). 
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The networks identified are: 

- Map 120: medial visual area.  

- Map 220: occipital pole visual area. 

- Map 320: lateral visual area. 

- Map 420: default mode network (DMN) that correspond to the visuo-

spatial system. 

- Map 520: cerebellum (not identified in the study of Beckmann et al). 

- Map 620: sensorimotor system 

- Map 720: auditory system 

- Map 820: executive control 

- Map 920: frontoparietal right (correspond to the dorsal visual stream 

right) 

- Map 1020: frontoparietal left (correspond to the left visual stream left). 

 

Each identified network is associated with a specific function and is located in a 

precise area of the brain (Beckmann et al. 2005; Smith et al., 2009): 

▪ Medial visual area includes the medial posterior occipital cortex and the 

primary and secondary visual cortex. The corresponding Brodmann areas 

(BA) are 17-18-19. This network corresponds to the perception of vision 

and mainly to the visual stimuli in motion. 

▪ Occipital visual area includes only the primary visual cortex (BA 17) 

and corresponds to the perception vision, mainly involved in the vision 

shape but also in the language and orthography cognition. 

▪ Lateral visual area includes the temporal lobe of visual association (BA 

37/39). The activation of these areas corresponds to a complex 

visualization, as the visual stimuli in motion, the perception of object 

shape in the visual field but also in the cognition space. 

▪ Default mode network (or visuo-spatial system) includes the precuneus, 

the posterior cingulate, the medial parietal cortex, the bilateral inferior-

lateral-parietal cortex and ventromedial frontal cortex. This network is 

the most widely studied RSN, since it is the most frequently seen as 

deactivating in task-based fMRI experiments; therefore, it is expecting 
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that this map does not correspond to any behavioural domain. Actually, 

the DMN is an interconnected and anatomically well-defined system, 

which is activated mainly when the subject is relaxed and not performing 

any task, not sleeping, and focused on imagining the future, remembering 

the past. This network seems strictly related to episodic memory. 

▪ Cerebellum is involved in the equilibrium, in motor learning, and allows 

fine movement. 

▪ Sensorimotor system includes the supplementary motor area (SMA), the 

sensorimotor cortex (motor cortex and primary somatosensory (SI)) and 

the secondary somatosensory cortex (SII). Basically, it includes the BA 

4, 1, 2, 3 and 6. It corresponds to the action execution, the somesthesis 

perception, the bimanual movement and motor functions. 

▪ Auditory system includes the primary auditory cortex and the auditory 

association. This network involves BA 41-42 (auditory cortex) and BA 

21-22 (middle and superior temporal gyrus known as Wernicke area). 

This network corresponds to the auditory perception, but also 

corresponds to the speech elaboration and word processing (the speech 

can be understood), and to the word and speech execution, thanks to the 

involvement of the BA 22. 

▪ Executive control includes the medial frontal cortex, the anterior 

cingulate and paracingulate gyri, and ventrolateral prefrontal cortex. This 

network corresponds to the action inhibition, and it is involved in the 

emotion cognition and in the somaesthetic perception of pain. 

▪ Frontoparietal right and left include the frontal and parietal cortex. 

These networks are the only two strongly lateralized and correspond to: 

o Right: the somesthesis perception of pain (insular area) and the 

action inhibition. 

o Left: language cognition of orthography, phonology, semantics, 

speech, basically the verbal functions (thanks to the involvement 

of Wernicke and Broca area), but also correspond to working 

memory and executive functions. 
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1.4 Independent Component Analysis 
 
There are numerous methodologies to study functional connectivity in the rs-

fMRI data, aimed at detecting similarities across distinct regions of the brain. 

One of these methodologies is data-driven (or model-free) methods. It allows to 

examine whole-brain connectivity patterns, based on feature identification and 

extraction from data without requirement of prior assumptions. Importantly, this 

technique is commonly used in resting-state data since there is no predicted 

information about spatial and temporal patterns across the brain, so the resting-

state design does not contain timing information that could justifies the 

underlying neuronal activity (Tianming et al., 2009).  

Independent component analysis (ICA) is a kind of data-driven method and is 

adopted in a wide variety of fields. ICA was developed to allow the detection of 

unknown signals in a dataset, known as Blind Source Separation (BSS; Poldrack 

et al., 2011). 

The observed BOLD signal (4D data) is a multivariate signal, resulting from a 

mixture of noise and signal of interest. To identify which signal represents noise 

and which represent neural activity, it is necessary to perform the unmixing of 

the observed BOLD signal. The aim of ICA is to decompose a multivariate signal 

into separate underlying components, which are statistically independent. 

Moreover, ICA is a linear model, so the original dataset can be recreated by 

summing all the components together (Bijsterbosch et al., 2017).  

The ICA model is defined as 𝑥 = 𝐴𝑠 

where 𝑥 is the observed BOLD signal, 𝑠 is a set of unknown sources and 𝐴 is the 

unmixing matrix combining the components to obtain the observed signal 

(Poldrack et al., 2011). 

The resulting component is described as a spatial map (which indicates the area 

in the brain where an activity is being detected) and a timeseries (which describes 

how the signal developed over time). Figure 1.7 shows a matrix representation 

of spatial ICA. On the left side 4D fMRI data contains the observed BOLD signal 

such that each row represents the 3D functional image at one time point and each 

column represents data from all time point at one voxel. The fMRI data set is 
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decomposed into two new matrices, the first one containing a time course of 

underlying signal in each column and the second matrix containing a spatial 

component’s map in each row (Beckmann, 2012). 

 

 

Figure 1.7. Schematic illustration of the data representation and the spatial decomposition 

performed by spatial ICA on fMRI data (Beckmann, 2012).  

 

The ICA assumes that the components in 𝑠 are statistically independent: this 

means that there is no statistical relationship between two derived components, 

in other words, there is no way to predict one signal based on knowledge of 

another signal (Bijsterbosch et al., 2017). The ICA uses the cost function to 

measure the statistical independence, which is optimized to find a good set of 

independent components (ICs). ICA is based also on the assumption that the 

source signal has a non-Gaussianity distribution. When signals are combined, 

the mixed signal has a Gaussian distribution, as shown in Figure 1.8. Therefore, 

to obtain a component that has a non-Gaussian source, i.e., the source is a signal 

and not a mixture of signal, it is necessary maximize the non-Gaussianity of 

sources. There are different functions, such as the negative entropy or Kurtosis 

(Bijsterbosch et al., 2017). 

Not all the extracted IC are source of neural signal of interest, in that most are 

artefacts. The ICA has the capacity to separate neural-related signal from 

different sources of noise. For this reason, ICA is more and more frequently used 

in the context of data denoising (Griffanti et al., 2017). 
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Figure 1.8. Mixing different non-Gaussian signals results in a more Gaussian signal 

(Bijsterbosch et al., 2017). 

 

 

 

 

1.5 Aim of the study 
 
The main purpose of this Thesis is to investigate the functional connectivity 

between the left and right hemisphere in a group of callosotomized patients, 

based on the analysis of resting-state fMRI data. In the literature there are 

conflicting results about the functional connectivity in these patients. Some 

studies affirm that the callosotomy reduces the interhemispheric functional 

connectivity (Roland et al., 2017). Others suggest the callosal resection would 

have no effect on the interhemispheric functional connectivity (Uddin et al., 

2008). However, the first study was carried out on young epileptic patients (2-

18 years old), who were followed up until 2 years after surgery; the second study 

reports data collected from a single old patient 4 decades after surgery. The 

patients on whom the present analysis has been performed are adult subjects, all 

of them but one operated in adult age, about two decades before the present 

study. For these reasons, the analysis of this particular group of patients, now 

quite rare in the world but still available at the University Hospital of Ancona, 

would allow to better understand the interhemispheric connections and the role 

of the CC. 
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To achieve this aim, the following specific objectives have been defined: 

1. The analysis of functional and structural images was performed 

following a well-established methodology. 

2. The evaluation of interhemispheric functional connectivity and the 

recognition of RSNs was performed by using the ICA analysis. 
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2. Materials and methods 
 

 

This chapter describes the MRI acquisition parameters and the pre-processing 

performed to analyze the fMRI images applied to the six callosotomized subjects 

recruited for this study. In the final part, the denoising process using ICA is 

described. This thesis work was conducted in collaboration with the Department 

of “Scienze Cliniche Specialistiche ed Odontostomatologiche” of Università 

Politecnica delle Marche and the Riuniti Hospital of Ancona.  

 

2.1 Participants 
 

Data used in this thesis were acquired from six right-handed patients, P1, P2, P3, 

P4, P5, P6 (age: 30-60 years; M/F = 4/2) who had severe epilepsy episodes in 

their history. Except for P5, the other patients underwent callosotomy surgery 

different years ago. Specifically, P1, P2, P4, P6 underwent complete forebrain 

callosotomy whereas a portion of CC was not cut in P3’s callosotomy surgery. 

MRI data acquisitions were performed between May 2018- June 2019. The 

clinical patient’s details are reported in Table 1. 

 

Table 1. Clinical details of patients. 

Case Gender Age at 

testing 

Handedness 

(Oldfield 

score) 

Callosotomy Years after 

2nd surgery 

P1 M 42 Right (21) Total 23 

P2 M 52 Right (10) Total 24 

P3 M 60 Right (10) Partial posterior 19 

P4 F 46 Right (10) Total 19 

P5 F 30 Right (10) No surgery  

P6 M 46 Right (10) Total 24 
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2.2 MRI data acquisition 
 

During the resting-state fMRI acquisition, the subjects were instructed to lie 

down and stay still as much as possible, to keep their eyes open, to relax without 

falling asleep and without focusing on anything.  

Resting-state BOLD fMRI data and T1-weighted structural images were 

acquired using a 1.5 Signa HDxt GE Medical System MRI scanner.   

A gradient-echo EPI sequence was used to acquire the functional images with 

parameters TE= 50 ms, TR= 3000 ms, flip angle= 90°, FOV of 192 × 192 mm, 

matrix size of 64 × 64, number of volumes= 300, number of axial slices= 35, 

slice thickness= 4 mm with no gap between slice acquisition and voxel resolution 

is 3×3×4 mm. The duration of RS-fMRI was 900 s (15 minutes). 

For anatomical localization and for coregistration with 3D data set, a T1-

weighted structural image (high-resolution whole-brain images) was acquired 

using a MPRAGE sequence with parameters TE= 6.7 ms, TR= 14.7 ms, FOV of 

256×256 mm, matrix size of 512×512 mm, number of sagittal slices= 158 (166 

in the RM data acquisition), slice thickness is 1 mm with no gap between slice 

acquisition and the voxel resolution is 0.5664×0.5664×1 mm. 

 

2.3 Pre-processing 

 

After data acquisition, the structural and functional MRI images were processed 

using dedicated software in order to obtain the information necessary for the 

subsequent ICA analysis.  

The software used in this work were two: 

▪ FSL (FMRIB Software Library; Smith et al., 2004) is a software 

created by the Analysis Group, FMRIB, Oxford, UK, FSL, and is 

a comprehensive library, open-source, analysis tools for fMRI, 

MRI and DTI Brain Imaging data. It works on Apple and Linux 

(Windows 10 via a virtual machine). Most of the tools can be run 

either from the command line in the case of Linux from the shell 
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or as a GUI (Graphical User Interfaces). By default, FSL uses the 

Nifti_GZ image format, i.e. the compressed NIfTI file (.nii or 

.nii.gz). When MRI brain images are acquired, they are DICOM 

images. It is necessary to convert them to the NIfTI format, which 

is considered the new standard format for medical images. At this 

purpose, in addition to FSL software, it was also MRIcron 

software to convert the DICOM file into a Nifti file 

(https://www.nitrc.org/projects/mricron). 

▪ BrainVoyager (BV; v2.4; Formisano et al., 2005) is a powerful 

neuroimaging software package for data management and data 

analysis. It is a tool for the analysis of anatomical and functional 

MRI data sets, and also for the DTI data. The software is available 

and running on all major computer platforms included Windows 

10. 

Prior to fMRI statistical analysis, there are multiple important steps to be 

performed in order to eliminate artefacts and noise components in fMRI. A series 

of pre-processing pipelines are typically used on raw data and the standard 

operations are mentioned in Figure 2.1. At each step, quality control must be 

assured to verify effectiveness of the pre-process technique as well as prevent 

error propagation (Poldrack et al., 2011). 

 

 

Figure 2.1. Common fMRI pre-processing steps. 

https://www.nitrc.org/projects/mricron
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For each fMRI dataset, the following steps were executed when using both the 

softwares. In the case of FSL, it was used MELODIC tool, by selecting 

MELODIC ICA GUI or by typing Melodic_gui on the shell (Smith et al., 2004). 

 

2.3.1 Brain extraction 
 

The first pre-processing step was performed on the T1-weighted structural 

image, to differentiate brain tissue from non-brain tissue. In the structural 

images, both brain and non-brain tissue are visible (the skull, eyes, neck). The 

robustness of the registration increases if these parts of non-brain tissue are 

removed before the registration step is performed. 

▪ FSL: the non-brain tissues were removed from the structural 

image by using BET, the Brain Extraction Tool of FSL, Figure 

2.2 (Jenkinson et al., 2005). This algorithm is completely 

automated; furthermore, since each image of the brain is 

different, there are some parameters that can be adjusted to obtain 

a better result, such as the fractional intensity threshold parameter 

(-f option on the command line). This parameter controls the 

threshold that distinguishes brain from non-brain tissue. 

Although BET generally does a good job in extracting the brain, 

it may happen that some portions of non-brain tissue are not 

removed properly; however, it is preferable to preserve the non-

brain tissue rather than remove portions of the brain (Jenkinson 

et al., 2005). This extracted brain is renamed “_brain” and is the 

structural image used as “highres” image in the registration step. 

▪ BV: to improve the quality of the anatomical data set, the 

automatic intensity inhomogeneity correction tool (auto-IIHC) is 

used (Figure 2.3). It is an automatic method which includes 4 

steps: background cleaning, brain extraction, white matter 

detection and bias field estimation within white matter voxels 

(Goebel et al., 2011). 
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Figure 2.2. Brain Extraction Tool of FSL software. 

 
 

Figure 2.3. Intensity Inhomogeneity correction tool to brain extraction in BrainVoyager 

software. 

 

 2.3.2 Data selection 
 

Before to perform the pre-processing steps, such as motion correction, slice time 

correction, spatial smoothing and temporal filtering, it is necessary select the 

fMRI data.  

▪ FSL: In the “Data” section, was selected the 4D data (fMRI file 

in -nii.gz format) and the first 2 volumes have been deleted before 

any processing. 
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▪ BV: by creating a new FMR project, the DICOM file were 

selected, and the number of volumes and slices were set. Also, in 

this case the first 2 volumes have benne deleted.  

 

2.3.3 Pre-statistical analysis 
 

As described in the figure 2.1, before the co-registration there are some main 

steps to be performed, corresponding to the pre-processing of fMRI data, to the 

correction of the head movement, filtering the noise and smoothing the fMRI 

images. The pre-processing used on the data set is the same for both software. 

In the Figure 2.4 the pre-stats performed on FSL is showed, and in the Figure 

2.5 the pre-processing performed by using BV is showed. 

 

 
 

Figure 2.4. The pre-processing steps selected in the MELODIC GUI of FSL. 
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Figure 2.5. The pre-processing steps selected in the BrainVoyager software. 

 

2.3.3.1 Motion correction 
 
Head movement correction is the main pre-processing procedure. Motion 

correction, also known as realignment, is an important issue in the analysis of 

fMRI data since even the smallest movement of the patient can induce significant 

artifacts (also of a greater intensity than the BOLD signal). Displacements of the 

subject's head, by the fraction of a millimetre, can generate variations in the 

signal greater than 2%. Such artifacts are common at the edge of the brain or 

near large vessels. Subjects’ head motion can result in a misalignment of 

successive slices leading to incorrect anatomical positions between voxels of 

subsequent images. There are different systems of head immobilization, 

however, they are often not sufficient to completely eliminate movement 

(especially the involuntary one). The need to realign the images to a common 

reference is because during data analysis, at each time point the time series 

corresponding to a specific voxel is supposed to belong to the same brain area.  

The standard method of correction describes the movements of the head through 

6 parameters, 3 of translation (x, y, z) and 3 of rotation (roll, pitch, yaw), 
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designed to characterize the motion of rigid bodies in 3D space. This means that 

each image can be moved without brain deformation (Jezzerd et al., 2001). 

▪ FSL: the motion correction procedure was developed based on an affine 

registration tool in FSL called MCFLIRT (Jenkinson et al., 2002). 

MCFLIRT operates by choosing a functional volume of the acquisition 

as the reference volume, to which all other volumes will be aligned. An 

iteration mechanism is performed during which each volume is aligned 

with a common reference (e.g., one original volume, mean of several 

images or a standard space image), by minimization of a cost function 

(Smith et al., 2004). 

▪ BV: in the “Analysis” menu select “FMR Data Preprocessing” and it was 

selected “3D motion correction”. All the other values have been left by 

default (Formisano et al., 2005). 

 

2.3.3.2 Slice time correction 
 

Functional MRI acquisitions uses two-dimensional techniques. This means that 

fMRI sequences do not acquire each slice in a volume at the same time and 

therefore the slices have different acquisition times. Slices can be acquired 

sequentially (ascending or descending order) or in an interleaved way. Slice 

timing problems may severely prejudice the analysis since fMRI analysis is 

based on the signal time course. In this way, slice timing correction methods 

attempt to fit the problem of slice acquisition delays. The most regular strategy 

is data shifting, according to which voxel’s time series is shifted according to a 

reference slice through interpolation, so that all slices match in time. However, 

this technique generates blurring and data degradation that can propagate 

through the different slices (Bijsterbosch et al., 2017).  

▪ FSL: Since the subjects’ fMRI sequences were acquired sequentially in 

the ascending order (from the bottom to the top), was chosen Regular up 

in the pre-stats section. 
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▪ BV: in the “FMR Data Preprocessing” was selected Slice time correction 

and the cubic spline was chosen as interpolation function, with ascending 

order. 

 

2.3.3.3 Spatial smoothing 
 

In most fMRI studies, spatial smoothing is commonly applied, and consists of 

the averaging of neighbouring voxels. A filter is applied to the image to remove 

the highest frequencies from the frequency domain, prevailing low-frequency 

information typical of neural activity at rest. Consequently, smoothing improves 

signal-to-noise ratio (SNR) at the cost of loss in spatial resolution (the higher the 

filter the blurrier the image), as shown in Figure 2.6. Through blurring, the large 

variability across individuals is diminished, thus providing better registration 

results. However, partial volume artefact may occur because brain voxels can be 

averaged with non-brain tissue/background, resulting in inaccurate signal 

intensity. Additionally, smoothing may eliminate significant functional 

activations, or can cause regions that are functionally different to combine with 

each other (Poldrack et al., 2011).  

 

 

Figure 2.6. The effect of the spatial smoothing on the image. The higher the filter, the 

blurrier is the image (Bijsterbosch et al., 2017). 

 

Smoothing involves the convolution of the fMRI image with a three-dimensional 

Gaussian kernel, that is a filter, which is determined by the full width at half 

maximum (FWHM) parameter, or in statistical terms, the standard deviation. 

FWHM is the diameter of the smoothing kernel at half of its height. A larger 
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value of FWHM represents greater data smoothing, as shown in Figure 2.7 

(Bijsterbosch et al., 2017). 

When this pre-process tool is used, the correspondent smoothness is given by 𝐹𝑊𝐻𝑀 =  √𝐹𝑊𝐻𝑀𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐2 +  𝐹𝑊𝐻𝑀𝑎𝑝𝑝𝑙𝑖𝑒𝑑2  

 

 
 

Figure 2.7. A large value of FWHM show an activity in more voxel, leading to greater 

detection of large cluster but decreased detection of smaller cluster (Poldrack et al., 

2011).   
 
The quantity of smoothing should be the minimum to achieve a given result and 

it depends on the type of study that is being conducted. Roughly, the 

recommended amount of smoothing is the double of voxel dimensions (Poldrack 

et al., 2011). 

In both FSL and BV software a FWHM = 5 mm was used. 

 

2.3.3.4 Temporal filtering 
 

Temporal filtering is the last pre-processing step, used to remove the unwanted 

signal components from the time-series of each voxel, without removing the 

signal of interest. Essentially, fMRI data is high-pass filtered, which means that 

the lowest frequencies are removed from the data (ideally lower than the low-

frequency fluctuations typical of the BOLD signal). The amount of temporal 

filtering applied is expressed using a cut-off frequency (expressed in Hertz) or 

cut-off period (expressed in seconds) and depends on the data quality. For high 

quality datasets it is possible to set a higher cut-off frequency (0.001 Hz) in order 

to remove less and retain more data, whereas lower quality datasets often use 

lower cut-off frequency (0.01 Hz) in order to remove more noise (Bijsterbosch 

et al., 2017). In both FSL and BV software a high-pass filter with a cut-off 
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frequency of 0.01 Hz was used, so that any signal fluctuations that vary more 

slowly than the cut-off frequency value will be (entirely or partially) removed. 

 

2.3.4 Registration 
 

The last step before the statistical analysis is the registration. Since in the fMRI 

studies were acquired both the functional images (during the execution of a task 

or in resting state) and the T1-weighted structural image of the same subject, the 

registration is crucial to have a voxel-anatomical correspondence between them. 

The structural image has a higher spatial resolution than the functional image 

that derives from the BOLD signal. To delimit and precisely recognize the 

regions of interest within the functional image, in order to interpret the results 

and understand in which brain regions the voxels are active, it is necessary to 

align the functional image with the T1-weighted structural image of the 

respective subject. Both the functional and structural images of the subject are 

in the native space in which the data are acquired. Because the human brain 

differs from one subject to another both in size and shape, it is needed to align 

the functional and anatomical images of the subject with the standard space to 

perform a comparison between different subjects, in order to make the results 

more easily integrated and comparable (Figure 2.8). 

 
 

Figure 2.8. Registration methods are used to align the subject's functional and structural 

image (both in native space) into the same standard space (Bijsterbosch et al., 2017). 

 

All acquisitions can be aligned to a specific template, which is an image that is 

representative of the atlas (a guide to localize the activation and interpret the 
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result) and provides a target to which individual images can be aligned (Poldrack 

et al., 2011). 

 

The standard space is a common coordinate system and the widely used atlases 

are: 

• the Talairach atlas, created by Jean Talairach (Talairach and Turnoux, 

1988). It is based on the post-mortem brain of a 60-year-old woman, and 

it has a precise anatomical location. He proposed a “three-dimensional 

proportional grid”, which is based on a set of anatomical landmarks: the 

anterior commissure (AC), the posterior commissure (PC), the midline 

sagittal plane, and the exterior boundaries of the brain at each edge. 

Given these landmarks, the origin (zero-point) in the three-dimensional 

space is defined as the point where the AC intersects the midline sagittal 

plane. The axial plane is then defined as the plane along the AC/PC line 

that is orthogonal to the midline sagittal plane, and the coronal plane is 

defined as the plane that is orthogonal to the sagittal and axial planes. In 

addition, the space has a bounding box that specifies the extent of the 

space in each dimension, which is defined by the most extreme portions 

of the brain in each direction, as shown in Figure 2.9 (Poldrack et al., 

2011). 

 

 
 

Figure 2.9. Talairach space is defined by a number of landmark. On the left are 

identified the anterior commissure (AC) and the posterior commissure (PC). On 

the right is determined the bounding box for Talairach space (Poldrack et al., 

2011).  
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• the Montreal Neurological Institute (MNI) atlas, and the most famous is 

the MNI152 (Figure 2.10), based on the calculation of a non-linear 

average of 152 brains of normal control subjects (all right-handed). 

The MNI152 atlas is slightly larger (in particular 5 mm taller, 5 mm longer and 

10 mm deeper (Lancaster et al., 2017) and less precise than that of Talairach but 

is the most used. The registration to the Talairach template requires the 

identification of anatomical landmarks, and this kind of method has generally 

been rejected in favour of automated registration to image-based template, such 

as MNI152 (Poldrack et al., 2011).  

 

 
 

Figure 2.10. MNI152 template on FSLeyes. 

To convert the MNI coordinates in Talairach coordinates, a MATLAB function 

(Lancaster et al., 2017) or an automatic algorithm (https://bioimagesuiteweb. 

github.io/webapp/mni2tal.html) could be used, but the result provides not a very 

good match due to the difference in brain shape.  

The registration is a two-step process: 

1. In the co-registration step, the realignment of the pre-processed 

functional images on the corresponding T1-weighted anatomical image 

(-weighted) is carried out. The goal is to superimpose the information 

contained in the functional images on an image where it is possible to 

discriminate between the anatomical regions.  

2. The second step is known as normalization and consists of the 

registration of the subject’s image (both functional and anatomical) to 
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the atlas. The main advantages derive from the possibility to generalize 

the results to a larger population of subjects, to improve the comparison 

between different studies and conduct an averaging process between the 

various subjects. 

By performing this procedure for each functional volume, the registration of all 

images functional to the standard space is performed.  

▪ FSL (Figure 2.11) 

1. The first step is the co-registration of the reference functional 

image to the high-resolution structural brain image, obtained 

from the BET (called “main structural image”), through the 

boundary-based registration (BBR) method, which is cost 

function that measure the goodness of alignment by looking for 

white-matter boundaries in the fMRI image since considerable 

differences across these boundaries are expected (Greve and 

Fischl, 2009). 

2. The second step is the normalization. First, it is used the linear 

registration to register the high-resolution structural brain image 

to a standard space (MNI152, T1-weighted, 2×2×2 mm) with 

resampling resolution at 4 mm. It was used FLIRT and 12 

degrees-of-freedom (3 translations, 3 rotations, 3 zooms, and 3 

shears; Jenkinson et al., 2002). The linear registration is used in 

order to initialize the non-linear registration and is performed 

using FSL’s tool FNIRT (Andersson et al., 2010), which enables 

better alignment of internal structures. Non-linear transformation 

is used after linear transformation for optimal accuracy. The cost 

function used in FLIRT is the correlation ratio, whereas in FNIRT 

the function is the sum-of-squares difference and the 

displacement fields for each dimension are applied. The warp 

resolution was set to 10 mm.  
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3. Finally, the two transformations are combined, taking the low-

resolution fMRI image into the standard space.

 

Figure 2.11. Registration step by using FSL software. 

 

▪ BV (Figure 2.12 and Figure 2.13) 

1. The first step is the co-registration of functional images (FMR) 

and the structural image (VMR). By opening the “3D Volume 

Tools” in the co-registration section, the pre-processed functional 

file was selected and aligned with the structural file, by running 

both the Initial Alignment and Fine-Tuning Alignment (Figure 

2.12). 

2. The second step is the normalization. The structural data are 

transformed into Talairach space. Since the CC was resected in 

most subjects, the automatic transformation is not usable, 

therefore it was necessary to identify the points in a manual way. 

First, the AC was identified, then the PC and the AC-PC plane, 

and finally the other landmark points, such as AP (the most 

anterior point of the cerebrum),  PP (the most posterior point), SP 

(the superior point), IP (the inferior point), RP (the most right 

point) and LP (the most left point; Goebel et al., 2011). 
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Figure 2.12. Coregistration between the fMRI and the structural file. 
 

 
 

Figure 2.13. The structural ISO file is registered into Talairach space. 
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2.4 Independent Component Analysis 
 

2.4.1 FSL 

Functional MRI data consist of the neural signal of interest, but also of noise 

signal. Although a pre-processing of fMRI data is applied, some structured noise 

could remain. The aim of ICA decomposition is to separate the data into non-

Gaussian sources to improve the specificity and sensitivity of results derived 

from observed BOLD signal.  

However, ICA does not have the ability to quantify statistical significance for 

estimated spatial maps; in addition, ICA is “noise-free”, that means it does not 

include the noise/error term added to the source, causing the problem of 

overfitting the components. Beckmann and Smith proposed a probabilistic ICA 

(PICA) model for fMRI data and this new methodology is implemented in 

MELODIC software in FSL (Beckmann and Smith, 2004). 

The PICA model includes a noise term  𝑥 = 𝐴𝑠 + 𝑒 

where e∼𝑁(0, 𝜎). The model has improved by adding other processes, such as 

the voxel-wise temporal prewhitening, the variance normalization of time series, 

and the use of a prior information about the spatiotemporal nature of source 

processes. Then, the obtained spatial maps are transformed in Z-scores, and 

therefore it is necessary to decide an appropriate threshold value (usually is 

|Z|>2.0), above which the value of Z correspond to statistically significant 

activations with respect to the background noise. In order to perform an inference 

and then evaluate the maps in relation to the voxels activated in a significant 

way, the PICA algorithm uses the probabilistic mixture modelling model applied 

to the probability density of the Z-scores spatial maps. The distribution of 

statistical data of interest was divided into two components, one for the non-

activated voxels and one for the activated voxels. In MELODIC software the 

Gaussian/Gamma Mixture Model (GGM), shown in Figure 2.14, is 

implemented. This approach allows to model the histogram of inactive voxel 

(Gaussian background noise) with a Gaussian distribution (dominantly models 

the intensity histogram), whereas the histogram of the Z maps of the non-
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Gaussian source (activated voxel) with gamma distributions (both negative and 

positive gamma; Beckmann and Smith, 2004). 

 

 

Figure 2.14. Gaussian/Gamma Mixture Model implemented within FSL used to model the 

histogram of inactive voxel with the Gaussian distribution (green curve) and the active 

voxel with Gamma distribution (yellow curve; Beckmann, 2012). 

 

Figure 2.15 shows a schematic representation of PICA methods implemented in 

MELODIC, which results in a PICA map that shows the active voxel with a 

statistical significance. The activated voxel does not mean a neural activity of 

interest, in that the activation might also be an artefact. 
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Figure 2.15. A schematic illustration of the probabilistic ICA (Beckmann, 2004). 

 

As mentioned above, the MELODIC tool of FSL implemented the PICA 

method. Figure 2.16 shows the selected option to perform the single subject 

analysis. The number of IC are estimated in automatic way and the value chosen 

as threshold to identify the activated voxel was p>0.5. 
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Figure 2.16. A single subject statistical analysis performed by using MELODIC tool. 
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2.4.2 BrainVoyager 
 
In BV, the spatial decomposition of the data is performed using "FastICA". In 

this case, a fixed-point ICA algorithm minimizes the mutual information of the 

components using a robust approximation of the negentropy as a contrast 

function and a fast, iterative algorithm for its maximization. Before applying 

spatial ICA, the temporal dimension of the data set may be optionally reduced 

using Principal Component Analysis (PCA; Formisano et al., 2005). 

To run FastICa it was used the deflation approach and Gaussian as Nonlinearity 

function. The number of components was by default kept 30 (Figure 2.17).  

The input file to perform the spatial ICA is a VTC (volume time course) data set. 

The threshold value was 10 and Z>2. 

 

 

 

Figure 2.17. ICA illustration of BrainVoyager software. 



45 
 

The original fMRI data was pre-processed to improve the quality of data and 

then transformed into a normalized 3D space, known as VTC file. The VTC file 

was linked with the subject’s normalized anatomical file. This allows to perform 

the ICA on a group of subject and compare the IC across the subjects. 

 

2.4.3 Hand Classification of Independent Components  

 

ICA produces many different spatiotemporal components, and the information 

represented in the ICA decomposition is used to recognize the noise independent 

components (N-ICs), i.e. the components characterized by a noise/artefact 

signal, and the neural signals independent components (S-ICs), which represent 

the signals of interest. N-ICs and S-ICs differ in terms of spatial, temporal and 

spectral characteristics. This helps to reduce the negative effect of noise on the 

analysis of fMRI data. Different approaches have been described to label the 

components, most of which are fully automated, particularly useful when dealing 

with a large population of healthy subjects. In the case of small sample size with 

unusual characteristics, such as Alzheimer's or epileptic patients, it is preferable 

to use a visual inspection of the components, which is the gold standard 

technique but besides being time-consuming, the manual labelling requires 

expertise (Griffanti et al., 2017).  

The aim of ICA-based data clean-up is to maintain as much signal as possible, 

by removing artefacts from the fMRI data, and its success depends on the 

accuracy of labelling the ICs (Robert et al., 2010). 

To classify a component, it is necessary to inspect for each component: 

• the spatial map, which observes the number and dimension of clusters of 

active area, if the clusters overlap the grey matter (GM) or overlap the 

blood vessels, cerebrospinal fluid (CSF), white matter (WM) or the edge 

of the brain. It is a major piece of information to discriminate signal of 

interest from noise (Griffanti et al., 2017). 
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• the time series, which checks the overall aspect, if there are one or more 

sudden peaks or if it shows a saw-tooth pattern (regular alternation of up 

and down) (Robert et al., 2010). 

• the power spectrum, which checks where the distribution of power in the 

frequency domain occurs, if at low frequency or at high frequency 

(Robert et al., 2010; Griffanti et al., 2017).  

The features to identify a component are summarised in Table 2 (Griffanti et al., 

2017). Specifically, the S-IC should have a low number of large clusters 

localized in the GM (note that if the data have been smoothed, the clusters will 

have a larger area than the non-smoothed data). Moreover, the clusters continue 

across slices, following the GM ribbon in all views. The time series should have 

a saw-tooth pattern, and the power spectrum plot should have a predominantly 

low-frequency value, with a peak between 0.01 - 0.1 Hz, to indicate the 

movement of oxygenated blood. An example of S-IC is shown in Figure 2.18. 

 

 

Figure 2.18. An example of signal component showing the Default Mode Network. The time 

series does not contain sudden jumps and the power spectrum is predominantly low 

frequency (Griffanti et al., 2017). 
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Consequently, the components are classified as N-IC if in the spatial maps they 

show isolated clusters across slices, or many small clusters localized on the blood 

vessels, WM, CSF, or at the edge of the brain; if the time series is characterized 

by large jumps and/or one or more sudden peaks, and if they have a 

predominantly high frequency or very low frequency (<0.01 Hz) distribution. 

The common artefact identified in the study of Griffanti and coworkers (Griffanti 

et al., 2017) are: 

❖ Motion artefact (Figure 2.19): it manifests in the spatial maps as a ring 

of activation around the edge of the brain and in the time series plot as a sudden 

spike (in correspondence to sudden peak in the motion correction graphic 

derived from the pre-processing). The cause of this artefact is the movement of 

head during the acquisition. In the case of head translation, the ring may be more 

visible on the axial plane, whereas head rotation will result in a ring visible on 

the sagittal plane. For this reason, it is necessary to inspect every single slice and 

plane. 

 

 
Figure 2.19. Motion artefact. The spatial map (top panel) presents the typical ring at the 

edge of the brain and the time series (bottom-left panel) contains a sudden jump in 

correspondence to sudden head movement (Griffanti et al., 2017).  
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❖ Cerebrospinal Fluid pulsation (Figure 2.20): the artefact is better 

identifiable in the spatial maps on the sagittal plane, where voxel activation can 

overlap the 4th ventricle and the cortical CSF at the pons level. The time series 

should show a high oscillation (indicative of the CSF pulsatile flow) and the 

power spectrum plot should be bell curved. This artefact is mainly caused by the 

respiratory cycle (around 0.3 Hz) and the cardiac cycle (around 1Hz), and the 

corresponding signals are typically aliased into lower frequencies. 

 

 
 

Figure 2.20. Cerebrospinal fluid pulsation. The spatial pattern overlaps the third and 

fourth ventricle. This is seen onto the structural image looking at different plane (top-left 

panel) and in the three ortho views before and after smoothing (respectively top-right and 

bottom-right panel). The time series shows a high oscillation pattern (bottom-left panel) 

and the frequency in the power spectra show a bell shape (bottom-right panel; Griffanti et 

al., 2017). 
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❖ Veins (Figure 2.21): The signal coming from the veins shows 

components with a saw-tooth pattern for the time series plot and a very low-

frequency in the power spectrum plot, therefore similar to those of the neural 

signal components. For this reason, this artefact is mainly identifiable in the 

spatial maps on the sagittal plane, detected as physiological noise especially in 

the sagittal sinus and where are commonly identified the veins. 

 

 

Figure 2.21. Vein (e.g., sagittal sinus). The vessel is most visible in the sagittal plane, as 

shown in top-right panel (before smoothing) and bottom-left panel (after smoothing; 

Griffanti et al., 2017). 
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❖ Arteries (Figure 2.22): Arteries and veins are considered cardiac artefacts 

and can present similarities to neural signals of interest due to the same blood 

related origin. As the veins, is important the knowledge of the anatomy of the 

brain vessel to identify the physiological noise. This artefact is mainly detectable 

in the power spectrum plot for the peak a frequency higher than 0.1 Hz and for 

the high-frequency pattern in the time series plot. Also, in the spatial maps, the 

active areas run close to the arteries. 

 

 
 

Figure 2.22. Arteries. The middle cerebral branches run close to the insula so a structural 

image as underlay can help localise the vessels (top panels). The time series shows a pattern 

with high oscillations (bottom-left panel) and the power spectra shows a high peak at high 

frequency, typical of the cardiac signal (Griffanti et al., 2017). 
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❖ Susceptibility artefacts (Figure 2.23): this kind of artefact is caused by 

signal drop due to the air-tissue interface, and for this reason better observed 

from the spatial maps on the axial (in the orbitofrontal gyrus and temporal poles, 

resulting from the eye and ear cavities respectively). There is one peak at a very 

low frequency, which is useful to detect the artefact. 

 

 

Figure 2.23. Susceptibility artefact. In the spatial maps this artefact is seen most clearly in 

the orbitofrontal gyrus where the signal drop (top panels). The power spectra show one 

peak at very low frequency (bottom-right panel; Griffanti et al., 2017). 
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❖ Multiband artefact (Figure 2.24): the simultaneous acquisition of 

multiple slices is the main cause of this artefact, which shows parallel lines of 

activity detectable in the spatial maps, mainly on the sagittal or coronal plane. 

This artefact can also depend on the characteristic of head motion, so the time 

course can show a sudden jump in correspondence of head movement, as for the 

motion artefact. 

 

 

Figure 2.24. Multiband artefact. In the spatial maps the clusters are visible in a regular 

way across slices (top-left panel) and is reflected in stripes in the sagittal and coronal plane 

(top-right panel). The time series shows several sudden peaks in correspondence to head 

movement (bottom-left panel) and low-frequency peak in the power spectra (bottom-right 

panel; Griffanti et al., 2017).  
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❖ MRI-related artefact (Figure 2.25): This type of artefact is due to the MRI 

hardware or acquisition, and it does not shows any physiological activity in the 

spatial pattern, nor high frequencies in the time series plot; power spectrum plot 

is a bell curved at frequency greater than 0.1 Hz. 

 

 

Figure 2.25. MRI-related artefact. The spatial map alternates between positive and 

negative values, as highlighted in the circles (top panels). The time series (bottom-left 

panel) and power spectra (bottom-right panel) have no physiological meaningful (Griffanti 

et al., 2017).  
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❖ Unclassified noise (Figure 2.26): If the components do not fit into any of 

the previous kind of signal (both neural and artefact), they are identified as 

unclassified noise. 

 

 

Figure 2.26. Unclassified noise. In this example the spatial map shows scattered cluster, 

typical of noise. The time series (bottom-left panel) show non-uniform pattern, with several 

temporal discontinuities and the power spectra has a low-frequency pattern (Griffanti et 

al., 2017).  
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❖ Unknown (Figure 2.27): If a component cannot be clearly classified as 

artefact (N-IC) or as signal (S-IC), for example a component containing both the 

neural signal and the noise or a component not perfectly coinciding with the most 

common networks presented but shows the features of neural signal, it is 

classified as unknown. The suggestion is to keep these kinds of components as 

signals of interest in the cleaning phase to avoid losing of valid signals, 

especially if the signal of the component is in the area essential for the study, 

and/or in case of altered neural activity (such as in the case of epileptic patients). 

 

 
 

Figure 2.27. The spatial pattern is mainly localised in the grey matter, but is not clearly 

attributable to an RNS, both before (top-right panel) and after smoothing (bottom-right 

panel). The time series show a saw-tooth pattern with high oscillation (bottom-left panel) 

and the power spectra show both low and high frequency peak (Griffanti et al., 2017). 

 

 

To distinguish the S-ICs from the N-ICs, it could be helpful to follow the 

“Innocent until proven guilty” flowchart in Figure 2.28 (Griffanti et al., 2017), 

which consists of a procedure to label components based upon visual inspection.  
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Figure 2.28. “Innocent until proven guilty” flowchart. A summary of the procedure for 
visual inspection and manual classification of independent components (Griffanti et al., 

2017). 

 
ICA-based cleaning is especially useful in resting state fMRI data, where there 

is no-priori information about the signal of interest (Griffanti et al., 2017). 
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3. Results 

 

 

In this chapter the results obtained from the analysis described in the chapter 2 

are reported. Firstly, the motion correction and registration are examined and if 

they satisfy the requirements, it is possible to proceed with the inspection of IC. 

After the recognition of artefact, the RSNs were detected by a comparison with 

the RSNs identified by Smith and coworkers (Smith et al., 2009) and Beckmann 

and coworkers (Beckmann et al., 2005). 

 

3.1 Pre-processing results 
 

The subject P6 was excluded from the study because there was an error in the 

functional data acquisition. 

The subject P5 was excluded from the study because there is a significant 

displacement around the volume 230, principally around the x-axis and along 

the x and y axes, as shown in Figure 3.1, obtained from MCFLIRT within FSL. 

 
 

Figure 3.1. The displacement detected in the subject P5. The upper panel indicates the 

translation movement along the axes. The lower panel indicates the rotation movement 

around the axes. 
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All the other patients (P1, P2, P3 and P4) hace an acceptable head movement 

and are suitable to continue the analysis. 

In Figure 3.2 the displacement of P1 is reported: a peak of movement around the 

volumes 290 can be noted, an initial displacement in rotation around x and y 

axes, but it is an acceptable movement. All the peak results in the IC as motion 

artefact.  

 
 

Figure 3.2. The displacement detected in the subject P1, suitable for further analysis. The 

top panel indicates the movement along the axes. The bottom panel indicates the movement 

around the axes. 

 
Figure 3.3 shows the movement of P2, showing an initial displacement which 

tends to zero. 

 
 

Figure 3.3. The displacement detected in the subject P2. The above panel indicates the 

rotation movement around the axes. The panel below indicates the translation movement 

along the axes. 
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The head movement of P3 is shown in Figure 3.4. The displacement is low, in a 

range around zero, as for patient P4, shown in Figure 3.5. 

 

 

Figure 3.4. The displacement detected in the subject P3. The above panel indicates the 

rotation movement around the axes. The panel below indicates the translation movement 

along the axes. 

  

 
 

Figure 3.5. The displacement detected in the subject P4. The above panel indicates the 

rotation movement around the axes. The panel below indicates the translation movement 

along the axes. 

 

The registration step was successful for all the subjects. An example of 

registration within FSL is shown in Figure 3.6, and within BV in Figure 3.7. 
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Figure 3.7. The top panel represents the coregistration of functional pre-processed file 

(trasparent) in structural IIHC image. The middle panel represents the structural IIHC 

image in Talairach space (green lines). The bottom panel represents the normalization of 

functional image (in grey) in the Talairach space. 

 

3.2 Independent Components Analysis 
 

3.2.1 FSL 
 
The number of estimated ICs within FSL software was different for each subject: 

specifically, 71 ICs were obtained from the analysis on subject P1, 95 ICs were 

obtained from ICA on subject P2, 70 ICs estimated on subject P3, and 41 ICs 

from subject P4. A total of 277 components were identified: 204 (74%) were 

labelled N-IC, 73 (27%) were labelled S-IC (30 ICs were signal of interest 

(11%), 43 unknown (16%)).  

Each component was meticulously examined within FSLeyes, which is an image 

viewer tool of FSL (McCarthy, 2021), in the Melodic view and in the Ortho 
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view. By applying the labelling rules states by Griffanti and coworkers (Griffanti 

et al., 2017; Figure 2.28), each slice, time courses and frequency spectra were 

examined and labelled as Signal, Unknown and Noise. An example of N-IC is 

shown in Figure 3.8 and an example of S-IC in Figure 3.9. Both figures show 

the Time series (bottom-left panel), the Power spectra (bottom-right panel), the 

axial slices in top-left panel (can be moved to coronal and sagittal plane), and 

the ortho view (top-right panel). The red/yellow activation are overlayed onto 

the MNI152 template. 

The Z-score is greater than 2 and lower than 10. To investigate similarities in S-

ICs between each subject and RSNs by Smith and coworkers (Smith et al., 2009) 

the command line “fslcc” was used. This fslutils run a cross-correlations between 

every volume in the subject’s data with every volume in the Smith’s Networks. 

The S-ICs obtained corresponding to well-established RSNs are represented in 

Figure 3.10, Figure 3.11, and Figure 3.12. In each figure, RSNs is indicated on 

the top; different rows refer to different patients. The images are shown in 

radiological convention and the MNI coordinated indicated in the image caption. 

Medial, Occipital and Lateral Visual Area show a low degree of bilaterality, with 

a predominance of activity in the right hemisphere. DMN is mostly lateralized, 

except for a slight bilateral activity in P1. P2 and P3 show activity only in the 

left hemisphere, whereas P4 only in the right. Sensorimotor system was detected 

only in two subjects, with a lateralized active area in the right hemisphere for P1 

and a low bilateral activity in P2. Auditory system was identified in three 

subjects, mostly with bilateral activity (P1 and P3), but strongly lateralized in 

P2. Executive control network shows high degree of bilaterality, but it was 

identified only in P1. Frontoparietal right and left network are exclusive 

lateralized in right and left hemisphere, respectively. Table 3 summarize the 

RSNs identified among all the S-ICs of each subject.  
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It can be noted that the Medial Visual Area, the DMN, and the Frontoparietal 

Left were identified in all patients, whereas the Executive Control in only one 

subject. 

Table 3. RSNs identified in all subjects by using FSL analysis. 

 P1 P2 P3 P4 

Medial Visual Area ✔ ✔ ✔ ✔ 

Occipital Pole Visual Area ✔  ✔ ✔ 

Lateral Visual Area ✔  ✔  

Default Mode Network ✔ ✔ ✔ ✔ 

Sensorimotor system ✔ ✔   

Auditory System ✔ ✔ ✔  

Executive Control ✔    

Frontoparietal Right  ✔ ✔ ✔ 

Frontoparietal Left ✔ ✔ ✔ ✔ 

 

3.2.2 BrainVoyager 
 
The number of ICs estimated within BV software was 30 for all subjects, for a 

total of 120 components: 103 (86%) were labelled as artefact and 17 as S-IC (10 

ICs were signal of interest (8%), and 7 unknown (6%).  

The spatial map in the ortho view and the time series of each component were 

examined and, by applying the labelling rules states by Griffanti and coworkers 

(Griffanti et al., 2017; Figure 2.28), classified as Signal and Noise. An example 

of N-IC is shown in Figure 3.13 and an example of S-IC in Figure 3.14. In both 

figures the Time series (bottom panel) and the ortho view (top panel) are shown. 

The red/yellow activation are overimposed onto the structural image of the 

subjects, transformed in Talairach space. The Z-score index was greater than 2 

and lower than 10 (same scale used within FSL). 
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Figure 3.13. An example of artefact component. In the spatial map the clusters are localised 

in the white matter (top panel). The time series shows a high oscillation, especially in the 

last volume. 
 

 
 

Figure 3.14. An example of signal component. The clusters in the spatial map are in the 

grey matter (top panel). The time series shows a typical saw-tooth pattern (bottom panel).  

 

The S-ICs obtained that correspond to well-established RSNs, according to 

Smith (Smith et al., 2009), are manually detected and are represented in Figures 

3.15, 3.16, 3.17, and 3.18. Each network is shown in the sagittal, coronal, and 

axial view and the Talairach coordinates are reported in the image caption. The 

images are shown in radiological convention.  
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The networks identified in P1 were three: the Executive control network, which 

shows low bilaterality with a greater activity in the left hemisphere; the Auditory 

system, with a low degree of bilaterality mainly active in the left hemisphere; 

the Sensorimotor system, which shows bilateral activity. 

Three networks were recognized in P2: Visual network (mostly lateral and 

occipital lobe), showing strongly lateralized activity in the left hemisphere; the 

Frontoparietal Right and Left, which showing activity only in the right and left 

hemisphere, respectively. 

From the analysis performed on subject P3 three networks were identified: 

Lateral visual area, showing activity only in the right hemisphere; Auditory 

system, showing bilateral activity, but mainly in the right hemisphere; the 

Frontoparietal right, showing active areas only in the right hemisphere.  

Finally, only two networks were detected in the subject P4: Occipital Pole visual 

area, with high degree of bilaterality, and the DMN, localized only in the right 

hemisphere. Table 3 summarize the RSNs identified among all the subjects. 

 

Table 3. RSNs identified in all subjects by using BrainVoyager software. 

 P1 P2 P3 P4 

Medial Visual Area     

Occipital Pole Visual Area  ✔  ✔ 

Lateral Visual Area  ✔ ✔  

Default Mode Network    ✔ 

Sensorimotor system ✔    

Auditory System ✔  ✔  

Executive Control ✔    

Frontoparietal Right  ✔ ✔  

Frontoparietal Left  ✔   
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4. Discussions 
 

 

The aim of this Thesis is to investigate the interhemispheric functional 

connectivity in a set of split-brain subjects, based on the analysis of resting-state 

fMRI data by using the ICA approach. 

One of the most evident characteristics of FC in resting state is the symmetry 

about the midline. Since the CC is the major brain commissure connecting the 

two hemispheres, it is logic to assume that it plays the central role in the 

symmetric features of FC. 

The analysis was performed on 4 subjects who had undergone to callosotomy 

about two decades before. The results showed in most cases a low degree of 

bilaterality in the RSNs. A partially preserved interhemispheric connectivity was 

found in the visual areas and the auditory network. Across our subjects, more 

neural activity was noted in the right hemisphere than the left. Based on the 

theory of brain lateralization, the right hemisphere is more involved in the space 

cognition, spatial visualization and vision perception of object motion and shape 

around us. Some other networks are entirely lateralized across all subjects, as 

Frontoparietal right and left and the DMN. The Frontoparietal left networks was 

identified in all subjects. The left hemisphere is strongly specialized in language 

comprehension and speech production. The DMN was identified in all subjects, 

in left hemisphere in two, in right in one and bilateral in the last patient. The 

DMN in healthy subject is a strongly bilateral network; it is associated with 

cognitive processes, such as introspection, image the future or remember the 

past. It is active only during rest phase, when the person is relaxing. The DMN’s 

integrity seems to be crucial for mental health. In the present set of patients, the 

neural brain activity of this network is less lateralized, likely because of the 

callosotomy or of the drug treatment for epilepsy; therefore, the FC of this 

network is slightly altered.  
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Technical considerations 

Many studies have demonstrated that an ICA decomposition can be used to 

identify patterns of activation, including RSNs, and image artefacts (Beckmann 

and Smith, 2004; Beckmann et al., 2005; Robert et al., 2010). However, ICs are 

influenced by multiple factors related to the subjects (if has some disorder or 

not), the MRI data acquisition and the pre-processing. 

The number of ICs automatic estimated within MELODIC is different across the 

subjects mainly due to the different degree of head motion. When the data are 

particularly corrupted by one or more artefact (as in the case of P2), the ICA 

algorithm creates many components that are not clearly identifiable, leading to 

an overfitting of components. A great number of ICs could lead to a RSNs to 

split into multiple sub-networks and therefore more difficult to identify.  

At the same time, the number of ICs estimated within BV software are few, 

leading the case of underfitting, that means the number is insufficient to obtain 

a good estimation of signal. In fact, in BV 86% of ICs were labelled as artefact 

and only the 8% as signal of interest, whereas in FSL the percentage of 

components classified as artefact is lower, around the 74% and the components 

labelled as signal of interest around the 11%. 

In this thesis an automatic classifier to label the IC was not used, but it was 

preferred the hand classification because the “non-conventional datasets”. The 

advantage of this method is the possibility to investigate each component 

individually to detect the neural networks in a case of patients with altered brain 

activity. However, the visual inspection is time consuming and also quite 

subjective. Actually, some ICs can contain a mix of signal and noise and could 

be discarded, but they should be classified as “unknown” and kept in the 

analysis, especially if they are in the area of study (Griffanti et al., 2017). 

 

Comparison with other studies. 

In literature there are various studies conducted on human with callosal 

alteration, which can be either callosal agenesis (AgCC) or callosal resection. 

Callosal agenesis is a rare congenital disorder, characterised by a partial or 
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complete absence of CC. Most of studies carried out in CC agenesis patients 

emphasize that in these patients FC is similar to that of intact brain subjects. As 

shown in recent study (Owen et al., 2013), most networks have been identified 

to show bilateral activity, but some regions involved in the Frontoparietal right 

and left and DMN show reduced FC. Another study (Tyszka et al., 2011) 

demonstrated that the RSNs identified in the AgCC subjects correspond to 

networks identified in healthy subject. 

Different results were obtained from studies carried out on subject whose CC 

was resected during their lifetime to treat intractable epilepsy: some studies 

reported the loss of interhemispheric FC, others found some bilateral activity. 

 

Specifically, Uddin and colleagues (Uddin et al., 2008) found a strong bilateral 

connectivity in Visual Networks, and less but present bilateral connectivity in 

DMN, in one old patient studied four decades after total callosotomy. Another 

recent study (Hung et al., 2019), conducted on a group of paediatric patients 4 

months after a total callosotomy surgery, found a partial bilateral connectivity 

especially in the frontal and anterior temporal lobes. Moreover, they state the 

interhemispheric FC could recovers in the first years after surgery (up to 16 years 

old), mainly if the anterior commissure is preserved. 

The studies performed on AgCC patients indicate that the callosotomy does not 

have a drastic effect on the interhemispheric functional connectivity, mainly 

because in these patients the absence of CC is congenital, and the functional 

networks can develop progressively as the patients grow. These studies suggest 

that CC is not the only path involved in interhemispheric functional connectivity, 

and in its absence some other cortical subcortical pathway takes, care of 

transferring information between hemispheres. Therefore, the RSNs and normal 

cognition can emerge even under circumstances where the structural base is 

disrupted. 

On the other hand, the literature results about the FC in the callosotomized 

subjects are conflicting. At variance with the above-mentioned researches 

(Uddin et al., 2008; Hung et al., 2019), other studies, (Johnston et al., 2008; 

Roland et al., 2017), both carried out in paediatric patients, found a loss of resting 
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interhemispheric FC after complete callosotomy and, possibly, modest 

enhancement of intrahemispheric FC.  

 

Limits of the present study. 

A limitation of this study is the hand classification of independent components 

as signal of interest or artefact, in that it could be affected by errors due to 

inexperience in the field. However, this procedure is preferred respect to the 

automatic classification because the data set here analysed correspond to a group 

of subjects with altered neural activity, and therefore, some components that 

corresponding to valid RNSs could be unrecognized and classified as a noise. 

Another limit of this study is the temporary impossibility to perform a 

comparison with a healthy control group and therefore the 2nd level analysis 

between groups to give statistical significance to the results could not be 

performed. 

Conclusion. 

In conclusion, it can be inferred that the CC is necessary for a correct 

interhemispheric functional connectivity, for example to have a bilateral neural 

activity in some networks as the DMN and the frontoparietal right and left. At 

the same time, the interhemispheric connectivity maintained in the networks 

related to the visual area suggests the presence of subcortical path that allows to 

transfer the information between the hemispheres.  

Since split-brain patients are rare, since the complete callosotomy surgery as 

treatment for sever epilepsy has been replaced by drug interventions, and most 

of them have aged, it will be difficult to further study interhemispheric FC in this 

group of subjects. A future development could be the analysis and comparison 

with a healthy control group to give some statistical significance. Moreover, the 

FC could also be studied using other technique, such as the seed-based analysis. 

Another idea could be to study the structural connectivity associated to the FC 

using the Diffusor Tensor Imaging (DTI) technique, to investigate if any 

subcortical pathway is present in the split-brain patients. 
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