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Abstract

In response to challenging circumstances, the human body can experience marked
levels of anxiety and distress. In order to prevent stress-related complications, timely
identification of stress symptoms is crucial, necessitating the need for continuous
stress monitoring. Wearable devices offer a means of real-time and ongoing data
collection, facilitating personalized stress monitoring. This study aimed to detect
stress by analyzing physiological signals collected through the Empatica E4 bracelet.
Machine Learning algorithms (Random Forest, SVM, Logistic Regression) and Deep
Learning pre-trained CNNs (GoogLeNet, SqueezNet) were employed to differentiate
between stressful and non-stressful situations. Data from 29 subjects, including pho-
toplethysmographic (PPG) and electrodermal activity signals (EDA), were used to
extract 27 features with and without overlapping. These features were then utilized
in three Machine Learning algorithms for binary classification using Python, after
applying the Chi-square test and Pearson’s correlation coefficient via WEKA for
feature importance ranking. Additionally, SHapley eXplainable AI was applied to
the top-performing model, Random Forest, in the overlapping case, shedding light
on the most impactful features and comparing them with feature selection methods.
Notably, HRV (Heart Rate Variability) features emerged as significant in stress de-
tection. Furthermore, in the non-overlapping case, continuous wavelet transform
was applied to PPG signals to generate scalograms, which were subsequently fed
into two different pre-trained CNNs. The study’s results showcased the overlapping
had a positive impact on all models. Moreover, the Random Forest model is the
highest-performing, achieving an accuracy of 76.4% without overlapping and an
impressive 99.5% with overlapping segments. Additionally, Deep Learning models
exhibited potential in stress classification, particularly when considering the use of
PPG signals only.
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Introduction

Stress is a pervasive aspect of modern life, and its impact on both physical and
mental well-being cannot be understated. In response to challenging circumstances,
the human body can experience marked levels of anxiety and distress, which, if left
unmanaged, can lead to a range of stress-related complications. Timely identification
of stress symptoms is crucial for effective stress management and prevention, necessi-
tating the need for continuous stress monitoring. Wearable devices have emerged as
a promising solution for real-time and ongoing data collection, enabling personalized
stress monitoring.
This thesis aimed at stress detection and monitoring through the analysis of phys-
iological signals, focusing on data collected using the Empatica E4 bracelet. The
objective of this study is to utilize both traditional Machine Learning algorithms
and cutting-edge Deep Learning techniques to differentiate between stressful and
non-stressful situations based on these physiological signals.
In this introduction, we provide a roadmap of what to expect within the pages of this
thesis:

Chapter 1- Anatomy and Physiology of the Human Heart and Skin : To understand
the cardiovascular system and the skin.

Chapter 2- Stress, Bio-Signals, and Wearable Sensors: This chapter explores core
concepts of stress and the various methods employed for stress assessment. Moreover,
introduces the fundamental role of wearable sensors in real-time data collection,
which is crucial for personalized stress monitoring. Key bio-signals, including the
electrocardiogram (ECG), photoplethysmographic (PPG) signals, and electrodermal
activity (EDA), are explored in the context of stress assessment.

Chapter 3- Artificial Intelligence: Machine Learning and Deep Learning are at the
core of this thesis. We explore the fundamentals of these techniques, feature selection,
data splitting methods, and a range of classifiers, including Support Vector Machine,
Logistic Regression, Decision Trees, Random Forest, and Artificial Neural Networks.
Additionally, Deep Learning and the significance of hyperparameter tuning are
introduced, alongside the concept of Explainable AI.

Chapter 4- Literature Review: This chapter provides an overview of related research
in the field of stress detection and monitoring. We discuss the methodologies and
results of various studies to provide context for our own investigation.

xii



Chapter 0. Introduction

Chapter 5- Materials and Methods: Here, we detail the materials and data acqui-
sition protocol, including the use of the Empatica E4 bracelet. We also present the
machine learning and deep learning approaches employed in this study, outlining
the methodologies for stress classification.

Chapter 6- Results: This chapter presents the findings of our study, focusing on
feature selection, the performance of machine learning approaches, and the efficacy
of deep learning models in stress classification.

Chapter 7- Discussion: The discussion chapter provides a critical analysis of the
results, exploring the significance of feature selection, the performance of machine
learning and deep learning models, and model explainability.

Chapter 8- Conclusions: The thesis culminates in a concise summary of the study’s
key findings, offering insights into the potential of physiological signals and wearable
technology in stress detection and monitoring.

Through a comprehensive examination of these chapters, this thesis aims to con-
tribute to the growing body of knowledge in the field of stress assessment, with a
particular focus on the application of machine learning and deep learning techniques
for accurate and timely stress detection.

xiii



Chapter 1

Anatomy and physiology of the human
heart and skin

1.1 Introduction
Stress is a common experience that can have negative impacts on mental and physical
health. Accurately detecting and monitoring stress is crucial for preventing these
negative outcomes. Bio-signals, such as electrocardiogram (ECG), photoplethys-
mography (PPG), and electrodermal activity (EDA), have been shown to be reliable
indicators of stress. Wearable sensors have made it easier to collect these bio-signals
in real time, which has opened up new possibilities for stress detection and man-
agement. However, understanding the anatomy and physiology underlying these
bio-signals is essential for accurately interpreting the data collected from wearable
sensors. This thesis aims to explore the relationship between bio-signals and stress
using machine learning, with a particular focus on the role of anatomy and physi-
ology in stress detection. By gaining a deeper understanding of the physiological
processes involved in generating bio-signals, we can improve the accuracy of stress
detection and develop more effective interventions for stress management.

1.2 Cardiovascular system
The cardiovascular system consists of the heart and blood vessels, while the lym-
phatic system collects excess fluid from the tissue interstitium and returns it to the
venous circulation. The heart can be viewed as two pumps with the pulmonary and
systemic circulations in between. Pulmonary circulation involves the exchange of
gases between the blood and alveoli in the lungs, while systemic circulation com-
prises all blood vessels within and outside of organs except for the lungs. The right
side of the heart receives venous blood from the systemic circulation and pumps
it into the pulmonary circulation for gas exchange, while the left side receives oxy-
genated blood from the lungs and ejects it into the aorta for distribution to all organs
via the arterial system. The capillaries within the organs are the primary site of
exchange. Blood flow from the capillaries enters veins, which return blood flow to

1



Chapter 1. Anatomy and physiology of the human heart and skin

the right atrium via large systemic veins.
The cardiovascular system is arranged in series, with the right and left sides of the
heart separated by the pulmonary and systemic circulations, and in parallel shown
in Figure 1.1, with most of the major organ systems receiving their blood from the
aorta and returning it to the heart via the venous system[1][2][3].

Figure 1.1: Parallel arrangement of organs within the body. GI, gastrointestinal circu-
lation. SVC, superior vena cava; IVC, inferior vena cava [2].

1.2.1 The heart

The heart is the key organ of the cardiovascular system and is responsible for main-
taining continuous blood flow. The wall of the heart is composed of three layers:
the epicardium (the outer layer), the myocardium (the middle layer), and the endo-
cardium (the inner layer). The myocardium is the muscle of the heart, accountable
for its pumping action. The heart cavity is made up of two portions, left and right,
separated by an inner wall called a septum. There are four valves in the human heart,
two are between heart chambers called "atrioventricular valves", and two between
chambers and vessels called "semilunar valves". On the right side, the atrium and
ventricle are divided by the tricuspid valve, and on the left side are divided by the
mitral valve. Furthermore, the pulmonary valve is located between the right ventricle
and the pulmonary artery, and the aortic valve is located between the left ventricle
and the aorta. Figure 1.2 shows the simplified structure of the heart [4][2][1].

2



Chapter 1. Anatomy and physiology of the human heart and skin

Figure 1.2: Structure of the heart [1].

1.2.2 Conduction system

The heart possesses the ability to generate self-generated electrical impulses and
regulate the pathway of these impulses through a distinctive conduction system. This
system is composed of five components, including:

• Sinoatrial node (SA).

• Atrioventricular node (AV).

• Bundle of His.

• The left and right bundle branches.

• The Purkinje fibers.

The sinoatrial node is a specialized cardiac muscle that is small, flattened, and
ellipsoid in shape, located in the superior posterolateral wall of the right atrium. The
atrioventricular node is found in the posterior wall of the right atrium, subdivided
into the lower nodal bundle and compact node. The bundle of His consists of
specialized muscular tissue responsible for electrical conduction, which further
divides into two branches to transmit impulses to the left and right ventricles. Lastly,
the Purkinje fibers are located beneath the endocardium in the inner ventricular
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Chapter 1. Anatomy and physiology of the human heart and skin

walls of the heart. The positions of these structures within the heart are illustrated in
Figure 1.3. Conduction velocities of different regions are noted in parentheses [1].

Figure 1.3: Conduction system within the heart [2].

1.2.3 Cardiac cycle

The cardiac cycle encompasses the events that occur from the beginning of one
heartbeat to the start of the next. The cycle begins with the spontaneous generation
of an action potential in the sinus node. This impulse travels through both atria
and into the ventricles via the A-V bundle, with a delay of more than 0.1 seconds
to allow for atrial contraction before a ventricular contraction begins. The cardiac
cycle comprises diastole, a relaxation period during which the heart fills with blood,
followed by systole, a contraction period. The mechanical events during the cardiac
cycle can be summarized as follows:

• The cycle begins with an almost synchronous contraction of the two ventricles,
resulting in a rapid increase in blood pressure in the ventricles.

• As the pressure in the ventricles exceeds that in the atria, the mitral valve
closes, producing the first heart sound and marking the start of systole.

• During the isovolumetric phase, there is no change in ventricular volume as
the pressure in the ventricles continues to rise until it exceeds that in the aorta,
causing the aortic valve to open and blood ejection into the systemic circulation
to begin.

• As the ventricular wall tension decreases, the pressure gradient between the
ventricles and the aorta reverses, and flow decelerates until the aortic valve
closes, generating the second heart sound and marking the onset of diastole.
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• During the second isovolumetric period, the ventricular muscle relaxes, and
the pressure in the ventricles decreases, while the pressure in the atria rises as
the left atrium is filled by the pulmonary venous system.

• As the pressure in the atria exceeds that in the ventricles, the mitral valve
reopens, allowing the ventricles to refill with blood. This process initially
occurs passively, driven by a pressure difference between the atria and
ventricles, and then becomes active as the atria contract during atrial systole,
pushing the remaining of blood volume.

• Shortly after, the ventricles contract again, restarting the cycle.

Figure 1.4 illustrates the different events during the cardiac cycle on the left side
of the heart, including pressure changes in the aorta, left ventricle, and left atrium,
as well as changes in left ventricular volume, the electrocardiogram, and a phono-
cardiogram. The electrocardiogram displays P, Q, R, S, and T waves, representing
electrical voltages generated by the heart and recorded by the electrocardiograph.
The P wave is caused by atrial depolarization, followed by atrial contraction, while
the QRS waves indicate ventricular depolarization and contraction. The T wave
represents ventricular repolarization and occurs just before the end of ventricular
contraction [1][2].

Figure 1.4: Events of the cardiac cycle for left ventricular function [1].
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1.2.4 Circulatory system

The circulation system functions to transport nutrients, waste products, and hor-
mones, and maintain an optimal environment for the body’s tissues. Arteries trans-
port blood under high pressure, arterioles control blood flow into capillaries, capil-
laries exchange substances between the blood and interstitial fluid, venules collect
blood from capillaries, and veins transport blood back to the heart while also serving
as a reservoir for extra blood shown in Figure 1.5. Venous walls are thin but muscular
enough to contract or expand depending on the needs of the circulation. When

Figure 1.5: Major types of blood vessels found within the circulation [2].

the left ventricle ejects blood into the aorta, a characteristic aortic pressure pulse is
produced, consisting of a peak systolic pressure, a notch (dicrotic notch or incisura),
a small increase in pressure (dicrotic wave), and a diastolic pressure. The difference
between systolic and diastolic pressures is the aortic pulse pressure. Mean arterial
pressure, which is the average pressure over time, is the primary pressure that drives
blood flow in organs, and it needs to be determined when assessing vascular function.
Figure 1.6shows pressure pulse within the aorta.[1][2].

Figure 1.6: Pressure pulse within the aorta [2].
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1.2.5 Neurohumoral control of the heart and circulation

The parasympathetic and sympathetic nervous systems are two branches of the
autonomic nervous system that have opposing effects on the heart and circulatory
system. The parasympathetic nervous system acts through the release of acetyl-
choline, which binds to muscarinic receptors in the heart and causes a decrease in
heart rate. In contrast, the sympathetic nervous system acts through the release of
norepinephrine, which binds to beta-adrenergic receptors in the heart and causes
an increase in heart rate and contractility. The interaction between the two systems
helps to maintain a balance in heart rate and blood pressure. In a healthy individual,
the parasympathetic and sympathetic nervous systems work together to maintain a
stable heart rate and blood pressure. However, in certain situations such as exercise
or stress, the sympathetic nervous system becomes dominant, leading to an increase
in heart rate and blood pressure. The sympathetic nervous system also has effects
on the circulatory system, including vasoconstriction and vasodilation. When the
sympathetic nervous system is activated, it causes vasoconstriction of blood vessels
in non-essential organs such as the digestive system, while simultaneously causing
vasodilation of blood vessels in essential organs such as the heart and brain. This re-
distribution of blood flow helps to ensure that these vital organs receive the necessary
nutrients and oxygen. Furthermore, the sympathetic nervous system also stimulates
the release of epinephrine and norepinephrine from the adrenal medulla, which
have effects on the heart and circulation. Epinephrine and norepinephrine increase
heart rate, contractility, and vasoconstriction, leading to an increase in blood pressure
and cardiac output. Table 1.1 shows the effects of sympathetic and parasympathetic
stimulation on cardiac a vascular function and Figure 1.7 shows the organization of
sympathetic and vagal innervation of the heart and circulation [2].

Table 1.1: Effects of sympathetic and parasympathetic stimulation on cardiac a vascu-
lar function [2].

SYMPATHETIC PARASYMPATHETIC
Heart

Chronotropy (rate) + + + - - -
Inotropy (contractility) + + + -

Dromotropy (conduction velocity) + + - - -
Vessels (Vasoconstriction)

Resistance (arteries, arterioles) + + + -
Capacitance (veins, venules) + + + 0

Relative magnitude of responses (+, increase; -, decrease; 0, no response) indicated
by number of + or - signs.
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Figure 1.7: Organization of sympathetic and vagal innervation of the heart and circu-
lation [2].

1.3 Skin
To interpret skin conductance and potential, it’s important to understand the structure
of tissues both on and beneath the skin surface. Figure 1.8 illustrates the key features
of the skin, including the epidermis, which is the most superficial layer consisting
of the stratum corneum, stratum lucidum, granular layer, prickle cell layer, and
basal/germinating layer. The corneum layer is made up of dead cells at the skin’s
surface, with healthy living cells found at its base, and transitional cells in between.
This layer is also referred to as the horny layer. The dermis contains blood vessels,
while the eccrine sweat gland secretory cells are found at the border of the dermis
and panniculus adiposus or superficial fascia. The eccrine sweat gland excretory
duct is a simple tube made of epithelial cells, which ascends and opens on the skin’s
surface. Cholinergic stimulation via fibers from the sympathetic nervous system is
the primary influence on the production of sweat by these glands.
The epidermis normally has a high electrical resistance due to the thick layer of dead
cells with thickened keratin membranes, which is expected as the skin functions as a
barrier against external factors like abrasion and mechanical assaults. Experiments
show that the entire epidermis, except for desquamating cells, is a permeability
barrier to flow and behaves as a passive membrane. However, sweat ducts penetrate
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the corneum layer from underlying cells, resulting in a relatively good conductor as
sweat is a weak electrolyte with many low-resistance parallel pathways[5].

Figure 1.8: Section of smooth skin taken from the sole of the foot [5].
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Chapter 2

Stress, Bio-Signals, and Wearable
Sensors

2.1 Introduction
One of the main factors contributing to both physical and mental illnesses in people
is stress [6]. An organism’s natural reaction to an intrinsic or extrinsic situation,
whether it be favourable or unfavourable, physical or mental, is known as stress
[7]. It is the body’s method of coping with an oppressive or negative situation
and constantly works to restore the body to its normal balance [8]. Stress-related
pathologies or disorders are thought to be the second most common cause of disease
in both Europe and the United States, accounting for three out of every four doctor
visits. [9]. The first stage of stress is the disruption of an organism by a stimulus or
event known as stressors [8]. Although stressors can take on many different forms,
they can be broadly divided into two categories: psychological and physiological.
Psychological stressors include things like debt, the death of a loved one, losing a
job, studying for an exam, and other similar items. Physiological stressors include
things like infections, high temperatures, and a lack of relaxation. When the body
perceives a situation as stressful, it can trigger short-term or long-term reactions.
The hypothalamus in the brain plays a crucial role in this process by activating and
sending signals to the pituitary gland, which then stimulates the adrenal gland to
produce cortisol. This hormone helps to stabilize the blood sugar supply and restore
the body to normal function. In addition, the adrenal medulla, which is part of the
autonomic nervous system, is stimulated by the hypothalamus to produce short-term
stress responses. This results in the release of adrenaline, which causes the fight-or-
flight response and activates the sympathetic nervous system. Once the stressor is
removed and the parasympathetic nervous system takes over, the body returns to its
normal state [10].
Based on the time-lapse, stress can be divided into three categories and each of
them has a unique set of symptoms, traits, duration, and treatment options. It is
distinguished into acute stress, the most common, characterized by short duration
and associated with negative thoughts, episodic stress, which happens when intense
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stress is sustained over a long period before it becomes a habit, and chronic stress,
which might be the result of early childhood experiences and traumatic experiences
from the past that have shaped one’s life [11].

2.2 Stress
Stress is a condition where the mind and body react to external and internal factors,
leading to anxiety, depression, and tension. Work-related stress is consistently associ-
ated with negative effects on cognitive and mental health, workplace performance,
and an increased risk of disease. These consequences are often linked to changes in
brain functions, particularly in areas like the hippocampus, prefrontal cortex, and
amygdala. Quality of life (QoL) is affected by stress, and it has negative associations
with health, including the immune, digestive, nervous, and cardiovascular systems.
Chronic stress can lead to brain changes, memory problems, and impaired learning. It
also weakens the immune system and can contribute to heart problems. In summary,
stress has significant effects on the human biological system. [12] [13] Figure 2.1
shows the Impact of stress on main brain areas, cognitive functions, and affective
domains. And Figure2.2 shows Stress impacts on human immune system, digestive

Figure 2.1: Impact of stress on main brain areas, cognitive functions, and affective
domains [14].

system, central nervous system, and cardiovascular system, which are summarized
as follows:
• Brain: Stress affects neural pathways and cognitive processes, particularly memory
and cognition. It triggers changes in brain chemistry, involving dopamine, nora-
drenaline, and glucocorticoids, which impact memory consolidation and retrieval.
Stress also influences cognition, with effects dependent on factors like duration and
intensity, potentially leading to cognitive disorders and alterations in brain function.
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• Cardiovascular system: Psychological stress is a recognized risk factor for car-
diovascular diseases, affecting heart rate and blood pressure. Stress activates the
sympathetic nervous system, leading to vasoconstriction, increased blood pressure,
blood clotting disorders, and vascular changes, all contributing to cardiac arrhyth-
mias and heart attacks. Chronic stress in personal life is associated with a significant
increase in coronary heart disease development. High cortisol levels from long-term
stress can raise cholesterol and triglycerides, promoting heart disease. Stress also
disrupts blood pressure, potentially leading to arterial plaque buildup.
• Digestive system: The intestinal nervous system, with around 100 million nerve
cells, operates in the gastrointestinal area and connects bidirectionally with the central
nervous system through the sympathetic and parasympathetic nervous systems.
Stress worsens symptoms of gastroesophageal reflux disorder (GERD), particularly
in individuals with high gastrointestinal susceptibility. Stress is a risk factor for upper
gastrointestinal diseases, such as peptic ulcers and inflammatory bowel disease, and
major stressors can influence disease activity. In summary, stress significantly affects
various gastrointestinal disorders and their symptoms.[12]

Figure 2.2: Stress impacts on human immune system, digestive system, central ner-
vous system, and cardiovascular system [12].

Stress is a heterogeneous disease that affects adults and young people. Due to the
demanding physical and mental efforts required of employees, the workplace has
become a major source of stress in the latest days [15]. It could also be a result of staff
not having the resources they require to do their jobs well or of staff not having their
needs met. Stress at work has been linked to frequent absences, mistakes, and lower
productivity [16]. According to evidence, the EU spends about €617 billion a year
on social welfare, health care, and programs to help people who are stressed out or
depressed at work [17]. This demonstrates how stress at work not only affects the
productivity of individuals but also the entire state. Teenagers frequently experience

12



Chapter 2. Stress, Bio-Signals, and Wearable Sensors

academic stress, a type of mental distress brought on by the many expectations that
are placed on them. It can be difficult to avoid stress as a factor. Students experience
stress due to a variety of demands, including homework, exams, classes, projects,
friends, and family. Their academic success is directly correlated with these demands.
Students under high stress often experience depression and anxiety [18].

2.2.1 Stress Assessment tests

Stress can be evaluated either 1) subjectively through structured scales, question-
naires, or surveys. Although they are inexpensive and simple to use, questionnaires
have some drawbacks that make them less useful since they are based on individual
perceptions [19] . Or 2) objectively by measuring physiological responses. Common
clinical stress assessment tools involve self-reported questionnaires like Cohen’s Per-
ceived Stress Scale (PSS) and visual scales such as the Visual Analogue Scale for Stress
(VASS). Biomedical researchers often prefer biochemical markers like cortisol and
alpha-amylase and induce stress using tests like the Trier Social Stress Test (TSST).
Alternatively, some studies assess stress by monitoring the body’s physiological
signals[20]. Studies have revealed that, in addition to the conventional methods of
detecting stress through questionnaires and behavioural observations, it can also
be determined and measured from physiological, psychological, and neurological
responses [21]. Below is a summary of commonly used stress assessment methods,
outlined in Table 2.1

Table 2.1: Stress assessment tests and brief detail [20].

Test Name Stress Assessment Method

Mental Arithmetic Test To create stress, participants are given a time limit and
asked to complete mathematical problems (subtraction,
multiplication).

Trier Social Stress Test (TSST) Requires participants to deliver speeches on
predetermined topics with little advance notice. The
participants are also required to carry out some verbal
calculations after the speech. Both tasks are carried out
in front of an audience that will be giving feedback.

Stroop Test Instead of reading the words, participants are
presented the names of several colors printed in
different font colors and asked to identify the font
color.

Continued on next page

13



Chapter 2. Stress, Bio-Signals, and Wearable Sensors

Table 2.1 – Continued from previous page. Stress assessment tests and brief detail.

Test Name Stress Assessment Method

Perceived Stress Scale (PSS) Participants fill out the questionnaire by rating the
questions about their feelings and thoughts. The total
score varies from 0 (no stress) to 40 (highest stress).

Visual Analogue Scale for
Stress (VASS)

In this test, rather than providing a numerical response
for each question, participants are asked to rate their
level of stress on a scale as no stress, moderate stress,
or high stress. Most of the time, a 5-point (smiley) scale
is used for stress assessment.

Stress Response Inventory
(SRI)

The Stress Response Inventory consists of 39 questions
scored in the range of 0 to 156. Tension, weariness,
despair, aggression, anger, somatization, and
frustration are the 7 components that make up these
questions. High perceived stress corresponds to a high
score.

COPE Inventory The purpose of the 28 self-reporting questions is to
gauge how effectively individuals deal with stressful
situations. On a scale from 1 (low stress) to 4 (high
stress), a score is assigned to each question. The final
score identifies the individuals’ approach or avoidant
stress coping strategy.

Holmes and Rahe Stress
Inventory

Calculates the level of stress experienced over the last
year. From a list of 43 life events related to stress,
participants choose those that took place in their lives.
Scores for each event vary. Participants who reach a
score of more than 300 have a larger risk of being
unwell, whereas a score of less than 150 indicates a
modest risk.

State-Trait Anxiety Inventory
(STAI)

Twenty items that assess trait and actual anxiety are
validated by the participants. Participants answer the
questions on a scale from 1 to 4, with 1 signifying the
least stress and 4 signifying a high level of stress.

Continued on next page
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Table 2.1 – Continued from previous page. Stress assessment tests and brief detail.

Test Name Stress Assessment Method

Montreal Imaging Stress Task
(MIST)

The three phases of MIST are rest, control, and
experiment. The participant stares at the computer’s
static screen while they are resting. The subject is given
a series of mathematical problems to solve in the
control stage, while in the experiment stage,
challenging and time-limited arithmetic assignments
are presented to induce high stress.

Perceived Stress
Questionnaire (PSQ)

Participants fill out two types of questionnaires
consisting of 30 questions; the first questionnaire has
questions about stressful events and emotions in the
previous 2 years while the second one has questions
about stress during the previous month. Each question
must receive a score from 1 (no stress) to 4 (stress).

2.3 Wearable sensors
In today’s digital era, the term "wearable" has taken on a new meaning. It no longer
refers to traditional clothing but rather to accessories with functionality and mo-
bile information processing capabilities. These wearables include smartwatches,
head-mounted displays, sensors, and smart garments. They have expanded beyond
fashion and protection to provide personalized and configurable mobile information
processing for various applications such as gaming, fitness, healthcare, and entertain-
ment. The use of wearables has transformed various aspects of our lives. Wearables
are also employed in critical areas such as public safety, where they help monitor
the physical condition of first responders and detect hazardous materials. Further-
more, wearables are utilized in monitoring racecar drivers’ health and enhancing the
viewing experience for fans. The value of wearables extends to diverse user groups.
For instance, they assist the "sandwich generation" in caring for elderly parents by
monitoring their health and promoting independence. Wearables have also been
employed in parenting, allowing parents to monitor the well-being of young children.
Fundamentally, wearables perform basic functions such as:

• Sensing.

• Processing.

• Storing.

• Transmitting.
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• Applying data.

Figure 2.3 shows a schematic representation of the unit operations associated with
obtaining and processing situational data using wearables. For example, if dangerous
gases are detected by a wearable on a first responder, the data can be processed in
the wearable and an alert issued. The specific operations depend on the application
domain and the wearer. Processing may occur either on the individual or at a remote
location. Wearables play a crucial role in obtaining and processing situational data,
enabling real-time alerts, confirmatory testing, and personalized responses.
While wearables find applications in various fields, this chapter focuses primarily
on their role in healthcare. Wearables offer a non-intrusive means of longitudinally
monitoring individuals, aiding in the early detection of problems and diseases for
preemptive care and improved quality of life. The principles and concepts discussed
in the healthcare domain can be applied to other application areas with ease. [22]

Figure 2.3: Unit operations in obtaining situational awareness: the role of wearables
[22].

Smart wearable devices that can measure signals even in natural settings for assessing
cognitive and sensory states have been made possible by recent advancements in
embedded systems and sensors. Nowadays, vital signals are collected by means of
several variegate wearable devices - smart watches, chest belts, smart t-shirts, and
head-mounted devices [23]- allowing ongoing mental health monitoring to be easier
compared to the past. The widespread market adoption of smart wearables has
given people the ability to track, store, and transfer personal information about their
surroundings, physical activity, and health [24].

2.4 Bio-signals and mental stress correlation
Research has consistently shown an association between higher heart rate and stress.
This alteration in heart rate influences blood flow within the body, which can be
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monitored using an electrocardiograph (ECG) signal. Blood flow changes can be
measured through blood volume pulse (BVP) derived from a photoplethysmography
(PPG) signal. Sweat release during stress affects skin conductance, measured by an
electrodermal activity (EDA) measurement device, which is also known as galvanic
skin response (GSR). Muscle tension, linked to stress, is monitored using electromyo-
graphy (EMG). Brain signals (EEG) are also indicative parameters because they are
connected to the autonomic nervous system. Additionally, skin temperature (ST) and
accelerometer (ACC) sensors can aid in stress detection, as chronic stress may also
lead to mild fever, anxiety, and restlessness[20] [25] [26]. Figure 2.4 shows common
places of wearable sensors on the human body.

Figure 2.4: Schematic diagram showing common places of wearable sensors on hu-
man body [25].

2.4.1 Electrocardiogram (ECG)

Cardiovascular parameters are extremely useful to investigate the human condition.
The ECG is one of the most common heart tests used in the assessment and diagnosis
of Cardiovascular diseases. As the cells in the heart undergo depolarization and repo-
larization, electrical currents are generated and conducted through the surrounding
tissues, spreading throughout the body. These electrical currents can be measured
using a set of electrodes placed on specific locations on the body surface, and the re-
sulting recording is called an electrocardiogram (ECG). The ECG consists of repeating
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waves that represent the sequence of depolarization and repolarization in the atria
and ventricles. The ECG does not measure absolute voltages but instead captures
changes in voltage relative to a baseline level. Typically, ECGs are recorded on paper
at a speed of 25 mm/s, with a vertical calibration of 1 mV/cm. The ECG intervals
can provide information about the rate, the rhythm, and the electrical activity of the
heart. Figure 2.5 represents an ECG typical waveform, recorded by placing electrodes
on the surface of the human body and characterized by:

• The P-wave: it represents the depolarisation of the atria.

• The QRS complex: it represents the depolarisation of the ventricles (the most
prominent wave in ECG).

• The T-wave: it represents the repolarization of the ventricles.

• The PR interval: it represents the conduction of the impulse from the atrium to
the ventricles.

• The ST segment: it represents the beginning of the ventricular repolarization.
[2]

Figure 2.5: Components of the ECG trace [2].

2.4.2 PPG signal

The PPG waveform is shown in Figure 2.6, obtained by measuring the amount of light
absorption after transmission through or reflection from human tissue, consisting
of a pulsatile component and a non-pulsatile component. The pulsatile component,
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known as the AC component, is synchronized with the cardiac cycle and reflects
changes in blood volume in the artery. It is influenced by factors such as vasodilation,
vasomotor activity, and vascular tones. The non-pulsatile component, called the DC
component, includes all other components of the PPG waveform and is affected by
biological characteristics, external factors, and physiological activities.
The amplitude of the PPG waveform varies among individuals due to factors like
physical characteristics, tissue composition, and blood vessel distribution. The
measurement of the PPG waveform is also influenced by environmental factors such
as ambient light. The PPG waveform changes not only with cardiac activity but also
due to respiration, autonomic nervous system activity, arterial activity, and venous
activity Figure 2.7 shows the main three families of factors that influence PPG signal.
The PPG waveform exhibits a rising curve during systole (cardiac contraction) and a
descending curve during diastole (cardiac dilation). Feature points in the waveform
include pulse onset, systolic peak, dicrotic notch, and diastolic peak. The absolute
value of PPG amplitude cannot be directly compared across individuals due to
variations in body tissues and individual characteristics. PPG baseline is affected
by various factors such as respiration, vascular compliance, vascular tone, pain,
and drug use. The amplitude of the systolic peak, a representative characteristic of
the PPG waveform, is correlated with microvascular expansion and cardiac output.
Changes in vascular tone and compliance affect the occurrence of the dicrotic notch.
Aging influences the time difference between the diastolic peak and the systolic peak.
[27]

Figure 2.6: Principle of phototoplethysmogram generation and waveform features
[27].
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Figure 2.7: An overview model of the PPG phenomena and its three families of factors
that influence PPG signal [22].

2.4.3 Parameters derived from ECG and PPG signals

Heart rate variability (HRV) is a valuable measure of the parasympathetic nervous
system’s influence on heart activity, commonly used in psychophysiology and car-
diovascular research. It offers a non-invasive and cost-effective way to assess cardiac
function. Traditional HRV assessment relies on electrocardiogram (ECG) recordings,
which provide high accuracy but require electrodes and may be less convenient.
In recent times, HRV can also be measured using interbeat interval (IBI) data ob-
tained through methods like chest belts or Polar heart rate devices. However, these
methods may introduce artifacts and lack the precision of ECG-based HRV analysis.
Photoplethysmography (PPG) is an emerging technique that measures variations in
absorbed light caused by arterial blood flow and can be used as pulse rate variability
(PRV). PRV has shown a strong correlation with HRV and can be measured quickly
and easily using smartphones or low-cost devices.Figure 2.8 shows synchronized
(ECG) and (PPG) waveforms. PPG has gained popularity due to advances in op-
toelectronics and digital signal processing, making it a non-invasive, cost-effective,
and user-friendly alternative to ECG-based HRV analysis. In clinical settings where

Figure 2.8: Typical synchronized electrocardiogram (ECG) and photoplethysmo-
graphic (PPG) waveforms and their respective components [22].
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pulse oximeters are readily available, incorporating HRV analysis via PPG provides
advantages over ECG, especially when metal-containing sensors are restricted. PPG
sensors are typically attached to a finger or earlobe, requiring fewer leads and elec-
trodes compared to ECG, making them a practical choice for various monitoring
situations [28][22]. Figure 2.9 shows an Illustration of typical R-wave peak detection
observed from ECG signals (A), corresponding heartbeats detected on PPG signals
(B), and the resulting heartbeat intervals from both origins (C).

Figure 2.9: Illustration of typical R-wave peak detection (cardiac muscle contraction)
observed from ECG signals (A), the corresponding heartbeats detected on
PPG signals (B) and the resulting heartbeat intervals from both origins (C)
[22].

HRV assesses beat-to-beat variability and provides time-domain, frequency-domain,
and non-linear domain indices for analysis, measuring the variability in the Inter-
Beat-Interval (IBI) between successive heartbeats. Table 2.2 describes briefly the
commonly used HRV/PRV indices and their physiological origin. HRV observation
periods range from over 1 minute to less than 24 hours [25].
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Table 2.2: Summary of the common heart rate variability parameters and their physi-
ological origin [29].

Domain Variable Description Physiological origin
Time SDNN Standard deviation of all

R–R intervals
Cyclic components responsible
for heart rate variability

RMSSD Root mean square of suc-
cessive differences

Vagal tone

pNN50 Percentage of successive
normal sinus RR intervals
more than 50 ms

Vagal tone

HR Mean of Heart rate -
MeanNN Mean of all R-R interval -

Frequency-domain LF Low frequencies Mix of sympathetic and vagal ac-
tivity, baroreflex activity

HF High frequencies Vagal tone
Non-linear indices SD1 Standard deviation –

Poincaré plot Crosswise
Unclear, depicts quick and high
frequent changes in heart rate
variability

SD2 Standard deviation –
Poincaré plot Lengthwise

Unclear, depicts long-term
changes in heart rate variability

2.4.4 EDA signal

Electrodermal activity (EDA) reflects sympathetic innervation of sweat glands and
involves tonic and phasic changes in electrical conductance on the skin. Sudomotor
nerves, part of the sympathetic nervous system, control eccrine sweat glands, influ-
encing sweat production and duct opening. EDA is primarily linked to sympathetic
nervous system activity and is associated with various functions, including gross
movements, thermoregulation, emotional processes, and attention. Skin conductance,
a measure of EDA, has been used extensively in psychological research to assess
the skin’s electrical resistance. It increases in response to stressors, and basal resis-
tance decreases. Skin conductance reflects both immediate and long-term emotional
arousal, making it a valuable indicator of autonomic nervous system activity[30][31].
Skin conductance responses (SCRs) consist of a tonic component (skin conductance
level, SCL) and a phasic component (conductance responses). SCL fluctuates slowly,
reflecting sweat diffusion, while SCRs result from rapid sweat release through duct
openings, triggered by sympathetic nerve bursts, and it is often used as a general
measure of psycho-physiological stress, while SCLs indicate overall sympathetic
activity. Peak amplitude, measured as the difference between the SCR’s peak and
valley, is used in skin conductance response analysis. To enhance accuracy, a decon-
volution analysis method has been applied to extract individual SCRs and measure
peak amplitudes more precisely[32]. Figure 2.10 shows EDA data decomposition
into tonic and phasic components and Figure 2.11 shows A typical skin conductance
response (SCR) and illustration of some derived measures (Features).
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Figure 2.10: EDA data decomposition into tonic and phasic components [33].

Figure 2.11: A typical skin conductance response (SCR) and illustration of some
derived measures [33].
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Chapter 3

Artificial intelligence

3.1 Introduction
Artificial intelligence can be defined as the capability of computer-controlled ma-
chines or robots to carry out tasks typically associated with intelligent beings. It
involves software and hardware methods that mimic human behavior and think-
ing. Weak AI and strong AI, also known as general artificial intelligence, are two
categories of AI based on the system’s degree of intelligence compared to that of
a human. Weak AI, or soft AI, is commonly used in practical applications and can
efficiently solve specific problems with acceptable accuracy. Strong AI, or general
artificial intelligence, is the focus of research. One of the major components of AI is
machine learning (ML), which includes a subset of algorithms called deep learning
(DL). DL is a relatively new addition to the ML family and is based on artificial neural
networks. The interconnection between AI, ML, and DL is shown in Figure 3.1. Apart
from ML, other significant subfields of AI include natural language processing, text
and speech synthesis, computer vision, robotics, planning, and expert systems [34]
[35]. These domains of AI are illustrated in Figure 3.2.

Figure 3.1: Relationship between artificial intelligence (AI), machine learning (ML),
and deep learning (DL) [35].
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Figure 3.2: Subsections of artificial intelligence [34].

3.2 Features selection
A key idea in modeling is feature selection, which can improve a model’s perfor-
mance by eliminating unnecessary features. Feature selection becomes one of the
crucial steps in building our stress detection model in order to reduce the complexity
and the time needed for the execution of computations, which have been greatly
increased due to the use of cross-validation. In order to enhance the effectiveness of
stress detection, the most pertinent and significant features should be chosen. The
ranking of feature importance was performed using two methods: Univariate feature
ranking for classification using chi-square tests (Chi-test), in Matlab, and the Pear-
son’s correlation coefficient with the Waikato Environment for Knowledge Analysis
(WEKA) [36]. The former one is so-called because it is done on two distributions to
determine the level of similarity of their respective variances. In its null hypothesis,
it assumes that the given distributions are independent [37]. The Chi-square test can
be written as

χ2 = ∑
(O − E)2

E
(3.1)
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where χ2 represents the calculated value of the chi-square test, ∑ denotes the sum, O
represents the observed number of events in each category, E represents the expected
number of events in each category, and (O − E)2 represents the squared difference
between the observed and expected number of events in each category. In our case,
using the Matlab function fscchi2, which examines whether each predictor variable
is independent of a response variable by using individual chi-square tests. A small
p-value of the test statistic indicates that the corresponding predictor variable is
dependent on the response variable, and, therefore is an important feature. We
computed the predictor scores as –log(p), with p being the p-value. Therefore, a
large score value indicates that the corresponding predictor is important. Then, we
computed the mean value of the score and used it as a threshold.
Then, using WEKA, we applied a Pearson correlation coefficient to create rankings for
each feature. Pearson’s correlation coefficient is a measure of the linear relationship
between two variables, X and Y. It ranges between -1 and +1, where -1 indicates
a perfect negative linear relationship, 0 indicates no linear relationship, and +1
indicates a perfect positive linear relationship. The formula for the Pearson correlation
coefficient is

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√︁
∑n

i=1(xi − x̄)2 ∑n
i=1(yi − ȳ)2

(3.2)

where rxy represents the Pearson correlation coefficient between X and Y, ∑ denotes
the sum, n is the sample size, xi and yi are the ith observations of X and Y, respec-
tively, x̄ and ȳ are the sample means of X and Y, respectively. In our case, the function
CorrelationAttributeEval was applied to evaluate the worth of an attribute by mea-
suring the correlation between it and the class. Any attributes with rankings below a
cutoff of 0.10 were eliminated [38].

3.3 Machine Learning (ML)
Machine learning algorithms are utilized to analyze large, complex datasets and
identify patterns by employing statistical, probabilistic, and optimization techniques.
These algorithms find applications in various fields, such as text categorization,
network intrusion detection, email filtering, credit card fraud detection, customer
behavior analysis, manufacturing process optimization, and disease modeling. Su-
pervised machine learning algorithms, which involve training a model using labeled
data to predict outcomes for unlabeled examples, are predominantly used in these ap-
plications [39]. The main objective of machine learning (ML) is to develop predictive
models that perform well on new data. A "good" model is one that can generalize
and make accurate predictions beyond the data it was trained on. It is important to
find the right balance between model complexity and flexibility to avoid overfitting,
where the model becomes too specialized to the training data and fails to general-
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ize. ML algorithms adjust their parameters to the training data while optimizing
the bias-variance tradeoff. This tradeoff represents the relationship between model
complexity and flexibility. The goal is to find the optimal level of complexity that
allows the model to generalize well to new data. Figure 3.3 shows a Decision tree
to assist in task identification. Given feature matrix X and a response vector y, the
first decision is to choose between unsupervised (outcome y is unobserved) and
supervised (outcome y is observed) learning. In the case of supervised learning,
if y is discrete (e.g. species classes), it is a classification task, and if y is a continu-
ous variable (e.g. biomass), it is a regression task. ML tasks are categorized into
supervised learning, unsupervised learning, and reinforcement learning. In super-
vised learning, the algorithm is provided with examples of correct task execution,
and the model is trained to minimize the differences between its actions and the
correct actions. Common supervised tasks include classification (labeling data) and
regression (predicting numerical variables). Unsupervised learning refers to tasks
where no examples are provided, and the algorithms optimize a general loss function.
Reinforcement learning involves training the ML algorithm by interacting with an
environment, where learning depends on executed actions and their consequences.
Various model classes and architectures can be used in ML. In supervised learning,
neural networks, regression and classification trees, and distance-based methods are
commonly used. In unsupervised learning, model classes include agglomerative
hierarchical methods and those requiring a specified number of clusters.
Training a model in supervised and reinforcement learning involves two steps. The
first step is defining a loss function that measures the algorithm’s performance in
solving a specific task. The loss function differs for classification and regression tasks.
The second step is using an optimizer to update the algorithm’s parameters and
improve its performance. In unsupervised learning, similarities between observations
are often used to determine grouping [35].

Figure 3.3: Decision tree to assist in task identification in ML [35].
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3.4 Data splitting
Once the data has been collected, cleaned, investigated, and subjected to feature
engineering, it is essential to establish an evaluation strategy for the models that do
not rely on the training data. Two common approaches for this purpose are creating
a separate "holdout" dataset or performing cross-validation. These strategies ensure
that the model’s performance is assessed on unseen data, enabling a more reliable
evaluation.

3.4.1 Hold-Out method

Holdout validation is a common approach for evaluating machine learning models
shown in Figure 3.4 The blue and green samples represent different samples from
2 different classes. In the holdout method, samples are randomly assigned to the
training (purple box), validation (yellow box), or test (orange box) sets. When the
dataset used for training and evaluation of the ML model is small, the performance
measures using validation and test sets are sensitive to the composition of these sets,
and the resulting performance measures often are not reliable. The proportions of
data allocated to each set depend on factors such as the number of data points, data
variability, and model characteristics. Typically, 70% of the data is used for training,
15% for validation, and the remaining 15% for testing, although these percentages
can vary. The training and validation sets are used for model building. The training
set is used to learn the model parameters, which are the properties or variables of
the model that are adjusted during training. Examples of model parameters include
weights and biases in a neural network or coefficients in a linear regression model.
On the other hand, hyperparameters are not learned from the training set. They
are determined using the validation set and include factors such as the number
of layers in a neural network or the regularization values in a regression model.
Hyperparameter tuning, the process of optimizing the hyperparameters, can be
computationally demanding but can be done in a parallel and automated manner.
After the model is trained and fine-tuned, it is evaluated on the test set to estimate
the model’s generalization error, which reflects its performance on unseen data. It is
crucial that the test data are not used during training and fine-tuning to obtain an
unbiased estimate of the model’s performance. Holdout validation is commonly used
for training deep learning models with large-scale datasets due to its computational
efficiency. However, it has limitations when applied to small datasets. A small test set
may not provide a reliable estimate of model performance, and the choice of the test
set can affect the performance measures. Selecting a representative test set for small
datasets can be challenging. Additionally, using a larger test set reduces the available
samples for training, negatively impacting model performance. The choice of the
validation set can also influence the model’s ability to generalize when fine-tuning
the model using holdout validation [40].
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Figure 3.4: The holdout method [40].

3.4.2 Cross-validation (K-folds) method

When the dataset is limited in size, cross-validation techniques are often employed
to address the associated limitations. In k-fold cross-validation, the value of k is
specified, and the dataset is divided into k subsets or folds shown in Figure 3.5. One
fold is used for testing, while the remaining k-1 folds are used for training the model.
This process is repeated k-1 times, ensuring that each subset is used for testing. The
choice of k determines the train-to-test ratio, with common values being 5 (80%
training, 20% testing) or 10 (90% training, 10% testing). However, to determine the
optimal value of k, it is recommended to perform repeated cross-validation and
evaluate the model’s performance across different values of k [41].

Figure 3.5: k-fold cross-validation method [41].
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3.5 Machine Learning Classifiers
Supervised learning algorithms are well-suited for two main types of problems:
classification and regression. In classification problems, the output variable is discrete
and divided into different categories, such as colors or disease diagnoses. On the
other hand, regression problems involve predicting a real-valued output variable,
such as the risk of a specific health condition. In the upcoming sub-sections, a brief
overview of commonly used supervised machine-learning classifiers for disease
prediction will be provided. Figure3.6 illustrates an overall of classification process
for Anxiety disorder.

Figure 3.6: Classification process for Anxiety disorder [42].

3.5.1 Support vector machine (SVM)

The Support Vector Machine (SVM) algorithm is capable of classifying both linear and
non-linear data. It accomplishes this by mapping each data item to an n-dimensional
feature space, where n represents the number of features. The algorithm then iden-
tifies a hyperplane that effectively separates the data items into two classes while
maximizing the margin between the classes and minimizing classification errors.
In more detail, each data point is represented as a point in the n-dimensional space,
with each feature value corresponding to a specific coordinate. The objective of SVM
is to find the hyperplane that best separates the two classes, maximizing the distance
between the hyperplane and its nearest data points from each class. This hyperplane
with a maximum margin serves as the decision boundary for classification. Figure 3.7
provides a simplified illustration of an SVM classifier [39].
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Figure 3.7: A simplified illustration of how the support vector machine works [39].

3.5.2 Logistic regression (LR)

Logistic regression (LR) Figure 3.8 is a widely used supervised classification method.
It differs from linear regression as it utilizes a sigmoidal curve instead of a straight line.
LR is an extension of ordinary regression and is specifically designed for modeling
dichotomous variables, representing the presence or absence of an event. LR helps
in estimating the probability of a new instance belonging to a specific class. The
output of LR is a probability value ranging between 0 and 1. To use LR as a binary
classifier, a threshold is chosen to distinguish between the two classes. For instance,
if the probability value for an input instance exceeds 0.50, it is classified as "class A";
otherwise, it is classified as "class B". LR can also be extended to handle categorical
variables with more than two values, known as multinomial logistic regression [39]
[43].

Figure 3.8: Graphical representation of logistic regression [43].
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3.5.3 Decision tree (DT)

The decision tree (DT) algorithm is one of the earliest and widely used machine
learning algorithms. It represents the decision-making process through a hierarchical
tree structure, where each node corresponds to a test on input variables or attributes.
The tree starts with a root node and branches based on the outcomes of the tests,
leading to internal nodes and eventually reaching leaf nodes that represent decision
outcomes.
Decision trees are known for their interpretability and ease of learning. They are
commonly employed in medical diagnostic protocols due to their quick learning
capabilities and straightforward interpretation. When classifying a sample using a
decision tree, the outcomes of tests at each node along the path provide the necessary
information to determine its class [39]. An example of a decision tree with its compo-
nents and rules is illustrated in Figure 3.9.

Figure 3.9: An illustration of a Decision tree [39].

3.5.4 Random forest (RF)

A random forest (RF) Figure 3.10 is an ensemble classifier that consists of multiple
decision trees, similar to how a forest is a collection of many trees. Deep decision
trees can often lead to overfitting, where they become too specific to the training
data and result in high variation in classification outcomes for small changes in
input data. They can also be sensitive to the training data, making them less reliable
when applied to a test dataset. In an RF, the individual decision trees are trained on
different subsets of the training dataset. When classifying a new sample, the input
vector of that sample is passed through each decision tree in the forest. Each tree
considers a different subset of the input vector and produces a classification outcome.
The forest then combines these outcomes by either taking a majority vote (for discrete
classification outcomes) or averaging the results (for numeric classification outcomes).
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By considering the outcomes from multiple decision trees, the RF algorithm reduces
the variance that can arise from relying on a single decision tree for the same dataset
[39].

Figure 3.10: An illustration of a Random forest that consists of three different decision
trees [39].

3.5.5 Naïve Bayes (NB)

Naïve Bayes (NB) is a classification technique based on Bayes’ theorem, which de-
scribes the probability of an event based on prior knowledge of related conditions.
The NB classifier assumes that features within a class are independent of each other,
even though there may be interdependencies among the features of that class. The
working principle of NB can be illustrated using an example in Figure 3.11 of classi-
fying a new object (white circle) into either the ’green’ or ’red’ class. In this example,
there are 40 ’green’ objects and 20 ’red’ objects, making it reasonable to believe that a
new object is twice as likely to belong to the ’green’ class based on the prior probabili-
ties. To classify the ’white’ object using NB, a circle is drawn around it, encompassing
several points chosen prior, regardless of their class labels. In the example, four
points (three ’red’ and one ’green’) are considered. The likelihood of the ’white’
object given ’green’ is calculated as 0.025, and the likelihood of ’white’ given ’red’ is
0.15. To obtain the final classification, the prior probabilities and likelihood values
are combined using the ’multiplication’ function, resulting in posterior probabilities.
In the example, the posterior probability of ’white’ being ’green’ is 0.017, and the
posterior probability of ’white’ being ’red’ is 0.049. Based on these probabilities, the
’white’ object would be classified as a member of the ’red’ class according to the NB
technique.
Overall, NB utilizes prior probabilities, likelihood values, and Bayes’ theorem to
classify new objects by combining different sources of information [39].
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Figure 3.11: An illustration of the Naïve Bayes algorithm [39].

3.5.6 K-nearest neighbor (K-NN)

The K-nearest neighbor (KNN) algorithm is a simple and early classification algo-
rithm. It can be considered a simpler version of the Naïve Bayes (NB) classifier
as it does not involve probability values. In KNN, ’K’ represents the number of
nearest neighbors that are considered to determine the classification of a new object.
The KNN algorithm does not rely on probabilistic calculations like NB. Instead, it
identifies the K nearest neighbors based on a chosen distance metric and assigns
the new object to the class that is most common among its neighbors. The value of
’K’ can significantly impact the classification results for the same sample object. For
instance, in Figure 3.12, the KNN algorithm is illustrated classifying a new object.
When K = 3, the new object (star) is classified as ’black’, while it is classified as ’red’
when K = 5 [39].

Figure 3.12: A simplified illustration of the K-nearest neighbor algorithm [39].
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3.5.7 Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are machine learning algorithms that draw inspi-
ration from the functioning of the neural networks in the human brain. They were
initially proposed and gained popularity in the 1980s. In the biological brain, neurons
are interconnected through multiple axon junctions, forming a graph-like architecture.
These connections can be rewired, allowing for adaptation, information processing,
and storage. Similarly, ANN algorithms can be represented as interconnected nodes.
The output of one node serves as input to another node for further processing, follow-
ing the interconnections. Nodes are organized into layers, including input, output,
and potentially one or more hidden layers. Nodes and edges in ANNs have weights
that determine the strength of communication between them. These weights can
be adjusted during training, either amplifying or weakening the signal strengths.
Through repeated training, ANNs learn to make predictions for test data by adapting
the matrices, node values, and edge weights. Figure 3.13 illustrates an ANN with
two hidden layers, showcasing its interconnected nodes [39].

Figure 3.13: An illustration of the artificial neural network structure with two hidden
layers [39].

3.6 Deep Learning
Deep learning, which has gained prominence since 2006, is a data processing method
involving intricate multi-layer structures and nonlinear transformations. Notably,
it has made significant breakthroughs in computer vision, speech recognition, and
various other fields, earning recognition as a top technological advancement. Deep
learning, inspired by the human neural network, abstracts data through successive
layers, enabling tasks like target detection, classification, and segmentation. A key
advantage is its ability to automate feature extraction, replacing manual efforts with
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unsupervised or semi-supervised learning and hierarchical feature extraction algo-
rithms [44]. In the context of medical data, especially medical imaging, deep learning,
specifically Convolutional Neural Networks (CNNs), plays a pivotal role. Despite
the diverse and fluctuating nature of medical data, CNNs excel in classification tasks,
providing robust solutions. Various CNN architectures, such as AlexNet, VGGNet,
and GoogLeNet, have demonstrated superior performance in image classification
tasks. These networks employ techniques like convolution, pooling, and nonlinear
activations (e.g., ReLU) to learn complex patterns efficiently [44][45]. Figure 3.14
illustrates General architecture of neural network and deep learning.

Figure 3.14: General architecture of neural network and deep learning [46].

Transfer learning is a rapid approach to creating precise models. Collecting an exten-
sive dataset for training an entire CNN from the ground up is typically a challenge.
Consequently, transfer learning emerges as the preferred option, where a pre-trained
network, originally trained on a substantial benchmark dataset like ImageNet, is
employed to address diverse problems, significantly reducing computational re-
quirements. This technique involves transferring features learned by a primary
(pre-trained) network to a target network, which is then fine-tuned using a specific
target dataset, an example of pre-trained DNN: GoogLeNet, ResNet18, ResNet50,
SqueezeNet, DenseNet-121 deep neural networks [47][46].

3.7 Hyperparameter Tuning
Hyperparameters are static model variables that control the model’s behavior and
architecture, set by the user before training. The most widely used techniques for
hyperparameter tuning are Grid search, Random grid search, and Bayesian Opti-
mization. In Grid Search, hyperparameters values are systematically predefined. In
Random Grid Search, the hyperparameter space is randomly populated. In Bayesian
Optimization, the chosen hyperparameters values are progressively optimized to
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approximate a minimum [48]. Proper hyperparameter tuning is crucial for achiev-
ing better results with any machine learning model. In Figure 3.15 Illustration of
how hyperparameter space (over two hyperparameters) is populated by different
search schemes. Hyperparameter optimization significantly impacts the output of
a machine-learning model, making it a critical step in its development. Without
efficient hyperparameter optimization, individuals may randomly select hyperpa-
rameters and repeatedly train and evaluate the model, leading to a wasteful and
inefficient process that consumes valuable time and resources [49]. This is where
OPTUNA comes into play, as it automates the hyperparameter optimization process.
Optuna is a versatile hyperparameter optimization framework that introduces the
concept of "define-by-run" to dynamically create search spaces. It efficiently handles
both independent and relational sampling methods, making it adaptable to various
tasks and environments. Optuna also incorporates an efficient pruning mechanism
to eliminate unpromising trial runs, ensuring cost-effectiveness. Its user-friendly
setup and memory data structure storage make it a valuable tool for hyperparameter
tuning, offering a powerful solution for optimizing machine learning models [50][49].

Figure 3.15: Illustration of how hyperparameter space (over two hyperparameters) is
populated by different search schemes [48].

3.8 Explainable AI
In various applications, the need to understand why a machine learning model makes
specific predictions is becoming increasingly important, especially as complex black-
box models deliver high accuracy but are challenging to interpret. This challenge
is particularly critical in fields like healthcare, where ML models are used for early
disease detection. To address this interpretability issue, Explainable Artificial Intelli-
gence (XAI) tools like Lime, Dalex, and SHAP have emerged. In this study, SHAP
(SHapley Additive exPlanations) is employed, which is considered a state-of-the-art
XAI method. SHAP is rooted in game theory and assigns unified importance scores
to features in ML models. It helps in understanding how different features impact
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model predictions, either globally across all classes or locally for individual obser-
vations, thus enhancing transparency compared to traditional feature importance
techniques. This approach aids in demystifying complex model behavior, making
it invaluable for applications like healthcare. Game theory involves two essential
components: a game and its participants. In the context of a classification model, the
"game" represents the process of generating the model’s outcomes. In this analogy,
the "players" take on the role of the features within our model. Shapley analysis
assesses and quantifies the contribution of each "player" to the overall "game," while
SHAP analysis precisely measures the impact of each feature on the model’s predic-
tions [51][52].

3.9 Classifier performance index
The diagnostic ability of classifiers is commonly evaluated using the confusion
matrix and the receiver operating characteristic (ROC) curve. The confusion matrix,
also known as the error or contingency matrix, provides a framework for assessing
classifier performance Figure 3.16 (a). It includes measures such as true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). These measures
help determine the accuracy of the classifier’s predictions. The most commonly used
to analyze the performance of classifiers, including those that are based on supervised
machine learning algorithms are metrics of Accuracy (3.3), Precision (3.4), Recall (3.5),
and F-measure (3.6).
The ROC curve is a fundamental tool for evaluating diagnostic tests and is created
by plotting the true positive rate against the false positive rate at different threshold
settings. The area under the ROC curve (AUC) is a commonly used metric to assess
the predictability of a classifier. A higher AUC value indicates a superior classifier,
while a lower value suggests lower predictive accuracy. The AUC value is determined
by the coverage area under the ROC curve Figure 3.16 (b).
In addition to the confusion matrix and ROC curve, other measures such as the
running mean square error (RMSE) and mean absolute error (MAE) are used to
evaluate classifier performance. RMSE represents the mean value of squared errors
between actual and predicted values, while MAE indicates the absolute value of the
difference between actual and predicted values. These measures provide further
insights into the accuracy of the classifiers [39].

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

Prec =
TP

TP + FP
(3.4)

Rec =
TP

TP + FN
(3.5)
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F1 =
2 ∗ Prec ∗ Rec

Prec + Rec
=

2 ∗ TP
2 ∗ TP + FP + FN

(3.6)

Figure 3.16: (a) The basic framework of the confusion matrix; and (b) A presentation
of the ROC curve [39].
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Literature Review

4.1 Introduction
Stress is a common experience in modern work environments, and it can have
negative effects on employee well-being and productivity. As a result, there has been
increasing interest in developing tools and methods for detecting and managing
stress in the workplace. Wearable devices and machine learning algorithms have
been used in previous studies to detect stress, but these methods have limitations in
terms of invasiveness, noise, and reliability in various environments. Therefore, this
chapter aims to review recent research on stress detection methods in the workplace,
focusing on approaches that acquire data from wearable sensors to improve accuracy
and reduce limitations.

4.2 Method
To conduct this literature review, a comprehensive search was performed in electronic
databases such as PubMed, Scopus, and Google Scholar. The search terms included
“stress detection”, “workplace”, “wearable devices”, “Heart rate variability”, “Elec-
trodermal Activity”, “machine learning”, and related keywords. Inclusion criteria
were studies published in English language journals or conference proceedings from
2019 to 2023 that focused on stress detection using wearable devices in the work-
place. Exclusion criteria were studies that did not meet the inclusion criteria or were
duplicates. The screening of titles and abstracts was followed by full-text screening,
and relevant data were extracted from the selected studies with a total number of
fourteen. The extracted data included the Device name, signals used in stress detec-
tion, the used classifiers, type of stressors used, accuracy, and the number of subjects.
The results of the literature review will be presented as a narrative synthesis and
summarized in the Table 4.1.
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4.3 Results

4.3.1 Rescio et al. (2023)

The study [53] conducted by Rescio et al. in 2023 aimed at designing an automated
stress detection platform to address the new problems that arise owing to the human-
machine interaction in Industry 4.0, by combining data from a wearable device and an
environmental system. Twenty subjects wore a Shimmer device shown in Figure 4.1
designed to be minimally invasive with good signal stability and low noise, and
a commercial camera (Logitech C920 HD Pro webcam) was added to improve the
performance of the system. The protocol shown in Figure 4.2 consisted of several
stressors, such as the Trier Social Stress Test, Mental Arithmetic Stress Test, Stroop
color, Math, and Memory tests. Features were extracted from the analyzed PPG and
GSR signals, as well as ambient features, using the camera. Subsequently, several
supervised (Decision Trees (DT), Random Forest (RF), K-Nearest Neighbors(KNN)),
unsupervised (K-means, Gaussian Mixture Model (GMM), Self-Organizing Map
(SOM)) classifiers were used to evaluate the proposed system. Gaussian Mixture
Model achieved the best performance with an accuracy of 77.4% for one level of stress
and 75.1% for two levels of stress using the unsupervised approach, while Random
Forest Model achieved the best performance with an accuracy of 94.9% for one level
of stress and 91% for two levels of stress using the supervised approach.

Figure 4.1: Prototype of wearable smart system of Rescio et al. study.

Figure 4.2: Stress-inducing protocol of Rescio et al. study.
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4.3.2 Barki et al. (2023)

The study [54] carried out by Barki et al. in 2023 aimed at designing an ear-mounted
photoplethysmography (PPG) system to detect mental stress. Fourteen participants
wore the proposed device which mainly uses a MAX30102 pulse oximeter to obtain a
PPG signal and a BNO055 accelerometer and gyroscope which was used to remove
motion artifacts from the PPG. Figure 4.3 shows the prototype of the proposed system.
Stress was induced using the Stroop color-word test and mental arithmetic tasks.
After analyzing the PPG signal, it was transformed into scalograms using continuous
wavelet transform (CWT). Subsequently, stress classification was performed using a
convolutional neural network. The results, in terms of accuracy, were 92.04%; and
96.02% after adding white Gaussian noise to the raw PPG signals.

Figure 4.3: Prototype of the proposed system of Barki et al. study.

4.3.3 Mach et al. (2022)

In the study [55] carried out by Mach et al. in 2022, a laboratory experiment consisting
of an arithmetic task which is counting down or up steadily, and physical activity
(sitting vs. stepping) with 52 participants was conducted. The aim of this study was
to assess mental workload via heart rate measurement using the Samsung Gear S3
smartwatch, furthermore, to confirm these results a chest strap (1-channel ECG) was
used. They found that the mean heart rate increased when participants performed
the arithmetic task compared to the conditions with no arithmetic task during both
conditions (sitting and stepping). However, during stepping, the congruency of the
heart rate values conducted by the smartwatch and ECG chest strap was weak.

42



Chapter 4. Literature Review

4.3.4 Seo et al. (2022)

In the [56] study done by Seo et al. in 2022, 24 participants wore a Zephyr chest
strap equipped with a BioHarness module to acquire ECG and Respiratory signals.
Furthermore, the subjects were sitting in front of a laptop and faced a camcorder
screen in order to register facial information. The experiment lasted for 45 min and
comprised two stages: an initial setting stage, and an actual experiment stage which
is the Stroop task. The actual experiment consists of Relax, Easy Stroop, Recovery,
Hard Stroop, and Recovery, 5 min for each, Figure 4.4 shows the experimental
setup. Afterward, signal and image processing was done followed by a Deep Neural
Network (DNN) classifier. The accuracy for two or three levels of stress classification
was 73.3%, and 54.4% respectively.

Figure 4.4: Experimental Protocol carried out by Seo et al.

4.3.5 Umer (2022)

The study [57] carried out by Umer in 2022, eight participants took part in the experi-
ment that aimed to monitor physical and mental stress in the construction industry.
Equivital EQ02 Life monitor was used to monitor physiological parameters (ECG,
skin temperature, breathing, skin conductance). Figure 4.5 shows the placement of
the sensors. The experiment was divided into two days: the first induce physical
workload by manual handling of a 15-Kg backpack for 25 min, and the second in-
duce mental workload using a digits-transformation task by hearing randomized
four-digit number, for example, 7468 and replying to the number by adding one to
each digit, for example, 8579 against 7468. The task continued with randomized
numbers for 25 min. After that, the participants were asked to perform manual
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material handling as mentioned before to induce mental and physical workload. The
classification of physical and mental stress was performed simultaneously using
machine learning algorithms and the best accuracy achieved using the bagged trees
algorithm was 94.7% to predict physical and mental stress.

Figure 4.5: Sensors placement of Umer study.

4.3.6 Chalabianloo et al. (2022)

In [58] a study by Chalabianloo et al. in 2022, thirty-two subjects were subjected to a
laboratory experiment that consisted of baseline, stress, recovery, and cycling sessions.
Stress sessions were performed using the Stroop task. ECG and HR signals were
recorded using seven different wearable devices simultaneously which are: BITalino
(r)evolution board, Firstbeat Bodyguard2, Polar H10, Zephyr HxM, Empatica E4,
Samsung Gear S2, and CoreSense, Figure 4.6 shows the placement of sensors. Support
Vector Machine, Random Forest, Extremely Randomized Tree, and Light Gradient
Boosting Machine were used to classify four classes: Baseline, Stress, Recovery, and
Cycling. The best accuracies across most of the devices were obtained using an
Extremely Randomized Tree classifier, for example, 88.26% for the BITalino device.
Furthermore, in order to study the effects of multi-modality, the EDA signal was
introduced using Empatica E4. After that, the same classifiers mentioned above were
used. The accuracy obtained considering only HR was 83.89% using the Random
Forest classifier, while when considering HR and EDA the accuracy became 90.62%
using the Extremely Randomized Tree classifier.
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Figure 4.6: Sensors placement of Chalabianloo et. al study.

4.3.7 Li et al. (2022)

The study [59] by Li et al. in 2022 aimed to measure the workplace stress of nurses
using Heart Rate Variability (HRV) analysis based on data derived from wearable
ECG heart rate monitors. Seventeen nurses participated in the study and wore
wireless heart rate monitor (myBeat-WHS-1, Union Tool Co., Ltd., Japan) to obtain
ECG measurements during work time. After statistical analysis of HRV features, they
found that Low-Frequency components (LF%) at work phase was significantly higher
than at rest phase. In contrast, the natural logarithm of High-Frequency components
(LnHF), and the squared root of the mean squared differences of successive NN
intervals (RMSSD) at work phase were significantly lower than at rest phase. The
results demonstrate the ability of stress detection using wearable sensors and HRV
analysis.

4.3.8 Fauzi et al. (2021)

The study [60] done by Fauzi et al. in 2021 aimed at continuous stress detection of
hospital staff using Empatica E4 smartwatch. WESAD dataset was considered in
this study, which includes data from fifteen people. Features were extracted from
EDA, Skin temperature, Acceleration, and Blood Volume Pulse signals. Furthermore,
several machine learning classifiers were used such as Naïve Bayes (NB), Support
Vector Machine (SVM), Neural Network (NN), K-Nearest Neighbors (KNN), Logistic
Regression (LR), Random Forest (RF), and Decision Tree (DT) in addition to ensem-
ble methods which are technique trains numerous classification methods and then
combine them using a particular approach. The best accuracy obtained using an
individual classifier was 86.61% using RF classifier while for the ensemble technique
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was 87.10% using the combination of RF, LR, and NN classifiers.

4.3.9 Dai et al. (2021)

In the study [61] carried out by Dai et al. in 2021, thirty-two subjects participated in 2
hours of laboratory and 24 hours of field-based experiments. The aim of the study
was comparing between objective and subjective stress detection models. First of
all the subjects wore a Fossil Gen4 Explorist smartwatch which is equipped with a
photoplethysmogram (PPG) sensor as well as a six-axis inertial measurement unit
(IMU). The Laboratory experiment included several stages such as resting, speech,
recovery, math, and cold stressors. Moreover, the subjects were asked to continue
wearing the smartwatch to complete 24 hours field-based experiment and collect data
regarding stress in free-living situations. Support Vector Machine (SVM), Random
Forest (RF), AdaBoost, gradient boosting (GB), and logistic regression classifiers were
used to detect stressed or non-stressed periods in both objective and subjective stress
models. The best accuracies obtained were: 82.6% for the objective stress model using
the SVM classifier and 79.8% for the subjective model using the RF classifier.

4.3.10 A S et al. (2020)

In [62] a study by A S et al. in 2020 aimed to stress detection during the pre-surgery
period based on Electrodermal activity using wrist wearables. Forty-one subjects
wore ADI-VSM wrist-watch, which enables continuous monitoring of Electrodermal
activity. The physiological data were collected for an approximate duration of 3
hours prior to the scheduled surgery. After signal processing and features extraction,
an 85.06% of accuracy was obtained using a K-Nearest Neighbor classifier for three
classes of stress (Low, Moderate, and High).

4.3.11 Said can et al. (2020)

In the study [63] carried out by said can et al. in 2020. Blood Volume Pressure, Skin
Temperature, Electro Dermal Activity, IBI (Inter-beat Interval), and 3D Acceleration
data were collected from 16 participants using Emaptica E4 smart band during daily
activities interspersed with relaxation sessions like doing yoga, or mindfulness. After
that, several classification algorithms were used in order to assess stress levels such
as MultiLayer Perceptron, Random Forest, Linear Discriminant Analysis, Principal
Component Analysis, and K-nearest Neighbors. The best accuracy achieved consid-
ering HRV, EDA, and accelerometer signals was 85.36% using the LDA algorithm for
three classes (high stress, mild stress, and relax), while the best accuracy achieved by
neglecting the relax class was 98% using MLP and RF algorithms.
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4.3.12 Kaczor et al. (2020)

The study [64] carried out by Kaczor et al. in 2020 aimed at the objective measurement
of physician stress in the emergency department using Empatica E4 smartwatch.
Electro Dermal Activity, Acceleration, and heart rate signals were acquired from eight
participants during clinical shifts (typically 8-10 hours). After that several machine-
learning classifiers were used which are: decision trees, discriminant analysis, logistic
regression, naïve Bayes, support vector machines, nearest neighbor, and ensemble
classifiers, and the best accuracy obtained was 70% to detect stress during the working
shift with respect to the baseline condition.

4.3.13 Kyriakou et al. (2019)

The work [65] by Kyriakou et al. in 2019 aimed to bridge the gap between laboratory
settings and real-world field studies by introducing a new algorithm to detect mo-
ments of stress (MOS) using wearable physiological sensors. Eleven subjects wore
an Empatica E4 device and were subjected to a laboratory experiment, an auditory
stimulus was used to induce stress. The algorithm utilized GSR and ST signals to
assess stress levels. Furthermore, in order to validate the algorithm, a real-world
urban experiment was introduced. An accuracy of 84% was obtained using the
proposed algorithm.

4.3.14 Suni Lopez et al. (2019)

In the study [66] done by Suni Lopez et al. in 2019, a laboratory experiment was
conducted in order to detect stress in the office workplace, the experiment consisted
of interacting with a laptop where the Stroop task was installed. Twelve subjects
participated and were asked to wear the E4 smartwatch to collect EDA data, and
headphones to interact with the environmental trigger (fire alarm). After signal
filtering, aggregation, and discretization, an accuracy of 79.17% was obtained using
statistical method classification.

hence, based on the literature review, the state-of-the-art and future studies to assess
and detect stress levels by means of improving the analysis of signals during different
situations, particularly in different work conditions such as speech-induced stress,
physical-induced stress, etc. using several sensors such as Empatica E4 wrist-watch
which was the most used device since it is less obtrusive and suitable for daily life
and work stress assessment.
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Chapter 5

Materials and Methods

5.1 Introduction
This work’s primary objective is to analyse data collected by Empatica E4 and to
assess the validity of our model, using Machine learning techniques. The data have
been collected in our laboratory after the candidates have been instructed about
the protocol, the aim of this study, and signed privacy questionnaires. A total of 29
subjects were individuated and equipped with Empatica E4. The chosen environment
for this study is Matlab 2022 for pre-processing, and Python for classification. This
section is divided into subsections, namely Empatica E4, Data Acquisition Protocol,
Data Pre-Processing, Features extraction, Machine Learning algorithms, and Deep
Learning, each dedicated to a specific portion of the work carried out.

5.2 Materials

5.2.1 Empatica E4 bracelet

The Empatica E4 bracelet was the instrument used in the study. It is a wearable
device made to continuously and instantly gather data. The temperature sensor,
accelerometer, EDA sensor that measure the skin’s galvanic impedance, and PPG
sensor that allow the detection of the blood volume pulse make up the E4’s four
sensors, all of which are useful for the detection of physiological data Figure 5.1
shows the position of Empatica E4 sensors. For improved stability of the device on
the wrist during testing, the subjects wore the E4 in such a way that it was snug
enough not to slide along the arm.
The Bluetooth streaming acquisition was chosen to store the data. When connecting
the E4 to a smartphone via the E4 Real-time app, the bracelet will automatically
begin recording the physiological parameters, which the app can then monitor in
real-time shown in Figure 5.2. Then, the data was immediately uploaded to E4
Connect, Empatica’s cloud platform Figure 5.3, to download them and start with the
pre-processing.
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Figure 5.1: Empatica E4 with the position of its sensors [67].

Figure 5.2: E4 mobile streaming interface [67].

Empatica E4 Technical Specifications

• PPG Sensor: This sensor samples at a rate of 64 Hz and utilizes 4 light-emitting
diodes (2 green and 2 red) along with 2 photodiodes to capture signals. Green
light provides information on heartbeats, while red light helps reduce motion
artifacts.

• EDA Sensor: The Electrodermal Activity (EDA) sensor measures skin electrical
conductance changes at a rate of 4 Hz, within the range of 0.01 to 100 µS, with a
resolution of 900 pS. It uses stainless steel (standard) or Silver (Ag) plated with
a metallic core, electrodes placed on the wrist, and applies a small alternating
current to the skin.

• IR Thermometer: Configured to sample at 4 Hz, this sensor measures skin
temperature (SKT) using an optical thermopile sensor. It maintains accuracy
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Figure 5.3: Empatica E4 Working Modes [67].

within the human skin temperature range (36–39 ◦C) with a calibration range
of -40 to 115 ◦C.

• 3-Axis Accelerometer: With a fixed sampling frequency of 32 Hz, this
accelerometer provides high-sensitivity motion detection across three axes (X,
Y, Z) and a default range of ±2g. Custom firmware allows for the selection of
ranges ±4g or ±8g with a resolution of 8 bits.

5.2.2 Data Acquisition Protocol

In order to evaluate mental stress, a protocol must be defined and appropriate stres-
sors should be identified. Several categories can be individuated, such as cognitive
stressors, characterized by tasks that require a high level of attention, concentration,
and memory, such as solving complex mathematical problems or memorizing long
word lists. Social stressors can be perceived as threatening or judgmental, such as
participating in a job interview or giving a public speech. Physical stressors are those
situations that require intense physical effort, such as engaging in high-intensity
exercise or being exposed to extreme temperatures. Finally, we can distinguish
between emotional stressors, which can elicit intense and negative emotions, and
psychological stressors, which require experiencing a sense of uncertainty or lack of
control [68].
On the basis of the different stressors, we searched the literature in order to recreate a
protocol that combined all these stressors to create more complex and realistic mental
stress. We focused on creating mainly cognitive, social, and physiological stressors
since they are the most likely to be triggered in a working environment and easily
induce cognitive load in a laboratory situation.
Therefore, we came out with the protocol depicted in Figure 5.4, developed based on
the one suggested in [69]. We decided to apply this protocol as a base to develop our
own due to the high accuracy that the just quoted study reached.
Three minutes of rest were recorded after the bracelet was turned on in order to
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establish a baseline. At the conclusion of each task, a 2-minute rest period was
carried out. In the first task, participants had ten minutes to construct a Lego object
using only the images printed on the box and no instructions. The second task is to
assemble the same Lego creation within five minutes, but this time with the aid of
the instructions. The third task requires the participant to assemble another Lego
creation made of larger pieces in three minutes while following instructions and
counting backward from 180 (the total amount of time available to complete the task)
to zero. Each of the aforementioned tasks was developed to simulate manufacturing
activities such as assembly and manual handling and to induce the mental stress that
workers can face while doing a specific job. The fourth test is entirely mathematical
and involves repeatedly subtracting backward the number 13 from 511. There is
no time limit in this situation. This task is inspired by the Montreal Imaging Stress
Task, created to investigate the effects of psycho-social stress in the human brain [70].
The fifth and final test requires the subject to give a one-minute oral presentation of
themselves and their resume since it has been demonstrated that an oral presentation
can cause stress and memory impairments [71].

Figure 5.4: Data acquisition protocol carried out for each of the partecipant

5.3 Method

5.3.1 Machine Learning Approaches

Data pre-processing

After the data acquisition, the data have been filtered to extract features and apply
Machine Learning algorithms.
The duration of the signal segment is known to affect HRV and pulse rate variability
(PRV) features [72]. This implies that the HRV features are contingent upon the length
of the segment under consideration. In this study, we employed two pre-processing
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methodologies for segmenting the PPG and EDA signals into 1-minute segments.
Several factors influenced the decision to use a 1-minute interval. Firstly, the data
collection protocol for this study included a 1-minute task - the CV presentation task.
Secondly, a one-minute duration is appropriate for use in wearable health monitoring
devices. Thirdly, in order to maximize data segments:

1. 1-Minute Non-overlapping Segments: We initiated the segmentation of the
PPG and EDA signals into intervals of 1-minute duration. The segmentation
process included all 29 subjects who took part in this study. For each BVP and
EDA signal, a total of 1068 data segments were extracted.

2. 1-Minute with 1-Second Sliding Window with 59-Second Overlapping
Segments. This approach allows us to capture more segments. The
segmentation process remains the same, but instead of non-overlapping
1-minute segments, we create segments that slide forward by 1 second,
resulting in a 59-second overlap between consecutive segments. In this
approach for each BVP and EDA signal, a combined total of 46,030 data
segments were generated. The sliding window approach is a widely used
method in the segmentation step in order to maximize the number of segments
and make a consistent analysis of the signals under consideration [73][74][75].
Figure 5.5 illustrates the non-overlapping and overlapping windowing
techniques.

Following that, the segments were labeled according to the tasks or rest periods.
Regarding the PPG signals, different noises and artifacts can affect the signals during

Figure 5.5: Sliding windows. (a) Non-overlapping; (b) Overlapping-2 s sharing [73].

PPG recording, lowering the stress detection system’s accuracy. The most prevalent
of them is the motion artifact, which has a significant impact on the PPG signal
quality. For this reason, all the segments were filtered using a Chebyshev II order 4
filter with a stopband attenuation of 20dB and a passband of 0.5-5 Hz [76]. Figure 5.6
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(a) (b)

Figure 5.6: (a) Frequency-domain behaviour of a band-pass filter(BPF). (b) Frequency
response of a Chebyshev type II filter [77].

shows (a) frequency-domain behaviour of a band-pass filter(BPF). (b) Frequency
response of a Chebyshev type II filter.
The crucial step is pinpointing the peak of the PPG signal and the distance between
two consecutive peaks. Therefore, peak detection was performed using the findpeaks
function, with a threshold set to a minimum peak distance of 0.4s and a minimum
peak height of 0. Afterwards, peak-to-peak matrices were calculated by subtracting
every two consecutive peaks. Following these computations, only intervals with a
time duration of 500 to 1200 ms (corresponding to heart rates of 120 and 50 beats per
minute) were taken into consideration, while all abnormal intervals (time duration
less than 500 ms or greater than 1200 ms) were excluded. These limits were chosen
based on the work of Zubair et al. [78] but we modified the lower limit to 500ms
because it produces 120 Bpm instead of 600 ms which corresponds to 100 Bpm. This
means that if we choose 600 ms, all HR more than 100 Bpm will be eliminated,
removing HR values associated with stress tasks. However, excluding too many
abnormal intervals would reduce the length of the PRV series. PPG segments with
abnormal intervals that made up less than 15% of all intervals were therefore taken
into account. The threshold of 15% was selected to ensure that the selected PPG
segment still has a time length greater than the 50s after removing abnormal intervals
[78]. As a result, the total number of PPG segments in a non-overlapping way was
reduced to 843, obtaining 320 segments for the rest condition and 523 for all the tasks.
While for overlapping way the total number of segments was reduced to 35,285,
obtaining 10,439 segments for the rest condition and 24,846 for all the tasks.
For what concerns EDA pre-processing, upsampling from 4 to 64 Hz was performed
to make both signals at the equal sampling frequency [79]. To remove any artefacts,
smoothing using the Gaussian low pass filter, with a 40-point window and sigma
of 400 ms, was carried out [38, 80]. Finally, all the clean segments went through the
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feature extraction process. In Figure 5.7, there is a schematic representation of the
PPG and EDA signal processing, while in Figure 5.8 5.9 are visible the signals before
and after the cleaning.

Figure 5.7: Flowchart for overall Machine Learning approaches, including PPG and
EDA pre-processing.

Features extraction and selection

Meaningful information was extracted from each data segment during the features
extraction phase to characterize the various data portions in the time and frequency
domains. Table 5.1 lists the 27 features that were chosen to quantify our data after
being successfully applied in earlier studies for both PPG and EDA signals. For
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Figure 5.8: Raw and clean PPG signal.

the BVP, a total number of 16 features were extracted, in particular, the features
could be divided into two categories: first one PRV based on calculated Peak-to-peak
(PP) matrices and it is worth mentioning that only consistent features in ultra-short
term matrices were included [72]. The second one is related to the signal itself
such as mean, median, mode, minimum, maximum, standard deviation, mean and
standard deviation of the first and the second derivative of the filtered signal [38, 79].
To extract this information, an algorithm was developed using several functions
available on Matlab Statistics and Machine Learning Toolbox. Down below are
reported the mathematical formula for the statistic features and the ones computed
in the frequency domain. Equation 5.1 shows the formula for the mean computation,
while Equations 5.2, 5.3 represents the median and standard deviation, respectively.
In Equation 5.4 the absolute power in high frequency is reported, where f (λ) is
the power spectrum of the PP tachogram [81]. Finally, Equation 5.5 is based on the
summation of successive PP intervals like a moving average. Its deviation represents
the "long term HRV" [81].

x̄ =
1
n

n

∑
i=1

xi (5.1)

⎧⎪⎪⎨⎪⎪⎩
x(k+1)/2 n odd

xn/2+xn/2+1
2 n even

(5.2)

SD =

√︄
∑n

i=1(xi − x̄)2

n − 1
(5.3)
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Figure 5.9: Raw and clean EDA signal.

HF =
∫︂ 0.40Hz

0.15Hz
f (λ) dλ (5.4)

SD2 =

√︃
1
2
· std(PPi+1 + PPi) (5.5)

For the maximum and minimum values of each signal, the functions min[x] and
max[x], with x as a signal, from the previously mentioned toolbox were applied.
The BIO-SP tool was used to extract skin conductance response (SCR) features. SCRs
are commonly found in electrodermal activity signals and can be identified using
differentiation and convolution with a 20-point Bartlett window. This method is
commonly used in EDA signal analysis to identify and characterize SCRs, which
are important indicators of sympathetic nervous system activity. All of the features
available in this tool were extracted, including the mean rise time, duration, am-
plitude, number of peaks, and mean of the SCR signal [80]. In the end, a feature
standardization using the Z-score was performed since the parameter magnitudes
were different.
In order to enhance the effectiveness of stress detection, the most pertinent and signif-
icant features should be chosen. The ranking of feature importance was performed
using two methods: Univariate feature ranking for classification using chi-square
tests (Chi-test), in Matlab, and the Pearson’s correlation coefficient with the Waikato
Environment for Knowledge Analysis (WEKA) [36]. The detailed explanations of
both methods can be found in chapter 3.
In our case, using the Matlab function fscchi2, which examines whether each predictor
variable is independent of a response variable by using individual chi-square tests. A
small p-value of the test statistic indicates that the corresponding predictor variable
is dependent on the response variable, and, therefore is an important feature. We
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computed the predictor scores as –log(p), with p being the p-value. Therefore, a
large score value indicates that the corresponding predictor is important. Then, we
computed the mean value of the score and used it as a threshold.
Then, using WEKA, the function CorrelationAttributeEval was applied to evaluate
the worth of an attribute by measuring the correlation between it and the class using
Pearson correlation coefficient. Any attributes with rankings below a cutoff of 0.10
were eliminated [38].

Classification

A class label related to the presence or absence of stress is returned from the ML
classifiers using the subset of features produced, as well as the total set of features,
as input. Based on the literature review reported in Chapter 4, the most frequently
used and effective binary classifiers for identifying stress have been implemented. In
particular, Random Forest and Logistic Regression, and SVM with cubic kernel in
Python scikit-learn.
For what concerns the non-overlapping way since we have limited data size, these
three approaches were tested using a 10-fold cross-validation configuration setting
to test the Machine Learning algorithms for the model evaluation. In this config-
uration, the new features dataset was divided into 10 subsamples randomly, with
9 subsamples serving as training data and 1 subsample serving as validation data.
The resulting accuracy percentage is the average over the 10 iterations using the
available subsamples as validation data. Instead in the overlapping way since we
have more data segments, the holdout configuration was applied. In particular 70%
for testing, 15% for validation, and 15% for testing. In this configuration model
evaluation was accessed using the testing part. Figure 5.7 illustrates the overall flow
chart for machine learning approach.
The tuning of hyperparameters was done for all three classifiers in both ways using
Optuna framework which is described in chapter 3. In order to get the best metrics,
to optimize a Random Forest classifier following hyperparameter ranges have been
applied:

• ’n estimators’: we vary the number of trees in the forest within the range of 50
to 200, evaluating different ensemble sizes.

• ’max depth’: the maximum depth of each tree is adjusted, with values ranging
from 2 to 20, allowing the trees to capture different levels of complexity.

• ’min samples split’: we investigate the minimum number of samples required
to split an internal node, ranging from 2 to 10, controlling tree branching.

• ’min samples leaf’: the minimum number of samples required to be at a leaf
node is explored, with values ranging from 1 to 10, influencing leaf node
granularity.
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In order to achieve the best results for the SVM model, the cubic kernel was used,
and ’C’: the regularization parameter was optimized within a logarithmic range from
1e-3 to 1e5. This range covers a broad spectrum of regularization strengths, allowing
us to find the best trade-off between model complexity and fitting the data. For the
Logistic regression model the ’C’ hyperparameter was fine-tuned, representing the
inverse of regularization strength. A logarithmic search space from 0.001 to 1000
and ’l2’ regularization with the LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-
Shanno) solver were employed to optimize the model’s performance and ensure its
generalization capability.
The ability to categorize the presence or absence of stress, as a binary classification
task, was assessed using the classification performance metrics of Accuracy.
Additionally, SHapley Additive exPlanations (SHAP) were employed in the top-
performing model, Random Forest. This was done to establish a comparison with
features selected through Pearson and chi-square methods and to gain insights into
which specific features hold the most significant influence over the model’s output.

5.3.2 Deep Learning Approaches

The proposed deep learning architecture is implemented in MATLAB to analyze stress
presence using PPG signal. To train the models, various pre-trained Convolutional
Neural Networks (CNNs) are employed, including GoogLeNet, and SqueezNet. The
1068 PPG segments, particularly (377 segments for rest, and 691 segments for stress)
obtained previously from the non-overlapping way were filtered using a Chebyshev
II order 4 filter with a stopband attenuation of 20dB and a passband of 0.5-5 Hz.
Furthermore, the PPG signal is transformed into a time-frequency domain using
CWT to obtain the wavelet coefficients (a scalogram). These scalograms, serving as
intricate visual representations of the PPG signal, were depicted with logarithmic
frequency scaling to facilitate meaningful interpretation. Then these scalograms
were converted into RGB images[82][54]. The dimensions of these images were set
to 224x224x3 and to 227x227x3 to ensure compatibility with the GoogLeNet and
SqueezNet architectures respectively. Furthermore, the aforementioned networks
parameters were modified to fit our aim of classification of the presence or absence
of stress, followed by training using 80% training and 20% validation splitting config-
uration. Regarding the network’s training, the parameters were set as follows:

• Optimization algorithm: Stochastic Gradient Descent with Momentum
(SGDM), a common optimization algorithm used in deep learning.

• MiniBatchSize=10

• Max Epochs=15

• Initial Learn Rate=1e-4 for GoogLeNet and 3e-4 for SqueezNet.
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• Validation Frequency=10:

Afterwards, key performance metrics, including accuracy, precision, recall, and F1-
score, relevant to the specific classification class, were calculated and included in the
results. Figure 5.10 illustrates the overall flow chart of the DNN approaches.

Figure 5.10: Flow chart of DNN approaches.
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Results

6.1 Feature selection
Empatica E4 data were pre-processed and analyzed to extract features from each
recording. The features chosen for feeding the ML algorithms are then reported
for both methods, in Figure 6.1 and 6.2. Applying the Chi-test method, only 10
features were chosen from the original 27 ones while using the Pearson correlation
coefficient only 15 features fed the ML algorithms. Through both methods, it can be
clearly seen that all HRV features exhibited values above the selected threshold in
Pearson’s correlation method. Additionally, in the Chi-square method, 4 out of the
HRV features surpassed the threshold confirming the validity and stability of the
information that they carry.

Figure 6.1: Ranks listed in order of importance for each feature extracted using Pear-
son’s correlation coefficient.
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Figure 6.2: Ranks listed in order of importance for each feature extracted using Chi-
test method.

6.2 Machine learning approaches
Using different machine learning algorithms, we assessed the performance of our sys-
tem in classifying stress. We utilized three classifiers: Random Forest, Support Vector
Machine (SVM), and Logistic Regression. The classification results are summarized
in Tables 6.1 (without overlapping) and 6.2 (with overlapping). Notably, Random
Forest consistently outperformed the other classifiers, with SVM and Logistic Regres-
sion also achieving reasonable results. Moreover, to validate the feature extraction
process, we also fed the algorithms with all 27 features. Confusion matrices for all
three classifiers before and after feature selection methods are plotted in Figure 6.3 in
non-overlapping case, and Figure 6.4in overlapping case. Furthermore, in Figure 6.5,
a bar plot is established to give an overview of all classifiers’ Accuracy in all cases
mentioned above.

Table 6.1: Performance metrics before and after applying the Chi-test and Pearsons’s
correlation coefficient methods for all the three Machine Learning tech-
niques. Case 1: without overlapping.

ML Algorithm Chi-Test method Pearson’s Correlation Coefficient All features
Accuracy Label Prec Rec F1 Accuracy Label Prec Rec F1 Accuracy Label Prec Rec F1

Random Forest 74.7% 0 0.69 0.60 0.64 74.9% 0 0.71 0.57 0.63 76.4% 0 0.74 0.59 0.66
1 0.78 0.83 0.80 1 0.77 0.86 0.81 1 0.78 0.87 0.82

SVM 72.7% 0 0.68 0.52 0.59 72.8% 0 0.68 0.53 0.60 74.9% 0 0.72 0.55 0.62
1 0.74 0.85 0.79 1 0.75 0.85 0.80 1 0.76 0.87 0.81

Logistic Regression 71.7% 0 0.66 0.51 0.57 72.7% 0 0.68 0.52 0.59 75.3% 0 0.72 0.56 0.63
1 0.74 0.84 0.79 1 0.75 0.85 0.80 1 0.77 0.87 0.82

We observed that data overlapping significantly improved classification performance
for all three classifiers, leading to higher accuracy, precision, recall, and F1 scores.
Random Forest, in particular, demonstrated robustness in handling imbalanced
data, consistently achieving better results. The choice of feature selection method
(Pearson’s correlation coefficient or Chi-square) did not significantly impact model
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Table 6.2: Performance metrics before and after applying the Chi-test and Pearsons’s
correlation coefficient methods for all the three Machine Learning tech-
niques. Case 2: with overlapping.

ML Algorithm Chi-Test method Pearson’s Correlation Coefficient All features
Accuracy Label Prec Rec F1 Accuracy Label Prec Rec F1 Accuracy Label Prec Rec F1

Random Forest 98.4% 0 0.99 0.95 0.97 99.1% 0 0.99 0.97 0.98 99.5% 0 0.99 0.98 0.98
1 0.98 1 0.99 1 0.99 1 0.99 1 0.99 1 0.99

SVM 80.2% 0 0.82 0.41 0.55 83.3% 0 0.86 0.50 0.63 91.4% 0 0.93 0.76 0.84
1 0.80 0.96 0.87 1 0.83 0.97 0.89 1 0.76 0.87 0.81

Logistic Regression 75.2% 0 0.63 0.36 0.46 75.7% 0 0.66 0.40 0.50 79.4% 0 0.73 0.47 0.57
1 0.78 0.91 0.84 1 0.78 0.91 0.84 1 0.81 0.93 0.87

Figure 6.3: Validation confusion matrices for all the three Machine Learning tech-
niques and before and after the features’ selection. Case 1: without
overlapping.

performance, demonstrating the robustness of our feature selection process.

Random Forest SHeply exPlainability

To gain insights into feature importance and model decision-making, we employed
SHAP values, as illustrated in Figures 6.6 and 6.7. These plots revealed that HRV-
related features, such as Std HR and Std PP, played a crucial role in predicting stress,
consistent with the results of our feature selection methods.
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Figure 6.4: Testing confusion matrices for all the three Machine Learning techniques
and before and after the features’ selection. Case 2: with overlapping.

Figure 6.5: Bar plot of the accuracy before and after applying the Chi-test and Pear-
sons’s correlation coefficient methods for all the three Machine Learning
techniques in both overlapping and non-overlapping cases.
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Figure 6.6: Feature influences with SHAP on both classes, with Random Forest model

Figure 6.7: Feature influences with SHAP for the Stress class, with Random Forest
classifier.
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6.3 Deep Learning approaches
Lastly, we introduced a deep learning approach using convolutional neural networks
(CNNs). Results of filtering and CWT are shown in Figures 6.9 and 6.10 for rest and
stress, respectively. Results for GoogLeNet and SqueezNet models are presented in
Table 6.3, confusion matrices in Figure 6.8, and the training graph for GoogLeNet and
SqueezNet in Figures 6.11, and 6.12, respectively. These models achieved reasonable
accuracy, precision, recall, and F1 scores, demonstrating their potential in stress
detection.

Figure 6.8: Validation confusion matrices for convolutional neural networks (CNN).

Table 6.3: Performance metrics for convolutional neural networks (CNN).
CNN Accuracy Label Prec Rec F1

GoogLeNet 75.6% 0 0.63 0.73 0.68
1 0.84 0.77 0.80

SqueezNet 74.2% 0 0.63 0.65 0.64
1 0.81 0.79 0.80

Overall, our study provides promising insights into stress detection using physiolog-
ical signals from wearable devices. The system’s performance is enhanced by data
overlapping, and Random Forest emerges as a robust classifier. Feature selection
methods and deep learning approaches further contribute to the accuracy of stress
detection.
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Figure 6.9: Original, filtered signal, and wavelet coefficients (scalogram) for Rest label
segment.

Figure 6.10: Original, filtered signal, and wavelet coefficients (scalogram) for Stress
label segment.
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Figure 6.11: The training graph of pre-trained GoogLeNet CNN.

Figure 6.12: The training graph of pre-trained SqueezNet CNN.
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Discussion

A new system was proposed to analyze physiological signals measured with a
wearable device on a test population before and after performing tasks designed to
induce mental stress.

7.1 Feature selection
The Pearson coefficient was used for feature selection, and the results showed that
most of the features were related to the PPG signal, while only two were related to
the SCR signal. The top three features were the standard deviation of HR, PP, and
long-term variability (SD2), respectively, with a ranking of over 0.25, indicating the
importance of HRV analysis in detecting stress, consistent with previous research. For
the BVP signal, the standard deviation of the first derivative, the standard deviation
of the signal itself, and the standard deviation of the second derivative were the next
three important features, respectively, with a ranking of over 0.1, suggesting that
dispersion is more important than average values. As for EDA, only the mean of SCR
and the mean amplitude of SCR, which are related to the phasic component of the
EDA signal, had a rank higher than the threshold.
In the Chi-square approach, among the six HRV features, four were found to be
above the predetermined threshold. Moreover, the standard deviation of PP and
the standard deviation of HR were identified as the two most significant features.
Regarding the BVP signal, similar to the Pearson correlation approach, the standard
deviation of the second derivative, first derivative, and the signal itself were identified
as important features. However, their mean values were not found to be significant.
In the case of EDA signal analysis, it was found that only the number of SCR peaks
was important with respect to the threshold. This observation confirms that the
number of peaks (N_Peaks) is the primary indicator of Sympathetic Nervous System
(SNS) activity, and, thus, related to a stress condition [83].
The findings of the current study are consistent with the existing literature in the
field. Specifically, the results of the feature selection are aligned with the other studies
that have emphasized the importance of the selected features. It is noteworthy that
despite the differences in the devices employed in the previous studies, the HRV-
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based features have emerged as the most robust indicator of stress, along with the
SCR information [38, 55].
The results obtained from the current study indicate that both feature evaluation
methods employed, particularly the Chi-test method, possess considerable strength
in selecting stress-related characteristics. In fact, the outcomes achieved with the
Chi-test method align with the ones obtained by [84]. Even if they applied different
classifiers, the results are consistent with ours, demonstrating that the Chi-Test
method is feasible for mental stress detection.

7.2 Machine Learning Approaches
Focusing on the classification aspect, in general, our analysis indicates that the
classifiers’ accuracy consistently exceeds 70%. This suggests that the pre-processing
and original feature selection were appropriate for the database under consideration.
Overall, the Random Forest algorithm consistently exhibited superior performance
compared to other classification methods. This could potentially be attributed to
the fact that Random Forest classifiers rely on randomness, which promotes more
generalized modelling. This observation is corroborated by the Precision, Recall,
and F1-measure metrics, which demonstrate the algorithm’s effectiveness when
contrasted with SVM and LR matrices. Observing the performance of the classifiers
in detail, firstly without overlapping, Random Forest achieves an accuracy of 74.7%,
74.9%, and 76.4%, with Chi-Test, and Pearson’s Correlation Coefficient, and all
features methods, respectively. The F1-scores for both classes are decent but not
extremely high. Secondly, with overlapping, the performance significantly improves,
with an accuracy of 98.4%, and 99.1%, and 99.5% using Chi-Test, Pearson’s Correlation
Coefficient, and all features methods, respectively. The F1-scores are notably higher,
indicating a significant enhancement in classification performance.
Analyzing the SVM classifier’s performance, we first consider the results without
overlapping. The accuracy achieved is 72.7% with the Chi-Test method, 72.8% with
Pearson’s Correlation Coefficient method, and 74.9% with all features set. The
F1-scores for both classes show moderate performance. However, when data over-
lapping is applied, the classifier’s performance improves substantially. It attains
an accuracy of 80.2% with the Chi-Test method, 83.3% with Pearson’s Correlation
Coefficient method, and 91.4% with all extracted features. Moreover, the F1-scores
for both classes experience a significant boost, indicating a substantial enhancement
in classification performance.
Examining the performance of the Logistic Regression classifier in detail, we begin
with the results obtained without overlapping. In this scenario, the classifier attains
an accuracy of 71.7% with the Chi-Test method, 72.7% with Pearson’s Correlation
Coefficient method, and 75.3% with all features. While the F1-scores are reasonable,
they do not reach exceptionally high levels, indicating a moderate classification
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performance. Upon introducing overlapping, the classifier’s performance remains
relatively stable. The accuracy ranges from 75.2% to 79.4%. However, there are some
notable improvements in the F1-scores, especially for class 1. This suggests that data
maximizing has a more pronounced impact on the classifier’s ability to differentiate
class 1 (stress) instances.
The performance of all classifiers significantly improves when data overlapping is
applied. This is particularly evident in terms of accuracy and F1-scores, indicating
a substantial enhancement in classification performance. This suggests that data
overlapping has a substantial positive impact on the ability of Machine Learning
models to classify stress accurately. Due to the fact that data overlapping essentially
increases the amount of training data available for classification.
Random Forest and SVM, in particular, benefit greatly from data overlapping, achiev-
ing much higher accuracy, precision, recall, and F1 scores. Logistic Regression also
benefits from it, though the improvements are relatively smaller compared to the
other two classifiers.
Observing the performance of the classifiers in detail, it becomes apparent that the
classification of the presence of stress (label 1) outperforms the classification of its
absence (label 0). This discrepancy may be primarily attributed to the unequal
number of segments, as the number of segments associated with stress is greater
than those associated with the rest phase. This is due to the fact that, in the overall
protocol, the duration of the tasks is greater than the total rest period. Notably, class
imbalance problem arises especially in SVM and Logistic Regression classifiers both
with or without overlapping, which affects the overall performance. This is attributed
to the fact that when imbalanced data are used to predict outcomes (by machine
learning and data mining), the learning of the algorithm is affected. It is assumed
that the data are drawn from the same distribution as the training data, presenting
imbalanced data to the classifier and producing biased results [85]. Conversely, the
Random Forest model outperforms in all situations, which is consistent with literature
[86][87][88] due to its ability to handle imbalanced data in binary classification.
Despite the fact that the segments of rest and stress conditions were unbalanced, our
results were still able to distinguish between these two conditions with a reasonable
degree of accuracy particularly using Random Forest classifier. However, there is
a possibility for improvement for example by balancing the data using different
algorithms as the study carried out by [89] suggests. In fact, they obtained higher
performance and accuracy after manipulating the data with ADASYN.
The choice of feature selection method (Chi-Test or Pearson’s Correlation Coefficient)
may not have a significant impact on model performance. Importantly, it does not
result in a noticeable decrease in classification accuracy. However, it significantly
influences the interpretability of selected features and contributes to computational
efficiency by reducing dimensionality. Furthermore, this can also help prevent the
model from overfitting [90].
Another factor to consider is the relatively small sample size used in our study.
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Increasing the size and diversity of the participants would help to enhance the
generalisability of our findings and improve the accuracy of our models. A small
dataset may not be representative of the broader population and may be prone to
inaccuracies and erroneous conclusions, as it could be influenced by outliers or
anomalous data. Furthermore, the decision to conduct our study in a laboratory
setting may have limited our ability to simulate real-world working conditions. In
the future, additional stimuli could be introduced to overcome this limitation and
more accurately replicate real-world scenarios.
Despite the drawbacks described above, our approach reached high performance in
the detection the stress situations. This means that our choices for data manipulation
and feature selection are sufficiently strong to deal with an unbalanced dataset. This
means that in a real situation where motion artefacts have higher intensity and
unpredictable stressful situations can arise, stress can be detected and monitored in
order to avoid any psycho-physical complications.

7.3 Model explainability
Using stacked bar plots for global explainability, Figure 6.6 illustrates the mean SHAP
values for all features. This represents the average influence of each feature on the
output of the top-performing model (Random Forest), with overlapping approach
from all features. The plot reveals that HRV time-domain features, specifically
the standard deviation of Heart rate (Std HR) and standard deviation of peak to
peak (Std PP), exhibit the most significant impact on the overall model output.
Importantly, these features maintain the same ranking order in both feature selection
methods applied (Pearson correlation coefficient and Chi-Test). The third most
influential feature is the number of SCR peaks, a selection made based on the Chi-
Test. Interestingly, noticing the remaining features, five out of the six HRV features
also rank prominently in terms of impact. This consistency between the HRV feature
importance and the results of the feature selection methods underscores the critical
role of HRV features in stress detection models. Noticeably, the standard deviation of
the BVP signal and its first and second derivatives show a good impact on the model
output as observed in both applied feature selection methods.
To gain a more detailed understanding of how individual features impact each class
(Local explainability), it’s crucial to zoom in and examine the effects closely. Figure
6.7 presents horizontal scatter plots for each feature, utilizing distinct color gradients.
This class-wise summary plot combines feature importances and feature effects.
Each data point on the scatter plot represents a Shapley value for a feature and an
observation. Features are positioned along the y-axis, while the Shapley values for
their instances are displayed along the x-axis. To enhance visualization, overlapping
points are slightly jittered. The color intensity and gradient in each instance indicate
the feature values, ranging from low (blue) to high (pink), as illustrated in the color
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bar.
Previously, we explored the behavior of Std HR and Std PP in Figure 6.6, where
they emerged as the most impactful features in predicting the stress class. Now, we
can delve into their behavior in a more detailed, class-specific manner. Upon closer
examination of Figure 6.7, it becomes evident that higher values (leaning towards
pink) of Std HR and Std PP tend to lead the model to classify the instance as "stress."
Conversely, lower values (leaning towards blue) make it less likely for the model to
predict "stress." In simpler terms, a higher presence of pink dots (indicative of high
Std HR and Std PP values) corresponds to a stronger and positive effect (shift towards
the right on the plot) on predicting the "stress" class. Similarly, we can observe that
Mean Peak to Peak (M PP) is inversely correlated with the prediction of the "stress"
class. This obvious correlation: as heart rate increases, there is typically a decrease in
the peak-to-peak value (RR interval).
In summary, these plots allow us to gain an understanding of what our Machine-
Learning model has learned from the features. Although there are variations in
the feature importance rankings between the overall model output and the feature
selection methods, there is a strong validation of the significance of the selected
features.

7.4 Deep Learning Approaches
The objective of the proposed Deep Learning models was to employ deep transfer
learning techniques for stress classification based on PPG signals. The overall per-
formance assessment of the two suggested models indicates that the GoogLeNet
model exhibits a slightly better performance than the SqueezNet model, achieving
accuracies of 75.6% and 74.2%, respectively. Upon closer examination of the results,
it is noteworthy that the models perform better at classifying the presence of stress
(Label 1) compared to identifying its absence. This disparity could be attributed to the
unequal distribution of segments, as there are more segments associated with stress
than with the rest phase. Moreover, the choice of the Stochastic Gradient Descent
with Momentum (SGDM) optimizer could potentially impact the performance of
neural networks[54]. One limitation that affects the models is the relatively small
sample size, which may restrict the generalizability of our results to a broader popu-
lation. Furthermore, It is crucial to validate these results on different datasets and
real-life applications to assess their generalizability. Despite the aforementioned
limitations, achieving a 75.6% accuracy using only PPG signals demonstrates that
using continuous Fourier transform and Convolutional Neural Networks (CNNs)
holds promise as an effective approach for mental stress detection.
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Chapter 8

Conclusions

8.1 Conclusion
The object of this study was to assess the stress presence by the measure of different
physiological signals using a wearable sensor, Empatica E4. To address the stress
condition a new acquisition protocol based on the literature reviews was used for
29 subjects. Moreover, the Machine Learning, and Deep Learning approaches were
developed accordingly with the most performing algorithms in this field as well as
the features chosen to characterize the model. Despite the limited baseline for the rest
condition, which affected the balancing of the database. Among the classifiers we
evaluated, Random Forest and SVM consistently yielded the best results, particularly
when we applied data overlapping. With accuracies ranging from 80.2% to 99.5%
and improved precision, recall, and F1-scores, these classifiers demonstrated their
robustness in distinguishing stress from non-stress conditions. This was particularly
noteworthy given the inherent challenges posed by an imbalanced dataset. Moreover,
Deep Learning models exhibited potential in stress classification using PPG signals.
To validate our model in the future, we suggest increasing the population size
to include a diverse age range and implementing a new protocol that ensures a
consistent baseline to avoid any misclassification issues. Additionally, incorporating
multi-level stress tasks with different stressors, including real-life scenarios, could
improve the model’s robustness. It would be valuable to compare our results with
feedback from participants, obtained through the use of questionnaires. Moreover,
we recommend considering various wearable devices available on the market to
assess the impact of their characteristics on the results.

I would like to acknowledge that a portion of the research presented in this thesis
has been published in the following scientific article:
Campanella, Sara, Ayham Altaleb, Alberto Belli, Paola Pierleoni, and Lorenzo Palma.
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