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Abstract

The work focuses on the implementation, both hardware and software, of a novel
piloting technique for a class of AC-AC converters that goes under the name of
’Matrix Converters’. The strategy makes use of a well-established technology, the
Σ∆ modulators, and their noise spreading ability. Moreover, the design served as a
stress test for an open-source cosimulation environment, developed for VHDL users
who wish to speed-up their prototyping phase.

Keywords: Matrix Converters, Sigma-Delta Modulators, Space Vector Modula-
tion, Cosimulation, FPGA
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Sommario

Il lavoro è focalizzato sull’implementazione, sia hardware che software, di un’innovativa
tecnica di pilotaggio per una classe di convertitori AC-AC che va sotto il nome di
’Convertitori a matrice’. La strategia fa uso di una consolidata tecnologia, i modula-
tori Σ∆, e la loro abilità nel ridurre rumore di quantizzazione. Inoltre, il design è
servito come stress test per un ambiente di cosimulazione open-source, progettato
per chi sviluppa in VHDL con lo scopo di velocizzare i tempi di prototipazione.

Parole chiave: Convertitori a Matrice, Modulatori Sigma-Delta, Space Vector
Modulation, Cosimulazione, FPGA
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Chapter 1

Introduction

The AC-AC power conversion is engaged in various market applications: lighting and
heating control, online transformer tap changing, soft-starting, and speed control
of pump and fan drives,[4] wireless power transfers [5], ship propellers, voltage
restorers and more. To keep up with the various destinations, the AC-AC converters
specialized and gave birth to different families. Some proposed topologies comprehend
AC voltage controllers, cycloconverters and matrix converters. In particular this last
one topology counts several pros like allowing independent sinusoidal modulation of
output voltages and input currents, removing the need for a DC-link which impacts
on the final weight and volume, enhancing the service lifetime, and, ultimately,
controlling the power factor. But introduces some cons, for example the increased
number of semiconductor switches (18 IGBTs/MOSFETs and 18 diodes) or the lower
peak voltage-ratio (

√
3

2 ). In those occasions where trading weight for performance
seems viable, the matrix converters look like an attractive alternative.
As the name implies, the main component in these converters is the matrix of switches,
which connects every input phase to every output one. The technique that controls
the matrix plays an important role on the final effects and results. Until now the
most adopted solutions are the ’Alesina-Venturini’ [6][7] technique and the ’Space
Vector Modulation’[8][9] (abbreviated to SVM).
In this thesis a newly proposed modulation technique is explored. A solution based
on Σ∆ [10] converters and their ability to spread quantization noise over a larger
band than the signal. The advantages include a more straightforward implementation
than SVM and a finer granulation since it can use all the possible combinations.
Focus of this work is the realization of the controlling circuitry on an FPGA, in
order to exploit its natural parallelism. A bare-metal software and host-software is
furnished, to make the board more user-friendly by opening its serial port for desired
instructions. Additionally, a stress test is provided for a newborn co-simulation
environment able to run concurrently the PS (Programmable System) and the PL
(Programmable logic).
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Chapter 2

Preliminaries

The project involves AC-AC matrix converters, their piloting strategy, HW-FW-SW
co-simulation and hardware design. Before diving into the core, a presentation and
description of these matters is presented.

2.1 Direct Matrix Converters

The typical topology of an AC-AC power converter based on a matrix of switches is
illustrated in the following figure:

Figure 2.1: Circuit for a 3-phase AC-AC matrix converter.

An input filter is used to screen the supply system from current harmonics generated
by the converter, while the output one acts as a low-pass filter to get the average value
and eliminate high-frequency components due to switching of the matrix. Expanding
on the converter unit, we get to see the matrix:

3



Chapter 2 Preliminaries

Figure 2.2: Circuit for a 3-phase AC-AC matrix converter.

Where va, vb, vc are the components of Vi and vA, vB, vC are part of Vo.
From the above figure, it is possible to see that every output phase is connected
to each input by a bidirectional switch, that allows flow from sources-to-load and
vice-versa. The idea is to connect the output to one of the input voltages in a way
that guarantees the desired frequency. This optimal connection should update at a
faster rate than input frequency so that the error can exhibit a low magnitude.
The realization of the switches is an important matter too. They must act as a four-
quadrant SPST (Single Pole Single Throw), which means they should drive currents
of both polarities (when ON), and hold voltages of both polarities (when OFF). A
variety of arrangements consisting of a pair of BJTs, or MOSFETs, or even IGBTs
can achieve this functionality. The control logic depends on this choice, because
drivers should follow a commutation procedure depending on switches’ nature to
avoid short-circuiting sources. For this project we are provided with nine bidirectional
switches, composed by a pair of MOSFETS (IPAW60R600) and a silicon-integrated
pair of diodes (fig. 2.3), connected by the drain.

Figure 2.3: Bidirectional switch realization.

The possible switching configurations are 512 (29) but, in order to avoid the
possibility of short-circuiting the inputs, each output can be linked to only one of
the inputs, reducing the total to 27 permitted configurations. Each configuration is
characterized by an associated matrix Sk, described in a way so that the presence
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2.1 Direct Matrix Converters

of a ’1’ entry indicates the ON state of the switch, and a ’0’ entry means that the
output phase and the input are not linked. For example,

≡

⎡⎢⎢⎣
1 0 0
1 0 0
0 1 0

⎤⎥⎥⎦ (2.1)

The 27 combinations are ordered as in table 2.4, and will be indexed in a similar
manner when designing the hardware.

Figure 2.4: Available switching configurations and their index. [1]

5



Chapter 2 Preliminaries

The figure is from [1], and is adapted to SVM nomenclature; in our case the indexes
are 1 instead of +1, 2 in place of -1, 3 instead of +2, and so on until reaching 27. The
last nine configuration names in fig. 2.4 assume a particular meaning in SVM: the
0x are known as ’zero-states’, and the remaining ones are referred as ’synchronous’
configurations. For Σ∆ piloting, no configuration has a special role.

From figure 2.1, we can retrieve the general equations that describe the system:

Vo(t) = SkVi(t) Ii(t) = ST
k Io(t) , Sk =

⎡⎢⎢⎣
s11,k s12,k s13,k

s21,k s22,k s23,k

s31,k s32,k s33,k

⎤⎥⎥⎦ (2.2)

3∑︂
j=1

sij,k = 1 , i = 1, 2, 3 k = 1, 2, ..., 27 (2.3)

This last equation is the mathematical description for short-circuit avoidance. Is a
way for constraining every row to have just one ’1’ entry.

2.2 Alesina-Venturni Method

It has been demonstrated that matrix converters can achieve a maximum voltage
gain of

√
3

2 ([7]). To reach its peak performance, various strategies have been adopted,
one of these is the ’Alesina-Venturini’ method.
Basically, three-phase output voltages are generated by sequential piecewise sampling
of input waveforms. These output voltages follow a predetermined set of reference or
target voltage waveforms by a transfer function approach. The equation for reference
voltages is:⎡⎢⎢⎣

vA

vB

vC

⎤⎥⎥⎦ = Vom

⎡⎢⎢⎣
cos ωot

cos(ωot − 120◦)
cos(ωot − 240◦)

⎤⎥⎥⎦ + vim

4

⎡⎢⎢⎣
cos 3ωit

cos 3ωit

cos 3ωit

⎤⎥⎥⎦ − Vom

6

⎡⎢⎢⎣
cos 3ωot

cos 3ωot

cos 3ωot

⎤⎥⎥⎦ (2.4)

where Vom and vim are the output and input magnitudes of the fundamental
component, and ωi, ωo are the input and output angular frequencies.
It has been derived a general equation ([7]) that describes the optimal switching duty
cycle for each switch. Considering that in every row there are three switches, the
sequence proposed to achieve maximum performance is a simple 1-2-3, but the duty
ratio of each one shall be determined by a precise function.

2.3 SVM Technique

Space Vector Modulation is an established and well-known piloting technique for
matrix converters. Based its success on some key aspects like achieving theoretical
maximum output gain, a straightforward hardware implementation, a controllable
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2.3 SVM Technique

power input factor, flexibility for application scope (reducing common mode voltage,
output current ripple, switching losses etc.). Its derivation has roots on a transforma-
tion of triphase voltages in a space vector representation, where each sinusoid gets
mapped onto a vector in a 2D space. Referring to the circuit topology in fig. 2.2,
the mapping corresponds to,

vi⃗ = 2
3(vab + a⃗vbc + a⃗2vca) = vi(t)ejαi(t)

vo⃗ = 2
3(vAB + a⃗vBC + a⃗2vCA) = vo(t)ejαo(t)

ii⃗ = 2
3(ia + a⃗ib + a⃗2ic) = ii(t)ejβi(t)

io⃗ = 2
3(iA + a⃗iB + a⃗2iC) = ii(t)ejβo(t)

(2.5)

here a⃗ = ej 2π
3 . With equation 2.5, any of the 27 combinations can be associated

with a vector. In fact, the rightmost columns in table 2.4 indicate the relative vectors
(phase and magnitude). If we draw them on a 2D plane we get the characteristic
hexagon,

(a) (b)

Figure 2.5: Space vector for (a) output voltage and (b) input current. [1]

The SVM strategy requires to represent the desired output vector and project
it onto the closest configuration vectors (example in 2.6). Each sector identifies
six possible configurations, but input current constraints reduce them to four. By
applying these four for a specific duty cycle (just like in Alesina-Venturini), we get a
vector whose average value lies on the desired vector. With an additional filter at
the output, we get the desired frequency by synthesizing the input ones. If the sum
of the four duty cycles is not unitary, a ’zero-state’ is applied for the remaining time.

Different variants have foundations on SVM: some utilizes only synchronous and
zero configurations, others only synchronous or they can go under different names
(like "Indirect SVM") because of a different approach.

7
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Figure 2.6: Projection of vo⃗. [1]

2.4 Sigma-Delta Driving Technique

The focus of this work is to implement a different approach to control the matrix of
switches, that relies on Σ∆ filters. This kind of digital filters are highly appreciated
and used for the realization of ADCs and DACs, thanks to the exploitation of noise
shaping functions and oversampling, but found new life in applications like LED
driving or controlling switch-mode power supplies. The general scheme for a first
order Σ∆ filter is reported as follows,

Figure 2.7: First Order Sigma-Delta modulator.

The actual implemented filter falls in a special category of sigma delta modulators,
called ’Cascade of Integrators with feed-forward’, or CIFF. The advantage (as
explained in [11]) is making the "fast path" around the first integrator, so that its
gain gets large and the noise and distortion added by successive stages are rendered
small when compared to the input (figure 2.8).

8



2.4 Sigma-Delta Driving Technique

Figure 2.8: Second order CIFF modulator.

An important aspect of Σ∆ modulators is the working frequency, which should be
several units higher than the input one. Without a high switching frequency, there
can be no noise shaping of the input signal, thus no error mitigation. For the project
a working frequency of 100 kHz is chosen, going higher would limit the available
time for DSP calculations, making the timing constraints for the design really tight
without a sensible performance boost as counterpart.
Speaking about performance, good metrics for comparing AC-AC matrix converters
are the total harmonic distortion THD and the total harmonic distortion plus noise,
THD+N. Comparing the Σ∆ approach with the traditional SVM, it is demonstrated
([10]) that utilizing the first one does have better THD results, and this should be
expected since the modulator spreads the quantization noise over a large bandwidth.
In terms of THD plus noise, both achieve similar results.
The modulation strategy inherits some aspects of a wider family of controlling
techniques referred as Discrete Methods Based on Predictive Model[12], which revolves
around a multi-objective cost function. In this case the cost function is expressed as:

Ck[n + 1] = (ϵv
k[n + 1])2 + (ϵQ

k [n + 1])2 (2.6)

where the k indicates one out of the 27 matrices, and the errors, indicated as ϵv
k

and ϵQ
k , are described by:

ϵv
k[n + 1] = ∥ev

k[n + 1]∥
Vdes + Vs

, ϵQ
k [n + 1] = |eQ

k [n + 1]|
Qdes

(2.7)

with,

ev
k[n + 1] = Vref [n] − Vo[n + 1] , eQ

k [n + 1] = Qref [n] − Q[n + 1] (2.8)

These values can be carried out at the current sample, noting that Vref and Qref

are outputs of the sigma delta modulators and Vo[n+1] and Q[n+1] can be referenced

9
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to n-th sample. By approximating in such a way,

Vo[n + 1] = SkVi[n + 1] ≃ SkVs[n + 1] ≃ SkVs[n] (2.9)

this is valid because input filter acts on high-frequency components of current, and
Vs[n + 1] ≃ Vs[n] since the sampling frequency is at 100 kHz and sources’ frequency
way below (50 Hz for domestic lines). A similar approach can be taken on the input
reactive power Q,

Q[n + 1] = ∆Vi[n + 1]√
3

• Ii[n + 1] (2.10)

where • stands for scalar product, ∆ is the matrix transformation for line-to-line

voltages (∆ =

⎡⎢⎢⎣
0 +1 −1

−1 0 +1
+1 −1 0

⎤⎥⎥⎦).

Under the hypothesis that Vi[n] ≃ Vs[n] and Io[n] ≃ IL[n], we get,

Q[n + 1] ≃ ∆Vs[n + 1]√
3

• ST
k IL[n + 1] (2.11)

Since Vs and Il are slowly varying compared to switching frequency, we rewrite,

Q[n + 1] ≃ ∆Vs[n]√
3

• ST
k IL[n] (2.12)

Then (n+1)-th sample can be calculated at "time" n, making possible to compute
the cost function (eq. 2.6).

FPGA’s intrinsic parallelism suits the problem very well and can fill the role of
matrix controller.

2.5 FPGA DEV Tools

When developing an FPGA, a design flow must be followed in order to deliver a
functional product. To do so the FPGA producers make available a set of software
tools to enable developers’ skill and save them many profitable hours. An example of
this care comes from Xilinx and its software toolset which includes Vivado and Vitis.
The first one is dedicated to hardware designs and follows the workflow in every
process: from writing RTL sources to instantiating IP modules, from behavioural
simulation to post-synthesis/post-implementation simulation, from synthesis and
routing/floor-planning to physical and timing constraints. If the intended design is
an hardware-only one, then Vivado is more than a complete toolbox for the purposes.
But in most occasions the design will have a bare-metal software which can enable
more complex algorithms and functionalities. This is what Vitis was planned for. In
fact, a design that includes a microprocessor, like the Microblaze or the Zynq, needs

10



2.5 FPGA DEV Tools

a software that can run with such hardware, and this can be written by the aid of
Vitis which includes a text editor, C/C++ compilers, C/C++ linkers and more. The
Vitis environment includes other stand-alone softwares like Vitis HLS, or Vitis Model
Composer, that enables more rich features like High-Level-Synthesis or Simulink
modeling, but for the scope of this thesis these are not used nor investigated.

Utilizing the Vivado or Vitis can be highly profitable, but at the same time
prohibitive. Supposing the designer/engineer is familiar with the environment (which
is not trivial), the amount of computations and data that can be driven by a
simulation process or by a synthesis of a medium to large design, can sensibly
reduce the productivity and bring stalling conditions (especially if the machine is
not particularly powerful). The adopted solution for such matter of issues, was to
use a cosimulator platform, open-source and free-to-use, developed by my relator
Giorgio Biagetti [13]. In the next subsection the co-simulator is explained further.

2.5.1 The COSIM Platform

The platform serves for testing the cosimulation behaviour of the expected digital
design, where real life aspects like synthesis/implementation constraints or RTL
inference can be neglected to focus on simulation and functional verification. The
platform is the result of a precise interconnection/intercommunication of available
open-source tools, in particular QEMU and GHDL. The first one has the role to
emulate the PS (programmable system) portion of the design and the latter to
reproduce the PL (programmable logic). Technically speaking, the QEMU emulates
an ARMv7 processor that runs the firmware, and attached to it, a QEMU module
called RTLbridge exposes a user-configurable memory-mapped I/O region to the
HW simulator and routes IRQs back from hardware to the CPU. In addition, an ad-
hoc IPC (inter-process protocol) keeps in contact QEMU and GHDL to synchronize
these two elements. The platform can also emulate the interaction with an external
host, which runs a software with the ability to establish a serial communication. In
this way cosimulation of HW-FW-SW is achieved and a functional prototype can be
delivered. The downside to this approach, resides in the fact that a design working
on the platform, cannot be "copy-pasted" but has do go under additional revisions
to be compliant with the Vivado. Some of these revisions include adapting to the
Xilinx RTL coding guidelines, directories re-configuration, rewriting the testbench
and writing a new module at the highest hierarchy for connecting the VHDL entities
with the IP allocated ones. Since a good portion of the thesis required working
with the cosimulator, in the next chapters there will be clear references and results
obtained by this platform.
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Chapter 3

System Architecture

The project is built on three pillars: HW, FW and SW. The HW, on the digital part,
makes advantage of the FPGA parallelism to run DSP calculations and generate
control for the switches, while, on the analog part, gathers data from the sensors
and filters high-frequency components. The FW portion setups the HW and opens
a serial communication to accept instructions from hosts. The SW is the element
which interacts with the final user and provides a simple CLI for debugging and
managing hardware operations by opening the other end of the serial. In the next
sections each one of these areas will be analysed.

3.1 Hardware Architecture

The hardware design for the COSIM environment differs from the one for Vivado,
this is due coding changes (as explained in sec. 2.5.1) and IPs’ encryption. The next
subsections illustrates the design in COSIM, and in section 3.1.2 we illustrate the
differences.

3.1.1 COSIM

The following figure shows the top-level diagram for the proposed architecture:

13



Chapter 3 System Architecture

Figure 3.1: Top-level diagram of SoC.

Starting from clocks, four clock sources are generated from the system clock:

1. 100 MHz clock; fastest frequency to feed CPU, the Datapath, Minimum Detector
and UART

2. 20 MHz clock; source for many blocks comprising ADC bank, MOD bank,
CPUiface and more

3. 60 MHz clock; SPI interface

Some hardware uses more than one clock signal, introducing Crossing Clock
Domains. They typically are a threat for the design, since they introduce the chance
of metastability. Typical solutions are (ordered by complexity) sequences of flip-flops,
FIFOs or handshake mechanisms. But considering that in Vivado the 100 MHz,
becomes a 120 MHz, it is evident that each clock is a submultiple of this one, so that
one crossing involving whichever clock, is always in phase, limiting the metastability
chances.
The choice of creating clock toggles (like in ADC bank or multiplexers) rather than
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3.1 Hardware Architecture

generating an additional clock resource, is done for avoiding the design of a SoC with
a numerous number of clocks and clock regions to manage, including their crossings.

A brief description of each module will help in understanding the signal flow.

The ADC BANKS is the interface to board sensors. Each one generates a
bitstream at 20 Mbps which gets demodulated by a bank of sinc3 filters, with the
job to generate 16-bits words and decimate the input frequency to 100 kHz. Since on
the COSIM platform the analog part can’t be simulated, a simulation of bitstreams
is reproduced with C++ code. It mimics the output of the real ADCs and writes the
bitstream on a text file which gets treated as input for a VHDL module (’bs_gen’)
which reads the content and generates the bitstream. The input voltage ADCs can
be emulated fairly easy (triphase sinusoids), but the output currents are not realistic,
because their value depends on load and output filters, and so the analog part.

The FS and ROM realize the frequency synthesizer. To reproduce the required
sinusoids, a Direct Digital Synthesizer (or DDS) uses the main clock at 100 MHz
as a reference and utilizes the ROM as a look-up-table for sine values. The generic
scheme for a DDS is reported in fig. 3.2.

Figure 3.2: General scheme of a DDS. [2]

The CPUiface can be seen as a proxy for AXI addressing mechanism. Since
a high amount of AXI slaves is not supportable and menaces severe performance
degradation, the CPUiface embraces several AXI-addressable registers to redirect
itself the content to the right modules. It also has the role to raise IRQs as a
consequence of memory filling. Speaking of memory, the DPRAM can function in two
modes, in a way called "COCO" (Continuous Conversion) where it gets overwritten
by new data continuously and raises IRQs when half of its size is filled, or in a
mode called "Snapshot" where it gets filled from the first to the last address, and
upon completion raises an IRQ. The CPUiface has access to the highest bits and is
acknowledged of the memory status as the system is running.

The MODULATOR BANKS are the sigma-delta modulators proposed for
the new switching strategy. A total of four modulators are allocated: one for the
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input reactive power, and three for the input triphase voltages. The structure is that
showed in 2.8, moreover includes an overflow compensation by saturation. Specifically,
the sine waveforms in their peak reach a word value of ±31250, this means that
v1 = vdes − vactual can potentially reach double that value. In this sense a saturation
at ±62500 limits the value span of integrator’s output.

The DATA SELECTOR formats the data destined to the DPRAM. The packet
generated assumes two forms depending on a user-configurable signal:

Figure 3.3: Format 1 (selector=’0’).

Figure 3.4: Format 2 (selector=’1’).

The out_conf bits contain the actual voltages applied to the matrix; for example
if the k̃ chosen is 4 then, referring to 2.4, the 6 bits that will be written on memory are
"111010", corresponding to the encoding c="11", b="10" and a="01". This mapping
is used all along the project.
The extra_in bits contain the ’pointed’ memory location of the DPRAM.

In such a way, the memory can be consulted as a ’log’ to follow, and eventually
debug, the operations running on the SoC. In fact, memory data can be requested
by the user that issues a specific command (more on 3.3).

The MEMORY WRITER is the module that actually writes the data that has
been wrapped. The packets are 128 bits long, so write operation concludes after 4
cycles (32-bits writing/reading in DPRAM are allowed).

The RAM CONTROLLER is the access to the other port of the DPRAM. The
FW, and the MicroBlaze in particular, can access logged data through this port.
About the DUAL PORT RAM: nothing more than a memory, accessible from the
SoC via memory writer and from the MicroBlaze via ram controller.

The MINIMUM DETECTOR outputs the configuration index, that will be
associated to the corresponding matrix Sk, which is the minimum among the 27
possibilities. It works in a merge-sort fashion to locate the minimum among the
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outputs from the demultiplexers, with an associated time complexity of log2 N . In
our case N = 27, so the module will have a latency of 5 clock cycles (fig. 3.5). Once
the index has been found, the actual output voltage at the DMC terminals can be
determined and so the input reactive power, making possible, for the Σ∆ modulators,
to calculate their next output.

Figure 3.5: Merge sort to find minimum.

Looking again at the scheme of a traditional Σ∆ modulator (2.7), the role of
the detector is the exact same of the 1-bit DAC. Thanks to this conclusion, it is
absolutely right to name the detector as a "multilevel quantizer".

Strictly related to the detector, there is the OUTPUT DRIVERS which gen-
erate the control for the MOSFETS, with a precise commutation protocol to avoid
possibilities of short-circuitation (fig. 3.6). More on the commutation problem and
how to address it a good solution.
When switching from a phase to a new one there is the chance either to short-circuit
the inputs (3.7a) or momentary open the load terminal (3.7b). Since both these
situations must be prevented, a commutation sequence must be implemented. As
[12] suggests, two strategies can be adopted, either Output Current Direction Based
Commutation or Input Voltage Magnitude Based Commutation. The choice depends
on what can be determined easily. For this case we opt for the current one, since it’s
sufficient to check the sign of the data-word generated by the ADCs.

Figure 3.6: Example of connection for 2ϕ-1ϕ.
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(a) (b)

Figure 3.7: a. Short-circuitation and b. open terminals due to bad commutation.

Supposing we are switching from phase 1 to 2 in fig. 3.6, the protocol looks like
this:

1. in S1, turn off the MOSFET which is not conducting

2. in S2, turn on the MOSFET that can sustain Io

3. in S1, the other switch is turned off

4. in S2, turn on the other MOSFET

In this way, a safe switching can be achieved in 4 steps.

AXI Protocol

The inter-chip communication chosen is AXI4Lite part of the AMBA Standards,
developed by ARM. The AMBA AXI has been designed for purposes of high-
performance, high-frequency and high-speed. The advantages for adopting this
standard are various:

• Separate address, control and data phases

• Support for unaligned data transfers

• Burst transactions

• Separate read and write data channels

• Easy addition of register stages to meet timing requirements

In addition, a bunch of interfaces’ implementations are defined as Master-Slave,
Master-Interconnect and Interconnect-Slave, which will be extensively used in current
design. While going for the full feature AXI4 would have result in a higher complexity
and usage of resources, the AXI4LITE seems a fine alternative. Trading a bit of
performance for lightweight interfaces and communications, can be accepted since
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the design doesn’t have a compromising frequency. In fact the weak point in terms
of time is the DSP unit, but it has a working frequency way below the declared
maximum.

Design Frequency Maximum Frequency
120 MHz (cpu clock) 363.77MHz < Fmax < 628.93MHz[DS181]

In the design an AXI Interconnect (or AXI Crossbar) is included to connect
several slaves to a unique master, the MicroBlaze, which initiates a data transfer for
reading or writing depending on the context. The AXI4Lite has 5 different channels:
three for writing operations, two for reading ones. Each one implements signals for
handshake and payload, and optionally a signal for data protection (not implemented
for this design). The table shows all signals for an AXI4LITE interface:

Global ACLK
ARESETn

Write
Address
Channel

AWVALID Master->Slave
AWREADY Slave->Master
AWADDR Master->Slave
AWPROT Master->Slave

Write Data
Channel

WVALID Master->Slave
WREADY Slave->Master
WDATA Master->Slave
WSTRB Master->Slave

Write
Response
Channel

BVALID Slave->Master
BREADY Master->Slave
BRESP Slave->Master

Read
Address
Channel

ARVALID Master->Slave
ARREADY Slave->Master
ARADDR Master->Slave
ARPROT Master->Slave

Read Data
Channel

RVALID Slave->Master
RREADY Master->Slave
RRESP Slave->Master
RDATA Slave->Master

Table 3.1: Signals in AXI4Lite protocol.

The global signals should be coherent with master and slaves, and dictates the
frequency and resets an interface (note the reset is active low). The signals indicated
as xREADY and xVALID are the handshake signals (fig. 3.8), the xADDR or xDATA
are the payload (for address phase or data phase), the xPROT are for protection,
the xRESP is a feedback message which can indicate a successful or unsuccessful
transaction.
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Figure 3.8: AXI handshake mechanism.

When utilizing an AXI Interconnect is mandatory to specify the address map. In
practice, a master that initiates a communication looks up for an available device
among those connected, and refers to it by its unique address region. This mapping
is known both to the MicroBlaze and the Interconnect. In COSIM environment the
mapping is listed below:

AXI Slave OFFSET
UART data register 0x0000

UART control register 0x0004
INTC 0x1000

CPUiface 0x2000
RAMC controller 0x10000

Table 3.2: AXI address map.

The OFFSET is a constant value, specifically of 0xE0000000, dependent on the
COSIM setup. In fact the addressable custom I/O can be accessed from this specific
address.

More modules

For interrupt handling, an INTERRUPT CONTROLLER is provided, that can
manage the interrupt sources and raise an IRQ flag to the MicroBlaze. In this design,
two elements can ask for interruption of program flow: the UART, to communicate
the state of the internal FIFOs (half, empty or available), and the CPUiface for
memory status in COCO or Snapshot Mode. The MicroBlaze necessarily has to
acknwoledge the IRQ, by clearing the flag bit and entering the equivalent Interrupt
Service Routine (ISR). Once the exception gets resolved, the firmware continues from
the interrupted point with its normal flow.

The PTYemu and CPUemu, as stated in sec. 2.5.1, are modules that make
possible the inter-process-communication between QEMU and GHDL.
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The UART provides serial communication. In particular will serve as an entry
for user instructions typed on the CLI application. On Digilent board is present a
USB-UART bridge (FTDI FT2232HQ) in order to facilitate communication with
PC applications using standard Windows COM port commands. Xilinx provides
an IP for implementing a simple UART, but its speed is limited to 115.200 kBd.
Since the FT2232HQ can work at rates up to 12 MBd, an UART module has been
implemented to reach such speed.

As last, the DSP completes the SoC. This is a module that works in between
the Σ − ∆ modulator and the quantizer/minimum detector. For each of the 27
configurations, the associated error shall be calculated (eq. 2.8), in doing so ADC
data undergoes integer multiplication, sum and floating-point arithmetic. Before
deep diving into the algorithm mapped on hardware, some considerations should
be tackled. The design of this portion follows a particular paradigm called time
multiplexing or resource sharing. Since the 27 configurations require the same
equation, hence same hardware, there is no sense in allocating different modules
that do the exact same thing (an exception are those designs were resource usage
is not a problem and time is tightly constrained). But still we want to make use
of parallelism, so the solution is in between. Three identical modules have been
allocated, each of these distributes over time 9 of the 27 possible solutions (fig. 3.9).

Figure 3.9: Resource sharing by MUXes allocation.

21



Chapter 3 System Architecture

Their input comes from multiplexers with an internal toggle at 2 MHz, which rules
the frequency for switching from a certain configuration index to the next one (fig.
3.10). The demultiplexers have an identical mechanism.

Figure 3.10: MUX and its toggled switching.

The choice for a 2 MHz switching frequency originates from a tradeoff conclusion.
By inspecting the waveform analyser can be estimated how much time the DSP
has left for solving the computations, and this value is around 8250 ns. With the
displayed time-multiplexing mechanism in mind, the following equation sets the lower
bound for the switching frequency:

9
Fclk_mux

< 8250ns or Fclk_mux > 1.0909MHz (3.1)

Rounding to the closest integer, we gain 2 MHz. Going at a faster speed not only
is not necessary, but also can implicate a timing failure. In fact the datapath unit
works at 100 MHz, this means that has 50 clock cycles to complete operations in case
of 2 MHz switching, and 10 cycles for a 10 MHz. The choice of 2 MHz has another
advantage, provides additional time for quantizer operation and output driving. The
left time can be calculated:

8250ns − 9Tclk_mux = 3750ns (3.2)

The multiplexed input has to undergo data manipulation. The algorithm mapped
is shown next,
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Figure 3.11: Datapath insight.

Some modifications can be made, for example removing the scaling factor of
√

3
won’t affect algorithm results, the matrix multiplication can be rewritten and so the
input currents which depend on output ones. This gets us to,

Q[n + 1] ≃

⎡⎢⎢⎣
vs2 − vs3

vs3 − vs1

vs1 − vs2

⎤⎥⎥⎦ [n] • ST
k iL[n] (3.3)

The module that does this computation is the ADDMACC DSP. A further
note on the functioning of the datapath: the data travels accompanied by an enable
impulsive signal and a done one (fig. 3.12). The first one informs the entity that
data arrived and has to be processes, the latter one signals the availability of the
result and is connected to the enable of the next block expected on signal flow. This
paradigm also enables a pipelined approach, that has not been exploited in the
project, since the timing is achieved.
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Figure 3.12: Chain of control signals in Datapath.

The ADDMACC DSP result is passed to ERROR HANDLER which generates
the errors between Σ∆ modulators and the quantized result,

eQ
k [n + 1] = Qref − Q[n + 1] , ev

k[n + 1] = Vref − V[n + 1] (3.4)

(The boldness indicates vectors.)

The reactive power error goes into the Floating Point Arithmetic Unit (FPAU)
for multiplication by the scaling factor (normalized error),

ϵQ
k [n + 1] = |eQ

k [n + 1]|
Qdes

(3.5)

while the voltage errors are used for calculating their magnitude (inside the
ADDMACC EV) and, successively, scaled for normalization,

ϵv
k[n + 1] = ∥ev

k[n + 1]∥
Vdes + Vs

(3.6)

The final step implements a sum for floating points, which will be the input for
the quantizer.

Those blocks with ADDMACC as prefix allocates one DSP48E1 unit in an ac-
cumulator functionality. In fact Vivado offers the possibility to use the so-called
Templates, which enable the direct instantiation of primitive elements (like the
DSP) optimized for a particular macro/functionality (fig. 3.13)[UG479]. This grants
higher control on resources and on the inference at synthesis-level.
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Figure 3.13: DSP48E1 Template. [UG479]

Floating Point Arithmetic Unit

Also the FPAU uses a DSP in such a way. In fact for floating point multiplication a
wide-multiplicator (32x32 bit) is required, and the DSP48E1 is not sufficient (15x28
bit implemented), but still can be used in ADD MACC mode by employing the
Karatsuba-Ofman algorithm [14] and some basics arithmetic. To prove this the
diagram for multiplication algorithm is illustrated in fig. 3.14.

The floating point values mentioned refer to single-precision (32 bit) IEEE-754
standard format. This design lacks overflow/underflow detection that can happen
when multiplying/adding two floating points. But we will demonstrate that operands
magnitude is not subject to this error, still can be material for future work.
In order to justify the overflow/underflow chance, a short discourse on word-widths
has to be made. In the following table, the bit size of most important quantities is
displayed.

SIGNAL qadc qact eq evx ∥ev∥
PIN OUT:ADDMACC_DSP OUT:ADDMACC_DSP OUT:ERR_H OUT:ERR_H OUT:ADDMACC_EV

WIDTH signed 35bit signed 16bit signed 20bit signed 20bit signed 37bit

The size depends upon the equation in which each variable is involved. For example,
the qadc for k=1 is,
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qadc,1 = (vb − vc)(iA) + (vc − va)(iB + iC) (3.7)

where, vb − vc is a 17 bit signed and iA or iB + iC are 17 bits signed. So the size of
qadc is justified, but at this point a clarification can be made. Since the input reactive
power is one of the inputs for the Σ∆ modulators, it has to be resized to a dimension
of 16 bits with sign. To do so the 16 MSBs are taken into account and this takes us
to qact. The evx go under a similar manipulation. Since the DSP48E1, inside the
’ADDMACC_EV’, provides 18x25 multiplications, the evx gets right-shifted to a size
of 18 bits.

Figure 3.14: Floating point multiplication algorithm.

These clarifications were necessary to understand the magnitudes that come into
play with the FPAUs. For example, the multiplier with inputs 1

Qdes
and eq won’t

cause an overflow/underflow. In fact, the desired input reactive power is obtained
from,

Qdes = 2πfs3V 2
s C (3.8)
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if we want to deny that generated by input filters. Supposing an input frequency of
50 Hz, a source amplitude in the range of 1-200 V, and an input filter capacitance of
13.2µF [10]; then, considering that eq has a maximum absolute value of 219, we get,

2.01e−3 <
1

Qdes
< 80.422 (3.9)

and thus,
0 < |eq

1
Qdes

| < 84.3285e6 (3.10)

which is fully contained in IEEE754 single-precision range. A similar approach
can be showed for the other multiplier.

Turning back to the FP multiplication algorithm. The 24x24 multiplication involves
only one DSP48E1. In fact, considering 2k-bits inputs, say X and Y, their value can
be decomposed as,

X = 2kX1 + X0 , Y = 2kY1 + Y0 (3.11)

where X1 and Y1 are the most significant bits, and X0 and Y0 the least significant
ones. Then the product can be written as,

XY = (2kX1 + X0)(2kY1 + Y0) = 22kX1Y1 + 2k(X1Y0 + Y1X0) + X0Y0 (3.12)

This already shows that a wide-multiplication can be decomposed in steps of
’narrow’ ones. A further modification if we use Karatsuba-Ofman algorithm,

X1Y0 + Y1X0 = X1Y1 + X0Y0 − DXDY (3.13)

where DX = X1 − X0 and DY = Y1 − Y0. This algorithm made possible to rewrite
the middle term from 3.12 in a way that suits the ADD MACC functionality of the
primitive unit (tab. 3.3 shows performance).

HW usage Latency Frequency
1xDSP48E1, 1xSplitter, 1x32bit
Right Shift, 1x16bit Right Shift,
2x32bit Adder

14
100 MHz (120 for
Vivado)

Table 3.3: FP Multiplication performance.

The FPAU adder design can be found in fig. 3.15. The algorithm is easier than
multiplication and requires less units.
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Figure 3.15: Floating point sum algorithm.

HW usage Latency Frequency

1x32bit Right Shift, 2x32bit Adder,
1x8bit Comparator

2
100 MHz (120 for
Vivado)

Table 3.4: FP Sum performance.

An additional clarification has to be detailed. The FPAUs accept as operand two
std_logic_vector of 32 bits each, but while the operands coming from the MicroB-
laze, the 1

Qdes and 1
Vdes+Vs

, are represented in IEEE-754 format, the other operands
have to undergo a reformatting. Specifically these two are signed numbers in a 2’s
complement representation, and have to be ’casted’ in their single-float equivalent.
The IEEE library, float_pkg, contains a method for this casting, but doesn’t work at
the speed of 120 MHz. So an additional module has been designed for this purpose.
The circuit that helps fix the issue, is a LEADING ONE DETECTOR, which
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output is used to shift appropriately the bits into mantissa. The detector works in
a pipelined manner and its design is reported in fig. 3.16. The 32-bit version here
implemented allocates multiple times an elementary unit that works with 4-bit inputs
(fig. 3.17). The output will be a std_logic_vector filled with zeroes, except for the
position of the leading one bit. An additional multiplexer, which adds another cycle
latency, generates the corresponding integer that informs the FPAU on the number
of bits that have to be included in mantissa.
The pipeline stages are there to guarantee timing closure and establish a determined
latency of 4 cycles (3 for pipelined LOD and 1 for multiplexing) that will be acknowl-
edged by subsequent modules, for a coherent functioning. This latency has to be
added for floating pint multiplier and adder.

Figure 3.16: 32-bit Leading One Detector. [3]

Figure 3.17: 4-bit LOD, basic block.

3.1.2 Vivado

As explained before, the Vivado comes with a bunch of hardware blocks ready to use
and relatively easy to implement through a grapical interface. For example when
designing memory units, is good practice to allocate them with the relative IP, "Block
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Memory Generator", which is platform-wise, a better solution than generating VHDL.
As for memory, other blocks get substituted in such manner. To be thorough, the
following list details the changes:

COSIM VIVADO
testbench and QEMU clock Clocking Wizard
testbench and QEMU reset Processor System Reset

Dual Port RAM Block Memory Generator
ROM (sine LUT) Block Memory Generator

AXI Xbar AXI Interconnect
intc AXI Interrupt Controller

ARMv7 MicroBlaze

The biggest change regards the microprocessor. In COSIM environment, the
QEMU simulates an ARM Cortex-A9, while on Vivado the processor is a MicroBlaze,
which is a RISCV architecture. Some blocks are present in both designs and get
re-interpreted, other are added only in Vivado. Blocks like the SPI, the I2C, the local
memory buses and the GPIO are present only in Vivado’s design since implementing
such modules on the COSIM would have been unnecessary. The Vivado is the
closest step to FPGA programming, this motivates the addition of modules with IO
connections to communicate with other integrated circuits present on the Digilent
Board. To integrate the IP portion of the design and the VHDL described one,
Vivado allows a feature called ’HDL Wrapper’ which -as the name states- makes the
proprietary blocks enclosed in a VHDL entity. In such a way is possible connect the
various modules, reaching the final schematic.

3.2 Firmware Development

The finished hardware would be useless without some bare-metal software, so a
firmware has been coded for the MicroBlaze. This IP element is referred also as Soft
Processor, to underline difference with Hard Processors that are physically realized
and not hardware-programmable. It is a 32-bit processor based on RISC architecture
with a bunch of interfaces, like UART, SPI, I2C or GPIO, and an interrupt controller.
It comes with a bunch of advantages like flexibility, low-power design, low resource
usage (close to 1% for Artix 7) and royalty-free material. It can be used in three
application-specific configurations, specifically as microcontroller, real-time processor
or application processor. For our case the first mode is more than enough for hosting
bare-metal software. Can be designed with Vitis, part of the Vivado toolset, which
comes with an important feature that allows to import the designed hardware and
write firmware ad-hoc with the generated peripherals and interconnections. As for
the hardware, firmware written for COSIM or for Vivado differs by some changes. In
particular transition from RISCV ISA to ARM is required.
The job of firmware is to setup the PS, open the UART end for serial communication

30



3.3 Software for User Interface

and reply to user instructions appropriately. This can be achieved with AXI4Lite
transactions and memory-mapped slaves. Additional headers to main program are
provided for register mapping, irq handlers and UART management. Talking about
IRQs, below is showed the ARMv7 exception vector:

Figure 3.18: Exception vector for ARMv7.

This information should be included in main code, so that it knows where to start
and how to handle exception calls. This is done by writing some assembly code inside
a key function (fig. 3.19). Thanks to compiler-specific attributes, this function can
be placed in a well defined section rather than .text .
So when an IRQ, the function redirects control to a generic ISR, that checks the
raised flag and branches to correspondent routine.

Figure 3.19: Key function for exception handling.

3.3 Software for User Interface

User can interact with SoC by a command-line interface written in C. In COSIM,
software and hardware can communicate through the PTYemu, which is a module
that creates a ’pty’ file that can record UART transactions. An illustration of this
mechanism is showed:
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Figure 3.20: Communication protocol in COSIM.

The C code writes/reads on/from ’pty’ as any normal file. The communication
is initiated by software which issues a command to firmware, and it replies on the
basis of the raised command. A list of available instructions and relative options is
provided.

COMMAND OPTIONS DESCRIPTION
help // lists the available

commands
register status
<REG>

REG=ADC,DAC,FREQ
displays content of
internal registers

[-n <NUM_BYTES>]
[-o <OFFSET>]

shows a chunk of
DPRAM from OFFSET
address

memory

-f <FREQ_DES> or -q
<Q_DES> or -a
<AMPL_DES>

changes the desired
sinewave or Qdes

write

Every command gets pre-processed in SW, in order not to involve the processor at
every passage. For example the help command can be executed without sending
UART data, and can be elaborated locally to the host.
The messages exchanged are encapsulated in a packet which helps avoiding spurious
transaction due to FIFO buffers, or noise sources. The sent messages (SW->FW) are
started and ended by a characteristic sequence (0x01), while the responses (SW<-FW)
are started by the same character but have no end. This difference happens because
the SW side knows how many bytes/characters to expect from the PS, so has to
detect the initial one and start counting from there. This solution does not solve
unexpected communications started by 0x01, its success is statistics-dependent.
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FPGA Design

4.1 UltraFast Methodology Approach

The adopted FPGA development strategy is a crucial point for the realization of a
valid product. For this project, the Ultrafast Methodology Approach proposed
by Xilinx has been followed [UG949]. What’s appealing about it is the highly
particularized chain of development and the time-optimized cycle. It is nothing more
than a collection of good practices derived from the collective engineering experience,
which can be used as a good representation of the big picture in FPGA development.
It consists of 5 milestone:

1. Board and Device Planning

2. Design Creation with RTL

3. Design Constraints

4. Design Implementation

5. Design Closure

Since an already available board has been employed for this project, the "Board
and Device Planning" step can be skipped, but not neglected since this will affect
upcoming design choices.

4.2 Board and Planned I/O

The board containing the FPGA and additional ICs, is part of a PCB realized
by Allegrezza Giuseppe [15], in his thesis work. The prototype takes care of dis-
tributing supply voltages, enable protection for high power and hosts the six ADCs
(AMC1306M25DWVR), the FPGA board (CMOD A7-35T) and the nine MOSFETS
(IPAW60R600) with corresponding drivers (STGAP2HD).
In particular, on the board, the FPGA can communicate with the following modules:

• Flash Memory via Quad-SPI, for FPGA initial configuration (further details in
next lines)
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Figure 4.1: Indirect programming the FPGA.

• 512 KB SRAM for additional memory with a maximum bandwidth of 125
MBps

• Oscillator module to generate FPGA input clock at 12 MHz

• USB-UART bridge for serial communications; FW will communicate with the
CLI tool on the user side via this interface

• GPIO comprising an RGB LED, 2 push buttons and 2 individual leds; mainly
used for debug and generating processor system reset

• XADC, the ADC module present on 7 series FPGAs (not used)

The FPGA can be configured in two ways: by USB-JTAG circuitry, or by accessing
a file stored in the flash memory. The second possibility has been implemented. In
fact the bitstream will be generated in Vivado tool and stored inside the memory
thanks to a method called indirect programming (fig. 4.1).

The SRAM can be accessed by an ’External Memory Controller’ which has been
integrated with its IP. Although has not been utilized in the current project, it can
be taken in consideration for future upgrades.
The board generates a 12 MHz input clock for the FPGA, that feeds the internal
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Clock Modifying Blocks (CMB), in particular the MMCM (a primitive clocking
resource), which gets instantiated by the ’Clocking Wizard’ and generates the derived
clocks for all internal operations.

The GPIO buttons are used for resetting the system to a known state, included
the MicroBlaze, whilst the LEDs are used for debugging purposes.
Obviously part of the pins on the FPGA are destined to the nine MOSFET drivers and
to the six sensors. During this step the PCB designer supplies not only the schematics,
but also the XDC file. This element is going to be used by the Synthesis and
Implementation processes, and contains information about the physical constraints
tied to the board IO placement (more in 4.4).

4.3 RTL Development

Once the IO is planned, is time for designing the RTL sources. Design choices made
at this point influence the next steps. At this phase is necessary to:

• Plan the hierarchy of the design

• Identify the IP cores to use and customize in the design

• Create the custom RTL for interconnect logic, when a suitable IP is not available

• Create timing, power, and physical constraints

• Specify additional constraints, attributes, and other elements used during
synthesis and implementation

The proposed hierarchy is illustrated as follows:

Figure 4.2: Design hierarchy.

Two major blocks can be distinguished: the "VHDL Toplevel" which allocates RTL
sources designed with VHDL, and "VHDL Wrapper" which instantiates block IPs.
Since the coded sources are written in VHDL-2008, we can’t benefit of Vivado GUI
for connections, so we have to handle them manually by writing additional code.
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Chapter 4 FPGA Design

The ports which have to be routed to FPGA pins, are exposed in ’Project Toplevel’
and constrained by XDC file.
Some of the design rules adopted from the ’RTL Coding Guidelines’ are:

• Using Vivado HDL Templates; that’s the case for DSP48E1 instantiations with
the ’ADDMACRO’ template

• Restructuring long datapaths with pipelining; the transition from ’to_float()’
VHDL method to LOD module is done with this perspective

• Synchronous vs. Asynchronous resets; majority of designed resets and enables
are synchronous, for example the impulsive control signals in DSP datapath

Other suggestions include: knowing when inferring RAM or ROM, coding shift
registers and delay lines, cosing styles to improve either frequency or power, and more.

Figure 4.3: Succession of active and passive steps.

A useful tool in this phase, provided by the Vivado toolbox, is LINTER. It
is a pre-synthesis program that can generate a general view of how the design
modules are connected and can issue warnings if a particular line of code could
be miss-interpreted by the synthesizer. A recurrent warning encountered during
this phase, is the ’INFERRED LATCHES’ option. These elements are usually not
recommended for FPGA designs because can easily become a point of failure, since
they were inferred and not coded-defined. This warns about a bad code construct
with conditional statements like if/else or case. To tackle the issue, the most delicate
elemts have been redesigned, in particular the modules containing the DSP primitive,
as the ’FPAU multiplie’, the ’ADDMACC EV’ or the ’ADDMACC DSP’. In fact for
these blocks a big case statement is declared for controlling the state of the DSP at
each clock phase. To fix the missing cases, additional phases have been added, in a

36



4.4 Constraints

way that doesn’t hurt the functionality of the block (fig. 4.3). As a consequence, in
the case statement, some conditions are considered as ’active’, meaning that have a
function to solve, and others as ’passive’, referring to their neutral role.

4.4 Constraints

In pre-synthesis, the VHDL sources must be provided and so the constraints file.
Designing good limitations is crucial for the success of the prototype, since they
influence the synthesis tool (timing constraints) and the implementation tool (physical
constraints). Over-constraining or under-constraining will make timing closure
difficult.
For defining good limitations, we use ,as an entry-point, the XDC file provided by
the board vendor (Digilent). XDCs derive from SDC (Synopsys Design Constraints)
and are an adaptation to AMD devices. It uses a file syntax based on TCL (Tool
Command Language) and the SDC commands are similar to TCL ones. In a XDC
file several type of constraints can be declared [16]:

• Wire load models; provide a statistical estimate of the wire-lengths

• System interface; provide guidance on the assumptions design needs to make
about blocks it will be connected to or interacting with in a subsystem or chip
or SoC

• Design rule constraints; requirements of the target technology

• Timing constraints; provide guidance on design parameters that affect opera-
tional frequency

• Timing exceptions; commands that help designer relax the requirements set
forth by other commands thereby providing scope for leniency

• Area and power constraints; provide guidance on the area a design must fit
within and power requirements for optimization

For this project, we focus on timing aspects. In particular the synthesis tool gets
instructed on the main clock (12 MHz), while the generated ones (the 20 MHz, 120
MHz,...) are managed by ’Clocking Wizard’ IP. In fact when adding an IP module
in the design, not only the RTL sources are produced, but also specific constraints
that the tools should be aware of.
After taking care of clocks, it’s the turn for I/Os. The ADCs, the UART, the
LEDs, the I2C, the SPI and the Gate Drivers are connected to specific FPGA
pins. The ADCs input receive a special treatment in this sense, in fact we set an
input delay condition and a pulldown propriety. The first one disables the ideal
assumption that ports have zero delay, by specifying minimum and maximum delays
that the combinational logic should have into account. The latter one is a protection
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mechanism to avoid the chance of having floating ports, by inserting a pulldown
resistor we assure the FPGA that when inputs are not driven, then they will get
applied a weak logic low level.
Just to be complete, when synthesis fails the designer can opt either to restructure
the RTL (changing code) or to loosen/tighten the constraints. This project is not an
exception, and the final constraints are a result of this refining procedure.

4.5 Synthesis

The synthesis step has the role of converting source code (IPs and custom + con-
straints) into an optimized netlist. This is the element that interprets the code
(VHDL-2008 in this case) and, depending how and if certain constructs are imple-
mented, allocates FPGA primitives. Not all the VHDL-2008 procedures and methods
are synthesizable, pointing out the difference between ’Designing’ and ’Designing for
Synthesis’.
At process’ end, a final report and schematic is provided, with an addition of various
post-synthesis tools, like DRC (Design Rule Checks) report, methodology report and
a QOR (Quality of Results) report.

4.6 Implementation

The implementation tools runs the ’Routing’ and ’Floor-planning’ algorithms. ’Rout-
ing’, or better ’Routing and Placement’ establishes the optimal topology on the
FPGA that can achieve the specified constraints. Several optimization criterion
can be required, for example ’Power optimization’ that optimizes dynamic power
using clock gating, or ’Logic optimization’ that ensures the most efficient logic design
before attempting placement, or even creating a new and custom implementation
strategy. For the project, no optimization technique is preferred to another, so it is
kept at its default value.
A successful implementation will generate the bitstream that will program the FPGA
with the procedure described in section 4.2.
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Chapter 5

Results and Analysis

In this chapter the COSIM and Vivado results are illustrated. First the design is
simulated in COSIM environment to validate its functionality, then the synthesis
and implementation solution is showed. Finally a latency breakdown concludes the
analysis.

5.1 COSIM Results

In COSIM the design can be tested to validate the functioning of the ’Frequency
Synthesizer’, the correctness of ADC inputs, the validity of configuration switching
and more. Let’s start from the simulated sources. The ADCs on the board are Σ∆
modulators working at 20 Mbps, since they cannot be integrated in COSIM, a C++
code simulates their behaviour. From this file it’s possible to fake the real input
bitstream for a sinusoid with a configurable amplitude and frequency. The Vdes is
custom too and is adjustable in FW or via CLI instruction.

Figure 5.1: Simulated ADCs and Frequency Synthesizer.

The top 3 sinewaves are the output from the ADCs, and are simulated with a
frequency of 5 kHz, while the bottom ones are synthesized by a frequency of 1 kHz
(note the timeline at the top).
A clear example of HW-FW-SW interaction can be seen with the next figure:
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Figure 5.2: On-line frequency change.

where is showed, in response to the CLI command, the switch in frequency (by a
0.5 factor).
An UART transaction is reported in next figures. The transmission SW->FW/HW
in fig. 5.3, and the reception SW<-FW/HW in fig. 5.4. Notice the wrapping protocol
as stated in section 3.3.

Figure 5.3: Serial communication for CLI instruction. (TX)

Figure 5.4: Serial communication for CLI instruction. (RX)

Finally the quantization action. In fig. 5.5, the top signal shows the chosen k̃ out of
the 27 configurations at each time sample, the min_p_x signals indicate which phase
should be linked to output voltages (’11’=vc, ’10’=vb, ’01’=va, ’00’ not allowed), and
the vx_actual are the output at DMC terminals. Since the load current waveforms
are not available, the filtering won’t reproduce the desired frequency, but we can
appreciate the multilevel quantization doing its job.

Figure 5.5: DMC output voltages.
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5.2 Layout Results

5.2 Layout Results

The following figure illustrates the programmed FPGA:

(a) (b)

Figure 5.6: (a) Amoeba view and (b) its color legend.

The figure 5.7 shows the cells utilization on the device. IO Banks and Clocking
regions are also included.
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Figure 5.7: Cell view.

A final summary after Placement and Routing of resource usage:

Slice Regs LUTs DSP BRAM I/O
TOTAL 12519 30.09% 13331 64.09% 17 18.89% 12 24% 73 68.87%

ADC BANK 1484 3.57% 1386 6.66% 0 0% 0 0% 0 0%
DATAPATH 1258 3.02% 1215 5.84% 4 4.44% 0 0% 0 0%

MIN DETECTOR 944 2.27% 846 4.07% 0 0% 0 0% 0 0%
IPs 3826 9.20% 4588 22.06% 2 2.22% 11 22% 0 0%

MICROBLAZE 1737 4.18% 2177 10.47% 2 2.22% 6 12% 0 0%
CPUIFACE 252 0.61% 161 0.77% 0 0% 0 0% 0 0%
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Chapter 6

Conclusions

The work touched many critical aspects of a digital design: FPGA programming,
mixed-signal sides, FW coding, pipelined architectures, inter-chip communications,
waveform analysis, resource-optimized techniques and cosimulation HW-FW-SW.
Learning the tools like Linux command line, VHDL’s rigorous syntax, the lightweight
COSIM, and the not so lightweight Xilinx’s suite, has been an exciting path and a
first approach to the fascinating world of VLSI chips and its industry standards.

6.1 Future Work

For possible upgrades and completion of the project, here it is a list for next steps:

• Test board with programmed FPGA, in an hypothetical scenario

• Upgrade FPAUs with overflow/underflow flags

• Find optimal coefficient values for CIFF modulators

• Refine CIFF modulator’s saturation point for input reactive power
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