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Useful links

• SINC project:

https://vrai.dii.univpm.it/sinc

• Training detection preparation:

https://colab.research.google.com/drive/1cnx4df03UVWA3wlR_UX9yGKI9IHd6XEi

• Training detection dense:

https://colab.research.google.com/drive/1dMZ_c2-IibI4NALXij569IKca9AYRXRh?usp=sharing

• Prediction segmentation dense:

https://colab.research.google.com/drive/1ChD4h9ybSCV2_wGpGLEA3bUADLEM7j-O#scrollTo=tOUQ9Dzlub7W

• BabyMovement dataset:

https://drive.google.com/drive/folders/1cOiiyrgswQip-3zAXfhGfur_YFeKivXD?usp=sharing
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Abstract

Preterm infants are babies born before the thirty-seven completed weeks of ges-

tation. They are at higher risk developing an abnormal neuro-development out-

come. Cognitive dysfunctions, motor impairments and behavioural disorders

are among the major adverse implications of preterm birth. One of the most

important problems concerning these disabilities is cerebral palsy (CP). Despite

being recognized as a crucial clinical task, preterm-infants’ movement evaluation

is merely qualitative and episodic, and mostly based on clinicians’ assessment.

This kind of evaluation is time consuming and inaccurate due to clinicians’ fa-

tigue.

In literature two different approaches are proposed to analyse movement of

preterm infants. The first one is based on wearable sensors, which are placed on

infant limbs. These kinds of sensors are not used in the actual clinical practice

because they are directly in contact with the infants, possibly causing discom-

fort, pain and skin damage while hindering infant’s spontaneous movements.

The second approach is based on camera sensors, which are more suitable than

wearable ones as they are non-invasive. These sensors are installed to allow clin-

icians interacting with preterm infant’s crib without any obstructions.

The work developed in this thesis is based on the generalization power of

deep learning. It is proposed a 2D fully convolutional neural network (FCNN)

with the addition of two dense block (DB) along the skip connections to esti-

mate preterm infants’ limb-pose. The analysed video sequences are obtained

from RGB-D cameras and they composed the BabyPose dataset. Depth images

are used to respect the privacy of the preterm infants.

8



CONTENTS

The results obtained are of notable interest. It is worth observing that the

proposed method was able to correctly detect visible joints when other ones were

occluded. Indeed, the median Dice similarity coefficient (DSC) and recall (Rec)

among all joints was equal to 0.854 and 0.839, respectively. Moreover, the testing

of the model was performed using a mid-range laptop. It obtained an average

detection time of 0.014 s per image. For this reason, it may be integrated in the

domestic environment to estimate limb-specific pose of the infants in real-time.
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Chapter 1

Introduction

This chapter is organized as follows: Section 1.1 reports the clinical background

of preterm infants, Section 1.2 highlights the importance of monitoring limb-

pose infant movement. In Section 1.3 the SINC project is described, Section 1.4

presents the overview of the thesis.

1.1 Clinical background on preterm infants

The World Health Organization defines preterm infants as infants born before

the thirty-seven completed weeks of gestation. Every year there are more than

fifteen million worldwide preterm births and the number of cases continues to

increase [1]. In almost all high-income Countries, complications of preterm birth

are the largest direct cause of neonatal deaths, accounting for the 35% of the

world deaths a year. Today premature birth is the leading cause of mortality in

the first year of life and the second cause of death in the first 5 years. Preterm

infants are divided in three sub-groups, based on gestational age:

• Extremely preterm (less than 28 weeks)

• Very preterm (28 to 32 weeks)

• Moderate or late preterm (32 to 37 weeks)

The pathophysiology that leads to a preterm birth is mostly unknown, never-

theless, contributing maternal, foetal and placental predisposing factors have
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CHAPTER 1. INTRODUCTION

been identified. Some of these are the antepartum haemorrhage, uterine over-

distention, and bacterial infection and inflammation [2, 3]. Epidemiological stud-

ies have been conducted to determine the major risk factors that cause preterm

birth. The most common amongst them include: an overweight pre-pregnancy

body mass index, a maternal age of less than 17 years or more than 35 years,

smoking and, physical and psychological stress. Preterm birth rates vary by ge-

ography and ethnicity, moreover, low and middle income countries (LMIC) have

higher rates [3, 4].

When a preterm delivery is identified, an antenatally plan is arranged. This

may be possible if the hospital has a tertiary level neonatal unit, otherwise, an

antenatal transfer is needed. The clinicians have to provide a series of antena-

tal steroids to reduce the risk of death, intraventricular hemorrhage (IVH), and

respiratory distress syndrome (RDS) in infants [5]. Furthermore, magnesium

sulphate needs to be supplied since it is neurprotective to the newborn [6]. Sub-

sequent to the labour and initial management, the preterm infants need to be

monitored because of all organ systems are immature. The main complications

of each system are:

• Respiratory system: Respiratory distress syndrome, Surfactant deficient

lung disease, Chronic lung disease and recurrent apnoea.

• Cardiovascular system: Hypotension, perfusion abnormalities and Patent

ductus arteriosus (PDA).

• Neurological system: Intraventricular haemorrhage, cerebral palsy,ventricular

dilatation and neuro-developmental delay.

• Immune system: Sepsis

• Gastrointestinal system: Immature gut causing feed intolerance and necro-

tising enterocolitis (NEC).

• Metabolic system: Jaundice, hyperglycaemia and hypoglycaemia.

• Thermoregulation system: Immature thermoregulation.
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CHAPTER 1. INTRODUCTION

• Visual system: Retinopathy of prematurity.

Cognitive and psychiatric dysfunctions, motor impairments and behavioural

disorders are among the major adverse implications of preterm birth. Cognitive

shortages happen in 25-50% of preterm infants, in particular if they were born

with a weight less than 1500 g. One of the most important problems concerning

these disabilities is cerebral palsy (CP). It is a permanent disorder in the devel-

opment of movement and posture and is one of the major disabilities that affects

up to 18% of infants who are born extremely preterm [7].

Preterm birth is a significant medical and social issue that needs to be monitored

both promptly and in the first years of life of baby. Indeed, preterm infants born

with a weight below the average represent 63% of the causes of mortality under

5 years of life.

1.2 The relevance of monitoring movement in preterm

infants

Infants’ spontaneous motility is a valuable diagnostic and prognostic index of

infants’ cognitive and motor development. For more than 25 years, the Prechtl

General Movement Assessment (GMA) has been used as a non-intrusive and re-

liable technique. The GMA evaluates the functioning of the newborn’s nervous

system [8, 9]. The neonatal nervous system produces several motor patterns

spontaneously. These involve twitches, stretching, yawing and general move-

ments (GMs). The latter includes the movement of the whole body in a variable

sequence of legs, trunk, arms and neck movements [8].

From early fetal life until the end of the second month after term GMs shows

analogous aspects. They are called “writhing movements” from term age onward.

This kind of movements gradually disappear from 6-9 weeks of postterm age, and

GMs take on a fidgety character. The “fidgety movements” are little motion of

neck, trunk and limbs in all directions with a variable acceleration that are

noticeable from 3 to 5 months after term [9, 10].

GMs are produced by the central pattern generators (CPGs), which are
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CHAPTER 1. INTRODUCTION

mainly located in the brainstem. Supraspinal projections take under control

and modulate CPGs activity in order to regulate the motor output [11, 12]. Fe-

tal or neonatal issue is indicated by a reduced modulation of the CPGs that

shows a small range of motion (i.e. abnormal).

During preterm and term age, abnormal GMs are divided in three different cat-

egories:

• Poor repertoire GMs: the succession of movements is monotonous and the

speed, intensity and variability of movement are different from a healthy

infant.

• Cramped-synchronized GMs: the movements are less smooth and fluent,

moreover, when the limb and trunk muscles both contract or relax simul-

taneously, the motion results rigid.

• Chaotic GMs: the movements are abrupt and quivering. The range of

motion is wider and the speed is higher. This kind of GMs are usually

related to the moderate preterm age.

Abnormal fidgety movements are overstated in amplitude, speed and jerkiness.

When this kind of movement occurs occasionally or completely absents at 3-

5 months, the likelihood of developing a neurological disease such as cerebral

palsy is elevated [9, 10, 13]. The GMA has been growing exponentially as a

prediction method for motor dysfunctions such as cerebral palsy, since its in-

troduction 30 years ago [8]. Great indexes of prediction of cerebral palsy are

cramped-synchronized GMs and the lack of fidgety movements, while lower neu-

rological dysfunctions are related to poor repertoire GMs and abnormal fidgety

movements [9, 12]. Furthermore, recent studies are focused on understanding

whether or not GMA could also be related to cognitive and language develop-

ment and, behavioral, mental, and genetic disorders [12, 13, 14].
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To avoid preterm infants’ to develop abnormal neuro-developmental out-

comes, early detecting motor impairments is crucial to properly define inter-

vention programs [15]. Clinicians in Neonatal Intensive Care Unit (NICU) have

to pay particular attention to the monitoring of infants’ limb so that is possible

to notice an early issue such as cerebral palsy [16].

Figure 1.1: Depth-image acquisition setup. The depth camera is positioned at
about 40cm over the infant’s crib and does not hinder health-operator movements.
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CHAPTER 1. INTRODUCTION

Despite being recognized as a crucial clinical task, preterm-infants’ movement

evaluation is merely qualitative and episodic, and mostly based on clinicians’ as-

sessment at the crib side in NICUs or review of infants’ video-recordings. This

kind of evaluation is time consuming, inaccurate due to clinicians’ fatigue and

susceptible to intra and inter-clinician variability [15]. Moreover, there are no

standardized clinical guidelines to predict motor impairment of infants and so

the recognition of that is based on the experience of healthcare professionals

[17]. All this leads to a lack of quantitative parameters inherent on the matter.

A possible solution to overcome the issue of qualitative monitoring could be

the utilization of an automatic video-based system for tracking the infants’ limb

pose. It can be easily integrated into standard clinical monitoring setup as this

kind of sensors does not hamper movements of newborns and healthcare oper-

ators. The camera could be positioned on top of infants’ crib, leaving health

operators free to move and interact with the infants. (Fig. 1.1).

Some preliminary studies proposed by [18] and [19] have reached results for

infant’s whole-body segmentation with threshold-based algorithms. Neverthe-

less, during the health-assessment process, each limb has to be monitored in-

dividually to best aid clinicians. Furthermore, the estimation of the preterms’

limb-pose is not a trivial task because of small and hardly visible joint, presence

of limb occlusions, lighting changes, and variable distance between camera and

infants. Methods for monitoring the movement of preterm infants are discussed

more in details in Section 2.1

In order to tackle these drawbacks, it is implemented an automatic system

that exploits Artificial Intelligence methods for the analysis of depth images.

The aim is to improve the utilization of convolutional neural networks (CNN)

for the estimation of infants limb pose. It is added two dense block (DB) to the

2D fully convolutional neural network (FCNN) in order to detect limb joints and

joint connections. It has been decided to use depth images instead of RGB ones

in order to respect the privacy of the patients.
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1.3 The SINC project

The proposed algorithm estimates the pose of preterm infants using depth images

acquired in NICU. The work of this thesis is part of the SINC project. The

aim of the project is to develop an innovative integrated system that allows

improving the neonatal ward through the application of new products and a

new organizational model. The main purposes of SINC are the following:

• Integrate a new system on the crib in order to detect the main physiological

parameters of the infant without physical contact with the subject.

• Produce a cloud service that makes available services and utilities in the

Marche Region that handle and integrate the monitoring data acquired

through these new devices to improve the diagnosis.

• Build a new hospital model for the management of newborn cribs and

medical care between the several hospitals in the Marche Region, supported

by tools and distributed data management systems.

The project is developed in Neonatal Intensive Care Unit in G. Salesi hospi-

tal. The proposed modernisation allows obtaining contact-less measurements

for principal physiological parameters to monitor the state of health of preterm

infants. The purpose of this thesis is to develop a system that automatically

estimates limb-specific pose of the infant in order to integrate it in the domestic

environment. This method allows evaluating the spontaneous motility of preterm

infants, which is a predictor of cognitive disorders such as cerebral palsy.

1.4 Thesis overview

In this section a brief summary of the work proposed is reported. The thesis is

organized as follows:

• Chapter 2 summarise the state of the art about monitoring of preterm

infants’ spontaneous limb-movement.

17
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• Chapter 3 presents the essentials of Deep Learning, focusing on functions

and algorithms applied during the developing of the model.

• Chapter 4 analyses more in details the architecture of the network utilised.

• Chapter 5 presents all the results obtained.

• Chapter 6 discusses the results presented in the previous chapter and it

focuses on future developments.

• Chapter 7 presents the conclusions about the model.

Figure 1.2: Representation of the workflow of the thesis.

The workflow of the thesis is reported in Fig. 1.2.
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Chapter 2

State of the art

In the past decades many researches have been conducted to automatically mon-

itor preterm infants’ spontaneous limb-movement. In the following chapter dif-

ferent approaches proposed in the literature will be discussed in Section 2.1.

Moreover, a brief introduction of the method will be exposed in Section 2.2.

2.1 Methods for monitoring the movement of preterm

infants

In literature different approaches have been proposed to monitoring limb-movement

of preterm infants. They are mainly divided in two broad categories: wearable

sensors and camera sensors. The former are discussed in Section 2.1.1 and the

latter in Section 2.1.2.

2.1.1 Wearable sensor-based approaches to monitor preterm

infants’ limb-movement

Wearable sensors are placed on infant limbs to detect his/her movement. In par-

ticular, Trujillo-Priego et al. [20] proposed an algorithm to determine the num-

ber of arm movement bouts an infant produces across a fully day in the natural

environment. Wearable sensors placed on wrist record tri-axial accelerometer

and gyroscope data at many samples per second. In this manner they acquire
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movement data unobtrusively across many continuous hours.

Figure 2.1: Representation of the wearable sensors presented by Smith et al.
[21] (2015). In picture is shown three-month-old infant wearing sensors on the
front of each ankle.

Another method proposed by Smith et al. [21] is based on wearable sensors

placed on knees. They use inertial movement sensors to record fully-day leg

movement activity from infants. Their algorithm determines the number of leg

motion that an infant performed during a day.

Other systems utilise wireless accelerometer [22, 23, 24] or electromagnetic sen-

sors [25, 26], however, their utilization is soon ceased.

These kinds of sensors have some limitations because are time-consuming and

need to be constantly recalibrated. Moreover, even though miniaturized, these

sensors are directly in contact with the infants, possibly causing discomfort, pain

and skin damage while hindering infant’s spontaneous movements. Because of

such drawbacks wearable sensors are not used in the actual clinical practice.
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2.1.2 Camera sensors

Meinecke et al. [27] are among the first to exploit optical flow to estimate preterm

infants’ spontaneous movement in RGB-image streams.

Figure 2.2: Representation of the tracking system presented by Meinecke et al.
[27] (2006). In picture (a) is shown a photo of the 7 cameras positioned around
the preterm infant. In figure (b) are shown the markers positioned on the body
of the preterm infant.

Their system (Fig. 2.2(a)) is based on seven infrared cameras that tracking

twenty markers placed on the infants’ body (Fig. 2.2(b)). After markers’ cali-

bration, knowing the position of them, it is possible to compute the rotation of

head and trunk of the infant, and the movement of the limbs. However, the use

of markers makes hard to apply this method in a clinical environment due to

occlusion of markers in the limbs.

Figure 2.3: Representation of the monitoring system presented by Stahl et al.
[28] (2012). In figure (a) it is possible to notice the grid that is placed above the
image. Figure (b) shows the variation of the points due to a movement of both
the head and the limbs.
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A further method based on optical flow is proposed by Stahl et al. [28]. The

image is divided in a grid of points (Fig. 2.3(a)) that follows the movement’s tra-

jectory of infant (Fig. 2.3(b)). The spots of hands, feet and head are manually

selected and monitored in order to estimate the baby’s pose. Shivakumur et al.

[29] implemented a multiple view stereoscopic 3D vision system that provides

better resolution than classical RGB cameras. Firstly the algorithm localizes

the centre of body, subsequently, others parts of body infants such as hands

and legs. All the selected regions are segmented based on a colour threshold.

The evaluation of the system is done on sixty photograms manually annotated.

However, the two approaches proposed in [28] and [29] are semi-supervised and

computational expensive, hampering their use in the clinical practice.

Figure 2.4: Representation of the approach proposed by Cenci et al. [1] (2017).
In figure (a) is shown a depth image, while in figure (b) the k-means classification
of the limbs is represented.

Cenci et al. [1] proposed an automatic threshold approach based on the

difference between two consecutive depth frames (Fig. 2.4(a)) with a certain

delay each other. The image obtained is processed through K-means clustering

technique (Fig. 2.4(b)). The advantage of this method is that it is objective,

contactless, non-invasive and suitable to be installed in an indoor environment

like Neonatal Intensive Care Unit. Moreover, it preserves both infants’ and

operators’ privacy. Nevertheless, it is high sensitive to noise and inter-subject

variability due to the fact that the threshold value has to be set manually. In ad-

dition, there are others drawbacks when processing depth images such as variable

distance between the crib and the camera, and variability in infants’ movements.
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CHAPTER 2. STATE OF THE ART

Figure 2.5: Representation of the approach proposed by Cao et al. [30] (2017).
Multi-person pose estimation. Body parts belonging to the same person are
linked.

Inspired by recent considerations, a possible solution to overcome these chal-

lenges could be the utilisation of deep learning, mainly the exploitation of CNN.

Cao et al. [30] suggested a deep-learning approach to efficiently detect the 2D

pose of multiple people in an image (Fig. 2.5). This model consists of two

CNNs, the first one is a detection FCNN to obtain joint probability maps and

the second one is a regression CNN to improve estimate of joints’ position. This

method obtains a high accuracy despite of the number of people in the image.

23
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Figure 2.6: Representation of the approach proposed by Moccia et al. [31]
(2019). LS and RS: left and right shoulder, LE and RE: left and right elbow,
LW and RW: left and right wrist, LH and RH: left and right hip, LK and RK:
left and right knee, LA and RA: left and right ankle.

Moccia et al. [31], inspired by [30], implemented a model based on two con-

secutive CNNs to estimate the pose of preterm infants (Fig. 2.6). The first CNN

is used to detect limb joints and joint connections, while the second one is applied

to predict accurately joint and joint-connection position. The approach used by

[31] accomplishes comparable results for the detection of all joints, highlighting

that it is able to process in parallel different joint probability maps. Moreover,

it is capable to detect visible joints in the right manner, although the other ones

are occluded.

The model presented in this thesis automatically estimates limb-specific pose

of the infant. It is proposed a 2D fully convolutional neural network (FCNN)

with the addition of two dense block (DB) in the skip connections to improve

the detection of joints and joint connections.
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2.2 Overcoming the state of the art

The approaches reported in the state of the art show some differences. Wear-

able sensors exhibit various obstacles such as irritating the skin of the infant and

hindering his spontaneous movements. In addition, these sensors have to be con-

stantly recalibrated. Camera-based approaches are more suitable than wearable

ones, because these sensors are non-invasive as they are not in direct contact

with the preterm infant’s body. Moreover, camera sensors are installed to allow

clinicians interacting with preterm infant’s crib without any obstructions.

The following work wants to exploit the generalization power of deep learning,

starting from the method proposed by Moccia et al. [31]. The difference between

the implemented model and the approaches previously proposed in the literature

is based on the addition of the two DB along the skip connections. This has led

to an improvement in the detection of joints and joint connections. More in

details, the system has to extract frames from the video sequence and each

frame is passed to the model in order to estimate preterm infants’ limb-pose.
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Chapter 3

Deep Learning

Deep Learning is an evolution of traditional machine learning approaches. It

is an Artificial Intelligence technique based on different levels of representation.

Each layer uses the output of the previous one as input in order to obtain a

progressively abstract representation of the data. This model replicates the

behaviour of brain cells. Indeed, each level matches to a different layer of the

cerebral cortex.

The following chapter presents the essential of Deep Learning, describing more

in deep the characteristic of the model used.

3.1 Convolutional neural network

Convolutional Neural Networks are based on Artificial Neural Networks, which

are inspired by biological neural networks. An ANN is composed of nodes, called

artificial neurons, which model the neurons in a biological brain. Each connection

between nodes transmits a signal that is a real number. Neurons and connections

are adjusted during learning procedure by a weight. The nodes constitute layers,

the first one is known as input layer while the last one as output layer. Among

of them there are one or two intermediate layers called hidden layer.
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CHAPTER 3. DEEP LEARNING

Figure 3.1: Biological representation of neuron.

The simplest form of ANN is the perceptron proposed by Frank Rosenblatt

[32] and inspired by the function of the neuron. A neuron is the main compo-

nent of nervous tissue. Human nervous system is made of about 86 billion of

neurons, which communicates with other cells through specialized connections

called synapses. A biological representation of neuron is shown in Fig. 3.1. Each

of them takes inputs from its dendrites and inside the soma a weighted sum of

these inputs is performed. The signal arrives to the axon hillock. If the result is

higher than the threshold limit, the signal propagates along the axon and it is

run to the successive neurons through synapses.

Figure 3.2: Representation of the Rosenblatt perceptron [32]. It receives M
value inputs xm and each of them is multiplied by the corresponding weight wm.
Subsequently all the products are added together and passed to the activation
function.

27



CHAPTER 3. DEEP LEARNING

The perceptron, shown in Fig. 3.2, mathematically represents the biological

activity of the neuron. The input signals (xm) communicate with the synapses

(wm) and give (wm ∗xm) as product. The synaptic weights have different values

because some inputs influence the output more than others. Moreover, they

can be negative and therefore have an inhibitory influence. All the products

are summated, if the result overcomes threshold (bias b) the neuron fires. The

weighted sum is modelled by an activation function g. The sigmoid function is

usually applied (σ(x) = 1
(1+ex)).

The output can be expressed in the following way:

output = ŷ = g(
M∑

m=1

wmxm + b) (3.1)

Where M represents the number of inputs.

Figure 3.3: Representation of a generic Deep Neural Network with m input

(xi, i ∈ [1,m]) n outputs (Oi, i ∈ [1, n]) and different hidden layers.
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The problem of the perceptron is that it is a linear classifier and thus it is

never used individually. Its main application is to be used in more complex

ANN, called Deep Neural Network (DNN). It is an ANN with multiple layers

between the input and output layers. An example of DNN is shown in Fig. 3.3.

The main advantage of this architecture is to be able to implement DNNs

with a much lower number of nodes than ANNs with only one hidden layer.

Hence, a model with fewer weights to learn requests a smaller dataset for training

and the size of dataset is often an issue [33]. However, the problem of overfitting

and computation time is shown by the use of DNNs. This is due to the high

number of hidden layers and training parameters.

Figure 3.4: Representation of a generic CNN architecture having convolutional,
pooling and fully connected layers.

A different kind of ANN is represented by Convolutional Neural Network,

introduced by YannLeCun [34] in 1990. An example of it is shown in Fig. 3.4.

In the following subsections are described the different layers utilised in the

architecture of the model.

Convolutional layer

The first difference between CNNs and DNNs is constituted by the presence of

convolutional layer. It consists of a set of learnable filters, called kernel. It is

similar to a matrix of small spatially dimensions (height and width) and as deep

as the input image. The application of kernel reduces the number of parameters

because the number of weights is independent of the size of the input image.
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Figure 3.5: Representation of a 3x3 kernel that slides along the input image
making the weighted sum at each step.

The convolution consists of the sliding of each filter along the width and

height of each channel of the input volume. It computes the dot product between

the values of the kernel and the portion of the overlapping image. An example

of convolution is shown in Fig. 3.5.

The convolution can be mathematically seen as a multiplication of matrices:


1 2 3

4 5 6

7 8 9

 ∗

a b c

d e f

g h i

 = (1 · a) + (2 · b) + (1 · c) + ...+ (9 · i) (3.2)

The result is a weighted sum that gives pixel value of the output image.

Therefore for each convolutional layer the input image is convolved with a

set of kernel W = {W1,W2, ....,WK}. The result is sum with bias vector

B ={b1, b2, ...., bK} in order to obtain a feature map XK . Subsequently, all

the feature maps are modelled by the activation function g and the result for

the k-th kernel of the convolution layer l is:

30



CHAPTER 3. DEEP LEARNING

X l
k = g(W l

k ∗X l−1 + blk) (3.3)

The size of the output volume of each layer is controlled by the depth, stride

and zero-padding. The first one corresponds to the number of kernels applied

during the convolution, each learning to look something different in the input.

For example, if the first convolutional layer takes as input the raw image, then

different neurons along the depth dimension may activate in presence of various

oriented edges, or blobs of colour. The stride is the step size where the kernel is

slid along the image. Thus if the stride is 1, the filter moves one pixel at a time.

This parameter controls the output volume along its height and width. The last

one is the zero-padding, a technique that allows maintaining the original input

size.

The aim of the convolutional operation is to extract the high-level features

from the input image. In a CNN more convolutional layers are applied. The first

ones capture low-level features such as edges, colour and gradient orientation,

while the deeper layers extract high-level features.

Pooling Layer

The other difference between CNNs and DNNs is due to the pooling layer (Fig.

3.4). It is a kind of down-sampling that progressively reduces the spatial size

of the feature maps. This is done to decrease the amount of parameters and

computational power required to process the data. In this way it is possible to

control overfitting. There are two types of pooling: max pooling and average

pooling. The difference among them is how the output value is computed. In the

first case it returns the maximum value from the portion of the image covered

by the window, generally of size 2 x 2 or 3 x 3. On the other hand, average

pooling returns the average of all the values. The window is scrolled along the

spatial dimension of the feature map by a fixed stride.
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Figure 3.6: Representation of the Max-pooling operation with a window of size
2x2 and a stride of 2 pixels.

An example of max pooling is shown in Fig. 3.6.

3.2 Minimum’s research

The aim of a CNN is to find a function f(x,W ) where x is the input and

W = [w1, w2, w3, ...., wn]

Is the vector that represents the values of kernels called weights (w1, w2, .., wn).

Each one of these values is computed during training in order to minimize the

loss function f. The minimization of loss function is mathematically expressed

as:

min {L(W )} = min

{
1

N

N∑
i=1

(Li(f(xi,W ), yi))) + λR(W )

}
(3.4)

where the first part of the sum represents the loss function on the training

set data, R(W ) and λ indicate, respectively, the regularization’s term and its

parameter.

The training phase is divided in different steps. The first one is the initialization

of weights with random values. Afterwards, all the data that constitute the

training set pass through the layers of the architecture. The output from the
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network is the predicted label. In this way, the prediction error is determine by

comparing the predicted label with the reference one. The error is computed

applied the loss function in order to update the weights. The training process

ends when the value of loss function is minimized.

3.2.1 Loss function

The loss function allows defining a value that indicates the difference between

the predicted label and reference one.

In general it can be expressed in the following way:

L(W ) =
1

N

N∑
i=1

(Li(f(xi,W ), yi)) (3.5)

Where:

• N: is the number of sample in the training set

• W : is the weights’ matrix

• f(xi,W ): is the model prediction based on the sample xi

• yi: is the reference label of the sample xi

• Li(f(xi,W ), yi): is the prediction error

An example of loss function is the Binary Cross-Entropy loss. It is a Sigmoid

activation plus a Cross-Entropy loss. It is independent for each vector compo-

nent, thus the loss value computed for every CNN output vector component is

not influenced by the other ones. It is mainly used in binary classification tasks

and multi-label classification.

The Binary Cross-Entropy can be expressed as:

H(p) =
1

N

N∑
i=1

(yilog(p(yi)) + (1− yi)log(1− p(yi))) (3.6)
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Where:

• N is the number of sample in the training set

• yi is the target label

• p(yi) is the prediction probability

3.2.2 Regularization

Figure 3.7: Representation of the overfitting problem. The f function, repre-
sented as the blue curve, is adapted to the features of the input data.

When the model learned patterns specific to the training data, it is occurred

overfitting. A classic example of overfitting is shown in Fig. 3.7.

The blue points represent the data of the training phase. From the interpolation

of these points, an approximation of the loss function f is obtained.

The consequence is that the model looks for the best fit for training data and

therefore the training metric improves, meanwhile the test metric stops the en-

hancement and begins to decrease.
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Figure 3.8: Comparison between overfitting, represented by the blue curve, and
generalization, represented by the green line.

The desirable graph is illustrated in Fig. 3.8. Also in this case the blue points

represent the data of the training phase while the green ones the prediction over

the testing data. The approximation of loss function f is represented by the

green line. The consequence is that the prediction is close to the training data

and hence, the network is able to generalize. The regularization process allows

overcoming the overfitting. Mathematically it is expressed by the positive term

R(W ) and is summed to the loss function (formula (3.5)) in order to obtain:

L(W ) = 1
N

∑N
i=1 (Li(f(xi,W ), yi))) + λR(W )

The regularization term R(W ) penalizes the weights’ matrix of the nodes.

An example of regularization process is the Batch Normalization (BN).

It is a method applied on ANNs to make them faster and more stable. The

utilization of this technique is necessary to cope with the problem of internal

covariate shift. It is the change in the distribution of network activations due

to the change in network parameters during training.
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The BN allows normalizing each output layer, in order to overcome the prob-

lem of internal covariate shift. The first stage is the computation of both the

mean and the variance of a batch (B) of N samples (x):

µB =
1

N

N∑
i=1

xi (3.7)

σ2B =
1

N

N∑
i=1

(xi − µB) (3.8)

Afterwards, each sample (x) is normalized by subtracting the batch mean and

dividing by the batch standard deviation. The sample normalized is symbolized

by x̂:

x̂i =
xi − µB√
σ2B + ε

(3.9)

is a constant positive value, such as 0.001, that gives more stability. The last

step is to perform a scale and shift. Therefore, the output layer is:

yi = γx̂i + β (3.10)

Where γ represents the “standard deviation” parameter and β is the “mean pa-

rameter”. yi are the normalized feature maps that will then be activated.

During the training phase the backpropagation algorithm is applied. It com-

putes the gradient of loss function with respect to weights in order to obtain β

and γ values. The testing phase has some differences from the training one. The

testing network has only one input that gives a single output. Thus, it is useless

to apply the batch normalization method. For this reason, during the testing

phase the model used both the batch mean and the batch variance determined

in the training phase.
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3.2.3 Optimization

The aim of the optimization procedure is to find the values of the vector weights

W that minimizes the loss value (Formula (3.4)).

This is done mathematically through the gradient descent method. It is used

to minimize the loss function by iteratively moving in the direction of steepest

descent as defined by the negative of the gradient.

The gradient is the vector of the partial derivatives of the loss function along

each dimension wi. Formally is expressed as:

OwL(W ) = [ ∂L
∂w1

, ∂L
∂w2

, ...., ∂L
∂wn

]

Given the formula:

Wnew = Wold + ∆w (3.11)

where ∆w is the term that update the weights. It is the product between the

learning rate (η) and the negative gradient (−OwL(W )), as reported:

∆w = η(−OwL(W ))

From which it is obtained:

Wnew = Wold − ηOwL(W ) (3.12)

In matrix form is expressed as:
w1

w2

..

wn


new

=


w1

w2

..

wn


old

− η


∂L
∂w1

∂L
∂w2

..

∂L
∂wn


The backpropagation technique is based on it for updating the weights.
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In literature there are various algorithms applied to find the descent of the

gradient such as Stochastic Gradient Descendent (SGD). It is mainly used

for dataset having a huge amount of data. The gradient descent method is ap-

plied for each training sample because is batch size is equal to one. The batch

size is the number of training samples utilized in one iteration. An iteration

corresponds to the number of batches needed to complete one epoch that is when

the entire dataset passes forward and backward through the neural network only

once.

Figure 3.9: Fluctuations in the descent of the gradient with the use of SGD.

The pivot of this approach is to randomize the training dataset so as to mix

up the order of the updating of the weights. This involves a high variance that

produces intense oscillations in the descent of the gradient as can be seen in Fig.

3.9. In order to cope with oscillations a momentum is added.

Figure 3.10: Example of descent of the gradient considering only two weights.
In figure (a) descent of the gradient without momentum. In figure (b) descent of
the gradient considering the momentum
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Considering the example of Fig. 3.10 (a) is possible to observe that there

is a fast variation along the vertical direction whereas the variation along the

horizontal one is slow. This occurs when SGD is applied.

The desired effect is the opposite one, that is a slow variation along the vertical

direction and a quick variation along the horizontal direction, as shown in Fig.

3.10 (b).

The introduction of the momentum smooths the direction in which the de-

scent of the gradient occurs. In this way the global minimum is achieved in fewer

epochs. It is mathematically expressed as:

vt = ρvt−1 + OL(Wt−1)

Wt = Wt−1 − ηvt
(3.13)

Comparing (3.12) with the last one it is worth nothing that the learning rate

(η) multiplies vt, called the velocity, and not directly the gradient. The velocity

allows to make the training quicker and to avoid the gradient’s descent from

being blocked in a local minimum or in a saddle point.

The parameters used to compute the velocity are:

• vt−1: that is the retained gradient from previous t iterations

• ρ: is the “Coefficient of Momentum” that determines the percentage of the

gradient retained every iteration. During the update of the weights the

contribution of the accumulated gradients is prevalent, if ρ is much greater

than η. Consequently, the gradient at step t changes the direction slowly.

If it occurs the opposite condition, the accumulated gradient produces a

kind of attenuation. Typically ρ has a value between 0.9 and 0.99. If it is

set to zero, it returns to classic SGD algorithm.
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Figure 3.11: Physical interpretation of the Momentum update rule.

A physical explanation of (3.13) is shown in Fig. 3.11. The red point corre-

sponds to the point that is achieved during the gradient’s descent at the end of

the step t. Firstly, it is estimated the velocity of the current step. It is indicated

by the green vector (Momentum step) and it is obtained by the product between

ρ and vt−1. The gradient of the step t is got by computing OL(Wt−1) and it is

represented by the red vector (Gradient step).

The velocity vt is indicated by the blue vector (Actual step) and it is the result

of the summation of the two previous vectors. From this it is obtained:

vt = ρvt−1 + OL(Wt−1).

3.2.4 Activation function

The activation function allows obtaining an output value from an input one.

It is a kind of gate that decides whether a neuron should be “fired” or not by

computing a weighted sum and further adding bias with it. Activation function

introduces non-linearity into the output allowing the neural networks to learn

and perform more complex tasks.
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Figure 3.12: Representation of the sigmoid function

One of the most used activation function is the sigmoid, also called the

logistic function. It transforms the input values into a value ranges from 0.0 to

1.0, as shown in Fig. 3.12.

If the input is a value much greater than 1.0 the corresponding output is equal to

1.0. On the other hand, if the input has a negative value, the matching output

is equal to 0.0. Hence, it is mainly applied to models that have to predict the

probability as an output.

The sigmoid is mathematically expressed as:

σ(x) =
1

1 + ex
(3.14)

During the early 1990s the sigmoid was the most used function in neural net-

works. However, it was discovered that it presents some problems during the

training such as saturation. Indeed, the high values output to 1.0, while the low

ones output to 0.0. Moreover, it is only strongly sensitive to change around its

mid-point of its input.
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Figure 3.13: Representation of the Rectified Linear Units (ReLU) function

Nowadays the most commonly used activation function is the Rectified

Linear Units (ReLU). It is shown in Fig. 3.13.

For any positive value x the function returns the same input value, while for any

negative input it returns 0. It can be mathematically expressed as:

ReLU(x) = max(0, x) (3.15)

An advantage of this function is that it can solve the vanish gradient problem.

This is achievable because ReLU’s derivative is 1 for positive inputs, while is 0

for negative ones as reported in the following formula:

∂ReLU(x)

∂x
=

1 x > 0

0 otherwise
(3.16)

The introduction of ReLU has become necessary to apply SGD with backprop-

agation of errors during the training phase of deep neural networks. Therefore,

during the backpropagation phase, if the local derivative is equal to 1, the gra-

dient is allowed to move.
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3.3 Densely Connected Convolutional Networks

In the last decades the use of CNNs has grown more and more to become the

most used technique for visual object recognition. However, the improvements

of computer hardware allowed implementing deeper CNNs. This has led to the

development of a new research problem: the vanish gradient problem.

The gradient information moves through many layers because of deeper networks,

and so it can vanish when gets to the end or the beginning of the architecture.

For this reason, Huang et al. [35] proposed a model to overcome this issue called

Dense Convolutional Network (DenseNet). They maintain the feed-forward na-

ture of the network; each layer receives inputs from all preceding ones and passes

its feature maps to all subsequent layers. The feature maps received from other

layers are concatenated and not summated. All layers are directly connected

with each other to ensure maximum information flow among them.

Figure 3.14: A schematic layout of Dense Convolutional Network.

A schematic example is reported in Fig. 3.14. DenseNet requires fewer pa-

rameters than traditional convolutional networks due to these dense connections,

since there is no need to learn redundant feature maps. As a consequence, the
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fewer parameters to learn make the training process easier and prevent the model

from overfitting.

Dense Block

Figure 3.15: A schematic layout of Dense Block. DL: dense layer. CONV:
convolutional layer.

The method proposed by [35] introduces the concept of Dense Block. It is

made of N dense layers, each of which receives the feature maps from all previous

dense layers. Its feature maps are passed to all successive layers. Concatenation

applied in a dense block cannot occur if the size of the feature maps is not the

same. An example of dense block is illustrated in Fig. 3.15.

Figure 3.16: A schematic example of Dense Layer. C: number of channels.
CONV: convolutional block.
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Each dense layer is composed by 2 convolutional blocks. The former is a 1x1

convolution utilized for extracting features while the latter is a 3x3 convolution

that decreases feature channels. Each convolutional block is made of three con-

secutive operations: batch normalization (BN), rectified linear unit (ReLU) and

either a 1x1 convolution or a 3x3 convolution. An example of single dense layer

is shown in Fig. 3.16.

Figure 3.17: A schematic example of Transition Layer. W: width dimension.
C: number of channels. CONV: convolutional block.

The number of channels output by a dense layer is called growth rate (k).

Each layer receives feature maps from all preceding layers of the dense block

and thus has the “collective knowledge” of the network. For this reason, a small

growth rate is sufficient to improve the efficiency. In addition, a transition layer

is added between two dense blocks (Fig. 3.17). It consists of a 1x1 convolution

to reduce the number of feature channels by half.

45



Chapter 4

Model architecture

This chapter is organized as follow: Section 4.1 describes the model utilised to

estimate preterm infants’ limb-pose and Section 4.2 presents the experimental

protocol.

4.1 Architecture of the model

Figure 4.1: Representation of the infant model. LS and RS: left and right
shoulder, LE and RE: left and right elbow, LW and RW: left and right wrist, LH
and RH: left and right hip, LK and RK: left and right knee, LA and RA: left
and right ankle.

In the current study each limb of the infants is modelled as a set of three

connected joints: wrist, elbow and shoulder for arms, and ankle, knee and hip
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for legs. This is shown in Fig. 4.1. The architecture implemented is inspired

by the work of Moccia et al. [31]. It consists of two consecutive CNNs in

order to estimate preterm infants’ limb pose. The former detects joints and

joint connections and the latter is applied for the regression of joints position.

The joints belonging to the same limb are then connected using bipartile graph

matching.

For the development of the FCNN detection, it is made multiple binary-

detection operations to manage possible uncertainties due to the fact that mul-

tiple joints and joint connections could cover the same portion of the image,

such as a limb self-occlusion. 20 separate ground-truth binary detection maps

are produced for each video frame, the first twelve for the joints and the remain-

ing eight for the joint connections. In the detection network the joint and the

joint-connection branches gives as output joint and joint-connection confidence

maps, respectively.

The joint mask consists of all pixels that lie inside the circle of a specific

radius that is centred in the centre of the joint. In the same way, the ground

truth for the joint connections are generated. The difference is that the region

of interest is a rectangular of a given thickness and centrally aligned with the

joint-connection line.

Figure 4.2: Representation of the FCNN with Densely Connected skip connec-
tions.
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The architecture of the detection network is based on the classic encoder-

decoder architecture of U-Net made by 8 blocks: 4 for the encoding path and 4

for the decoding path (Fig. 4.2).

Table 4.1: Representation of the detection architecture to estimate the pose of

preterm infants’ limbs.

Name Kernel (Size / Stride) Channels

Downsampling path

Input – 1

Convolutional layer - Common branch 3x3 / 1x1 64

Block 1 - Branch 1 2x2 / 2x2 64

3x3 / 1x1 64

Block 1 - Branch 2 2x2 / 2x2 64

3x3 / 1x1 64

Block 1 - Common branch 1x1 / 1x1 128

Block 2 - Branch 1 2x2 / 2x2 128

3x3 / 1x1 128

Block 2 - Branch 2 2x2 / 2x2 128

3x3 / 1x1 128

Block 2 - Common branch 1x1 / 1x1 256

Block 3 - Branch 1 2x2 / 2x2 256

3x3 / 1x1 256

Block 3 - Branch 2 2x2 / 2x2 256

3x3 / 1x1 256

Block 3 - Common branch 1x1 / 1x1 512

Block 4 - Branch 1 2x2 / 2x2 512

3x3 / 1x1 512

Block 4 - Branch 2 2x2 / 2x2 512

3x3 / 1x1 512

Block 4 - Common branch 1x1 / 1x1 1024

Upsampling path

Block 5 - Branch 1 2x2 / 2x2 256

3x3 / 1x1 256

Block 5 - Branch 2 2x2 / 2x2 256

3x3 / 1x1 256

Block 5 - Common branch 1x1 / 1x1 512

Block 6 - Branch 1 2x2 / 2x2 128

3x3 / 1x1 128

Block 6 - Branch 2 2x2 / 2x2 128

3x3 / 1x1 128

Block 6 - Common branch 1x1 / 1x1 256

Block 7 - Branch 1 2x2 / 2x2 64

3x3 / 1x1 64

Block 7 - Branch 2 2x2 / 2x2 64

3x3 / 1x1 64

Block 7 - Common branch 1x1 / 1x1 128

Block 8 - Branch 1 2x2 / 2x2 32

3x3 / 1x1 32

Block 8 - Branch 2 2x2 / 2x2 32

3x3 / 1x1 32

Block 8 - Common branch 1x1 / 1x1 64

Output 1x1/1x1 20
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Each block is divided in two branches, the former for joints and the latter for

connections.The outputs of these branches are concatenated in a single one that

enters in the next block (Table 4.1). It has been demonstrated that using a bi-

branch structure provides higher detection performance because joint-probability

and joint-connection affinity maps are separately processed.

Figure 4.3: Representation of the Dense Block applied on the Encoder 2. DL:
dense layer. TL: transition layer. C: number of channels.

Inspired by Huang et al. [35] two dense block are added in the detection

network along the path of the second and the third encoder. The first one (Fig.

4.3) is constituted of 4 dense layers with a growth rate of 64. Each dense layer is

composed by 2 convolutional blocks. The former is a 1x1 convolution utilized for

extracting features while the latter is a 3x3 convolution that decreases feature

channels. In addition, a transition layer, which consists of 1x1 convolution, is

applied before the concatenation between the Encoder 2 and the Decoder 2.

Figure 4.4: Representation of the Dense Block applied on the Encoder 3. DL:
dense layer. TL: transition layer. C: number of channels.
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The second dense block (Fig. 4.4) is constituted of 3 dense layers with a

growth rate of 128. Each dense layer is composed as the previous ones. Also

in this case, a transition layer is applied before the concatenation between the

Encoder 3 and the Decoder 1.

Batch normalization and activation with the ReLU is performed after each con-

volution. The detection model is trained using the per-pixel binary cross entropy

as loss function, and SGD as optimizer.

4.2 Experimental protocol

The following section presents the image dataset, the training settings and the

metrics evaluated to test the model.

4.2.1 Dataset

The dataset used in the thesis is the BabyPose one, which was employed by

Moccia et al. [31]. It consisted of 22 depth videos of 22 preterm infants that

were acquired in the NICU of the G.Salesi Hospital in Ancona. The choice of

acquiring depth frames over RGB frames was made to protect the patient’s pri-

vacy. The infants who breathed spontaneously were identified by the clinicians.

Video-acquisition setup, as shown in Fig. 1.1, was organized so as not to hamper

movements of healthcare operators.

Every video recording was acquired using the Astra Mini S-Orbbec, with a

frame rate of 30 frames per second and image size of 640x480 pixels. Joints

annotation was done under the supervision of clinicians and for each video, 1000

frames were annotated. The annotation was manually obtained every 5 frames.

This sampling can be assumed a good compromise considering the average num-

ber of movements of a preterm infant.
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Table 4.2: The division of dataset in training, validation and testing set.

Frames each video Number of infants Total samples

Training set 500 22 1100

Validation set 250 22 5500

Testing set 250 22 5500

These 1000 frames were divided into training and testing data in the following

way: 750 frames for training the network and 250 frames to test it. In this way

it was obtained a training set of 16500 samples (22 infants x 750 frames) and a

testing set of 5500 samples (22 infants x 250 frames). From the training samples

were kept 250 frames for each video as validation set, resulting in a total of 5500

frames (22 infants x 250 frames). The division of dataset is reported in Table

4.2.

Figure 4.5: BabyPose Dataset Challenges.
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In Fig. 4.5 some challenges of the BabyPose dataset are shown: some of them

are the presence of limb occlusions (both self-occlusion and due to healthcare

operators), different number of visible joints in the camera field, variable distance

between camera sensors and infants.

Training settings

Images were resized to 128x96 pixels in order to smooth noise and reduce both

training time and memory requirements. It was selected a joint radius of 6

pixels to build the ground truth masks. For training the detection network it

was applied an initial learning rate of 0.01 with a learning decay of 10% every 10

epochs, and a momentum of 0.98. It was used a batch size of 16 and a number

of epochs equal to 100.

Performance metrics

It was calculated the Dice similarity coefficient (DSC) and recall (Rec) in order

to measure the performance of our detection network.

They are defined as:

DSC =
2 X TP

2 X TP + FP + FN
(4.1)

Rec =
TP

TP + FN
(4.2)

Where TP represents true positive, FP represents false positive and FN indicated

false negative. It was measured the segmentation time for the network.
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Results

The results obtained using the network architecture explained in the Section 4.1

are reported in the following chapter. The performance metrics of the Section

4.2.1 are calculated for joints and joint connections detection.

Table 5.1: Joint-detection performance in terms of median Dice similarity co-

efficient (DSC) and recall (Rec). The metrics are reported separately for each

joint. LS and RS: left and right shoulder, LE and RE: left and right elbow, LW

and RW: left and right wrist, LH and RH: left and right hip, LK and RK: left

and right knee, LA and RA: left and right ankle.

Right arm Left arm Right leg Left leg

RW RE RS LS LE LW RA RK RH LH LK LA

DSC 0.828 0.858 0.857 0.844 0.862 0.840 0.853 0.858 0.870 0.863 0.850 0.866

Rec 0.805 0.841 0.850 0.836 0.841 0.823 0.832 0.858 0.850 0.841 0.832 0.858
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Table 5.2: Joint-connection detection performance in terms of median Dice

similarity coefficient (DSC) and recall (Rec). The metrics are reported separately

for each joint connection. LS and RS: left and right shoulder, LE and RE: left

and right elbow, LW and RW: left and right wrist, LH and RH: left and right

hip, LK and RK: left and right knee, LA and RA: left and right ankle.

Right arm Left arm Right leg Left leg

RW-RE RE-RS LS-LE LE-LW RA-RK RK-RH LH-LK LK-LA

DSC 0.837 0.856 0.846 0.845 0.844 0.847 0.845 0.850

Rec 0.812 0.852 0.838 0.840 0.833 0.844 0.835 0.851

The values of median DSC and Rec for the 12 joints are shown in Table 5.1.

A median DSC of 0.854 (IQR=0.126) was obtained, and a median Rec equal

to 0.839 (IQR=0.134) was achieved among all joints. The highest median DSC

was reached for the right hip joint and it was equal to 0.870 with an IQR of

0.114. The highest median Rec was reached for right knee and left ankle joint,

and it was equal to 0.858 with an IQR of 0.115. The interquartile range (IQR)

for DSC and Rec of joints was always lower than 0.160 and 0.167, respectively.

The boxplots of DSC and Rec for joints are shown in Fig. 5.1 and Fig. 5.2,

respectively.
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Figure 5.1: Boxplots of the Dice similarity coefficient (DSC) for joint detection
achieved with the proposed dense-net neural network.

Figure 5.2: Boxplots of the recall (Rec) for joint detection achieved with the
proposed dense-net neural network.
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The values of median DSC and Rec for the 8 joint connections are shown in

Table 5.2. A median DSC of 0.846 (IQR=0.105) was obtained, and a median

Rec equal to 0.838 (IQR=0.137) was achieved among all joint connections. The

highest median DSC was reached for the connection between the right elbow

joint and the right shoulder joint. It was equal to 0.856 with an IQR of 0.089.

The highest median Rec was reached for the connection between the right elbow

joint and the right shoulder joint. It was equal to 0.852 with an IQR of 0.124.

The interquartile range (IQR) for DSC and Rec of joint connections was always

lower than 0.120 and 0.159, respectively. The boxplots of DSC and Rec for joint

connections are shown in Fig. 5.3 and Fig. 5.4, respectively.

Figure 5.3: Boxplots of the Dice similarity coefficient (DSC) for joint-connection
detection achieved with the proposed dense-net neural network.
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Figure 5.4: Boxplots of the recall (Rec) for joint-connection detection achieved
with the proposed dense-net neural network.
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It is worth observing that when some joints were occluded due to interaction

of the healthcare-operator with the infant, as shown in Fig. 5.5, the model was

able to correctly detect the visible joints. Detection time was on average 0.014

s per image.

Figure 5.5: Result of joints detection when other joints are occluded. Blue
blobs represent ground-truth joint detection. Green blobs represent achieved joint
detection.
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Discussion and future work

The proposed model accomplished similar results for the detection of all joints

as reported in Table 5.1, highlighting that it was able to process in parallel dif-

ferent joint probability maps [31]. Moreover, the detection network was able to

correctly detect visible joints when the other ones were occluded, as shown in

Fig. 5.5.

The addition of the two DB along the skip connections of the model allowed

to reach great results in terms of joints detection and joint-connections detection

performance. Indeed the proposed network achieved for joints a median DSC

value equal to 0.854 with an IQR of 0.126, and a median Rec value equal to

0.839 with an IQR of 0.134. The same occurred in terms of joint connections

detection performance, indeed the model reached a median DSC value equal to

0.846 with an IQR of 0.105, and a median Rec value equal to 0.838 with an IQR

of 0.137.

A key result was reached when testing the model on the CPU of an ordinary

laptop. Hence with an Intel-Core i3-6006U @ 2.00GHz it was possible to achieve

an average detection time of 0.014 s per image. The proposed algorithm was

consistent with real-time infants’ monitoring and therefore, it could be used in

the domestic environment to supervise newborns. Moreover, the integration of

infant-specific measures acquired in the actual clinical practice, such as height

and limbs length, may improve the limb-pose estimation. This way, it could be
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possible to provide the best support for the diagnosis of cerebral dysfunctions of

preterm infants.

The approach obtained great results in the prediction of limb-specific pose

and it overcame the majority of the literature issues, such as computational cost

and invasive monitoring of the infants. However, some improvements could be

done to increase the performance of the model. Because of lack of available

dataset in this field, an enhancement could be the increase of dataset when the

healthcare operator interacts with the infant in the crib as it occurs joints’ occlu-

sion. Indeed the dataset dimension is limited, since the testing set has a narrow

number of frames (5500).

Furthermore, the proposed method could be integrated in a clinical environ-

ment. In this setting, the higher computational efficiency could be exploited to

implement more complex architectures based on detection and regression net-

works. Moreover, the addition of temporal information would allow to detect

the movement of preterm infants with optimal results, as previously showed in

et al. [36].
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Conclusion

In this thesis was proposed a deep learning method based on a 2D dense-net to

estimate preterm infants’ limb-pose. The addition of the two DB along the skip

connections allowed the model to achieve great performance in the detection of

preterm infants’ limb-joints and joint-connections.

Currently, the utilisation of wearable sensors based-approaches have been

lessening as they may cause stress and discomfort to the infant, and hinder-

ing the clinician. Indeed the application of camera sensors to monitor preterm

infants’ limbs has been significantly increasing. These sensors do not hamper

the spontaneous movement of the infant and allow the healthcare operator to

interact with the infant without any obstructions. This thesis provides further

suggestions for replacing wearable sensors with camera sensors in a clinical en-

vironment.

It is worth noting that the testing of the model was performed using a mid-

range laptop. A median DSC of 0.854 and a median Rec equal to 0.839 was

achieved among all joints. The detection time obtained was on average 0.014 s

per image. Thus the method proposed allows an estimate of preterm infants’

pose in real-time and automatically, without the aid of a high-performance com-

puter. Starting from this work, it may be suitable for being integrated in a

domestic environment in order to provide assistance for early diagnosis of brain

and cognitive dysfunctions such as cerebral palsy.
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