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Abstract

Biometrics are getting more popular in the field of security systems and authenti-
cation. This is because biometrics are less able to be lost and less able to be stolen
or spoofed. EEG-based biometrics are getting more attention recently since they are
more resistant to be hacked. This thesis aims to design and implement techniques
for the secure authentication of users based on electroencephalogram (EEG) signals.
The study was conducted using three datasets: Simultaneous Task EEG workload
Dataset, EEG Alpha wave Dataset, and Local Dataset.
The first problem addressed is the curse of dimensionality. Four reduced feature sets
were used to reduce the dimensions of the systems, namely, cluster map, ANOVA
F-Value, logistic regression weights; the cluster map method reached the highest
performance with an 82.37% reduction in computation time.
The second problem is to reduce the time required to record EEG signals. Different
scenarios with different EEG recording durations were tested. The results reveal a
temporal threshold, equals to 4 seconds, that balances between performance and
implementability.
The third problem is the effect of the auditory stimuli. To do so, six experiments were
conducted, native, non-native, and neutral songs. The three songs were conducted
using In-Ear and Bone-Conducting headphones. The results show that an increase
in the performance of authentication equals 9.27% when using auditory stimuli. Ad-
ditionally, it shows that using In-Ear or Bone-Conducting auditory stimuli is based
on the balance between performance and implementability. Finally, the performance
of EEG-based authentication is independent of the language of auditory stimuli.
In conclusion, this thesis contributes to the development of EEG-biometrics by
bridging some important gaps in the field.
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Chapter 1

Introduction

Security of information is a critical issue that was a subject of interest for human
beings for ages. This Security of data involves giving access to the protected informa-
tion only for authorised users. This authentication is based on the three methods, 1)
something the person has, like a card or a key, 2) something the person knows like a
password, and 3) something the person is, like unique physiological traits. The last
one is known as biometric. One promising biometric is the electroencephalography
biometric (EEG-based biometric).

EEG-based authentication is still a fresh application of brain-computer interface
(BCI) systems. There are still many questions to be answered before the system
can implement in real-life applications. Recent studies have discussed EEG-based
authentication. However, there is a lot of gaps to be bridged.

The work aims to develop new methods to enhance the efficiency of the EEG-based
authentication systems. This enhancement is from performance and implementability
points of view.

The importance of this work comes from the fact that it reveals unanswered
questions. Furthermore, it conducts experiments that have never been performed
before, such as the effect of EEG-based authentication on bone-conducting auditory
stimuli.

Three main experiments were conducted in this work. The first one was to select
a feature set for the system. This feature set aims to create a system with high
performance and low computational effort—the results of the feature set used for the
second experiment. The second experiment aims to find a temporal threshold that
balances between minimizing the duration of recorded EEG signals. Those results
were used in the last experiment to discover the effect of auditory stimuli on the
performance and implementability of EEG-based authentication.

The rest of the thesis is organized as follows: Chapter 2 presents background
information and a Literature Review of the topic. It provides basic information about
the physiology of the brain and nervous system, neuroimaging techniques, Brain-
Computer Interface (BCI) systems, Security and Authentication, and biometrics.
Moving on to Chapter 3 where it discusses the problem statement and clearly
presents the objectives and hypotheses of the work. Afterwards, Chapter 4 represents
the experimental work by describing the materials and methods by describing the
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Chapter 1 Introduction

datasets, prepossessing, feature selection, recording duration, and feature auditory
stimuli experiments. Chapter 5 presents the results of the experiments, while Chapter
6 discusses those results. Finally, Chapter 7 conclude the work by listing the main
contribution of this thesis.
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Chapter 2

Background Study and Literature Review

2.1 Physiological background

As a starting point to discuss the brain biometric, it is important to understand the
anatomy and physiology of the brain and nervous system. Therefore, this section
will go through a general introduction about the nervous system, the brain, and
the cortex as a macro view. Afterwards, the micro view covers the anatomy of the
neuron.

2.1.1 Nervous system

The nervous system is considered one of the highest complexity systems in the
human body. This is because of the huge number of tasks that the nervous system
should perform. One of its main tasks is regulating the organs’ physiological function.
Additionally, it is responsible for rationality, memory, language, and all other metals,
conscious and unconscious, functions. To sum up, the nervous system functions could
be categorized into four main functions:

1. Sensory

2. Integrator

3. Effector

4. Internal regulator

The anatomy of the nervous system

Generally, the nervous system is anatomically divided into two main parts: The
central nervous system (CNS) and the Peripheral Nervous system (PNS). The CNS
consists of three parts, the Brain, the brainstem, and the Spinal Cord, while PNS is
divided into the Somatic nervous system and the Autonomic nervous system. This
classification is illustrated in Fig 2.1.

3



Chapter 2 Background Study and Literature Review

Figure 2.1: General structure of nervous system [Michael-Titus et al., 2010]

The forebrain

The forebrain constitutes 80% of the brain’s volume. It comprises the cerebral
cortex, the limbic system and the basal ganglia. The forebrain is responsible for high
functions, such as cognition, memory, controlling the higher motor functions and
emotions. There is a difference in architecture between the cerebral cortex and the
limbic cortex. The limbic cortex consists of three to four layers; most are pyramidal
cells, while six layers of neurons could be found in the cerebral cortex.
The cortex is divided into functional areas where each area has a single specific
function, called primary areas. The function of the primary areas, illustrated in Fig
2.2, is to receive and perform the initial information processing. Those areas include:

1. Frontal lobe: responsible for movement control.

2. Parietal lobe: responsible for speech and sensation.

3. Temporal lobe: responsible for hearing and comprehension.

4. Occipital lobe: responsible for vision.

5. Limbic lobe: responsible for emotions, memory, motivation, and cognition.

2.1.2 Neurons

The nervous system consists mainly of two types of cells: neurons and glial cells.
The neurons are responsible for the function of the nervous system, while the glial
cells have the role of support, protection, and nutrition. The focus of this section
will be on the neurons’ anatomy and function.

4



2.1 Physiological background

Figure 2.2: Forebrain and its primary functional areas [Michael-Titus et al., 2010]

2.1.3 The neuron anatomy

There are several shapes and sizes of the neurons, but they all share the same three
elements:

1. Soma (cell body): It contains intracellular organelles such as the nucleus and
ribosomes.

2. Dendrites: They are highly branched outgrowths in the cell. Their function is
to receive the input from other cells and sensory units.

3. Axon: It is a single process that carries out the soma.

Fig 2.3 shows a typical illustration of the neurons.

Neuron excitability

The function of neurons could be surmised as receiving input signals, processing and
firing output signals. The input signals are received from the external environment
through physiological sensors. The receiving parts are the dendrites and the soma.
The received signals could be excitatory (epsps: excitatory postsynaptic potentials)
or inhibitory (ipsps: inhibitory postsynaptic potentials) signals. Those signals are
summed together through temporal and spatial summation to produce the output
signal.
Neurons signals are in a shape of a fixed size electrical impulse called the action
potential. Which mean it is an all-or-none phenomenon. The potential starts with a
rapid depolarization from -75 mV (resting membrane potentials) to +40 mV, followed
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Figure 2.3: Anatomy of Neuron [Michael-Titus et al., 2010]

by repolarization to -95 mV—afterwards, the potential backs to the resting membrane
potentials. Figure 2.4 represent a typical action potential signal.

2.2 Neuroimaging

There are several methods for signal acquisition from neurons which is known as
neuroimaging. Those methods are classified into invasive and noninvasive methods.
Each method has its own advantages and disadvantages in terms of spatial resolution,
temporal resolution, cost, and complexity. Figure 2.5 demonstrate neuroimaging
methods. [Nam et al., 2018]

Invasive methods are those where electrodes make direct contact with the brain.
Despite its high accuracy, placing invasive electrodes requires a surgical operation
[Nam et al., 2018]. This is impractical for brain-biometric applications; therefore, it
will not be discussed further.
Noninvasive methods are those where electrodes do not make direct contact with
the brain. The electrodes are placed on the skin or surrounding the head. We can
distinguish between two types of noninvasive neuroimaging methods, indirect and
direct. The indirect methods measure a reflection of the brain activity, such as
brain metabolism or hemodynamic of the brain. Those methods include Functional
Magnetic Resonance Imaging (fMRI), Functional Near-Infrared Spectroscopy (fNIRS),

6
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Figure 2.4: Action Potential waveform [Michael-Titus et al., 2010]

Figure 2.5: Comparision between neuroimaging methods [Nam et al., 2018]

7
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Positron Emission Tomography (PET). On the other hand, the direct methods
record directly the magnetic, such as Magnetoencephalography (MEG), or electric,
such as Electroencephalography (EEG), activity [Bhattacharyya et al., 2017]. Those
methods will be briefly explained with a focus on the EEG.

2.2.1 fMRI

fMRI is an indirect method to identify neural activity by measuring the blood-oxygen-
level-dependent (BOLD). The principle of measuring this hemodynamic response is
the coupling between the regional cerebral blood flow (rCBF) and regional cerebral
blood oxygenation (rCBO). In other words, n decrease in oxygenated blood level is
detected in the surrounding blood of firing neurons. This is due to the increase in the
metabolism level of those neurons [Lindauer et al., 2010]. To evaluate the quality of
neuroimaging method, two types of parameters are identified, spatial accuracy and
temporal accuracy. The spatial accuracy of fMRI is equal to 1 millimetre while the
temporal one equals 1 second. In a general context, fMRI machines are bulky and
require a specific isolated room for data acquisition.

2.2.2 fNIRS

fNIRS is a non-invasive method to detect brain activity. It depends on the difference
in light absorption between oxygenated and deoxygenated blood. As an example,
light below 800 nm is likely to be absorbed by deoxygenated blood, while oxygenated
blood absorbs more light in the range higher than 800 nm [Giardini et al., 2000,
Wilcox et al., 2008]. Since fNIRS systems are vulnerable to different noise resources,
there must be artefacts removal systems like independent component analysis (ICA)
or wavelet. Generally, fNIRS is portable and inexpensive technology; therefore, it
can use outside the lab environment [Castermans et al., 2014].

2.2.3 PET

PET is an indirect method that is based on nuclear medicine to record three-
dimensional data about the human body activity [Stollfuss et al., 2015]. In simple
words, PET systems rely on a positron-emitting tracer, such as fludeoxyglucose,
that acts similar to the glucose in the blood. By recording the positron-emission
activity, the neural activity is indirectly recorded. Despite its good spatial accuracy,
it is considered a high-cost option that requires injection with radioactive materials
[Townsend, 2008].

2.2.4 MEG

MEG is a direct method to record brain activity. It requires a superconducting
quantum interface device (SQUID) as a magnetic field sensor. MEG provides great
advantages such as high temporal resolution, high temporal resolution, and direct

8



2.2 Neuroimaging

measure of brain activity. On the other hand, recording MEG requires expensive
tools in a magnetically shielded room [Uhlhaas, 2015].

2.2.5 EEG

EEG is a direct method to noninvasive record the activity of the brain. This is
done by placing electrodes on the surface of the scalp [Da Silv, 2005]. This method
measures the electrical activity of the brain directly. In particular, EEG measures
the activity of the pyramidal neurons of the cortex [Cantor and Evans, 2013]. EEG
is one of the best neuroimaging techniques in terms of temporal resolution. However,
it is difficult from a mathematical perspective to detect the location of brain activity.
Moreover, it is hard to determine the activity distribution that generates a specific
signal. This is called the "inverse problem" [Castano-Candamil et al., 2015]. Due
to the low cost and portability of EEG acquisition tools, it was used in 68% of
Brain-Computer Interface (BCI) applications. Therefore, it will be the first candidate
to be discussed in Brain-activity-based authentication systems [Nam et al., 2018].

EEG Generation

EEG signal is an electrical recording of the activity of the neurons. In other words, it
measures the electrical current resulted from the synaptic excitation of the pyramidal
neurons in the cerebral cortex. This difference in electrical potential generates a
dipole between the neuron’s soma and the dendrites.
This electrical signal cannot be recorded noninvasively without attenuation. There
are three main layers between the electrodes and the dipole. The three layers are the
scalp, skull, and brain, in addition to the number of thin layers. This attenuation is
the main source of the internal noise combined with the EEG signal.

Electrode Placement

Electrode Placement is an essential aspect for recording EEG signals since the
location of the electrode is correlated with cortical areas. The most common protocol
for EEG-electrodes placement is the international 10/20 system. In this system, 21
electrodes are placed according to six locations with interval rates of 10%, 20%, 20%,
20%, 20%, 10% of the distance from the nasion to the inion. The six locations are: Fp:
Frontopolar, F: Frontal, C: Central, P: Parietal, and O: Occipital, see Fig 2.6. The
10/20 system was expanded to more dense systems like the 10/10 system and 10/5.
To accurately locate the correct position of electrodes, four points must be identified:
1) the nasion, the point between the nose and the forehead, 2) the inion, in the back
of the head where the lowest point of the skull exists. 3,4) the pre-auricular points,
the points anterior to the left and right ears [Homan et al., 1987, Jasper, 1958].

9



Chapter 2 Background Study and Literature Review

Figure 2.6: International 10-20 EEG electrodes placement system
[Sanei and Chambers, 2007].

Brain Rhythms (Brainwaves)

EEG signals is a complex signal since it contains a number of sub-signals, which are
called Brainwaves. Brainwaves are divided into five major signals according to their
frequency range. Those signals are listed in table 2.1. Each signal dominates in
specific mental states and has specific characteristics.

2.3 Brain-Computer Interface (BCI)

Brain-Computer Interface (BCI) is an artificial communication system that enables
the brain to communicate with the world electronic system. BCI system bypasses
the human communication systems, which includes verbal communication and sign
language. This opens the gates for advanced application in the human-machine inter-
faces such as therapeutic, affective, artistic, entertainment, and security applications.
The main principle of BCI systems is translating thought and intention into a com-
mand that communicates with the real world [Alzahab et al., 2021, Lotte et al., 2007,

Table 2.1: Categories of Brain Rhythms patterns [Nam et al., 2018,
Sanei and Chambers, 2007].

Name Frequency Range (Hz) Amplitude (µ V)
Delta (δ) 0.5 - 4 100 - 200
Theta (θ) 4 - 8 5 - 10
Alpha (α) 8 - 13 20 - 2080
Beta (β) 13 - 30 1 - 5

Gamma (γ) 30 - 60 0.5 - 2

10



2.3 Brain-Computer Interface (BCI)

Alchalabi and Faubert, 2019].
BCI systems could be classified according to different categories. Firstly, BCI
systems according to the brain signal pattern are categorized into Steady State
Visually Evoked Potential (SSVEP), Steady-State Auditory Evoked Po-
tential (SSAEP), Steady-State Somatosensory Evoked Potential (SSSEP)
are the brain activity in response to a certain type of stimulation, (P300) where
the positive voltage peak is reached after 300 ms after the stimuli, event-related
desynchronization/synchronization (ERD/ERS), which is the activity of the
brain when imagining a movement, and slow cortical potentials (SCPs) that is
a shift from milliseconds to seconds in the cortical activity. Another classification is
based on the stimulus modality. In this case, we have two categories, internal and
external stimulus. The internal one is a self-regulated stimulus, which operates in
cognitive efforts strategy. While the external could be visual, auditory, or tactile,
which operates in a selective attention strategy. Another possible classification is
according to the used neuroimaging method. Fig 2.7 demonstrate the classification
of BCI systems.

Figure 2.7: Classification of BCI Systems

2.3.1 BCI framework

BCI systems use a general framework, which is illustrated in Fig 2.8, consisting
of many stages. Firstly, brain activity recording using a neuroimaging method.
Secondly, pre-processing of the recorded signal. The importance of this step is to
ensure the quality of the signal by removing the artefacts. Afterwards, extracting
the signal’s features which represent the useful information of brain activity. Finally,
translating the extracted feature into commands using a classification algorithm. To
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Figure 2.8: Brain-Computer Interface framework [Alzahab et al., 2019]

close the loop, feedback connects the resultant command with the user.

2.3.2 Pre-processing

Input brain activity is subject to many sources of artefacts and noise. This noise
is generated from many sources, exogenous or endogenous noises. The internal
noise is generated from other physiological signals like electrocardiogram (ECG),
electrooculogram (EOG), and the effect of an eye blink. In comparison, the source
of the external one is from the background power line network. Those sources
add information to the signal that is not related to neural activity. Therefore it is
important to eliminate the non-informative data from the signal.
To reduce the effect of noise and artefacts, many denoising techniques are implemented.
Those techniques differ according to the degree of denoising and computational
complexity. An example of simple denoising techniques is simple filters such as finite
impulse response (FIR) and infinite impulse response (IIR) filters. These filters
reduce the frequency range of the signal since neural information lies below 30 Hz in
most BCI applications). More advanced techniques include Blind Source Separation
(BSS) methods, semi-BSS, and Independent Component Analysis (ICA). More details
about the algorithms implemented in this project will be demonstrated later.

2.3.3 Feature Extraction

In order to implement the BCI system in an optimal configuration, it is important to
choose the features that represent the neural activity of a specific task. Therefore, the
feature selection phase is essential. This project considers 17 features to represent the
neural activity responsible for authentication systems extracted from EEG signals.
The considered features are:
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Statistical Features

: Those features provide descriptive statistics features, including centre tendency
statistics, dispersion statistics, and shape statistics.

• Amplitude Mean:
The mean of the EEG signal is given in the following equation:

µ =
N∑︂

n=1

x(n)
N

(2.1)

µ is the amplitude mean, x(n) is the EEG signal, and N is the number of the
samples in the signal.

• Amplitude Standard Deviation:
The standard deviation of the EEG signal is given in the following equation:

σ =

√︄∑︁N
n=1(x(n) − µ)2

N − 1 (2.2)

σ is the amplitude Standard Deviation, x(n) is the EEG signal, and N the
number of the samples in the signal.

• Amplitude Variance:
The Variance of the EEG signal is given in the following equation:

S2 =
∑︁N

n=1(x(n) − µ)2

N − 1 (2.3)

Where S2 is the amplitude Variance, x(n) is the EEG signal, and N the number
of the samples in the signal.

• Amplitude Range:
The range of the EEG signal is given in the following equation:

Range = Max(x(n)) − Min(x(n)) (2.4)

Where x(n) is the EEG signal

• Amplitude Skewness:
This feature measures the non-Gaussianity of EEG signals. Skewness is a
high-order moment to measure the lack of symmetry of the distribution. The
Skewness of the EEG signal is given in the following equation:

Skewness = E[(x(n) − µ3]
σ3 (2.5)

where E is the statistical expectation, x(n) is the EEG signal, µ is the amplitude
mean, and σ is the amplitude standard deviation [Sanei and Chambers, 2007].
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• Amplitude Kurtosis: This feature measures the flatness of the EEG signal.
Kurtosis is a high-order moment to measure whether the data are flat or peaked
relative to the normal distribution. The Kurtosis of the EEG signal is given in
the following equation:

Kurtosis = m4[x(n)]
m2

2[x(n)] (2.6)

where mi[x(n)] is the central moment of the EEG signal with the ith order.
For example, mi[x(n)] = E[(x(n) − µ)i].
For a signal with normal distribution, the kurtosis equels to 3. Therefore, the
normalized kurtosis, also called the excess kurtosis is given in the following
equation:

ExKurtosis = m4[x(n)]
m2

2[x(n)] − 3 (2.7)

In this case, the value 0 represent the normal distribution while positive or
negative values represent the degree of flatness [Sanei and Chambers, 2007].

Power Spectral Density (PSD) Features

The Power Spectral Density is a widely known feature for analysing signals. It repre-
sents the distribution of the signal’s power as a function of frequency. PSD is computed
as follows according to the Welch method [Rahi and Mehra, 2014, Lotte, 2008]:

1. Segmenting the EEG time series into successive, possibly overlapping, segments

2. Multiplying each segment by a Hamming window to reduce the variance
[Podder et al., 2014].

w(n) = 0.54 + 0.46.cos(2πn

N
), −N

2 ≤ n ≤ +N

2 (2.8)

where w(n) is the hamming window, and N is the number of samples.

3. Using Fast Fourier Transformation (FFT) to compute the periodogram.

4. Squaring the periodogram to compute the PSD

P (f) = ∆t

N
|
N−1∑︂
n=0

hnx(n)e−j2πfsn|2 (2.9)

Where

5. Reassigning each PSD segment to the centre of energy of its bin. This Provide
exact localization for the impulses [Fulop and Fitz, 2006].

6. Calculating the average of the reassigned squared PSD segments to estimate
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the PSD.

PSD = 1
K

K−1∑︂
K=0

P (f) (2.10)

Where K is the number of the segments.

From the calculated PSD, the mean and standard deviation were considered as
frequency-domain features:

• PSD Mean

• PSD Standard Deviation

Entropy Features

The entropy concept is a wide-separated tool to indicate the complexity of nonlinear
time series. What makes this concept favourable is its relevance to a wide range
of problems and its computational efficiency. Since EEG signal is a non-stationary,
multidimensional, nonlinear signal, the study of its fluctuations reveals some of its
hidden information [Plastino and Rosso, 2005]. Those fluctuations resulted from the
global activity of the brain. Which mean the fluctuation analysis differs according to
the architectures of the neurons layers in the cortex. In other words, the fluctuation
analysis differs from one brain to another. This refers to consider entropy features as
a promising candidate for EEG-based authentication. There are diffident

• Permutation Entropy
Bandt and Pompe introduced the concept of permutation entropy in 2002
[Bandt and Pompe, 2002] to measure the complexity of physiological signals.
The conceptual simplicity, robustness to noise and artefacts, and the low
computational complexity of permutation entropy make it a desirable feature
to be used for EEG signals analysis.[Morabito et al., 2012] Used permutation
entropy studying Alzheimer’s disease. However, it was never used before for
EEG-based biometrics in the literature.
The basics of permutation entropy are to calculate the frequency of appearance
of ordinal patterns, also called motifs and denoted as πj , see Fig 2.9. To
compute permutation entropy, We define d is the number of samples of an
EEG segment, segmented from the EEG time series with N sample, and τ as
time-lag, which is the number of samples that a motif covers. The count of
each motif in the EEG segment, known as the frequency of appearance of the
motif j f(πj), is used to compute the relative frequency P (πj):

P (πj) = f(πj)
N − d + 1 (2.11)

Afterwards, by fixing the embedding dimension d > 2, and the time-lag τ̃ , the
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Figure 2.9: The possible types of motifs when d = 3 [Morabito et al., 2012]

permutation entropy. H(d, τ̃) is calculating using the following equation:

H(d, τ̃) = −
d!∑︂

πj=1
p(πj) log2 p(πj) (2.12)

The output of permutation entropy ranges between zero, a very regular time
series with a repetition of the same motif, and log2(d!), where the probability
of all motifs is equal. A more convenient representation of permutation entropy
is introduced by normalizing H(d, τ̃) by the highest value log2(d!):

0 ≤ H(d, τ̃)
log2 (d!) ≤ 1 (2.13)

• Spectral Entropy
Generally, entropy features to extract information representing the complexity
of a signal. The spectral entropy takes advantage of the frequency domain. The
spectral entropy showed an outstanding performance in in-person identification
systems [Phung et al., 2014b] when extracted from alpha, beta, and gamma
brainwaves. Additionally to the high performance, it showed a low feature
dimension, which in role increases the classification speed by reducing the
computational complexity.
To compute the spectral entropy, the PSD is first computed using FFT.
From the resultant PSD, each Pf , the power of every frequency compo-
nent, was normalized by dividing it by the total power ∑︁

Pf [Mu et al., 2017,
Kannathal et al., 2005].

pf = Pf∑︁
Pf

(2.14)

Thus, the spectral entropy could be calculated using the folwlong equation:

SpectralEntropy =
∑︂

f

pf log ( 1
pf

) (2.15)

• Singular value decomposition (SVD) entropy
Singular value decomposition (SVD) entropy measures the richness of the
information in a given time series. Its advantage is the ability to use con-
cise and non-stationary signals [Jelinek et al., 2019]. SVD entropy was used
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[Krishnan et al., 2020] to extract information from EEG signals for schizophre-
nia detection.
SVD is a mathematical method in linear algebra to decompose a matrix Xm×n

into its constituent eigenvectors. Since the embedded dimension is set to 3.
SVD decomposes Xm×n into three matrices [Jelinek et al., 2019].

Xm×n = Um×m × Σm×n × Vn×n (2.16)

Where U and V are unitary matrices and Σ is a diagonal matrix. The matrix
Σ contains the singular values Σ = diag[λ1, ..., λI ] which will be used for cal-
culating the SVD entropy using the following equation [Krishnan et al., 2020]:

SV DEntropy = −
I∑︂

i=1

λi∑︁
λ

ln
λi∑︁

λ
(2.17)

Where ∑︁
λ is the sum of the singular values in the diagonal of the Σ matrix.

• Approximate entropy
Pincus, in [Pincus, 1991], overcame the limitations of Kolmogorov–Sinai entropy
by proposing the approximate entropy. Approximate entropy was originally
developed to deal with medical data and medical time series to determine
how the complexity of the systems is changing for both deterministic stochas-
tic and chaotic processes. Its main advantage is the ability to extract use-
ful information from small amounts of data and its immunity to noise and
artefacts for a certain level. EEG analysis was used to determine the ef-
fect of epilepsy on EEG-based biometrics [Phung et al., 2014a]. Additionally,
the identification of epilepsy seizures was studied using approximate entropy
[Sharanreddy and Kulkarni, 2013, Acharya et al., 2009].
Computing the approximate entropy of an EEG signal with N samples is done by
[Delgado-Bonal and Marshak, 2019, Mu et al., 2017, Richman and Moorman, 2000]:

1. Denoting EEG signal as x(i).

2. Identifying the length of compared run of data, denoted m where 0 ≤
m ≤ N , and a a filtering level r, positive real number.

3. Identifying a set of m-dimensional vectors:

Xm
i = [x(i), x(i + 1), ..., x(i + m − 1)]; 1 ≤ i ≤ N − m + 1 (2.18)

4. Calculating the maximum distance between two vectors

d[Xm
i .Xm

j ] = max
kϵ(0,m−1)

|x(i + k) − x(j + k)|; i, j = 1 ∼ N − m + 1, i ̸= j

(2.19)

5. Calculating the number of blocks, Xm
i , of consecutive values which are
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similar to a given block with a resolution equal to r, denoted Cm
i (r):

Cm
i (r) = 1

N − m + 1Ci (2.20)

6. Defining a function ϕm(r)

ϕm(r) = 1
N − m + 1

N−m+1∑︂
i=1

ln Cm
i (r) (2.21)

7. Similarly, defining a function ϕm+1(r)

ϕm+1(r) = 1
N − m + 1

N−m+1∑︂
i=1

ln Cm+1
i (r) (2.22)

8. Calculating the approximate entropy

ApproximateEntropy = ϕm(r) − ϕm+1(r) (2.23)

• Sample entropy
Richman and Moorman [Richman and Moorman, 2000] proposed an optimised
version of approximate entropy called sample entropy. The proposed method
has more suitability for physiological signals since it is independent of the
recording duration [Mu et al., 2017]. When sample entropy was extracted from
an EEG signal in a biometric authentication system, it resulted in a high
recognition rate [Thomas and Vinod, 2016].
Computing the sample entropy is similar to computing the approximate entropy
[Delgado-Bonal and Marshak, 2019, Mu et al., 2017, Richman and Moorman, 2000]:

1. Denoting EEG signal as x(i).

2. Identifying the length of compared run of data, denoted m where 0 ≤
m ≤ N , and a a filtering level r, positive real number.

3. Identifying a set of m-dimensional vectors:

Xm
i = [x(i), x(i + 1), ..., x(i + m − 1)]; 1 ≤ i ≤ N − m + 1 (2.24)

4. Calculating the maximum distance between two vectors

d[Xm
i .Xm

j ] = max
kϵ(0,m−1)

|x(i + k) − x(j + k)|; i, j = 1 ∼ N − m + 1, i ̸= j

(2.25)

5. Calculating the number of blocks, Xm
i , of consecutive values which are
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similar to a given block with a resolution equal to r, denoted Bm
i (r):

Bm
i (r) = 1

N − m + 1Bi (2.26)

6. Defining a function ϕm(r)

ϕm(r) = 1
N − m

N−m∑︂
i=1

Bm
i (r) (2.27)

7. Similarly, defining a function ϕm+1(r)

ϕm+1(r) = 1
N − m

N−m∑︂
i=1

Bm+1
i (r) (2.28)

8. Calculating the sample entropy

SampleEntropy = log ϕm(r)
ϕm+1(r) (2.29)

Fractional Dimension (FD) Features

Fractional dimension (FD) is a mathematical representation of complexity through
statistical methods. There are many methods to compute the FD; however, three
main methods are used with EEG analysis [Petrosian, 1995, Esteller et al., 1999]:

• Petrosian’s fractal dimension
Petrosian’s method for FD estimation is considered a fast method using the
following equation [Petrosian, 1995, Esteller et al., 1999]:

FD = log10(N)
log10(N) + log10( N

N+0.4N∆
)

(2.30)

Where N is the number of samples in the time series, and N∆ is the number of
sign changes

• Katz’s fractal dimension
Calculating Katz’s FD is slightly slow in comparison with Petrosian’s FD. It is
calculated using the following equation [Katz, 1988, Esteller et al., 1999]:

FD = log10(N)
log10( d

L) + log10(N)
(2.31)

Where L is the sum of the distances between successive points and d is maximum
of the vector containing distances between the first point and all other points
d = max[distances(1, i); i = 2, 3, ..., N ]
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• Higuchi’s fractal dimension
Higuchi’s FD is calculated as follows: [Higuchi, 1988, Esteller et al., 1999]:

1. Considering x(N) = x(1), X(2), ..., x(N) as the EEG time series with N

sample, we consider k time series:

xk
m = {x(m), x(m + k), x(m + 2K), ..., x(m + ⌊N − m

k
⌋k)} (2.32)

for m = 1, 2, ..., k where k is the time interval between points, m is the
initial time value, and ⌊b⌋ is the integer part of the number b.

2. The length Lm(k) for every k time series xk
m is given bt:

Lm(k) =
∑︁ N−m

k
i=1 |x(m + ik) − x(m + (i − 1)k| (N − 1)

⌊N−m
k ⌋k

(2.33)

Where (N−1)
⌊ N−m

k
⌋k

is a normalization factor.

3. Computing the average of lengths Lm(k) for m = 1, 2, ..., k.

4. Repeating the previous steps for each k = 1, 2, ..., Kmax to obtain the
mean length for each k.

5. Computing the least-squares linear best fit, using linear regression, for
the curve ln(L(k)) versus ln( 1

k ).

6. Considering the slope of the least-squares linear best fit as an estimation
of the fractal dimension

Detrended Fluctuation Analysis (DFA)

Detrended Fluctuation Analysis (DFA) was introduced tepeng1995quantification
to measure the self-affinity of a signal statistically. Its main advantage is the
suitability for non-stationary time-series. It has been shown that the DFA provides
robust performance when was extracted from EEG signals [Maity et al., 2015]. For
Computing DFA [Sanyal et al., 2015, Hardstone et al., 2012]:

1. Considering x(N) = x(1), X(2), ..., x(N) as the EEG time series with N sample

2. Integrating the EEG single into new series y = [y(1), ..., y(N)] where

yk =
k∑︂

i=1
(xi − x̄) (2.34)

where x̄ is the amplitude mean of the EEG signal.

3. Segmenting The integrated series yk into equal-length segments, with length n.

4. Computing the least-squares linear best fit for each segment.
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5. Calculating the root-mean-square fluctuation o of the series using the follo=wing
equation:

F (n) =

⌜⃓⃓⎷ 1
N

N∑︂
k=1

[y(k) − yn(k)] (2.35)

where [y(k) − yn(k)] is named detrending.

6. Finding the slope of the plot between log[F (n)] versus log(n), denoted α.

7. α represents a self-similarity parameter which reflects the auto-correlation
properties of the EEG signal.

• DFA feature

2.3.4 Classification

Classification is the central part of any BCI system. This is the step where extracted
features are translated into a decision. There are diff rent types of classification algo-
rithms that analyse the input statistically to find the best reality [Lotte et al., 2007].
In the case of biometric systems, the output of the classification part is the identity
of the input subject. In this work, three types of classification algorithms will be
used; 1) Multilayer Perceptron, 2) K Nearest neighbours, and 3) eXtreme Gradient
Boosting.

Multi layer Perceptron

The most used Artificial Neural Networks type are those defined by [Rumelhart et al., 1986],
which are called Multilayer Perceptron (MLP), MLP architecture consists of con-
secutive layers of neurons. Each layer contains a number of neurons, which are
the core structure of the MLP. Neurons of each layer receive their input from the
previous layer and feed their output into the next layer. The first layer is called the
input layer, which receives the information of the extracted features. On the other
hand, the last layer is the layer of decision making. The inner layers, known as the
hidden layers, are responsible for analysing the input statistically, which is known
as learning. The most common method of learning is the backpropagation method
[Rumelhart et al., 1995].

K Nearest neighbors

This technique is based on distance measuring. It measures the distance between the
input value and the data points in the data set. Afterwards, it assigns the class of
the input value according to the class of the nearest K data points. There are diff
rent methods to measure the distance [Alzahab et al., 2019, Lotte et al., 2007]. The
most common one is the Mahalanobis distance. The Mahalanobis distance is given
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in the following equating:

dc(x) =
√︂

(x − µc)M−1
c (x − µT

c (2.36)

eXtreme Gradient Boosting

Thanks to parallel tree boosting, XGboost can solve machine learning problems in an
accurate and fast way. The efficiency of XGboost comes from the fact that it integrates
different methods, which is called ensembled learning. This method is so popular that
it was implemented in many wining challenges on the Kaggle website. It started to be
widely recognized in 2015 [Tiwari and Chaturvedi, 2019, Chen and Guestrin, 2016].

2.4 Security and Authentication

The main aim of authentication systems is to build an association between the
person and his identity. Once the individual is authenticated, they are given access
to his secret. To do so, three main methods are being used over the history of
authentication. The first one is by possessing a specific key, which could be physical
or digital. Whoever possesses the key is authenticated as a person who has access
to the secret. This method requires a great effort to keep the key both available
and hidden. The second method is by knowledge of a passcode. How has the
knowledge of the pass-code had access to the secret? This requires a commitment
to remember and secure the code. The final method is the intrinsic traits. The
identity is determined by the inherent behavioural or physical traits, which is known
as biometric. The biometric method is considered the most secure method because
the biometric can not be lost or forgotten. Moreover, it is hard to be mimicked or
spoofed[Jain et al., 2011].

2.5 Biometrics

2.5.1 Biometric Systems

The system of biometric security measures some physical or behavioural traits that
represent the individual’s identity. This trait could be a fingerprint, DNA, iris,
signature, gait patterns, or face. The implementation of biometrics involves two main
steps; enrollment and recognition. The enrollment stage is where the system is being
built and calibrated, where the recognition stage is when the system is given the
power to authenticate users. A Biometric system consists of four main blocks: sensor,
feature extractor, database, and matcher. Those blocks are completely similar to
what was discussed in the section: 2.3 [Jain et al., 2011]
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2.5.2 Authentication and Identification

Generally, biometric-based security systems could be classified into two types, namely,
authentication and identification. Firstly, authentication, which is also known as
verification, tries to verify whether the person is really who he is calming. In other
words, the system tries to answer, "Are you who you say you are?". Authentication
system could be abstracted into a binary classification problem where the system
tries to classify the input print into genuine and impostor. When the output is
genuine, the system gives access. While when the output is impostor, the access
is denied. The second type is identification, where the system tries to reveal the
identity of the user. This is to say that the system tries to answer the question: "Are
you someone who is known to the system?". The identification problem could be
presented as a multi-class classification problem where the system tries to detect the
identity of the input [Jain et al., 2011].

2.5.3 Performance measures

To optimize biometric systems, it is always desired to minimize the intra-user
variations and the inter-user similarity. To be able to optimize the system effec-
tively, some performance measures are desired to be assessed. The most com-
mon performance metrics for biometric systems are False Rejection Rate (FRR)
and False Acceptance Rate (FAR). FRR refers to when the genuine is consid-
ered an impostor falsely; therefore, they cannot access his data. In contrast,
the FAR represent when an imposter could fraud the system and considered gen-
uine. When designing the biometric system, it is important to find a threshold
where both FRR and FAR are acceptable since the two metrics work oppositely
[Fairhurst, 2018, Gamassi et al., 2005, Sebastien et al., 2014].
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Problem statement, objectives and
hypotheses

3.1 Problem statement

EEG-Biometric and Brain-based security systems still in the early stages. There still
a lack of implementability and performance that limits real-life application. The prob-
lems to be challenged, according to [Del Pozo-Banos et al., 2014, Gui et al., 2019,
Bidgoly et al., 2020], could be summarized by 9 points:

1. Universality: This means the ability to be used by almost all people. However,
the work considered in the literature discussed the healthy subjects only. There
is a lack of research that studied the differences between kinds of people, such
as males and females, healthy and non-healthy, alcoholic and non-alcoholic,
mother tongue, etc.

2. Permanency: This point discusses the stability of the signal over a period of
time. The main concern here is to know whether an EEG-biometric system
could be used over a period of time. From what was found in the literature,
only a few papers recorded the data during the different sessions. The duration
between sessions is limited to a couple of months.

3. Uniqueness: It is important for any biometric system is to identify an indi-
vidual uniquely. This requires building systems that can distinguish between
a vast number of individuals. Current studies develop their systems for a
limited number of subjects, usual between 4 20. Only a small number of
research reached a higher number, around 100. For better implementability,
more subjects should be included in EEG-based biometric systems.

4. Collectability: Refers to how easy to collect the required traits. In EEG-
based biometric, it is required to collect brain waves in a way that is easy and
acceptable to the users. Therefore, it is required to minimize the number of
channels required to collect reliable data.

5. Security: Security is the main goal for biometric systems. It is not enough to
build high-accuracy systems that are able to identify the genuine successfully.
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It is important also to prevent the imposters to attack the systems.

6. Stability: Aims to build a stable system from performance and implementabil-
ity perspectives. One challenge to be addressed is the required duration for
EEG biometric. This means to know what is the minimum duration of EEG
data that produced the highest possible performance.

7. User Friendly: It may require performing a specific task to be authenticated
by an EEG-biometric. User-Friendly means that the performed task is pleasant
to the user. Therefore, it is important to inquire about the subjects’ satisfaction.

3.2 objectives

This study has three main objectives:

• Objective 1: To develop and investigate the possibility of using an EEG-based
biometric system that has low FAR, FRR values and low computational time.

• Objective 2: To find a temporal threshold that balances between EEG
recording duration and performance.

• Objective 3: To discover the influence of different auditory stimuli on the
performance of EEG-based authentication.

3.3 hypotheses

• H1: It is possible to reduce the computational cost of EEG-based biometric
systems.

• H2: There is a temporal threshold that balances between performance and
implementability.

• H3: Auditory stimuli can improve the authentication performance

• H4: Auditory stimuli using In-Ear or bone conducting stimuli can affect the
performance of EEG-biometric.

• H5: The language of auditory stimuli can affect the performance of EEG-
biometric.
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Materials and Methods

4.1 Data sets

4.1.1 STEW Data set

Simultaneous Task EEG Workload Data Set (STEW) is public data set. The data
contains 2.5 minutes of recording sampled at 128 Hz using the Emotiv EPOC device.
The device provides 14 channels, namely, AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8,
FC6, F4, F8, and AF4. The signals were recorded from 48 subjects in two sessions.
In both sessions. The subject was asked to sit on a chair facing a monitor. In the
first session, the EEG data was recorded in a resting state, while in the second one,
the subject encountered a mental workload activity. The activity involves a multitask
test according to the SIMKAP experiment. Afterwards, the subjects were asked to
assess their mental workload on a 1-9 scale [Lim et al., 2018].

4.1.2 EEG Alpha Data set

The EEG Alpha Waves data set’s main goal is to provide a simple data set to detect
alpha waves. The data were recorded using a research-grade amplifier (g.USBamp,
g.tec, Schiedlberg, Austria) and the EC20 cap. The instrumentation is able to
record signals from 16 channels, namely, FP1, FP2, FC5, FC6, FZ, T7, CZ, T8,
P7, P3, Pz, P4, P8, O1, Oz, and O2. The overall description of the dataset is that
it contains two minutes of recording sampled at 512 Hz collected from 20 subjects
[Grégoire Cattan, 2018].

4.1.3 Local Dataset

Determination of eligibility

The subjects have filled a questionnaire that contains subjects’ data. Additionally,
the subject read and confirmed a detailed informed consent.

Preparation and installation of equipment

The experiments start with the installation of the equipment needed. Those include
four gold-cup electrodes with Ten20 Conductive Paste on the scalp. The electrodes
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were placed on T7, F8, Cz, and P4 positions according to the 10/10 international
EEG system [Jurcak et al., 2007], which were chosen according to [Altahat, 2017,
Ravi and Palaniappan, 2007, Marcel and Millán, 2007]. Additional two electrodes
were placed in the left and right ears as a reference electrode and ground electrode.
Once all electrodes have been installed, a simple calibration was performed to ensure
that everything worked correctly. The calibration includes checking the connectivity
of the electrodes by measuring the skin impedance.

Data recording

The subject was asked to sit down and relax on a comfortable chair. The recording
was performed in a single day per subject, and it involves the acquisition of the
electroencephalographic signal as follows:

1. Three minutes of resting-state, eyes open for three sessions.

2. Three minutes of resting-state, eyes closed for three sessions.

3. Non-related experiment (Not provided in the dataset).

4. Non-related experiment (Not provided in the dataset).

5. Recording EEG signal while hearing a song in the native language using in-ear
headphones.

6. Recording EEG signal while hearing a non-native language song using in-ear
headphones.

7. Recording EEG signal while hearing neutral music using in-ear headphones.

8. Recording EEG signal while hearing a song in your native language using
bone-conducting headphones.

9. Recording EEG signal while hearing a non-native language song using bone-
conducting headphones.

10. Recording EEG signal while hearing neutral music using bone-conducting
headphones.

Note 1: If the person is Italian: the Arabic song was used for the non-Native song.
Note 2: If the person is not Italian: the Italian song was used for the non-Native
song.

Recording Tools

1. OpenBCI Ganglion Board, 200 Hz sampling rate, four channels.

2. Gold Cup Electrodes.
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Figure 4.1: The metadata of the locally recorded dataset

3. Ten20 Conductive Paste.

4. Software: OpenBCI GUI · v5.0.3

The Metadata of the recorded dataset are presented in Fig 4.1. The detailed
information is presented in Appendix 1.

4.2 Preprocessing

4.2.1 STEW Data set

The preprocessing of the STEW Data set involves three main procedures:

1. Segmentation: The Data was segmented into 60 segments. Each segment has a
4-seconds length and without overlapping

2. Filtering: The Data was filtered using a 1-40 Hz first-order Butterworth filter.

4.2.2 EEG Alpha Data set

The preprocessing of the EEG Alpha Data set involves two main procedures:

1. Segmentation: The Data was segmented into 36 segments. Each segment has a
4-seconds length and without overlapping

2. Filtering: The Data was filtered using a 1-40 Hz first-order Butterworth filter.
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Figure 4.2: preprocessing of the local dataset.

4.2.3 Local Data set

The preprocessing of the EEG Alpha Data set involves two main procedures:

1. Segmentation: The Data was segmented into 45 segments. Each segment has a
4-seconds length and without overlapping

2. Filtering: The Data was filtered using a 1-40 Hz first-order Butterworth
filter. Additionally, a 50 Hz notch filter was used to eliminate the power line
interference with a quality factor equals to 30.

4.3 Efficient feature selection for
electroencephalogram-based authentication

4.3.1 feature Selection

This part will discuss the methods of feature selection. In this work, 17 features were
extracted. The features are:

1. Amplitude Mean

2. Amplitude standard deviation

3. Amplitude Variance

4. Amplitude Range

5. Amplitude kurtosis
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6. Amplitude skewness

7. PSD Mean

8. PSD standard deviation

9. Permutation Entropy

10. Spectral Entropy

11. Singular value decomposition Entropy

12. Approximate Entropy

13. Sample Entropy

14. Petrosian Fractal Dimension

15. Katz Fractal Dimension

16. Higuchi Fractal Dimension

17. Detrended fluctuation analysis

Profound mathematical details about those features were mentioned in the sec-
tion2.3.3. The rest of the section will select the best feature set. Four Datasets were
used in this section: STEW: Resting-State, STEW: Mental workload, EEG Alpha
Dataset, and the locally recorded dataset. Additionally, the features extraction time
(FE time) was calculated. To do so, the FE Time of all subjects and all segments
were recorded. Afterwards, the recorded time was divided by the number of subjects
and the number of segments. The FE time was calculated for the full feature set as
well as the reduced feature sets.

CLuster Map

The cluster map, also known as the cluster heat map, is a simple way to present
the relation between variables. It is represented as a rectangular tiling of the data’s
variables as a colour-shaded matrix. On its margin, cluster trees are appended
[Wilkinson and Friendly, 2009]. In order to study the relationship between the
features, a cluster map is presented in 4.3. The goal is to cluster the features
together where clustered features represent the same information. This means
features that belong to the same cluster represent redundant information. Therefore,
all clustered features could be replaced by a single feature. The criteria to decide
whether a feature belongs to a cluster is when the correlation coefficient of the is
higher than 0.5 with four other features. As seen in Fig 4.3, three clusters are
presented while detrended fluctuation analysis does not belong to any cluster. The
first cluster includes:
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1. Katz Fractal Dimension

2. Sample Entropy

3. Singular value decomposition Entropy

4. Higuchi Fractal Dimension

5. Spectral Entropy

6. Approximate Entropy

7. Permutation Entropy

8. Petrosian Fractal Dimension

Where sample entropy was chosen as representative for the first cluster since it
contains higher correlations with other features in the cluster. The second cluster
includes:

1. Amplitude Mean

2. PSD mean

3. PSD standard deviation

4. Amplitude Variance

5. Amplitude standard deviation

6. Amplitude Range

Where Amplitude Variance was chosen as representative for the second cluster since
it contains higher correlations with other features in the cluster. The third cluster
includes:

1. Amplitude kurtosis

2. Amplitude skewness

Where Amplitude Variance was chosen arbitrarily, the final cluster was presented
by Detrended fluctuation analysis. Overall, the cluster map method resulted in four
features in the first reduced feature set:

1. Sample Entropy

2. Amplitude Variance

3. Amplitude kurtosis

4. Detrended fluctuation analysis
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Figure 4.3: Cluster map method for feature selection

Anova F-Value

It is considered a statistical method to calculate the variance between features and
labels. The principle of ANOVA (analysis of variance) is determining the difference
between means of each group. In other words, determining whether the mean of each
group is equal. The output of int rest in ANOVA is the F-Value, which reveals the
distance between features [Elssied et al., 2014]. As seen in Fig 4.4, There are five
features that are more relevant than others. Those features are:

1. Amplitude Range

2. Amplitude Variance

3. PSD mean

4. Amplitude standard deviation

5. PSD standard deviation

Logistic Regression Weights

On the contrary to the previous methods, Logistic Regression Weights is considered
a forward feature selection method. It is based on training a classifier and find out
which features are mostly contributing to making decisions. Accordingly, each feature
is given a Weight. There are three features that are more relevant than others. Those
features are:
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Figure 4.4: ANOVA F-Score method for feature selection

1. Katz Fractal Dimension

2. Amplitude Range

3. Amplitude Variance

Fused feature set

Each method of the three previous methods resulted in many features that seem
to be the most relevant to the task. The last feature set, which is called the fused
feature set, contains their union. There are nine features as a result. Those features
are:

1. Katz Fractal Dimension

2. Amplitude Range

3. Amplitude Variance

4. Amplitude kurtosis

5. Sample Entropy

6. PSD standard deviation

7. PSD mean

8. Amplitude standard deviation
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9. Detrended fluctuation analysis

4.3.2 Classification

Each feature set of the previous four feature sets will be used as an input for a
classification algorithm. Three main classification algorithms will be used, namely,
MLP, KNN, and XGBoost.

4.4 Electroencephalography recording duration in
EEG-based authentication systems

The aim of this part is to find a temporal threshold for EEG-biometric. This
threshold meets two conditions to maximize the implementability of EEG-biometric.
The two conditions are minimizing the EEG recording duration and maximizing
the performance metrics of the system. Four Datasets were used in this section:
STEW: Resting-State, STEW: Mental workload, EEG Alpha Dataset, and the locally
recorded dataset.

4.4.1 Data segmenting

EEG data were segmented according to 10 scenarios. The segments lengths are: 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2 ,3, 4, 5, 6, 7, 8, 9, 10 s, as seen in Fig 4.5.
From each segment, features were extracted based on the results of section 4.3.

4.4.2 classification

Each scenario was classified using three different classifiers, namely, MLP, KNN, and
XGBoost. The classification process was repeated three times for better robustness
against classifiers randomness. For each classification time, the average and standard
deviation of performance metrics were recorded.

4.5 Auditory stimuli

This experiment aims to answer three questions:

1. Dose the auditory stimuli affects the performance of EEG-biometric?

2. Dose the auditory conduction method affects the performance of EEG-biometric?

3. Does the EEG-biometric performance differs between native, non-native, and
neutral music?

To answer those questions, the locally recorded dataset was used. Eight EEG-
biometric systems were designed according to the eight experiments of the dataset
as described in section 4.1.3. The extracted features were considered as the results
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Figure 4.5: Caption

of 4.3while the signal segment length according to the results of section 4.4. Each
system was trained three different times. Each time by using a specific classification
algorithm, namely, MLP, KNN, and XGBoost. Additionally, subjects of the Local
dataset were asked to assess their satisfaction with the experiments. They were
asked to order the four types of experiments: Eyes Open Resting State, Eyes Closed
Resting State, In-Ear Auditory Stimuli, and Bone-Conducting Auditory Stimuli.
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Results

5.1 Feature selection

The results of the feature selection are presented in Fig 5.1, Fig 5.2, and Fig
5.3. The results represent the accuracy, FAR, and FRR, respectively. Each figure
shows the results of the five datasets, namely, STEW: Resting-State, STEW: Mental
Workload, EEG Alpha, Local Dataset Ex02, and Local Dataset Ex07. For each
dataset, the results show the performance metrics for the five feature sets applied
to the three classifiers: MLP, KNN, and XGBoost. Table 5.1 shows the numeric
results as a better representation. Additionally, it shows the FE time as described in
the section 4.3. Table 5.2shows the percentage of time reduction while extracting
the features. Finally, Table 5.3 shows a comparison with the literature.

5.2 Recording Duration

This part aims to investigate what is the temporal threshold of EEG recording that
meets the desired criteria. Fig 5.4 shows the relationship between EEG recording
and authentication accuracy. The figure shows this relationship for three data sets,
STEW: Resting-State, STEW: Mental Workload, and EEG Alpha dataset. Each one
was tested using the three classifiers: MLP, KNN, and XGBoost. Additionally, the
results were compared with the findings of [Carrión-Ojeda et al., 2019]. Fig 5.5 the
correlation coefficients between the literature and the results of the STEW dataset.

5.3 Auditory stimuli

To evaluate the effect of the auditory stimuli. The results of the previous two
experiments were used on the Local Dataset. The results answering whether the
auditory stimuli affects the performance of EEG-Biometric are presented in Fig 5.6.
The figure shows the accuracy, False Acceptance Rate, and Falser Rejection Rate of
the system. It shows that the accuracy is increased by 9.27% when using auditory
stimuli. To compare the effect of the method of conducting and the language of the
auditory stimuli, Fig 5.7, Fig 5.8, and Fig 5.9 show the accuracy, False Acceptance
Rate, and Falser Rejection Rate, respectively, of the three classifiers: MLP, KNN,
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Figure 5.1: Authentication Performance (Accuracy): Full feature set against reduced
feature sets.

Figure 5.2: Authentication Performance (False Acceptance Rate): Full feature set
against reduced feature sets.
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Figure 5.3: Authentication Performance (False Rejection Rate): Full feature set
against reduced feature sets.

Figure 5.4: Relation between EEG recording duration and authentication accuracy.
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Table 5.1: Performance metrics: full feature set against reduced feature set.

Full Fused Cluster Map Anova F-test LR Weights
STEW: Resting State

MLP 71.99 68.63 65.62 65.04 73.49
KNN 81.59 81.48 81.48 81.48 81.59
XGBoost 92.7 90.39 91.89 87.03 90.22
FE Time *[s] 0.198 0.054 0.020 0.019 0.050

STEW: Mental Load
MLP 67.12 61.57 62.96 64.35 56.01
KNN 68.98 68.98 67.59 68.98 68.98
XGBoost 75 79.16 82.4 69.9 71.75
FE Time *[s] 0.198 0.054 0.020 0.019 0.050

EEG Alpha Wave Dataset
MLP 87.77 88.88 88.88 90 86.66
KNN 82.22 82.22 83.33 82.22 82.22
XGBoost 85.55 86.66 88.88 80 80
FE Time *[s] 1.440 0.433 0.245 0.036 0.029

Local Dataset Ex02
MLP 50 54.33 54.44 56.1 11.66
KNN 45.55 46.11 43.38 46.11 46.11
XGBoost 77.22 73.33 75.55 55.55 56.11
FE Time *[s] 0.0038 0.00113 0.00098 0.000362 0.000262

Local Dataset Ex07
MLP 61.66 58.88 55.55 56.11 63.33
KNN 55.55 55.55 52.27 55 55.55
XGBoost 82.77 73.33 75 65.55 64.44
FE Time *[s] 0.0038 0.00113 0.00098 0.000362 0.000262
* All experiments were conducted using PC with Core i7-3537U, 2.00 GHz Processor

and 8.00 GB RAM.

Table 5.2: Feature extraction time reduction for the reduced Feature sets

Fused Cluster Map Anova F-test LR Weights
STEW: Resting State

MLP 72.73% 89.90 % 90.40 % 74.75
KNN 69.93% 82.99 % 97.50 % 97.99
XGBoost 70.26% 74.21 % 90.47 % 93.11
Average ± std 70.97 ± 1.53 % 82.37 ± 7.86 % 92.79 ± 4.08 % 88.61 ± 12.25 %
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Table 5.3: Performance Metrics: Comparison with literature. The values represent
the highest accuracy obtained using the cluster map feature set.

Accuracy
STEW: Resting State 91.89%
STEW: Mental Load 82.4%
EEG Alpha 88.88%
Local Dataset 75.55%
[Tsai et al., 2020] 96.80%
[Marino et al., 2020] 88.43%
[Chen and Yin, 2020] 87.30%

Figure 5.5: Correlation Coefficients with literature
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Figure 5.6: Authentication performance (Accuracy, FAR, and FRR): Ex02 (Resting
State Closed eyes) versus Ex07 (Auditory Stimuli)

Figure 5.7: Authentication Performance with different auditory stimuli (Accuracy).

and XGBoost. Additionally, Fig 5.10 shows the stratification of the subjects when in
four cases: Open eyes, Close eyes, In-Ear auditory stimuli, Bone-conducting auditory
stimuli. The results of the subjects Satisfaction is shown in Fig 5.10.
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Figure 5.8: Authentication Performance with different auditory stimuli (FAR).

Figure 5.9: Authentication Performance with different auditory stimuli (FRR).

Figure 5.10: Subject’s Satisfaction of EEG-Biometric
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Chapter 6

Discussion

6.1 Feature Selection

From what could be observed from Fig 5.1, Fig 5.2, Fig 5.3, and Table 5.1,
the results show a promising feature extraction. The reduced feature sets could ac
hive similar or even higher performance than the full feature set. This could be
explained that the reduced feature set contains only the information required for
identity from the brain. In other words, those features represent how the brains
of different individuals are different. The major benefit for the reduced sets is the
decrease of information redundancy, which in roll dramatically decreases the time
required for feature extraction, as seen in Table 5.1 and Table 5.2. We can conclude
that the cluster map feature set is the reduced feature set that makes a balance
between performance and computation efficiency. It performed best while using the
XGBoost classifier, reaching accuracy over 91% and FAR is below 0.1% while FRR
is around 7%. This means 1 out of 1000 times an imposter could have unauthorised
access while 1 out of 14 tries of a genuine will be failed. This feature set grantee 82.37
± 7.86 % computation time reduction, which in roll improves the implementability.

To compare this work with literature, as seen in Table 5.3, it is noticeable that it
only [Tsai et al., 2020] outperformed this work. This is explained because they tend
to use the deep convolutional neural network, which is computationally costly. It
[Thompson et al., 2020], and require a lot of time to be trained and implemented.
This will reduced implementability of thier system, which they did not discuss.
Moving on to [Marino et al., 2020], they have ac hived the highest performance
equals to 88.43%. However, their dataset suffers from high redundancy where
they used 75% overlapping when they extracted their feature, compared with no
overlapping in this work. Finally, [Chen and Yin, 2020] has a major drawback: the
number of electrodes, which is equal to 40 electrodes. This might be a good solution
to improve the performance. However, it make it useless from practical point of view.

6.2 Recording Duration

The goal is to find a temporal threshold for the EEG recording duration that gives a
balance between performance and implementability. As seen in Fig 4.5, It shows an
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increasing trend from 0.1 s until 4 s. After 4 s, no significant increase was observed,
meaning that 4 s shall be considered a measure of the minimum recording duration
needed to achieve optimal performance. The EEG-based authentication system will
be less effective for shorter recordings. At the same time, the longer time duration
does not offer sufficient benefits in terms of performance to justify the corresponding
increased requirement of computational and memory resources.

To compare this work with literature, specifically [Carrión-Ojeda et al., 2019],
Results show correlation coefficients in the range: 0.96 – 0.98 with their work, as in
Fig. Hence, these are in line with their findings.

6.3 Auditory stimuli

This part aims to answer three questions:

1. Dose the auditory stimuli affects the performance of EEG-biometric?
From Fig 5.6 we can see a comparison between Ex02 and Ex07, which were
conducting in resting state and auditory stimuli respectively, as described in
the section 4.1.3, we can see that the auditory stimuli case outperformed the
resting state by a 9.27% difference in accuracy. This can be explained that the
brain response to the auditory stimuli generates different oscillation patterns
in EEG signals. Therefore, the authentication performance in the presence
of auditory stimuli is better. As seen in Fig , in terms of implementability,
as seen in Fig 5.10 shows that subjects were 89.47% of the subjects have
chosen auditory stimuli as their first choice for satisfaction and 89.47% as a
second choice. This means the use of auditory stimuli is preferable from both
performance and implementability perspectives.

2. Dose the auditory conduction method affects the performance of
EEG-biometric?
Answering the question based on Fig 5.7, Fig 5.8, and Fig 5.9 is not
enough to tell if there is a significant difference. Therefore, To answer this
question, the paired t.test was performed between In-Ear auditory stimuli
and bone-conducting stimuli. The results shows P=0.038<0.05 for accuracy,
P=0.046<0.05 for FAR, and P=0.032<0.05 for FRR. This means there is a
significant difference between In-Ear auditory stimuli and bone-conducting
auditory stimuli. The average accuracy shows that in-Ear (69.33 ± 8.92) is
slightly higher than Bone-conducting (67.60 ± 8.78). Regarding user satis-
faction and implementability, from Fig 5.10, In-Ear auditory stimuli were
preferable by 36.84% of the subjects compared to 52.63% of subjects for bone-
conducting auditory stimuli. These contradictory results between performance
and implementability give the developer the option to choose their preferred
traits.
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3. Does the EEG-biometric performance differs between native, non-
native, and neutral music?
Answering this question can not be straight forward similarly to the previous
one. To discover whether there is a significant difference between the three
groups, the ANOVA test was applied. The test resulted in a p-Value>0.05,
which is not significant. This means that EEG-biometric performance is
independent of the language of the auditory stimuli. This comes in line with
what [Jayarathne et al., 2016] they have found; they found that EEG-biometric
authentication is independent of the genre of the music.
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Conclusion

This thesis has discussed the designing and implementability of authentication systems
based on EEG Signals. The results of this work have answered several questions that
were asked in the literature. The main contribution of this work could be summarized
in five points:

1. Finding a feature set that reduces the computation time by 82.37%.

2. Finding a temporal threshold equals 4 seconds, which balances between perfor-
mance and implementability.

3. Finding that using auditory stimuli could improve the authentication perfor-
mance by 9.27%.

4. Finding that using In-Ear auditory stimuli is better than using bone-conducting
auditory stimuli in terms of performance, while the contradictory situation in
terms of implementability.

5. Finding that EEG-biometric performance is independent of the language of
the auditory stimuli.

In the end, further research is still required to improve both the performance and
implementability of EEG-based security systems. There are still several gaps to be
bridged until the system can reach a real-life implementation.
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Subject ID Initials Age Gender Profession BMI Smoke Alcoholic Medication Mother Language

S01 AG 27 Male Student 25.93 Yes Occasionally No Italian

S02 SC 23 Female Student 22.95 Yes Occasionally No Italian

S03 SB 26 Male Student 20.45 No Occasionally No Arabic

S04 JH 29 Male Student 27.46 No Occasionally No Arabic

S05 MA 28 Male Student 27.77 Yes Never No Arabic

S06 AA 27 Male Student 28.41 Yes Never No Arabic

S07 DR 25 Male Carpenter 22.04 No Occasionally No Latvian

S08 IA 24 Female Student 21.88 No Usually Yes Italian

S09 LI 30 Female Student 23.18 No Usually No Arabic

S10 LA 26 Male student 26.06 No Occasionally Yes Italian

S11 BB 25 Male student 19.39 No Never No Arabic

S12 DC 27 Male student 26.23 No Occasionally No Italian

S13 AD 27 Male student 26.23 No Occasionally No Italian

S14 NA 26 Male student 35.92 No Never No Arabic

S15 SA 25 Male student 21.89 No Usually No Italian

S16 FA 26 Male student 22.76 No Occasionally No English

S17 YM 21 Male student 35.49 No Never No Arabic

S18 MFA 31 Male student 20.43 No Never Yes Urdu

S19 ST 22 Female student 21.01 No Never No Italian

S20 RB 25 Male Student 22.49 No Occasionally No English

Appendix 1
Metadata of the local dataset


	Hardcover
	Softcover
	Dedication
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background Study and Literature Review
	Physiological background
	Nervous system
	Neurons
	The neuron anatomy

	Neuroimaging
	fMRI
	fNIRS
	PET
	MEG
	EEG

	Brain-Computer Interface (BCI)
	BCI framework
	Pre-processing
	Feature Extraction
	Classification

	Security and Authentication
	Biometrics
	Biometric Systems
	Authentication and Identification
	Performance measures


	Problem statement, objectives and hypotheses
	Problem statement
	objectives
	hypotheses

	Materials and Methods
	Data sets
	STEW Data set
	EEG Alpha Data set
	Local Dataset

	Preprocessing
	STEW Data set
	EEG Alpha Data set
	Local Data set

	Efficient feature selection for electroencephalogram-based authentication
	feature Selection
	Classification

	Electroencephalography recording duration in EEG-based authentication systems
	Data segmenting
	classification

	Auditory stimuli

	Results
	Feature selection
	Recording Duration
	Auditory stimuli

	Discussion
	Feature Selection
	Recording Duration
	Auditory stimuli

	Conclusion

