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Abstract

The problem addressed in the present thesis document is the development of a controller
based on a neural network for autonomous flight in quadrotor systems. The controller’s objec-
tive is to govern the quadcoper such that its center of mass position reaches a specific point,
remaining as stable as possible both during flight and upon reaching its target. Given the
complex and unstable nature of quadcopters, an appropriate neural network architecture and
training algorithm had to be designed. The controller has been implemented with a single
multi layer perceptron. Starting from the quadcopter’s current state, the neural network pro-
duces the correct rotors’ speed values that the quadcopter needs to optimally reach the target,
both in terms of stability and flight speed. The neural network’s training has been achieved
using a custom genetic algorithm, alongside a numerical simulation, where particular empha-
sis is put in the cost function’s definition. Lastly, the neural controller has been employed
and tested to autonomously follow a complex path. The results are promising: the neural
controllers manage to effortlessly follow several types of paths with adequate precision and
optimal stability levels while maintaing low travel times.

Sommario

In questa tesi viene affrontato il problema dello sviluppo di un controllore per sistemi di
volo autonomo quadrirotore basato su una rete neurale. Il controllore ha come obiettivo il far
raggiungere al centro di massa del drone un preciso punto, rimanendo il piu stabile possibile
sia durante il volo sia una volta raggiunto il bersaglio. Per via della natura complessa e
instabile dei quadricotteri, & stato necessario progettare un’appropriata strategia di controllo.
II controllore & stato realizzato tramite un singolo percettrone multistrato che, partendo dallo
stato attuale del drone in ogni istante, produce i corretti valori di velocita che i quattro rotori
devono assumere per raggiungere un bersaglio in modo ottimale, sia in termini di stabilita che
di velocita. Per addestrare la rete neurale ¢ stato implementato un particolare algoritmo neuro
evolutivo, affiancato da una simulazione numerica, ponendo particolare enfasi nella definizione
della funzione di costo. Infine, il controllore neurale & stato utilizzato e testato per seguire
autonomamente un percorso complesso. I risultati sono promettenti: i controllori neurali
riescono a svolgere efficacemente svariati tipi di percorsi con adeguata precisione e con ottimi
livelli di stabilita, mantenendo bassi tempi di percorrenza.



1 Introduction

In the recent years quadcopters, also known as drones, have seen an increase in interest and popu-
larity among consumers, professional users and enterprises [4, 7, 12, 15, 24], due to their relatively
low manufacturing cost and the continual improvements in the performance and reliability of the
controllers applied to them. Also, with the resurgence of artificial intelligence of the past 20 years
[19], the topic of neural networks gained growing interest in the scientific community, and its poten-
tialities are starting to gain traction in a multitude of different environments. By applying neural
networks to the problem of quadcopter control as an alternative to standard industrial controllers,
particularly for autonomous flight systems, a more powerful and flexible solution could be attained.

To assess whether neural network controllers are a suitable type of controllers, a type of neuro-
evolutionary controller for autonomous flight in quadcopter systems has been designed, imple-
mented and tested in a simulation, as described in this thesis document. The chosen neural
network’s topology was a multi-layer perceptron, because of its ease of implementation and low
computational cost, thus being a good choice for implementation on dedicated hardware in real
applications. To train the network, a genetic algorithm was developed, alongside a 3D environ-
ment for qualitatively checking the state of training in real time. The neural network was trained
to stably reach a target point in space and, once it reaches the target, hover in that exact posi-
tion; even so, the resulting trained neural controller can be used to have the quadcopter follow
a specified path by sub-dividing the path in multiple segments, achieving a proof-of-concept for
autonomous flight. The outcomes of this training algorithm have shown really promising results: it
takes a relatively short amount of time for the evolutionary algorithm to produce adequate neural
controllers (around 2 hours on a laptop [Intel i5 8250U, 16 GB RAM]) and with more training
time and finer settings, the resulting controllers’ behavior exhibits a very stable behavior and high
response speed.

This thesis document presents the design process employed in the conception of the neural
controller’s structure and the neuro evolutionary algorithm in Section 3. The software methods
used in their development and implementation are described in Section 4, and results of numerical
simulations are shown in Section 5. Section 6 concludes this thesis document.

2 Literature review and motivation

To perform the task of quadcopter control, a numerous quantity of controllers and techniques have
been designed and implemented in the past. The most commonly used type is the proportional-
derivative (PD) [10] or proportional-derivative-integral (PID) controller [6, 16, 27, 32] and there
exist several different ways to implement these types of controller. The most used structures
are a multitude of PID controllers in series (or cascading) [16], in parallel [27] or a mix of these
configurations [32] and each controller is specialized on controlling the position or the attitude.
Other control techniques have also been implemented for quadcopter flight, such as backstepping
[26], linear quadratic regulators (LQR) [1] and sliding mode controllers [5]. These controllers’
implementations provide more than adequate results, both in stability and performance, but they
mainly focus on stabilization or remote control. The paper [29] deals with the trajectory tracking
problem for a quadrotor unmanned aerial vehicle. A flight controller with a hierarchical structure
is designed, whereby the complete closed-loop system is divided into two blocks. The system has
an inner block for attitude control and an outer block for position stabilization based on PD/PID
controllers.

To address the problem of autonomous quadcopter flight, several techniques have been designed,
implemented and tested. The article [11] presents a control system that allows a small sized quad-
copter to achieve autonomous flight in indoor environments, without relying on GPS, with both
PD and PID controllers and high level control modules for path planning and collision avoidance.
The paper [25] implements PID, backstepping and fuzzy control techniques, overviewed by a high
level task planning module, for autonomous flight and qualitatively evaluates each technique’s per-
formance, both in indoor and outdoor scenarios, discussing each control technique advantages and
disadvantages. The paper [22] presents a hybrid robust control strategy to solve the trajectory
tracking function of a quadcopter with time-varying mass. The article [3] describes the design,
fabrication, and flight test evaluation of a morphing geometry quadcopter.



Neural networks have also been utilized as quadcopter controllers, particularly in autonomous
flight settings. In the paper [13], an autonomous vision based neural network control system, for
governing a drone in dynamic racing environments, is implemented using a convolutional neural
network (CNN) to convert the raw images in waypoints and desired speeds which are then con-
verted to the appropriate rotors speeds. To train the network, supervised learning was used. This
is a viable approach but requires the acquisition of a conspicuous amount of data for the training.
Another approach that does not involve the gathering of large training data sets or the tuning of
PID parameters is reinforcement learning, as it has been proven in the paper [14], where low-level
control of a quadrotor is achieved using a model-based reinforcement learning (MBRL) technique.
In the paper [9], a novel framework for leader-follower formation control is developed for the con-
trol of multiple quadrotor unmanned aerial vehicles (UAVs). A novel neural network control law
for the dynamical system is introduced to learn the complete dynamics of the UAV including un-
modeled dynamics like aerodynamic friction. Also, the paper [21] addresses formation tracking for
multiple low-cost underwater drones, by implementing distributed adaptive neural network control
(DANNC), on the basis of a leader-follower architecture to operate in hazardous environments.

Genetic algorithms, a particular unsupervised learning technique, have also been proven capable
of training neural controllers for autonomous flight in quadrotor systems. In the paper [20], the
authors introduced the use of the neuro evolution of augmented topologies’ (NEAT) algorithm [31]
which evolves a neural network control structure for optimal dynamic soaring flight trajectories.
NEAT is also used in [28] where a hierarchical controller composed of multiple neural networks,
each controlling a quadcopter’s variable (roll, pitch, yaw and elevation) are used in a simulation to
follow a path. The advantage of NEAT is that allows neural networks to evolve both their weights
and topology, without having to heuristically specify the desired network’s topology.

The aim of the present research endeavor is to prove that a simpler controller, structured as
a single neural network, is a viable solution for the problem of autonomous flight in quadcopter
systems, and also that complex training methods, such as algorithms that require considerable
amount of data or algorithms that require complex implementations, can be replaced by simpler
and more elegant solutions.

3 Drone control by a neuro-evolutionary algorithm

Quadcopters are flying vehicles composed of a rigid frame with four propellers equally spaced from
the center of the frame, which is also the center of mass of the system. The variation of rotors’
speeds generates torque and thrust, thus allowing the quadcopter to vary its position and attitude
relative to the ground. Therefore, a quadcopter has six degrees of freedom, but only four rotors
that can control its attitude and altitude. This makes quadcopters an interesting challenge to
control because they are under-actuated non-linear systems.
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Figure 1: Left-hand panel: overhead view of the quadcopter, showing the rotors’ torques 7; and the
resulting torque on the drone’s z axis 7,. Right-hand panel: side view of the quadcopter showing
the thrusts T; generated by the propellers and the torques 7 on the x-y axes.

In a standard four-rotors quadcopter, the rotors are divided in two pairs, one for each of the x
and y body’s axis, and each pair spins clockwise or counter-clockwise, as illustrated in Figure 1.
This makes the torques 7 of each pair of rotors counteract the others, resulting in zero torque



Ty along the z axis of the drone. To achieve a rotation along the z axis (yawing), the speed of
one pair is decreased or increased, so that the net torque along the z axis of the drone’s body 7,
is not zero. For example, by increasing only the clockwise rotor’s speed, the component of the
torque along the z axis of the body will be non-zero and will be directed in the counter-clockwise
direction. This method of controlling the torque generated by the rotors, and along with similar
others (like coaxial-blades and tandem-rotors), compared to traditional systems (like tail-rotors in
helicopters), has the advantage of symmetry, because each blade has the same exact role as the
others.

Each rotor ¢ produces a vertical trust 7; perpendicular to the quadcopter body. By controlling
each rotor’s speed, it is possible to control the rotation of the drone along its body’s x and y
axis (pitch and roll). To induce a rotation along one of these axes, the thrust generated by the
propellers is used: along one axis, if one propeller is faster (or slower) the difference in thrust
compared to the thrust generated by the opposite propeller generates a moment of force 7, or
Tp which induces a rotation in the body. To avoid unwanted yawing, the increase in speed in one
of the rotors must be compensated by an equal decrease in the speed of the rotor opposite to it
(along the same axis), that results in a zero net torque along the body’s z axis.

3.1 Mathematical model of the quadcopter

In the used model [17], the quadcopter is defined in two frames of reference: the “earth” frame and
the “body” frame. The quadcopter is described in the earth frame by its position & and angular
position (attitude) n vectors:

x ¢
E= |yl n=|0], (1)
z (G

where ¢ is the roll angle, the rotation around the earth frame x-axis, 6 is the pitch angle, the
rotation around the earth frame y-axis, and v is the yaw angle, around the earth frame z-axis.

In the body frame are defined the linear velocities Vi and the angular velocities v relative to
the origin (the center of mass)

Vz,B Vg
Ve = |vyB|, V= |vy|- (2)
Vz,B Vy

To transform the angular velocities relative to the body frame v to the attitude-rate (the derivative
with respect to time 7 of the attitude 1) a transformation matrix W, is used:

1 S4Ty CysTh
VV,’_1 =10 Cy =Sy |, (3)
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where C, = cosz, S, =sinx and T, = tanz. In fact, n = Wn_lu.

Since the rotors only generate thrust along the z-axis of the body, to obtain the resultant thrust
vector relative to the earth frame of reference, the attitude of the quadcopter is accounted by using
a rotational matrix R:

01/,09 CngS¢ — Sw0¢ CwSQC(z; + S¢S¢
R=[8,Cs S4S9Ss+CyCs SpSeCs— CSs| . (4)
Sy CoS CoCis

The formulas that relate the input of the system w (the rotors’ speeds) to both the external
state (position € and attitude 7 relative to the earth frame) and the internal state of the drone are
summed up in Figure 2.
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Figure 2: Quadcopter model summary. The model is divided in sub-processes, for the ease of
reading, represented by blocks.

A From the current state, or the initial conditions, we can calculate the torque relative to the
body frame Tp and the thrust 7" on the z axis relative to the body frame:

lk(—w3 + wj) Ty
b(—wi + w3 — wi +wj) T
T = kw?+ws+ws+wi), (6)

where [ is the length of the drone’s arms, k is the lift constant and b is the drag constant of
a single rotor.

B With the torque vector 75, the angular acceleration relative to the body frame & can be

calculated:
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Since the structure is symmetrical, I, = I,. In the above equation, I, denotes the rotors’
moment of inertia. To compute the angular velocities vector v this differential equation can
be solved using differential calculus methods or numerical ones.

C Using the transformation matrix W, the attitude-rate of the drone relative to the ground
7] can be obtained by a transformation of the angular velocities vector relative to the body

frame v:
¢ 1 STy CyTy ] [va
n=|0|=W,v=10 Cs =Sy | vy, (8)
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By numerically solving this differential equation, the attitude m of the quadcopter can be
obtained.

D Finally, the center of mass’ acceleration relative to the earth frame &€ can be obtained by
applying the gravity acceleration directly and by applying the thrust force, divided by the
drone’s mass, rotated using the attitude matrix R). Note that since the force is only applied
to the z axis of the drone, only the third column of R needs to be calculated. The acceleration
é obeys the law:

mé = G+ TRe, — A€, (9)



where m is the mass of the quadcopter, G is the gravitational force (weight) directed towards
the negative direction of the earth frame’s z-axis, namely G = —mge,, where g denotes the
gravitational acceleration and A denotes a viscous drag tensor. The above relationship may
be written in plain format as:

. x 0 T CngC(z, + S¢S¢ 1 A, O 0 T
E= |4 == |0 +— |5u5Cs —CySy| —— | 0 Ay 0|17/, (10)
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where A;, A, and A, are the drag force coefficients for the velocities in the ,y and 2 direction
of the earth frame of reference.

3.2 Control strategy

The main goal of this project is the design of a controller to attain autonomous flight in a quadcopter
system. The first step in the design was the definition of the drone’s desired behavior, so the
appropriate control scheme and neural network training strategy could be planned.

The main objectives of the autonomous flight controller are to reach a point fixed in space
(with the drone’s center of mass) and to be stable both in the trajectory and around the target.
Defining and measuring the first objective is simple and straight forward, but defining the second
one has its complications.

The definition of “stable flight” is in itself very fuzzy and could be interpreted (linguistically
and mathematically) in many ways; for example, by defining stable as “the quadcopter body must
be as parallel to the ground as possible (¢ = 0,0 &~ 0)”, results in two conflicting objectives: the
quadcopter has to reach the target so it has to tilt to follow a trajectory, but this does not comply
with the current definition of stability, thus resulting in two conflicting goals.

This problem can be fixed using multi-objective control and optimization techniques, but in-
stead the requirement of stability was redefined as “the quadcopter has to turn along its axes for
as little time and amount as possible, and each rotation in one direction must be compensated
and countered by a rotation in the other direction”. This has two parts: the first, regarding the
spin time and amount, means that the desired final behavior is to have fast rotations (to align
itself to the optimal trajectory) and to avoid states in which the drone spins uncontrollably; the
second part, about the compensation of a turn in one direction, ensures that the quadcopter will
eventually spin in the other direction by an equal amount (compared to the first rotation), thus
having a flat attitude once the drone reaches the target.

With this definition, the quadcopter’s controller does not have conflicting objectives: to reach
the target, it can turn towards the optimal trajectory because there are no constraints to the atti-
tude angles, and to reach the correct flat attitude, the second part of the stabilization requirements
(the compensation of the rotation) is used. Also, to further increase stability by avoiding extreme
and unwanted angles of rotation, a constraint on the maximum attitude pitch ¢ and roll 8 absolute
values is enforced. The mathematical definition of all these requirements will be presented in the
section about the cost function definition of the genetic algorithm.

This control behavior can be easily extended to follow a path by dividing the path in multiple
sequential points and by providing a single target at a time, switching to next one when the
quadcopter is close enough to current target.

3.2.1 Control diagram and scheme
The observable/measurable state s used to control the quadcopter is represented by:
e £ - Center of mass position
o £- Velocity
o £ - Acceleration
e 1) - Attitude

e 1) - Body angular velocities



The reference input (set point) is the desired position of the quadcopter’s center of mass (target)
Er.

The control strategy is a feedback loop, in which the current position is compared with the
target’s, resulting in the position’s error epos = & — §&7. The state error o is defined as:

€ &r €pos
§ 0 §
o= |- |0 =] ¢ (11)
n 0 n
7 0 0

This state is passed to the neural network controller, which outputs the appropriate motors’ an-
gular speeds w, the input to the quadcopter’s mathematical model. There are no reference inputs
concerning the attitude of the drone. This allows the quadcopter to follow an optimal trajectory
(not defined a priori) based on its training experience. Nevertheless, as a result of the aforemen-
tioned objectives’ definition and of the learning algorithm, once the quadcopter reaches the set
point it will remain hovering in that position having a final state s;:

£r
0

sy~ (12)
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Figure 3: Control diagram of the system. NN: Neuro controller that takes the error state o of the
quadcopter. Q: quadcopter model that takes as input the rotors’ speeds w.

3.3 Neural network structure

The controller’s neural network structure is a multi-layer perceptron illustrated in Figure 4. The
network takes in input the state relative to the target o which is composed of 5 R? vectors, for a
total of 15 input nodes.

To improve the learning performance, the input elements are mapped to (—1,1): each sub-
vector o; of o is normalized using tanh(n;o;) where n; is the normalization scaling factor of the
corresponding o;. This reduces the search space [30] for the algorithm, thus improving its training
performance, by reducing and bounding the dimensionality of the problem from an input space
R to a space (—1,1)%.

The normalized input o* then passes through h hidden layers, each of size s;, resulting in the
output of the network w*. Each node is activated using a weighted and biased sigmoid P(wz+b) =
Trebers:

L1 =PW,L;+Bj1), i=1,...,h+1, (13)
where L; is the nodes’ vector of the layer i, W; is the weight matrix from the current layer i to
the next, of size s;11 X s;, B; is the bias vector of the layer ¢ and h + 2 is the total number of
layers (one input, one output and h hidden layers). The size of L; = o* and Lj 2 = w* are fixed
at 15 x 1 and 4 x 1 respectively, while the size and number of hidden layers may be varied. The
values of W; and B; for ¢ = 1,...,h + 1, which determine the response of the controller to the
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Figure 4: Neural network structure including input and output signals. The topology shown is a
{15, 20, 6, 4}.

current state, and the normalization scaling factors n; for j =1,...,5 are defined by the learning
algorithm.

The output of the network w* is a (0,1)* vector, so to obtain the rotors’ desired speeds, it’s
mapped and scaled to the minimum and maximum propellers’ rotation speed using:

w; = WMIN + (WMAX — WMIN)W}, (14)

fori=1,2,3,4.

3.4 Neuro-evolutionary algorithm

To train the neural-network controller, to comply with the control objectives previously defined, a
learning algorithm has to be used together with a numerical simulation. Since the training process
cannot be supervised, by using an algorithm such as back-propagation, because of the lack of
training set (correct rotors’ speeds in response to specific state) and also the difficulty of getting
such amounts of data, unsupervised learning or reinforcement learning algorithm was the solution
of choice.

The algorithm implemented is a genetic algorithm that, compared to other algorithms in this
family like NEAT, does not modify the topology of the neural network, so the topology must be
specified heuristically in advance. A general overview of the algorithm is shown in Figure 5.
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Figure 5: Flow-chart of the neuro-evolutionary algorithm used to train a neural-network-based
controller.

The algorithm operates on a population of p individuals, and in every iteration the next pop-
ulation, also called generation, is created from the previous. An individual, or agent, is defined
as a single neural-controller configuration (of weights and biases) applied to a quadcopter model.
The configuration of the values of the weights and biases matrix is represented by a genome with
a direct encoding genotype representation [34], and the normalizer weights n are also added to the
genotype. Direct encoding was preferred to other types of encoding because a more complex one
was not needed since the algorithm does not influence topology and does not have concepts like
speciation that sub-divide the population in different groups.

3.4.1 Initialization

At the start of the algorithm, the initial population T'(0), of size p, is created by assigning to each
individual a, a randomly generated genome. The values of the weights are initialized as follows:

r() - 70 r()
Wi=1|: - |,Bf=|:]|fori=1,...,h+landa=1, ..., p, (15)

rQ) 0 r()
where 7() is a function that returns a real number, bounded by a constant rax
r() € [-ruax, rvax]-

The algorithm also operates on the normalizer weights n so those are also specified at the start:

S
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where 7 is a constant. So in the first generation I'(0) each individual has the same normalizer
weights, but since the optimal value of n is not known a priori, in the upcoming generations those
weights will vary because of mutations and crossovers. This is important, because it allows the
algorithm to also optimize the amount of normalization that the input of the neural network o
undergoes, which can be interpreted as the neural network’s input sensibility to each sub-vector of
the input o.

3.4.2 Starting state definition

At the start of every generation, all the quadcopters in the population are set to have the same
initial condition state o (0). This means that every quadcopter starts in the same conditions as the
others, so despite the differences in each individual genome, each one is evaluated in the same way



as the other individuals in the generation. Also, in the first and every g* generations, the initial
state of the quadcopters o(0) is randomly set:

ep?s,O Te
€0 T¢
o0)=1 & | =[], (17)
To T'n
Mo Ty

where 7, is a random vector, with the same size as x, composed of random values bounded by a
constant: ry; € [—75,75) for i =1, ..., size(x).

Having an initial state that is not fixed is crucial to the functioning of the algorithm. If in every
generation I'(g) every individual were to start in the same state as the previous generation I'(g—1),
without variation, the neural networks would just exploit their training by evolving to only have
the correct behavior for that fixed starting state, and when presented with a situation different
from the one that they were evolved from, the neural network will inevitably fail to control the
quadcopter because of its lack of proper training.

Instead, by varying the starting state very frequently, because of the evolutionary nature of
the algorithm, only the individuals that can effectively control the quadcopter in a multitude of
different states will pass their genes to the next generation, resulting in each generation getting
better at handling different states.

To further increase the exploration of possible states, the boundary of the random state gener-
ation 7 can be set to higher values. For example by increasing 7, the boundary for the random
value that the elements in the attitude-rate sub-vector 7 of the starting state o(0) can have, and
Té, the boundary for the initial velocity, the individuals will start the simulation with higher speeds
in random directions and higher rotation speeds of their bodies. This increases the harshness of
the training and only the best individuals that can withstand those hard conditions will pass their
genes and, over many generations, the evolutionary algorithm will produce individuals that can
handle such conditions, that correspond to more robust and stabler neural controllers. Note that
if the 7, parameters are set too high, the starting conditions will be outright impossible to control,
therefore the evolution will not produce better individuals because of the impossibility in evaluating
and distinguishing the performance of poorly evolved individuals against the good ones.

3.4.3 Population evaluation

After the current generation’s I'(g) starting state o9(0) is defined, each individual is numerically
simulated in discrete time and its performance evaluated.

Each individual ¢ in the population I'(g) has a lifespan kyax in which, from the instant k& = 0
to k = kmax, its performance is evaluated: in each instant k from the state o (k) the individual’s
neural network outputs the rotor’s speeds w? (k) which are then used as inputs to the quadcopter
mathematical model @ to calculate the next state of (k + 1) of the individual.

Also, if an individual reaches an height z of less then 0 meters from the ground, to the purpose
of the simulation, it is considered crashed and its state will not be updated, effectively remaining
stuck in the position where it has collided to the ground. This is necessary because otherwise the
quadcopters will not evolve to avoid crashing to the ground, and also it speeds up the evaluation
process because the crashed individuals do not need to be further simulated.

Evaluating the performance of the current generation’s individuals is a fundamental step for
the genetic algorithm because, as described in detail in the next section, to produce the next
generation, which ideally has to be better than the current, the individuals that performed better
than the rest should pass their genes (neural network and normalizer weights) to the next one.
To evaluate the performance of the current generation, a cost function [34] C; that represents
the inverse of the performance of an individual ¢ (the higher the cost the worst the individual’s
performance) in the current generation in its lifespan tyax is defined as follows:

CZ' = Ci@ + Ci,n + Ci,ﬁ + Ci,m (18)
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where, relatively to an individual ¢, C; ¢ represents how poorly it reaches the target, C; ,, represents
how much its attitude has exceeded certain tilting thresholds, C; ; represents its noncompliance
with the stability requisite, and C; , represents if and for how long the quadcopter has crashed.

An individual should reach the target position in the shortest amount of time and stay in that
position. This can be evaluated and represented by measuring the sustained displacement of the
quadcopter center of mass relatively to the target’s position:

kmax

Cig = Z Hei,p(,S(k)H At, (19)
k=0

where At represents the time, in seconds, that passes between step k and step k + 1.
To increase the stability of the desired quadcopter, it is desirable that its attitude angles ¢ and
0 do not exceed a certain threshold myax:

kMAX
CZ‘/’] = Z ci,’r](k)At, (20)
k=0
¢y it ¢ > . >
ciglk) = {(c)n %f |pi(k)| = nuax V |0i(k)| > i, o
instead

in which ¢, is a positive arbitrary constant representing the penalty for exceeding the limit on the

attitude angles. The ideal nyax is a value between % rad and 7 rad.
The aforementioned requirement of stability can be represented mathematically by defining:

kmax

Cin = || > fenk)At |, (22)
k=0
sgn(z1)log(1 +|21])

flx) = : , with n = size(x). (23)

sgn(zn ) log(1 +[zn|)

In the quantity Cj ;, the attitude rates (¢, 0 and w) are compressed using a non linear function
f(z), and then these values are summed in the life span of each individual. The compression of
the attitude rate is an important step: since the function is non linear, small changes in attitude
rate maintained for longer periods of time result in a higher cost C; ; compared to fast changes in
attitude maintained for shorter periods of time. Also, since the terms inside f(x) have the same
sign as the components of x, the sum of the values of f(n;(k)) over the lifespan of the individual
is zero (the lowest cost possible) only if the individual ¢ rotates in such a manner as to align
itself to the correct trajectory for reaching the target and then, once it is about to reach the set
point, starts to rotate in the same exact way as the first rotation. So by having C; 5 = 0, ideally
the quadcopter has performed two opposite sequences of rotations, thus returning to the attitude
1(0) defined in ¢ (0). Since it is ideal that once an individual i reaches the target its attitude
is m;(kmax) = 0 and if 5(0) # 0, the cost of the attitude change must necessarily be C;; > 0;
in this case, the cost relative to the individual’s ¢ displacement C; ¢ is predominant (this means
that to stay as close as possible to the target, the individual must necessarily have nn = 0 in the
last period of its life span) and because of the fact that all individuals start with the same 1(0),
thus resulting in a lower bound for C; 5 that is equal for all the individuals in the generation, the
individuals will still evolve to have a zero attitude once they reach the target. In summary, this
attitude rate cost function promotes individuals that exhibit impulsive rotational behaviors and
that compensate each rotation in one direction with one in the opposite.

Since it is desirable that the final controller avoids crashing the quadcopter to the ground, a

11



cost relative to this behavior C; , is introduced:

kmax
Cin = Y. cin(k)At, (24)
k=0
cinlt) = & if z;(k) <0 (crashed), (25)
o B 0 instead,

where K is a constant taking a large value, since the avoidance of crashing is a very important
requisite.

3.4.4 Next generation

The core of the genetic algorithm is how to make the next generation perform better than the
previous and its performance, the amount of time it takes to reach an optimal solution, is mainly
determined by this phase. To achieve this, for each individual j of the next generation I'(g + 1),
three steps are applied in sequence: two individuals (parents) p; and po are selected [8] from the
generation g, then their genes are combined (crossover) to create the offspring j and then the
offspring undergoes a mutation process in its genome.

Also a number np of the best individuals of the current generation will be kept in the new
generation. This is to avoid genetic drift, that can occur in two cases: in the event that all
the offspring of the new generation get heavily mutated resulting in a worst performance than the
previous one; and if the random starting state a9(0) is too difficult to control (for example if all the
individuals start very close to the ground and upside down, thus hitting the ground immediately),
then the costs of the mutated population would be all the same and not representative of the
quality of an individual’s genome.

Selection. For each individual j of the next generation I'(g+1) two parents p; and py are selected
from the population I'(g) by using custom algorithm inspired by “tournament selection” [18]: nr
individuals from the population I'(g) are randomly chosen to be candidates parents and then only
the two best individuals (the ones with the lowest costs Cy.,C3, of the pool) are selected to be
the parents pi, ps of the individual j of the next generation I'(g + 1). The problem in selection
algorithms is finding a balance between exploration and exploitation [33]. If the algorithm is
focused on exploitation, it will get stuck in a local minimum and if it only explores it will never
settle on a minimum. By increasing the pool size, the algorithm favors exploitation (if the maximum
tournament size is the size of the population, the best two individuals will always be chosen) and
by lowering the size, exploration is favored (if maximum tournament size is two, it is basically a
completely random selection).

Crossover. Once two parents pj,ps are selected, to generate their offspring, a crossover [23]
between the genomes of p; and ps needs to occur. Since the genomes (weights, biases and normalizer
weights) are directly encoded, the chosen method for generating the genome of the offspring was
choosing each of its genes to be equal to one of its parents’ genes, with an equal 50% chance.

Mutation. After an offspring j is produced, it passes through a mutation [2] function that
randomly chooses if the individual has to mutate based on a mutation rate m, and if so one of
its genes gets mutated by adding a random number 7 € [—ryax, vax]. Then, since the mutation
algorithm modifies only one gene at a time, if the j gets mutated, the function is called again to
further mutate the individual. Because of this, the mutation must be set relatively high (> 50%) to
increase the chance of mutating more than one gene. The mutation step in genetic algorithms is a
fundamental step because without it, the algorithm will only generate subsequent generations with
genes that are only a combination of the first generation’s (I'(0)) genes, resulting in a very limited
exploration of the solution space. By adding a random number r, instead of directly assigning a
random value, it ensures that the genes are not strictly bounded by an interval. Also better results
in learning performance are given by setting the random number bound ryax small, because it
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makes the exploration strategy more gradual. In fact, if the interval is too small exploration, albeit
more precise, is slower and more prone to get stuck in local minima.
The next-population generation procedure is outlined in Algorithm 1.

Algorithm 1 Next population generation algorithm
h!

Set the first np individuals of I'(g + 1) as the best b individuals of I'(g)
for all remaining individuals 7 in I'(g + 1) do
Selection:
Randomly choose ny individuals from T'(g), generating a pool P
In P select the two distinct individuals p; and py that exhibit the lowest cost C , C¥
Crossover:
for all genes 7, defined in the genome do
Yo VAT OF 74 ¢ %2 (randomly)
end for
Mutation:
Randomly determine if ¢ has to mutate
while ¢ has to mutate do
Randomly choose a gene !
Randomly determine a value to mutate r € [—ryax, "MAX]
Yo & Yot
Randomly determine if ¢ has to mutate again
end while
end for

2

4 Implementation

In this section, programming techniques used to implement the learning algorithm, as well as the
neural control algorithm, are summarized.

4.1 Numerical implementation

The quadcopter model equations, that are in the continuous time domain, are converted to the
discrete time domain by using the forward Euler method. Since the step size of the simulation
At has to be necessarily small (At = 0.01) to give the neural network controller more instants
in which to control the quadcopter, the forward Euler method, albeit not the most precise of
all the numerical procedures for calculating differential equations, has shown very good results.
Also in this project performance was more important than absolute numerical precision, and the
forward Euler method has proven to be a good compromise. Nevertheless, the quadcopter model
discrete equations can be extended and solved using different methods, without compromising the
functioning of the program.

4.2 Programming implementation

The project is implemented in JAVA. Since the calculations involve matrices, the Efficient Java
Matrix Library (EJML) is used, which has a very good performance, especially for dense small
matrices like the ones present in this project.

To view the algorithm in action, a simple 3D environment is implemented using Processing 3,
a library that uses OpenGL as its engine and can make both 3D and 2D interactive visualizations.
Also, to get more functionalities in the program, described below, a simple GUI using Swing is
used. To decrease the training times, the genetic algorithm uses multi-threading to simulate each
individual in its life span.

The parameters of the quadcopter model, the neural network topology and the parameters of
the genetic algorithm can be configured directly in a JSON file, without the need to modify the
source code.
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4.2.1 Functionalities

The main functionalities of the program are:
e Define the simulation parameters in a configuration file;

e Apply the genetic algorithm, with the specified configuration, with a 3D environment showing
the progressive evolution of the generations;

e Apply the genetic algorithm without the 3D environment, to increase training speed;

e Load and save the neural networks of a population produced by the algorithm in a JSON
file;

e From a neural network file, simulate and show in 3D the best individual in that population
following a randomly generated path;

e Run multiple genetic algorithms or path following simulations, each with its configurations
of parameters specified as files in a folder, while saving the results in multiple files.

4.2.2 Screenshots

In the following figures, some screenshots of the 3D environments are shown. In Figure 6 a static
view of the 3D environment for the training is shown and in Figure 7 is shown the 3D simulation of
a single trained quadcopter following a path. The quadcopters shown in Figure 6 are the result of
20,000 generations using the “harsh configuration”, as described in detail in Section 5 to highlight
the differences in the individuals performance, while the neural controller applied to the quadcopter
in Figure 7 is trained for 250,000 generations with the same configuration.

On the basis of Figure 6 a brief summary of the genetic algorithm for a generation can be
presented: initially all the individuals are given the same starting state o (0), then they start
controlling the quadcopter to reach the target point (the sphere in the images’ center) and their
performance is evaluated until the lifespan of the population kyax is reached. As it can be
seen, a portion of the simulation becomes unstable and starts falling to the ground. This is a
normal behavior since the individuals have only been trained for 20,000 generations and is also a
result of the random mutation process, which can improve or diminish the performance of certain
individuals. Nevertheless, the better the performance of an individual the higher the probability
of passing its genes to the next generation.

After training the neural networks for a desired amount of generations or time, the resulting
controller’s performance can be qualitatively evaluated in the path following environment shown
in Figure 7. The program generates a path for the quadcopter to follow, displayed by a series of
spheres connected by lines, and the quadcopter has to visit each point in sequence. A quantitative
evaluation of the quadcopter’s performance can be assessed by running the path following tests
programmatically, without video, outputting useful and meaningful data results to a file. This
feature was used in Section 5 to collect the values shown in figures and tables.
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Figure 6: 3D training environment of the genetic algorithm, for a trained generation of 150 indi-
viduals. In each frame the point in the center represents the target (set point) and the crosses
represent each individual. From left to right and top to bottom, screenshots of the current gener-
ation’s quadcopters behaviors in time, each 0.1 seconds apart.
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Figure 7: 3D path following environment. In the figures, from left to right and top to bottom,
screenshots of a trained quadcopter’s behavior in time (each taken 0.6 seconds apart from the
previous). In the images, the quadcopter is represented by a cross and the path, composed by
points connected by segments, is represented by spheres and lines. Segments yet to be completed
are drawn in light gray color, while the segment joining the previous target to the current is
highlighted in blue/violet color.

16



5 Numerical experiments

This section presents two types of experiments intended to prove the performance of the neural
controller produced by the algorithm and also discuss the effect of neural network topology in both
training effectiveness and outcome.

5.1 General configuration

The parameters used in the following numerical simulations are presented in Table 1.

Parameter Value Parameter Value Parameter Value
At = 0.02 b =1.14 x10~" E =298 x10°°
A, =A, =4, =025 m = 0.469 [ =0.225
I, =1, =0.005 1., =0.006 I, = 0.006
WMAX = 1000 WMIN =0 TMAX =0.25
n =0.25 p =150 kvax = 10/At

r. =10 g =3 nr =25
np =10 m, = 0.85 nMax = 7/3

Table 1: Table of the parameters used in all of the following simulations. Upper rows: parameters
regarding the quadcopter model and simulation; Lower rows: Genetic algorithm’s parameters.

5.2 General performance and harshness configuration testing

The purpose of the tests presented in this section is to assess whether harsher training conditions
generate more robust (less prone to crashing) and better performing controllers for autonomous
flight. Also, the following tests demonstrate the performance of the controller in the task of follow-
ing a trajectory, proving that — with further refining — neural controllers are a viable alternative
to other methods of control.

The harshness of the training is determined by the maximum starting state o (0) parameters 7,
where x is a sub-vector of the state . Higher values in those parameters mean that the quadcopter
will explore harder states to control, therefore evolution should favor individuals that can adapt
to those situations. Every configuration refers to the same parameters values described in Table 1,
and the starting state parameters 7, are presented in Table 2.

Parameter Configuration
Harsh | Medium | Soft
T 1.2 0.6 0.2
Ty 1.5 0.75 0.1
¢ 4 2 0.1
TE 1 0.5 0.0

Table 2: Maximum random starting parameters of the harshness tests.

The structure of the neural network is the same for every configuration and the chosen topology
is {15, 30, 16,8, 4}.

The test begins by running the genetic algorithm for each configuration, for gniax = 250, 000
generations, producing the trained population I'(gmax ). As a benchmark for the algorithm perfor-
mance, to run 250,000 generations three times (one for each configuration), with the parameters
in Table 1, it takes 8 hours on a dedicated server machine [Intel core i7 9xx (Nehalem class core
i7) 2.30 GHz 8 core, 16 GB RAM], hence less than 3 hours to reach optimal results for a single
configuration.

From the last generation of each configuration, the best individual (the one with the lowest
cost) is chosen to participate in the path following tests. In these tests, the three individuals are
given the same series of 1,000 randomly determined paths. Each path is composed of 10 random
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points in a sequence and each point has a maximum distance of 10 meters from the previous point,
to form a random spatial path.

Since the controllers are trained to follow only one point, once the quadcopter’s center of
mass enters a spherical neighborhood of the current target point, with radius p, it switches to
the next point in the sequence, thus approximately covering the whole path. As it will be shown
in the following results, the choice of p influences significantly the performances in the three
configurations, and determines the precision of quadcopter’s trajectory.

5.2.1 Approximate path following

In these tests, the radius p equals 1 meter. This means that when a quadcopter gets closer than
one meter to the current target it will start to chase the next one in the sequence. With a radius
p = 1 meter, the trajectory will be quite approximated hence the name of this test, so the precision
in reaching the targets will be less favored compared to average speeds of flight.
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Figure 8: 3D trajectories obtained in an approximate (p = 1 meter) path following tests. The
dashed line denotes the reference path, the continuous line denotes a drone trajectory.

Figure 8 shows a trajectory of the quadcopter over one of the randomly generated paths. A
first qualitative analysis can be made: The harsh configuration shows no problem in following the
path and its trajectory is more steady than the rest; the medium configuration also completes the
path, but more jerky movements can be seen; the soft configuration initially starts following the
path but eventually crashes to the ground.
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Figure 9: Norm of the error of position Hepos(t)H of the three configurations, in the approximate
(p = 1 meter) path following test, relative to the path points, over time.
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Figure 10: Projections of the 3D path in Figure 8. Upper row: x-z plane; Middle row: y-z plane;
Lower row: x-y plane.

The trajectories taken by the three quadcopters can be seen in more detail in Figure 10, where
the 3D path is projected on the 3 planes of the axes. Here it can be seen that the center of mass
never quite reaches the trajectory’s points, because of p set to 1 meter. Also, especially in the x-y
plane (third row), the difference in the 3 trajectories is more marked.
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Note that in Figure 8 and Figure 10 the dashed trajectories are just the connection between
successive target points and do not constitute a reference input for the quadcopter. Also, the
dashed trajectory is not always guaranteed to be the optimal trajectory for a quadcopter to follow.

The harsh configuration exhibits smooth movements with less pronounced bumps, and its
trajectory follows more closely the fastest path between the points. The medium configuration
follows a more turbulent trajectory compared to the harsh configuration, but nevertheless reaches
the end of the path. The soft configuration initially follows closely the path. Surprisingly, on the
x-y plane, it even follows the path better the harsh configuration, that was expected to perform
better than the other two configurations. Then, once it reaches a condition that it has not evolved
to endure, the quadcopter crashes into the ground.

Since every controller of each configuration has to traverse the same 1,000 paths as the other,
the time each quadcopter takes to traverse a path can be used as a reference of its performance; by
averaging these 1,000 times, the average travel time tpyg can be determined. Also, the minimum
tyvin and maximum tyax travel times can be obtained. Note that not all trajectories reach the
end of the path because either the quadcopter crashes into the ground or the controller is subject
to a steady-state positional error eqs, hence it hovers around the target without ever reaching the
required neighborhood to switch to the next target (this situation is referred to as stall).

In these tests, the incomplete trajectories are only caused by crashes, since the spherical neigh-
borhood is relatively wide (p = 1 meter) and the steady-state positional error should have been
larger than 1 meter to get in a stall. This behavior can be seen in Figure 9.

Configuration || tmin | tave | tmax || No. of crashes | No. of stalls
Harsh || 14.64 | 19.98 | 25.06 0 0
Medium || 17.54 | 24.28 | 32.64 749 0
Soft || 12.24 | 17.59 | 24.00 101 0

Table 3: Results’ summary of 1,000 approximate (p = 1 meter) path-following tests.

The implications of the values shown in Table 3 may be evaluated as follows. The harsh
quadcopter is the most stable of the three: with 1000 paths traversed it has never crashed or
stalled once but, albeit stabler, is slower than the quadcopter evolved with softer starting states.
Oddly, the soft configuration performs the fastest, with an average time of 17.59 seconds to perform
a course of 100 meters (10 targets x 10 meters), means an average speed of 20.47 km/h. Also, the
medium configuration values do not stand in between the harsh and the soft, with much higher
crashes and slower times compared to the other configurations.

An interpretation of these results is:

e The harsh configuration produces stabler and more careful individuals that are not prone to
crashing, at the cost of some travel speed in the path.

e The soft configuration produces faster and more reckless individuals, due to the training
conditions that allow so, at the cost of occasional crashes where the quadcopter has visited
a “harsh” state that was not evolved to endure.

e The medium configuration performs, both in speed and reliability, worse than the harsh
and the soft configurations. This can be due to the fact that the training conditions are
not harsh enough to produce reliable individuals, yet they are harsh enough to hinder the
training process in evolving fast individuals.

Since these tests have been run only on one training session of 250000 generations per configuration,
to draw more precise conclusions more tests need to be run, thus gaining more statistical signif-
icance. Nevertheless, the data shows that with harsh training conditions, the genetic algorithm
produces neural controllers that are both reliable and well performing in the task of approximate
autonomous flight.

5.2.2 Precise path following

In order to gain more insight about the features of the considered learning configurations, the tests,
with the same individuals of the previous tests and on the same exact paths, are run again with a
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target-switch threshold p equal to 0.1 meters. This means that the controllers will have to reach
the current target (set point) more closely to start chasing the next one. To do so, and reach the
end of the paths, stability in control is required to avoid crashing and a low steady state error in
€05 is mandatory to avoid stalling. Since the neural networks were already trained, the genetic
algorithm does not need to be run again.

In contrast with the previous tests, precision in reaching the target points is more important
than travel speed, so greater travel times are to be expected.
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Figure 11: 3D trajectories for the precise (p = 0.1 meter) path following tests. The dashed line
refers to the reference path, the continuous line refers to the trajectory of a drone.

As it can be seen in Figure 11, the quadcopter trained with harsh conditions is more than ca-
pable of following the trajectory with precision (relatively to the target points), where the medium
and soft training configurations fail to reach the end of the path because they stall, hovering around
one point, without reaching a distance less than p to the current target and never advancing to-
wards the end of the sequence. These trajectories can be also seen projected on the three axes in
Figure 12.
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Figure 12: Projections of the 3D path in Figure 11. Upper row: x-z plane; Middle row: y-z plane;
Lower row: x-y plane.
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Figure 13: Norm of the error of position Hepos(t) H of the three configurations, in the precise (p = 0.1
meters) path following test, relative to the path points, over time.
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In Figure 13, the cause of stalling can be inspected more closely. A decrease in the positional
error Hepos H means that the individual gets closer to the current target, where a spike in the error
means that the individual reached the spherical neighborhood of radius p = 0.1 meters and starts
following the next point in the sequence. The error of the harsh configuration exhibits 9 spikes,
which indicate that all of the 10 points in the path have been visited. The medium and soft
individuals start chasing the first target point, but never reach an error HePOSH less than p, thus
these drones keep hovering around the first point without visiting any other points in the sequence.
The medium individual exhibits a steady-state error of about 0.8 meters, while the soft individual
shows a steady-state error of about 0.12 meters.

The travel times and number of incomplete paths (due to stalling and crashes) are presented
in Table 4. By comparing these results with the ones in Table 3, the difference in the three
configurations appears more evident. The harsh configuration shows no issues in completing both
the approximated path with p = 1 meter and the more precise path with p = 0.1 meters, with an
increase in travel times for the more precise path. The neural controllers produced by the medium
and soft training configuration do not achieve a small enough steady-state error to even complete
one path out of 1,000 paths.

Configuration || tymin | tava | tmax || No. of crashes | No. of stalls
Harsh || 29.18 | 42.49 | 54.74 0 0
Medium - - - 31 969
Soft - - - 5 995

Table 4: Results’ summary of 1,000 precise (p = 0.1 meters) path following tests.

The results of this test clearly show that harsh training conditions are required to produce
controllers that are stable enough to avoid crashing, even at high speeds (shown in Table 3) and
with steady-state errors low enough to follow paths more precisely (as shown in Table 4).

5.2.3 Further precision tests

Since the medium and soft training configuration results have been proven inadequate, to further
test the precision of the neural controller produced by the harsh configuration, ulterior tests can be
conducted. To evaluate the performance of the harsh configuration, a series of tests, each composed
by 10,000 randomly generated paths with different settings, are realized. The obtained results are
presented in Table 5.

Path parameters Travel times Paths not completed
l Al 0 tMIN tava tmax || No. of crashes | No. of stalls

200 | 0.3 | 0.15 || 177.94 | 202.24 | 223.5 0 0

200 | 0.2 0.1 212.92 | 247.09 | 277.06 0 0

150 | 0.18 | 0.09 | 179.06 | 208.92 | 240.52 0 0

150 | 0.18 | 0.085 || 194.32 | 236.13 | 268.4 0 0

200 | 0.2 | 0.08 - - - 0 10,000
150 | 0.18 | 0.075 - - - 0 10,000
200 | 0.15 | 0.075 - - - 0 10,000

Table 5: Results obtained by an harsh configuration over 7 experiments, each composed of 10,000
paths with different randomly generated parameters [ and Al.

Each row of Table 5 corresponds to the results of 10,000 paths randomly generated with specific
parameters: [ represents the number of points in a path and Al is the maximum distance between
consecutive points of the paths (in meters).

The results summarized in Table 5 indicate that for values of p less than 0.08 meters the
controller steady-state positional error is larger than the required threshold p to advance the
sequence of points in the path. This gives an approximate indication that the steady-state error
llepos|| is not greater that 0.085 meters.
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To further refine the precision of the controller, the definition of the cost function (18) guiding
the genetic algorithm can be improved by increasing the weight of the cost term Cf, ¢ (that represents
positional error) and, to follow a more precise path, a new cost term Cﬁ p that would represent the
discrepancy between the individual’s trajectory and the segment conjoining the starting point to
the target can be added. Also the genetic algorithm could be run for more generations, since the
algorithm has been run for only 250,000 generations (3 hours of run time on the aforementioned
computing platform).

Nevertheless, the neural controller produced by the genetic algorithm with the harsh configu-
ration has reached adequate levels of precision, with a steady state error of 8 cm, and stability,
with 0 crashes over the course of all the previous tests.

5.3 Topology experiments

The purpose of the following tests is to compare the effect that a network’s topology has on both the
performance of the training algorithm (costs compared to number of generations) and the resulting
controller performance. Three configurations, differing only by topology, have been chosen:

e Complex: {15,45,60,32,8,4}
e Medium: {15,30,16,8,4}
e Simple: {15,20,8,4}

The chosen parameters to train the network were 200,000 total generations each composed by
100 individuals. These parameters produce less trained individuals than the parameters chosen in
the previous tests (namely, 50,000 generations and 50 individuals less than the previous harshness
tests, for a total of 50,000 x 50 fewer total individuals in the training), but were chosen to high-
light the effects of neural network topology on training times instead of producing fully trained
individuals. Also, the primary objective of this section is to qualitatively evaluate the effect that
topology has on the training algorithm, but some path following tests have also been performed
to give an approximate evaluation on the performance of the evolved individuals, albeit not fully
trained.

To gather information on the training process, in each configuration’s generation the minimum
cost of the entire population is recorded. Since the starting state resets every g* = 3 generations,
the costs exhibit large fluctuations. Notice that the starting states o(0) are randomly determined,
and the starting states that each configuration’s training session endures are independent from the
starting states of the other two configurations. To increase the readability of Figure 14, the values
reported in the plots are the moving average (MA) of each generation’s minimum costs, within a
window of 2,000 generations.
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Figure 14: Moving average over each generation’s minimum costs of each topology configuration,
within a window of 2,000 generations. The curves represent, from top to bottom, the values for
the entire training (200,000 generations), the values at the start of the training (from generation
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0 to 20,000) and in the remaining generations (from 20,000 to 200,000).

The curves in Figure 14 show that initially the simple topology learns the quickest (lowest
decreasing cost over each generation), the complex is the slowest and the medium learning per-
formance is in between the two. After the initial learning phase, the simple topology exhibits, on
average, the highest costs, while the other configurations show lower costs. Between the medium

and complex topology, the best topology cannot be determined.

To evaluate the performance of the trained controllers, each controller is evaluated on a series of
path-following tests, each composed by 500 paths with different parameters, as shown in Table 6.
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Path parameters Tonolo Travel times Paths not completed
I TAI]T »p POIOBY | | tave | tmax || No. of crashes | No. of stalls
Complex || 56.80 | 71.93 | 86.72 27 0
20 10 1 Medium 41.08 | 52.41 | 60.64 8 0
Simple - - - 500 0
Complex - - - 6 494
20 | 10 | 0.5 Medium || 54.26 | 67.98 | 82.26 3 0
Simple - - - 500 0
Complex - - - 0 500
100 | 0.2 | 0.1 Medium - - - 0 500
Simple - - - 0 500

Table 6: Results of a series of tests, each composed by 500 randomly generated paths with different
configurations, run by the final best individuals produced by the genetic algorithm, for each of the
three topology.

These values show that in approximately following a path (p = 1 meter) the neural network
with the medium-complexity topology performs better, both in terms of travel time and stability,
than the other two instances of topology. The neural network with the simple topology cannot
complete a single test without crashing or stalling, over the course of 1,500 (500 x 3) path-following
tests. The most complex of the three topologies in the approximate tests (p = 1 meter) performs
adequately, but in the tests where the quadcopter must get closer to the path’s target-points
(p = 0.5 meters and p = 0.1 meters), the controller is not precise enough to complete the paths
reliably. This suggests that the topology of a neural controller must be chosen carefully: A complex
topology (both in depth and width) requires more training time and does not entail necessarily
an optimal performance; in contrast, a simpler topology requires less training time but does not
possess enough capabilities for learning more complex tasks nor for learning the correct behavior
for the states visited in training. So a balance between training speed and learning potential must
be established by specifying a correct neural network topology.

6 Conclusions

This thesis proves that neural networks are a feasible approach in controlling quadcopters systems.
Also, the potentialities of genetic algorithms as a method for neural network’s unsupervised learning
(neuro evolutionary algorithms) have been shown: by defining an appropriate cost function for the
task and by tweaking the algorithm’s parameters, neuro evolutionary techniques are able to train
well-performing neural networks in a relatively short amount of time. This learning algorithm,
applied to quadcopter control, yields impressive results: the neural controllers performed the task of
autonomous flight with outstanding stability and excellent flight times in a simulated environment
with no obstacles.

To further extend this work and make this form of control more viable in real world appli-
cations, the quadcopter can be equipped with an array of sensors for collision avoidance and its
structure and learning processes modified for accounting the supplementary inputs. Also the train-
ing environment can be ameliorated by adding disturbances such as wind or sensor noise to further
improve the robustness and stability of the controllers. The applications of this form of controller
and training can also be extended to a vast amount of necessities. For example, to adapt the con-
troller for logistic purposes such as autonomous package delivery, the simulation can be expanded
by adding a variable payload to the quadcopter so that the neuro evolutionary algorithm produces
neural networks capable of adapting to deliver any type of reasonable cargo.
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