Currently, the problem that still limits the production of hydrogen cars on a large scale is mainly linked to three factors: the fuel cell production technology, the hydrogen production costs and the methods of storage and refueling of the fuel inside of special tank. As regards the first aspect, car manufacturers are making great efforts to improve the structure and performance of fuel cells in order to obtain performance similar to internal combustion engines; the real problem, however, lies in the other two aspects. On a global scale, the sustainable production of hydrogen, therefore without the use of hydrocarbons, takes place through electrolysis, a process that requires electricity to be supplied to one or more electrolytic cells to split water into hydrogen and oxygen. The amount of hydrogen produced, however, given a certain amount of water and energy, is very low (low production efficiency), which, even more so in recent months of great energy crisis, makes this process need the use of renewable energy sources. With the hope that technology and the conversion of electricity production to renewable sources will take more and more ground in the following years, the big problem remains that of how to safely fill the hydrogen cylinders housed in vehicles. Well yes, it is precisely the physical-chemical characteristics of hydrogen that make this gas differ, in its behavior, from others already used in the field of propulsion and for this reason it is necessary to take into consideration various precautions during its use. It is precisely in this area that the work and study of the Loccioni company fits in, which in recent months has been investing resources in the design of automatic test systems for hydrogen tank. Thanks to the availability of cutting-edge software and design tools, it was possible to analyze and develop a test line, which effectively simulates what happens in a hydrogen refueling station, to then critically evaluate and analyze the results obtained. This paper will describe the process and methods of filling the cylinders (according to the dedicated SAE J2601 standard), starting from the hydro-pneumatic circuit, which allows the hydrogen to be transported and conveyed from the storage systems to the user's final tank, to then arrive at the evaluation of the final data. The study of the process will be assisted by simulations, carried out by me, and will start, in the first instance, from the development of programmable spreadsheets in Excel (with the help of Visual Basic), with which they are considered, through the use of relative simplified analytical expressions, all the effects and phenomena to which the hydrogen is related in its flow from the storage tanks to the final tank. To then complete the analyses, new simulations will be developed using the Amesim software, which will allow the reliability of the results obtained in Excel to be verified and will allow for a more complete picture of what actually happens during the charging process of the cylinders, due to the fact that the software itself, internally, has already implemented differential equations more suitable for describing the phenomena in question.
Attualmente, il problema che ancora limita la produzione di auto ad idrogeno su larga scala è legato principalmente a tre fattori: alla tecnologia di produzione delle fuel cells, ai costi di produzione dell’idrogeno e alle modalità di stoccaggio e rifornimento del combustibile all’interno di apposite bombole. Per quanto riguarda il primo aspetto, i costruttori di automobili stanno facendo grandi sforzi per migliorare la struttura e le performance delle fuel cells in modo da ottenere prestazioni simili ai motori a combustione interna; il vero problema, però, risiede negli altri due aspetti. Su scala globale, la produzione sostenibile di idrogeno, senza quindi l’utilizzo di idrocarburi, avviene attraverso l’elettrolisi, un processo che necessita di energia elettrica da fornire ad una o più celle elettrolitiche per scindere l’acqua in idrogeno e ossigeno. La quantità di idrogeno prodotta, però, data una certa quantità di acqua ed energia, risulta molta bassa (basso rendimento di produzione), cosa che, a maggior ragione in questi ultimi mesi di grande crisi energetica, fa sì che questo processo necessiti dell’utilizzo di fonti di energia rinnovabile. Con l’auspicio che la tecnologia e la conversione della produzione di energia elettrica a fonti rinnovabili prenda, negli anni a seguire, sempre più piede rimane come grande problema quello di come riempire, in modo sicuro, le bombole di idrogeno alloggiate nei veicoli. Ebbene sì, sono proprio le caratteristiche fisico-chimiche dell’idrogeno che fanno in modo che questo gas differisca, nel suo comportamento, da altri già utilizzati nel campo della propulsione e per questo è necessario prendere in considerazione diversi accorgimenti durante il suo utilizzo. E’ proprio in questo ambito che si inserisce il lavoro e lo studio dell’impresa Loccioni che negli ultimi mesi sta investendo risorse nella progettazione di sistemi automatici di test per bombole (tank) di idrogeno. Grazie alla disponibilità di software e strumenti di progettazione all’avanguardia è stato possibile analizzare e mettere a punto una linea di test, che simula effettivamente ciò che accade in una stazione di rifornimento ad idrogeno, per poi valutare ed analizzare in modo critico i risultati ottenuti. In questo elaborato verranno descritti il processo e le modalità di riempimento delle bombole (secondo la normativa dedicata SAE J2601), partendo dal circuito idro-pneumatico, che permette di trasportare e convogliare l’idrogeno dai sistemi di stoccaggio fino al tank finale dell’utilizzatore, per arrivare poi alla valutazione dei dati finali. Lo studio del processo sarà coadiuvato da simulazioni, da me effettuate, e partirà, in prima istanza, dallo sviluppo di fogli di calcolo programmabili in Excel (con l’ausilio di Visual Basic), con il quale vengono considerati, tramite l’utilizzo delle relative espressioni analitiche semplificate, tutti gli effetti e fenomeni alla quale è legato l’idrogeno nel suo flusso dai serbatoi di stoccaggio al tank finale. Per completare poi le analisi, saranno messe a punto delle nuove simulazioni, attraverso il software Amesim, che permetteranno di verificare l’attendibilità dei risultati ottenuti in Excel e consentiranno di avere un quadro più completo di ciò che realmente accade durante il processo di carica delle bombole, per il fatto che il software stesso, al suo interno, ha già implementate equazioni differenziali più adatte a descrivere i fenomeni in questione.
Analisi e studio di un sistema automatico di test per Tank di idrogeno
PALAZZI, MICHELE
2021/2022
Abstract
Currently, the problem that still limits the production of hydrogen cars on a large scale is mainly linked to three factors: the fuel cell production technology, the hydrogen production costs and the methods of storage and refueling of the fuel inside of special tank. As regards the first aspect, car manufacturers are making great efforts to improve the structure and performance of fuel cells in order to obtain performance similar to internal combustion engines; the real problem, however, lies in the other two aspects. On a global scale, the sustainable production of hydrogen, therefore without the use of hydrocarbons, takes place through electrolysis, a process that requires electricity to be supplied to one or more electrolytic cells to split water into hydrogen and oxygen. The amount of hydrogen produced, however, given a certain amount of water and energy, is very low (low production efficiency), which, even more so in recent months of great energy crisis, makes this process need the use of renewable energy sources. With the hope that technology and the conversion of electricity production to renewable sources will take more and more ground in the following years, the big problem remains that of how to safely fill the hydrogen cylinders housed in vehicles. Well yes, it is precisely the physical-chemical characteristics of hydrogen that make this gas differ, in its behavior, from others already used in the field of propulsion and for this reason it is necessary to take into consideration various precautions during its use. It is precisely in this area that the work and study of the Loccioni company fits in, which in recent months has been investing resources in the design of automatic test systems for hydrogen tank. Thanks to the availability of cutting-edge software and design tools, it was possible to analyze and develop a test line, which effectively simulates what happens in a hydrogen refueling station, to then critically evaluate and analyze the results obtained. This paper will describe the process and methods of filling the cylinders (according to the dedicated SAE J2601 standard), starting from the hydro-pneumatic circuit, which allows the hydrogen to be transported and conveyed from the storage systems to the user's final tank, to then arrive at the evaluation of the final data. The study of the process will be assisted by simulations, carried out by me, and will start, in the first instance, from the development of programmable spreadsheets in Excel (with the help of Visual Basic), with which they are considered, through the use of relative simplified analytical expressions, all the effects and phenomena to which the hydrogen is related in its flow from the storage tanks to the final tank. To then complete the analyses, new simulations will be developed using the Amesim software, which will allow the reliability of the results obtained in Excel to be verified and will allow for a more complete picture of what actually happens during the charging process of the cylinders, due to the fact that the software itself, internally, has already implemented differential equations more suitable for describing the phenomena in question.File | Dimensione | Formato | |
---|---|---|---|
Tesi di laurea magistrale Michele Palazzi.pdf
accesso aperto
Descrizione: Tesi di laurea magistrale Michele Palazzi
Dimensione
6.72 MB
Formato
Adobe PDF
|
6.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/11534