Microbes are the most abundant biological component of marine ecosystem at global scale, but they role has always been considered at the micro-scale, referring to their importance in biogeochemical cycles and the organic matter recycling. The most innovative aspect that we discuss in this work, but that is of the same importance, is microbial ecological role at macro- scale, introducing the concept of “microbial habitats”, which are systems where the habitat formers are represented by microorganisms. Therefore, microbial habitats can increase the complexity of the substrate, enhancing the number of available niches and consequently the biodiversity at local scale. In this study, we focused on a “microbial forest” that, after a submarine volcanic eruption, developed all over the summit of Banua Wuhu volcano (Sangihe Arc, Indonesia), being able to exploit the venting seepages of sulfur and CO2. We described and characterized the habitat-former at the genomic and morphological level, finding a filamentous benthic cyanobacterium that represents a novelty within the Trichodesmium genus. The filaments of Trichodesmium sp. have a length of ca. 1 cm and are clearly visible to the naked eye, they increase the three-dimensionality of the substrate, creating a volume within which larvae and juveniles of macroalgae (i.e., Asparagopsis taxiformis), metazoans (i.e., harpacticoid copepods, ostracods, peracarids, sipunculid polychaetes) and sciaphilous organisms (i.e., bryozoans, cnidarians of the order Anthoathecata) find refuge, areas protected from currents exploitable as recruitment and reproductive sites. Moreover, we find a wide microbial assemblage associated to the filaments that included both prokaryotes and eukaryotes (i.e., ciliates). Trichodesmium sp.simultaneously make nitrogen fixation (N2) and oxygenic photosynthesis; thus, it remains to be clarified why and how this strain adapted to live in an extreme environment that, despite the high Fe availability which is necessary for nitrogen fixation, is characterized by high temperature (ca. 50°C) sulfuric and CO2 fluid emissions. However, iron and sulfur availability from the fluid emissions, combined with the photosynthetic activity (high chlorophyll-a concentrations) is expected to support a high in situ primary production of the system that, as shown by extracellular enzymatic activities analyses, resulted efficient in the utilization and recycling of the organic matter.

I microbi sono la componente biologica più abbondante dell’ecosistema marino a livello globale, ma il loro ruolo è sempre stato valutato su micro-scala, riferendosi alla loro importanza nei cicli biogeochimici e nel riciclo della materia organica. L’aspetto più innovativo trattato in questa tesi, ma allo stesso modo importante, è il ruolo ecologico che la componente microbica ha anche su macro-scala, introducendo così il concetto di “habitat microbici” ovvero dei sistemi in cui è un microorganismo a costruire l’habitat. Gli habitat microbici sono in grado di aumentare la complessità di un substrato, amplificando il numero di nicchie ecologiche disponibili e di conseguenza la biodiversità a livello locale. In questo studio ci siamo concentrati su una “microbial forest” che, a seguito di una eruzione, si è estesa per tutta la sommità del vulcano sottomarino Banua Wuhu (Arco delle Sanghie, Indonesia), riuscendo a sfruttare le fuoriuscite gassose di zolfo e CO2. Abbiamo caratterizzato l’habitat-former sia a livello genomico che morfologico, individuando un cianobatterio filamentoso bentonico che rappresenta una novità all’interno del genere Trichodesmium. I filamenti di Trichodesmium sp. hanno una lunghezza di circa 1 cm e sono chiaramente visibili ad occhio nudo, aumentano la tridimensionalità del substrato, creando un volume in cui larve e giovanili di macroalghe (ex. Asparagopsis taxiformis), metazoi (ex. copepodi arpacticoidi, ostracodi, peracaridi, policheti sipunculidi) e organismi sciafili (ex. briozoi, cnidari dell’ordine Anthoathecata) trovano rifugio, zone protette da correnti che possono essere sfruttati come siti di reclutamento e riproduttivi. Inoltre, abbiamo riscontrato un’ampia diversità microbica associata ai filamenti, che include sia procarioti e eucarioti (ex. ciliati). 3 Trichodesmium sp. effettua simultaneamente la fissazione dell’azoto (N2) e la fotosintesi ossigenica; dunque, rimane da chiarire come e perché si sia adattato ad un ambiente estremo che, nonostante sia ricco in ferro (Fe) che è necessario per l’azoto-fissazione, presenta delle fuoriuscite solfuree e di CO2 ad alta temperatura (ca. 50°C). La disponibilità di Fe e S data dalle emissioni, assieme all’attività fotosintetica del cianobatterio (alte concentrazioni di clorofilla-A) ci aspettiamo che riesca a supportare un’elevata produzione in situ in un sistema che è risultato, a seguito delle analisi di attività enzimatica, anche efficiente nell’utilizzo e riciclo della materia organica.

Barba di Nettuno: un nuovo habitat microbico formato da un cianobatterio filamentoso bentonico sul vulcano sottomarino Banua Wuhu, Arco delle Sangihe, Indonesia

FANELLI, GINEVRA
2022/2023

Abstract

Microbes are the most abundant biological component of marine ecosystem at global scale, but they role has always been considered at the micro-scale, referring to their importance in biogeochemical cycles and the organic matter recycling. The most innovative aspect that we discuss in this work, but that is of the same importance, is microbial ecological role at macro- scale, introducing the concept of “microbial habitats”, which are systems where the habitat formers are represented by microorganisms. Therefore, microbial habitats can increase the complexity of the substrate, enhancing the number of available niches and consequently the biodiversity at local scale. In this study, we focused on a “microbial forest” that, after a submarine volcanic eruption, developed all over the summit of Banua Wuhu volcano (Sangihe Arc, Indonesia), being able to exploit the venting seepages of sulfur and CO2. We described and characterized the habitat-former at the genomic and morphological level, finding a filamentous benthic cyanobacterium that represents a novelty within the Trichodesmium genus. The filaments of Trichodesmium sp. have a length of ca. 1 cm and are clearly visible to the naked eye, they increase the three-dimensionality of the substrate, creating a volume within which larvae and juveniles of macroalgae (i.e., Asparagopsis taxiformis), metazoans (i.e., harpacticoid copepods, ostracods, peracarids, sipunculid polychaetes) and sciaphilous organisms (i.e., bryozoans, cnidarians of the order Anthoathecata) find refuge, areas protected from currents exploitable as recruitment and reproductive sites. Moreover, we find a wide microbial assemblage associated to the filaments that included both prokaryotes and eukaryotes (i.e., ciliates). Trichodesmium sp.simultaneously make nitrogen fixation (N2) and oxygenic photosynthesis; thus, it remains to be clarified why and how this strain adapted to live in an extreme environment that, despite the high Fe availability which is necessary for nitrogen fixation, is characterized by high temperature (ca. 50°C) sulfuric and CO2 fluid emissions. However, iron and sulfur availability from the fluid emissions, combined with the photosynthetic activity (high chlorophyll-a concentrations) is expected to support a high in situ primary production of the system that, as shown by extracellular enzymatic activities analyses, resulted efficient in the utilization and recycling of the organic matter.
2022
2023-10-17
Barba di Nettuno: a novel microbial habitat formed by a benthic filamenotus cyanobacterium at Banua Wuhu submarine volcano, Sangihe Arc, Indonesia
I microbi sono la componente biologica più abbondante dell’ecosistema marino a livello globale, ma il loro ruolo è sempre stato valutato su micro-scala, riferendosi alla loro importanza nei cicli biogeochimici e nel riciclo della materia organica. L’aspetto più innovativo trattato in questa tesi, ma allo stesso modo importante, è il ruolo ecologico che la componente microbica ha anche su macro-scala, introducendo così il concetto di “habitat microbici” ovvero dei sistemi in cui è un microorganismo a costruire l’habitat. Gli habitat microbici sono in grado di aumentare la complessità di un substrato, amplificando il numero di nicchie ecologiche disponibili e di conseguenza la biodiversità a livello locale. In questo studio ci siamo concentrati su una “microbial forest” che, a seguito di una eruzione, si è estesa per tutta la sommità del vulcano sottomarino Banua Wuhu (Arco delle Sanghie, Indonesia), riuscendo a sfruttare le fuoriuscite gassose di zolfo e CO2. Abbiamo caratterizzato l’habitat-former sia a livello genomico che morfologico, individuando un cianobatterio filamentoso bentonico che rappresenta una novità all’interno del genere Trichodesmium. I filamenti di Trichodesmium sp. hanno una lunghezza di circa 1 cm e sono chiaramente visibili ad occhio nudo, aumentano la tridimensionalità del substrato, creando un volume in cui larve e giovanili di macroalghe (ex. Asparagopsis taxiformis), metazoi (ex. copepodi arpacticoidi, ostracodi, peracaridi, policheti sipunculidi) e organismi sciafili (ex. briozoi, cnidari dell’ordine Anthoathecata) trovano rifugio, zone protette da correnti che possono essere sfruttati come siti di reclutamento e riproduttivi. Inoltre, abbiamo riscontrato un’ampia diversità microbica associata ai filamenti, che include sia procarioti e eucarioti (ex. ciliati). 3 Trichodesmium sp. effettua simultaneamente la fissazione dell’azoto (N2) e la fotosintesi ossigenica; dunque, rimane da chiarire come e perché si sia adattato ad un ambiente estremo che, nonostante sia ricco in ferro (Fe) che è necessario per l’azoto-fissazione, presenta delle fuoriuscite solfuree e di CO2 ad alta temperatura (ca. 50°C). La disponibilità di Fe e S data dalle emissioni, assieme all’attività fotosintetica del cianobatterio (alte concentrazioni di clorofilla-A) ci aspettiamo che riesca a supportare un’elevata produzione in situ in un sistema che è risultato, a seguito delle analisi di attività enzimatica, anche efficiente nell’utilizzo e riciclo della materia organica.
File in questo prodotto:
File Dimensione Formato  
PDF_A_Fanelli Ginevra_Tesi LM Biologia Marina_Sess.Autunnale22_23.pdf

embargo fino al 16/10/2025

Descrizione: Documento di tesi completo con Sinossi in italiano, Fanelli Ginevra
Dimensione 7.16 MB
Formato Adobe PDF
7.16 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12075/14848