In the present thesis work we focused on the transparent envelope, making several comparisons both on irradiances, very important data that are input to evaluate the energy demand from the building, and on the type of glass to be used to understand how much the solar contributions change and the benefit that can be achieved by using one glass versus another. Three different comparisons were made, the first on irradiances, i.e., between those measured and those calculated directly by the TRNSYS software, the second on solar inputs, giving both measured and calculated climatic data as input, to understand how different they were, and the third comparison in which we compared better-performing glass versus single-glazing to understand what kind of gain is achieved in the reference building. In the first comparison, Ancona's input climate data were obtained in two different ways: - experimentally by going to measure minute by minute direct, diffuse and global horizontal solar irradiances and global vertical irradiances for all four orientations North, East, South and West and then going to average these values over the hour; - calculated directly by the TRNSYS software, through type 16c, by giving as input three .txt files containing outdoor temperature, relative humidity, and horizontal global solar irradiance. Therefore, the importance of going to use exact meteorological data should also be emphasized. Measured data, however, are not complete with all the information needed to perform accurate simulations; specifically, while global solar irradiance is easily measured, it is more complex and expensive to acquire data on the diffuse and direct component. Ideally, in fact, this information should be obtained from a dense network of stations capable of regularly measuring direct and diffuse solar irradiances for all inclinations and orientations. To overcome this issue, we adopted the algorithm present in the solar irradiance separation and transposition model of the UNI 10349-1:2016 standard [5]. We specify that as far as the Italian standard is concerned, we referred to the modified algorithm proposed by Summa et al. [6], that is, the updated monthly average values related to the diffuse solar irradiance on vertical surfaces oriented in the main directions. In the next chapter we will go on to describe in more detail the algorithm of the solar irradiance separation and transposition model used. In the second comparison, on the other hand, we went to analyze the solar inputs, giving as input both experimental, measured data and data calculated by the TRNSYS software so as to understand how much the energy demand and room temperature of my building changes as the input climate data changes. In the third comparison we used five different types of glass, respectively: single glazing, double glazing with air, double glazing with argon, low-e glass and solar control glass and went to compare the internal temperature, solar radiation transmitted through the glass and the resulting energy demand for heating/cooling, of the higher-performing glass compared to single glazing to understand what kind of benefit is provided by the above-mentioned glass compared to simple float glass.

Nel presente lavoro di tesi ci siamo concentrati sull’involucro trasparente, facendo diversi confronti sia sulle irradianze, dati molto importanti che vengono inseriti in ingresso per valutare la richiesta energetica da parte dell’edificio, sia sul tipo di vetro da utilizzare per capire quanto cambiano gli apporti solari e il giovamento che si può raggiungere utilizzando un vetro rispetto ad un altro. Sono stati fatti tre diversi confronti, il primo sulle irradianze, ovvero fra quelle misurate e quelle calcolate direttamente dal software TRNSYS, il secondo sugli apporti solari, dando in input sia i dati climatici misurati sia quelli calcolati, per capire quanto fossero differenti e il terzo confronto in cui abbiamo paragonato dei vetri più performanti rispetto al vetro singolo per capire che tipo di guadagno si ha nell’edificio di riferimento. Nel primo confronto i dati climatici di input di Ancona sono stati ottenuti in due diversi modi: • sperimentalmente andando a misurare minuto per minuto le irradianze solari dirette, diffuse e globali orizzontali e le irradianze globali verticali per tutti e quattro gli orientamenti Nord, Est, Sud e Ovest per poi andare a mediare questi valori sull’ora; • calcolati direttamente dal software TRNSYS, attraverso il type 16c, dando come input tre file .txt contenenti la temperatura esterna, l’umidità relativa e l’irradianza solare globale orizzontale. Da sottolineare quindi anche l’importanza di andare ad utilizzare dei dati meteorologici esatti. I dati misurati però non sono completi di tutte le informazioni necessarie a compiere simulazioni accurate, nello specifico, mentre l’irradianza solare globale è facilmente misurabile, è più complesso e costoso acquisire dati sulla componente diffusa e diretta. Idealmente infatti, queste informazioni dovrebbero essere ottenute da una densa rete di stazioni in grado di misurare regolarmente le irradianze solari diretta e diffusa per tutte le inclinazioni e gli orientamenti. Per superare questa problematica abbiamo adottato l’algoritmo presente nel modello di separazione e trasposizione dell’irradianza solare della normativa UNI 10349-1:2016 [5]. Si specifica che per quanto riguarda la norma italiana, si è fatto riferimento all’algoritmo modificato proposto da Summa et al. [6] ovvero i valori aggiornati medi mensili relativi all’irradiazione solare diffusa sulle superfici verticali orientate nelle direzioni principali. Nel capitolo successivo andremo a descrivere più dettagliatamente l’algoritmo del modello di separazione e trasposizione dell’irradianza solare utilizzato. Nel secondo confronto invece, siamo andati ad analizzare gli apporti solari, dando in ingresso sia i dati sperimentali, misurati sia i dati calcolati dal software TRNSYS in modo tale da capire quanto cambia la richiesta di energia e la temperatura ambiente del mio edificio al variare dei dati climatici in ingresso. Nel terzo confronto abbiamo usato cinque tipologie differenti di vetro, rispettivamente: vetro singolo, vetro doppio con aria, vetro doppio con argon, vetro basso emissivo e vetro a controllo solare e siamo andati a paragonare la temperatura interna, la radiazione solare trasmessa attraverso il vetro e l’energia richiesta per il riscaldamento/raffrescamento risultanti, dei vetri più performanti, rispetto al vetro singolo per capire quale tipo di giovamento viene offerto dai vetri sopra menzionati rispetto al semplice vetro float.

ANALISI SPERIMENTALE E NUMERICA DEGLI APPORTI SOLARI IN UN EDIFICIO.

POCHINI, MATTIA
2022/2023

Abstract

In the present thesis work we focused on the transparent envelope, making several comparisons both on irradiances, very important data that are input to evaluate the energy demand from the building, and on the type of glass to be used to understand how much the solar contributions change and the benefit that can be achieved by using one glass versus another. Three different comparisons were made, the first on irradiances, i.e., between those measured and those calculated directly by the TRNSYS software, the second on solar inputs, giving both measured and calculated climatic data as input, to understand how different they were, and the third comparison in which we compared better-performing glass versus single-glazing to understand what kind of gain is achieved in the reference building. In the first comparison, Ancona's input climate data were obtained in two different ways: - experimentally by going to measure minute by minute direct, diffuse and global horizontal solar irradiances and global vertical irradiances for all four orientations North, East, South and West and then going to average these values over the hour; - calculated directly by the TRNSYS software, through type 16c, by giving as input three .txt files containing outdoor temperature, relative humidity, and horizontal global solar irradiance. Therefore, the importance of going to use exact meteorological data should also be emphasized. Measured data, however, are not complete with all the information needed to perform accurate simulations; specifically, while global solar irradiance is easily measured, it is more complex and expensive to acquire data on the diffuse and direct component. Ideally, in fact, this information should be obtained from a dense network of stations capable of regularly measuring direct and diffuse solar irradiances for all inclinations and orientations. To overcome this issue, we adopted the algorithm present in the solar irradiance separation and transposition model of the UNI 10349-1:2016 standard [5]. We specify that as far as the Italian standard is concerned, we referred to the modified algorithm proposed by Summa et al. [6], that is, the updated monthly average values related to the diffuse solar irradiance on vertical surfaces oriented in the main directions. In the next chapter we will go on to describe in more detail the algorithm of the solar irradiance separation and transposition model used. In the second comparison, on the other hand, we went to analyze the solar inputs, giving as input both experimental, measured data and data calculated by the TRNSYS software so as to understand how much the energy demand and room temperature of my building changes as the input climate data changes. In the third comparison we used five different types of glass, respectively: single glazing, double glazing with air, double glazing with argon, low-e glass and solar control glass and went to compare the internal temperature, solar radiation transmitted through the glass and the resulting energy demand for heating/cooling, of the higher-performing glass compared to single glazing to understand what kind of benefit is provided by the above-mentioned glass compared to simple float glass.
2022
2024-02-13
EXPERIMENTAL AND NUMERICAL ANALYSIS OF SOLAR GAINS IN A BUILDING.
Nel presente lavoro di tesi ci siamo concentrati sull’involucro trasparente, facendo diversi confronti sia sulle irradianze, dati molto importanti che vengono inseriti in ingresso per valutare la richiesta energetica da parte dell’edificio, sia sul tipo di vetro da utilizzare per capire quanto cambiano gli apporti solari e il giovamento che si può raggiungere utilizzando un vetro rispetto ad un altro. Sono stati fatti tre diversi confronti, il primo sulle irradianze, ovvero fra quelle misurate e quelle calcolate direttamente dal software TRNSYS, il secondo sugli apporti solari, dando in input sia i dati climatici misurati sia quelli calcolati, per capire quanto fossero differenti e il terzo confronto in cui abbiamo paragonato dei vetri più performanti rispetto al vetro singolo per capire che tipo di guadagno si ha nell’edificio di riferimento. Nel primo confronto i dati climatici di input di Ancona sono stati ottenuti in due diversi modi: • sperimentalmente andando a misurare minuto per minuto le irradianze solari dirette, diffuse e globali orizzontali e le irradianze globali verticali per tutti e quattro gli orientamenti Nord, Est, Sud e Ovest per poi andare a mediare questi valori sull’ora; • calcolati direttamente dal software TRNSYS, attraverso il type 16c, dando come input tre file .txt contenenti la temperatura esterna, l’umidità relativa e l’irradianza solare globale orizzontale. Da sottolineare quindi anche l’importanza di andare ad utilizzare dei dati meteorologici esatti. I dati misurati però non sono completi di tutte le informazioni necessarie a compiere simulazioni accurate, nello specifico, mentre l’irradianza solare globale è facilmente misurabile, è più complesso e costoso acquisire dati sulla componente diffusa e diretta. Idealmente infatti, queste informazioni dovrebbero essere ottenute da una densa rete di stazioni in grado di misurare regolarmente le irradianze solari diretta e diffusa per tutte le inclinazioni e gli orientamenti. Per superare questa problematica abbiamo adottato l’algoritmo presente nel modello di separazione e trasposizione dell’irradianza solare della normativa UNI 10349-1:2016 [5]. Si specifica che per quanto riguarda la norma italiana, si è fatto riferimento all’algoritmo modificato proposto da Summa et al. [6] ovvero i valori aggiornati medi mensili relativi all’irradiazione solare diffusa sulle superfici verticali orientate nelle direzioni principali. Nel capitolo successivo andremo a descrivere più dettagliatamente l’algoritmo del modello di separazione e trasposizione dell’irradianza solare utilizzato. Nel secondo confronto invece, siamo andati ad analizzare gli apporti solari, dando in ingresso sia i dati sperimentali, misurati sia i dati calcolati dal software TRNSYS in modo tale da capire quanto cambia la richiesta di energia e la temperatura ambiente del mio edificio al variare dei dati climatici in ingresso. Nel terzo confronto abbiamo usato cinque tipologie differenti di vetro, rispettivamente: vetro singolo, vetro doppio con aria, vetro doppio con argon, vetro basso emissivo e vetro a controllo solare e siamo andati a paragonare la temperatura interna, la radiazione solare trasmessa attraverso il vetro e l’energia richiesta per il riscaldamento/raffrescamento risultanti, dei vetri più performanti, rispetto al vetro singolo per capire quale tipo di giovamento viene offerto dai vetri sopra menzionati rispetto al semplice vetro float.
File in questo prodotto:
File Dimensione Formato  
Tesi Magistrale Pochini Mattia.pdf

embargo fino al 16/08/2025

Dimensione 6.59 MB
Formato Adobe PDF
6.59 MB Adobe PDF

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12075/16506