In recent years, significant advancements have been made in the field of three-dimensional (3D) bioprinting, particularly in the development of bioinks for a wide range of applications, including regenerative medicine and tissue engineering. This study aims to address the need for standardized, cost-effective bioinks by developing a bioink formulation using natural, biocompatible polymers. Specifically, nine different alginate-based hydrogels were formulated, with two pure alginate and seven incorporating varying concentrations of gelatin, collagen, and xanthan gum. These formulations were selected to optimize mechanical properties, cell compatibility, and printability for 3D bioprinting applications. The crosslinking process was achieved using an 80 mM CaCl₂ solution for 15 minutes, which ensured immediate stiffness after printing, a key factor in preserving the shape and stability of the printed structures. In the initial phase of the study, 3D constructs were printed using the CellInk BioX printer without cells, allowing for evaluation of the hydrogels ability to form stable structures. Scanning electron microscopy (SEM) and rheological analysis were employed to further investigate the structural and mechanical properties of the hydrogels. The results demonstrated that the 10%(w/v) alginate scaffold successfully maintained its structural integrity and exhibited superior rheological properties for extrusion printing, indicating its potential as a viable bioink. The second phase of the study focused on bio-fabrication, in which Leiomyosarcoma cell lines were inoculated into the alginate matrix to assess cellular behavior within the 3D constructs. This process made at the Department of Experimental and Clinical Medicine of UNIVPM involved detailed analysis of cell proliferation, morphology, and viability, with subsequent microscopy and DAPI staining confirming positive cell growth over time. The findings revealed that the 10% alginate bioink supported cell proliferation and spheroid aggregation, demonstrating its potential as cost-effective and viable platforms for tissue engineering, regenerative medicine, and future research applications.
Negli ultimi anni, sono stati compiuti notevoli progressi nel campo della biostampa tridimensionale (3D), in particolare nello sviluppo di bioink per una vasta gamma di applicazioni, tra cui la medicina rigenerativa e l'ingegneria tissutale. Questo studio mira a rispondere alla necessità di bioink standardizzati e a basso costo sviluppando una formulazione di bioink utilizzando polimeri naturali e biocompatibili. In particolare, sono stati formulati nove hydrogels a base di alginato, di cui due contenenti alginato puro e sette con diverse concentrazioni di gelatina, collagene e gomma di xantano. Queste formulazioni sono state selezionate per ottimizzare le proprietà meccaniche, la compatibilità cellulare e la stampabilità per applicazioni di biostampa 3D. Il processo di crosslinking è stato ottenuto utilizzando una soluzione di CaCl₂ a 80 mM per 15 minuti, garantendo una rigidità immediata dopo la stampa, un fattore chiave per preservare la forma e la stabilità delle strutture stampate. Nella fase iniziale dello studio, sono stati stampati costrutti 3D utilizzando la stampante CellInk BioX senza cellule, consentendo di valutare la capacità degli hydrogels di formare strutture stabili. La microscopia elettronica a scansione (SEM) e l'analisi reologica sono state impiegate per indagare ulteriormente le proprietà strutturali e meccaniche degli hydrogels. I risultati hanno dimostrato che l'impalcatura a base di alginato al 10% (w/v) ha mantenuto con successo la propria integrità strutturale ed ha mostrato proprietà reologiche superiori per la stampa a estrusione, indicando il suo potenziale come bioink valido. La seconda fase dello studio si è concentrata sulla bio-fabbricazione, in cui le linee cellulari di Leiomyosarcoma sono state inoculate nella matrice di alginato per valutare il comportamento cellulare all'interno dei costrutti 3D. Questo processo, effettuato presso il Dipartimento di Medicina Sperimentale e Clinica dell'UNIVPM, ha coinvolto un'analisi dettagliata della proliferazione cellulare, morfologia e vitalità, con successiva microscopia e colorazione DAPI che hanno confermato una crescita cellulare positiva nel tempo. I risultati hanno rivelato che il bioink a base di alginato al 10% ha supportato la proliferazione cellulare e l'aggregazione di sferoidi, dimostrando il suo potenziale come piattaforme valide e a basso costo per l'ingegneria tissutale, la medicina rigenerativa e applicazioni future di ricerca.
Cost-effective biocompatible materials for the bioprinting of 3D colloidal scaffolds
MARUCCI, FRANCESCO
2023/2024
Abstract
In recent years, significant advancements have been made in the field of three-dimensional (3D) bioprinting, particularly in the development of bioinks for a wide range of applications, including regenerative medicine and tissue engineering. This study aims to address the need for standardized, cost-effective bioinks by developing a bioink formulation using natural, biocompatible polymers. Specifically, nine different alginate-based hydrogels were formulated, with two pure alginate and seven incorporating varying concentrations of gelatin, collagen, and xanthan gum. These formulations were selected to optimize mechanical properties, cell compatibility, and printability for 3D bioprinting applications. The crosslinking process was achieved using an 80 mM CaCl₂ solution for 15 minutes, which ensured immediate stiffness after printing, a key factor in preserving the shape and stability of the printed structures. In the initial phase of the study, 3D constructs were printed using the CellInk BioX printer without cells, allowing for evaluation of the hydrogels ability to form stable structures. Scanning electron microscopy (SEM) and rheological analysis were employed to further investigate the structural and mechanical properties of the hydrogels. The results demonstrated that the 10%(w/v) alginate scaffold successfully maintained its structural integrity and exhibited superior rheological properties for extrusion printing, indicating its potential as a viable bioink. The second phase of the study focused on bio-fabrication, in which Leiomyosarcoma cell lines were inoculated into the alginate matrix to assess cellular behavior within the 3D constructs. This process made at the Department of Experimental and Clinical Medicine of UNIVPM involved detailed analysis of cell proliferation, morphology, and viability, with subsequent microscopy and DAPI staining confirming positive cell growth over time. The findings revealed that the 10% alginate bioink supported cell proliferation and spheroid aggregation, demonstrating its potential as cost-effective and viable platforms for tissue engineering, regenerative medicine, and future research applications.File | Dimensione | Formato | |
---|---|---|---|
tesi completa.pdf
accesso aperto
Descrizione: Documento di tesi
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/19207