Marine ecosystems play a crucial role for humans, providing natural resources, coastal protection, climate regulation, and economic benefits related to fishing and tourism. However, the intensification of human activities and the accumulation of chemical contaminants, such as hydrocarbons and heavy metals, compromise their integrity, calling for urgent need of effective and eco-sustainable remediation strategies. In this context, bioremediation based on the use of microorganisms capable of degrading and/or detoxifying environmental contaminants is gaining increasing interest as a cost-effective and eco-friendly solution. In this thesis, highly contaminated Bagnoli sediments (obtained from superficial and sub-superficial layers) were plated in solid culture media enriched with specific polycyclic aromatic hydrocarbons (PAHs) and heavy metals, in order to favor a selection of autochthonous microbial communities and to grow microbial consortia able to degrade PAHs and resist high concentrations of heavy metals. The obtained consortia were then plated in media containing specific antimicrobials, in order to separate their bacterial and fungal components. The three pools obtained (the pool of microbial consortia; their bacterial-only fraction; their fungal-only fraction) were used separately in bioaugmentation tests for the bioremediation of contaminated sediments from the Bagnoli bay. The results showed a good PAH degradation capacity by the two pools containing the separated bacterial and fungal components; but the best results were obtained by using the whole microbial consortia (>80% degradation of PAHs in 6 months), suggesting a synergistic microbial degradative activity. The three pools were then subjected to DNA extraction and analysed by DNA shotgun for their taxonomic and functional characterization, allowing the reconstruction of 9 bacterial genomes (average genome completeness: 91%; range, 66-100%) and 4 fungal genomes (average genome completeness 86%; range 70%-94%), many of which were affiliated with taxa already known for petroleum hydrocarbon degradation (Brevundimonas, Sphingomonas, Stenotrophomonas for bacteria; Aspergillus, Thermothelomyces and Penicillium for fungi). Preliminary genome analysis helped unveiling the genetic basis of these microbial consortia for bioremediation potential, by identifying several genes associated with hydrocarbon degradation and metal resistance/detoxification activities.
Gli ecosistemi marini rivestono un ruolo fondamentale per l’uomo, fornendo risorse naturali, protezione costiera, regolazione climatica e opportunità economiche legate alla pesca e al turismo. Tuttavia, l’intensificarsi delle attività antropiche e l’accumulo di contaminanti chimici, come idrocarburi e metalli pesanti, ne compromettono l’integrità, rendendo urgente la necessità di strategie di bonifica efficaci e sostenibili. In questo contesto, la bioremediation basata sull’utilizzo di microrganismi in grado di degradare e/o detossificare i contaminanti ambientali sta suscitando crescente interesse come soluzione economicamente vantaggiosa ed ecosostenibile. Nel presente lavoro di tesi, alcuni campioni di sedimenti di Bagnoli altamente contaminati (ottenuti da strati superficiali e sub-superficiali) sono stati piastrati in terreni di coltura solidi arricchiti con specifici idrocarburi policiclici aromatici (IPA) e metalli pesanti, allo scopo di favorire una selezione delle comunità microbiche autoctone ed accrescere consorzi microbici in grado di degradare IPA e resistere ad alte concentrazioni di metalli tossici. I consorzi ottenuti sono stati poi piastrati in terreni contenenti antimicrobici specifici, in modo da separare le loro componenti batteriche e fungine. I tre pool ottenuti (pool dei consorzi microbici interi; pool delle sole componenti batteriche; pool delle sole componenti fungine) sono stati utilizzati separatamente in test di bioaugmentation, ovvero aggiunti a sedimenti contaminati (sempre dell’area di Bagnoli), allo scopo di biorisanarli. I risultati hanno mostrato una buona capacità di degradazione degli IPA da parte dei due pool contenenti le componenti batteriche e fungine separate; ma i risultati migliori sono stati ottenuti con il trattamento tramite pool di consorzi microbici (>80% di degradazione degli IPA in 6 mesi), suggerendo un’attività degradativa microbica di tipo sinergico. I tre pool sono stati poi sottoposti ad estrazione del DNA e caratterizzati dal punto di vista tassonomico e funzionale tramite DNA shotgun (sequenziamento massivo del DNA), permettendo di ricostruire 9 genomi batterici (completezza media del genoma: 91%; range, 66-100%) e 4 genomi fungini (completezza media del genoma 86%; range 70%-94% ), alcuni dei quali affiliati a taxa già noti per le loro capacità di degradazione di idrocarburi del petrolio (Brevundimonas, Sphingomonas, Stenotrophomonas per i batteri; Aspergillus, Thermothelomyces e Penicillium per i funghi). L’analisi preliminare dei genomi ha permesso di cominciare a svelare le basi genetiche del potenziale di tali consorzi per il biorisanamento, identificando svariati geni riconducibili ad attività di degradazione di idrocarburi e resistenza/detossificazione di metalli.
ISOLAMENTO SELETTIVO DI CONSORZI MICROBICI (BATTERI E FUNGHI) DA SEDIMENTI MARINI ALTAMENTE CONTAMINATI CON POTENZIALE APPLICATIVO NEL BIORISANAMENTO
PUGLISI, MORGANA
2024/2025
Abstract
Marine ecosystems play a crucial role for humans, providing natural resources, coastal protection, climate regulation, and economic benefits related to fishing and tourism. However, the intensification of human activities and the accumulation of chemical contaminants, such as hydrocarbons and heavy metals, compromise their integrity, calling for urgent need of effective and eco-sustainable remediation strategies. In this context, bioremediation based on the use of microorganisms capable of degrading and/or detoxifying environmental contaminants is gaining increasing interest as a cost-effective and eco-friendly solution. In this thesis, highly contaminated Bagnoli sediments (obtained from superficial and sub-superficial layers) were plated in solid culture media enriched with specific polycyclic aromatic hydrocarbons (PAHs) and heavy metals, in order to favor a selection of autochthonous microbial communities and to grow microbial consortia able to degrade PAHs and resist high concentrations of heavy metals. The obtained consortia were then plated in media containing specific antimicrobials, in order to separate their bacterial and fungal components. The three pools obtained (the pool of microbial consortia; their bacterial-only fraction; their fungal-only fraction) were used separately in bioaugmentation tests for the bioremediation of contaminated sediments from the Bagnoli bay. The results showed a good PAH degradation capacity by the two pools containing the separated bacterial and fungal components; but the best results were obtained by using the whole microbial consortia (>80% degradation of PAHs in 6 months), suggesting a synergistic microbial degradative activity. The three pools were then subjected to DNA extraction and analysed by DNA shotgun for their taxonomic and functional characterization, allowing the reconstruction of 9 bacterial genomes (average genome completeness: 91%; range, 66-100%) and 4 fungal genomes (average genome completeness 86%; range 70%-94%), many of which were affiliated with taxa already known for petroleum hydrocarbon degradation (Brevundimonas, Sphingomonas, Stenotrophomonas for bacteria; Aspergillus, Thermothelomyces and Penicillium for fungi). Preliminary genome analysis helped unveiling the genetic basis of these microbial consortia for bioremediation potential, by identifying several genes associated with hydrocarbon degradation and metal resistance/detoxification activities.File | Dimensione | Formato | |
---|---|---|---|
TESI LAUREA MAGISTRALE_Morgana Puglisi.pdf
non disponibili
Dimensione
2.73 MB
Formato
Adobe PDF
|
2.73 MB | Adobe PDF |
I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/20.500.12075/22596